
IBM Communications Server for AIX or Linux

Management Services Programmer’s Guide
V6.4

SC23-8596-00

���

IBM Communications Server for AIX or Linux

Management Services Programmer’s Guide
V6.4

SC23-8596-00

���

Note:
Before using this information and the product it supports, be sure to read the general information under Appendix B,
“Notices,” on page 47.

First Edition (May 2009)

This edition applies to Version 6 Release 4 of Communications Server for AIX and Linux (5765-E51 and 5724-i33)
and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. You may send your comments to the following address:
International Business Machines Corporation
Attn: Communications Server for AIX/Linux Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina
27709-2195
U.S.A.

You can send us comments electronically by using one of the following methods:
v Fax (USA and Canada):

– 1+919-254-4028

– Send the fax to ″Attn: Communications Server for AIX/Linux Information Development″
v Internet e-mail:

– comsvrcf@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables v

About This Book vii
Who Should Use This Book vii
How to Use This Book viii

Organization of This Book viii
Typographic Conventions viii

Where to Find More Information ix

Chapter 1. Introduction to Management
Services 1
SNA Management Services Support Levels 1
Communications Server Management Services
Support 1
Management Services Application Programming
Interface 1
Management Services Applications 2

MS Applications That Only Send Data 2
MS Applications That Both Send and Receive Data 2

NMVT Routing 4

Chapter 2. Writing MS Applications . . . 5
Description of the MS API Entry Points 5

Synchronous Entry Point: ms 6
Asynchronous Entry Point: ms_async 7
The Callback Routine Specified on the ms_async
Entry Point 9
Scope of Target Handle 10

MS API Header File 11
Compiling and Linking the MS Application . . . 11

AIX Applications 11
Linux Applications 11

Chapter 3. Management Services Verbs 13
CONNECT_MS_NODE 14

VCB Structure 14
Supplied Parameters 14
Returned Parameters 14

DISCONNECT_MS_NODE 16
VCB Structure 16
Supplied Parameters 16
Returned Parameters 16

REGISTER_MS_APPLICATION. 18
VCB Structure 18
Supplied Parameters 18
Returned Parameters 19

REGISTER_NMVT_APPLICATION 21
VCB Structure 21
Supplied Parameters 22

Returned Parameters 23
SEND_MDS_MU 25

VCB Structure 25
Supplied Parameters 25
Returned Parameters 27

TRANSFER_MS_DATA 28
VCB Structure 29
Supplied Parameters 29
Returned Parameters 31

UNREGISTER_MS_APPLICATION 33
VCB Structure 33
Supplied Parameters 33
Returned Parameters 33

UNREGISTER_NMVT_APPLICATION 35
VCB Structure 35
Supplied Parameters 35
Returned Parameters 36

Chapter 4. Management Services
Indications 39
FP_NOTIFICATION 39

VCB Structure 40
Parameters 40

MDS_MU_RECEIVED 40
VCB Structure 41
Parameters 41

MS_STATUS 42
VCB Structure 42
Parameters 42

NMVT_RECEIVED 43
VCB Structure 43
Parameters 43

Appendix A. MS Function Sets 45
Base Function Sets 45
Optional Function Sets 45
Function Sets Not Supported 45

Appendix B. Notices 47
Trademarks 49

Bibliography 51
IBM Communications Server for AIX Publications 51
IBM Communications Server for Linux Publications 52
Systems Network Architecture (SNA) Publications 53
APPC Publications 53
Programming Publications 54

Index 55

© Copyright IBM Corp. 2000, 2009 iii

iv IBM Communications Server for AIX or Linux MS Programmer’s Guide

Tables

1. Typographic Conventions viii

© Copyright IBM Corp. 2000, 2009 v

vi IBM Communications Server for AIX or Linux MS Programmer’s Guide

About This Book

This book is a guide for writing Management Services (MS) applications to use the
IBM Communications Server for AIX or Linux MS application programming
interface (API).

This manual applies to IBM Communications Server, which is an IBM®software
product that enables a server running AIX®, or a computer running Linux, to
exchange information with other nodes on an SNA network.

There are three different installation variants of IBM Communications Server,
depending on the hardware on which it operates:

IBM Communications Server for AIX (CS/AIX)
IBM Communications Server for AIX operates on a server running AIX
Version 5.2, 5.3 or 6.1 base operating system.

IBM Communications Server for Linux (Communications Server for Linux)
IBM Communications Server for Linux, program product number 5724–i33,
operates on the following:
v 32–bit Intel workstations running Linux (i686)
v 64–bit AMD64/Intel EM64T workstations running Linux (x86_64)
v IBM pSeries computers running Linux (ppc64)

IBM Communications Server for Linux on System z (Communications Server for
Linux on System z)

IBM Communications Server for Linux on System z, program product
number 5724–i34, operates on System z mainframes running Linux for
System z (s390 or s390x).

In this book, the name Communications Server is used to indicate any of these
variants, and the term “Communications Server computer” is used to indicate any
type of computer running Communications Server, except where differences are
described explicitly.

The MS API can be used by applications running on either a server or an AIX or
Linux client. It cannot be used by applications running on Windows clients.

This book contains the information required to develop C-language application
programs that use the MS API to communicate with remote network management
applications. It also provides a brief overview of MS concepts and provides
detailed reference information for experienced MS programmers.

This book applies to V6.4 of Communications Server.

Who Should Use This Book
This book is intended for experienced C programmers who write Management
Services applications for systems with Communications Server. Programmers may
or may not have prior experience with SNA or the communication facilities of
Communications Server.

© Copyright IBM Corp. 2000, 2009 vii

Application programmers design and code transaction and application programs
that use the Communications Server programming interfaces to send and receive
data over an SNA network. They should be thoroughly familiar with SNA, the
remote program with which the transaction or application program communicates,
and the AIX / Linux operating system programming and operating environments.

For additional information about Communications Server publications, see the
Bibliography.

How to Use This Book
This section explains how information is organized and presented in this book.

Organization of This Book
This book is organized as follows:
v Chapter 1, “Introduction to Management Services,” on page 1, provides an

overview of Communications Server MS support. It describes the various levels
of SNA network management support, the function sets and optional subsets
supported by the Communications Server MS API, and the functions provided
by the Communications Server MS verbs.

v Chapter 2, “Writing MS Applications,” on page 5, contains information about
writing, compiling, and linking MS applications.

v Chapter 3, “Management Services Verbs,” on page 13, provides a detailed
description of each of the MS verbs, including parameters and return codes.

v Chapter 4, “Management Services Indications,” on page 39, provides a detailed
description of each of the indications sent from Communications Server to the
application, including parameters and return codes.

v Appendix A, “MS Function Sets,” on page 45, lists the SNA MS option sets that
the Communications Server MS API supports.

Typographic Conventions
Table 1, shows the typographic styles used in this document.

Table 1. Typographic Conventions

Special Element Sample of Typography

Document title IBM Communications Server for AIX or Linux
APPC Programmer’s Guide

File or path name ms_c.h
Command or AIX / Linux utility cc
Option or flag -L
Parameter opcode
Literal value or selection that the user can
enter (including default values)

0 (zero)

Constant AP_CONNECT_MS_NODE
Return value AP_STATE_CHECK
Variable representing a supplied value nnnn
Environment variable LD_RUN_PATH
Programming verb CONNECT_MS_NODE
User input cc -L /usr/lib/sna -lms -lsna
Function, call, or entry point ms_async
Data structure MS_CALLBACK
Hexadecimal value 0x20

Who Should Use This Book

viii IBM Communications Server for AIX or Linux MS Programmer’s Guide

Where to Find More Information
See the Bibliography for other books in the Communications Server library, as well
as books that contain additional information about topics related to SNA and AIX
/ Linux workstations.

Where to Find More Information

About This Book ix

x IBM Communications Server for AIX or Linux MS Programmer’s Guide

Chapter 1. Introduction to Management Services

This chapter introduces the Communications Server Management Services (MS)
application programming interface (API). It includes information about the various
types of MS support in SNA and about accessing them through IBM
Communications Server for AIX or Linux.

SNA Management Services Support Levels
SNA defines the following levels of MS support. Each level corresponds to a
different generation of products that implement this support.

NMVT-level
An NMVT-level product transfers management information by sending
network management vector transports (NMVTs) to, and receiving NMVTs
from, a host focal point over a session between the physical unit (PU) in
the node that supports the NMVT-level product and the system services
control point (SSCP) at the host. This session is called a PU-SSCP session.

NetView Version 2, Release 1 or earlier provides NMVT-level support.

Migration-level
A migration-level product transfers management information by sending
and receiving CP_MSUs (Control Point Management Services Unit GDS
variables) over an LU-LU session between independent type 6.2 logical
units (LUs). A CP_MSU is a simple GDS variable containing an MS major
vector. Migration-level focal points can receive alerts, but they do not
support other MS categories.

OS/400®is an example of a migration-level product.

MDS-level
An MDS (Multiple Domain Support)-level product transfers management
information by sending and receiving MDS_MUs (MDS Message Unit GDS
variables) over LU type 6.2 sessions. An MDS_MU consists of a header,
with detailed MS routing and correlation information, followed by a
CP_MSU containing an MS major vector. MDS-level products can
communicate with more than one focal point at the same time, although
they use only a single focal point for a particular MS category (such as
problem management).

OS/2®Communications Server/2 and NetView Version 2, Release 2 (as a
subarea LU rather than a CP) provide MDS-level support.

Communications Server Management Services Support
The Communications Server MS API enables an application to communicate with
other MS products or applications on the SNA network. Communications Server
can support NMVT-level and MDS-level applications. The partner MS application
can implement any of the levels described in “SNA Management Services Support
Levels.” Communications Server performs any data conversion that is required.

Management Services Application Programming Interface
The Communications Server MS API comprises the following elements:

© Copyright IBM Corp. 2000, 2009 1

MS verbs
Verbs are issued by an MS application to do the following:
v Inform Communications Server when it needs Communications Server

resources to support receiving MS data and status indications.
v Send MS data (in either NMVT format or MDS_MU format) to an MS

application elsewhere in the network.
v Register the application with Communications Server to receive

incoming MS data from focal points (in either NMVT format or
MDS_MU format).

v Register the application with Communications Server to receive
information about which focal point is responsible for a particular MS
category, so that Communications Server can route MDS_MU data to the
appropriate application.

For more information about MS verbs, see Chapter 3, “Management
Services Verbs,” on page 13.

MS indications
Indications are either generated locally by Communications Server or used
to forward data received from the network. For more information about
MS indications, see Chapter 4, “Management Services Indications,” on page
39.

Management Services Applications
The verbs and entry points you use when you write an MS application depend on
whether the MS application:
v Only sends data
v Sends and receives data

MS Applications That Only Send Data
This most simple type of application only sends data and never receives any data
from the Communications Server node. This type of application can use either the
synchronous or asynchronous entry point and needs to use only one or both of the
following verbs to send data:
v The SEND_MDS_MU verb sends data in MDS_MU format, which

Communications Server sends to a remote MS application.
v The TRANSFER_MS_DATA verb sends data in NMVT format, which

Communications Server sends to a remote MS application. The data can be
either a complete NMVT or subvectors to which Communications Server adds
the required NMVT header information.

For more information about the synchronous and asynchronous entry points, see
“Description of the MS API Entry Points” on page 5.

MS Applications That Both Send and Receive Data
This type of application both sends data and receives data and status indications
from the Communications Server node. When you write this type of application,
you must include the following verbs (except where noted, you can use either the
synchronous or asynchronous entry point):
1. Issue a CONNECT_MS_NODE verb to establish communication with the

Communications Server node, so that the application can register to receive
data, focal point indications, or both.

Management Services Application Programming Interface

2 IBM Communications Server for AIX or Linux MS Programmer’s Guide

2. Register with the Communications Server node to indicate the type of data that
the application wants to receive. You must use the asynchronous entry point to
register with Communications Server using either or both of the following
verbs:
v The REGISTER_MS_APPLICATION verb registers the application with

Communications Server as an MDS-level application that can accept
MDS_MUs. An option on the verb enables the application to request
information about the focal point for a particular MS category.
Communications Server uses the MDS_MU_RECEIVED indication, the
FP_NOTIFICATION indication, or both, to pass the required data to the
application.

v The REGISTER_NMVT_APPLICATION verb registers the application with
Communications Server in one of the following ways:
– As an NMVT-level application that accepts NMVTs with a particular MS

major vector key. Communications Server then uses the
NMVT_RECEIVED indication to pass NMVTs to the application.

– As an MDS-level application that accepts NMVTs with a particular MS
major vector key after they have been converted to MDS_MUs.
Communications Server converts the received NMVTs to MDS_MUs and
uses the MDS_MU_RECEIVED indication to pass the MDS_MUs to the
application. This usage allows an MDS-level application to receive
NMVT-level data and status indications without having to understand
NMVT-level data formats.

When the application registers with Communications Server, it supplies the
address of a callback routine. Communications Server calls this callback
routine when data of the requested type arrives at the node. For more
information about the data structures that Communications Server supplies
to the callback routine, see Chapter 4, “Management Services Indications,” on
page 39.

3. After registering itself, the application can do any of the following:
v Send data to the Communications Server node using either or both of the

following verbs:
– The SEND_MDS_MU verb supplies data in MDS_MU format, which

Communications Server sends to a remote MS application.
– The TRANSFER_MS_DATA verb supplies data in NMVT format, which

Communications Server sends to a remote MS application. The data can
be either a complete NMVT or subvectors to which Communications
Server adds the required NMVT header information.

v Receive status information from the Communications Server node when
Communications Server returns the following status indications:
– The FP_NOTIFICATION indication provides information about the focal

point for a particular MS category. Communications Server returns this
indication to an MDS-level application that has registered to receive focal
point information.

– The MS_STATUS indication informs the application of changes in the
status of the Communications Server system (when the application’s
communications path to its connected node has been lost, or when the
Communications Server software has stopped). Communications Server
returns this indication to both MDS-level and NMVT-level applications.

v Receive data from the Communications Server node when Communications
Server returns the following received data indications:

Management Services Applications

Chapter 1. Introduction to Management Services 3

– The MDS_MU_RECEIVED data indication returns an MDS_MU to an
MDS-level application. The returned MDS_MU is one of the following:
- The MDS_MU sent by a remote application if the MS application

registered using REGISTER_MS_APPLICATION verb
- An MDS_MU converted from an incoming NMVT if the MS application

registered using the REGISTER_NMVT_APPLICATION verb
– The NMVT_RECEIVED data indication returns an NMVT to an

NMVT-level application that has registered to receive NMVTs.
4. When the application completes, it must end its registration with

Communications Server by issuing one of the following verbs:
v The UNREGISTER_MS_APPLICATION verb ends the application’s

registration with Communications Server. After the application issues this
call, Communications Server no longer sends MDS_MUs to the application.

v The UNREGISTER_NMVT_APPLICATION verb ends the application’s
registration with Communications Server so that it no longer accepts NMVTs
with a particular MS major vector key.

5. After the application ends its registration with Communications Server, it must
issue a DISCONNECT_MS_NODE verb to end communication with the
Communications Server node and free the resources associated with the
application.

For more information about the synchronous and asynchronous entry points, see
“Description of the MS API Entry Points” on page 5.

NMVT Routing
When Communications Server receives an NMVT from a remote node, it uses the
MS major vector key and the destination application name subfields of the NMVT
to determine to which MS application to send the NMVT in the following order of
preference:
1. Communications Server attempts to find an NMVT-level application that has

registered with an application name matching the NMVT’s destination name, in
the following order of preference:
a. An application that has registered to accept the specific major vector key

carried on the incoming NMVT
b. An application that has registered to accept SNA Service Point Command

Facility (SPCF) keys, if the major vector key is in the range 0x8061–0x8064
c. An application that has registered to accept all keys

2. If Communications Server cannot find a suitable NMVT-level application,
Communications Server attempts to find an MDS-level application that has
registered with an application name matching the NMVT’s destination name
and has registered to accept NMVTs after conversion to MDS_MUs. The order
of preference for selecting an application that can accept the appropriate major
vector key is the same as for NMVT-level applications.

Management Services Applications

4 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Chapter 2. Writing MS Applications

This chapter describes how an MS application:
v Uses the MS API entry points
v Schedules asynchronous events
v Is compiled and linked to use the MS API

Description of the MS API Entry Points
An application accesses the MS API using the following entry point function calls:

ms An application uses this entry point to issue an MS verb synchronously.
Communications Server does not return control to the application until
verb processing has finished. All MS verbs except
REGISTER_MS_APPLICATION and REGISTER_NMVT_APPLICATION
can be issued through this entry point.

An application can use only this entry point if both of the following
conditions are true:
v The application only needs to send MS data using the

TRANSFER_MS_DATA verb or the SEND_MDS_MU verb or both. (The
application does not need to receive MS data or status indications.)

v The application can suspend while waiting for Communications Server
to completely process a verb.

The ms entry point is defined in the MS header file /usr/include/sna/ms_c.h
(AIX) or /opt/ibm/sna/include/ms_c.h (Linux).

ms_async
An application uses this entry point to issue an MS verb asynchronously.
Communications Server returns control to the application immediately,
with a returned value indicating whether verb processing is still in
progress or has completed. If the returned value indicates that verb
processing is still in progress, Communications Server uses an
application-supplied callback routine to return the results of the verb
processing. If the returned value indicates that verb processing is complete,
the callback routine will not be invoked.

All MS verbs can be issued through this entry point. The
REGISTER_MS_APPLICATION and REGISTER_NMVT_APPLICATION
verbs must be issued through this entry point.

An application must use this entry point if either of the following
conditions is true:
v The application needs to receive MS data and status indications.
v The application cannot suspend while waiting for Communications

Server to completely process a verb.

The ms_async entry point is defined in the MS header file
/usr/include/sna/ms_c.h (AIX) or /opt/ibm/sna/include/ms_c.h (Linux).

Callback routine for ms_async
An application must supply a pointer to a callback routine when it uses

© Copyright IBM Corp. 2000, 2009 5

the asynchronous MS API entry point. Communications Server uses this
callback routine both for completion of a verb and also for returning MS
data and status indications.

Synchronous Entry Point: ms
An application uses ms to issue an MS verb synchronously. Communications Server
does not return control to the application until verb processing has finished.

Function Call
void ms (

AP_UINT32 target_handle,
void * msvcb
);

Supplied Parameters
An application supplies the following parameters when it uses the ms entry point:

target_handle
For the UNREGISTER_MS_APPLICATION,
UNREGISTER_NMVT_APPLICATION, and DISCONNECT_MS_NODE
verbs, the application supplies the value that was returned on the
CONNECT_MS_NODE verb. This parameter is used to identify the target
Communications Server node.

For all other verbs, this parameter is not used; set it to 0 (zero).

msvcb Pointer to a Verb Control Block (VCB) that contains the parameters for the
verb being issued. The VCB structure for each verb is described in
Chapter 3, “Management Services Verbs,” on page 13. These structures are
defined in the MS API header file /usr/include/sna/ms_c.h (AIX) or
/opt/ibm/sna/include/ms_c.h (Linux).

Note: The MS VCBs contain many parameters marked as “reserved”; some
of these are used internally by the Communications Server software,
and others are not used in this version but may be used in future
versions. Your application must not attempt to access any of these
reserved parameters; instead, it must set the entire contents of the
VCB to zero to ensure that all of these parameters are zero, before it
sets other parameters that are used by the verb. This ensures that
Communications Server will not misinterpret any of its
internally-used parameters, and also that your application will
continue to work with future Communications Server versions in
which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values
The ms entry point does not have a return value. When the call returns, the
application should examine the return code in the VCB to determine whether the
verb completed successfully and to determine parameters it needs for further
verbs. In particular, when the CONNECT_MS_NODE verb completes successfully,
the VCB contains the target_handle that the application should use when the
application issues subsequent verbs.

Description of the MS API Entry Points

6 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Using the Synchronous Entry Point
Only one synchronous verb can be outstanding at any time for each target handle.
A synchronous verb fails with the primary return code AP_STATE_CHECK and
secondary return code AP_SYNC_PENDING if another synchronous verb for the same
target handle is in progress.

Asynchronous Entry Point: ms_async
An application uses ms_async to issue an MS verb asynchronously. The application
also supplies a pointer to a callback routine. Communications Server returns
control to the application immediately with a returned value that indicates whether
verb processing is still in progress or has completed. In most cases, verb processing
is still in progress when control returns to the application. In these cases,
Communications Server uses the application-supplied callback routine to return the
results of the verb processing at a later time. In some cases, verb processing is
complete when Communications Server returns control to the application, so
Communications Server does not use the application’s callback routine.

Function Call
unsigned short ms_async(

AP_UINT32 target_handle,
void * msvcb,
VMV_CALLBACK comp_proc,
AP_CORR corr

);

typedef void (*VMV_CALLBACK) (
AP_UINT32 target_handle,
void * msvcb,
AP_CORR corr

);

typedef union ap_corr {
void * corr_p;
AP_UINT32 corr_l;
AP_INT32 corr_i;

} AP_CORR;

For more information about the parameters in the VMV_CALLBACK structure, see “The
Callback Routine Specified on the ms_async Entry Point” on page 9.

Supplied Parameters
An application supplies the following parameters when it uses the ms_async entry
point:

target_handle
Identifier for the target Communications Server node. For the REGISTER_*,
UNREGISTER_*, and DISCONNECT_MS_NODE verbs, the application
supplies the value that was returned on the CONNECT_MS_NODE verb.

For all other verbs, this parameter is not used; set it to 0 (zero).

msvcb Pointer to a Verb Control Block (VCB) that contains the parameters for the
verb being issued. The VCB structure for each verb is described in
Chapter 3, “Management Services Verbs,” on page 13. These structures are
defined in the MS API header file /usr/include/sna/ms_c.h (AIX) or
/opt/ibm/sna/include/ms_c.h (Linux).

Note: The MS VCBs contain many parameters marked as “reserved”; some
of these are used internally by the Communications Server software,
and others are not used in this version but may be used in future

Description of the MS API Entry Points

Chapter 2. Writing MS Applications 7

versions. Your application must not attempt to access any of these
reserved parameters; instead, it must set the entire contents of the
VCB to zero to ensure that all of these parameters are zero, before it
sets other parameters that are used by the verb. This ensures that
Communications Server will not misinterpret any of its
internally-used parameters, and also that your application will
continue to work with future Communications Server versions in
which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

comp_proc
The callback routine that Communications Server will call when the verb
completes. For more information about the requirements for a callback
routine, see “The Callback Routine Specified on the ms_async Entry Point”
on page 9.

corr An optional correlator for use by the application. This parameter is defined
as a C union so that the application can specify any of three different
parameter types: pointer, unsigned long, or integer.

Communications Server does not use this value, but passes it as a
parameter to the callback routine when the verb completes. This value
enables the application to correlate the returned information with its other
processing.

Returned Values
The asynchronous entry point returns one of the following values:

AP_COMPLETED
The verb has already completed. The application can examine the
parameters in the VCB to determine whether the verb completed
successfully. Communications Server does not call the supplied callback
routine for this verb.

AP_IN_PROGRESS
The verb has not yet completed. The application can continue with other
processing, including issuing other MS verbs, provided that they do not
depend on the completion of the current verb. However, the application
should not attempt to examine or modify the parameters in the VCB
supplied to this verb.

Communications Server calls the supplied callback routine to indicate
when the verb processing completes. The application can then examine the
VCB parameters.

Using the Asynchronous Entry Point
When using the asynchronous entry point, note the following:
v If an application specifies a null pointer in the comp_proc parameter, the verb

will complete synchronously (as though the application issued the verb using
the synchronous entry point).

v If the call to ms_async is made from within an application callback, specifying a
null pointer in the comp_proc parameter is not permitted. In such cases,
Communications Server rejects the verb with primary return code value
AP_PARAMETER_CHECK and secondary return code value AP_SYNC_NOT_ALLOWED.

Description of the MS API Entry Points

8 IBM Communications Server for AIX or Linux MS Programmer’s Guide

v The application must not attempt to use or modify any parameters in the VCB
until the callback routine has been called.

v Multiple verbs do not necessarily complete in the order in which they were
issued. In particular, if an application issues an asynchronous verb followed by a
synchronous verb, the completion of the synchronous verb does not guarantee
that the asynchronous verb has already completed.

The Callback Routine Specified on the ms_async Entry Point
When using the asynchronous MS API entry point, the application must supply a
pointer to a callback routine. Communications Server uses this callback routine
both for completion of a verb and also for returning MS data and status
indications. The application must examine the opcode parameter in the VCB to
determine which event is contained in the callback routine.

This section describes how Communications Server uses the callback routine and
the functions that the callback routine must perform.

Callback Function
typedef void (*VMV_CALLBACK) (

AP_UINT32 target_handle,
void * msvcb,
AP_CORR corr

);

typedef union ap_corr {
void * corr_p;
AP_UINT32 corr_l;
AP_INT32 corr_i;

} AP_CORR;

Supplied Parameters
Communications Server calls the callback routine with the following parameters:

target_handle
For MS data and status indications, Communications Server passes the
target handle that was supplied with the REGISTER_MS_APPLICATION
or REGISTER_NMVT_APPLICATION verb. For completion of verbs, this
parameter is undefined.

msvcb One of the following:
v For MS data and status indications, a pointer to a VCB supplied by

Communications Server.
v For completion of verbs, a pointer to the VCB supplied by the

application. The VCB now includes the returned parameters set by
Communications Server.

corr The correlator value supplied by the application. This value enables the
application to correlate the returned information with its other processing.

The callback routine need not use all of these parameters (except as described in
“Using the Callback Routine for Indications” on page 10). The callback routine can
perform all the necessary processing on the returned parameters, or it can simply
set a variable to inform the MS application that the verb has completed.

Returned Values
The callback function does not return any values.

Description of the MS API Entry Points

Chapter 2. Writing MS Applications 9

Using the Callback Routine for Indications
The callback routine supplied with the REGISTER_MS_APPLICATION VCB can
receive the following indications:
v FP_NOTIFICATION (if the application requested this information when

registering)
v MDS_MU_RECEIVED
v MS_STATUS

The callback routine supplied with the REGISTER_NMVT_APPLICATION VCB
can receive the following indications:
v NMVT_RECEIVED (if the application did not request conversion from

NMVT-level data to MDS-level data)
v MDS_MU_RECEIVED (if the application requested conversion from NMVT-level

data to MDS-level data)
v MS_STATUS

Although the application allocates the VCBs for MS verbs, Communications Server
allocates the VCBs for indications. Therefore, the application has access to the VCB
information only from within the callback routine; the VCB pointer that
Communications Server supplies to the callback routine is not valid outside the
callback routine. The application must either complete all the required processing
from within the callback routine, or it must make a copy of any VCB data that it
needs to use outside this routine.

Processing of indications in the callback routine must fulfill the following
additional requirements:
v If an NMVT-level application uses REGISTER_NMVT_APPLICATION to receive

incoming NMVTs, it must be capable of receiving a data length of 512 bytes (the
maximum NMVT size).

v If an MDS-level application uses REGISTER_NMVT_APPLICATION to receive
incoming NMVTs after conversion to MDS_MUs, it must be capable of receiving
a data length of 700 bytes, which allows for the maximum NMVT size together
with the MDS_MU header information. (This requirement does not apply to an
application using REGISTER_MS_APPLICATION to receive MDS_MUs, because
the application can specify the maximum data length it can accept, and
Communications Server segments the data if necessary.)

v If an MDS-level application uses REGISTER_MS_APPLICATION to receive
incoming MDS_MUs, it must be capable of receiving data of length up to the
value specified for the max_rcv_size parameter on the
REGISTER_MS_APPLICATION verb.

Scope of Target Handle
Each application that needs to use MS must issue the CONNECT_MS_NODE verb
to obtain its own handle. No two MS applications can use the same MS target
handle.

In particular, if the application that issued CONNECT_MS_NODE later forks to
create a child process, the child process cannot issue any MS verbs that use the
target handle obtained by the parent process. However, the child process can issue
another CONNECT_MS_NODE to obtain its own target handle.

Description of the MS API Entry Points

10 IBM Communications Server for AIX or Linux MS Programmer’s Guide

MS API Header File
The header file to be used with MS applications is ms_c.h. This file contains the
definitions of the MS API entry points and the MS VCBs. It also includes the
common interface header file values_c.h; these two files contain all the constants
defined for supplied and returned parameter values at the MS API. The file
values_c.h also includes definitions of parameter types such as AP_UINT16 that are
used in the MS VCBs. Both files are stored in the directory /usr/include/sna (AIX)
or /opt/ibm/sna/include (Linux).

Compiling and Linking the MS Application

AIX Applications
To compile and link 32–bit applications, use the following options:

-bimport:/usr/lib/sna/ms_r.exp -I
/usr/include/sna

To compile and link 64–bit applications, use the following options:

-bimport:/usr/lib/sna/ms_r64_5.exp -I
/usr/include/sna

Linux Applications
Before compiling and linking an MS application, specify the directory where
shared libraries are stored, so that the application can find them at run time. To do
this, set the environment variable LD_RUN_PATH to /opt/ibm/sna/lib, or to
/opt/ibm/sna/lib64 if you are compiling a 64–bit application.

To compile and link 32–bit applications, use the following options:

-I /opt/ibm/sna/include -L
/opt/ibm/sna/lib -lms -lsna_r -lpthread -lpLiS

To compile and link 64–bit applications, use the following options:

-I /opt/ibm/sna/include -L
/opt/ibm/sna/lib64 -lms -lsna_r -lpthread -lpLiS

The option -lpLiS is required only if you will be running the application on a
Communications Server server; you do not need to use it if you are building the
application on an IBM Remote API Client and it will run only on the client. As an
alternative to using this option, you can set the the environment variable
LD_PRELOAD to /usr/lib/libpLiS.so before compiling and linking the application.

MS API Header File

Chapter 2. Writing MS Applications 11

12 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Chapter 3. Management Services Verbs

For each MS verb, this chapter provides the following information:
v Purpose and usage of the verb.
v Verb Control Block (VCB) structure used by the verb. All the VCB structures are

defined in the header file /usr/include/sna/ms_c.h (AIX) or /opt/ibm/sna/include/
ms_c.h (Linux).

v Supplied parameters (VCB fields supplied to the verb). For each parameter, the
following information is listed:
– Description
– Valid values and their meanings
– Additional information where necessary

v Returned parameters. When a verb completes, it contains the following returned
parameters:

primary_rc
This parameter indicates whether the verb completed successfully. If the
verb did not complete successfully, this parameter indicates a category of
reasons for unsuccessful execution.

secondary_rc
This parameter indicates a specific reason for unsuccessful execution.

In addition, some verbs have additional returned parameters.

Many of the supplied and returned parameter values are numeric. To simplify
coding, make the applications more portable, and make the program source easier
to read, these values are represented by symbolic constants defined in the header
file ms_c.h. For example, the opcode (operation code) parameter for the
SEND_MDS_MU verb is the value represented by the symbolic constant
AP_SEND_MDS_MU.

Because different systems store these values differently in memory, it is important
that you use the symbolic constant, and not the numeric value, when setting
values for supplied parameters or when testing values of returned parameters. The
value shown in the header file may not be in the format recognized by your
system.

Note: The MS VCBs contain many parameters marked as “reserved”; some of
these are used internally by the Communications Server software, and
others are not used in this version but may be used in future versions. Your
application must not attempt to access any of these reserved parameters;
instead, it must set the entire contents of the VCB to zero to ensure that all
of these parameters are zero, before it sets other parameters that are used by
the verb. This ensures that Communications Server will not misinterpret any
of its internally-used parameters, and also that your application will
continue to work with future Communications Server versions in which
these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

© Copyright IBM Corp. 2000, 2009 13

CONNECT_MS_NODE
This verb connects an application to a Communications Server node. It returns a
handle that should be used on all subsequent calls to the MS entry points.

An application that only sends data using either the TRANSFER_MS_DATA verb
or the SEND_MDS_MU verb and does not need to receive MS data or status
indications does not need to issue this verb or supply a handle to any subsequent
calls to the MS entry points.

VCB Structure
typedef struct connect_ms_node
{
AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char node_name[64]; /* Name of Node to connect to */
AP_UINT32 target_handle; /* Handle to identify Node on */

/* subsequent verbs */
} CONNECT_MS_NODE;

Supplied Parameters
An application supplies the following parameters when it issues the
CONNECT_MS verb:

opcode AP_CONNECT_MS_NODE

node_name
Name of the Communications Server node to connect to. This is an ASCII
character string.

If the application will be registering to receive NMVTs to act as a service
point for an NMVT-level version of the NetView program, specify the
name of a node that owns a direct connection to the NetView host (the
node whose PU-SSCP session is used to transmit NMVTs to the NetView
program). For more information about NMVT-level programs, see
Chapter 1, “Introduction to Management Services,” on page 1.

If any of the following conditions is true, you can set this parameter to all
binary zeros (you do not need to specify the node name):
v Communications Server is running with all components on a single AIX

/ Linux computer (not on a LAN).
v The Communications Server LAN contains only one server.
v The application is MDS-level and will be sending and receiving data in

MDS_MU format and not in NMVT format.

When the Communications Server LAN has multiple servers and this
parameter is set to all binary zeros, the application will be connected to the
node on the same server as the application, if available, or to any other
available node.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful. If the verb execution was successful,
Communications Server also returns a target handle that the application uses on

CONNECT_MS_NODE

14 IBM Communications Server for AIX or Linux MS Programmer’s Guide

subsequent MS entry points. If the verb execution was not successful,
Communications Server returns parameters to indicate the reason the execution
was not successful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc
AP_OK

secondary_rc
Not used.

target_handle
Returned value for use on future verbs directed to this node.

Unsuccessful Execution
When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_NODE_NAME
The node_name parameter did not match the name of any
Communications Server node.

State Check: If the verb does not execute because of a state error,
Communications Server returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
One of the following:

AP_CONNECT_FAILED
An error occurred in connecting to the node either because the
specified node is not active or, if a null node name was specified,
because no nodes are active.

AP_INVALID_TARGET_STATE
The target handle used on the call to MS was not set to 0 (zero).
For CONNECT_MS_NODE, the target handle must be set to 0
(zero).

AP_SYNC_PENDING
The application used the synchronous entry point to issue this
verb, but another synchronous verb was in progress for this target
handle. Only one synchronous verb can be in progress on a
particular target handle at any time.

AP_SYNC_NOT_ALLOWED
The application used the synchronous MS entry point to issue this

CONNECT_MS_NODE

Chapter 3. Management Services Verbs 15

verb within a callback routine. The application must use the
asynchronous entry point to issue any verb from a callback routine.

Communications Server Software Not Active: If the verb does not execute
because the Communications Server software is not active, Communications Server
returns the following parameter:

primary_rc
One of the following:

AP_COMM_SUBSYSTEM_NOT_LOADED
The Communications Server software has not been started or has
been stopped.

AP_COMM_SUBSYSTEM_ABENDED
The Communications Server software has failed.

Communications Server does not return a secondary_rc when the Communications
Server software is not active.

System Error: If the verb does not execute because of a system error,
Communications Server returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR
An operating system call failed during processing of the verb.

secondary_rc
The return code from the operating system call. For the meaning of this
return code, check the returned value in the file /usr/include/sys/errno.h.

DISCONNECT_MS_NODE
This verb disconnects an application from a node, freeing all resources associated
with that connection. The node from which the application wants to disconnect is
identified by the target_handle parameter on the call.

VCB Structure
typedef struct disconnect_ms_node
{
AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
} DISCONNECT_MS_NODE;

Supplied Parameters
An application supplies the following parameter when it issues
DISCONNECT_MS_NODE:

opcode AP_DISCONNECT_MS_NODE

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was not successful.

CONNECT_MS_NODE

16 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
AP_OK

Communications Server does not return a secondary_rc when the verb executes
successfully.

Unsuccessful Execution
When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_TARGET_HANDLE
The supplied target handle was not a valid value returned on a
previous CONNECT_MS_NODE verb.

State Check: If the verb does not execute because of a state error,
Communications Server returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
One of the following:

AP_INVALID_TARGET_STATE
The application issued DISCONNECT_MS_NODE while
CONNECT_MS_NODE or a previous DISCONNECT_MS_NODE
was still outstanding.

AP_SYNC_PENDING
The application used the synchronous entry point to issue this
verb, but another synchronous verb was in progress for this target
handle. Only one synchronous verb can be in progress on a
particular target handle at any time.

AP_VERB_IN_PROGRESS
The application issued DISCONNECT_MS_NODE while a previous
asynchronous MS verb was still outstanding.

AP_SYNC_NOT_ALLOWED
The application used the synchronous MS entry point to issue this
verb within a callback routine. The application must use the
asynchronous entry point to issue any verb from a callback routine.

Communications Server Software Not Active: If the verb does not execute
successfully because the Communications Server software is not active,
Communications Server returns the following parameter:

primary_rc

DISCONNECT_MS_NODE

Chapter 3. Management Services Verbs 17

AP_COMM_SUBSYSTEM_ABENDED
The Communications Server software has failed.

Communications Server does not return a secondary_rc when the Communications
Server software is not active.

System Error: If the verb does not execute because of a system error,
Communications Server returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR
An operating system call failed during processing of the verb.

secondary_rc
The return code from the operating system call. For the meaning of this
return code, check the returned value in the file /usr/include/sys/errno.h.

REGISTER_MS_APPLICATION
The REGISTER_MS_APPLICATION verb registers the MS application with
Communications Server as an MDS-level application that can receive MDS_MUs.
Before issuing this verb, the application must issue CONNECT_MS_NODE to
obtain a target handle for the Communications Server node. This handle is a
required parameter to the MS entry point for REGISTER_MS_APPLICATION.

An application must always issue this verb using the asynchronous MS entry point
and supply a callback routine. Communications Server uses this callback routine to
return received MDS_MUs to the application. (For more information about the MS
entry points, see Chapter 2, “Writing MS Applications,” on page 5.)

VCB Structure
typedef struct register_ms_application
{

AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char ms_appl_name[8]; /* MS application name */
unsigned char ms_category[8]; /* MS category */
AP_UINT16 max_rcv_size; /* Maximum size that can be received */

} REGISTER_MS_APPLICATION;

Supplied Parameters
The application supplies the following parameters when it issues the
REGISTER_MS_APPLICATION verb:

opcode AP_REGISTER_MS_APPLICATION

ms_appl_name
A name identifying this application. An application can register more than
once using different application names. The name has the following
requirements:
v It cannot match the name used by any other application that is currently

registered as an MS application.
v It cannot be either NODE or UNIX, which are reserved for use by

Communications Server components.

DISCONNECT_MS_NODE

18 IBM Communications Server for AIX or Linux MS Programmer’s Guide

v It must be eight characters long; pad on the right with EBCDIC space
characters (0x40) if necessary.

v It can be one of the following:
– An EBCDIC string, using type-1134 characters (uppercase A–Z and

numerals 0–9)
– One of the MS Discipline-Specific Application Programs specified in

an appendix of IBM Systems Network Architecture: Management Services
Reference

ms_category
If the application needs to obtain the name of its focal point for a
particular MS category, specify the category name here. If the application
does not need to obtain focal point information, set this parameter to eight
binary zeros. The application can register more than once for different MS
category names.

The MS category name can be one of the following:
v A user-defined category name, an 8-byte EBCDIC string using type-1134

characters (uppercase A–Z and numerals 0–9)
v One of the category names specified in the MS Discipline-Specific

Application Programs table of an appendix of IBM Systems Network
Architecture: Management Services Reference

Names of either type should be padded to eight bytes with trailing space
(0x40) characters if necessary.

Communications Server returns details of the focal point using an
FP_NOTIFICATION indication on the callback routine that was supplied
with REGISTER_MS_APPLICATION. If the focal point subsequently
changes, Communications Server sends another FP_NOTIFICATION with
the new information.

max_rcv_size
The maximum number of bytes that the application can accept in one
message. If an incoming MDS_MU is longer than this size,
Communications Server segments it and delivers each segment in a
separate MDS_MU_RECEIVED signal.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was not successful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
AP_OK

Communications Server does not return a secondary_rc when the verb executes
successfully.

Unsuccessful Execution
When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

REGISTER_MS_APPLICATION

Chapter 3. Management Services Verbs 19

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
One of the following:

AP_MS_APPL_NAME_ALREADY_REGD
Another application is currently registered with the specified name,
or the application specified one of the two reserved names, NODE
and UNIX.

AP_INVALID_APPLICATION_NAME
The supplied application name contains a character not in the
EBCDIC type-1134 character set, and the name is not one of the MS
Discipline-Specific Application Program names.

AP_INVALID_CATEGORY_NAME
The supplied category name contains a character not in the
EBCDIC type-1134 character set, and the name is not one of the MS
Discipline-Specific Application Program category names.

AP_INVALID_TARGET_HANDLE
The target handle supplied by the entry point used by the verb is
not a valid value returned on a previous CONNECT_MS_NODE
verb.

AP_SYNC_NOT_ALLOWED
The application used the synchronous MS entry point to issue this
verb within a callback routine. The application must use the
asynchronous entry point to issue any verb from a callback routine.

State Check: If the verb does not execute because of a state error,
Communications Server returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_INVALID_TARGET_STATE
The application issued this verb while CONNECT_MS_NODE or
DISCONNECT_MS_NODE was outstanding.

Communications Server Software Not Active: If the verb does not execute
because the Communications Server software is not active, Communications Server
returns the following parameter:

primary_rc
One of the following:

AP_COMM_SUBSYSTEM_NOT_LOADED
The Communications Server software is not loaded.

AP_COMM_SUBSYSTEM_ABENDED
The Communications Server software has failed.

Communications Server does not return a secondary_rc when the Communications
Server software is not active.

REGISTER_MS_APPLICATION

20 IBM Communications Server for AIX or Linux MS Programmer’s Guide

MDS Support Not Configured: If the verb does not execute because the
Communications Server configuration does not allow it, Communications Server
returns the following parameter:

primary_rc

AP_FUNCTION_NOT_SUPPORTED
The Communications Server local node is not configured to
support MDS-level network management applications. Only
NMVT-level applications can be used.

Communications Server does not return a secondary_rc when it is not configured
for MDS-level support.

System Error: If the verb does not execute because of a system error,
Communications Server returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR
An operating system call failed during processing of the verb.

secondary_rc
The return code from the operating system call. For the meaning of this
return code, check the returned value in the file /usr/include/sys/errno.h.

REGISTER_NMVT_APPLICATION
The REGISTER_NMVT_APPLICATION verb registers the MS application with
Communications Server as an NMVT-level application that can receive NMVTs.
This verb is normally used by an NMVT-level application, but it can also be used
by an MDS-level application that can receive NMVTs after they have been
converted to MDS_MUs. Before issuing this verb, the application must issue
CONNECT_MS_NODE to obtain a target handle for the Communications Server
node. This handle is a required parameter to the MS entry point for
REGISTER_NMVT_APPLICATION.

An application must always issue this verb using the asynchronous MS entry point
and supply a callback routine. Communications Server uses this callback routine to
return received NMVTs to the application. For more information about the MS
entry points, see Chapter 2, “Writing MS Applications,” on page 5.

Communications Server routes an NMVT to this application only if both the
destination name and the MS major vector key in the NMVT match the values
supplied on this call. For more information, see “NMVT Routing” on page 4.

VCB Structure
typedef struct register_nmvt_application
{

AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char ms_appl_name[8]; /* MS application name */
AP_UINT16 ms_vector_key_type; /* MS vector key accepted by appl */
unsigned char conversion_required; /* MDS level application requesting */

/* MDS_MUs */
} REGISTER_NMVT_APPLICATION;

REGISTER_MS_APPLICATION

Chapter 3. Management Services Verbs 21

Supplied Parameters
An application supplies the following parameters when it issues the
REGISTER_NMVT_APPLICATION verb:

opcode AP_REGISTER_NMVT_APPLICATION

ms_appl_name
A name identifying this application. An application can register more than
once using different application names. This name has the following
requirements:
v It cannot match the name used by any other application that is currently

registered to accept the same range of keys as specified by the
ms_vector_key_type parameter.

v It cannot be either NODE or UNIX, which are reserved for use by
Communications Server components.

v It must be eight characters long; pad on the right with EBCDIC space
characters (0x40) if necessary.

v It can be one of the following:
– An EBCDIC string, using type-1134 characters (uppercase A–Z and

numerals 0–9)
– One of the MS Discipline-Specific Application Programs specified in

an appendix of IBM Systems Network Architecture: Management Services
Reference

Incoming NMVTs will be routed to this application only if the value
specified in this parameter matches the Destination Application Name
(0x50) subfield of the MS major vector within the NMVT.

ms_vector_key_type
The MS major vector key or keys accepted by the application.
Communications Server routes incoming NMVTs to the application that
issued this verb only if the MS major vector key in the NMVT matches the
value or values specified here.

Specify one of the following:

0xnnnn The 2-byte hexadecimal value of a particular major vector key.

AP_SPCF_KEYS
Accept all major vector keys in the range 0x8061–0x8064. This
value is intended for use by an application that is implementing
the SNA Service Point Command Facility (SPCF) function; do not
use it if your application is not implementing this function. The
ms_appl_name parameter must not match the application name of
any other application that is registered to accept SPCF keys.

AP_ALL_KEYS
Accept all major vector keys. The ms_appl_name parameter must
not match the application name of any other application that is
registered to accept all keys.

An application can issue multiple REGISTER_NMVT_APPLICATION verbs
(with the same application name or different application names) to accept
NMVTs for more than one key or range of keys.

Communications Server uses both the name and the key to determine
which application receives the NMVT. Therefore, two or more applications
can register to accept NMVTs for the same range of keys (AP_SPCF_KEYS or
AP_ALL_KEYS), provided they use different application names. However,

REGISTER_NMVT_APPLICATION

22 IBM Communications Server for AIX or Linux MS Programmer’s Guide

only one application can accept NMVTs for a specific key. If you specify a
particular major vector key, the verb returns an error if another application
has already registered to accept NMVTs for the specified key.

conversion_required
Specifies whether the registering application is MDS-level and requires
conversion of NMVTs to MDS_MUs. Specify one of the following:

AP_YES The application is MDS-level; NMVTs should be converted to
MDS_MUs.

AP_NO The application is NMVT-level; NMVTs should not be converted.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was not successful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
AP_OK

Communications Server does not return a secondary_rc when the verb executes
successfully.

Unsuccessful Execution
When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
One of the following values:

AP_ALL_APPL_ALREADY_REGISTERED
Indicates one of the following error conditions:
v This application has already registered to accept all keys.
v Another application has registered to accept all keys using the

same application name.
v The application registered to accept all keys using one of the two

reserved names, NODE and UNIX.

AP_INVALID_APPLICATION_NAME
The supplied application name contains a character not in the
EBCDIC type-1134 character set, and the name is not one of the MS
Discipline-Specific Application Program names.

AP_INVALID_TARGET_HANDLE
The target handle supplied by the entry point used with the verb is
not a valid value returned on a previous CONNECT_MS_NODE
verb.

REGISTER_NMVT_APPLICATION

Chapter 3. Management Services Verbs 23

AP_KEY_APPL_ALREADY_REGISTERED
Indicates one of the following error conditions:
v Another application has already registered to accept NMVTs for

this specific key. Only one application can register for each key.
v The application registered to accept a specific key using one of

the two reserved names NODE and UNIX.

AP_SPCF_APPL_ALREADY_REGD
Indicates one of the following error conditions:
v This application has already registered to accept SPCF keys.
v Another application has registered to accept SPCF keys using the

same application name.
v The application registered to accept SPCF keys using one of the

two reserved names NODE and UNIX.

AP_SYNC_NOT_ALLOWED
The application used the synchronous MS entry point to issue this
verb within a callback routine. The application must use the
asynchronous entry point to issue any verb from a callback routine.

State Check: If the verb fails to execute because of a state error, Communications
Server returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_INVALID_TARGET_STATE
The application issued this verb while CONNECT_MS_NODE or
DISCONNECT_MS_NODE was outstanding.

Communications Server Software Not Active: If the verb does not execute
because the Communications Server software is not active, Communications Server
returns the following parameter:

primary_rc
One of the following:

AP_COMM_SUBSYSTEM_NOT_LOADED
The Communications Server software is not loaded.

AP_COMM_SUBSYSTEM_ABENDED
The Communications Server software has failed.

Communications Server does not return a secondary_rc when the Communications
Server software is not active.

System Error: If the verb does not execute because of a system error,
Communications Server returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR
An operating system call failed during processing of the verb.

secondary_rc
The return code from the operating system call. For the meaning of this
return code, check the returned value in the file /usr/include/sys/errno.h.

REGISTER_NMVT_APPLICATION

24 IBM Communications Server for AIX or Linux MS Programmer’s Guide

SEND_MDS_MU
An MDS-level application uses this verb to send network management data in
MDS_MU format. An MDS-level application can also send data in NMVT format
using TRANSFER_MS_DATA. To send alert information, always use
TRANSFER_MS_DATA. Do not use SEND_MDS_MU to send alert information.

The application can supply a complete MDS_MU to be sent, or it can supply some
of the required subvectors and request Communications Server to add additional
subvectors. For more information about the format of MDS_MUs, including the
format of the subvectors that Communications Server adds, refer to IBM Systems
Network Architecture: Formats.

If the destination application is NMVT-level, Communications Server automatically
converts the supplied MDS_MU to an NMVT.

An error that occurs while sending the MDS_MU to the destination application is
reported to the application in different ways, depending on where it is detected:
v If the Communications Server local node detects an error, it returns an error

return code to the SEND_MDS_MU verb.
v If a remote node detects an error, it sends an error MDS_MU. Communications

Server returns the error MDS_MU to the application in an MDS_MU_RECEIVED
indication, provided the application has registered to receive MDS_MUs.

VCB Structure
typedef struct send_mds_mu
{

AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char options; /* Verb options */
unsigned char reserv3; /* reserved */
unsigned char originator_id[8]; /* Originator ID */
unsigned char pu_name[8]; /* Physical unit name */
unsigned char reserv4[4]; /* reserved */
AP_UINT16 dlen; /* Length of data */
unsigned char *dptr; /* Data */

} SEND_MDS_MU;

Supplied Parameters
An application supplies the following parameters when it issues SEND_MDS_MU:

opcode AP_SEND_MDS_MU

options This parameter is a one-byte value, with individual bits used as follows to
indicate the options selected. Bit 0 is the most significant and bit 7 is the
least significant bit. For compatibility with other implementations, the bit
values for bits 0–3 are defined so that a value of 1 indicates no action and
a value of 0 indicates an action.

Bit 0 Add Date/Time subvector to the data. Set this bit to one of the
following values:

0 Requests that Communications Server add the subvector

1 Requests that Communications Server not add the
subvector

SEND_MDS_MU

Chapter 3. Management Services Verbs 25

Bit 1 Add Product Set ID subvector to the data. Set this bit to one of the
following:

0 Requests that Communications Server add the subvector. If
the application supplies data that already contains a
Product Set ID subvector, Communications Server adds its
own Product Set ID subvector immediately preceding the
existing one.

1 Requests that Communications Server not add the
subvector.

Bit 2 Reserved. Must be set to 0.

Bit 3 Log the data in the Communications Server error log file. Set this
bit to one of the following:

0 Requests that Communications Server log the data.

1 Requests that Communications Server not log the data.

Bit 4 Specifies whether MS is to use default or direct routing to send the
MS data to the destination application. Set this bit to one of the
following:

0 Requests that Communications Server use default routing.
Specify default routing unless the application has received
an FP_NOTIFICATION indication that describes the
destination application and has the fp_routing parameter set
to AP_DIRECT. For more information, see
“FP_NOTIFICATION” on page 39.

1 Requests that Communications Server use direct routing.

Bits 5-7
Reserved. Must be set to 0.

originator_id
Name of the component that issued the verb. If the data is being logged in
the Communications Server error log file, this name is used to identify the
originator of the log message; otherwise, it is not used.

This optional parameter is an ASCII string of up to eight characters, using
any locally displayable characters. Set the first character to 0x00 if you do
not want to include it.

pu_name
Destination physical unit for this MDS-MU. Set this to one of the
following:

A name of a PU
Specify an 8-byte type-A EBCDIC string, padded to the right with
EBCDIC spaces (0x40). Applications that use SEND_MDS_MU to
respond to MDS_MU_RECEIVED indications that were converted
from incoming NMVTs should specify the pu_name received in the
MDS_MU_RECEIVED indication.

In this case, the pu_name must match a pu_name specified on the
definition of a link station (LS); the MDS_MU is sent over this link
station. For more information about defining an LS, refer to IBM
Communications Server for AIX Administration Guide or IBM
Communications Server for Linux Administration Guide.

SEND_MDS_MU

26 IBM Communications Server for AIX or Linux MS Programmer’s Guide

All binary zeros
Use this value for MDS_MUs that are to be transported using the
normal MDS routing protocols.

dlen Length of the data string supplied by the application.

dptr A pointer to the data string supplied by the application. This data string
must contain a complete MDS_MU, except as follows:
v If the application used the options parameter to add one or more

subvectors, these subvectors can be omitted from the supplied data.
v The Origin Net ID and Origin NAU Name fields can be set to all EBCDIC

spaces (0x40); in this case, Communications Server fills in the
appropriate information before sending the data.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was not successful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
AP_OK

Communications Server does not return a secondary_rc when the verb executes
successfully.

Unsuccessful Execution
When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
One of the following:

AP_INVALID_DATA_SIZE
The length field in the supplied MDS_MU does not correspond to
the value in the dlen parameter.

AP_INVALID_MDS_MU_FORMAT
The supplied data string does not contain a valid MDS_MU.

AP_INVALID_PU_NAME
Communications Server cannot find an active PU with the name
specified by the supplied pu_name parameter.

State Check: If the verb fails to execute because of a state error, Communications
Server returns the following parameters:

primary_rc
AP_STATE_CHECK

SEND_MDS_MU

Chapter 3. Management Services Verbs 27

secondary_rc
One of the following:

AP_SSCP_PU_SESSION_NOT_ACTIVE
The application specified a PU name, but no session exists between
this PU and an SSCP.

AP_SYNC_PENDING
This verb was issued using the synchronous entry point, but
another synchronous verb was in progress for this target handle.
Only one synchronous verb can be in progress on a particular
target handle at any time.

AP_SYNC_NOT_ALLOWED
The application used the synchronous MS entry point to issue this
verb within a callback routine. The application must use the
asynchronous entry point to issue any verb from a callback routine.

Communications Server Software Not Active: If the verb does not execute
because the Communications Server software is not active, Communications Server
returns the following parameter:

primary_rc

AP_COMM_SUBSYSTEM_ABENDED
The Communications Server software has failed.

Communications Server does not return a secondary_rc when the Communications
Server software is not active.

MDS Support Not Configured: If the verb does not execute because the
Communications Server configuration does not allow it, Communications Server
returns the following parameter:

primary_rc

AP_FUNCTION_NOT_SUPPORTED
The Communications Server local node is not configured to
support MDS-level network management applications. Only
NMVT-level applications can be used.

Communications Server does not return a secondary_rc when it is not configured
for MDS-LEVEL support.

System Error: If the verb does not execute because of a system error,
Communications Server returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR
An operating system call failed during processing of the verb.

secondary_rc
The return code from the operating system call. For the meaning of this
return code, check the returned value in the file /usr/include/sys/errno.h.

TRANSFER_MS_DATA
This verb is used by:
v NMVT-level applications to respond to previously received NMVT requests and

to send unsolicited NMVTs

SEND_MDS_MU

28 IBM Communications Server for AIX or Linux MS Programmer’s Guide

v NMVT-level and MDS-level applications to send unsolicited NMVTs (such as
alert information)

The application can supply a complete NMVT to be sent, or it can supply some of
the required subvectors and request Communications Server to add header
information or additional subvectors. For more information about the format of
NMVTs, including the format of the headers and subvectors that Communications
Server adds, refer to IBM Systems Network Architecture: Formats.

VCB Structure
typedef struct transfer_ms_data
{

AP_UINT16 opcode; /* Verb operation code */
unsigned char data_type; /* Type of data supplied by appl */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char options; /* Verb options */
unsigned char reserv3; /* reserved */
unsigned char originator_id[8]; /* Originator ID */
unsigned char pu_name[8]; /* Physical unit name */
unsigned char reserv4[4]; /* reserved */
AP_UINT16 dlen; /* Length of data */
unsigned char *dptr; /* Data */

} TRANSFER_MS_DATA;

Supplied Parameters
The application supplies the following parameters when it issues the
TRANSFER_MS_DATA verb:

opcode SV_TRANSFER_MS_DATA

data_type
Specify one of the following values:

SV_NMVT
The data contains a complete NMVT. Communications Server
converts the data to MDS_MU or CP_MSU format if the data
contains an alert and the alert is to be sent to an MDS-level or
migration-level focal point.

An application that is responding to an NMVT_RECEIVED
indication must supply a complete NMVT and must use the value
SV_NMVT to indicate this.

SV_ALERT_SUBVECTORS
The data contains MS subvectors in the SNA-defined format for an
alert major vector. Communications Server adds an NMVT header
and an alert major vector header. Communications Server converts
the data to MDS_MU or CP_MSU format if the alert is to be sent
to an MDS-level or migration-level focal point.

SV_USER_DEFINED
The data contains a complete NMVT request unit. Communications
Server always logs the data but does not send it to any focal point.

SV_PDSTATS_SUBVECTORS
The data contains problem determination statistics.
Communications Server always logs the data but does not send it
to any focal point.

TRANSFER_MS_DATA

Chapter 3. Management Services Verbs 29

options A one-byte value, with individual bits indicating the options selected. Bit 0
is the most significant and bit 7 is the least significant bit. For compatibility
with other implementations, the bit values for bits 0–3 are defined so that a
value of 1 indicates no action and a value of 0 indicates an action. (Bits 1–3
are ignored if the data_type parameter is set to SV_USER_DEFINED.)

Bit 0 Add Date/Time subvector to the data. Set this bit to one of the
following values:

0 Requests that Communications Server add the subvector

1 Requests that Communications Server not add the
subvector

Bit 1 Add Product Set ID subvector to the data. Set this bit to one of the
following:

0 Requests that Communications Server add the subvector. If
the application supplies data that already contains a
Product Set ID subvector, Communications Server adds its
own Product Set ID subvector immediately preceding the
existing one.

1 Requests that Communications Server not add the
subvector.

Bit 2 Send the data to the focal point or the PU specified by the pu_name
parameter if this verb is being used to send a reply to a previously
received NMVT. Set this bit to one of the following:

0 Requests that Communications Server send the data

1 Requests that Communications Server not send the data

Bit 3 Log the data in the Communications Server error log file. Set this
bit to one of the following:

0 Requests that Communications Server log the data.

1 Requests that Communications Server not log the data.

Bits 4–7
Reserved. Must be set to 0.

originator_id
Name of the component that issued the verb. If the data is being logged in
the Communications Server error log file, this name is used to identify the
originator of the log message; otherwise, it is not used.

This optional parameter is an ASCII string of up to eight characters, using
any locally displayable characters. Set the first character to 0x00 if you do
not want to include it.

pu_name
Destination physical unit for this NMVT. Set this to one of the following:

A name of a PU
Specify an 8-byte type-A EBCDIC string, padded to the right with
EBCDIC spaces (0x40).

Applications that use TRANSFER_MS_DATA to respond to
NMVT_RECEIVED indications should specify the pu_name received
in the NMVT_RECEIVED indication.

TRANSFER_MS_DATA

30 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Applications that send unsolicited alerts normally should not
specify a pu_name (they should set this parameter to all binary
zeros) unless the application expressly wishes the alert data to be
sent to a specific physical unit. In this case, the pu_name must
match a pu_name specified on the definition of a link station (LS);
the NMVT is sent over this link station. For more information
about defining an LS, refer to IBM Communications Server for AIX
Administration Guide or IBM Communications Server for Linux
Administration Guide.

All binary zeros
To specify no pu_name. The data contained in
TRANSFER_MS_DATA verbs that have the data_type parameter set
to SV_NMVT and all binary zeros specified for the pu_name parameter
are sent over the default PU session if it is available.

dlen Length of the data supplied by the application.

The maximum length of an NMVT is 512 bytes. If the application is
supplying a complete NMVT, the data length must not exceed 512 bytes. If
the application is supplying alert subvectors, or requesting
Communications Server to add one or more subvectors to the supplied
data, the total length after addition of any required headers and subvectors
must not exceed 512 bytes.

dptr A pointer to the data string supplied by the application. The data must be
in the valid format for an NMVT, alert subvectors, or problem
determination statistics, as specified by the data_type parameter.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was not successful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc
SV_OK

Communications Server does not return a secondary_rc when the verb executes
successfully.

Unsuccessful Execution
When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
SV_PARAMETER_CHECK

secondary_rc
One of the following:

SV_INVALID_DATA_TYPE
The supplied data_type parameter is not one of the valid values.

TRANSFER_MS_DATA

Chapter 3. Management Services Verbs 31

AP_INVALID_DATA_SIZE
One of the following occurred:
v The application supplied a data string longer than the maximum

NMVT size of 512 bytes.
v The application supplied data as alert subvectors, or specified

that Communications Server should add one or more subvectors
to it, but the added headers and subvectors increased the data
size beyond 512 bytes.

AP_INVALID_PU_NAME
Communications Server could not find an active PU with the name
specified by the supplied pu_name parameter.

State Check: If the verb fails to execute because of a state error, Communications
Server returns the following parameters:

primary_rc
SV_STATE_CHECK

secondary_rc
One of the following:

AP_SYNC_PENDING
This verb was issued using the synchronous entry point, but
another synchronous verb was in progress for this target handle.
Only one synchronous verb can be in progress on a particular
target handle at any time.

SV_SSCP_PU_SESSION_NOT_ACTIVE
The application requested Communications Server to send data by
setting bit 2 of the options parameter to 0, but the session to the
appropriate PU was not active.

AP_SYNC_NOT_ALLOWED
The application used the synchronous MS entry point to issue this
verb within a callback routine. The application must use the
asynchronous entry point to issue any verb from a callback routine.

Communications Server Software Not Active: If the verb does not execute
successfully because the Communications Server software is not active,
Communications Server returns one of the following parameters:

primary_rc

AP_COMM_SUBSYSTEM_ABENDED
The Communications Server software has failed.

Communications Server does not return a secondary_rc when the Communications
Server software is not active.

System Error: If the verb does not execute because of a system error,
Communications Server returns the following parameters:

primary_rc

SV_UNEXPECTED_DOS_ERROR
An operating system call failed during processing of the verb.

secondary_rc
The return code from the operating system call. For the meaning of this
return code, check the returned value in the file /usr/include/sys/errno.h.

TRANSFER_MS_DATA

32 IBM Communications Server for AIX or Linux MS Programmer’s Guide

UNREGISTER_MS_APPLICATION
The UNREGISTER_MS_APPLICATION verb indicates to Communications Server
that this application, which previously registered to receive MDS_MUs, no longer
wants to receive them. After this verb completes successfully, Communications
Server no longer sends any received MDS_MUs to the application.

Before terminating, an application should always issue
UNREGISTER_MS_APPLICATION for all its registered application names,
followed by DISCONNECT_MS_NODE.

VCB Structure
typedef struct unregister_ms_application
{

AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char ms_appl_name[8]; /* MS application name */

} UNREGISTER_MS_APPLICATION;

Supplied Parameters
The application supplies the following parameters when it issues
UNREGISTER_MS_APPLICATION:

opcode AP_UNREGISTER_MS_APPLICATION

ms_appl_name
The name identifying the application that is unregistering. This must be a
name that the application has previously specified using
REGISTER_MS_APPLICATION. The string must be eight characters long;
pad on the right with EBCDIC space characters (0x40) if necessary.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was not successful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
AP_OK

Communications Server does not return a secondary_rc when the verb executes
successfully.

Unsuccessful Execution
When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

UNREGISTER_MS_APPLICATION

Chapter 3. Management Services Verbs 33

primary_rc
AP_PARAMETER_CHECK

secondary_rc
One of the following:

AP_INVALID_TARGET_HANDLE
The supplied target handle was not a valid value returned on a
previous CONNECT_MS_NODE verb.

AP_MS_APPL_NAME_NOT_REGD
The application has not previously issued
REGISTER_MS_APPLICATION with the application name
specified on this verb.

State Check: If the verb fails to execute because of a state error, Communications
Server returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
One of the following:

AP_INVALID_TARGET_STATE
The application issued this verb while CONNECT_MS_NODE or
DISCONNECT_MS_NODE was outstanding.

AP_SYNC_PENDING
This verb was issued using the synchronous entry point, but
another synchronous verb was in progress for this target handle.
Only one synchronous verb can be in progress on a particular
target handle at any time.

AP_SYNC_NOT_ALLOWED
The application used the synchronous MS entry point to issue this
verb within a callback routine. The application must use the
asynchronous entry point to issue any verb from a callback routine.

Communications Server Software Not Active: If the verb does not execute
because the Communications Server software is not active, Communications Server
returns the following parameter:

primary_rc

AP_COMM_SUBSYSTEM_ABENDED
The Communications Server software has failed.

Communications Server does not return a secondary_rc when the Communications
Server software is not active.

MDS Support Not Configured: If the verb does not execute because the
Communications Server configuration does not allow it, Communications Server
returns the following parameter:

primary_rc

AP_FUNCTION_NOT_SUPPORTED
The Communications Server local node is not configured to
support MDS-level network management applications. Only
NMVT-level applications can be used.

UNREGISTER_MS_APPLICATION

34 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Communications Server does not return a secondary_rc when it is not configured
for MDS-LEVEL support.

System Error: If the verb does not execute because of a system error,
Communications Server returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR
An operating system call failed during processing of the verb.

secondary_rc
The return code from the operating system call. For the meaning of this
return code, check the returned value in the file /usr/include/sys/errno.h.

UNREGISTER_NMVT_APPLICATION
The UNREGISTER_NMVT_APPLICATION verb indicates to Communications
Server that this application, which previously registered to receive NMVTs for a
given application name, no longer wants to receive them for that name.

If the application used the same application name in multiple
REGISTER_NMVT_APPLICATION verbs to accept different types of NMVTs,
unregistering this name means that the application no longer receives any of these
NMVTs. However, if the application registered using more than one name, it
continues to receive NMVTs of the types specified for any remaining application
names.

Before terminating, an application should always issue
UNREGISTER_NMVT_APPLICATION for all its registered application names,
followed by DISCONNECT_MS_NODE.

VCB Structure
typedef struct unregister_nmvt_application
{

AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char ms_appl_name[8]; /* MS application name */

} UNREGISTER_NMVT_APPLICATION;

Supplied Parameters
An application supplies the following parameters when it issues
UNREGISTER_NMVT_APPLICATION:

opcode AP_UNREGISTER_NMVT_APPLICATION

ms_appl_name
The name identifying the application that is unregistering. This must be a
name that the application has previously specified using
REGISTER_NMVT_APPLICATION. The string must be eight characters
long; pad on the right with EBCDIC space characters (0x40) if necessary.

UNREGISTER_MS_APPLICATION

Chapter 3. Management Services Verbs 35

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was not successful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
AP_OK

Communications Server does not return a secondary_rc when the verb executes
successfully.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
One of the following:

AP_APPL_NOT_REGISTERED
The application has not previously issued
REGISTER_NMVT_APPLICATION with the application name
specified on this verb.

AP_INVALID_TARGET_HANDLE
The supplied target handle was not a valid value returned on a
previous CONNECT_MS_NODE verb.

State Check: If the verb fails to execute because of a state error, Communications
Server returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
One of the following:

AP_INVALID_TARGET_STATE
The application issued this verb while CONNECT_MS_NODE or
DISCONNECT_MS_NODE was outstanding.

AP_SYNC_PENDING
This verb was issued using the synchronous entry point, but
another synchronous verb was in progress for this target handle.
Only one synchronous verb can be in progress on a particular
target handle at any time.

AP_SYNC_NOT_ALLOWED
The application used the synchronous MS entry point to issue this
verb within a callback routine. The application must use the
asynchronous entry point to issue any verb from a callback routine.

Communications Server Software Not Active: If the verb does not execute
because the Communications Server software is not active, Communications Server
returns the following parameter:

UNREGISTER_NMVT_APPLICATION

36 IBM Communications Server for AIX or Linux MS Programmer’s Guide

primary_rc

AP_COMM_SUBSYSTEM_ABENDED
The Communications Server software has failed.

Communications Server does not return a secondary_rc when the Communications
Server software is not active.

System Error: If the verb does not execute because of a system error,
Communications Server returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR
An operating system call failed during processing of the verb.

secondary_rc
The return code from the operating system call. For the meaning of this
return code, check the returned value in the file /usr/include/sys/errno.h.

UNREGISTER_NMVT_APPLICATION

Chapter 3. Management Services Verbs 37

UNREGISTER_NMVT_APPLICATION

38 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Chapter 4. Management Services Indications

For each indication, this chapter provides the following information:
v Purpose of the indication, and the conditions in which Communications Server

returns it to an application.
v Description of the indication. For consistency, the term verb control block (VCB)

is used to describe the indications, although this structure is not associated with
a verb issued by the application. All the VCB structures are defined in the
header file /usr/include/sna/ms_c.h (AIX) or /opt/ibm/sna/include/ms_c.h
(Linux).

v For each parameter in the VCB structure, the following information is listed:
– Description
– Values that can be returned and their meanings
– Additional information where necessary

Many of the supplied and returned parameter values are numeric. To simplify
coding, make the applications more portable, and make the program source easier
to read, these values are represented by symbolic constants defined in the header
file ms_c.h. For example, the opcode (operation code) parameter for the
FP_NOTIFICATION indication is the value represented by the symbolic constant
AP_FP_NOTIFICATION.

Because different systems store these values differently in memory, it is important
that you use the symbolic constant, and not the numeric value, when setting
values for supplied parameters or when testing values of returned parameters. The
value shown in the header file may not be in the format recognized by your
system.

Note: Although the application allocates the VCBs for MS verbs, Communications
Server allocates the VCBs for indications. Therefore, the application has
access to the VCB information only from within the callback routine; the
VCB pointer that Communications Server supplies to the callback routine is
not valid outside the callback routine. The application must either complete
all the required processing from within the callback routine, or it must make
a copy of any VCB data that it needs to use outside this routine.

FP_NOTIFICATION
Communications Server sends this status indication to an MDS-level application
that has requested information about the focal point for a particular MS category.
The application requests this information by issuing
REGISTER_MS_APPLICATION with the name of a particular MS category
specified as part of the focal point data string. Communications Server sends
FP_NOTIFICATION to inform the application of its current focal point for that
category. Each time the focal point changes, Communications Server sends another
FP_NOTIFICATION.

This indication is returned using the callback routine that the application supplied
on the REGISTER_MS_APPLICATION verb. For more information about the
requirements for this callback routine, see “The Callback Routine Specified on the
ms_async Entry Point” on page 9.

© Copyright IBM Corp. 2000, 2009 39

VCB Structure
typedef struct fp_notification
{

AP_UINT16 opcode;
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char fp_routing; /* routing to use with this focal point */
unsigned char reserv1; /* reserved */
AP_UINT16 fp_data_length; /* Length of incoming focal point data */
unsigned char *fp_data; /* Focal point data */

} FP_NOTIFICATION;

Parameters
Communications Server includes the following parameters when it sends
FP_NOTIFICATION to an MDS-level application:

opcode AP_FP_NOTIFICATION

fp_routing
Specifies whether applications should use default or direct routing when
sending MDS_MUs to this focal point. Possible values are:

AP_DEFAULT
MDS_MUs should be delivered to the focal point using default
routing.

AP_DIRECT
MDS_MUs should be routed on a session directly to the focal
point.

fp_data_length
Length of focal point data. This can be up to 78 bytes.

fp_data Focal point data, which consists of the following:
v Focal Point Notification (0xE1) subvector
v Focal Point Identification (0x21) subvector, which contains an MS

Category subfield. The MS Category subfield identifies the category for
which the application requested focal point information and contains the
following subfields:
– Focal point network identifier (NETID)
– Focal point network accessible unit (NAU) name
– Application ID

When sending an MDS_MU in the MS category associated with this focal
point, the application should include the information from these subfields
in the MDS_MU to ensure that it is routed to the appropriate focal point.
For full details of the information contained in these subvectors, refer to
the IBM manual System Network Architecture: Formats.

MDS_MU_RECEIVED
Communications Server uses this data indication to route an MDS_MU to an
MDS-level application in the following cases:
v A remote MDS-level application has sent an MDS_MU, and this application has

used REGISTER_MS_APPLICATION to accept MDS_MUs.

FP_NOTIFICATION

40 IBM Communications Server for AIX or Linux MS Programmer’s Guide

v A remote application has sent an NMVT, and this application has used
REGISTER_NMVT_APPLICATION to accept NMVTs after conversion to
MDS_MUs. For information about how Communications Server determines
which MS application receives an incoming NMVT, see “NMVT Routing” on
page 4.

To return the MDS_MU_RECEIVED indication, Communications Server uses the
callback routine that the application supplied on the
REGISTER_MS_APPLICATION or REGISTER_NMVT_APPLICATION verb. For
more information about the requirements for this callback routine, see “The
Callback Routine Specified on the ms_async Entry Point” on page 9.

VCB Structure
typedef struct mds_mu_received
{

AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char first_message; /* First message for current MDS_MU */
unsigned char last_message; /* Last message for current MDS_MU */
unsigned char pu_name[8]; /* Physical unit name */
unsigned char reserv3[8]; /* reserved */
AP_UINT16 mds_mu_length; /* Length of incoming MDS_MU */
unsigned char *mds_mu; /* MDS_MU data */

} MDS_MU_RECEIVED;

Parameters
Communications Server includes the following parameters when it sends the
MDS_MU_RECEIVED indication to the MS application:

opcode AP_MDS_MU_RECEIVED

first_message
Indicates whether this message is the first, or only, message for this
MDS_MU. The MDS_MU is normally sent to the application as a single
message (both first_message and last_message are AP_YES). However, if the
MDS_MU is larger than the max_rcv_size specified when the application
issued REGISTER_MS_APPLICATION, Communications Server segments
the MDS_MU and sends it to the application as multiple messages.
Possible values are:

AP_YES First or only message for this MDS_MU.

AP_NO Second or subsequent message for this MDS_MU.

last_message
Indicates whether this message is the last, or only, message for this
MDS_MU. The MDS_MU is normally sent to the application as a single
message (both first_message and last_message are AP_YES). However, if the
MDS_MU is larger than the max_rcv_size specified when the application
issued REGISTER_MS_APPLICATION, Communications Server segments
the MDS_MU and sends it to the application as multiple messages.
Possible values are:

AP_YES Last or only message for this MDS_MU.

AP_NO First or subsequent message for a segmented MDS_MU. At least
one more message follows.

MDS_MU_RECEIVED

Chapter 4. Management Services Indications 41

pu_name
If the MDS_MU was converted from an incoming NMVT, this parameter is
the name of the physical unit from which the NMVT was received. If the
NMVT requires a response, the application must send the response using
the SEND_MDS_MU verb, and must set the pu_name parameter of the
SEND_MDS_MU to this name.

The MDS_MU was converted from an incoming NMVT only if the
application used the REGISTER_NMVT_APPLICATION verb to register
itself as an MDS-level application that accepts NMVTs after conversion to
MDS_MUs. If the MDS_MU was received from the MDS-level transport
mechanism, this parameter is set to binary zeros.

mds_mu_length
Length of MDS_MU data included on this message. This can be a complete
MDS_MU or a segment of complete MDS_MU, depending on the
first_message and last_message parameters.

mds_mu
A pointer to the MDS_MU data string.

MS_STATUS
Communications Server sends this status indication to a registered application
(either MDS-level or NMVT-level) to inform the application of one of the following
changes in the status of the Communications Server system:
v The application’s communications path to the Communications Server local node

has been lost because the connected node or an associated component is no
longer active.

v The Communications Server software has been stopped.

Communications Server returns the MS_STATUS indication on the callback routine
that the application supplied to the REGISTER_MS_APPLICATION or
REGISTER_NMVT_APPLICATION verb. For more information about the
requirements for this callback routine, see “The Callback Routine Specified on the
ms_async Entry Point” on page 9.

After the application receives the MS_STATUS indication, Communications Server
rejects all subsequent verbs using the relevant target handle, except for
DISCONNECT_MS_NODE.

VCB Structure
typedef struct ms_status
{

AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
AP_UINT32 status; /* status being reported */
AP_UINT32 dead_target_handle; /* Handle of dead connection */
unsigned char reserv1[32]; /* reserved */

} MS_STATUS;

Parameters
Communications Server includes the following parameters when it sends the
MS_STATUS indication to the MS application:

MDS_MU_RECEIVED

42 IBM Communications Server for AIX or Linux MS Programmer’s Guide

opcode AP_MS_STATUS

status

AP_TARGET_HAS_DIED
This value indicates that the connected node or the
Communications Server software is no longer running.

dead_target_handle
A null value for this parameter indicates that the Communications Server
software on the local computer (where the application is running) has been
stopped. All target handles that the application was using are disconnected
and are no longer valid.

A non-null value for this parameter indicates the target handle of the failed
node. The application should issue DISCONNECT_MS_NODE for this
target handle to free the resources associated with it.

The application can attempt to reconnect to a target node by periodically
issuing CONNECT_MS_NODE; this call will fail until the target node or
the local Communications Server software is restarted.

NMVT_RECEIVED
Communications Server uses this data indication to route an NMVT received from
a remote node to an NMVT-level application that has registered to receive NMVTs.
For information about how Communications Server determines which MS
application receives an incoming NMVT, see “NMVT Routing” on page 4.

This indication is returned using the callback routine that the application supplied
on the REGISTER_NMVT_APPLICATION verb. For more information about the
requirements for this callback routine, see “The Callback Routine Specified on the
ms_async Entry Point” on page 9.

VCB Structure
typedef struct nmvt_received
{

AP_UINT16 opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* reserved */
AP_UINT16 primary_rc; /* Primary return code */
AP_UINT32 secondary_rc; /* Secondary return code */
unsigned char pu_name[8]; /* Physical unit name */
unsigned char reserv3[6]; /* reserved */
AP_UINT16 nmvt_length; /* Length of incoming NMVT */
unsigned char *nmvt; /* NMVT data */

} NMVT_RECEIVED;

Parameters
Communications Server includes the following parameters when it sends the
NMVT_RECEIVED indication to the MS application:

opcode AP_NMVT_RECEIVED

pu_name
Name of the physical unit from which the NMVT originated. This is an
8-byte EBCDIC type-A string, padded on the right with EBCDIC spaces if
the name is shorter than 8 bytes.

MS_STATUS

Chapter 4. Management Services Indications 43

If the incoming NMVT requires a response, the application must send the
response using TRANSFER_MS_DATA and must set the pu_name
parameter of TRANSFER_MS_DATA to the pu_name returned here.

nmvt_length
Length of NMVT data, which can be up to 512 bytes.

nmvt Full NMVT, containing MS major vector of the type or types specified on
the REGISTER_NMVT_APPLICATION.

NMVT_RECEIVED

44 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Appendix A. MS Function Sets

This appendix provides information about the SNA MS function sets that the
Communications Server MS API supports. For more information about these
function sets, refer to the IBM manual Systems Network Architecture: APPN
Architecture Reference.

Base Function Sets
The Communications Server MS API supports the following base function sets:
v Management Services—Multiple-Domain Support (MDS)

150 SNA/MS MDS Common Base
151 SNA/MS MDS End Node Support
152 SNA/MS MDS Network Node Support

v Management Services—MS Capabilities Function Set
160 SNA/MS MS_CAPS Base End Node Support
161 SNA/MS MS_CAPS Have a Backup or Implicit Focal Point
163 SNA/MS MS_CAPS Base Network Node Support

v Management Services—Entry Point Alert Function Set
170 SNA/MS MS EP Alert Base Subset

Optional Function Sets
The Communications Server MS API supports the following optional function sets:
v Management Services—MS Capabilities Function Set

162 SNA/MS MS_CAPS Be a Sphere of Control (SOC) End Node
164 SNA/MS MS_CAPS Have a Subarea FP

v Management Services—Entry Point Alert Function Set
171 SNA/MS Problem Diagnosis Data in Alert
174 SNA/MS Operator Initiated Alert
175 SNA/MS Qualified Message Data in Alert
176 SNA/MS Self-Defining Message Text Subvector in Alert
177 SNA/MS LAN Alert
178 SNA/MS SDLC/LAN LLC Alert
179 SNA/MS X.21 Alert
181 SNA/MS X.25 Alert
182 SNA/MS Held Alert for CPMS

Function Sets Not Supported
Communications Server MS does not provide support for the following function
sets:
v Management Services—File Services (option sets 1500, 1501).
v Management Services—Change Management (option sets 1510–1518).
v Management Services—Operations Management (option sets 1520, 1521). Option

set 1520, SNA/MS Common Operations Services, is implemented by the
Communications Server Service Point Command Facility.

© Copyright IBM Corp. 2000, 2009 45

Function Sets Not Supported

46 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2009 47

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to IBM’s application programming
interfaces.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows: ® (your company name) (year). Portions of
this code are derived from IBM Corp. Sample Programs. ® Copyright IBM Corp.
2000, 2005, 2006, 2007, 2008, 2009. All rights reserved.

48 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countires, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 49

50 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Bibliography

The following IBM publications provide information about the topics discussed in
this library. The publications are divided into the following broad topic areas:
v IBM Communications Server for AIX
v IBM Communications Server for Linux
v Systems Network Architecture (SNA)
v Advanced Program-to-Program Communication (APPC)
v Programming

For IBM Communications Server for AIX and IBM Communications Server for
Linux books, brief descriptions are provided. For other books, only the titles and
order numbers are shown here.

IBM Communications Server for AIX Publications
The IBM Communications Server for AIX library comprises the following books. In
addition, softcopy versions of these documents are provided on the CD-ROM. See
IBM Communications Server for AIX Quick Beginnings for information about
accessing the softcopy files on the CD-ROM. To install these softcopy books on
your system, you require 9–15 MB of hard disk space (depending on which
national language versions you install).
v IBM Communications Server for AIX Migration Guide (SC31-8585)

This book explains how to migrate from Communications Server for AIX Version
4 Release 2 or earlier to IBM Communications Server for AIX Version 6.

v IBM Communications Server for AIX Quick Beginnings (GC31-8583)
This book is a general introduction to IBM Communications Server for AIX,
including information about supported network characteristics, installation,
configuration, and operation.

v IBM Communications Server for AIX Administration Guide (SC31-8586)
This book provides an overview of SNA and IBM Communications Server for
AIX, and information about IBM Communications Server for AIX configuration
and operation.

v IBM Communications Server for AIX Administration Command Reference (SC31-8587)
This book provides information about SNA and IBM Communications Server for
AIX commands.

v IBM Communications Server for AIX or Linux CPI-C Programmer’s Guide
(SC23-8591)
This book provides information for experienced “C” or Java™programmers about
writing SNA transaction programs using the IBM Communications Server CPI
Communications API.

v IBM Communications Server for AIX or Linux APPC Programmer’s Guide
(SC23-8592)
This book contains the information you need to write application programs
using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX or Linux LUA Programmer’s Guide (SC23-8590)
This book contains the information you need to write applications using the
Conventional LU Application Programming Interface (LUA).

© Copyright IBM Corp. 2000, 2009 51

v IBM Communications Server for AIX or Linux CSV Programmer’s Guide (SC23-8589)
This book contains the information you need to write application programs
using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX or Linux MS Programmer’s Guide (SC23-8596)
This book contains the information you need to write applications using the
Management Services (MS) API.

v IBM Communications Server for AIX NOF Programmer’s Guide (SC31-8595)
This book contains the information you need to write applications using the
Node Operator Facility (NOF) API.

v IBM Communications Server for AIX Diagnostics Guide (SC31-8588)
This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX or Linux APPC Application Suite User’s Guide
(SC23-8595)
This book provides information about APPC applications used with IBM
Communications Server for AIX.

v IBM Communications Server for AIX Glossary (GC31-8589)
This book provides a comprehensive list of terms and definitions used
throughout the IBM Communications Server for AIX library.

IBM Communications Server for Linux Publications
The IBM Communications Server for Linux library comprises the following books.
In addition, softcopy versions of these documents are provided on the CD-ROM.
See IBM Communications Server for Linux Quick Beginnings for information about
accessing the softcopy files on the CD-ROM. To install these softcopy books on
your system, you require 9–15 MB of hard disk space (depending on which
national language versions you install).
v IBM Communications Server for Linux Quick Beginnings (GC31-6768 and

GC31-6769)
This book is a general introduction to IBM Communications Server for Linux,
including information about supported network characteristics, installation,
configuration, and operation. There are two versions of this book:

GC31-6768 is for IBM Communications Server for Linux on the i686, x86_64,
and ppc64 platforms
GC31-6769 is for IBM Communications Server for Linux on System z.

v IBM Communications Server for Linux Administration Guide (SC31-6771)
This book provides an overview of SNA and IBM Communications Server for
Linux, and information about IBM Communications Server for Linux
configuration and operation.

v IBM Communications Server for Linux Administration Command Reference
(SC31-6770)
This book provides information about SNA and IBM Communications Server for
Linux commands.

v IBM Communications Server for AIX or Linux CPI-C Programmer’s Guide
(SC23-8691)
This book provides information for experienced “C” or Javaprogrammers about
writing SNA transaction programs using the IBM Communications Server CPI
Communications API.

v IBM Communications Server for AIX or Linux APPC Programmer’s Guide
(SC23-8692)

52 IBM Communications Server for AIX or Linux MS Programmer’s Guide

This book contains the information you need to write application programs
using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX or Linux LUA Programmer’s Guide (SC23-8690)
This book contains the information you need to write applications using the
Conventional LU Application Programming Interface (LUA).

v IBM Communications Server for AIX or Linux CSV Programmer’s Guide (SC23-8689)
This book contains the information you need to write application programs
using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX or Linux MS Programmer’s Guide (SC23-8596)
This book contains the information you need to write applications using the
Management Services (MS) API.

v IBM Communications Server for Linux NOF Programmer’s Guide (SC31-6778)
This book contains the information you need to write applications using the
Node Operator Facility (NOF) API.

v IBM Communications Server for Linux Diagnostics Guide (SC31-6779)
This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX or Linux APPC Application Suite User’s Guide
(SC23-8595)
This book provides information about APPC applications used with IBM
Communications Server for Linux.

v IBM Communications Server for Linux Glossary (GC31-6780)
This book provides a comprehensive list of terms and definitions used
throughout the IBM Communications Server for Linux library.

Systems Network Architecture (SNA) Publications
The following books contain information about SNA networks:
v Systems Network Architecture: Format and Protocol Reference Manual—Architecture

Logic for LU Type 6.2 (SC30-3269)
v Systems Network Architecture: Formats (GA27-3136)
v Systems Network Architecture: Guide to SNA Publications (GC30-3438)
v Systems Network Architecture: Network Product Formats (LY43-0081)
v Systems Network Architecture: Technical Overview (GC30-3073)
v Systems Network Architecture: APPN Architecture Reference (SC30-3422)
v Systems Network Architecture: Sessions between Logical Units (GC20-1868)
v Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)
v Systems Network Architecture: Transaction Programmer’s Reference Manual for LU

Type 6.2 (GC30-3084)
v Systems Network Architecture: 3270 Datastream Programmer’s Reference (GA23-0059)
v Networking Blueprint Executive Overview (GC31-7057)
v Systems Network Architecture: Management Services Reference (SC30-3346)

APPC Publications
The following books contain information about Advanced Program-to-Program
Communication (APPC):
v APPC Application Suite V1 User’s Guide (SC31-6532)
v APPC Application Suite V1 Administration (SC31-6533)
v APPC Application Suite V1 Programming (SC31-6534)

Bibliography 53

v APPC Application Suite V1 Online Product Library (SK2T-2680)
v APPC Application Suite Licensed Program Specifications (GC31-6535)
v z/OS V1R2.0 Communications Server: APPC Application Suite User’s Guide

(SC31-8809)

Programming Publications
The following books contain information about programming:
v Common Programming Interface Communications CPI-C Reference (SC26-4399)
v Communications Server for OS/2 Version 4 Application Programming Guide

(SC31-8152)

54 IBM Communications Server for AIX or Linux MS Programmer’s Guide

Index

A
AIX applications

compiling and linking 11
asynchronous entry point 5

C
callback routine

comp_proc parameter 8
overview 9
requirements 10
supplied to REGISTER_* verbs 10

child process 10
Communications Server MS support 1
communications with the node

ending 16
failure 42
starting 14

comp_proc (callback routine) 8
compiling AIX applications 11
compiling Linux applications 11
CONNECT_MS_NODE

overview 14
returned parameters 15
supplied parameters 14
VCB structure 14

corr (correlator) 8, 9
CP_MSU 1

D
data structure

MDS_MU 40
NMVT 43

DISCONNECT_MS_NODE
overview 16
returned parameters 16
supplied parameters 16
VCB structure 16

E
entry points 5

F
focal point, getting information about 39
FP_NOTIFICATION

how used 3
overview 39
parameters 40
VCB structure 40

H
header file 13

I
indications 2, 39

L
linking AIX applications 11
linking Linux applications 11
Linux applications

compiling and linking 11

M
MDS support not configured 21, 28, 34
MDS_MU

conversion from NMVT 4, 40
errors in sending 25
received data indication 40
use by MDS-level products 1

MDS_MU_RECEIVED
how used 4
overview 40
parameters 41
VCB structure 41

MDS-level products 1
migration-level products 1
MS category, focal point for 39
ms entry point

overview 5
returned values 6
supplied parameters 6

MS function sets
base 45
optional 45

MS verbs, summary 2
ms_async entry point

callback routine 9
function call 7
overview 5
returned values 8
supplied parameters 7

ms_c.h header file 13
MS_STATUS

description 42
how used 3
parameters 43
VCB structure 42

multiple processes 10

N
NMVT

conversion to MDS_MU 4, 40
destination name 4
major vector key 4
received data indication 43
routing 4

NMVT_RECEIVED
description 43
how used 4

NMVT_RECEIVED (continued)
parameters 43
VCB structure 43

NMVT-level products 1
node, communications with

ending 16
failure 42
starting 14

R
received data indication

MDS_MU 40
NMVT 43

received data indications 2, 39
receiving MS data 3
REGISTER_MS_APPLICATION

description 18
returned parameters 19
supplied parameters 18
VCB structure 18
when to use 3

REGISTER_NMVT_APPLICATION
description 21
returned parameters 23
supplied parameters 22
VCB structure 22
when to use 3

registering with the local node
MDS-level application 18, 21
NMVT-level application 21

S
SEND_MDS_MU

description 25
how used 2, 3
returned parameters 27
supplied parameters 25
VCB structure 25

sending data
MDS_MU format 25
NMVT format 28

sending MS data 2, 3
sending NMVTs 2, 3
SNA MS support 1, 45
symbolic constants 13, 39
synchronous entry point 5, 6

T
target handle 6, 7, 9
TRANSFER_MS_DATA

description 28
how used 2, 3
returned parameters 31
supplied parameters 29
VCB structure 29

© Copyright IBM Corp. 2000, 2009 55

U
UNREGISTER_MS_APPLICATION

description 33
how used 4
returned parameters 33
supplied parameters 33
VCB structure 33

UNREGISTER_NMVT_APPLICATION
description 35
how used 4
returned parameters 36
supplied parameters 35
VCB structure 35

unregistering with the local node
MDS-level application 33
NMVT-level application 35

V
VCB structure, pointer to 6, 7, 9
VCB structures, defined in header

file 13
verb summary 2
verbs, reference information 13

56 IBM Communications Server for AIX or Linux MS Programmer’s Guide

����

Program Number: 5765-E51 and 5724-i33

Printed in USA

SC23-8596-00

	Contents
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions

	Where to Find More Information

	Chapter 1. Introduction to Management Services
	SNA Management Services Support Levels
	Communications Server Management Services Support
	Management Services Application Programming Interface
	Management Services Applications
	MS Applications That Only Send Data
	MS Applications That Both Send and Receive Data

	NMVT Routing

	Chapter 2. Writing MS Applications
	Description of the MS API Entry Points
	Synchronous Entry Point: ms
	Function Call
	Supplied Parameters
	Returned Values
	Using the Synchronous Entry Point

	Asynchronous Entry Point: ms_async
	Function Call
	Supplied Parameters
	Returned Values
	Using the Asynchronous Entry Point

	The Callback Routine Specified on the ms_async Entry Point
	Callback Function
	Supplied Parameters
	Returned Values
	Using the Callback Routine for Indications

	Scope of Target Handle

	MS API Header File
	Compiling and Linking the MS Application
	AIX Applications
	Linux Applications

	Chapter 3. Management Services Verbs
	CONNECT_MS_NODE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	DISCONNECT_MS_NODE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	REGISTER_MS_APPLICATION
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	REGISTER_NMVT_APPLICATION
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	SEND_MDS_MU
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	TRANSFER_MS_DATA
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	UNREGISTER_MS_APPLICATION
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	UNREGISTER_NMVT_APPLICATION
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution

	Chapter 4. Management Services Indications
	FP_NOTIFICATION
	VCB Structure
	Parameters

	MDS_MU_RECEIVED
	VCB Structure
	Parameters

	MS_STATUS
	VCB Structure
	Parameters

	NMVT_RECEIVED
	VCB Structure
	Parameters

	Appendix A. MS Function Sets
	Base Function Sets
	Optional Function Sets
	Function Sets Not Supported

	Appendix B. Notices
	Trademarks

	Bibliography
	IBM Communications Server for AIX Publications
	IBM Communications Server for Linux Publications
	Systems Network Architecture (SNA) Publications
	APPC Publications
	Programming Publications

	Index
	A
	C
	D
	E
	F
	H
	I
	L
	M
	N
	R
	S
	T
	U
	V

