IBM Communications Server for AIX or Linux

Common Service Verbs Programmer’s

Guide

Vo4

<|lI!

SC23-8589-00

IBM Communications Server for AIX or Linux

Common Service Verbs Programmer’s

Guide

Vo4

<|lI!

SC23-8589-00

Note:
Before using this information and the product it supports, be sure to read the general information under
['Notices,” on page 45

First Edition (May 2009)

This edition applies to Version 6 Release 4 of Communications Server for AIX and Linux (5765-E51 and 5724-i33)
and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. You may send your comments to the following address:
International Business Machines Corporation
Attn: Communications Server for AIX/Linux Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina
27709-2195
US.A.

You can send us comments electronically by using one of the following methods:
* Fax (USA and Canada):
— 1+919-254-4028

— Send the fax to "Attn: Communications Server for AIX/Linux Information Development”
e Internet e-mail:

— comsvrcf@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

TablesV

About ThisBook Vi

Who Should Use This Book vii
How to Use This Bookvii
Organization of This Book vii
Typographic Conventions vii
Graphic Conventions . . . I 4111
Where to Find More Informatlon T ¢
Chapter 1. Concepts .1
Summary of Common Service Verbs .1
CSV Entry Points: AIX or Linux Systems . .2
CSV Entry Points: Windows . . .3
ACSSVC_C. .3
WinCSVStartup .4
WinCSV . .6
WinAsyncCSV . . 6
WinCSVCleanup . . 8
GetCsvReturnCode . . 8
Issuing a Verb . . .9
AIX or Linux C0n51derat10ns 10
CSV Header File. - 11
Multithreaded Applications . . Y|
Compiling and Linking the CSV Apphcatlon ..o
Windows Considerations12
Compiling and Linking a CSV Apphcatlon Lo 12
Writing Portable Applications . . . N

Chapter 2. Common Service Verbs
Reference15

CONVERT.15
VCB Structure16
Supplied Parameters16
Returned Parameters18
Creating a Type-G Conversion Table ... 20

COPY_TRACE_TO_FILE.21

© Copyright IBM Corp. 2000, 2009

VCB Structure21
Supplied Parameters21
Returned Parameters21
DEFINE_TRACE23
VCB Structure23
Supplied Parameters23
Returned Parameters25
SNACTL Environment Variable.26
GET_CP_CONVERT_TABLE.26
VCB Structure26
Supplied Parameters27
Returned Parameters28
LOG_MESSAGE.29
VCB Structure29
Supplied Parameters30
Returned Parameters31
Creating a Log Message File.32
TRANSFER_MS_DATA35
VCB Structure36
Supplied Parameters36
Returned Parameters37

Appendix A. Code Pages - |
ASCII Code Pages Y |
EBCDIC Code Pages42

Appendix B. Notices. 45
Trademarks - V4

Bibliography49
IBM Communications Server for AIX Publications 49
IBM Communications Server for Linux Publications 50
Systems Network Architecture (SNA) Publications 51
APPC Publications51
Programming Publications52

Indexh53

iii

iV IBM Communications Server for AIX or Linux CSV Programmer’s Guide

Tables

1. Typographic Conventions viii

© Copyright IBM Corp. 2000, 2009

vi IBM Communications Server for AIX or Linux CSV Programmer’s Guide

About This Book

This book is a guide for using the IBM Communications Server for AIX or Linux
Common Service Verbs (CSVs) in C-language application programs.

This manual applies to IBM Communications Server, which is an IBM®software
product that enables a server running AIX®, or a computer running Linux, to
exchange information with other nodes on an SNA network.

There are three different installation variants of IBM Communications Server,
depending on the hardware on which it operates:

IBM Communications Server for AIX (CS/AIX)
IBM Communications Server for AIX operates on a server running AIX
Version 5.2, 5.3 or 6.1 base operating system.

IBM Communications Server for Linux (Communications Server for Linux)
IBM Communications Server for Linux, program product number 5724-i33,
operates on the following:

* 32-bit Intel workstations running Linux (i686)
* 64-bit AMD64/Intel EM64T workstations running Linux (x86_64)
* IBM pSeries computers running Linux (ppc64)

IBM Communications Server for Linux on System z (Communications Server for
Linux on System z)
IBM Communications Server for Linux on System z, program product
number 5724-i34, operates on System z mainframes running Linux for
System z (s390 or s390x).

In this book, the name Communications Server is used to indicate any of these
variants, and the term “Communications Server computer” is used to indicate any
type of computer running Communications Server, except where differences are
described explicitly.

This book applies to V6.4 of Communications Server.

Who Should Use This Book

This book is intended for experienced C programmers who write Systems Network
Architecture (SNA) transaction programs for systems with Communications Server.
Programmers may or may not have prior experience with SNA or the
communication facilities of Communications Server.

Application programmers design and code transaction and application programs
that use the Communications Server programming interfaces to send and receive
data over an SNA network. They should be thoroughly familiar with SNA, the
remote program with which the transaction or application program communicates,
and the AIX / Linux operating system programming and operating environments.

How to Use This Book

This section explains how information is organized and presented in this book.

© Copyright IBM Corp. 2000, 2009 vii

How to Use This Book

viii

Organization of This Book

This book is organized as follows:

¢ |Chapter 1, “Concepts,” on page 1|summarizes Common Service Verbs and
explains how to use them in C programs.

Chapter 2, “Common Service Verbs Reference,” on page 15,| describes each verb

in detail. Each description includes the verb’s purpose, verb control block (VCB),

and supplied and returned parameters.

* |Appendix A, “Code Pages,” on page 41,

|lists the ASCII and EBCDIC code pages

that are supported by the GET_CP_CONVERT_TABLE verb.

Typographic Conventions

shows the typographic styles used
Table 1. Typographic Conventions

in this document.

Special Element

Sample of Typography

Document title

File or path name

Program or application

Command or AIX / Linux utility
Option or flag

Parameter or Motif field

Literal value or selection that the user can
enter (including default values)
Constant or signal

Return value

Variable representing a supplied value
Environment variable

Programming verb

Function, call, or entry point

Data structure

Hexadecimal value

IBM Communications Server for AIX or Linux
APPC Programmer’s Guide

acssvee.h

snamsgf

kill

-1

wVersionRequired; primary_rc

0x0001; 0

SIGPOLL; SV_ASCII_TO_EBCDIC
WCSVVERNOTSUPPORTED; 0; AP_0K
programname

LD_RUN_PATH

CONVERT; TRANSFER_MS_DATA
ACSSvC_P

WCSVDATA

0x20

Graphic Conventions

This symbol is used to indicate the start of a section of text that applies only to the
AIX or Linux operating system. It applies to AIX / Linux servers and to the IBM
Remote API Client running on AIX, Linux, Linux for pSeries or Linux for System z.

This symbol is used to indicate the start of a section of text that applies to the IBM

Remote API Client on Windows.

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

How to Use This Book

This symbol indicates the end of a section of operating system specific text. The
information following this symbol applies regardless of the operating system.

Where to Find More Information

See the bibliography for other books in the Communications Server library, as well
as books that contain additional information about topics related to SNA and AIX
/ Linux workstations.

About This Book 1X

X IBM Communications Server for AIX or Linux CSV Programmer’s Guide

Chapter 1. Concepts

This chapter provides information that you need to know when developing CSV
application programs. It contains the following information:

¢ Summary of Common Service Verbs
* CSV entry points
* Issuing a verb

AIX, LINUX

e AIX or Linux considerations

WINDOWS

* Windows considerations

* Writing portable applications

Summary of Common Service Verbs

This section briefly describes Common Service Verbs. [Chapter 2, “Common Service]
[Verbs Reference,” on page 15|contains a detailed description of each verb.

CONVERT
Converts a character string from ASCII to EBCDIC or from EBCDIC to
ASCIL

COPY_TRACE_TO_FILE

Copies the current contents of the trace file (or files) to another file for
storage.

DEFINE_TRACE
Enables or disables tracing for specific APIs.

GET_CP_CONVERT_TABLE
Creates and returns a 256-byte conversion table to translate character
strings from a source code page to a target code page.

LOG_MESSAGE

Takes a message from a message file, adds specified data to it, and records
the message in the error log file or the audit log file.

© Copyright IBM Corp. 2000, 2009 1

Summary of Common Service Verbs

TRANSFER_MS_DATA

Builds a Systems Network Architecture (SNA) request unit (RU) containing
Network Management Vector Transport (NMVT) data. The verb can send
the NMVT data to NetView for centralized problem diagnosis and
resolution. The data can also be logged in the local error log file.

CSV Entry Points: AIX or Linux Systems

2

A C program calls Common Service Verbs through the following entry point:

void ACSSVC_C (
void * vcbptr

)3

The only parameter passed to the function is the address of a verb control block
(VCB). The VCB is a structure made up of variables that identify the verb to be
executed, supply information to be used by the verb, and contain information
returned by the verb when execution is complete. Each verb has its own VCB
structure, which is declared in the header file /usr/include/sna/acssvcc.h (AIX) or
/opt/ibm/sna/include/acssvce.h (Linux) delivered with Communications Server. Use
#include to include this file in any application program that issues Common
Service Verbs.

Note: The CSV VCBs contain many parameters marked as “reserved”; some of
these are used internally by the Communications Server software, and
others are not used in this version but may be used in future versions. Your
application must not attempt to access any of these reserved parameters;
instead, it must set the entire contents of the VCB to zero to ensure that all
of these parameters are zero, before it sets other parameters that are used by
the verb. This ensures that Communications Server will not misinterpret any
of its internally-used parameters, and also that your application will
continue to work with future Communications Server versions in which
these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vch));
For compatibility with other CSV implementations, Communications Server also
provides the entry points ACSSVC_P and ACSSVC, which can be used in the same
way as ACSSVC_C.

The entry points are defined in the CSV header file acssvcc.h.

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

CSV Entry Points: Windows

CSV Entry Points: Windows

A Windows application accesses CSV using the following functions:

ACSSVC_C
Issues a verb. The verb blocks; that is, the application’s thread is
suspended until CSV has finished processing the verb and returned the
results. This has the same effect as WinCSV.

WinCSVStartup
Registers the application as a Windows CSV user, and determines whether
the CSV software supports the level of function required by the
application.

WinCSV Issues a verb. The verb blocks; that is, the application’s thread is
suspended until CSV has finished processing the verb and returned the
results. This has the same effect as ACSSVC_C.

WinAsyncCSV
Issues a verb. With the exception of TRANSFER_MS_DATA, the verb
blocks; processing is the same as for the WinCSV entry point. The
TRANSFER_MS_DATA verb normally completes asynchronously and does
not block; CSV indicates the completion by posting a message to the
application window.

WinCSVCleanup
Unregisters the application when it has finished using CSV.

GetCsvReturnCode
Generates a printable character string for the primary and secondary return
codes obtained on a CSV verb.

The entry points are defined in the Windows CSV header file wincsv.h. This file is
installed in the subdirectory \sdk for 32-bit applications, or \sdké4 for 64-bit
applications, within the directory where you installed the Windows Client
software.

The application must call WinCSVStartup before attempting to issue any verbs
using the WinCSV or WinAsyncCSV calls. It then issues verbs using either WinAsyncCSV
(asynchronous) or WinCSV (synchronous). If a verb returns with return codes that
indicate an error, the application can use GetCsvReturnCode to obtain a text string
representation of these return codes, which can be used to generate standard error
messages.

When the application has finished issuing verbs using the WinCSV or WinAsyncCSV
calls, it must call WinCSVCleanup before terminating; it must not attempt to issue
any more verbs after calling WinCSVCleanup.

The following sections describe these functions.

ACSSVC_C

The application uses this function to issue a verb. The verb blocks; that is, the
application’s thread is suspended until CSV has finished processing the verb and
returned the results.

Chapter 1. Concepts 3

CSV Entry Points: Windows

For compatibility with other CSV implementations, Communications Server also
provides the entry points ACSSVC_P and ACSSVC, which can be used in the same
way as ACSSVC_C. The entry points are defined in the CSV header file sdk/wincsv.h.

Function Call

void ASCCVC_C (
void * vcbptr

)

Supplied Parameters

The only parameter passed to the function is the address of a verb control block
(VCB). The VCB is a structure made up of variables that identify the verb to be
executed, supply information to be used by the verb, and contain information
returned by the verb when execution is complete. Each verb has its own VCB
structure, which is declared in the header file sdk/wincsv.h delivered with the
Remote API Client on Windows. Use #include to include this file in any
application program that issues Common Service Verbs.

Note: The CSV VCBs contain many parameters marked as “reserved”; some of
these are used internally by the Communications Server software, and
others are not used in this version but may be used in future versions. Your
application must not attempt to access any of these reserved parameters;
instead, it must set the entire contents of the VCB to zero to ensure that all
of these parameters are zero, before it sets other parameters that are used by
the verb. This ensures that Communications Server will not misinterpret any
of its internally-used parameters, and also that your application will
continue to work with future Communications Server versions in which
these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vchb));

Returned Values
The function does not return a value.

WinCSVStartup

The application uses this function to register as a Windows CSV user, and to
determine whether the CSV software supports the Windows CSV version that it
requires.

Function Call

int WINAPI WinCSVStartup (
WORD wVersionRequired,
WCSVDATA far =* 1pData
)s

typedef struct
{

WORD wVersion;
char szDescription[128];
} WCSVDATA;

Supplied Parameters
The supplied parameter is:

wVersionRequired
The version of Windows CSV that the application requires.
Communications Server supports version 1.0.

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

CSV Entry Points: Windows

The low-order byte of this parameter specifies the major version number,
and the high-order byte specifies the minor version number. For example:

Version wVersionRequired
1.0 0x0001
1.1 0x0101
2.0 0x0002

If the application can use more than one version, it should specify the
highest version that it can use.

Returned Values
The return value from the function is one of the following:

0 (zero)
The application was registered successfully, and the Windows CSV
software supports either the version number specified by the application or
a lower version. The application should check the version number in the
WCSVDATA structure to ensure that it is high enough.

WCSVVERNOTSUPPORTED
The version number specified by the application was lower than the lowest
version supported by the Windows CSV software. The application was not
registered.

WCSVSYSNOTREADY
The Remote API Client software has not been started, or the local node is
not active. The application was not registered.

If the return value from WinCSVStartup is zero, the WCSVDATA structure contains
information about the support provided by the Windows CSV software. If the
return value is nonzero, the contents of this structure are undefined and the
application should not check them. The parameters in this structure are as follows:

wVersion
The Windows CSV version number that the software supports, in the same
format as the wVersionRequired parameter (defined previously).
Communications Server supports version 1.0.

If the software supports the version number requested by the application,
this parameter is set to the same value as the wVersionRequired parameter;
otherwise it is set to the highest version that the software supports, which
will be lower than the version number supplied by the application. The
application must check the returned value and take action as follows:

¢ If the returned version number is the same as the requested version
number, the application can use this Windows CSV implementation.

¢ If the returned version number is lower than the requested version
number, the application can use this Windows CSV implementation but
must not attempt to use features that are not supported by the returned
version number. If it cannot do this because it requires features not
available in the lower version, it should fail its initialization and not
attempt to issue any CSV verbs.

szDescription
A text string describing the Windows CSV software.

Chapter 1. Concepts 5

CSV Entry Points: Windows

6

WinCSV

The application uses this function to issue a verb, which blocks until verb
processing is completed.

Function Call

void WINAPI WinCSV (
long vcbptr

B

Supplied Parameters

The only parameter to the function is a pointer to the VCB structure for the verb.
This is defined as a long integer, and so needs to be cast from a pointer to a long
integer. For the definition of the VCB structure for each verb, see
[“Common Service Verbs Reference,” on page 15

Note: The CSV VCBs contain many parameters marked as “reserved”; some of
these are used internally by the Communications Server software, and
others are not used in this version but may be used in future versions. Your
application must not attempt to access any of these reserved parameters;
instead, it must set the entire contents of the VCB to zero to ensure that all
of these parameters are zero, before it sets other parameters that are used by
the verb. This ensures that Communications Server will not misinterpret any
of its internally-used parameters, and also that your application will
continue to work with future Communications Server versions in which
these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vchb));

Returned Values

The function does not return a value. When the call returns, the application should
check the primary_rc and secondary_rc parameters in the VCB structure to determine
whether the verb completed successfully. For information about the parameters
returned in the VCB structure, see the descriptions of individual verbs in

[Chapter 2, “Common Service Verbs Reference,” on page 15

WinAsyncCSV

The application uses this function to issue a verb.

For TRANSFER_MS_DATA, the verb may complete asynchronously; CSV will
indicate the completion by posting a message to the application’s window handle.
All other verbs complete synchronously.

Before using the WinAsyncCSV call for the first time, the application must use
RegisterWindowMessage to obtain the message identifier that CSV will use for
messages indicating asynchronous verb completion. For more information, see
[“Windows Considerations” on page 12|

Function Call

HANDLE WINAPI WinAsyncCSV (
HWND hWnd,
long vcbptr

B

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

CSV Entry Points: Windows

Supplied Parameters
The supplied parameters are:

hWnd A window handle that CSV will use to post a message indicating
asynchronous verb completion.

vcbptr - A pointer to the VCB structure for the verb. This parameter is defined as a
long integer, and so needs to be cast from a pointer to a long integer. For
more information about the VCB structure and on its usage for individual
verbs, see |Chapter 2, “Common Service Verbs Reference,” on page 15.|

Note: The CSV VCBs contain many parameters marked as “reserved”;
some of these are used internally by the Communications Server
software, and others are not used in this version but may be used in
future versions. Your application must not attempt to access any of
these reserved parameters; instead, it must set the entire contents of
the VCB to zero to ensure that all of these parameters are zero,
before it sets other parameters that are used by the verb. This
ensures that Communications Server will not misinterpret any of its
internally-used parameters, and also that your application will
continue to work with future Communications Server versions in
which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vchb));

Returned Values: TRANSFER_MS DATA

If the function was successful, the return value is a handle. When the verb later
completes, CSV uses this handle as an identifier in the message passed to the
application’s window procedure (for more information, see

A return value of 0 indicates that the function call was not accepted.

Returned Values: Other Verbs

For all verbs other than TRANSFER_MS_DATA, the function operates in the same
way as the WinCSV entry point (described in the previous section), and does not
return a value. When the call returns, the application should check the primary_rc
and secondary_rc parameters in the VCB structure to determine whether the verb
completed successfully.

Usage

Before using WinAsyncCSV for the first time, the application must use the
RegisterWindowMessage call to obtain the message identifier that CSV will use for
messages indicating asynchronous verb completion. RegisterWindowMessage is a
standard Windows function call, not specific to CSV; refer to your Windows
documentation for more information about the function. (There is no need to issue
the call again before subsequent verbs; the returned value will be the same for all
calls issued by the application.)

The application must pass the string “WinAsyncCSV” to the function; the returned
value is a message identifier, as described below.

Each time a verb that was issued using the WinAsyncCSV entry point completes

asynchronously, CSV posts a message to the window handle specified on the
WinAsyncCSV call. The format of the message is as follows:

Chapter 1. Concepts 7

CSV Entry Points: Windows

* The message identifier is the value returned from the RegisterWindowMessage
call.

¢ The [Param argument contains the address of the VCB that was supplied to the
original WinAsyncCSV call; the application can use this address to access the
returned parameters in the VCB structure.

* The wParam argument contains the handle that was returned to the original
WinAsyncCSV call.

WinCSVCleanup

The application uses this function to unregister as a Windows CSV user, after it has
finished issuing verbs.

Function Call
BOOL WINAPI WinCSVCleanup (void);

Supplied Parameters
No parameters are supplied for this function.

Returned Values
The return value from the function is one of the following;:

TRUE The application was unregistered successfully.

FALSE An error occurred during processing of the call, and the application was
not unregistered. Check the log files for messages indicating the cause of
the failure.

GetCsvReturnCode

This call returns a printable character string interpreting the return codes from a
supplied VCB. The string can be used to generate application error messages for
return codes other than AP_0K.

This call is designed to provide strings for display to the end user of an
application. For return codes indicating configuration problems or user errors (for
example if a required component is not configured or not started), the string
should provide sufficient information to help the user correct the problem. For
return codes indicating application errors (for example, if the application has
issued a verb that is not valid or failed to supply a required parameter), the user
will not generally be able to correct the problem; in these cases, the string may be
meaningful only to an application developer.

Function Call

int WINAPI GetCsvReturnCode (
struct svc_hdr FAR % vcbbptr,
unsigned int buffer_length,
unsigned char FAR * buffer_addr
)s

typedef struct svc_hdr
{

unsigned short opcode; /* Verb identifying operation code. */
unsigned char opext; /* Verb extension code - reserved. */
unsigned char reserv2; /* Reserved. */
unsigned short primary_rc; /* Primary return code from verb. */
unsigned long secondary_rc; /* Secondary (qualifying) return code. */

Supplied Parameters
The supplied parameters are:

8 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

CSV Entry Points: Windows

vcbptr - A pointer to the VCB structure for the verb. For more information about
the VCB structure and on its usage for individual verbs, see [Chapter 2,

[‘Common Service Verbs Reference,” on page 15

buffer_length
The length (in bytes) of the buffer supplied by the application to hold the
returned data string. The recommended length is 256 bytes.

buffer_addr
The address of the buffer supplied by the application to hold the returned
data string.

Returned Values
The return value from the function is one of the following:

0x00000000
The function completed successfully.

0x20000001
CSV could not read from the supplied VCB, or could not write to the
supplied data buffer.

0x20000002
The supplied data buffer is too small to hold the returned character string.

0x20000003
The dynamic link library (CSVSTR32.DLL) which generates the returned
character strings for this function, could not be loaded.

If the return value is 0x00000000, the returned character string is in the buffer

identified by the buffer_addr parameter. This string is terminated by a null character
(binary zero), but does not include a trailing new-line (\n) character.

Issuing a Verb

The major steps in issuing a Common Service Verb follow. Each step is illustrated
by sample code pertaining to the CONVERT verb; for more information about this
verb, see|Chapter 2, “Common Service Verbs Reference,” on page 15

1. Create a structure variable from the VCB structure that applies to the verb to be
issued.

#include <acssvcc.h>

struct convert conv_block;

#include <wincsv.h>

struct convert conv_block;

Chapter 1. Concepts 9

Issuing a Verb

The VCB structures are declared in the CSV header file acssvee.h(for AIX /
Linux) or wincsv.h (for Windows). One of these structures is named convert.

2. Clear (set to zero) the variables within the structure.
memset (&conv_block, 0, sizeof(conv_block));

This step is important to ensure that the application can later be upgraded to
work with future CSV versions (which can use fields that are reserved in the
current version). It also helps in debugging and interpreting trace data.

3. Assign values to the required VCB variables.

conv_bTock.opcode = SV_CONVERT;

conv_block.direction = SV_ASCII_TO_EBCDIC;
conv_block.char_set = SV_AE;

conv_block.len = sizeof(tpstart_name);
conv_block.source = (unsigned char *) tpstart_name;
conv_block.target = (unsigned char *) tpstart.tp_name;

The fields SV_CONVERT, SV_ASCII_TO_EBCDIC, and SV_AE are symbolic
constants representing integers. These constants are defined in the CSV header
file.

The character array tpstart_name contains an ASCII string to be converted to
EBCDIC and placed in the character array tpstart.tp_name.

4. Invoke the verb. The only parameter is a pointer to the structure containing the
VCB for the verb.

ACSSVC_C ((char *)&conv_block);

For compatibility with other CSV implementations, the entry points ACSSVC_P or
ACSSVC can be used instead of ACSSVC_C.

WinCSV ((long) ((char far *) &conv_block));

Use the values returned by the verb.
if (conv_block.primary_rc == SV_OK)

/* other statements */

AIX or Linux Considerations

This section summarizes the information you need to consider when developing
applications for use in the AIX or Linux environment.

10 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

AIX or Linux Considerations

CSV Header File

The header file to be used with CSV applications is acssvec.h. This file contains the
definitions of the CSV entry points and verb control blocks. It also includes the
common interface header file values_c.h, which contains the constants defined for
supplied and returned parameter values at the CSV interface. Both of these files
are stored in /usr/include/sna (AIX) or /opt/ibm/sna/include (Linux).

Multithreaded Applications
The Communications Server CSV library supports multithreaded applications. The
only restrictions are as follows:
* Only one verb can be outstanding at any time. A verb will fail with the return
codes AP_STATE_CHECK and AP_SYNC_PENDING if another verb is in progress.

* The application must perform any required clean-up processing before a thread
terminates. The CSV library does not maintain any correlation between threads
and verb usage, and will not perform this processing automatically when a
thread terminates.

Do not attempt to use multithreaded applications with a version of the library that
does not support DCE threads.

Compiling and Linking the CSV Application
AIX Applications

To compile and link 32-bit applications, use the following options:

-bimport:/usr/lib/sna/csv_r.exp -I
lusr/include/sna

To compile and link 64-bit applications, use the following options:

-bimport:/usr/lib/sna/csv_r64_5.exp -I
lusr/include/sna

Linux Applications

Before compiling and linking a CSV application, specify the directory where shared
libraries are stored, so that the application can find them at run time. To do this,
set the environment variable LD_RUN_PATH to /opt/ibm/sna/lib, or to
/opt/ibm/sna/lib64 if you are compiling a 64-bit application.

To compile and link 32-bit applications, use the following options:

-I /opt/ibm/sna/include -L
/opt/ibm/sna/lib -lcsv -Isna_r -Ipthread -1pLiS

To compile and link 64-bit applications, use the following options:

-I /opt/ibm/sna/include -L
/opt/ibm/sna/lib64 -lcsv -lsna_r -lpthread -lpLiS

The option -1pLiS is required only if you will be running the application on a
Communications Server server; you do not need to use it if you are building the
application on an IBM Remote API Client and it will run only on the client. As an
alternative to using this option, you can set the the environment variable
LD_PRELOAD to /usr/lib/libpLiS.so before compiling and linking the application.

Chapter 1. Concepts 11

Windows Considerations

Windows Considerations

This section summarizes processing considerations you need to be aware of when
developing applications on a Windows client.

Compiling and Linking a CSV Application

This section provides information about compiling and linking CSV programs on
Windows.

Compiler Options for Structure Packing
The VCB structures for CSV are not packed. Do not use compiler options that
change this packing method.

DWORD parameters are on DWORD boundaries, WORD parameters are on
WORD boundaries, and BYTE parameters are on BYTE boundaries.

Header Files

The CSV header file to be included in Windows CSV applications is named
winesv.h. This file is installed in the subdirectory \sdk for 32-bit applications, or
\sdke64 for 64-bit applications, within the directory where you installed the
Remote API Client on Windows software.

Load-Time Linking

To link the TP to CSV at load time, link the TP to the API library file
\sdk\wincsv32.lib for 32-bit applications, or \sdk64\wincsv32.lib for 64-bit
applications.

Run-Time Linking
To link the TP to CSV at run-time, include the following calls in the TP:
* LoadLibrary to load the CSV dynamic link library wincsv32.d1l

* GetProcAddress to specify CSV on each of the CSV entry points required (such
as WinAsyncCSV, WinCSVStartup, and WinCSVCTleanup)

e Freelibrary when the library is no longer required

Writing Portable Applications

12

The following guidelines are provided for writing Communications Server
applications so that they will be portable to other environments:

* Include the CSV header file without any path name prefix. Use include options
on the compiler to locate the file (refer to the appropriate section for your
operating system, earlier in this chapter) This enables the application to be used
in an environment with a different file system.

* Use the symbolic constant names for parameter values and return codes, not the
numeric values shown in the header file; this ensures that the correct value will
be used regardless of the way these values are stored in memory.

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

Writing Portable Applications

* Include a check for return codes other than those applicable to your current
operating system (for example using a “default” case in a switch statement), and
provide appropriate diagnostics.

* Ensure that any parameters shown as reserved are set to 0.

Chapter 1. Concepts 13

Writing Portable Applications

14 1BM Communications Server for AIX or Linux CSV Programmer’s Guide

Chapter 2. Common Service Verbs Reference

This chapter contains a description of each of the Common Service Verbs. The
following information is provided for each verb:

e Definition of the verb.

* Structure defining the verb control block (VCB) used by the verb. The structure
is declared in the CSV header file.

* Parameters (VCB fields) supplied for and returned by the verb. For each
parameter, the following information is provided:

— Description
— Possible values
— Additional information

¢ Additional information describing the use of the verb.

Most parameters supplied with and returned by Common Service Verbs are
hexadecimal values. To simplify coding, these values are represented by
meaningful symbolic constants defined in the header file values_c.h, which is
included by the CSV header file acssvcc.h. For example, the opcode (operation code)
parameter for the CONVERT verb is the hexadecimal value represented by the
symbolic constant SV_CONVERT. The file values_c.h also includes definitions of
parameter types such as AP_UINT16 that are used in the CSV VCBs.

It is important that you use the symbolic constant and not the hexadecimal value
when setting values for supplied parameters, or when testing values of returned
parameters. This is because different systems store these values differently in
memory, so the value shown may not be in the format recognized by your system.

If you are writing applications for use in other environments as well as
Communications Server, see|”Writing Portable Applications” on page 12|

Note: The CSV VCBs contain many parameters marked as “reserved”; some of
these are used internally by the Communications Server software, and
others are not used in this version but may be used in future versions. Your
application must not attempt to access any of these reserved parameters;
instead, it must set the entire contents of the VCB to zero to ensure that all
of these parameters are zero, before it sets other parameters that are used by
the verb. This ensures that Communications Server will not misinterpret any
of its internally-used parameters, and also that your application will
continue to work with future Communications Server versions in which
these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vchb));

CONVERT

The CONVERT verb translates an ASCII character string to EBCDIC or an EBCDIC
character string to ASCII.

© Copyright IBM Corp. 2000, 2009 15

CONVERT

The string to be converted is called the source string. The converted string is called
the target string.

VCB Structure

typedef struct convert

{

AP_UINT16 opcode; /* Verb identifying operation code. */
unsigned char opext; /* Verb extension code - reserved. */
unsigned char reserv2; /* Reserved. */
AP_UINT16 primary_rc; /* Primary return code from verb. */
AP_UINT32 secondary_rc; /* Secondary (qualifying) return code. =/
unsigned char direction; /* Direction of conversion - ASCII to */
/* EBCDIC or vice-versa. */
unsigned char char_set; /* Character set to use for the */
/* conversion A, AE, or user-defined G. */
AP_UINT16 len; /* Length of string to be converted. */
unsigned char *source; /* Pointer to string to be converted. */
unsigned char xtarget; /* Address to put converted string at. */
}s
typedef struct convert
{
unsigned short opcode; /* Verb identifying operation code. */
unsigned char opext; /* Verb extension code - reserved. */
unsigned char reserv2; /* Reserved. */
unsigned short primary_rc; /* Primary return code from verb. */
unsigned long secondary_rc; /* Secondary (qualifying) return code. */
unsigned char direction; /* Direction of conversion - ASCII to */
/* EBCDIC or vice-versa. */
unsigned char char_set; /* Character set to use for the */
/* conversion A, AE, or user-defined G. */
unsigned short len; /* Length of string to be converted. */
unsigned char *source; /* Pointer to string to be converted. */
unsigned char *target; /* Address to put converted string at. */

}s
-

Supplied Parameters
The program using this verb supplies the following parameters:

opcode SV_CONVERT

direction
Possible values are:

SV_ASCII_TO0_EBCDIC
Convert from ASCII to EBCDIC characters.

SV_EBCDIC_TO_ASCII
Convert from EBCDIC to ASCII characters.

char_set
Specifies which character set to use in converting the source string.
Possible values are:

16 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

CONVERT

SV_A The type-A character set consists of the following:
* Uppercase letters
* Numerals 0-9
* Special characters $, #, @, and space

This character set is supported by a system-supplied type-A
conversion table.

The first character of the source string must be an uppercase letter
or the special character §, #, or @. Spaces are allowed only in
trailing positions. Lowercase letters can be supplied in positions
other than the first character, but will be translated to uppercase.

SV_AE The type-AE character set consists of the following:
* Uppercase letters
* Lowercase letters
* Numerals 0-9
* Special characters $, #, @, and space

This character set is supported by a system-supplied type-AE
conversion table.

The first character of the source string can be any character in the
character set. Spaces are allowed only in trailing positions, unless
the string consists entirely of spaces. No case conversion is
performed.

SV_G The type-G character set is defined by a user-written conversion
table. This table is described in detail under [“Creating a Type-G|
[Conversion Table” on page 20

The file containing the table must be specified by the environment
variable SNATBLG; set this variable to the full path name of the file.
(If the environment variable is not set or the file is not found, the

system returns the SV_TABLE_ERROR return code.)

For Windows clients, the file containing the table must be specified
by the CSVTBLG value Registry Key as follows:

\\HKEY LOCAL_MACHINE\SOFTWARE\SNA
Client\SxClient\Parameters\CSV_data

The CSVTBLG parameter is described in the IBM Communications
Server for Linux Administration Guide or IBM Communications Server
for AIX Administration Guide. Set this parameter to the full path
name of the file. (If the file is not found, the system returns the
SV_TABLE_ERROR return code.)

len The number of characters to be converted.

source Address of buffer containing character string to be converted.

Chapter 2. Common Service Verbs Reference 17

CONVERT

target Address of buffer to contain the converted character string.

This buffer can overlap or coincide with the buffer pointed to by the
source parameter. In this case, the converted data string overwrites the
source data string.

Returned Parameters

After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
SV_OK

Unsuccessful Execution

When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
SV_PARAMETER_CHECK

secondary_rc
Possible values are:

SV_CONVERSION_ERROR
One or more characters in the source string were not found in the
conversion table, or embedded spaces were found in a type-A or
type-AE string. These characters or spaces were converted to nulls
(0x00). The verb still executed.

SV_INVALID_CHARACTER_SET
The char_set parameter contained a value that is not valid.

SV_INVALID_DATA_SEGMENT
The supplied source or target string extended beyond the
boundary of a data segment, or the target data segment was not a
read/write segment.

SV_INVALID_DIRECTION
The direction parameter contained a value that is not valid.

SV_INVALID_FIRST_CHARACTER
The first character of a type-A source string is not a valid value.

18 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

CONVERT

SV_TABLE_ERROR
The file containing the user-written type-G conversion table was
not defined correctly, could not be accessed, or was not in the
correct format.

The file containing the table must be specified by the environment
variable SNATBLG; set this variable to the full path name of the file.

For Windows clients, the file containing the table must be specified
by the CSVTBLG value Registry Key as follows:

\\HKEY_LOCAL_MACHINE\SOFTWARE\SNA
Client\SxClient\Parameters\CSV_data

The CSVTBLG parameter is described in the IBM Communications
Server for AIX Administration Guide or the IBM Communications
Server for Linux Administration Guide. Set this parameter to the full
path name of the file.

Other Conditions: Other conditions can result in the following primary return
codes (primary_rc).

SV_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software has not been started. Consult the System
Administrator for corrective action.

SV_INVALID VERB_SEGMENT
The supplied VCB extended beyond the boundary of a data segment.

SV_INVALID VERB
The opcode parameter did not match the operation code of any verb. No
verb executed.

SV_UNEXPECTED_DOS_ERROR
The operating system has encountered an error while processing the verb.
The operating system return code is returned through the secondary_rc. If
the problem persists, consult the System Administrator for corrective
action.

For the meaning of the operating system return code, see the file
lust/include/errno.h.

Chapter 2. Common Service Verbs Reference 19

CONVERT

20

For the meaning of the operating system return code, refer to your
operating system documentation.

Creating a Type-G Conversion Table

You can use the GET_CP_CONVERT_TABLE verb to build a type-G, user-written
conversion table. The GET_CP_CONVERT_TABLE verb is described in detail later
in this chapter.

The table must be an ASCII file 32 lines long. Each line must consist of 32
hexadecimal digits, representing 16 characters. The first 16 lines (256 characters)
specify the EBCDIC characters to which ASCII characters are converted; the
remaining 16 lines specify the ASCII characters to which EBCDIC characters are
converted.

For Communications Server, the hexadecimal digits A-F can be either uppercase or
lowercase. However, you may want to make these digits uppercase to ensure
compatibility with the CSV implementation provided in the IBM OS/2®Extended
Edition.

The file /usr/lib/sna/samples/snatblg.dat (AIX) or /opt/ibm/sna/samples/
snatblg.dat (Linux) delivered with Communications Server contains a sample
type-G conversion table which converts the first 127 characters of an ASCII code
page to EBCDIC. Here is a listing of that file:

00010203372D2E2F1605250BOCODOEOF
101112133C3D322618193F27221D351F
405A7F7B5B6C507D4D5D5C4E6B604B61
FOF1F2F3FAF5F6F7F8F97A5E4C7EGEGF
7CC1C2C3C4C5C6C7C8CID1D2D3D4D5D6
D7D8D9E2E3E4ESE6E7ESE9ADEOBDSF6D
79818283848586878889919293949596
979899A2A3A4A5A6A7A8A9CO6ADOA107
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000102030009007FO000000BOCODOEOF
101112130000080018190000001D001F
00001CO0000A171BOOOOOOOOOOO50607
00001600001E0004000000001415001A
20000000000000000000002E3C282B00
2600000000000000000021242A293B5E
2D2F00000000000000007C2C255F3E3F
000000000000000000603A2340273D22
00616263646566676869000000000000
006A6B6C6D6E6F707172000000000000
007E737475767778797A0000005B0000
000000000000000000000000005D0000
7B414243444546474849000000000000
7D4A4B4C4DAE4F505152000000000000
5C00535455565758595A000000000000
30313233343536373839000000000000

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

COPY_TRACE_TO_FILE

COPY_TRACE_TO_FILE

The COPY_TRACE_TO_FILE verb copies the current contents of the API trace file
or files to a new file, and clears the trace files. This enables you to save a copy of
the current trace data for this application. For more information about API tracing,
refer to the IBM Communications Server for AIX Diagnostics Guide or the IBM
Communications Server for Linux Diagnostics Guide.

All API tracing on this application (for any of the Communications Server APIs)
must be stopped before you issue COPY_TRACE_TO_FILE. If any tracing is active,
use the DEFINE_TRACE verb to stop it before using this verb.

VCB Structure

typedef struct copy_trace_to_file
{

AP_UINT16 opcode; /* Verb identifying operation code. */
unsigned char opext; /* Verb extension code - reserved. */
unsigned char reserv2; /* Reserved. */
AP_UINT16 primary_rc; /* Primary return code from verb. */
AP_UINT32 secondary_rc; /* Secondary (qualifying) return code. */
unsigned char reserv3[8]; /* Reserved. */
unsigned char file_name[64]; /* File name to write to. */
unsigned char file_option; /* File options. New or overwrite. x/
unsigned char reserv4[12]; /* Reserved. */

}s

Supplied Parameters

The program using this verb supplies the following parameters:
opcode SV_COPY_TRACE_TO_FILE

file_name
The name (and optionally the path) of the file to hold the trace
information. This name can be up to 64 characters. If the file is not in the
current directory, specify the full path; ensure that it is a valid path on any
computer to which this verb is issued.

If you set the file_option parameter to SV_NEW, the file name specified must
not be the name of an existing file.

file_option
Possible values are:

SV_NEW Create a new file with the name specified in file_name. An error is
returned if this file already exists.

SV_OVERWRITE
Overwrite the file if it exists, or create the file if it does not exist.

Returned Parameters

After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

Chapter 2. Common Service Verbs Reference 21

COPY_TRACE_TO_FILE

22

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
SV_OK

Unsuccessful Execution

When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
SV_PARAMETER_CHECK

secondary_rc

SV_INVALID FILE_OPTION
The file_option parameter contained a value that was not valid.

State Check: If the verb does not execute successfully because of a state error, the
following parameters are returned:

primary_rc
SV_STATE_CHECK

secondary_rc
Possible values:

SV_TRACE_BUFFER_EMPTY
There was no trace information to copy to file. Either the trace files
were empty, or the SNATRC environment variable was not set up.
This environment variable must be set up before the application is
started. For information about how to control API tracing, refer to
the IBM Communications Server for AIX Diagnostics Guide or the IBM
Communications Server for Linux Diagnostics Guide.

SV_TRACE_NOT_STOPPED
Tracing was still active when the verb was issued. Before issuing
COPY_TRACE_TO_FILE, tracing for the CSV, APPC, CPI-C, and
RUI interfaces must be turned off. Use DEFINE_TRACE to turn off
any active tracing before issuing COPY_TRACE_TO_FILE; for more
information, see ['DEFINE_TRACE” on page 23.|

Other Conditions: Other conditions can result in the following primary return
codes (primary_rc).

SV_FILE_ALREADY_EXISTS
You specified the value SV_NEW for the file_option parameter (to create a new
output file), but a file with the specified name already exists.

SV_INVALID_VERB
The opcode parameter did not match the operation code of any verb. No
verb executed.

SV_OUTPUT_DEVICE_FULL
There was insufficient space in the output file’s disk or directory to hold
the trace information. The trace files were not reset; the output file may
contain some of the available trace information, but is not complete.

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

SV_UNEXPECTED_DOS_ERROR
The operating system has encountered an error while processing the verb.

The operating system return code is returned through the secondary_rc. If

COPY_TRACE_TO_FILE

the problem persists, consult the System Administrator for corrective

action.

For the meaning of the operating system return code, refer to the file
/ust/include/errno.h.

DEFINE_TRACE

The DEFINE_TRACE verb enables or disables tracing for specified Application

Program Interfaces (APIs).

The trace files must be set up before the application which issues this verb is
started, using the SNATRC environment variable. For information about how to
control API tracing, refer to the IBM Communications Server for AIX Diagnostics
Guide or IBM Communications Server for Linux Diagnostics Guide.

The operation of this verb is affected by the SNACTL environment variable (for more
information, see [“SNACTL Environment Variable” on page 26).

VCB Structure

typedef struct define_trace

{

AP_UINT16
unsigned char
unsigned char
AP_UINT16
AP_UINT32
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
AP_UINT16
AP_UINT16
unsigned char
unsigned char
unsigned char

}s

opcode;
opext;
reservz;
primary_rc;
secondary _rc;
reserv3[8];
dt_set;
appc;

nof;

srpis;

sdlic;
tkn_rng_dlc;
pcnet_dlc;
dft;

acdi;
reservb;
comm_serv;
ehllapi;
x25_api;
x25_dlc;
twinax;

ms;

rui;
etherand;
subsym;
reserv/[8];
reset_trc;
trunc;
strg_size;
reserv8[1];
phys_1ink[8];
reserv9[56];

Supplied Parameters

The program using this verb supplies the following parameters:

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Verb identifying operation code.
Verb extension code - reserved.
Reserved.

Primary return code from verb.
Secondary (qualifying) return code.
Reserved.

Trace state to be set (on/off).
Tracing for APPC.

Tracing for NOF.

Reserved.

Reserved.

Reserved.

Reserved.

Reserved.

Reserved.

Reserved.

Tracing for Comm_Serv_API.
Reserved.

Reserved.

Reserved.

Reserved.

Tracing for MS.

Tracing for RUI interface of LUA.
Reserved.

Reserved.

Reserved.

Flag to reset the trace files.
Truncation size for trace records.
Reserved.

Reserved.

Reserved.

Reserved.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 2. Common Service Verbs Reference

23

DEFINE_TRACE

opcode SV_DEFINE_TRACE

dt_set

appc

nof

Specifies whether the DEFINE_TRACE verb is being used to turn tracing
on or to turn tracing off.

Possible values are:

SV_ON Enable tracing for a particular API if the parameter for that API (
appc, nof, comm_serv, ms or rui) has bit 0 set to 1; do not modify
tracing for the API if the parameter has bit 0 set to 0.

SV_OFF Disable tracing for a particular API if the parameter for that API
has bit 0 set to 1; do not modify tracing for the API if the
parameter has bit 0 set to 0.

Specifies whether the state of APPC and CPI-C tracing (on or off) is to be
changed. This option controls both APPC and CPI-C tracing; they cannot
be controlled independently.

Communications Server checks only the most significant bit (bit 0) of this
byte; other bits are ignored.

To enable or disable tracing for APPC and CPI-C, depending on the dt_set
parameter, set the most significant bit of this byte to 1.

To leave tracing in its current state for APPC and CPI-C, set the most
significant bit of this byte to zero.

Specifies whether the state of NOF tracing (on or off) is to be changed.

Communications Server checks only the most significant bit (bit 0) of this
byte; other bits are ignored.

To enable or disable NOF tracing, depending on the dt_set parameter, set
the most significant bit of this byte to 1.

To leave tracing in its current state for NOEF, set the most significant bit of
this byte to zero.

comm_sero

ms

rui

Specifies whether the state of tracing for the Common Service Verbs (on or
off) is to be changed.

Communications Server checks only the most significant bit (bit 0) of this
byte; other bits are ignored.

To enable or disable tracing for Common Service Verbs, depending on the
dt_set parameter, set the most significant bit of this byte to 1.

To leave tracing in its current state for Common Service Verbs, set the most
significant bit of this byte to zero.

Specifies whether the state of MS tracing (on or off) is to be changed.

Communications Server checks only the most significant bit (bit 0) of this
byte; other bits are ignored.

To enable or disable MS tracing, depending on the dt_set parameter, set the
most significant bit of this byte to 1.

To leave tracing in its current state for MS, set the most significant bit of
this byte to zero.

Specifies whether the state of tracing for the RUI interface of LUA (on or
off) is to be changed.

24 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

DEFINE_TRACE

Communications Server checks only the most significant bit (bit 0) of this
byte; other bits are ignored.

To enable or disable tracing for the RUI interface, depending on the dt_set
parameter, set the most significant bit of this byte to 1.

To leave tracing in its current state for the RUI interface, set the most
significant bit of this byte to zero.

reset_trc
Specifies whether to reset the trace file or files. Possible values are:

SV_YES Reset the trace file or files; empty the files and discard their current
contents.

SV_NO Do not reset the trace files.

trunc The length at which each trace record is to be truncated. Specify zero if
you do not want truncation.

Returned Parameters

After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
SV_OK

Unsuccessful Execution

When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
SV_PARAMETER_CHECK

secondary_rc
Possible values are:

SV_INVALID SET
The dt_set parameter contained a value that was not valid.

SV_INVALID RESET_TRACE
The reset_trc parameter contained a value that was not valid.

Other Conditions: Other conditions can result in the following primary return
codes (primary_rc):

SV_INVALID_VERB
The opcode parameter did not match the operation code of any verb. No
verb executed.

SV_UNEXPECTED_DOS_ERROR
The operating system has encountered an error while processing the verb.

Chapter 2. Common Service Verbs Reference 25

DEFINE_TRACE

The operating system return code is returned through the secondary_rc. If
the problem persists, consult the System Administrator for corrective
action.

For the meaning of the operating system return code, refer to the file
/ust/include/errno.h.

SNACTL Environment Variable

The SNACTL environment variable is provided by Communications Server for
debugging application programs which use the DEFINE_TRACE verb. If this
variable is set, DEFINE_TRACE verbs issued by the program will have no effect on
tracing (although they will still return SV_OK unless an error occurs). This can be
used to force tracing of a program which normally turns tracing off, or to suppress
tracing of a program which normally uses it. For more information about tracing
and on this environment variable, refer to the IBM Communications Server for AIX
Diagnostics Guide or the IBM Communications Server for Linux Diagnostics Guide.

GET_CP_CONVERT_TABLE

The GET_CP_CONVERT_TABLE verb creates and returns a 256-byte conversion
table to translate character strings from a source code page to a target code page. If
a character from the source code page does not exist in the target code page, the
translated (target) string differs from the original (source) string.

A code page is a table that associates specific ASCII or EBCDIC values with
specific characters. It is used to provide a national language variant of ASCII or
EBCDIC which supports characters specific to that language. For a list of code
pages supported by Communications Server and the national languages for which
they are used, see|Appendix A, “Code Pages,” on page 41]

VCB Structure

typedef struct get_cp_convert_table

AP_UINT16 opcode; /* Verb identifying operation code. */
unsigned char opext; /* Verb extension code - reserved. */
unsigned char reserv?; /* Reserved. */
AP_UINT16 primary_rc; /* Primary return code from verb. */
AP_UINT32 secondary_rc; /* Secondary (qualifying) return code. */
AP_UINT16 source_cp; /* Source code page for conversion table.*/
AP_UINT16 target_cp; /* Target code page for conversion table.x/

unsigned char xconv_tbh1 _addr; /* Address to put conversion table at. */
unsigned char char_not_fnd; /* Character not found option: either */

/* substitute character or round trip. =*/
unsigned char substitute_char; /* Substitute character to use. */

}s

typedef struct get cp_convert table
{

unsigned short opcode; /* Verb identifying operation code. */

26 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

GET_CP_CONVERT_TABLE

unsigned char opext; /* Verb extension code - reserved. */
unsigned char reserv?; /* Reserved. */
unsigned short primary rc; /* Primary return code from verb. */
unsigned long secondary_rc; /* Secondary (qualifying) return code. =/
unsigned short source_cp; /* Source code page for conversion table.*/
unsigned short target_cp; /* Target code page for conversion table.x/
unsigned char xconv_tb1_addr; /* Address to put conversion table at. */
unsigned char char_not_fnd; /* Character not found option: either */

/* substitute character or round trip. =*/
unsigned char substitute _char; /* Substitute character to use. */

}s
-

Supplied Parameters
The program using this verb supplies the following parameters:

opcode SV_GET_CP_CONVERT_TABLE

source_cp
Source code page (from which characters are converted).

A decimal number which identifies the code page to be used. For a list of
valid code page numbers, see [Appendix A, “Code Pages,” on page 41)

target_cp
Target code page (to which characters are converted).

A decimal number which identifies the code page to be used. For a list of
valid code page numbers, see [Appendix A, “Code Pages,” on page 41)

conv_tbl_addr
Address of buffer to contain the 256-byte conversion table.

char_not_fnd
Specifies the action to take if a character in the source code page does not
exist in the target code page.

Possible values are:

SV_ROUND_TRIP
Store a unique value in the conversion table for each source
code-page character. This value is useful only if you build a second
conversion table to convert between the same two code pages in
the reverse direction. If you specify the SV_ROUND_TRIP value in
building both conversion tables, any character translated from one
code page to the other and then back will be unchanged.

SV_SUBSTITUTE
Store a substitute character (specified by the substitute_char
parameter) in the conversion table. Converting the translated
character string back to the original code page will not necessarily
recreate the original character string.

substitute_char
Specifies the character to store in the conversion table when a character
from the source code page has no equivalent in the target code page.

Use this parameter only if the char_not_fnd parameter is set to
SV_SUBSTITUTE.

Chapter 2. Common Service Verbs Reference 27

GET_CP_CONVERT_TABLE

When the target code page is an EBCDIC code page, this parameter should
be set to the EBCDIC value of the character you want to use, not to the
actual character. For example, to use the — character as the substitute
character in an ASCII to EBCDIC conversion table, supply the value 60 (the
value associated with the character — in EBCDIC), and not the actual
character —. When the target code page is an ASCII code page, you can
specify either the character or its ASCII value.

Returned Parameters

After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc
SV_OK

Unsuccessful Execution

When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
SV_PARAMETER_CHECK

secondary_rc
Possible values are:

SV_INVALID_CHAR_NOT_FOUND
The char_not_fnd parameter contained a value that was not valid.

SV_INVALID_SOURCE_CODE_PAGE
The code page specified by the source_cp parameter is not
supported.

SV_INVALID_TARGET_CODE_PAGE
The code page specified by the target_cp parameter is not
supported.

Other Conditions: Other conditions can result in the following primary return
codes (primary_rc):

SV_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software has not been started. Consult the System
Administrator for corrective action.

SV_INVALID_VERB_SEGMENT
The supplied VCB extended beyond the boundary of a data segment.

28 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

GET_CP_CONVERT_TABLE

SV_INVALID_VERB
The opcode parameter did not match the operation code of any verb. No
verb executed.

SV_UNEXPECTED_DOS_ERROR
The operating system has encountered an error while processing the verb.
The operating system return code is returned through the secondary_rc. If
the problem persists, consult the System Administrator for corrective
action.

For the meaning of the operating system return code, refer to the file
/usr/include/errno.h.

For the meaning of the operating system return code, refer to your operating
system documentation.

—
LOG_MESSAGE

The LOG_MESSAGE verb records a message in the Communications Server error
or audit log file. The text for the message is taken from a user-defined message
file; the verb can also supply parameters to be inserted in the message.

If you use this verb, you will need to supply an appropriate message file for use
with the application. For more information, see [“Creating a Log Message File” on|

For more information about the Communications Server audit and error log files
and the format of the logged messages, refer to the IBM Communications Server for
AIX Diagnostics Guide or the IBM Communications Server for Linux Diagnostics Guide.

VCB Structure

typedef struct Tog_message

{

AP_UINT16 opcode; /* Verb identifying operation code. */
unsigned char opext; /* Verb extension code - reserved. */
unsigned char reserv2; /* Reserved. */
AP_UINT16 primary_rc; /* Primary return code from verb. */
AP_UINT32 secondary_rc; /* Secondary (qualifying) return code. =/
AP_UINT16 msg_num; /* Number of message to log. */
unsigned char origntr_id[8]; /* ID of the originator of the message. */
unsigned char msg_file_name[3]; /* Message file to search for the */

Chapter 2. Common Service Verbs Reference 29

LOG_MESSAGE

30

/* required message number. */
unsigned char msg_act; /* Message action - how to log the msg. */
AP_UINT16 msg_ins_Tlen; /* Length of data for insertion in msg. */
unsigned char *msg_ins_ptr; /* Address of data for insertion in msg.*/

}s

Supplied Parameters

The program using this verb supplies the following parameters:

opcode SV_LOG_MESSAGE

msg_num
Number of the message in the message file specified by msg_file_name.
The message identifier shown in the Communications Server log file
consists of two parts: the Communications Server component identifier and
the message number. The msg_num parameter gives the message number;
the component identifier for a message logged by this verb is always
32,767.

origntr_id

Name of the component issuing the LOG_MESSAGE verb; a string of up to
eight characters. This parameter is optional; set the first byte to 0x00 if you
do not want to include it.

If you specify this name, Communications Server uses it as the first
parameter inserted into the message text; that is, this name replaces “%1”
in the message text. For further information, see [‘Creating a Log Message]
[File” on page 32|

msg_file_name

msg_act

Name of the file containing the text for the message to be logged. For
information about how to create this message file, see|“Creating a Log]|
Message File” on page 32|

The message file must have a name consisting of three characters followed
by the .msg extension. This parameter specifies only the base file name; the
.msg extension is added automatically.

The message file must be stored in the directory /usr/lib/sna (AIX) or
/opt/ibm/sna/lib (Linux) on the computer where the application is running.
If Communications Server is set up to use centralized logging on a single
server, the same message file must also be in /usr/lib/sna on the server that
holds the log file.

Action to be taken when processing the message. This defines the log
category (problem, exception, or audit) of the logged message; refer to the
IBM Communications Server for AIX Diagnostics Guide or the IBM
Communications Server for Linux Diagnostics Guide for more information
about log categories. Possible values are:

SV_PROBLEM
Log as a problem message.

SV_EXCEPTION
Log as an exception message.

SV_AUDIT
Log as an audit message.

For compatibility with other CSV implementations, the following values
are also supported. These are provided for migration only, because the

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

LOG_MESSAGE

mapping between these values and the Communications Server log
categories is only approximate and may not always give the most
appropriate category; use the values SV_PROBLEM, SV_EXCEPTION, or SV_AUDIT
when writing new applications.

SV_INTRV, SV_INTRV_16, SV_NO_INTRV_16
Equivalent to SV_PROBLEM

SV_NO_INTRV, SV_NO_INTRV_10
Equivalent to SV_EXCEPTION

SV_NO_INTRV_8, SV_NO_INTRV_6
Equivalent to SV_AUDIT

A message of type SV_EXCEPTION or SV_AUDIT, or equivalent, will be logged
only if Communications Server is currently configured to log messages of
the appropriate type (exception or audit); otherwise the message will be
ignored (although the verb will still return SV_0K). Values other than
SV_INTRV and SV_NO_INTRV may not be supported by other CSV
implementations.

msg_ins_len
Length of data to be inserted into the message (0-1000 characters). Specify
a length of 0 (zero) if no data is to be inserted.

msg_ins_ptr
Address of the data to be inserted into the message. This parameter is
ignored if msg_ins_len is 0 (zero).

The data consists of 1-19 null-terminated strings. The total length of the
inserted data must not exceed 1000 characters.

When you create a log message file, you specify the positions in the
message text where these data strings are to be inserted. For further
information, see [“Creating a Log Message File” on page 32.|The data
supplied to this verb must include a string for each parameter required by
the message text; the first string may be supplied in the origntr_id
parameter instead of in this data string.

Returned Parameters

After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameter:

primary_rc

SV_0K Either the message was logged successfully, or the message was
ignored because Communications Server is not currently
configured to log messages of the specified type (exception or
audit).

Unsuccessful Execution

When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Chapter 2. Common Service Verbs Reference 31

LOG_MESSAGE

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
SV_PARAMETER_CHECK

secondary_rc
One of the following:

SV_INVALID FIRST CHARACTER
The first character of the msg_file_name parameter was zero or a
space character.

SV_INVALID_MESSAGE_ACTION
The msg_act parameter contained a value that was not valid.

There is no SV_PARAMETER_CHECK secondary return code indicating that the specified
message file was not found or could not be opened; this error will cause a return
code of SV_UNEXPECTED_DOS_ERROR.

Other Conditions: Other conditions can result in the following primary return
codes (primary_rc):

SV_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software has not been started. Contact the System
Administrator for corrective action.

SV_INVALID_VERB
The opcode parameter did not match the operation code of any verb. No
verb executed.

SV_UNEXPECTED_DOS_ERROR
The operating system has encountered an error while processing the verb.
The operating system return code is returned through the secondary_rc. If
the problem persists, consult the System Administrator for corrective
action.

For the meaning of the operating system return code, refer to the file
lusr/include/errno.h.

Creating a Log Message File

The snamsgf program provided with Communications Server, enables you to
produce your own message files to be used with the LOG_MESSAGE verb.

To use this facility, you must first create a text file containing the message numbers
and text, and then use snamsgf to convert it into a message file.

Message Source File Format

A message source file is a plain ASCII text file. You can include a comment line
anywhere in the file by using an asterisk (*) as the first character of the line.
Communications Server ignores all the remaining text on this line.

The first line in the source file must be “ID:”, followed by a character string of 1-8
characters identifying the component logging the message. This string is printed
out at the start of each message in the log file. Specify a string that identifies the
user of this message file; for example, the name of the application if only one
application uses this message file, or a string identifying a group of applications
that use the same message file.

32 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

LOG_MESSAGE

The rest of the message source file consists of entries for individual messages. Each
message is defined as a series of fields, as shown in the example that follows.

ID:MYAPPL

Message: 1

Type: PROBLEM

Cause Type: CSv

Cause: The specified file could not be opened.

Action: Check the reason shown on this message for more information.
Flags: NONE

String: Could not open the file.$

Filename = %1\nReason = %2

The fields are as follows:

Message
A unique identifier for the message (a decimal number in the range
1-65,535). The messages in the file must be listed in ascending order of
message number. Numbers do not need to be consecutive; however, large

ranges of unused message numbers will increase the size of the message
file.

The category of log message. Specify PROBLEM, EXCEPTION, or AUDIT.
The actual category that Communications Server uses when logging the
message is determined by the msg_act parameter of the LOG_MESSAGE
verb. In the source file, this information is included for readability, but
Communications Server ignores it.

Type

Cause type
A summary of the cause of the message. Specify CSV (to indicate that the
message was logged using the CSV LOG_MESSAGE verb), or one of the
following values:

Internal
Internal error in the application.

Resource
Resource shortage (for example, insufficient memory on the AIX /
Linux computer).

User User error (for example, parameters that are not valid supplied on

the command line to an application program).

SNA SNA protocol violation by a remote system.

Config
Configuration mismatch.

Audit A normal event, reported for information only.

Cause The cause of the condition being logged.

Action
Any action that the local System Administrator should take as a result of
the message. For audit messages, which provide accounting and progress
information instead of reporting error conditions, there is generally no
action required.

Flags Specify CONSOLE to indicate that the message should be written to the
AIX / Linux computer’s system console as well as to the log file, or NONE

to indicate that the message should be written only to the log file.

String The text of the message (1-256 characters). To include parameters supplied

to the LOG_MESSAGE verb, use %1, %2, and so on to indicate the position

33

Chapter 2. Common Service Verbs Reference

LOG_MESSAGE

of each parameter. When logging the message, Communications Server
replaces %1 with the first parameter supplied to LOG_MESSAGE, %2 with
the second parameter, and so on.

The origintr_id parameter supplied to LOG_MESSAGE, if any, replaces %1.
The first parameter in the data string supplied to LOG_MESSAGE replaces
%2 (if origntr_id was used) or %1 (if origntr_id was not used); the second
parameter in the data string replaces %3 or %2, and so on.

The following also applies to these fields:
* Each field name (such as Message) must be at the start of a line, followed by a

colon. Spaces or tabs following the colon are ignored. All the text associated
with the field name must be in a single line (except when lines are concatenated
using the § character, as described below); there is no limit on the length of the
line.

In the Cause, Action, and String fields, the following characters can be used to
control the format of the text written to the log file:

\t Insert a tab character in the output text.

$ (followed by a new-line character in the source text)
Insert a new-line character in the output text, and continue with the
following line of the source file. This enables you to specify a text field
that extends over more than one line. The last line of the text field must
not end with a $ character.

\n Insert a new-line character in the output text, and continue with the
following character of the source file. This enables you to specify a text
field as a single line in the source file, and to specify where line breaks
will appear in the output. However, it is recommended that you split
long text fields into multiple lines using the $ character, as described
above, for readability.

\$ Insert a $ character in the output text.

%n (in the String parameter only)

Insert the nth parameter supplied to the log call in the output text.
The logging code does not insert new-line characters into text strings except
where \n or $ characters are included in the source text. To ensure that the
output text is easily readable on an 80-column screen, use these characters to
force line breaks.

The fields Message, Type, Cause Type, Flags, and String must be specified. The
fields Cause and Action are optional; to indicate that one of these fields is not
used, specify the following string, with capitalization as shown:

@!* Not Used

For example, if the message is an audit message and no action is required, use
the following line:

Action: @!* Not Used

In this case, Communications Server will not include the Action field when
writing the message to the log file.

* The total length of the Cause and Action fields must not exceed 2048 characters.

Sample Log Message Output

The previous section shows a sample entry in the message source file. If you build
a message file from a source file containing this entry, an application can call
LOG_MESSAGE specifying message number 1 in this message file. The

34 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

LOG_MESSAGE

application’s supplied data must contain two null-terminated strings, one
specifying the file name (for example, /usr/jim/myfile) and one specifying the
reason for the failure (for example, “File not found”). The output will then be as

follows:
------------------ 12:17:28 BST 05/13/1994 ----ccmcmmmmeeeeee
MYAPPL Message 32767-1, Subcode: 0
Log category: PROBLEM Cause Type: CSV
System: jimsbox
Process ID: 12345

Could not open the file.
Filename = /usr/jim/myfile

Reason File not found
Cause: The specified file could not be opened.
Action: Check the reason shown on this message for more information.

This sample output assumes that verbose logging (not succinct logging) is being
used. For more information about succinct logging, and the format of entries in the
log file if it is being used, refer to the chapter on log messages in the IBM
Communications Server for AIX Diagnostics Guide or the IBM Communications Server
for Linux Diagnostics Guide.

Creating the Message File from the Text File
To convert the text file into a message file, use the snamsgf program as follows:

snamsgf infile outfile

The name of the input text file is infile, including a path if it is not in the current
directory.

The name of the output message file is outfile, as specified by the msg_file_name
parameter on LOG_MESSAGE. The output file must have a name consisting of 1-3
characters with the extension .msg; you need not specify the extension on the
command line.

The output file is created in the current directory. It must be stored in the directory
/usr/lib/sna (AIX) or /opt/ibm/sna (Linux) in order for Communications Server to
find it when it is specified by a LOG_MESSAGE verb.

For example, the following command creates the message file new.msg from the
source text file /usr/fred/myfile.text:

snamsgf /usr/fred/myfile.text new

The snamsgf program writes error messages to standard error if it detects errors in
the input file format.

TRANSFER_MS_DATA

Chapter 2. Common Service Verbs Reference 35

TRANSFER_MS_DATA

36

The TRANSFER_MS_DATA verb builds a request unit (RU) containing Network
Management Vector Transport (NMVT) data. The verb can send the NMVT data to
NetView for centralized problem diagnosis and resolution. The data can also be
logged in the local error log file.

The application can supply a complete NMVT to be sent, or it can supply some of
the required subvectors and request Communications Server to add header
information or additional subvectors. For more information about the format of
NMVTs, including the format of the headers and subvectors that Communications
Server adds, refer to IBM Systems Network Architecture: Formats.

VCB Structure

typedef struct transfer_ms_data

unsigned short opcode; /* Verb operation code */
unsigned char data_type; /* Type of data supplied by appl */
unsigned char reserv?; /* reserved x/
unsigned short primary_rc; /* Primary return code */
unsigned Tong secondary_rc; /* Secondary return code */
unsigned char options; /* Verb options */
unsigned char reserv3; /* reserved */
unsigned char originator_id[8]; /* Originator ID */
unsigned short dlen; /* Length of data */
unsigned char *dptr; /* Data */

} TRANSFER_MS_DATA;

Supplied Parameters

The program using this verb supplies the following parameters:
opcode SV_TRANSFER_MS_DATA

data_type
Possible values are:

SV_NMVT
The data contains a complete NMVT.

SV_ALERT_SUBVECTORS
The data contains MS subvectors in the SNA-defined format for an
Alert major vector. Communications Server adds an NMVT header
and an alert major vector header.

SV_USER_DEFINED
The data contains a complete NMVT request unit. Communications
Server always logs the data, and does not send it to NetView.

SV_PDSTATS_SUBVECTORS
The data contains problem determination statistics.
Communications Server always logs the data, and does not send it
to NetView.

options This parameter is a one-byte value, with individual bits indicating the
options selected. Bit 0 is the most significant and bit 7 is the least
significant bit. For compatibility with other implementations, the bit values
for bits 0-3 are defined so that a value of 1 indicates no action and a value
of 0 indicates an action. (Bits 1-3 are ignored if data_type is set to
SV_USER_DEFINED.)

Bit 0—Add Date/Time (0x01) subvector to the data.
* To request Communications Server to add the subvector, set this bit to 0.

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

TRANSFER_MS_DATA

* To request Communications Server not to add the subvector, set this bit
to 1.

Bit 1—Add Product Set ID (0x10) subvector to the data. If the application
supplies data that already contains a Product Set ID subvector,
Communications Server adds its own Product Set ID subvector
immediately preceding the existing one.

* To request Communications Server to add the subvector, set this bit to 0.

* To request Communications Server not to add the subvector, set this bit
to 1.

Bit 2—Send the data to NetView.

* To request Communications Server to send the data, set this bit to 0.

* To request Communications Server not to send the data, set this bit to 1.

If data_type is set to SV_USER_DEFINED or SV_PDSTATS_SUBVECTORS, this bit is

ignored; the data cannot be sent to NetView.

Bit 3—Log the data in the Communications Server error log file.

* To request Communications Server to log the data, set this bit to 0.

* To request Communications Server not to log the data, set this bit to 1.

If data_type is set to SV_USER_DEFINED or SV_PDSTATS_SUBVECTORS, this bit is
ignored; the data is always logged.

Bits 4-7 are reserved, and must be set to 0.

originator_id
Name of the component that issued the verb. If the data is being logged in
the Communications Server error log file, this name is used to identify the
originator of the log message; otherwise it is not used.

This is an ASCII string of up to eight characters, using any locally
displayable characters. The parameter is optional; set the first character to
0x00 if you do not want to include it.

dlen Length of the data supplied by the application.

The maximum length of an NMVT is 512 bytes. If the application is
supplying a complete NMVT, the data length must not exceed 512 bytes. If
the application is supplying alert subvectors, or requesting
Communications Server to add one or more subvectors to the supplied
data, the total length after addition of the required headers and/or
subvectors must not exceed 512 bytes.

dptr A pointer to the data string supplied by the application. The data must be
in the valid format for an NMVT, alert subvectors, or problem
determination statistics, as specified by the data_type parameter.

Returned Parameters

After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

Successful Execution
If the verb executes successfully, Communications Server returns the following
parameters:

primary_rc
SV_OK

Chapter 2. Common Service Verbs Reference 37

TRANSFER_MS_DATA

secondary_rc
Not used.

Unsuccessful Execution

When a verb does not execute successfully, Communications Server returns a
primary return code to indicate the type of error and a secondary return code to
provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,
Communications Server returns the following parameters:

primary_rc
SV_PARAMETER_CHECK

secondary_rc
Possible values are:

SV_INVALID_DATA_TYPE
The supplied data_type parameter was not one of the valid values.

SV_INVALID_DATA_SEGMENT
The supplied data string extended beyond the boundary of a data
segment.

SV_DATA_EXCEEDS_RU_SIZE
One of the following occurred:

* The application supplied a data string longer than the maximum
NMVT size of 512 bytes.

* The application supplied data as alert subvectors, or specified
that Communications Server should add one or more subvectors
to it, but the added headers and/or subvectors increased the
data size beyond 512 bytes.

State Check: If the verb does not execute because of a state error,
Communications Server returns the following parameters:

primary_rc
SV_STATE_CHECK

secondary_rc

SV_SSCP_PU_SESSION_NOT_ACTIVE
The application specified SV_SEND in the options parameter, but the
session to the appropriate PU was not active.

Other Conditions: Other conditions can result in the following primary return
codes (primary_rc):
primary_rc

SV_CANCELLED
The WinCSVCTeanup call was issued while this verb (issued using
the asynchronous entry point) was still outstanding. This verb has
been cancelled; the data may not have been sent.

primary_rc

SV_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software has not been started, or has been
stopped.

primary_rc

38 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

TRANSFER_MS_DATA

SV_INVALID VERB
The opcode parameter did not match the operation code of any
verb. No verb executed.

primary_rc

SV_INVALID_VERB_SEGMENT
The supplied VCB extended beyond the boundary of a data
segment.

primary_rc

SV_SERVER_RESOURCE_NOT_FOUND
A required Communications Server component was not active; the
data could not be sent.

primary_rc

SV_SERVER_RESOURCES_LOST
A required Communications Server resource was not available.

secondary_rc

SV_SERVER_COMM_FAILURE
The communications path to a required Communications Server
component has failed; the data could not be sent.

primary_rc

SV_THREAD_BLOCKING
The verb was issued using the synchronous CSV entry point, but a
synchronous verb is already in progress for this application. Only
one synchronous verb can be in progress at any time.

primary_rc

SV_UNEXPECTED_DOS_ERROR
The operating system has encountered an error while processing
the verb. The operating system return code is returned through the
secondary_rc. If the problem persists, consult the System
Administrator for corrective action.

For the meaning of the operating system return code, refer to your
operating system documentation.

This return code may also indicate that the application issuing the
verb was invoked using the Windows function SendMessage
instead of PostMessage; the application cannot issue any verbs in
this state. For more information, see ["Windows Considerations” onl|

Chapter 2. Common Service Verbs Reference 39

40 I1BM Communications Server for AIX or Linux CSV Programmer’s Guide

Appendix A. Code Pages

This appendix lists the code pages supported by Communications Server for use

with the GET_CP_CONVERT_TABLE verb, and the national language variants of

ASCII or EBCDIC that use each code page.

ASCII Code Pages

AIX, LINUX

8859

Generalized ASCII code page defined by ISO 8859, used to support all

language variants

437
737

819
850

852
855
857
858
860
861
862
863
864
865
866
869
874
897
903
912
915
916

© Copyright IBM Corp. 2000, 2009

US English
Greece
Greece

ANSI

International code page: US English, UK English, French, German, Italian,

Spanish, Finnish, Netherlands, Swedish, Swiss, Belgian, Latin American
Poland, Hungary, Romania, Slovakia, Czech, Croatia, Slovenia

Bulgaria, Serbia-Montenegro, FYR Macedonia

Turkey
Multilingual
Portuguese

Iceland

Hebrew

Canadian French
Arabic

Danish, Norwegian
Russia

Greece

Thailand

Japan

People’s Republic of China

Poland, Hungary, Romania, Slovakia, Czech, Croatia, Slovenia

Russia, Bulgaria, Serbia-Montenegro, FYR Macedonia

Hebrew

41

ASCII Code Pages

920

921

922

923

1008
1041
1088
1089
1114
1115
1124
1125
1126
1127
1129
1131
1133
1250
1251
1252
1253
1254
1255
1256
1257
1258

Turkey

Latvia, Lithuania

Estonia

ANSI

Arabic

Japan

Korea

Arabic

Republic of China (Taiwan)
People’s Republic of China
Ukraine

Ukraine

Korea

Arabic

Vietnam

Belarus

Laos

Poland, Hungary, Romania, Slovakia, Czech, Croatia, Slovenia
Russia, Bulgaria, Serbia-Montenegro, FYR Macedonia
United States / Multilingual
Greece

Turkey

Hebrew

Arabic

Baltic

Vietnam

EBCDIC Code Pages

037
273
275
277
278
280
284
285
290
297

US English, Canadian Bilingual, Netherlands, Portuguese
German

Brazil

Danish, Norwegian

Finnish, Swedish

Italian

Spanish, Latin American

UK English

Japan

French

42 1BM Communications Server for AIX or Linux CSV Programmer’s Guide

420
424
500
803
833
836
838
870
871
875
924
1025
1026
1027
1047
1112
1122
1123
1130
1132
1140
1141
1142
1143
1144
1145
1146
1147
1148

EBCDIC Code Pages

Arabic

Hebrew

Belgian (New), Swiss French, Swiss German

Arabic

Korea

People’s Republic of China

Thailand

Poland, Hungary, Romania, Slovakia, Czech, Croatia, Slovenia
Iceland

Greece

USA, Canada (French), Netherlands, Portugal, France, Finland
Russia, Bulgaria, Serbia-Montenegro, FYR Macedonia
Turkey

Japan

USA, Canada (French), Netherlands, Portugal

Latvia, Lithuania

Estonia

Baltic

Vietnam

Laos

USA, Canada (French), Netherlands, Portugal
Germany, Austria

Denmark, Norway

Finland, Sweden

Italy

Latin America, Spain

United Kingdom

France

Belgium, Switzerland (French), Switzerland (German)

Appendix A. Code Pages

43

EBCDIC Code Pages

44 1BM Communications Server for AIX or Linux CSV Programmer’s Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2009 45

46

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

P.O. Box 12195

3039 Cornwallis Road

Research Triangle Park, NC 27709-2195

US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to IBM’s application programming
interfaces.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows: ® (your company name) (year). Portions of
this code are derived from IBM Corp. Sample Programs. ©® Copyright IBM Corp.

2000, 2005, 2006, 2007, 2008, 2009. All rights reserved.

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countires, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 47

48 1BM Communications Server for AIX or Linux CSV Programmer’s Guide

Bibliography

The following IBM publications provide information about the topics discussed in
this library. The publications are divided into the following broad topic areas:

* IBM Communications Server for AIX

* IBM Communications Server for Linux

* Systems Network Architecture (SNA)

* Advanced Program-to-Program Communication (APPC)
* Programming

For IBM Communications Server for AIX and IBM Communications Server for
Linux books, brief descriptions are provided. For other books, only the titles and
order numbers are shown here.

IBM Communications Server for AIX Publications

The IBM Communications Server for AIX library comprises the following books. In
addition, softcopy versions of these documents are provided on the CD-ROM. See
IBM Communications Server for AIX Quick Beginnings for information about
accessing the softcopy files on the CD-ROM. To install these softcopy books on
your system, you require 9-15 MB of hard disk space (depending on which
national language versions you install).

* IBM Communications Server for AIX Migration Guide (SC31-8585)

This book explains how to migrate from Communications Server for AIX Version
4 Release 2 or earlier to IBM Communications Server for AIX Version 6.

* IBM Communications Server for AIX Quick Beginnings (GC31-8583)

This book is a general introduction to IBM Communications Server for AIX,
including information about supported network characteristics, installation,
configuration, and operation.

* IBM Communications Server for AIX Administration Guide (SC31-8586)

This book provides an overview of SNA and IBM Communications Server for
AIX, and information about IBM Communications Server for AIX configuration
and operation.

 IBM Communications Server for AIX Administration Command Reference (SC31-8587)

This book provides information about SNA and IBM Communications Server for
AIX commands.

* IBM Communications Server for AIX or Linux CPI-C Programmer’s Guide
(5C23-8591)

This book provides information for experienced “C” or Java programmers about
writing SNA transaction programs using the IBM Communications Server CPI
Communications APL

* IBM Communications Server for AIX or Linux APPC Programmer’s Guide
(5C23-8592)

This book contains the information you need to write application programs
using Advanced Program-to-Program Communication (APPC).

* IBM Communications Server for AIX or Linux LUA Programmer’s Guide (SC23-8590)

This book contains the information you need to write applications using the
Conventional LU Application Programming Interface (LUA).

© Copyright IBM Corp. 2000, 2009 49

IBM Communications Server for AIX or Linux CSV Programmer’s Guide (SC23-8589)

This book contains the information you need to write application programs
using the Common Service Verbs (CSV) application program interface (API).

IBM Communications Server for AIX or Linux MS Programmer’s Guide (SC23-8596)

This book contains the information you need to write applications using the
Management Services (MS) API.

IBM Communications Server for AIX NOF Programmer’s Guide (SC31-8595)

This book contains the information you need to write applications using the
Node Operator Facility (NOF) APL

IBM Communications Server for AIX Diagnostics Guide (SC31-8588)

This book provides information about SNA network problem resolution.

IBM Communications Server for AIX or Linux APPC Application Suite User’s Guide
(5C23-8595)

This book provides information about APPC applications used with IBM
Communications Server for AIX.

IBM Communications Server for AIX Glossary (GC31-8589)

This book provides a comprehensive list of terms and definitions used
throughout the IBM Communications Server for AIX library.

IBM Communications Server for Linux Publications

50

The IBM Communications Server for Linux library comprises the following books.
In addition, softcopy versions of these documents are provided on the CD-ROM.
See IBM Communications Server for Linux Quick Beginnings for information about
accessing the softcopy files on the CD-ROM. To install these softcopy books on
your system, you require 9-15 MB of hard disk space (depending on which
national language versions you install).

IBM Communications Server for Linux Quick Beginnings (GC31-6768 and
GC31-6769)

This book is a general introduction to IBM Communications Server for Linux,
including information about supported network characteristics, installation,
configuration, and operation. There are two versions of this book:

GC31-6768 is for IBM Communications Server for Linux on the 1686, x86_64,

and ppc64 platforms

GC31-6769 is for IBM Communications Server for Linux on System z.

IBM Communications Server for Linux Administration Guide (SC31-6771)

This book provides an overview of SNA and IBM Communications Server for
Linux, and information about IBM Communications Server for Linux
configuration and operation.

IBM Communications Server for Linux Administration Command Reference
(5C31-6770)

This book provides information about SNA and IBM Communications Server for
Linux commands.

IBM Communications Server for AIX or Linux CPI-C Programmer’s Guide
(5C23-8691)

This book provides information for experienced “C” or Javaprogrammers about
writing SNA transaction programs using the IBM Communications Server CPI
Communications APL

IBM Communications Server for AIX or Linux APPC Programmer’s Guide
(5C23-8692)

IBM Communications Server for AIX or Linux CSV Programmer’s Guide

This book contains the information you need to write application programs
using Advanced Program-to-Program Communication (APPC).

IBM Communications Server for AIX or Linux LUA Programmer’s Guide (SC23-8690)

This book contains the information you need to write applications using the
Conventional LU Application Programming Interface (LUA).

IBM Communications Server for AIX or Linux CSV Programmer’s Guide (SC23-8689)

This book contains the information you need to write application programs
using the Common Service Verbs (CSV) application program interface (API).

IBM Communications Server for AIX or Linux MS Programmer’s Guide (SC23-8596)

This book contains the information you need to write applications using the
Management Services (MS) API.

IBM Communications Server for Linux NOF Programmer’s Guide (SC31-6778)

This book contains the information you need to write applications using the
Node Operator Facility (NOF) APL

IBM Communications Server for Linux Diagnostics Guide (SC31-6779)
This book provides information about SNA network problem resolution.

IBM Communications Server for AIX or Linux APPC Application Suite User’s Guide
(5C23-8595)

This book provides information about APPC applications used with IBM
Communications Server for Linux.

IBM Communications Server for Linux Glossary (GC31-6780)

This book provides a comprehensive list of terms and definitions used
throughout the IBM Communications Server for Linux library.

Systems Network Architecture (SNA) Publications

The following books contain information about SNA networks:

Systems Network Architecture: Format and Protocol Reference Manual—Architecture
Logic for LU Type 6.2 (SC30-3269)

Systems Network Architecture: Formats (GA27-3136)

Systems Network Architecture: Guide to SNA Publications (GC30-3438)
Systems Network Architecture: Network Product Formats (LY43-0081)
Systems Network Architecture: Technical Overview (GC30-3073)

Systems Network Architecture: APPN Architecture Reference (SC30-3422)
Systems Network Architecture: Sessions between Logical Units (GC20-1868)
Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)

Systems Network Architecture: Transaction Programmer’s Reference Manual for LU
Type 6.2 (GC30-3084)

Systems Network Architecture: 3270 Datastream Programmer’s Reference (GA23-0059)
Networking Blueprint Executive Overview (GC31-7057)
Systems Network Architecture: Management Services Reference (SC30-3346)

APPC Publications

The following books contain information about Advanced Program-to-Program
Communication (APPC):

APPC Application Suite V1 User’s Guide (SC31-6532)
APPC Application Suite V1 Administration (SC31-6533)
APPC Application Suite V1 Programming (SC31-6534)

Bibliography 51

* APPC Application Suite V1 Online Product Library (SK2T-2680)
* APPC Application Suite Licensed Program Specifications (GC31-6535)

* z/OS V1R2.0 Communications Server: APPC Application Suite User’s Guide
(SC31-8809)

Programming Publications

The following books contain information about programming;:
* Common Programming Interface Communications CPI-C Reference (5C26-4399)

* Communications Server for OS/2 Version 4 Application Programming Guide
(SC31-8152)

52 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

Index
A

ACSSVC_C call 4
ACSSVC, ACSSVC_C, ACSSVC_P entry
points 2
acssvee.h header file 2
AIX applications
compiling and linking 11
API tracing 21
ASCII to EBCDIC character
conversion 15
audit log file, logging a message to 29

blocking verbs, windows 6

C

character conversion, ASCII to
EBCDIC 15
clearing trace files 21
code page conversion 26
compiling AIX applications 11
compiling and linking 12
compiling Linux applications 11
conversion table
A 17
AE 17
G 17,20
type-G, creating 20
conversion tables, building 26
CONVERT
ASCII to EBCDIC 16
character set (A, AE, or G) 16
conversion error 18
EBCDIC to ASCII 16
returned parameters 18
supplied parameters 16
type-G conversion table, creating 20
VCB 16
verb 15
COPY_TRACE_TO_FILE
overwriting files 21
returned parameters 22
state check 22
supplied parameters 21
VCB 21
verb 21
CSV entry point
windows 3, 6

D

DCE threads 11
DEFINE_TRACE
APPC 24
Common Service Verbs 24
CPI-C 24
enabling or disabling 24

© Copyright IBM Corp. 2000, 2009

DEFINE_TRACE (continued)
LUA 25
MS 24
NOF 24
resetting trace files 25
returned parameters 25
RUI 25
supplied parameters 23
truncation 25
VCB 23
verb 23

E

EBCDIC to ASCII character
conversion 15
entry points for CSV 2
error log file, logging a message to 29

F

function calls for CSV 2

G

GET_CP_CONVERT_TABLE
returned parameters 28
supplied parameters 27
type-G conversion table, creating 20
VCB 26
verb 26
GetCsvReturnCode call 8

L

linking AIX applications 11
linking Linux applications 11
Linux applications
compiling and linking 11
log message file, creating 32
LOG_MESSAGE
inserting text into message 31
log category 30
message file name 30
returned parameters 31
supplied parameters 30
VCB 30
verb 29

M

message file, LOG_MESSAGE verb 30
multithreaded programs 11

S

sample code 9
sample type-G conversion table 20

sending data to the host NetView
program 36

snamsgf utility 32

symbolic constants for hexadecimal
values 15

T

trace files 23
tracing
APPC 24
clearing files 21
Common Service Verbs 24
CPI-C 24
files 21
LUA 24
MS 24
NOF 24
resetting files 25
RUI 24
TRANSFER_MS_DATA 36
returned parameters 37
supplied parameters 36
VCB 36

V

verb control block 2

w

WinAsyncCSV call 6
WinCSVCleanup call 8
WinCSVStartup call 4
Windows considerations 12

53

54 IBM Communications Server for AIX or Linux CSV Programmer’s Guide

Program Number: 5765-E51 and 5724-i33

Printed in USA

SC23-8589-00

	Contents
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions
	Graphic Conventions

	Where to Find More Information

	Chapter 1. Concepts
	Summary of Common Service Verbs
	CSV Entry Points: AIX or Linux Systems
	CSV Entry Points: Windows
	ACSSVC_C
	Function Call
	Supplied Parameters
	Returned Values

	WinCSVStartup
	Function Call
	Supplied Parameters
	Returned Values

	WinCSV
	Function Call
	Supplied Parameters
	Returned Values

	WinAsyncCSV
	Function Call
	Supplied Parameters
	Returned Values: TRANSFER_MS_DATA
	Returned Values: Other Verbs
	Usage

	WinCSVCleanup
	Function Call
	Supplied Parameters
	Returned Values

	GetCsvReturnCode
	Function Call
	Supplied Parameters
	Returned Values

	Issuing a Verb
	AIX or Linux Considerations
	CSV Header File
	Multithreaded Applications
	Compiling and Linking the CSV Application
	AIX Applications
	Linux Applications

	Windows Considerations
	Compiling and Linking a CSV Application
	Compiler Options for Structure Packing
	Header Files
	Load-Time Linking
	Run-Time Linking

	Writing Portable Applications

	Chapter 2. Common Service Verbs Reference
	CONVERT
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Creating a Type-G Conversion Table

	COPY_TRACE_TO_FILE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	DEFINE_TRACE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	SNACTL Environment Variable

	GET_CP_CONVERT_TABLE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	LOG_MESSAGE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Creating a Log Message File
	Message Source File Format
	Sample Log Message Output
	Creating the Message File from the Text File

	TRANSFER_MS_DATA
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Appendix A. Code Pages
	ASCII Code Pages
	EBCDIC Code Pages

	Appendix B. Notices
	Trademarks

	Bibliography
	IBM Communications Server for AIX Publications
	IBM Communications Server for Linux Publications
	Systems Network Architecture (SNA) Publications
	APPC Publications
	Programming Publications

	Index
	A
	B
	C
	D
	E
	F
	G
	L
	M
	S
	T
	V
	W

