
IBM Communications Server for Linux

Administration Guide
Version 6.4

SC31-6771-03

���

IBM Communications Server for Linux

Administration Guide
Version 6.4

SC31-6771-03

���

Note:
Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices,” on page 181.

Fourth Edition (May 2009)

This edition applies to Version 6 Release 4 of Communications Server for Linux (5724-i33) and to all subsequent
releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. You may send your comments to the following address:
International Business Machines Corporation
Attn: Communications Server for Linux Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina
27709-2195
U.S.A.

You can send us comments electronically by using one of the following methods:
v Fax (USA and Canada):

– 1+919-254-4028

– Send the fax to ″Attn: Communications Server for Linux Information Development″
v Internet e-mail:

– comsvrcf@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables vii

Figures ix

About This Book. xi
Who Should Use This Book xi
How to Use This Book xii

Organization of This Book xii
Typographic Conventions xiii
Graphic Conventions xiii

What Is New for This Release xiv
New Functions xiv
Functions That Have Been Retired xiv

Where to Find More Information xv

Chapter 1. SNA Terms and Concepts . . 1
Systems Network Architecture 1
Basic SNA Concepts 2

Network Types 2
SNA Nodes 2
Connectivity 5
Transaction Programs 5
Application Programming Interfaces 6
Network Accessible Units 6
Sessions 8
Conversations 10
Modes 11
Route Selection 11
Class of Service 12

Basic APPN Concepts 12
APPN Node Types 13
APPN Control Point 15
Locating Resources 15
Session Routing 19
Branch Extender 26

Accessing Subarea Networks from APPN Networks 27

Chapter 2. Administering
Communications Server for Linux . . . 29
Overview of Communications Server for Linux
Administration 29

Administration Responsibilities 29
Administration Tools 30
Administration Permissions 36

Planning for Communications Server for Linux
Configuration 37

Planning Worksheets 37
Task Sheets 37

Enabling and Disabling Communications Server for
Linux on the Local System 38

Specifying the Path to Communications Server
for Linux Programs. 38
Enabling Communications Server for Linux
Servers 38

Disabling Communications Server for Linux
Servers 40

Using the Motif Administration Program 41
Invoking the Motif Administration Program . . 41
Resource Windows 42
Resource Dialogs 48
Status Dialogs 50
Help Windows 51

Using the Command-Line Administration Program 51

Chapter 3. Basic Configuration Tasks 53
Configuring Client/Server Functions 53
Configuring the Node 54

Node Configuration Parameters 54
Additional Configuration 55

Configuring Logging 55

Chapter 4. Defining Connectivity
Components 59
Defining DLCs, Ports, and Connection Networks . . 60

DLC, Connection Network, and Port
Configuration Parameters. 61
Additional Configuration 64

Defining Link Stations 64
Link Station Configuration Parameters 65
Additional Configuration 71

Defining DLUR PUs 71
DLUR PU Configuration Parameters 72
Parameters for Passthrough DLUR for
Downstream Nodes 73
Additional Configuration 73

Chapter 5. Configuring Dependent LUs 75
Defining LU Types 0–3 75

LU Types 0–3 Configuration Parameters 75
Additional Configuration 77

Defining LU Pools 77
LU Pool Configuration Parameters 78

Chapter 6. Configuring APPC
Communication 79
Defining Local LUs 80

Local LU Configuration Parameters 80
Additional Configuration 81

Defining Remote Nodes 81
Remote Node Configuration Parameters 82
Additional Configuration 82

Defining Partner LUs 83
Partner LU Configuration Parameters. 83
Defining Link Station Routing for a Partner LU 84
Additional Configuration 86

Defining TPs 86
TP Invocation Parameters on a Server 88
TP Definition Parameters 91

© Copyright IBM Corp. 2000, 2009 iii

Defining Modes and Classes of Service 92
Mode Configuration Parameters 93
Additional Configuration 96

Defining CPI-C Side Information 96
CPI-C Configuration Parameters 96
Additional Configuration 98

Configuring APPC Security 98
Configuring Session Security 98
Configuring Conversation Security 99
Configuring a Security Access List 100

Chapter 7. Configuring User
Applications 101

Chapter 8. Configuring Passthrough
Services 103
Configuring TN Server 103

Configuring TN Server Access Records 104
Configuring TN Server Association Records . . 107

Configuring TN Redirector 107
Configuring TN Redirector Access Records . . 107

Configuring SNA Gateway 111
Downstream LU Configuration Parameters . . 112
Additional Configuration 113

Configuring DLUR 113

Chapter 9. Managing Communications
Server for Linux from NetView 115
Using the Host NetView Program 115

NetView Screen Display 116
Changing the Size of the Command Input Area 116
Overview of RCF Command Syntax 116
Uppercase Characters and Escape Characters 117

Using SPCF 118
Restrictions on Administration Commands Used
with SPCF 118
Examples of SPCF Commands. 118

Using UCF 119
UCF Command Syntax 119
Permitted Commands 120
Example of a UCF Command 120
Output from Linux System Commands. . . . 120
Canceling a Command 121
UCF Security 122

Chapter 10. Managing
Communications Server for Linux
Client/Server Systems 123
Changing Client/Server Configuration 124

Moving Clients Into a Different Domain . . . 125
IP Networking Requirements 125

IPv4 and IPv6 Addressing 125
Host Names in Client/Server Configuration . . 125
Setting Up IP Port Numbers 126
LAN Access Timeout 127

HTTPS Access for Remote API Clients 128
Managing Remote API Clients on Windows . . . 128

Enabling a Remote API Client on Windows . . 129

Viewing Status of a Remote API Client on
Windows 130
Disabling a Remote API Client on Windows . . 130
Remote API Client on Windows Configuration 130

Managing Remote API Clients on AIX or Linux 143
Enabling and disabling Remote API Clients on
AIX or Linux 143
Client Network Data File (sna_clnt.net) 144

Defining Client TPs 147

Appendix A. Configuration Planning
Worksheets 149
Node Worksheets 149

APPN Network Node 149
APPN End Node 150
APPN Branch Network Node 150
LEN Node 151

Connectivity Worksheets 152
SDLC 152
Token Ring 154
Ethernet 156
QLLC (X.25) 158
Multipath Channel 159
Enterprise Extender (HPR/IP) 160

Passthrough Services Worksheets 161
DLUR on the Local Node 161
Passthrough DLUR for Downstream Nodes . . 162
SNA Gateway 162
TN Server 163
TN Redirector 164

User Application Support Worksheets 165
APPC 165
CPI-C 168
5250 168
3270 168
LUA 169

Appendix B. Configuring an Invokable
TP from the Command Line 171
File Format for an Invokable TP Definition . . . 172

Appendix C. Configuring TN3270 LU
models for DDDLU 179

Appendix D. Notices 181
Trademarks 183

Bibliography. 185
Communications Server for Linux Version 6.4
Publications 185
Systems Network Architecture (SNA) Publications 186
Host Configuration Publications 186
z/OS Communications Server Publications . . . 187
TCP/IP Publications 187
X.25 Publications 187
APPC Publications 187
Programming Publications 187
Other IBM Networking Publications 187

iv

Index 189

Contents v

vi

Tables

1. Typographic Conventions xiii
2. Standard Mode and COS Names 92

3. Using Escape Characters in RCF Commands 117

© Copyright IBM Corp. 2000, 2009 vii

viii

Figures

1. SNA Subarea Network 4
2. Multiple and Parallel Sessions 10
3. Communication between Transaction Programs

and Logical Units 11
4. Portion of a Sample APPN Network 13
5. LEN Node Directory 17
6. End Node Directory. 18
7. Network Node Directory 18
8. Network Topology Database in Network

Nodes 21
9. APPN Network Using a Shared-Access

Transport Facility 24
10. Definitions Needed for Direct Links from

Node EN1 to Every Node in an APPN
Network 24

11. Definitions Needed for Direct Links Using a
Virtual Node 25

12. Branch Extender 27
13. Communications Server for Linux Domain

Window 43
14. Node Window 45
15. Communications Server for Linux Tool Bar 47
16. Sample Dialog 49
17. Sample Status Dialog 50
18. Sample Help Window 51
19. Example of a NetView Screen 116

© Copyright IBM Corp. 2000, 2009 ix

x

About This Book

This book is a guide for enabling, configuring, and managing IBM
Communications Server for Linux, an IBM®software product that enables a
computer running Linux to exchange information with other nodes on an SNA
(Systems Network Architecture) network.

There are two different installation variants of IBM Communications Server for
Linux, depending on the hardware on which it operates:

Communications Server for Linux
Communications Server for Linux, program product number 5724–i33,
operates on the following:
v 32–bit Intel workstations running Linux (i686)
v 64–bit AMD64/Intel EM64T workstations running Linux (x86_64)
v IBM pSeries computers running Linux (ppc64)

Communications Server for Linux on System z
Communications Server for Linux on System z, program product number
5724–i34, operates on System z mainframes running Linux for System z
(s390 or s390x).

In this book, the name Communications Server for Linux is used to indicate either
of these two variants, and the term “Communications Server for Linux computer”
is used to indicate any type of computer running Communications Server for
Linux, except where differences are described explicitly.

This book applies to Version 6.4 of Communications Server for Linux.

Who Should Use This Book
This book is intended for System Administrators and application programmers
who use Communications Server for Linux.

System Administrators
System Administrators install Communications Server for Linux, configure
the system for network connection, and maintain the system. They should
be familiar with the hardware on which Communications Server for Linux
operates and with the Linux operating system. They must also be
knowledgeable about the network to which the system is connected and
understand SNA concepts in general.

Application programmers
Application programmers design and code transaction and application
programs that use the Communications Server for Linux programming
interfaces to send and receive data over an SNA network. They should be
thoroughly familiar with SNA, the remote program with which the
transaction or application program communicates, and the Linux operating
system programming and operating environments.

More detailed information about writing application programs is provided
in the manual for each API. For additional information about
Communications Server for Linux publications, see the Bibliography.

© Copyright IBM Corp. 2000, 2009 xi

How to Use This Book
This guide explains how to enable, configure, and manage Communications Server
for Linux.

Organization of This Book
This book is organized as follows:
v Chapter 1, “SNA Terms and Concepts,” on page 1, provides an overview of SNA

and APPN(Advanced Peer-to-Peer Networking®) concepts.
v Chapter 2, “Administering Communications Server for Linux,” on page 29,

describes the Communications Server for Linux administration tools and
explains how to prepare for Communications Server for Linux configuration,
how to enable and disable the Communications Server for Linux software on a
server, and how to use the Motif and the command-line administration
programs.

v Chapter 3, “Basic Configuration Tasks,” on page 53, explains how to perform
basic configuration tasks for Communications Server for Linux servers, including
configuring client/server operations, configuring the SNA node, and configuring
message logging for Communications Server for Linux.

v Chapter 4, “Defining Connectivity Components,” on page 59, explains how to
configure connectivity for the Communications Server for Linux node.

v Chapter 5, “Configuring Dependent LUs,” on page 75, explains how to configure
dependent LUs (logical units) for LU types 0–3 and LU pools.

v Chapter 6, “Configuring APPC Communication,” on page 79, explains how to
configure APPC (advanced program-to-program communications).

v Chapter 7, “Configuring User Applications,” on page 101, explains how to
configure user applications.

v Chapter 8, “Configuring Passthrough Services,” on page 103, explains how to
configure passthrough services, which support communication between host
systems and local systems that are not directly connected.

v Chapter 9, “Managing Communications Server for Linux from NetView,” on
page 115, explains how to use the Communications Server for Linux remote
command facility (RCF) to manage Communications Server for Linux and run
commands on Communications Server for Linux nodes from a host running
NetView.

v Chapter 10, “Managing Communications Server for Linux Client/Server
Systems,” on page 123, explains how to configure and manage IBM Remote API
Clients.

v Appendix A, “Configuration Planning Worksheets,” on page 149, provides
configuration worksheets for Communications Server for Linux.

v Appendix B, “Configuring an Invokable TP from the Command Line,” on page
171, provides information about the command-line utility that enables a user or
the writer of a TP installation program to define an invokable TP.

v Appendix C, “Configuring TN3270 LU models for DDDLU,” on page 179,
describes the tn3270dev.datfile, which allows you to change the mapping
between a TN3270 client device type and the LU model used at the host when
the client is using DDDLU.

How to Use This Book

xii

Typographic Conventions
The typographic styles used in this document are shown in Table 1.

Table 1. Typographic Conventions

Special Element Sample of Typography

Emphasized words back up files before deleting
Document title IBM Communications Server for Linux

Administration Guide
File or path name /usr/spool/uucp/myfile.bkp
Program or application snaadmin
Parameter or Motif field opcode; LU name
Literal value or selection that the user can
enter (including default values)

255; On node startup

Motif button Status
Motif menu Services
Motif menu item Configure node parameters
User input 0p1
Computer output CLOSE
Command or Linux utility define_node; cd
General reference to all commands of a
particular type

query_* (indicates all of the administration
commands that query details of a resource)

Option or flag -i
Variable representing a supplied value filename; LU_name; user_ID
Return value 0; −1
3270 key ENTER
Keyboard keys Ctrl+D; Enter
Hexadecimal value 0x20
Environment variable PATH
Function, call, or entry point ioctl
Programming verb GET_LU_STATUS

Graphic Conventions

AIX, LINUX

This symbol is used to indicate the start of a section of text that applies only to the
AIX or Linux operating system. It applies to Linux servers and to the IBM Remote
API Client running on AIX, Linux, Linux for pSeries or Linux for System z.

WINDOWS

This symbol is used to indicate the start of a section of text that applies to the IBM
Remote API Client on Windows.

This symbol indicates the end of a section of operating system specific text. The
information following this symbol applies regardless of the operating system.

How to Use This Book

About This Book xiii

What Is New for This Release
Communications Server for Linux Version 6.4 replaces Communications Server for
Linux Version 6.2.3, Communications Server for Linux Version 6.2.2,
Communications Server for Linux Version 6.2.1 and Communications Server for
Linux Version 6.2.

Releases of this product that are still supported are:
v Communications Server for Linux Version 6.2.3
v Communications Server for Linux Version 6.2.2
v Communications Server for Linux Version 6.2.1

The following releases of this product are no longer supported:
v Communications Server for Linux Version 6.2
v Communications Server for Linux Version 6.0.1 (V6.0.1), which was available as

PRPQ 5799–RQA or 5799–RXL.

Communications Server for Linux Version 6.4 operates with the IBM Remote API
Client Version 6.4.0 or 6.3.1.0.

New Functions
The following functions have been added to Communications Server for Linux in
this release:
v You can specify a mapping between TN3270 device types and the LU models

that Communications Server for Linux should request from the host when these
devices connect through Communications Server for Linux TN Server using
DDDLU. This allows you to use the most appropriate LU model for each type of
device.

v High Performance Routing (HPR) now includes additional configuration options:
– ARB progressive mode operation (also known as ARB-P), which improves

HPR flow control when dealing with response time variations on virtual and
remote systems.

– A configurable path switch delay timer, which helps to avoid unnecessary
path switches caused by transient delays in network traffic.

v The APPC interface includes a new verb CANCEL_CONVERSATION, which
allows you to deallocate a conversation even if other verbs are still outstanding.
This verb operates in a similar way to the CPI-C Cancel_Conversation (cmcanc)
call, and is available on AIX, Linux and Windows.

v On an IBM Remote API Client for Windows, you can now run utility programs
(the Client Configuration Utility sxclconf, the Client Monitor sxclappl, and the
command-line utility tpinst32 for configuring an invokable TP) in any supported
language; you are not restricted to the language that you used when installing
the client.

v On an IBM Remote API Client for Windows, the Client Configuration Utility
sxclconf now allows you to enable or disable exception logging, audit logging,
and tracing (API tracing on all APIs, and client/server tracing on messages
between the client and the server).

v Java CPI-C applications are now supported on an IBM Remote API Client for
Windows, as well as on AIX and Linux.

Functions That Have Been Retired
No functions have been retired in this release.

What Is New for This Release

xiv

Where to Find More Information
See the Bibliography for other books in the IBM Communications Server for Linux
library, as well as books that contain additional information about topics related to
SNA and workstations.

Where to Find More Information

About This Book xv

xvi

Chapter 1. SNA Terms and Concepts

This chapter defines Systems Network Architecture (SNA) terms and concepts that
are important to understanding and using Communications Server for Linux. For
information about Communications Server for Linux, its capabilities, and how it
implements the different SNA concepts described, see IBM Communications Server
for Linux Quick Beginnings. If you are already familiar with SNA and
Communications Server for Linux, you can begin with Chapter 2, “Administering
Communications Server for Linux,” on page 29.

This chapter is divided into the following parts:
v “Systems Network Architecture” provides a definition of SNA.
v “Basic SNA Concepts” on page 2 explains terms and concepts that apply to any

SNA network.
v “Basic APPN Concepts” on page 12 explains terms and concepts that apply only

to SNA networks that support Advanced Peer-to-Peer Networking (APPN).
v “Accessing Subarea Networks from APPN Networks” on page 27 introduces

terms and concepts that apply to networks that combine SNA and APPN.

Note: This chapter is not intended as a complete reference to SNA concepts.
Detailed information about SNA can be found in the SNA publications listed
in the Bibliography.

Systems Network Architecture
Systems Network Architecture (SNA) is an IBM data communication architecture
that specifies common conventions for communicating among a wide variety of
hardware and software data communication products. This architecture consists of
two kinds of definitions: formats that define the layout of messages exchanged by
network components, and protocols that define the actions that network
components take in response to messages.

An SNA network is a collection of computers that are linked together and
communicate using SNA.

Originally, SNA was designed to enable communications with a host computer.
Each network or subnetwork was controlled by the host; other computers
communicated directly with the host, but not with each other. This older,
host-controlled style of network is often referred to as subarea SNA. SNA has since
been extended to support direct peer-to-peer communications between computers
in the network, without requiring a host. This newer, peer-level networking is
APPN.

Many SNA networks have elements of both subarea and peer-to-peer networking.
As networks migrate from subarea SNA to APPN, an APPN-capable host may act
to control older systems while also acting as a peer to newer systems. Similarly, a
single computer may access both peer computers (in an APPN network) and an
older host; its communications with the host are controlled by the host, but its
communications with other computers are peer-to-peer and do not involve the
host.

© Copyright IBM Corp. 2000, 2009 1

Basic SNA Concepts
SNA defines the standards, protocols, and functions used by devices—from
mainframes to terminals—to enable them to communicate with each other in SNA
networks.

SNA functions are divided into a hierarchical structure of separate layers, each
performing a specific set of functions. This division of network functions into
layers enables network devices to share information and processing resources
without having detailed information about each device on the network. A user at a
workstation can communicate with another user without knowing anything about
the physical devices on the network or the connections between those devices.

Network Types
SNA supports the following types of networks:
v A subarea network is a hierarchically organized network consisting of subarea

nodes and peripheral nodes. Subarea nodes, such as hosts and communication
controllers, handle general network routing. Peripheral nodes, such as terminals,
attach to the network without awareness of general network routing.

v A peer network is a cooperatively organized network consisting of peer nodes
that all participate in general network routing.

v A mixed network is a network that supports both host-controlled
communications and peer communications.

Note: Linux systems running Communications Server for Linux can act as a
peripheral node in a subarea network, as a peer node in a peer network, or
both at the same time.

SNA Nodes
In SNA networks, a node is a Linux system or other device—with associated
software components—that implements SNA protocols and has at least one
communication path to another node in the network. Each node manages its end
of the network communication paths, and uses SNA protocols to communicate
with the node at the other end of each path.

Because subarea networks and peer networks define the relationships among
nodes differently, they also use different terms for node types (to describe the roles
that nodes play in the network).

Node Types in a Subarea Network
SNA subarea networks support the following node types:
v Subarea nodes control communication and network resources for all attached

nodes. SNA classifies subarea nodes according to their capabilities and the
amount of control they have over other nodes:
– Type 5 nodes provide SNA functions that control network resources, support

transaction programs, support network operators, and provide end-user
services. Because these functions are often provided by host processors, type 5
nodes are also known as host nodes. The devices and resources controlled by
a type 5 subarea node constitute the domain of that node.

– Type 4 nodes provide SNA functions that route and control the flow of data
in a part of the network. Because these functions are often provided by
communication controllers, type 4 nodes are also known as communication
controller nodes.

Basic SNA Concepts

2

v Peripheral nodes serve subordinate roles in subarea networks. For example, a
peripheral node can support 3270 emulation or dependent LU 6.2
communication. Peripheral nodes are devices such as distributed processors,
cluster controllers, or workstations; they are also classified into type 2.0 and type
2.1 nodes:
– Type 2.0 nodes are always controlled by a type 4 or 5 node. They cannot

establish communication with other nodes without the participation of a type
4 or 5 node. Type 2.0 nodes are referred to as dependent nodes.

– Type 2.1 nodes can act as dependent nodes, but they can also communicate
directly with other type 2.1 nodes.

Note: Linux computers running Communications Server for Linux can function
as type 2.1 or type 2.0 nodes.

A type 4 or 5 subarea node to which a peripheral node is attached acts as a
boundary node. It performs a boundary function by translating between the
network addresses used by a subarea node and the local addresses used by a
peripheral node.

A simple subarea network includes the following components:

Host A host is a mainframe computer compatible with the original IBM
System/370™. A host is traditionally a type 5 node. However,
Communications Server for Linux on System z runs on a host computer as
a type 2.1 or 2.0 node.

Communication controller
A communication controller, also known as a front-end processor (FEP), is
a separate processor attached to the host. It manages the host’s
communications with other computers.

Communications link
A communications link connects the host site with an end-user site. The
users are usually on a separate site from the host, so the two sites need to
be connected by a communications link.

Terminal controller
At the remote end of the communications link is a terminal controller, also
known as a cluster controller. It is responsible for controlling the use of the
link, and routes data to the terminals. The most well-known IBM terminal
controllers are the 3174 and 3274.

Terminals
Users run host applications or submit work to the host from terminals. The
best-known IBM terminal is the 3270. A terminal can be connected through
a terminal controller or directly connected to a communication controller.

Printers
Printers such as the IBM 3287 can also be attached to the terminal
controller. They can receive output from the host.

As shown in Figure 1 on page 4, a diagram of a subarea network looks like an
inverted tree.

Basic SNA Concepts

Chapter 1. SNA Terms and Concepts 3

The root of the tree (at the top of the diagram) is the computer controlling the
network. The branches are the communications links from the host to the other
computers in the network (terminal controllers); the leaves (at the bottom of the
diagram) are the terminals or printers attached to these computers, which are
accessed by users.

The traditional subarea SNA set-up described here enables the users to use the
resources of a single host system. The terminals provide only simple data entry
and display functions to and from the terminal controller; the terminal controller is
responsible for handling SNA communications between the terminals and the host.

The terminal controller and its terminals can be replaced by an SNA node using a
product such as Communications Server for Linux. From the host’s point of view,
the node appears as a terminal controller. However, it provides the users with
additional functions, such as the ability to access more than one host system and
facilities for customizing screen displays. In addition, Communications Server for
Linux runs on Linux computers that can also be used for other tasks not related to
SNA (unlike the terminal controller, which is used solely for communications with
the host).

Node Types in a Peer Network
Peer networks do not classify nodes hierarchically, as is done in a subarea network.
Exchanges with other nodes are not controlled by a host or other centralized
processor. Instead, any node can establish communication with any other node.

A peer network is composed of type 2.1 nodes. The nodes in a peer network can
serve the following roles:
v APPN network nodes (NNs) identify the locations of network resources,

determine routes for sessions between these resources, route sessions, and serve
end nodes (EN) and low-entry networking (LEN) nodes directly attached to the
network node. The domain of an APPN network node consists of itself and any
end nodes for which it provides network services.

Printer Printers, Terminals
and Other Devices

Host

Terminal
Controllers

Printer

Figure 1. SNA Subarea Network

Basic SNA Concepts

4

v APPN end nodes can access remote resources without requiring that those
resources be configured on the end node. An end node can communicate with
adjacent nodes on its own, but requires the services of a network node server to
access nonadjacent nodes. The domain of an APPN end node includes only
itself.

v APPN branch network nodes allow the APPN network to be separated into
branches to simplify its topology and reduce network management overheads.
They provide network node functions to end nodes in a branch separated from
the main APPN network, while acting as end nodes in the main network itself.
For more information, see “Branch Extender” on page 26.

v Low-entry networking nodes (LEN nodes) are type 2.1 nodes that do not
support APPN functions. They can communicate with adjacent nodes in an
APPN network, but do not participate in the APPN network. In a LEN node, all
potential sessions with remote LUs must be predefined, either specifically or
through a single default entry indicating that all remote LUs reside in an
adjacent network node that can be accessed using a certain link. The domain of
a LEN node includes only itself.

For more information about peer-oriented node types, see “APPN Node Types” on
page 13.

Connectivity
For two nodes to communicate, each node must have a combination of hardware
and software that supports data flow between the nodes. The hardware component
consists of an adapter at each node and the transmission medium that connects the
two adapters. The software component provides control of the hardware and the
data exchanged over it.

Each node connected to a network has one or more link stations, which are the
hardware and software in a node that control data flow to a specific adjacent node.
To establish communication between two adjacent nodes, one of the link stations
must first activate the link between the nodes.

Transaction Programs
Programs that exchange information across the SNA network are called transaction
programs (TPs).

Following are examples of application programs that can include SNA TPs:
v Emulation programs
v File transfer
v Database transaction processing
v Network management
v Centralized data services

The TP accesses the network through a logical unit (LU) that establishes and
maintains a session with a partner LU on another node. For more information
about logical units, see “Logical Units” on page 6.

Note: Communications Server for Linux includes sample TPs for most supported
APIs. For more information on sample TPs, refer to the programmer’s guide
for the API. You can also purchase SNA TPs as part of other products or
create your own TPs (see “Application Programming Interfaces” on page 6).

Basic SNA Concepts

Chapter 1. SNA Terms and Concepts 5

Application Programming Interfaces
SNA TPs are written using application programming interfaces (APIs). APIs
provide specific subroutines that enable SNA TPs to access SNA functions, such as
those for exchanging data and performing control functions. These subroutines
enable an SNA TP to communicate with another SNA TP on a remote node.

Communications Server for Linux includes the following APIs on all platforms:
v APPC—LU type 6.2 only
v CPI-C (Common Programming Interface for Communications)—LU type 6.2 only
v CSV (Common Service Verb) API
v LUA API

In addition, Communications Server for Linux includes the following proprietary
programming interfaces:
v MS (Management Services) API (only for AIX or Linux systems)
v NOF (Node Operator Facility) API

Network Accessible Units
Communication between a TP and the SNA network occurs through network
accessible units or NAUs (formerly called “network addressable units”), which are
unique network resources that can be accessed (through unique local addresses) by
other network resources.

SNA provides the following types of NAUs:
v Physical units (see “Physical Units”)
v Logical units (see “Logical Units”)
v Control points (see “Control Points” on page 8)

Note: Because TPs are considered users of the network, not components, they are
not classified as NAUs.

Physical Units
Each SNA node contains a physical unit (PU). The PU manages resources (such as
link resources) and supports communication with a host.

Note: On type 2.1 nodes (which can be APPN nodes), the control point provides
PU services in addition to providing other services (see “Control Points” on
page 8). Two type 2.1 nodes (such as Communications Server for Linux
nodes) can communicate directly, without requiring the services of a host to
establish communications.

Logical Units
Each SNA node contains one or more logical units (LUs). An LU provides a set of
functions that are used by TPs and end users to provide access to the network.
LUs communicate directly with local TPs and devices.

SNA defines several types of LUs, each optimized for a specific class of
applications. LUs of different types cannot communicate with each other, but LUs
of the same type can communicate even though they reside on different kinds of
systems.

Basic SNA Concepts

6

For example, a TP running on a Linux system can communicate with a TP on an
AS/400 computer as easily as it can with a TP on another Linux system, as long as
both TPs use the same LU type.

Communications Server for Linux supports the following LU types:

LU 6.2 (for APPC, 5250, APPC Application Suite, and CPI-C)
LU 6.2 supports program-to-program communication in a distributed data
processing environment. The LU 6.2 data stream is either an SNA general
data stream (GDS), which is a structured-field data stream, or a
user-defined data stream. LU 6.2 can be used for communication between
two type 5 nodes, a type 5 node and a type 2.0 or 2.1 node, or two type 2.1
nodes. (Type 2.1 nodes can serve as APPN nodes.)

This LU type provides more functions and greater flexibility than any
other LU type. Unless you are constrained by existing hardware or
software, LU 6.2 is the logical choice when developing new applications.

Note: Only LU 6.2 can provide independent LU functions.

LU 3 (for 3270 printing)
LU 3 supports application programs and printers using the SNA 3270 data
stream.

For example, LU 3 can support an application program running under
Customer Information Control System (CICS) and sending data to an IBM
3262 printer attached to an IBM 3174 Establishment Controller.

LU 2 (for 3270 displays)
LU 2 supports application programs and display workstations
communicating in an interactive environment using the SNA 3270 data
stream. Type 2 LUs also use the SNA 3270 data stream for file transfer.

For example, the LU 2 protocol can support 3270 emulation programs,
which enable workstations to perform the functions of IBM 3270-family
terminals. In addition, LU 2 is used by other programs to communicate
with host applications that normally provide output to 3270 display
devices. Such TPs enable the workstation to achieve a form of cooperative
processing with the host.

LU 1 (for SCS printing and RJE)
LU 1 supports application programs and single- or multiple-device data
processing workstations communicating in an interactive, batch-data
transfer, or distributed data processing environment. The data streams used
by LU type 1 conform to the SNA character string or Document Content
Architecture (DCA).

For example, LU type 1 can support an application program running under
Information Management System/Virtual Storage (IMS/VS) and
communicating with an IBM 8100 Information System. This enables an
operator to correct a database that the application program maintains.

Applications that use LU 1 are often described as remote job entry (RJE)
applications.

LU 0 (for LUA)
LU 0, an early LU definition, supports primitive program-to-program
communication. Certain host database systems, such as IMS/VS
(Information Management System/Virtual Storage) and some point-of-sale
systems for the retail and banking industries (such as the IBM 4680 Store

Basic SNA Concepts

Chapter 1. SNA Terms and Concepts 7

System Operating System) use LU 0. Current releases of these products
also support LU 6.2 communication, which is the preferred protocol for
new applications.

Note: For information about the data streams used by SNA logical units, refer to
Systems Network Architecture Technical Reference.

Control Points
A control point (CP) is an NAU that manages network resources within its
domain, controlling resource activation, deactivation, and status monitoring. The
CP manages both physical resources such as links, and logical information such as
network addresses.

SNA defines the following types of network control points:

System services control point
On a type 5 node, the CP is called a system services control point (SSCP).
It manages and controls the network resources in a subarea network. For
example, an SSCP can use a directory of network resources to locate a
specific LU under its control, and can establish communication between
two LUs in its domain. An SSCP can also cooperate with other SSCPs to
establish connectivity between LUs in different subarea domains.

The SSCP also provides an interface to network operators at the host
system, who can inspect and control resources in the network.

Physical unit control point
On type 4 nodes and type 2.0 nodes in a subarea network, the control
point is called a physical unit control point (PUCP).

Control point
On type 2.1 nodes, the control point provides both PU and LU functions,
such as activating local link stations, interacting with a local operator, and
managing local resources. It can also provide network services, such as
partner LU location and route selection for local LUs.

In a subarea network, the CP on a Communications Server for Linux node
acts as a type 2.0 PU. It communicates with an SSCP on a host and does
not communicate with other CPs in the subarea network.

When participating in an APPN network, the CP exchanges network
control information with the CPs in adjacent nodes. The CP can also
function as an independent LU of type 6.2. The CP acts as the default LU
for TPs on the local node. For more information about the APPN control
point, see “APPN Control Point” on page 15.

Sessions
NAUs communicate with NAUs in other nodes over temporary logical
communication channels called sessions. Before two TPs can communicate, their
LUs must establish a session. The LU that manages the session on the local node is
the local LU; the LU that manages the session on the remote node is the partner
LU.

Session Types
Communications Server for Linux is primarily concerned with the following types
of sessions:

LU-LU sessions
In order for two TPs to communicate, the LUs that support the TPs must

Basic SNA Concepts

8

first establish an LU-LU session. In general, a session is established when a
TP in one SNA node tries to communicate with a TP in another node and
no existing session between the LUs on the two nodes is available.

SSCP-LU sessions
A dependent LU (see “Dependent and Independent LUs”) must have an
active SSCP-LU session with an SSCP on a type 5 node before it can have a
session with an LU in the subarea network. Once an SSCP-LU session is
active, a dependent LU can solicit an LU-LU session.

SSCP-PU sessions
Before an SSCP-LU session can be established, the PU controlling the LU
must have an active SSCP-PU session with an SSCP on a type 5 node. The
SSCP-PU session is used to pass control data and network management
data between the PU and SSCP.

CP-CP sessions
In an APPN network, adjacent nodes establish CP-CP sessions. These
sessions are used to search for a resource in the APPN network and to
maintain topology information (see “APPN Control Point” on page 15).

Logical Unit Attributes for Sessions
Logical units have attributes that determine how they interact during LU-LU
sessions. These attributes are determined by the architecture of SNA. LUs can be
primary or secondary, and dependent or independent.

Primary and Secondary LUs: To establish a session, one LU requests session
activation by sending a BIND request to another LU:
v A primary LU is the LU that sends the BIND request for a given LU-LU session.
v A secondary LU is the LU that receives the BIND request.

Peer networks do not use a fixed hierarchy of nodes and do not have
predetermined primary or secondary LUs.

Note: In a peer network, an independent LU that is participating in multiple
sessions (see “Multiple and Parallel Sessions” on page 10) can act as a
primary LU for one session and a secondary LU in another.

Dependent and Independent LUs: All type 0, 1, 2, and 3 LUs are dependent LUs.
Type 6.2 LUs can be configured as either dependent or independent LUs.
v A dependent LU (also known as an SSCP-dependent LU) requires the services of

an SSCP to establish a session with another LU. An SSCP-LU session must be
established before a dependent LU-LU session can be established.
A dependent LU can be in session only with LUs on an SNA host. Because of
this restriction, dependent LUs usually use subarea networks (also known as
host-mediated networks). However, the dependent LU requester (DLUR)
function enables session traffic from dependent LUs to flow over APPN
networks. For more information about DLUR, see “Accessing Subarea Networks
from APPN Networks” on page 27.
A dependent LU on a peripheral node is always the secondary LU.

v An independent LU can establish sessions with other independent LUs without
the aid of an SNA host. LU 6.2 is the only LU type that can be independent.
An independent LU can act as a primary or as a secondary LU when
establishing a session.

Basic SNA Concepts

Chapter 1. SNA Terms and Concepts 9

Multiple and Parallel Sessions
An independent LU can participate in sessions with more than one remote LU at
the same time (multiple sessions).

An independent LU can also participate in parallel sessions, or multiple concurrent
sessions with the same remote LU.

Dependent LUs (including dependent LU 6.2) cannot have multiple sessions.

LUs with multiple and parallel sessions are shown in Figure 2. LUA and LUB have
parallel sessions. LUA also has multiple sessions: two with LUB and one with
LUD. LUD has multiple sessions with LUA and LUC.

Conversations
This section applies to LU 6.2 only.

Once a session is established between two LUs, the LU-LU session supports the
exchange of information between two TPs, which have the exclusive use of the
session to execute a transaction. This exchange of information is called a
conversation. Only one conversation can use a particular session at a time, but
sessions are serially reusable (many conversations can use the same session, one
after another).

To initiate a conversation, a source TP sends a request to its LU, asking it to
allocate a conversation with a remote TP. The invoking TP (or source TP) initiates
the conversation, like the calling party in a telephone conversation. The invokable
TP or target TP (the remote TP) is the partner in the conversation, like the party
who receives a telephone call.

As shown in Figure 3 on page 11, information is exchanged between TPs and LUs
to enable one node to communicate with another. Although the TPs appear to be
communicating directly, the LUs on each node are the intermediaries in every
exchange.

TP

TP

TP

TP

TP

Parallel Sessions

Multiple Sessions

TP

LUBLUA

LUC LUD

Figure 2. Multiple and Parallel Sessions

Basic SNA Concepts

10

SNA defines two types of conversations: basic and mapped. These two types of
conversations use different methods to indicate the length of transmitted or
received data packages to be passed between Communications Server for Linux
and the TP.
v In a basic conversation, data must be formatted by the TP as logical records

before being presented to the SEND function.
A logical record consists of a two- or four-byte header starting with a two-byte
length field, often represented as “LL,” followed by up to 32,765 bytes of data.
Logical records can be grouped together and sent as a block, transmitting more
than one logical record with a single call to the SEND function.

v In a mapped conversation, information is passed to the SEND function as a
pointer to a single, unformatted block of data; the length of the block is passed
as another parameter. The block cannot be received as one or more logical
records; the receiving TP must do whatever record-level formatting is required.

Modes
Each LU-LU session has an associated mode that defines a set of session
characteristics. These session characteristics include pacing parameters, session
limits (such as the maximum number of sessions between two LUs), message sizes,
and routing parameters.

Each mode is identified by a unique mode name. The mode name must be the
same on all SNA nodes that use that mode.

Route Selection
To establish an LU-LU session, a route must be calculated between the nodes
where the two LUs reside. A route is an ordered sequence of links and nodes that
represents a path between the two nodes.

Node A

Conversation

Session

Link

LULU

Response

Request

Response

Request

TPTP

Node B

Figure 3. Communication between Transaction Programs and Logical Units

Basic SNA Concepts

Chapter 1. SNA Terms and Concepts 11

SNA networks support the following methods of route selection:
v For subarea networks, you must predefine all routes between subarea nodes.
v For peer networks that do not support APPN, type 2.1 nodes can support

sessions only with adjacent nodes; their sessions cannot be routed through
intermediate nodes.

v For APPN networks, SNA can compute routes dynamically at the time of session
initiation, using a class of service specified for the mode used by the session (see
“Class of Service”).

The High-Performance Routing (HPR) feature of APPN provides the following
functions:
v Rapid Transport Protocol (RTP) minimizes cycles and storage requirements for

routing network layer packets through intermediate nodes on a session route.
v Automatic network routing (ANR) enables APPN networks to automatically

reroute sessions if a portion of the originally computed route fails.

Class of Service
Class of service (COS) is a definition of the transport network (data link control
and path control) characteristics—such as route security, transmission priority, and
bandwidth—that the local node can use to establish a particular session. The COS
definition assigns relative values to factors such as acceptable levels of security,
cost per byte, cost per connect-time, propagation delay, and effective capacity.

In a subarea network, a COS is derived from the mode associated with a session,
as defined in the host system.

APPN network nodes use the COS to compute session routes between independent
LUs. For more information about session routing in APPN networks, see “Session
Routing” on page 19.

Basic APPN Concepts
Advanced Peer-to-Peer Networking (APPN) is a network architecture that supports
distributed network control. It makes networks easy to configure and use, provides
centralized network management, and supports flexible connectivity.

An APPN network is composed of type 2.1 nodes. Each node in the network is
connected by a link to at least one other node in the APPN network. CP-CP
sessions are established over each of these links to adjacent nodes (nodes in the
same network that can establish direct links without going through a third node).
All of the nodes in an APPN network share a common network name.

APPN nodes can include processors of various sizes, such as the Application
System/400® (AS/400®), PCs running CS Windows, systems using Virtual Terminal
Access Method (VTAM®), and Linux servers running Communications Server for
Linux.

APPN provides the following functions:
v Support for APPN network nodes and end nodes as well as non-APPN peer

nodes (see “APPN Node Types” on page 13)
v APPN control point functions (see “APPN Control Point” on page 15)
v Directory services to support finding specific logical units (see “Locating

Resources” on page 15)

Basic SNA Concepts

12

v Topology and routing services to support session establishment using
intermediate session routing (ISR), automatic network routing (ANR), or
connection networks (CNs) (see “Session Routing” on page 19 and “APPN
Connection Networks” on page 25)

Note: An APPN node can also be connected to a subarea network, serving as both
an APPN node in a peer network and a peripheral node in a subarea
network.

APPN Node Types
The following types of nodes can be part of an APPN network:
v Network nodes (see “APPN Network Nodes” on page 14)
v End nodes (see “APPN End Nodes” on page 14)

In addition, low-entry networking (LEN) nodes can be connected to an APPN
network, but they do not use APPN features (see “LEN Nodes” on page 14).

A sample APPN network is shown in Figure 4.

This example shows an APPN network that includes five network nodes (NNs),
three end nodes (ENs), and a LEN node. The network nodes form the backbone of
the APPN network; end nodes access the network through the network nodes. LU
6.2 TPs on any node can communicate with any other LU 6.2 TPs in the network.

One of the APPN network nodes (NNA) also participates in a subarea network,
connecting to a host through a communication controller. This node functions as an
APPN node when communicating with nodes in the APPN network, and as a
peripheral node when communicating with nodes in the subarea network. Through

EN1

LEN1

Legend
EN - End Node
NN - Network Node
LEN - Low-Entry Networking Node

EN3

NNE

EN2

NND

NNC

NNA

NNB

Host
APPN Network

Subarea Network

Figure 4. Portion of a Sample APPN Network

Basic APPN Concepts

Chapter 1. SNA Terms and Concepts 13

this network node, LU type 6.2 LUs on other nodes in the APPN network can
establish LU-LU sessions with LU type 6.2 LUs on the host.

APPN Network Nodes
An APPN network node is a type 2.1 node that provides distributed directory and
routing services for all LUs in its domain. These LUs can be located on the
network node itself, or on an APPN end node or LEN node for which the network
node provides services. Because an APPN network node acts as the network entry
point for end and LEN nodes in its domain, the network node is also referred to as
the network node server for those nodes.

A network node provides the following services:
v LU-LU session services for its local LUs
v Directory searches and route selection for all LUs in its domain
v Intermediate session routing (see “Intermediate Routing” on page 22)
v Routing for management services (MS) data, such as alerts, between a served

end node and an MS focal point

APPN End Nodes
An APPN end node is a type 2.1 node that serves as an end point in an APPN
network. It maintains directory information only for local resources. An APPN end
node can independently establish sessions between local LUs and LUs on adjacent
nodes. For sessions with LUs on nodes not directly connected to the end node, an
end node requests routing and directory information from its network node server
using CP-CP sessions.

APPN end nodes can register their local LUs with their network node server. This
capability means the network operator at the network node server does not have
to predefine the names of all LUs on the attached end nodes to which the network
node provides services.

An APPN end node can be attached to multiple network nodes (see EN3 in
Figure 4 on page 13), but it can have CP-CP sessions active with only one network
node at a time—its network node server. The other network nodes can be used
only to provide intermediate routing for the end node or as substitute network
node servers if the main network node server becomes unavailable.

An APPN end node can also have a direct link to another APPN end node or a
LEN node, but CP-CP sessions are never established between two end nodes.

LEN Nodes
A low-entry networking node (LEN node) is a type 2.1 node that uses independent
LU 6.2 protocols, but does not support CP-CP sessions. It can be connected to an
APPN network node or end node, but does not support APPN functions.

An APPN network node can provide routing services for an attached LEN node,
enabling the LEN node to participate in an APPN network without requiring link
stations to be defined between the LEN node and all of the nodes in the APPN
network.

LUs in the APPN network with which the LEN node may want to establish
sessions must be defined to the LEN node as if they reside on the LEN node’s
network node server. The LEN node establishes sessions with LUs on its network
node server. The network node routes the session through the APPN network to
the node in the network where the LU actually resides. LUs on the LEN node must

Basic APPN Concepts

14

be predefined to the network node that serves the LEN node. LU resources on
LEN nodes (unlike those on end nodes) cannot be registered on the network node
server.

An APPN end node cannot provide intermediate routing. When a LEN node’s only
link is to an APPN end node, the LEN node can communicate only with LUs on
the end node through the direct link between the two nodes.

APPN Control Point
An APPN control point is a set of functions that manages node resources and
supports both physical unit and logical unit functions on a type 2.1 node. An
APPN CP directs local node functions (such as activating and deactivating
adapters and links), provides directory and topology information, and assists LUs
in session initiation and termination.

Adjacent nodes in an APPN network use a pair of parallel CP-CP sessions to
exchange network information and to provide directory and route selection
services. Both sessions of a given pair must be active in order for the partner CPs
to begin and sustain their interactions. Different node types use these sessions
differently, as follows:
v Two parallel CP-CP sessions are established between an APPN network node

and each adjacent network node. These CP-CP sessions are used to exchange
directory, topology, and management services data.

v Two parallel CP-CP sessions are established between an APPN end node and the
adjacent network node acting as the server for the end node. These CP-CP
sessions are used to exchange directory, topology, and management services
data.

v LEN nodes do not support CP-CP sessions.

The functions provided in CP-CP sessions vary based on the types of nodes
involved, as follows:
v All CP-CP sessions conduct directory searches.
v CP-CP sessions between an end node and a network node provide the following

functions:
– Registering resources.
– Routing management services data (such as alerts) between the end node and

a focal point.
– Routing topology data from each end node to its network node servers. This

information can be used by the network node server to compute a route that
does not flow through the network node server.

v CP-CP sessions between adjacent network nodes exchange topology information.
As a result of this exchange, each network node creates an internal network
topology database.

When setting up a node, you must define the CP name. The CP is also an LU that
can support user sessions, and it can be the only LU defined in your node, if you
so choose.

Locating Resources
To support communication between TPs, Communications Server for Linux first
establishes a session between the logical units that control those TPs. APPN
enables the CP on a node to locate LUs throughout the APPN network without
requiring that the node have any configuration information for the remote LU. The

Basic APPN Concepts

Chapter 1. SNA Terms and Concepts 15

APPN function that dynamically locates LUs in the network is called directory
services. Once a resource has been located, a route for the session is calculated
through the APPN network.

Resource Names
Each node has a unique name consisting of two parts: a network name and a
control point name. Together they constitute a fully qualified CP name. This name
identifies each node to all other nodes in the network. Similarly, each logical unit is
identified by a fully qualified LU name, consisting of a network name and LU
name.

Note: For more information about network naming conventions, refer to IBM
Communications Server for Linux Quick Beginnings.

Directory Services
Each APPN node maintains a directory of network resources. Directory services is
the component of the node CP that manages the local directory database and, in a
network node, searches for network resources throughout an APPN network.

When the node is initialized, it includes the following information:
v Node type (APPN network node, APPN end node, or LEN node)
v Network ID of node
v CP name of node

Each node directory maintains entries for resources (LUs and CPs), including each
resource’s fully qualified name, type, and registration status. The specific resources
stored in each local directory depend on the node type:
v A LEN node maintains a directory that includes its own LUs. It must also be

configured with directory entries for all of its possible partner LUs. LUs in the
APPN network with which the LEN node may want to establish sessions must
be defined to the LEN node as if they reside on the LEN node’s network node
server. The LEN node establishes sessions with LUs on its network node server.
The network node routes the session through the APPN network to the proper
node in the network.
A LEN node can also use wildcards in a directory entry to specify multiple
partner LUs that can be accessed over a specific link.

v An APPN end node maintains a directory that includes its own LUs. It can also
be configured to store directory entries for partner LUs in adjacent nodes. This
enables local LUs to establish peer-to-peer sessions with those LUs without
using APPN functions.
If a resource is not locally defined to an end node or currently cannot be reached
by the end node, the end node sends a request to its network node server asking
it to search the APPN network for the resource.

v An APPN network node maintains a directory that includes its own LUs and the
end node and LEN node LUs in its domain. An end node can dynamically
register its LUs with its network node server. (LEN nodes cannot register LUs
with a network node server, so LEN node LUs must be configured on their
network node server.) A network node directory can also contain cached entries
for LUs that are not in the network node’s domain, but whose location has been
determined through a previous search.
Network nodes provide directory services to other nodes in two ways:
– Searching for remote resources in response to session requests from end nodes

or LEN nodes

Basic APPN Concepts

16

– Responding positively to directory search requests from other network nodes
when a named resource is found in the local directory

LEN Node Directories: An example of a LEN node directory is shown in
Figure 5. Since LEN nodes do not support CP-CP sessions, the directory for Node
LEN1 must contain all the LUs with which it communicates. The directory for
Node LEN1 identifies its network node server (NNA) as the location for any LUs
that are not on an adjacent peer end node. Since Node LEN1 can access the LUs
only through Node NNA, it defines the CP on the network node as the “owning
CP” of all the LUs, including LUs located on the end nodes.

To establish a session with an LU on a node that is not directly attached, Node
LEN1 sends an LU-LU session activation (BIND) request to its network node
server (Node NNA). The server automatically locates the destination LU and
forwards the BIND.

Note: In this example, Node LEN1 can establish a session with LU1 on Node EN1
through its network node server, NNA. However, LU2 on Node EN1 is not
defined in the directory for Node LEN1, so Node LEN1 cannot establish
sessions with that LU.

End Node Directories: When an LU is not represented in an end node directory,
the end node initiates a LOCATE search to find the desired LU. To activate the search
for a remote LU, the end node invokes the services of its network node server. An
example of an end node directory is shown in Figure 6 on page 18.

Node LEN1

Node LEN1 Directory:
LUA - Node NNA
LU1 - Node NNA
LU3 - Node NNA

Node EN2

Node EN1

Node NNA

LU3

LUA

LU2
LU1

Figure 5. LEN Node Directory

Basic APPN Concepts

Chapter 1. SNA Terms and Concepts 17

Potential partner LUs in the APPN network do not need to be defined to the end
node. However, in order for Node EN3 to establish a session with LUX on Node
LEN1, the LU on the LEN node must be configured as a partner LU on Node EN3.

Network Node Directories: A network node provides distributed directory
services to the end nodes it serves.

An example of a network node directory is shown in Figure 7.

A network node locates a remote LU as follows:
1. The network node receives a request to locate an LU. The request can be any of

the following:
v The name of a destination LU sent by an end node or a LEN node to its

network node server
v An LU name specified in a LOCATE search request from an end node
v An LU name specified in a BIND request from a LEN node
v An LU name specified by a TP on the network node

2. If the destination LU is not located in the network node—but appears in its
directory—the network node sends a directed search request to the destination
network node server to verify the location of the LU.

LU1

Node EN3

Node LEN1

Node EN3 Directory:
LU1 - Node EN3
LUX - Node LEN1

Node EN2

Node EN1

Node NNA

LU4

LUX

LU3
LU2

LUA

Figure 6. End Node Directory

Node LEN

Node NNA Directory:
LUA - Node NNA
LUX - Node LEN
LU1 - Node EN1
LU2 - Node EN1
LU3 - Node EN2

Node EN2

Node EN1

Node NNA

LU3

LU1
LU1

LUX LUA

Figure 7. Network Node Directory

Basic APPN Concepts

18

If the LU is not in the network node directory, the node initiates a search of the
network by sending a broadcast search to every adjacent network node.

3. Each node in turn propagates the broadcast and returns replies indicating
success or failure.

For its future needs, a network node caches information obtained from successful
broadcast searches.

An APPN end node can also receive (and respond to) LOCATE search requests from
its network node server to search for, or confirm the continued presence of, specific
LUs in the end node.

Each APPN end node registers its LUs with its network node server by sending
the network node a registration message. In this way, the network node maintains
current directory information for the end nodes in its domain. A LEN node cannot
register LUs with its network node server. Therefore, all LUs on the LEN node
must be predefined, through configuration, to the network node server.

Session Routing
APPN supports the following dynamic route selection procedures:
v For sessions with adjacent nodes, direct session routing.
v For sessions that traverse one or more intermediate nodes, one of the following:

– Intermediate session routing (ISR), which provides a route that does not
change during the course of the session.

– High-Performance Routing (HPR), which includes the Rapid Transport
Protocol (RTP) and automatic network routing (ANR) facilities. RTP
minimizes cycles and storage requirements for routing network layer packets
through intermediate nodes on a session route, and ANR enables you to
reroute session traffic around route failures or congestion.

The APPN functions that provide dynamic route selection are known as topology
and routing services (TRS).

Topology and Routing Services
Each APPN node includes a topology database that stores information about other
APPN nodes and about transmission groups, which are sets of links between a
specific pair of nodes. The contents of the database for a specific node depend on
the node type:
v All network nodes share a copy of the network topology database. This shared

database includes information about all other network nodes—including
network IDs, CP names, and other node characteristics—and about the
transmission groups between each pair of network nodes. This database
provides a complete view of the network backbone topology—the nodes and
transmission groups that can be used for routing sessions between any pair of
nodes in the network.
In addition, the topology database on each network node contains local
information about transmission groups from that network node to adjacent end
nodes or LEN nodes.
The network node uses the topology database to calculate routes for sessions
between LUs in its domain and remote LUs, or to provide information to other
network nodes to enable them to calculate session routes.

v Each end node has a local topology database with information about
transmission groups from that end node to adjacent nodes.

Basic APPN Concepts

Chapter 1. SNA Terms and Concepts 19

The end node provides this information to its network node server as part of the
request to locate an LU and calculate a session route to that LU. The network
node server uses the end node topology information when calculating the
session route for the end node. The end node uses this information when
establishing sessions with predefined LUs on adjacent nodes. The end node
topology database supports communication only with adjacent nodes.

Note:

1. APPN network nodes and end nodes also maintain topology information
about links to a connection network (see “APPN Connection Networks”
on page 25).

2. LEN nodes maintain local topology information. They do not forward
this information to a network node server.

As shown in Figure 8 on page 21, network topology information is replicated at all
network nodes, and local topology information is stored at network nodes and end
nodes.

Basic APPN Concepts

20

The shared network topology database is duplicated at Nodes NNA, NNB, NNC,
and NND. In addition, each of those nodes includes local topology information
(except Node NNC, which does not have any local topology information because it
does not have any links to end nodes). For example, Node NNB includes
information for Link f to Node EN2 and Link g to Node EN3, but it does not
include information for Link i, which connects Nodes EN2 and EN3.

End nodes include information only for links to adjacent nodes. For example,
Node EN2 includes information about Link f to Node NNB and Link i to Node
EN3.

Topology Database Updates: APPN network nodes use CP-CP sessions to
exchange network topology information when a resource (such as a node or a link
between two network nodes) is activated or deactivated, or when the

Local topology
information for
Node NNA
Link e - to EN1

Local topology
information for
Node EN4
Link h - to NND

Local topology
information for
Node EN3
Link g - to NNB
Link j - to NND
Link i - to EN2

Local topology
information for
Node EN2
Link f - to NNB
Link i - to EN3

Local topology
information for
Node NNB
Link f - to EN2
Link g - to EN3

Local topology
information for
Node EN1
Link e - to NNA

Shared network
topology information
Node NNA
Node NNB
Node NNC
Node NND
Link a - NNA to NNC
Link a - NNC to NNA
Link b - NNA to NNB
Link b - NNB to NNA
Link c - NNB to NND
Link c - NND to NNB
Link d - NNC to NND
Link d - NND to NNC

Local topology
information for
Node NND
Link j - to EN3
Link h - to EN4

Link f

Link e

Link a

Link dLink b

Link c

Link h
Link j

Link g

Node EN2

Node NNC

Node NNB

Node EN4

Link i

Node NNA

Node EN3

Node EN1

Node NND

LUA

LU4

LU1

LUC

LUDLUB

LU3LU2

Figure 8. Network Topology Database in Network Nodes

Basic APPN Concepts

Chapter 1. SNA Terms and Concepts 21

characteristics of an existing resource change. When such a change occurs, a
network node generates a topology database update (TDU) that contains node
identification, node and link characteristics, and update sequence numbers
identifying the resource to be updated and the changes for the resource. Each TDU
is sent to all active network nodes to ensure that the network topology database is
kept current throughout the network.

Route Selection in an APPN Network: APPN directory services locates a specific
session partner; topology and routing services calculates the optimal session route
after the session partner has been located in the network. Each network node
provides route selection services for sessions originated by its own LUs and by
LUs at the end nodes or LEN nodes that it serves. A network node uses its own
local topology information, plus information from the shared network topology
database, to dynamically calculate routes between nodes.

Once the session partner has been located, the network node performs the
following steps to select a route:
1. Obtains required characteristics for the session route.

The LU requesting the session specifies a mode name that identifies session
characteristics. The associated mode identifies a class of service that specifies
requirements for the links used to route session traffic.

2. Obtains all transmission groups and network nodes for possible routes:
v If the session request comes from an end node, the end node provides

information about links it has to its network node server and to a connection
network, if one exists.

v If the session partner is not on an adjacent node, the network node server for
the LU requesting the session uses the network topology database to identify
network nodes and intermediate transmission groups in the route to the
session partner.

v If the session partner is on an end node, the end node (or its network node
server) provides information about the link between the network node server
and that end node (or the link between the end node and a connection
network).

3. Excludes all network nodes and transmission groups that do not meet the
specified characteristics for the session route.

4. Computes the optimal route for the session.

Depending on the specified class of service, the route calculation algorithm
computes a weight value for each node and logical link and then totals the weights
for each route. To select the optimal path, the network node computes the current
least-weight route from the node containing the originating LU to the node
containing the destination LU.

Intermediate Routing
Intermediate routing enables an APPN network node to receive and route data
destined for another node. The origin and destination of the data can be an end
node, another network node, or a LEN.

Intermediate routing supports sessions between LUs that are not on adjacent
nodes. After a route has been selected for a session, APPN network nodes in the
route use intermediate routing to forward session data to the next node in the
route.

Basic APPN Concepts

22

Resource characteristics maintained by the topology database can include
congestion status. If a network node becomes heavily congested, the network node
can relay this information to other network nodes in the network, making the
congested network node less likely to be included in session routes calculated for
new sessions.

APPN provides two types of intermediate routing:
v In intermediate session routing (ISR), available in all network nodes, the

network node keeps track of each intermediate session. Each intermediate node
adjusts the pacing of session data to control the rate at which data flows
between adjacent nodes. Each intermediate node can also perform segmentation
and reassembly of segmented data. In ISR, once a session route has been
established, all data on that session uses the same route. If part of the route fails,
the session ends.

v In automatic network routing (ANR), available in network nodes that support
APPN’s High-Performance Routing (HPR) function, intermediate network nodes
can dynamically reroute session traffic if part of the route fails. ANR does not
provide intermediate session pacing or segmentation and reassembly.

ANR enables intermediate nodes to route session traffic much faster than is
possible with traditional APPN ISR. However, ANR requires additional overhead
at the RTP (Rapid Transport Protocol) endpoints. In routes with few intermediate
nodes, an ANR route might actually be slower than an ISR route, due to
processing time at the endpoints. For routes containing a larger number of
intermediate nodes (hops), ANR routes are typically faster. The exact location of
the break-even point depends on the efficiency of the RTP nodes.

Direct Connectivity
Direct connectivity enables session traffic to travel directly between two nodes
without the need for an APPN network node to route the session. In general,
sessions between directly connected nodes can exchange data more quickly than
sessions for which data is routed through a network node. For nodes on a
shared-access transport facility (SATF)—for example, for nodes on a LAN segment
or IP network using Enterprise Extender as shown in Figure 9 on page
24—efficiency would be increased by defining links between every pair of nodes in
your network. However, this can be a difficult task—the number of link stations is
n × (n−1), where n is the number of nodes in the network.

An APPN network on a LAN segment or IP network using Enterprise Extender is
shown in Figure 9 on page 24.

Basic APPN Concepts

Chapter 1. SNA Terms and Concepts 23

If Node EN1 has a link definition for each of the links in the network, it can
establish a direct link to any node. The link definitions needed to support direct
links between Node EN1 and every other node in the APPN network are shown in
Figure 10. For a network that includes five other nodes, Node EN1 needs five link
definitions:
v EN1 to NNA
v EN1 to EN2
v EN1 to EN3
v EN1 to EN4
v EN1 to EN5

If all of the nodes in the network are to support direct links to every other node, a
total of 30 link definitions are needed on the six nodes in this example. In general,
the number of link definitions can be calculated as n × (n−1), where n is the
number of nodes in the network. In a larger network, the number of link
definitions quickly becomes unwieldy. Increasing the number of link definitions
between network nodes also increases the number of TDUs flowing through the
network, which can degrade network performance.

End Node 1 (EN1)

Link Definitions Needed for Node 1 EN1:

EN1 to NNA
EN1 to EN2
EN1 to EN3
EN1 to EN4
EN1 to EN5 End Node 5 (EN5)

End Node 4 (EN4)

End Node 3 (EN3)

End Node 2 (EN2)

Network Node A (NNA)

Figure 9. APPN Network Using a Shared-Access Transport Facility

End Node 1 (EN1)

Link Definitions Needed for Node 1 EN1:

EN1 to NNA
EN1 ro EN2
EN1 to EN3
EN1 to EN4
EN1 to EN5

End Node 5 (EN5)

End Node 4 (EN4)

End Node 3 (EN3)

End Node 2 (EN2)

Network Node A (NNA)

Figure 10. Definitions Needed for Direct Links from Node EN1 to Every Node in an APPN
Network

Basic APPN Concepts

24

APPN connection networks provide a solution to this problem.

APPN Connection Networks
For APPN networks attached to a shared-access transport facility (SATF), an APPN
connection network greatly reduces the number of link definitions needed to
support direct connectivity between nodes in the network. In a connection
network, an APPN end node needs to configure only a single link to an adjacent
network node server and a link to the connection network, instead of configuring
every possible link to every node.

To use the connection network feature, an APPN network must meet the following
conditions:
v The nodes in the APPN network must be linked using switched media such as

token ring or Ethernet.
v All of the links in the APPN connection network must use the same media.
v The APPN network that contains the connection network must be fully

connected. In a fully connected network, each node has at least one link that
supports CP-CP sessions to an adjacent node.

In a connection network, the SATF serves as a virtual routing node (VRN) that
attaches directly to each node in the connection network. The name of the
connection network serves as the name of the control point for the VRN. The VRN
supports the direct routing of session data between any two nodes in the
connection network, but it does not establish CP-CP sessions with other nodes and
it does not generate TDUs. Each node in the connection network requires only a
link to its network node server.

The link definitions needed when using a connection network are shown in
Figure 11. By using a virtual node, the connection network supports direct links
between Node EN1 and every other node in the APPN network, yet it requires
only two link definitions.

To support direct links between any two end nodes in the APPN network, a total
of ten link definitions is required. (Each end node needs two link definitions: one
to a network node server and one to the virtual node.) Compared to the direct
connectivity requirements for an APPN network that does not use a connection
network (see Figure 10 on page 24), you can have a much smaller number of link

End Node 1 (EN1)

Virtual Node 1 (VN)

Link Definitions Needed for Node 1 EN1:

EN1 to NNA
EN1 to VN

End Node 5 (EN5)

End Node 4 (EN4)

End Node 3 (EN3)

End Node 2 (EN2)
Network Node A (NNA)

Figure 11. Definitions Needed for Direct Links Using a Virtual Node

Basic APPN Concepts

Chapter 1. SNA Terms and Concepts 25

definitions (10 instead of 30 in this example). In a larger network, the difference in
definition requirements becomes even more substantial.

A session between LUs on two nodes in the connection network is established as
follows:
1. Each end node first establishes CP-CP sessions with its network node server. (If

two end nodes have different network node servers, those network nodes must
have a link that supports CP-CP sessions.)

2. End nodes also report their VRN links and local address information to the
network node server. The local address information can be a service access
point (SAP) address and a medium access control (MAC) address.

3. The server normally selects the direct link between two end nodes as the
optimal route for the LU-LU session. It provides the node with the primary LU
the information it needs to establish a dynamic link to the node with the
partner LU.

4. The end nodes can then establish an LU-LU session without the need for
intermediate session routing.

Branch Extender
As described in the previous sections, network nodes in an APPN network need to
maintain topology information (about the location of other nodes in the network
and the communications links between them), and to forward this information
around the network when the topology changes. As the network grows in size, the
amount of stored information and topology-related network traffic can become
large and difficult to manage.

It is possible to avoid these problems by separating the network into subnetworks,
so that each node only needs to maintain topology information about the nodes in
its own subnetwork. However, this results in increased network traffic when trying
to locate resources in other subnetworks.

The Branch Extender feature of APPN, illustrated in Figure 12 on page 27, provides
a solution to these problems.

Basic APPN Concepts

26

As the name implies, Branch Extender is designed for networks that can be
divided into distinct areas such as separate branches of a large organization. It
works by separating out branches from the main backbone APPN network (for
example, the network in the organization’s headquarters).

Each branch contains a node of a new type called Branch Network Node (BrNN),
which is connected to a Network Node in the main APPN backbone network. The
BrNN combines the functions of an APPN network node and an APPN end node.
v To the backbone network, the BrNN appears as an End Node, connected to its

Network Node Server (NNS) in the backbone network:
– The nodes in the backbone network are not aware of the nodes within the

branch, reducing the amount of topology information that must be stored.
– Because the BrNN appears as an End Node, it does not receive topology

information from the backbone network (topology information is transmitted
only between Network Nodes).

– The BrNN registers all resources in the branch with its NNS as though they
were located on the BrNN itself. This means that the nodes in the backbone
network can locate resources in the branch without having to be aware of the
separate nodes in the branch.

v To the branch network, the BrNN appears as a Network Node, acting as the
NNS for End Nodes in the branch. Each node in the branch sees the rest of the
network as being connected through its NNS, in the same way as for a standard
NNS.

Accessing Subarea Networks from APPN Networks
Although APPN networks do not require a host to control resources in the
network, hosts often participate in APPN networks. APPN has been implemented
on many host platforms, and allows the hosts to perform as network nodes in the
APPN network while still providing an SSCP to control any old subarea SNA
function.

APPN Backbone Network

Branch Network Node

End Nodes

Network Node Server

Figure 12. Branch Extender

Basic APPN Concepts

Chapter 1. SNA Terms and Concepts 27

Many SNA networks contain elements of both subarea SNA and APPN. The
backbone of the network is built from network nodes that must bridge the gap
between a dependent LU and the facilities on the host. Two additional services are
required to achieve this:
v Dependent LU server (DLUS) on the host provides access to the old SSCP

functions and interfaces to the APPN network.
v Dependent LU requester (DLUR) on a network node or end node provides a

means of transporting session traffic from dependent LUs to a host through an
APPN network. This function enables dependent LU sessions to take advantage
of the more versatile routing functions provided by APPN.

This combination of DLUR and DLUS (generally known simply as DLUR) allows
dependent LU traffic to be transported over the APPN backbone. Existing SNA
applications that use dependent LUs can be retained without modification, while
taking advantage of APPN’s network management, dynamic resource location, and
route selection capabilities. In this way, DLUR provides a useful migration path
from subarea SNA to APPN.

The dependent LU does not need to reside on the node that provides the DLUR
function. If the DLUR function is provided by a network node, the dependent LU
can be on an adjacent network node, end node, or LEN node. If the DLUR
function is provided by an end node, the dependent LU must be on the end node
itself.

Accessing Subarea Networks from APPN Networks

28

Chapter 2. Administering Communications Server for Linux

For an overview of Communications Server for Linux administration and the
different administration tools provided, see “Overview of Communications Server
for Linux Administration.”

The first step in administering Communications Server for Linux is configuring the
node and its resources. Begin by planning for configuration as described in
“Planning for Communications Server for Linux Configuration” on page 37.

Before you can configure Communications Server for Linux, you must enable the
Communications Server for Linux software as described in “Enabling and
Disabling Communications Server for Linux on the Local System” on page 38.

When Communications Server for Linux is enabled, you can run the Motif
administration program (see “Using the Motif Administration Program” on page
41). The Motif administration program guides you through the configuration
needed to support SNA communication using Communications Server for Linux.
The Motif administration program is the recommended administration tool,
because it minimizes the configuration information you need to provide and
guides you through each step you must perform to support different types of
communication (such as 3270 or APPC communication).

Alternatively, you can use the command-line administration program as described
in “Using the Command-Line Administration Program” on page 51.

For each administration task, this guide provides information you can use for
either Motif or command-line administration. Other configuration methods are
discussed in “Administration Tools” on page 30.

Overview of Communications Server for Linux Administration
As the Communications Server for Linux administrator, you are responsible for
installing the Communications Server for Linux software and for managing its
resources. Before beginning Communications Server for Linux administration, you
must understand the main features of the Communications Server for Linux
product (see IBM Communications Server for Linux Quick Beginnings). This section
describes the administration tasks you must perform and the tools you can use to
perform them.

Administration Responsibilities
To administer the Communications Server for Linux system, you need to do the
following:
1. Define the resources of the Communications Server for Linux system, as

required by the user programs that will be running. Work with the
administrators of the host or peer computers with which Communications
Server for Linux communicates, to ensure that the Communications Server for
Linux configuration matches that of the remote system.

2. Initialize the Communications Server for Linux software.

© Copyright IBM Corp. 2000, 2009 29

3. Optionally, modify the configuration dynamically as your requirements
change—by adding or removing resources, or by activating and deactivating
the defined resources.

4. Monitor the status of active resources and gather diagnostics information to
diagnose any problems that occur.

5. Optionally, create application programs or shell scripts to automate standard
management operations.

These tasks are normally performed by a System Administrator at the site where
the Communications Server for Linux system is installed. However,
Communications Server for Linux also provides the service point command facility
(SPCF), which enables an operator using the NetView program to perform Steps 2
and 3 remotely by issuing management commands at the NetView console. For
more information about SPCF, see Chapter 9, “Managing Communications Server
for Linux from NetView,” on page 115.

Administration Tools
Communications Server for Linux provides a range of tools for administering the
system. Depending on your requirements, you may not need to use all of them.
This section summarizes the functions provided by each of these tools.

Note:

1. This document provides general information about Communications
Server for Linux administration, which you can perform using any of the
tools described in this section. For most purposes, the Motif
administration program is recommended, because it provides
context-sensitive guidance for node configuration and management.

2. For information about controlling who can use the Communications
Server for Linux administration tools and the range of administration
functions they can use, see “Administration Permissions” on page 36.

Communications Server for Linux includes the following administration tools:
v Motif administration program (see “Motif Administration Program”).
v Web administration program (see “Web Administration Package” on page 32).
v Command-line administration program (see “Command-Line Administration

Program” on page 33, or refer to IBM Communications Server for Linux
Administration Command Reference).

v Service point command facility (see “Remote Command Facility” on page 33).
v Configuration files (see “Configuration Files” on page 34).
v Diagnostic tools (see “Diagnostic Tools” on page 35).

All of the Communications Server for Linux administration tools use the NOF API.
You can also use that API to write your own administration tools. For more
information, see “NOF Applications” on page 35.

Motif Administration Program
The easiest way to define and modify the Communications Server for Linux
configuration is to use the Motif administration program (xsnaadmin). This
program provides a graphical user interface from which you can view and manage
Communications Server for Linux resources.

Note: The Motif administration program xsnaadmin may be used to monitor
Communications Server for Linux operations in real time, but with some

Overview of Communications Server for Linux Administration

30

performance impact. On Linux for System z LPARs, there is no directly
attached terminal, so xsnaadmin will dynamically update the display using
X-Windows protocol. This will add additional network traffic and CPU
utilization to the system. For larger network configurations, it is better to
use the command line adminstration tool or the Web Administration
package. These update via query and do not create dynamic traffic that
would have an impact.

For systems that support direct terminal hardware, the Motif administration
program xsnaadmin will not impact the performance too much. However,
any impact to the system performance is dependent on what is being
displayed and how often the display is being updated.

The following management operations are available:
v Defining Communications Server for Linux resources
v Starting and stopping a node and its connectivity resources
v Changing the configuration of defined resources
v Querying the configuration of defined resources and their current status if they

are active
v Deleting resources

The Motif administration program can be used to manage both node resources (for
any server on the LAN, as long as the Communications Server for Linux software
is running on that server) and domain resources. For each type of communications
(such as 3270 or APPC), the program guides you in setting up the configuration of
the required resources.

Note: The windows and dialogs in the Motif administration program may differ
from those shown in this guide, depending on the choices you make on a
particular dialog.

The Motif administration program includes help screens that provide overview
information for SNA and Communications Server for Linux, reference information
for Communications Server for Linux dialogs, and guidance for performing specific
tasks.

Before starting the Motif administration program, make sure the Communications
Server for Linux software is enabled (for more information, see Chapter 2,
“Administering Communications Server for Linux,” on page 29). As with any
X/Motif application, you may also need to set up the DISPLAY environment
variable to indicate a suitable X server.

To start the Motif administration program in the background, issue the following
command:

xsnaadmin &

All started Communications Server for Linux servers are shown on the main
screen. For those that have already been configured, the program enables you to
select a node, and then displays the selected node’s configuration. Otherwise, the
program prompts you to select a node and leads you through the required steps to
define it.

Overview of Communications Server for Linux Administration

Chapter 2. Administering Communications Server for Linux 31

For more information about how to use the Motif administration program to define
and manage Communications Server for Linux resources, see “Invoking the Motif
Administration Program” on page 41, or refer to the help screens provided by the
program.

Note: The Motif administration program enables you to set up all required
parameters for standard Communications Server for Linux configurations.
For advanced parameters, the Motif administration program supplies default
values. You need to supply only the essential configuration information,
which enables you to set up SNA communications quickly and easily.

The other Communications Server for Linux administration tools, including
command-line configuration, and NOF application programs, provide access
to a wider range of configuration parameters and options than those shown
in the Motif administration program. In most cases, however, you can
perform all needed configuration from the Motif administration program,
because it exposes the key fields you need to configure and hides the fields
that most users should not need to modify. The default values supplied by
command-line configuration may differ from those supplied by the Motif
administration program, because the Motif program can choose values more
intelligently based on the context of the configuration task you are
performing.

If you need to use these additional functions, you can still use the Motif
administration program to set up the basic configuration, and use the other
administration tools to specify the additional functions. When you later use
the Motif administration program to manage the modified configuration, the
program retains the changes you made using the other tools, although the
additional functions you have configured are not displayed in the Motif
program.

Web Administration Package

The Web Administration package is an administration tool that is downloadable
from the Communications Server for Linux support web page
http://www.ibm.com/software/network/commserver/support. This package
provides the scripts and instructions for allowing remote Web browser access to
administration functions for Communications Server for Linux.

Using a Web server, like Apache or the IBM HTTP Server, this package provides
remote access to the administration functions such as query, status, start and stop
which you normally find on the Motif-based xsnaadmin GUI. This package is
designed to provide the administrator with a secure and safe method for remote
administration of the Communications Server for Linux resources. The same
package will run on Intel, System p and System z platforms that are supported by
Communications Server for Linux.

This package uses Perl-CGI and Perl scripts to execute the administration
functions. Almost all Web browsers work well with this package. The commands
executed to query and manage resources are found in the snaadmin command line
tool (refer to “Command-Line Administration Program” on page 33).

The Web Administration package provides access to resources controlled in Node
and Domain, Connections, Host Resources, TN3270E Server, APPC, APPN, Query,
Status and Diagnostic panels. With these Web interfaces, you can query any
resource on the node or get status of sessions, links, LUs and node conditions.

Overview of Communications Server for Linux Administration

32

The Web pages provide the interfaces to display link, PU and node conditions. You
can start or stop the node, links and PUs as needed.

Host connectivity resources can be displayed in the same manner as the command
line administration calls, with additional displays that are concise for management
purposes. Enhanced displays for links, pools of LUs, PUs, and TN3270E server
sessions are available.

Remote access is protected by User ID and password authentication using Linux
supplied password protection packages.

Command-Line Administration Program
The command-line administration program, snaadmin, enables you to issue
commands to manage individual Communications Server for Linux resources. You
can use snaadmin either directly from the Linux command prompt or from within
a shell script.

Commands can be issued to a specific Communications Server for Linux node to
manage the node’s resources, to the SNA network data file to manage master and
backup servers, or to the domain configuration file to manage domain resources.

All administration commands can be issued on a server. However, there are
restrictions on which commands can be issued on an IBM Remote API Client.
v On Windows clients there is no snaadmin program, so no commands can be

issued.
v On AIX and Linux clients you can issue any query or status command. Some

other administration commands, defined in IBM Communications Server for
Linux Administration Command Reference, explicitly say that they can be issued
from an IBM Remote API Client. Otherwise these commands are available only
from a server.

You can get help for command-line administration by using any of the following
commands:
v snaadmin -h provides basic help for command-line administration and usage

information for command-line help.
v snaadmin -h -d provides a list of commands that can be supplied to the

snaadmin program.
v snaadmin -h command provides help for the named command.
v snaadmin -h -d command provides detailed help for the named command,

including a list of the configuration parameters that can be specified with the
command.

Refer to IBM Communications Server for Linux Administration Command Reference for
more information.

Remote Command Facility
The remote command facility (RCF) provides the following facilities to support the
administration of Communications Server for Linux from a NetView console on a
host:
v Service point command facility (SPCF) enables an operator at a host NetView

console to manage Communications Server for Linux from NetView by issuing
Communications Server for Linux administration commands.

v UNIX command facility (UCF) enables the NetView operator to issue standard
Linux commands on the Communications Server for Linux computer.

Overview of Communications Server for Linux Administration

Chapter 2. Administering Communications Server for Linux 33

For more information about RCF, see Chapter 9, “Managing Communications
Server for Linux from NetView,” on page 115.

Configuration Files
Configuration information for the Communications Server for Linux system is held
in the following text files:

Node configuration file
The /etc/opt/ibm/sna/sna_node.cfg file contains information about
Communications Server for Linux node resources for a specific node. This
file resides on the computer where the node runs. It includes information
about the node’s resources and specifies which resources are active when
Communications Server for Linux is started on the node.

This file provides an initial definition of the resources that are available;
you can then use the other administration tools to modify the running
node’s resources as your requirements change. Any modifications you
make are automatically saved to the file, so that the modified configuration
can be used again when the node is stopped and restarted.

Domain configuration file
The /etc/opt/ibm/sna/sna_domn.cfg file contains information about
Communications Server for Linux domain resources (resources not
associated with a particular local node). The master copy of this file resides
on the master server.

Invokable TP data file
The /etc/opt/ibm/sna/sna_tps file contains information that
Communications Server for Linux needs to start invokable (target) TPs,
and can also provide other information (such as the level of security
required to access the TP). This file resides on the computer where the TPs
run.

For more information about this file, see “Defining TPs” on page 86.

You can modify the configuration using the Motif administration program, the
command-line administration program, or the NOF API. All of these tools make
the required changes to the node configuration file or domain configuration file as
appropriate. Because configuration information is stored as plain text, you can also
modify the file directly using a standard ASCII text editor such as vi, or by means
of a shell script using Linux utilities such as awk or sed. Any changes to
configuration files using a text editor must be made before starting
Communications Server for Linux. Refer to IBM Communications Server for Linux
Administration Command Reference for more information about Communications
Server for Linux configuration file format.

Note: Communications Server for Linux configuration is a dynamic process; it is
not necessary to define the entire configuration before starting the
Communications Server for Linux software. The configuration file provides
an initial definition of the available resources, but you can add, delete, or
modify resources as necessary while the Communications Server for Linux
software is running. Communications Server for Linux stores the current
definition so that you can use it again when you need to restart the system.

The following files contain information about the Communications Server for
Linux client/server network:

SNA network data file
The /etc/opt/ibm/sna/sna.net file contains information about which server

Overview of Communications Server for Linux Administration

34

is the master, and which servers can act as backup servers. This binary file
resides on the master server. You can modify the contents of this file using
the administration programs or the NOF API.

For more information about this file and how to modify it, see
“Configuring Client/Server Functions” on page 53.

Client network data file
The sna_clnt.net file contains information about how to access
Communications Server for Linux servers, required by an IBM Remote API
Client. This text file resides on the client computer. You can modify the
contents of this file using a standard ASCII text editor.

For more information about this file and how to modify it, see “Client
Network Data File (sna_clnt.net)” on page 144. For information about
configuring the equivalent information on a Windows client, see
Chapter 10, “Managing Communications Server for Linux Client/Server
Systems,” on page 123.

NOF Applications
The Communications Server for Linux NOF API provides the same management
functions as the command-line administration program, enabling you to define and
manage Communications Server for Linux resources. This means that you can
write your own application programs to administer Communications Server for
Linux.

Refer to IBM Communications Server for Linux NOF Programmer’s Guide for more
information.

Diagnostic Tools
Communications Server for Linux provides several diagnostics tools to help you
diagnose and correct problems encountered during Communications Server for
Linux operation:
v Any component detecting a problem or an exception (an abnormal condition

that may indicate the cause of a problem) writes an entry to an error log file. In
addition, all significant system events can be recorded in an audit log file. You
can determine which types of events (problems, exceptions, or audits) are
recorded. In a client/server network configuration, you can specify global
settings for the types of events to record on all servers, and then override these
on individual servers if necessary.

v Communications Server for Linux also maintains a usage log file, which is used
to record information about the current and peak usage of Communications
Server for Linux resources.

v You can specify the names and directories of the files used to hold each type of
log information; if preferred, you can send both error and audit log information
to the same file. On a client/server system, you can send messages from all
servers to a central log file on one server (central logging), or send log messages
to separate files on each server.

v Log files are generated as text files, and can be viewed using a standard ASCII
text editor such as vi.

v You can choose full logging (which includes details of the cause of the log, and
any action required, in the log file for each message), or succinct logging (which
includes only a summary of the source of the log and the message text). When
using succinct logging, you can use the snahelp command-line utility to obtain
the full cause and action text for a particular message number if you need
further information.

Overview of Communications Server for Linux Administration

Chapter 2. Administering Communications Server for Linux 35

v If you find that a particular event is occurring frequently and so the log file is
filling up with many instances of the same log message, you can set a filter to
specify that one or more specific log messages should be logged only once. Any
subsequent instances of the same log message will be ignored and will not be
written to the log file.

v For some error conditions, Communications Server for Linux sends a message to
the Linux console to warn the operator, in addition to writing a problem
message to the error log file.

v Many components can produce a trace file that records the activity of that
component. Tracing degrades the performance of Communications Server for
Linux components, and so is normally disabled.

v Using command-line utilities, you can filter trace files to extract specific
information, and then format the trace information to interpret its contents or to
produce a summary of message flows. The formatted output files can be viewed
using a standard ASCII text editor such as vi.

v Communications Server for Linux can generate alerts and send them to the
NetView program at a host computer. These alerts can be any of the following:
– Link alerts from connectivity components, to provide information about

connection problems
– Alerts supplied by an application program using the MS API

Refer to IBM Communications Server for Linux Diagnostics Guide for information
about Communications Server for Linux log messages, using Communications
Server for Linux trace facilities, and interpreting trace files.

For information about using the MS API, refer to IBM Communications Server for
AIX or Linux MS Programmer’s Guide.

Administration Permissions
The Communications Server for Linux administration tools are intended for use by
a restricted group of “SNA administrators” who have permission to manage SNA
resources. To achieve this, the executable files are owned by the system
administrator login root with a group ownership of sna. Only users who are
members of the group sna can modify, start, or stop Communications Server for
Linux resources; any user who is to have SNA administrator permissions must be a
member of this group.

In the standard Communications Server for Linux installation, users who are not
members of the group sna cannot run the Communications Server for Linux
administration tools at all. If appropriate, you can allow these users to run the
tools in read-only mode, so that they can view configuration and status
information but cannot modify, start, or stop resources. To do this, use chmod to
give read and execute permission for any user to the appropriate executable file or
files:

Administration Tool Executable File(s)

Motif administration program /opt/ibm/sna/bin/X11/xsnaadmin
Command-line administration program /opt/ibm/sna/bin/snaadmin

Any user can then run the appropriate administration tool and view information,
but Communications Server for Linux will still prevent users not in the sna group
from modifying, starting, or stopping resources.

Overview of Communications Server for Linux Administration

36

Note: If you modify file permissions as described above, you will need to repeat
this procedure after installing Communications Server for Linux PTFs or
new releases.

Planning for Communications Server for Linux Configuration
Before you make any configuration changes it is very important to plan
thoroughly. Changes that you make can cause disruption, not only to the users of
your local node but possibly to users all around the network.

You may find it useful to draw a diagram of any changes that you are making to
the topology of the network. If you are adding or removing connections to other
nodes, draw a picture showing your node and the other nodes. You can use the
Motif administration program to gather configuration information about all of the
existing connections and add that information to your diagram.

When you add new resources to your diagram, it is easy to see whether they
duplicate existing ones, or whether any names clash. Similarly, your diagram can
help you decide which resources you need to remove and help you avoid deleting
essential ones.

If you are configuring a Client/Server Communications Server for Linux system
with more than one node, ensure that you include all the Communications Server
for Linux nodes and their connectivity resources in your diagram.

Once you determine the changes you need to make, you can collect the
configuration information that you need. You can use the task sheets in the online
help files for the Motif administration program, or the planning worksheets
described in “Planning Worksheets,” to guide you in collecting configuration
information for specific Communications Server for Linux functions.

Planning Worksheets
Before you begin to configure resources for Communications Server for Linux,
gather all of the configuration data for the new resources. To record all of the
information for a particular function or application that you need to support, use
the planning worksheets in Appendix A, “Configuration Planning Worksheets,” on
page 149.

You will probably need to gather configuration information from several sources,
such as network administrators, host administrators, application programmers, and
end users.

If you are trying to connect to another node, the administrator at that node is a
key contact. The administrator for a node can tell you names, addresses and
characteristics of all the resources on that node. Often, you will need to ensure that
matching configuration parameters are entered at the local node and the remote
node.

Task Sheets
The online help screens in the Motif administration program contain task sheets
that provide guidance for specific configuration tasks. The task sheets contain
pointers to all of the help screens for the dialogs that you will use to enter the
configuration information. You can use these to browse the help and see exactly
what data you must collect.

Overview of Communications Server for Linux Administration

Chapter 2. Administering Communications Server for Linux 37

The task sheets also refer to more detailed help for each of the individual windows
and dialogs that you must use to enter configuration information. Those help
screens explain each field that you must fill in or select.

Enabling and Disabling Communications Server for Linux on the Local
System

This section explains how to enable and disable the Communications Server for
Linux software on the Linux server.

You must enable the Communications Server for Linux software before you can
use any Communications Server for Linux tools (including the Motif
administration program). Normally, the software is enabled automatically after you
install Communications Server for Linux, but if necessary you can enable it
manually.

Specifying the Path to Communications Server for Linux
Programs

Communications Server for Linux executable programs are stored in a directory
specific to Communications Server for Linux; when you run the programs, you
need to specify the path to this directory. You can specify the path either by adding
the directory to your PATH environment variable before you run the programs for
the first time, or by including the directory name each time you run the programs.

The Motif administration program is stored in the directory /opt/ibm/sna/bin/X11,
and the other programs are stored in the directory /opt/ibm/sna/bin. If you add
these directories to the definition of the PATH environment variable in your .login
or .profile file, Communications Server for Linux locates the programs
automatically. Alternatively, you can specify the directory name when you run the
program, as in the following examples:

The sample command lines shown in this manual assume that you have added the
directories to your PATH environment variable, and do not include the directory
names.

Enabling Communications Server for Linux Servers
This section describes how to enable Communications Server for Linux on a
computer that was installed as a server (that is, with the SNA node components
installed). If you are enabling Communications Server for Linux on a client, see
“Enabling and disabling Remote API Clients on AIX or Linux” on page 143.

You must enable Communications Server for Linux on the local system before you
can configure or manage the local node (either locally or from a remote
Communications Server for Linux node).

To enable the Communications Server for Linux software, enter the following
command at the Linux command prompt:

/opt/ibm/sna/bin/sna start

/opt/ibm/sna/bin/snaadmin query_node

/opt/ibm/sna/bin/X11/xsnaadmin

Planning for Communications Server for Linux Configuration

38

sna start [-s] [
-m kernel_memory_limit] [

-t]

Note: When you use the sna start command, the Communications Server for
Linux software uses the directory from which you issued the command as
its current working directory, and maintains one or more open file
descriptors in that directory. This means that you will not be able to
unmount the file system containing that directory while the
Communications Server for Linux software is running. To avoid problems,
you should start the Communications Server for Linux software from a
directory on a filesystem that does not need to be unmounted; for example,
you could use cd / to change to the root directory before using the sna start
command.

When you install Communications Server for Linux, the installation utility
automatically updates the startup file /etc/rc.d/init.d/snastart to include the sna
start command. This ensures that Communications Server for Linux is started
automatically at system startup. If you do not want Communications Server for
Linux to be started automatically, you can remove or comment out this line, and
then follow the instructions in this section to enable the Communications Server
for Linux software manually.

The parameters and options for the sna start command are as follows:

-s Specifies that Communications Server for Linux should not write messages
to the system console. If you do not use this option, Communications
Server for Linux writes messages to the console when it ends, and also
writes the text of certain error log messages to the console as well as to the
log file.

-m kernel_memory_limit
Specifies the maximum amount of kernel memory, in kilobytes, that
Communications Server for Linux should use at any time. (Kernel memory
is used for internal data structures.) If a component of Communications
Server for Linux attempts to allocate kernel memory that would cause the
total amount of memory currently allocated to Communications Server for
Linux components to exceed this limit, the allocation attempt fails.

If you do not use this option, kernel memory usage is not limited.

-t Activates tracing on all interfaces between kernel components, and also
client/server tracing. (This option does not turn on DLC tracing.) Tracing
enables you to diagnose problems that occur during startup. If you do not
use this option, tracing is inactive at all interfaces; you can then activate it
on specific interfaces as required, using the command-line administration
program snaadmin.

Tracing on all interfaces degrades the performance of Communications
Server for Linux components. After the software is enabled, you can use
the command-line administration program snaadmin to stop tracing on
any interfaces where it is not required. For more information about tracing,
refer to IBM Communications Server for Linux Diagnostics Guide.

Communications Server for Linux writes messages to standard error (normally
your terminal’s screen) to indicate that it is initializing, and to indicate whether
initialization completes successfully.

Enabling and Disabling Communications Server for Linux on the Local System

Chapter 2. Administering Communications Server for Linux 39

If initialization fails, the messages include information about the cause of the error,
and (where appropriate) additional information such as the Linux operating
system error message. The text written to standard error may also include a
message indicating that you can find further information in the error log file. The
sna start command then ends with a nonzero exit code that indicates the nature of
the error.

For more information about exit code values, refer to IBM Communications Server
for Linux Diagnostics Guide.

Advanced Options for the sna start Command
In some cases, particularly when you are testing out new Communications Server
for Linux configurations, you may want to start Communications Server for Linux
with a configuration that you have saved to a temporary file (rather than with the
standard configuration in the files /etc/opt/ibm/sna/sna_node.cfg and
/etc/opt/ibm/sna/sna_domn.cfg). To do this, you can use the following additional
options on the sna start command:

-n node_config_file
-d domain_config_file

node_config_file is the full pathname of the file to which you have saved node
configuration (instead of /etc/opt/ibm/sna/sna_node.cfg), and domain_config_file is
the full pathname of the file to which you have saved domain configuration
(instead of /etc/opt/ibm/sna/sna_domn.cfg).

Note: These options are not intended for general use. Do not use them unless you
have a specific requirement to do so.

The snagetpd command will not operate correctly when Communications
Server for Linux is running with these options, because it always collects
information from the standard configuration files. Before using snagetpd,
ensure that you are running with the standard configuration files by starting
Communications Server for Linux without these options.

Disabling Communications Server for Linux Servers
Disabling the Communications Server for Linux software on a server automatically
stops the Communications Server for Linux node and its associated connectivity
components. Disabling Communications Server for Linux also stops any other
processes (such as a 3270 emulation program) from using Communications Server
for Linux resources on this server.

In general, you should stop individual services as users finish using them, and
only disable the system when there is no Communications Server for Linux
activity. Disabling the Communications Server for Linux software on a client stops
any programs running on the client from accessing Communications Server for
Linux facilities.

If you need to disable Communications Server for Linux while users are active,
warn users that Communications Server for Linux is stopping, and give them time
to finish their activities before you disable the software. Use the Motif
administration program or the command-line administration program to view
details of active users.

If a 3270 emulation program is using LUs on the node when you disable the
Communications Server for Linux software, all 3270 emulation sessions using these

Enabling and Disabling Communications Server for Linux on the Local System

40

LUs end. The program continues to run, but the user cannot use the sessions until
the software is re-enabled. Applications using the APPC, CSV, LUA, NOF, or MS
APIs are notified by a COMM_SUBSYSTEM_ABENDED return code, and CPI-C applications
by a CM_PRODUCT_SPECIFIC_ERROR return code.

To disable the Communications Server for Linux software, enter the following
command at the Linux command prompt:

sna stop

If Communications Server for Linux is disabled successfully, sna stop returns an
exit code of 0. Any other exit code indicates that an error occurred and that the
Communications Server for Linux software was not disabled. Refer to IBM
Communications Server for Linux Diagnostics Guide for more information about exit
code values.

Using the Motif Administration Program
The Motif administration program provides a user-friendly interface for
configuring Communications Server for Linux. This program is the recommended
tool for administering Communications Server for Linux, because it guides you
through the configuration process and minimizes the information you need to
provide to create a workable configuration.

You can also use the Motif administration program to manage the Communications
Server for Linux system while it is active. The administration program enables you
to make and apply changes to the configuration while Communications Server for
Linux is active. You can add, modify, and remove resources (in most cases, even
when the node and its resources are active), and use the modified configuration
immediately for continued operation.

The Motif administration program displays up-to-date status information through
the same interface that is used for configuration, providing easy access to status
information for both domain and node resources.

Alternatively, you can use Communications Server for Linux commands for
configuration and system management. A summary of configuration and
management commands is provided in “Using the Command-Line Administration
Program” on page 51.

Invoking the Motif Administration Program
To use the Motif administration program for Communications Server for Linux,
first make sure that Communications Server for Linux is enabled as described in
“Enabling Communications Server for Linux Servers” on page 38. (As with any
X/Motif application, you may also need to set up the DISPLAY environment
variable to indicate a suitable X server.)

To start the Motif administration program running in the background, issue the
following command:

xsnaadmin &

In a client/server environment, Communications Server for Linux displays the
Domain window.

Enabling and Disabling Communications Server for Linux on the Local System

Chapter 2. Administering Communications Server for Linux 41

For a standalone system, Communications Server for Linux normally displays the
Node window. However, if you have not yet configured the local node, it displays
a help screen offering help with configuring the node for the first time.

Note: This guide uses the term window to describe Motif windows that display
information about Communications Server for Linux resources. A window
can contain one or more sections, or panes. A dialog is a Motif window on
which you can enter information.

Resource Windows
The Domain window and the Node window show most of the information you
need and provide easy access to additional information. From those windows, you
can easily display information about resources in your local network.

The Domain window shows all defined nodes, and enables you to add, delete,
start, and stop nodes. Double-clicking on any node brings up the Node window
for that node.

The Node window shows all the key resources for a particular node.

The menus in the Domain and Node windows provide the following functions:

Selection
The functions in this menu relate to the node that is currently selected in
the Domain window or the item that is currently selected in the Node
window. From this menu, you can start or stop the node or zoom on it to
display its Node window. When you select an item in the Node window,
you can control, modify, or delete the item using controls in this menu, or
add a new item in the currently selected pane.

Services
This menu provides easy access to all the dialogs required to configure the
node for common tasks. Using this menu, you can add or modify resources
or get help for configuration and management tasks.

Diagnostics
You can control logging and tracing from items in this menu.

Windows
You can easily access other windows from this menu. These windows
include the following:
v LU Pools window
v CPI-C Destination Names window

Depending on the resources you select and the options you choose, the
administration program can present additional resource windows, configuration
dialogs, or status logs. You will also see context dialogs that enable you to select a
specific resource to configure, confirmation dialogs that ask you to confirm a
choice, and message pop-ups that provide feedback or error information. Each
window and dialog also includes a help option.

Domain Window
The Domain window shows each active SNA node in the Communications Server
for Linux domain for the system you are using. (A node does not appear in the
Domain window if Communications Server for Linux is not running on the node.)
Each node is identified using the name of the system. The Domain window also
shows the current status of each node in the domain.

Using the Motif Administration Program

42

Note: If a server is unexpectedly missing from the list of nodes in the Domain
window, verify that the server is switched on and that the Communications
Server for Linux software is running on the server. If necessary, start the
Communications Server for Linux software on that node using the sna start
command (see “Enabling Communications Server for Linux Servers” on
page 38).

One node in a domain is always identified as the configuration server for the
domain. The Domain window shows the word “Master” next to that node. The
Master configuration server always contains configuration information for domain
resources. Backup configuration servers are identified by the word “Backup” on
this window. Backup configuration servers contain copies of the configuration
information for domain resources.

An example of a Domain window is shown in Figure 13.

If any active nodes in the domain (nodes on which Communications Server for
Linux is running) are not configured, Communications Server for Linux prompts
you to configure the node.

Note: The Domain window does not list IBM Remote API Clients. Clients use the
resources of Communications Server for Linux servers (SNA nodes) to access
SNA resources.

You can perform any of the following administration tasks from the Domain
window:

Start or stop any node in the domain
Select the line for the node and click on the Start or Stop button on this
window. (Alternatively, you can click on the line for the node, then select
Start node or Stop node from the Selection menu.)

Administer a specific node
Double-click on the line for that node on the Domain window.
(Alternatively, you can click on the line for the node, then select Properties
from the Selection menu. You can also select the window for the node
from the Windows menu.)

Figure 13. Communications Server for Linux Domain Window

Using the Motif Administration Program

Chapter 2. Administering Communications Server for Linux 43

When you select a node to be administered, Communications Server for
Linux displays the Node window as shown in Figure 14 on page 45. (For a
standalone system, Communications Server for Linux does not display the
Domain window, because the domain has only one node. Instead,
Communications Server for Linux immediately displays the Node window
when you start the administration program.)

Add a node to the list of servers for the domain
Click on the line for the node and select Make configuration server from
the Selection menu.

Remove the node from the list of servers for the domain
Click on the line for the node and select Remove configuration server
from the Selection menu.

Configure logging for all nodes in the domain
Select Logging from the Diagnostics menu.

Turn tracing for a specific node on or off
Click on the line for the node and select Tracing on selected node from the
Diagnostics menu.

Get information about domain resources
Choose any of the options on the Windows menu. In addition to shared
domain resources, the Windows menu also lists each Node window in the
domain.

Node Window
A sample Node window is shown in Figure 14 on page 45. The title bar shows the
name of the system.

Using the Motif Administration Program

44

From the Node window, you can add, delete, modify, and manage all of the
resources and components for the Communications Server for Linux node. The
layout of the resources in the window shows the relationships among resources
and enables you to control which resources are displayed.

The Node box in the top-right corner of the Node window indicates whether the
node is Active or Inactive.

Any ports, local LUs, and remote nodes that are defined on the node are always
displayed. The Node window shows each link station below its parent port, and
each dependent LU below its parent link station. It also shows partner LUs below
local LUs and below remote nodes.

The body of the Node window is split into the following panes for the different
types of resources for the node:

Connectivity pane
The top pane of the Node window lists connectivity resources for the node,
including ports, link stations or PUs on each port, and dependent LUs on a
specific link station or PU. For each resource, this window shows current
status information.

Figure 14. Node Window

Using the Motif Administration Program

Chapter 2. Administering Communications Server for Linux 45

Independent Local LUs pane
The middle pane shows independent LUs for the node. For each LU, this
window also displays information about sessions using the LU.

Remote Systems pane
The lower pane shows information about remote nodes and partner LUs. It
also shows session information for each remote node or partner LU.

To change the relative sizes of the panes, click and drag on the boundaries between
panes.

You can select a pane by clicking in it. You can also select specific resources within
a pane by clicking on the line for the resource. To view or modify the configuration
for an item, you can double-click on the item. (You can also use the buttons and
menus on this window to access configuration information for specific resources.)

For each item listed, resources that belong to that item are nested within the
information for that item. For example, link stations are grouped under the port to
which they belong. You can click on the Expand button

next to an item to show the resources for that item if they are not currently
displayed, or click on the Contract button

to hide the resources for an item.

You can perform the following administration tasks from the Node window:

Start or stop a resource
Select the resource and click on the Start or Stop button. (Alternatively,
you can select Start item or Stop item from the Selection menu.)

Add a new resource for an item
Select the item and click on the New button (or select New from the
Selection menu). For example, to add a link station for a port, select the
port and click on the New button.

Delete a resource
Select the resource and click on the Delete button (or select Delete from
the Selection menu).

View or modify the configuration for any resource
Select the resource and click on the Properties button (or select Properties
from the Selection menu).

Get status information for any resource
Select the resource and click on the Status button (or select Status from the
Selection menu).

Copy the configuration for any resource
Select the resource and click on the Copy button (or select Copy from the
Selection menu).

Using the Motif Administration Program

46

In addition, you can choose specific configuration tasks for the node from the
Services menu, control logging (for the domain) and tracing (for the node) from
the Diagnostics menu, and view or modify domain resources by selecting one of
the items on the Windows menu.

Resource Items
The layout of the resources in a window shows the relationships among them.

If an item has one or more child items associated with it, an Expand button or
Contract button appears next to it. An Expand button indicates that the associated
child items are hidden. You can click on the Expand button to show them. A
Contract button indicates that the child items are shown. You can click on the
Contract button to hide them. If an item has neither button next to it, the item has
no associated child resources.

For example, a link station is associated with a particular port. In the Connectivity
pane of the Node window, the link station is displayed below its parent port, along
with all other link stations associated with that port. The port is always displayed,
but you can choose whether the list of associated link stations is shown or hidden.
Similarly, link stations with a list of associated LUs can be expanded to show the
LUs, or contracted to hide them.

A parent resource must always be configured before its child resources, and
deleting the parent resource causes all its child resources to be deleted.

Tool Bar Buttons
Resource windows include tool bar buttons to make it easy to perform common
functions. A tool bar for Communications Server for Linux is shown in Figure 15.

Not all buttons appear in the tool bars of each resource window. If a button’s
operation is not valid for the currently selected item (or an operation requires an
item to be selected, but none is), the outline of the button is displayed in gray, and
the function cannot be selected (the button cannot be pressed). The following
buttons can appear on resource windows:

Starts the selected item.

Stops the selected item.

Figure 15. Communications Server for Linux Tool Bar

Using the Motif Administration Program

Chapter 2. Administering Communications Server for Linux 47

Adds a new resource item. (In the Node window, you add a resource into
the selected pane.)

Deletes the selected resources.

Opens the dialog for the selected item to view or modify the item’s
configuration.

Copies the selected item. Pressing this button opens a dialog whose fields
duplicate the configuration of the selected item. Complete the dialog’s
fields (filling in the new item’s name) to add the new resource.

Displays the current status of the selected item.

Many resources, such as ports and link stations, cannot be modified while they are
active. You can, however, view an active resource’s parameters by selecting the
resource and clicking on the Properties button to open its dialog, or click on the
Status button to view detailed status information for the resource.

Resource Dialogs
Resource dialogs show the current configuration information for the resource. A
sample dialog for an LU of types 0–3 is shown in Figure 16 on page 49.

Using the Motif Administration Program

48

Resource dialogs guide you through the configuration process and supply default
values whenever possible. For example, when you add a dependent LU, the Motif
administration program automatically fills in the LU number field with an available
LU number on the link station you specify. If you do not supply a required value,
the program presents a message pop-up that indicates the information you need to
provide.

Most dialogs provide a Description field; the information you enter there is
displayed on the window where the resource is displayed.

If you are permitted to change the information in a resource dialog (when you are
adding a new item or modifying an existing one), the dialog includes OK and
Cancel buttons. Press the OK button when you are finished, or the Cancel button
to exit without changing the configuration for the resource.

Figure 16. Sample Dialog

Using the Motif Administration Program

Chapter 2. Administering Communications Server for Linux 49

If you cannot change the information in a resource dialog (for example if the
resource’s configuration cannot be modified while it is active), the dialog includes
a Close button instead of an OK button. Click this button when you are finished
viewing the information in the dialog.

For context-sensitive help on the dialog, click on the Help button.

Note: The basic Motif dialogs expose only the key configuration fields;
Communications Server for Linux supplies default values for advanced
fields. To access advanced configuration parameters, click on the Advanced
button. If you decide to adjust advanced parameters, complete the basic
dialog before opening the advanced dialog, because that dialog can change
depending on the values you enter for basic parameters. For information
about advanced configuration fields, see the online help for the Motif
administration program.

Status Dialogs
When you select a resource and click on the Status button, the Motif
administration program shows detailed status information for the resource, as
shown in Figure 17.

Status dialogs show information about the current state of the resource. The
information is updated dynamically as you view it.

Figure 17. Sample Status Dialog

Using the Motif Administration Program

50

Help Windows
The online help for the Motif administration program provides detailed guidance
for each configuration task you need to perform. In particular, task sheets can take
you through each step you need to perform in configuring a particular resource.
The task sheet for configuring node parameters (always the first step in
configuring Communications Server for Linux) is shown in Figure 18.

Additional help windows are included for each window and dialog, for error
messages, and for SNA concepts.

Using the Command-Line Administration Program
Command-line configuration enables you to change all Communications Server for
Linux configuration parameters. You can use it to configure any of the resources
that are available through the Motif administration program, and can set or change
configuration parameters that are not exposed in the Motif program. However, this
administration method typically requires that you supply more information than is
required for Motif administration. In addition, you must make sure that the

Figure 18. Sample Help Window

Using the Motif Administration Program

Chapter 2. Administering Communications Server for Linux 51

information you provide is valid and consistent with existing resource definitions.
(The Motif administration program is recommended because it ensures the data
you enter is consistent. In addition, it can infer many configuration values based
on menu and dialog choices, and fill in values based on available definitions.)

Most administration commands are used with the snaadmin command-line
administration program. You can issue snaadmin commands in the following form:

snaadmin command, parameter1=value1, parameter2=value2,
{subrecord_name1}, sub_param1=sub_value1,
sub_param2=sub_value2...

You can get help for snaadmin command-line administration by using any of the
following commands:
v snaadmin -h provides basic help for command-line administration and usage

information for command-line help.
v snaadmin -h -d provides a list of commands that can be supplied to the

snaadmin program.
v snaadmin -h command provides help for the named command.
v snaadmin -h -d command provides detailed help for the named command,

including a list of the configuration parameters that can be specified with the
command.

Some commands can be issued from an IBM Remote API Client, provided the
command includes the -n option to specify a server name. Such a command has
the same effect as if it were issued at the named server.

The remainder of this section summarizes administration commands for different
types of resources. Some of the types of commands listed are as follows:

status_*
Provides summary information for types of resources.

define_*
Creates a new define_* record in the configuration file, or replaces an
existing record for the same resource with the new definition.

delete_*
Removes the corresponding define_* record from the file.

query_*
Returns information from the configuration file on the appropriate
component, but does not modify the file.

set_* Controls management functions such as tracing and logging parameters.

For complete information about command-line configuration, refer to IBM
Communications Server for Linux Administration Command Reference.

Using the Command-Line Administration Program

52

Chapter 3. Basic Configuration Tasks

This chapter provides an overview of configuration tasks and explains how to
configure the Communications Server for Linux node. It also explains how to
configure master and backup servers when Communications Server for Linux is
used in a client/server environment.

Configuring Client/Server Functions
This section is relevant only if you installed Communications Server for Linux to
run in a client/server environment (with multiple Communications Server for
Linux nodes in the same network).

Many resources, such as ports and LUs, are configured on an individual node.
These are known as “node resources.”

Other resources, are common to all nodes; only one definition for the resource is
maintained for the entire domain. Such resources are known as “domain
resources.” Domain resource definitions are stored only on the master server for
the domain, and are accessible from all the nodes in the domain.

Note: A standalone Communications Server for Linux system has only one server;
that server always acts as the master.

In a client/server environment, a server can be marked as a configuration server;
Communications Server for Linux maintains a list of these configuration servers.
The first server listed is the master server, and any other servers listed are backup
servers. The servers are listed in order, so that the second server listed (the first
backup server) takes over if the master server is unavailable, the third server listed
(the second backup server) takes over if neither the master nor the first backup
server is available, and so on.

When any of the nodes in the domain are active, the first available configuration
server in the domain (the first server that can be contacted and has
Communications Server for Linux software running) becomes the master server. If
the current master becomes unavailable (because it cannot be contacted, perhaps
due to a network failure, or because the SNA software running on it is stopped),
the next available configuration server in the list becomes the new master.

Communications Server for Linux can run without a master. This happens if none
of the servers in the configuration server list can be contacted. If this happens, you
can view and configure node resources only on the servers that can be contacted.

Note: You cannot directly indicate which node acts as the master server; the
master server is selected based on the order in which nodes are added to the
configuration server list. If you wish to move a server to the top of the list,
remove all other nodes from the list and then add them again.

You can also use the following administration commands to query, add, and delete
configuration servers:

query_sna_net
Lists the servers in the file.

© Copyright IBM Corp. 2000, 2009 53

add_backup
Adds a new server to the end of the list.

delete_backup
Removes a server from the list. You can use the delete_backup command
to delete either the master server (so that the second server listed takes
over as master) or a backup server (so that it can no longer act as the
master).

Note: You cannot delete a server if it is the only server listed on which the
Communications Server for Linux software is running, because in this case
there is no other server that can take over as the master server. At least one
enabled master server is required in a client/server configuration.

Chapter 10, “Managing Communications Server for Linux Client/Server Systems,”
on page 123 provides information about advanced Client/Server configuration,
including how to move clients and servers into different Communications Server
for Linux domains and how to configure the details of client operation.

Configuring the Node
The first step in configuring Communications Server for Linux on a system is to
configure the local node. Node configuration provides the basic information that
the node needs in order to participate in an APPN network. You must configure
the node before you can define connectivity or other resources for the node.

If the node has already been configured, you must stop the node before changing
the node configuration.

To configure the node, use one of the following methods:

Motif administration program
Select Configure node parameters from the Services menu on the Node
window.

Command-line administration program
Issue the define_node command.

Advanced parameters for node configuration provide control over sessions with
undefined partner LUs, reporting of security failures, and limited resource
timeouts.

Node Configuration Parameters
You need the following information for node configuration:

APPN support
Level of APPN support for the node:
v If your network is not an APPN network, configure the node as a LEN

node.
v To participate in an APPN network in which another node provides

session routing services, or to use DLUR only on the local node,
configure the node as an end node.

v To provide intermediate routing services in an APPN network, or to
provide passthrough DLUR services to downstream nodes, configure the
node as a network node.

Configuring Client/Server Functions

54

v To provide session routing services to other nodes in a branch network
that are not part of the main APPN backbone network, configure the
node as a branch network node.

Control point name
Fully qualified control point name for the local node. Because this name
may need to be configured on other nodes in the network, consult with
your SNA network planner to determine the name.

When you define the control point, Communications Server for Linux
automatically defines a local LU with the same name. That LU can act as a
default local LU for the node.

Control point alias
Local alias for the default local LU. Supply this value if the default local
LU is used by independent LU 6.2 LUs.

Node ID
Identifier for the PU on the local node. Supply a value only if the node
will be used for dependent traffic using the default (control point) LU.

Additional Configuration
After configuring the node, continue with the following configuration tasks:
v Configure connectivity as described in Chapter 4, “Defining Connectivity

Components,” on page 59.
v Configure node resources (LUs) as described in Chapter 6, “Configuring APPC

Communication,” on page 79 or Chapter 7, “Configuring User Applications,” on
page 101.

v Configure applications as described in Chapter 7, “Configuring User
Applications,” on page 101.

Configuring Logging
Communications Server for Linux writes log messages describing abnormal events
(and, optionally, normal events) to log files. When you try to diagnose a problem,
the first place to look is in the log files, because the log messages provide
information about the cause of the problem and the action you should take.

Communications Server for Linux logs messages for the following categories of
event:

Problem
An abnormal event that degrades the system in a way perceptible to a user
(such as abnormal termination of a session).

Exception
An abnormal event that degrades the system but that is not immediately
perceptible to a user (such as a resource shortage), or an event that does
not degrade the system but may indicate the cause of later exceptions or
problems (such as receiving an unexpected message from the remote
system).

Audit A normal event (such as starting a session).

Communications Server for Linux also maintains a usage log file, which is used to
record information about the current and peak usage of Communications Server
for Linux resources.

Configuring the Node

Chapter 3. Basic Configuration Tasks 55

To distinguish between logs relating to normal and error conditions, the different
message categories are logged to different files. Problem and exception messages
are logged to the error log file; audit messages are logged to the audit log file.

If you find that a particular event is occurring frequently and so the log file is
filling up with many instances of the same log message, you can set a filter to
specify that one or more specific log messages should be logged only once. Any
subsequent instances of the same log message will be ignored and will not be
written to the log file. This filtering applies to all types of logs: audit, exception,
and problem logs. For more information about filtering logging, refer to IBM
Communications Server for Linux Diagnostics Guide.

Communications Server for Linux also provides a backup mechanism to prevent
log files from becoming too large and consuming disk resources. When a log file
reaches the maximum permitted size, Communications Server for Linux copies its
current contents to a backup file and then clears the log file.

By default, Communications Server for Linux uses the following log files:

Error log file
/var/opt/ibm/sna/sna.err

/var/opt/ibm/sna/bak.err (backup)

Audit log file
/var/opt/ibm/sna/sna.aud

/var/opt/ibm/sna/bak.aud (backup)

Usage log file
/var/opt/ibm/sna/sna.usage

/var/opt/ibm/sna/bak.usage (backup)

You can view the log files using a text editor or other Linux system utilities:

vi View the file in a text editor. This allows you to move through the file
forwards or backwards, and to search for particular entries.

pg View a file one page at a time. This utility is simple and easy to use but
useful only if the log file is small.

tail View the tail (end) of a file. The end of the file is where the most recent log
messages are. Use this utility with the -f option to monitor the log file
while the system is running.

If you selected succinct rather than verbose logging, you can use the snahelp
command to determine the cause and action information for a particular message
number.

For most purposes, the default settings for logging are sufficient, but you can make
the following types of changes:
v Indicate what categories of messages are to be logged.

Problem messages are always logged and cannot be disabled. Logging is
normally disabled for the other two message categories, but you can enable it if
necessary.

v Specify the level of detail in logging messages.
v Specify central logging for the domain or local logging for each node
v Change log file names and sizes.

Configuring Logging

56

To configure logging, use one of the following methods:

Motif administration program
Select Logging from the Diagnostics menu on the Node window or the
Domain window.

Command-line administration program
Issue one of the following commands:
v set_central_logging

v set_global_log_type

v set_log_type

v set_log_file

The Logging dialog in the Motif administration program affects log settings
throughout the domain. Using the command line, you can override the domain
settings by configuring local log settings on a particular machine.

In addition to providing control over logging, the Motif administration program
provides node-level control over tracing. The command-line interface provides
greater control over both logging and tracing functions. For more information
about logging and tracing, refer to IBM Communications Server for Linux Diagnostics
Guide.

Configuring Logging

Chapter 3. Basic Configuration Tasks 57

58

Chapter 4. Defining Connectivity Components

In order for the Communications Server for Linux node to communicate with other
nodes, you must configure connectivity with at least one adjacent node. A
connecting link can be configured to carry dependent traffic, independent traffic, or
both.

You can have adapter cards for one or more link protocols installed in your
computer. Much of the information you need to enter to configure connectivity
depends on the link protocol you are using. The remote node must also have an
adapter card of the same type you choose, or there must be a bridge or router
between the local and remote nodes. For a list of the link protocols supported by
Communications Server for Linux, see “Defining DLCs, Ports, and Connection
Networks” on page 60.

To configure a link, you need to define a port as described in “Defining DLCs,
Ports, and Connection Networks” on page 60. In addition (in most cases), you
must configure a link station as described in “Defining Link Stations” on page 64.
If LUs on the local node are to communicate with a host using DLUR, you must
also define a DLUR PU on the local node as described in “Defining DLUR PUs” on
page 71.

When using the Motif administration program, a data link control (DLC) is
automatically configured as part of the configuration for the port. In addition, you
have the option of defining the port as part of a connection network. When using
command-line configuration, this configuration is separate from port configuration.

The information required for link configuration depends on the link protocol,
whether your network is an APPN network, and on whether the link is for
dependent traffic, independent traffic, or both. In addition, the links that you need
to configure depend on what kind of communication you need to support:

LUA If you are going to use LUA, you need to configure a link to the host
computer. The link must be configured for dependent traffic, and it must
be configured on the host computer as well as on the Communications
Server for Linux node, so consult your SNA network planner.

Using CPI-C or APPC
If you are going to use CPI-C or APPC and your network is not an APPN
network, you need to configure links to all the adjacent nodes that you
want to access. These links must be configured for independent traffic, and
they must be configured on the adjacent nodes as well as on the
Communications Server for Linux node, so you may need to consult your
SNA network planner.

Operating as an APPN Node
If the Communications Server for Linux node is an end node or network
node in an APPN network, the number of links that you need to configure
can be greatly reduced. You can configure links to one or more adjacent
network nodes and access all nodes in the APPN network using these
links. If you want to access other adjacent nodes directly, you can configure
links to them too—this is not usually necessary, but it can give better
performance. If the adjacent nodes are connected by a LAN segment or IP
network using Enterprise Extender, direct links can be set up dynamically

© Copyright IBM Corp. 2000, 2009 59

so you don’t need to configure them—just make sure that you configure
the network as a connection network when you define the port.

The benefits of APPN networking are always available for and
independent APPC, but they do not apply to LUA unless you use DLUR.
(DLUR supports communications between a host and dependent LUs on
the local node or on downstream nodes in an APPN network.) You can use
DLUR only if your host supports DLUS, so you should consult your SNA
network planner if you are interested in using DLUR.

Defining DLCs, Ports, and Connection Networks
A port represents the local end of a communications link as a unique access point
in the network. Each port is associated with a specific link protocol, which can be
any of the following:
v SDLC
v Token ring
v Ethernet
v X.25 or QLLC (qualified logical link control)
v Multipath Channel (MPC) (Communications Server for Linux on System z only)
v Enterprise Extender (HPR/IP)

You can configure more than one port that uses a particular link protocol. In
general, a port corresponds to a single physical access point such as an adapter
card, but some link protocols (such as token ring) enable you to define multiple
ports for a single adapter. The different ports are distinguished by addresses (such
as the SAP number).

When you use the Motif administration program to define a port for a particular
link protocol, Communications Server for Linux automatically defines a DLC for
the port if a DLC of that type has not already been defined. For command-line
configuration, you must define the port and DLC using different commands.

In an APPN network using token ringlink protocols, you can also use the SAP
Configuration dialog to indicate that the port is part of a connection network.

If you are using SNA gateway, you can define a template that is used to generate
definitions for implicit link stations (link stations that are not explicitly configured).
Implicit link stations can support downstream LUs. If implicit PU fields are
modified while the port is active, the changes affect any implicit link station
instances generated after the change.

To configure a port, connection network, and DLC, use one of the following
methods:

Motif administration program
Select Connectivity and New port from the Services menu on the Node
window.

Command-line administration program
To configure a DLC:

define_type_dlc

To configure a port:

Defining Connectivity Components

60

define_type_port

In these commands, type indicates the link protocol type (sdlc, tr,
ethernet, qllc, mpc, ip).

To configure a connection network:

define_cn

Advanced port configuration parameters provide control over BTU size, the
number of active links permitted, generation of implicit downstream LUs, and
settings for dynamic link stations.

DLC, Connection Network, and Port Configuration Parameters
The following parameters are required for port configuration. (When you use the
Motif administration program, port configuration also supplies information about
the DLC and enables you to assign a port to a connection network.)

SNA port name
The locally known name of the port.

Adapter card number
This field is not used for Enterprise Extender ports.

A number that identifies the adapter card to use, if you have more than
one card of the same type in this computer.

Port number
This field is not used for Enterprise Extender ports.

The number of the port to be used, if the adapter card can support more
than one port. The range of valid port numbers is from 0 to the number of
ports supported by the adapter card minus one. For the first port on the
adapter card, enter 0.

This field applies only if the adapter card can support more than one port.

Initially active
Whether to activate the port automatically when the node is started. This
setting enables link stations that use the port to be activated in response to
requests from adjacent nodes or on demand by the local node. (Activating
the port does not activate any link stations; link stations are activated
separately.)

The following sections describe additional port parameters that are specific to the
link type. No additional port parameters are required for QLLC.

Additional Port Parameters for SDLC
Line details

The following parameters describe the type of SDLC connection:

Type Select one of the following values:

Leased Line
A dedicated line is used for the SDLC link between this
computer and the remote system.

Switched incoming
The standard telephone network is used for incoming calls.

Defining DLCs, Ports, and Connection Networks

Chapter 4. Defining Connectivity Components 61

For a nonprimary port (as indicated by the Link role field),
you also need to configure the poll address (for outgoing
calls, that address is configured on the link station). The
poll address is a one-byte address (C1 by default) that
needs to match the poll address configured at the remote
link station. When active, the port responds to frames sent
with this poll address.

For a primary port, you do not need to configure a poll
address; the port uses the poll address specified by the
remote link station on the incoming call. For other types of
ports, the poll address is configured on each link station.

Switched outgoing
The standard telephone network is used for outgoing calls.

Link role
Select a value that describes the role of the local node for link
stations defined on this port. In SDLC communication, one end
manages the link and is called the primary link station. The other
end is the secondary link station.

Use one of the following values for this field:

Secondary
The other end of the link is to be the controller and the
remote system is configured to be primary. This is nearly
always the case if you are configuring a link to a host
system.

Primary
This port is to act as the SDLC controller of the link, and
the remote system is configured to be secondary.

Negotiable
For maximum flexibility, this setting enables the two ends
to negotiate which end performs the primary role. Choose
this value if you do not know which role is configured for
the remote system.

You can use this setting for a peer link, but be aware that
negotiating the role causes a short delay when the link is
activated.

Primary Multi-drop
The link is leased and this port is to act as controller of a
multi-drop link to several secondary nodes.

Use this setting when you want to configure several link
stations from the local node to different remote nodes (for
example, for links to downstream nodes). Each of these
other nodes must be configured as secondary, and you
must be using a leased line.

Secondary Multi-PU
The local port is one of the secondary stations on a
multi-drop link controlled by the port on the remote
system.

Consult your SNA network planner if you do not know how to configure
any of these parameters.

Defining DLCs, Ports, and Connection Networks

62

Additional Port Parameters for Token Ring and Ethernet
Local SAP number

The address of the SAP, usually 04for Intel and OSA2 adapters.. Use a
different value only if you need to use more than one SAP on the card. For
an OSA-Express adapter, the local SAP number must match that defined in
the OSA/SF for the I/O device addresses that correspond to the ethX
interface on this Linux image.

The SAP number must be a multiple of 4.

If you do not know what value to enter for this field, contact your SNA
network planner.

Define on connection network
Whether the SAP is to access the LAN as a connection network. Defining a
connection network enables links between nodes on the connection
network to be started dynamically, without prior configuration.

This field applies only if the local node is not a LEN node, because LEN
nodes cannot use connection networks.

CN name
The name of the connection network. You do not need to enter the CN
name unless you specified the Define on connection network option to define
the SAP on a connection network. The CN name is used as the name of a
virtual routing node in order to establish links between the nodes on the
connection network.

Specify the same CN name on all nodes on the connection network.

Ethernet type
This field applies only to Ethernet links.

Whether the network is a standard Ethernet network or an IEEE 802.3
network.

Additional Port Parameters for Enterprise Extender (HPR/IP)
Local IP interface

This is an optional field. It allows you to specify the local IP network
interface to be used for the port, if you have access to multiple IP
networks. If you have access to only one IP network, you can leave this
field blank.

If you need to specify the interface, you can use any of the following.
v An interface identifier (such as eth0 or en0).
v An IPv4 dotted-decimal address (such as 193.1.11.100).
v An IPv6 colon-hexadecimal address (such as

2001:0db8:0000:0000:0000:0000:1428:57ab or 2001:db8::1428:57ab).

To determine the interface identifier, run the command ipconfig —a on the
server where the card is installed. This lists the interface identifiers and
their associated IP addresses.

Protocol
Whether links on this port use IPv4 or IPv6 addresses.

Define on connection network
Whether the adapter card is to access the LAN as a connection network.
Defining a connection network enables links between nodes on the
connection network to be started dynamically, without prior configuration.

Defining DLCs, Ports, and Connection Networks

Chapter 4. Defining Connectivity Components 63

This field applies only if the local node is not a LEN node, because LEN
nodes cannot use connection networks.

CN name
The name of the connection network. You do not need to enter the CN
name unless you specified the Define on connection network option to define
the port on a connection network. The CN name is used as the name of a
virtual routing node in order to establish links between the nodes on the
connection network.

Specify the same CN name on all nodes on the connection network.

Additional Port Parameters for Implicit Links
Maximum active template instances

Specify the maximum number of link station instances to be generated
from the template.

Configure downstream LUs for implicit PU access
Whether to configure downstream LUs that use this PU (see “Configuring
SNA Gateway” on page 111).

HPR supported on implicit links
Whether to support High-Performance Routing on implicit link stations.

Link level error recovery on implicit links
Whether to send HPR traffic on implicit links using link-level error
recovery.

Additional Configuration
After performing the port configuration, continue with the following configuration
tasks:
v To define a link station on a port you have configured, see “Defining Link

Stations.”
v To define a DLUR PU, see “Defining DLUR PUs” on page 71.
v To support APPC communication, see Chapter 6, “Configuring APPC

Communication,” on page 79.

Defining Link Stations
To communicate with other nodes in an SNA network, you must configure the
characteristics of a link station (LS) to an adjacent node in the SNA network. Before
you can define a link station, you must define a port for the adapter (and link
protocol) you are using. Most of the information needed to configure a link station
is the same, whatever protocol is being used.

A link station represents the logical path through the SNA network between the
Communications Server for Linux local node and a remote computer. The remote
computer can be any of the following:
v A host computer, on which Communications Server for Linux accesses a host

program using 3270 or LUA communications (or uses APPC or CPI-C for
program-to-program communications)

v A peer computer, with Communications Server for Linux and the remote
computer communicating as equal partners (the typical arrangement in an
APPN network)

v A downstream computer that uses the Communications Server for Linux SNA
gateway feature or DLUR feature in order to access a host

Defining DLCs, Ports, and Connection Networks

64

A link station is associated with a specific port; you can define one or more link
stations on each port.

Each link station that supports dependent traffic has an associated PU (physical
unit). Because PUs are associated with link stations, Communications Server for
Linux does not treat them as separate resources; they are configured as part of link
station configuration, and are started and stopped as part of starting and stopping
link stations. Link stations are shown in the connectivity section of the Node
window; PUs are not shown in any window.

Note: In most circumstances, you need to add a link station to the port. However,
if you want to use a dynamically created link station for downstream SNA
gateway or for APPC traffic only, for situations in which the link is always
activated from the remote node, you do not need to explicitly configure one.

If a remote node attempts to connect to the local node, but no link station is
defined that matches the address specified on the incoming call,
Communications Server for Linux can define one implicitly if a suitable port
has been defined on the local node. This dynamically created link station
appears in the connectivity section of the Node window for the duration of
the connection.

To configure a link station, use one of the following methods:

Motif administration program
Select Connectivity and New link station from the Services menu on the
Node window.

Command-line administration program
Issue the following command:

define_type_ls

In this command, type indicates the link protocol type (sdlc, tr, ethernet,
qllc, mpc, ip).

Advanced parameters for link stations provide additional control over transmission
characteristics, XID exchange, optional link facilities, compression for LU 0–3
sessions using the link, and reactivation procedures.

Link Station Configuration Parameters
In Motif, the Link Station Configuration dialog contains the following sections,
each containing different categories of configuration parameters:

Link station
Use this area of the dialog to provide information that is required for all
link stations, whether they support LU traffic for dependent LUs,
independent LUs, or both. For descriptions of the parameters in this
section, see “Common Link Station Parameters” on page 66.

Independent LU traffic
Provide this information only if you are using the link station for
independent traffic. For descriptions of the parameters in this section, see
“Parameters for Independent LU Traffic” on page 68.

Dependent LU traffic
Provide this information only if you are using the link station for

Defining Link Stations

Chapter 4. Defining Connectivity Components 65

dependent traffic. For descriptions of the parameters in this section, see
“Parameters for Dependent LU Traffic” on page 69.

Common Link Station Parameters
The following parameters are required for all link stations, whether they support
dependent traffic, independent traffic, or both.

For more information about the parameters on this dialog, refer to the online help
or to IBM Communications Server for Linux Administration Command Reference.

Name A name to identify the link station locally.

SNA port name
The port that is to be used to access the adjacent node.

Activation
Method used to activate the link station. Specify one of the following
methods:

By administrator
The link station is activated only on the request of a local System
Administrator.

On node startup
The link station is started automatically when the node starts up.

On demand
The link station is started automatically when required to provide
connectivity for an application.

Link stations are activated separately from ports, so the link station must
be activated even if the port is already active. Activating the port does not
itself activate any link stations, and configuring the port to be initially
active does not mean that any of its link stations are activated
automatically when the node starts up. However, activating a port does
make it possible to activate link stations. A link station cannot be activated
unless the ports are active on both the local node and the adjacent node.

If the link is one for which you are charged for usage, avoid activating the
link unnecessarily, in order to keep the cost down.

If you are not sure how to set this field, consult your SNA network
planner.

LU traffic
The type of LU traffic to flow over the link. This choice determines what
other parameters are needed for link definition.

This parameter is not used for an Enterprise Extender (HPR/IP) link,
because this link type supports only independent traffic.

Any The link station can be used for both independent and dependent
LU traffic. For this option, you must supply values for the fields
described in “Parameters for Independent LU Traffic” on page 68
and “Parameters for Dependent LU Traffic” on page 69, in addition
to those described in this section.

Independent only
The link station can be used only for independent LU traffic. For
this option, you must supply values for the fields described in
“Parameters for Independent LU Traffic” on page 68, in addition to
those described in this section.

Defining Link Stations

66

Dependent only
The link station can be used only for dependent LU traffic. For this
option, you must supply values for the fields described in
“Parameters for Dependent LU Traffic” on page 69, in addition to
those described in this section.

You also need to provide addressing information for contacting the adjacent node.
The type of addressing information needed depends on the DLC type of the port.
If you do not supply an address for the remote node, the link station acts as a
nonselective listening link station, accepting incoming calls from any remote node.

Additional Link Station Parameters for SDLC:

Poll address
The poll address of the remote station. Specify the address as a two-digit
(one-byte) hex value, typically starting at C1. A primary link station polls
the remote station using this value. A secondary link station responds to
polling with this value. The poll address is entered differently depending
on the link role:
v If the link is a point-to-point link (not multi-drop), the address C1 is

normally used.
v If the parent port for this link is switched incoming, the poll address is

configured on the port and cannot be configured independently for each
link station.

v If you are configuring a primary switched outgoing link station, and you
do not know the poll address of the remote secondary with which you
wish to communicate, you can specify a poll address of 0xFF on the
primary. This value enables the node to accept responses from a
secondary, regardless of the poll address it has configured. 0xFF is not a
valid address for a nonprimary link or a link that is not switched
outgoing.

v If you are using a multi-drop configuration, all the secondary link
stations that communicate with the same primary must have different
poll addresses.

The poll addresses at both ends of the link must match. Contact your SNA
network planner if you do not know the address configured at the remote
system.

On a VTAM host, the poll address is configured as the ADDR= parameter
in the VTAM PU definition.

On an AS/400 system, the poll address is the STNADR parameter of the
Line Description.

Additional Link Station Parameters for Token Ring and Ethernet:

MAC address
The MAC address of the remote station, entered as a series of hexadecimal
digits. The MAC address uniquely identifies the adapter card on the
remote system.

If you do not know what value to use, consult your SNA network planner.

If the remote end of this link is a VTAM host, you can find its MAC
address in the MACADDR= parameter of the VTAM Port definition.

If you are configuring a link to an AS/400 system, the MAC address is the
ADPTADR parameter in the Line Description.

Defining Link Stations

Chapter 4. Defining Connectivity Components 67

SAP number
The SAP number of the port on the remote computer. The SAP number
distinguishes between different links using the same adapter card. This is a
hex number, normally 04. It must be a multiple of 4.

If you do not know what value to use, consult your SNA network planner.

If the remote end of this link is a VTAM host, the SAP number is the
SAPADDR= parameter of the VTAM PU definition.

If you are configuring a link to an AS/400 system, the SAP number is the
SSAP parameter in the Line Description.

Additional Link Station Parameters for X.25 (QLLC):

Remote X.25 address
If the link is a switched virtual circuit, enter the DTE address of the remote
DTE as a series of hexadecimal digits.

If the link is a permanent virtual circuit, enter the channel ID that identifies
the virtual circuit the link station is to use. Channel IDs are numbered
from 1 up to a maximum of 1024. If you have only one permanent virtual
circuit, its channel ID is likely to be 1.

Additional Link Station Parameters for MPC:

MPC group
The MPC (MultiPath Channel) group name specified in the MPC driver
configuration to identify a particular channel.

Additional Link Station Parameters for Enterprise Extender (HPR/IP):

Remote IP host name
Remote host name of the destination node for this link. The hostname can
be any of the following; the protocol parameter on the port that this link
uses determines whether the address should be in IPv4 or IPv6 format.
v An IPv4 dotted-decimal address (such as 193.1.11.100).
v An IPv6 colon-hexadecimal address (such as

2001:0db8:0000:0000:0000:0000:1428:57ab or 2001:db8::1428:57ab).
v A name (such as newbox.this.co.uk).
v An alias (such as newbox).

If you specify a name or alias, the Linux system must be able to resolve
this to a fully qualified name (either using the local TCP/IP configuration
or using a Domain Name server).

Parameters for Independent LU Traffic
You need the following information to configure this link station for use by
independent LUs (LUs of type 6.2 for use by APPC, 5250, or CPI-C applications):

Remote node name
The fully qualified CP name of the remote node.

If the remote system is a VTAM host, you can find the network name (the
first eight characters of the fully qualified name) in the NETID parameter
of the VTAM start list. The last eight characters are in the SSCPNAME
parameter of the VTAM start list.

Note: If you enter the name of a new remote node, you can add a
definition for the remote node to enable you to define partner LUs

Defining Link Stations

68

on the new remote node. If the local node is a LEN node, you do
not need to specify the remote node type, and the Remote node type
field does not apply.)

To define a new remote node in this way, specify the remote node
type as a value other than Discover, as well as specifying the remote
node name.

Alternatively, you can specify Discover and leave the remote node
name empty. This means that any adjacent node can use the link
station. The Discover option is not available if the local node is a
LEN node.

Remote node type
The level of APPN support on the remote node that is accessed through
this link station (only applicable if the local node is an end node or
network node).

If you do not know whether the remote node is a LEN node or end node
or whether it is a network node, you can choose Discover. Discovering the
level of APPN support on the remote node can delay link activation
slightly, so if you do know the type it is better to specify it. This also helps
to ensure network configuration consistency.

You cannot choose Discover if the link station is activated on demand.

If the local node is a LEN node, this field does not apply.

Branch link type
The type of link to the remote node that is accessed through this link
station (only applicable if the local node is a branch network node).

If the remote node is a network node within the main APPN backbone,
choose Uplink (to backbone). If the remote node is an end node within the
branch, choose Downlink (within branch).

If the remote node is configured to be a network node, the branch link
type is automatically set to Uplink (to backbone) and you cannot change
it.

Parameters for Dependent LU Traffic
These parameters do not apply to an Enterprise Extender (HPR/IP) link, because
this link type supports only independent traffic.

Configuring a link station for dependent LU traffic automatically creates an
appropriate PU with the same name as the link station.

You need the following information to configure a link station for use by
dependent LUs (LUs of type 0–3 for 3270 or LUA applications):

Local node ID
A value to identify the local node in the SNA network.

You can usually use the same node ID (the default value) for all the links
on the same node. However, if you need more than 255 dependent LUs to
access a specific host, you must configure multiple link stations to the host,
each with up to 255 dependent LUs, and each with a different local node
ID.

To ensure that the remote node is configured to recognize the local node
ID, contact your SNA network planner.

Defining Link Stations

Chapter 4. Defining Connectivity Components 69

In a VTAM configuration, the first three digits should match the IDBLK
parameter in the PU definition, and the last five should match the IDNUM
parameter.

On an AS/400 system, the node ID is configured in the EXCHID
parameter.

Remote node ID
The node ID for the remote link station (optional; only applicable if you
need to restrict access to this link station). If you specify the remote node
ID, the link is activated only if the node ID of the remote node matches the
value specified in this definition. This can be useful if you have several
link stations configured on a switched port, because it enables the link
stations to be distinguished when they are activated by the remote nodes.
Link stations can also be distinguished by the CP name of the remote
node, but for remote nodes that do not send their CP name when
activating a link, the remote node ID must be used instead.

If you do not specify the remote node ID, the node ID of the remote node
is not checked when the link is activated.

Remote node role
The role of the remote (adjacent) node:

Host The link station supports dependent LUs (such as 3270 LUs) that
are used for sessions with a host computer (the most common
case). If the link is to a node that provides host connectivity using
SNA gateway or DLUR, the adjacent node role should still be set
to Host, even though the link is not directly to a host computer.

Downstream (SNA gateway)
The link station is to a downstream node that will communicate
with a host using the SNA gateway capabilities of the local node
(to the host, the LUs on the downstream node appear to reside on
the local node).

Downstream (DLUR)
The link station is to a downstream node that will communicate
with a host using the DLUR capabilities of the local node. (To the
host, the LUs on the downstream node appear to reside on the
local node.)

Such links can be used only if the local node is an APPN network
node.

Downstream PU name
The PU name associated with the downstream node. This value must
match the PU name that is configured for the downstream node on the
host computer. If you do not know the value to use for this name, consult
your SNA network planner.

This field applies only if you specified that this link station is to a
downstream PU that will communicate with a host using the DLUR
capabilities of the local node. You can indicate this by specifying
Downstream (DLUR) for the Remote node role field.

For more information, see “Defining DLUR PUs” on page 71.

Upstream DLUS name
The fully qualified LU name of the host LU that supports DLUS (the LU
server that the downstream PU is to access). If you do not know the value
to use for this name, consult your SNA network planner.

Defining Link Stations

70

This field applies only if you specified that this link station is to a
downstream PU that will communicate with a host using the DLUR
capabilities of the local node. You can indicate this by specifying
Downstream (DLUR) for the Remote node role field.

Additional Configuration
After performing the link station configuration, continue with the following
configuration tasks:
v To define a DLUR PU, see “Defining DLUR PUs.”
v To configure passthrough services, see Chapter 8, “Configuring Passthrough

Services,” on page 103.
v To support specific user applications, see Chapter 7, “Configuring User

Applications,” on page 101.
v To support APPC communication, see Chapter 6, “Configuring APPC

Communication,” on page 79.

Defining DLUR PUs
Normally, a dependent LU session requires a direct communications link to the
host computer. If many nodes (including a host node) are connected together in an
APPN network, some of them may not have a direct connection to the host, but
only an indirect connection through another node. It is not possible to establish
dependent LU sessions to the host from LUs in these indirectly connected nodes.

Dependent LU requester (DLUR) is an APPN feature designed to overcome this
limitation.

This section explains how to configure a DLUR PU that provides connectivity to a
host computer. Configuring a DLUR PU enables the local node to provide DLUR
services.

DLUR on an APPN node (such as a node running Communications Server for
Linux) works in conjunction with dependent LU server (DLUS) at the host, to
route sessions from dependent LUs on the DLUR node across the APPN network
to the DLUS host. The route to the host can span multiple nodes and can take
advantage of APPN’s network management, dynamic resource location, and route
calculation facilities. DLUR must be available on the node where the LUs are
located, and DLUS must be available on the host node, but DLUR is not required
on any intermediate nodes in the session route.

If the Communications Server for Linux DLUR node is a network node, it can also
provide passthrough DLUR facilities for dependent LUs on downstream computers
connected to the Communications Server for Linux node. These LUs can use DLUR
on the Communications Server for Linux node to access the host across the
network, in the same way as for LUs internal to the node.

To provide passthrough DLUR services to a downstream node, you must first
configure (on the local node) the PU name associated with the downstream node.
This value must match the PU name that is configured for the downstream node
on the host computer.

To configure a DLUR PU, use one of the following methods:

Defining Link Stations

Chapter 4. Defining Connectivity Components 71

Motif administration program
Select Connectivity and New DLUR PU from the Services menu on the
Node window.

Command-line administration program
Issue the following command:

define_internal_pu

DLUR PU Configuration Parameters
The following parameters are required for DLUR PU configuration:

PU Name
For each DLUR PU on the local node, specify a PU name. This name
should match the PU name configured on the host. (Communications
Server for Linux sends both the PU name and PU ID to the host to identify
the PU. The host normally identifies the PU by its PU name, or by the PU
ID if it cannot find a matching PU name.)

DLUS Name
The fully qualified LU name of the host LU that supports DLUS.

In order to use DLUR, the DLUR component of Communications Server
for Linux has to establish an LU-LU session with the DLUS on the host.

Contact your SNA network planner to determine the name of the host LU.

Backup DLUS Name
This parameter is optional. The fully qualified LU name of a backup host
LU that can be used if the one specified by DLUS Name is unavailable.

Contact your SNA network planner to determine the name of the host LU.

PU ID The PU ID of the PU on the local node that supports connectivity to the
host. The PU ID comprises two hexadecimal strings, one of three digits
(known as the block number), and one of 5 digits.

Each dependent LU is associated with a PU. Both the PU and the LU are
configured on the host computer. For each PU, you need to define a DLUR
PU on the Communications Server for Linux node. The PU ID must match
the PU ID configured at the host for this PU.

In many cases the PU ID is the same as the node ID, so the node ID is the
default. However, if you need more than 255 dependent LUs to access a
specific host, you need to configure multiple DLUR PUs, each with up to
255 dependent LUs, and each with a different PU ID.

If you are not sure how to set this field, consult your SNA network
planner.

In a VTAM configuration, the first three digits should match the IDBLK
parameter in the PU definition, and the last five digits should match the
IDNUM setting.

Initially active
Whether the DLUR PU is to be activated automatically when the node is
started. If you do not set this option, the DLUR PU must be started
manually.

Compression supported
Whether data compression is supported for LU 0–3 sessions using this PU.

Defining DLUR PUs

72

If you set this option, compression will be used if the host requests it. If
you do not set this option, compression will not be used.

Retry contacting DLUS indefinitely
Whether Communications Server for Linux retries the attempt to contact
the DLUS if it fails on the first attempt. If you set this option,
Communications Server for Linux will retry indefinitely if the first attempt
fails. If you do not set this option, it will only retry once.

Parameters for Passthrough DLUR for Downstream Nodes
You need the following information in order to configure Communications Server
for Linux to use passthrough DLUR to transport traffic between dependent LUs on
downstream nodes and a host:

Downstream PU name
The PU name associated with the downstream node. The PU name must
match the PU name configured on the host computer.

A downstream node can support multiple PUs. In this case, each
downstream PU is associated with a different link, so you need to
configure multiple links between the Communications Server for Linux
DLUR node and the downstream node, and you need to know the
downstream PU name for each link.

Consult your SNA network planner to find out the PU names associated
with the downstream nodes.

DLUS name
The fully qualified LU name of the host LU that supports the DLUS. In
order to use DLUR, the DLUR component of Communications Server for
Linux has to establish an LU-LU session with the DLUS on the host.

Consult your SNA network planner to find out the LU name for the host
DLUS server.

Additional Configuration
After configuring DLUR, continue with the following configuration tasks:
v To configure LUs for DLUR, see “Configuring DLUR” on page 113.
v To configure other passthrough services, see Chapter 8, “Configuring

Passthrough Services,” on page 103.
v To support specific user applications, see Chapter 7, “Configuring User

Applications,” on page 101.
v To support APPC communication, see Chapter 6, “Configuring APPC

Communication,” on page 79.

Defining DLUR PUs

Chapter 4. Defining Connectivity Components 73

Defining DLUR PUs

74

Chapter 5. Configuring Dependent LUs

This chapter provides instructions for configuring LUs and LU pools to support
user applications that use 3270, TN3270and LUA communications. To use these,
you must configure dependent LUs.

Before you can configure the resources described in this chapter, you must perform
the following configuration:
v Configure the node as described in “Configuring the Node” on page 54.
v Configure connectivity as described in Chapter 4, “Defining Connectivity

Components,” on page 59. For 3270, TN3270and LUA, you must configure the
link to support dependent LU traffic.
You do not need to configure a direct link to the host if you are using upstream
SNA gateway or DLUR. For more information, see “Configuring SNA Gateway”
on page 111 and “Defining DLUR PUs” on page 71.

Defining LU Types 0–3
You must configure dependent LUs of types 0–3 to support communication with a
host system. You can use the information in this section to define an LU to support
3270 or LUA. You can also define a range of LUs, to configure multiple LUs of the
same type in a single operation.

To configure an LU of types 0–3, use one of the following methods:

Motif administration program
Select one of the following from the Services menu on the Node window.
v 3270 and either New 3270 display LU or New 3270 printer LU

v LUA and New LUA LU

v TN server and New host LU

Command-line administration program
Issue one of the following commands:

define_lu_0_to_3

define_lu_0_to_3_range

You can use the advanced dialog to restrict access to a specific SSCP, or to specify
an inactivity timeout.

LU Types 0–3 Configuration Parameters
The following parameters are required for LU types 0–3 configuration:

LU name
An LU name of 1–8 characters (for a single LU) or a base name of 1–5
characters (for a range of LUs, a prefix is added to the base name to form
all of the names for the LUs that are defined).

The LU name is used only locally; it does not need to correspond to a
name defined on the host.

© Copyright IBM Corp. 2000, 2009 75

Host LS/DLUR PU
The link station that provides the link to the host. The LU definition
belongs to the link station you select. (If the dependent LU resides on a
node that supports DLUR, this field identifies the DLUR PU that provides
connectivity to the host.)

LU numbers
An LU number or range of LU numbers. LU numbers can be from 1–255.

The LU numbers must correspond to those in the host VTAM
configuration. If you do not know what numbers are configured on the
host, consult your SNA network planner.

LU type
One of the following LU types (depending on the type of LU you are
configuring):
v For a 3270 display LU, specify the appropriate model based on the

screen size:
– 3270 model 2 (80x24)

– 3270 model 3 (80x32)

– 3270 model 4 (80x43)

– 3270 model 5 (132x27)

v For a printer LU, specify one of the following:
– 3270 printer

– SCS printer

v If you do not know the LU type, if the LU is used to support SNA
gateway from the local node to the host (an upstream LU), or if the LU
is for an LUA application, specify Unrestricted (unknown for
command-line configuration).

The LU type should match the configuration of the LU at the host. If
necessary, the LU type configured at the host takes precedence.

Depending on the value you specify, Communications Server for Linux
sends one of the following strings to the host in the DDDLU NMVT, to
match the values used in the standard VTAM tables:

3270002 for 3270 model 2
3270003 for 3270 model 3
3270004 for 3270 model 4
3270005 for 3270 model 5
3270DSC for 3270 printer
3270SCS for SCS printer
3270000 for RJE workstation
327000n for Unrestricted with a TN3270 client, where n is the model
number (2–5) provided by the client
327000@ for Unrestricted with an LUA client

If you are using this LU with TN Server and DDDLU at the host, the LU
may not be configured at the host. In this case, the LU type you specify
here is used to define the LU on the host dynamically. Specify
Unrestricted (unknown for command-line configuration) if you want the LU
model type to be defined to match the type requested by the downstream
TN3270 client. Communications Server for Linux normally determines the
LU model using a standard mapping from the terminal type (device type)
specified by the client; if you need to change this mapping, you can do this
using the tn3270dev.dat file as described in Appendix C, “Configuring
TN3270 LU models for DDDLU,” on page 179.

Defining LU Types 0–3

76

LU in pool
Whether the LU is assigned to an LU pool.

Note: If you assign this LU to an LU pool, and assign a user’s session to
this LU, the user’s session uses this LU if it is available; otherwise it
uses any free LU from the pool, as though you had assigned it to
the LU pool instead of the specific LU. If you want the user to use
only a specified LU, so that the user’s session cannot be established
if the LU is already in use, ensure that the LU is not in a pool.

Pool name
The name of the LU pool.

Additional Configuration
After performing the LU type 0–3 configuration, continue with the following
configuration tasks:
v To use a pool of dependent LUs for a 3270 display, for TN3270 or for LUA,

define the LU pool as described in “Defining LU Pools.”
v For TN3270, define TN3270 client access records as described in “Configuring

TN Server” on page 103.

Defining LU Pools
For 3270, TN3270 and LUA, you can define LU pools to simplify user
configuration and provide greater flexibility in establishing host sessions.

Note: You can assign a user’s session either to a specific LU or to an LU pool.
v If you assign the user’s session to a specific LU that is in a pool, the

session uses this LU if it is available; otherwise it uses any free LU from
the pool, as though you had assigned it to the LU pool instead of the
specific LU.

v If you want the user to use only a specified LU, so that the user’s session
cannot be established if the LU is already in use, ensure that the LU is not
in a pool.

LU pools can even span multiple Communications Server for Linux servers—just
define LU pools with identical names on the different servers. If a server fails or is
taken out of service, clients that use the LU pool can then use a different server.
Using LU pools also simplifies client configuration and makes it easy to increase
capacity by adding another server or by adding LUs on an existing server.

You can view all of the LU pools for the Communications Server for Linux domain
using the LU Pools window. This window lists the LU pools configured in the
system, and enables you to select LUs to add to an LU pool. The individual LUs in
an LU pool are listed below the LU pool.

An LU is identified as follows:
v 3270 display LU
v Unrestricted LU
v SCS Printer
v 3270 Printer

Defining LU Types 0–3

Chapter 5. Configuring Dependent LUs 77

Do not mix LUs of different types in the same pool (for example, do not put
display and printer LUs into the same pool). It is unlikely that you will need a
pool of printer LUs unless you are supporting TN3270E clients.

To configure an LU pool, use one of the following methods:

Motif administration program
Select LU Pools from the Windows menu on the Node window, then
choose New to add a pool.

Command-line administration program
Issue the following command:

define_lu_pool

LU Pool Configuration Parameters
The following parameters are required for LU pool configuration:

Name A name to identify the LU pool. This field applies only when you are
adding a new LU pool. You cannot change the name of an existing pool.

Assigned LUs
LUs to be assigned to the pool. An LU can only be a member of one pool.

Defining LU Pools

78

Chapter 6. Configuring APPC Communication

APPC applications, 5250 emulation programs, and CPI-C applications all require
that you configure APPC first. An APPC application uses the node’s LU type 6.2
resources to communicate with another APPC or CPI-C application on a host or
peer computer, using a specified mode.

If the applications use CPI-C, you may need to do additional CPI-C configuration
after configuring APPC. A CPI-C application uses the node’s LU type 6.2 and
mode resources to communicate with another APPC or CPI-C application on a host
or peer computer. You define the same resources for a CPI-C application as for an
APPC application. In addition, if the TP on the Communications Server for Linux
computer is the invoking TP (the TP that starts the conversation), you may need to
define one or more side information entries for it, as described in “Defining CPI-C
Side Information” on page 96. Each of these entries provides information on a
partner TP, the LU and mode resources used to access it, and any security
information required.

The configuration steps for APPC depend on whether the LU 6.2 traffic is
dependent or independent. Unless the remote node is a host, you must use
independent traffic. If the remote node is a host, you can use either dependent or
independent traffic.

Before you can configure APPC communication, you must perform the following
configuration:
v Configure the node as described in “Configuring the Node” on page 54.
v Configure connectivity as described in Chapter 4, “Defining Connectivity

Components,” on page 59.

Note: In an APPN network, a single link station to an adjacent network node
can be used to communicate with any remote node in the network, so you
do not need to configure a separate link station to each remote node.

In many cases, APPC applications can use the control point LU on both the local
and remote nodes, and a standard mode. In this case, your configuration is ready
for APPC without any further configuration.

The following steps can be used to configure APPC communication on the local
node. Depending on the types of the local and remote nodes, and on your
application, you may not need to perform these steps.
1. Define a local LU as described in “Defining Local LUs” on page 80.
2. Define a remote node as described in “Defining Remote Nodes” on page 81.
3. Define a partner LU as described in “Defining Partner LUs” on page 83.
4. Define an invokable TP as described in “Defining TPs” on page 86.
5. Define a mode as described in “Defining Modes and Classes of Service” on

page 92.
6. Define CPI-C side information as described in “Defining CPI-C Side

Information” on page 96.
7. Define APPC security as described in “Configuring APPC Security” on page 98.

© Copyright IBM Corp. 2000, 2009 79

8. To configure 5250 communication, see Chapter 7, “Configuring User
Applications,” on page 101.

Defining Local LUs
In many cases, applications can use the local node’s control point LU, which is
automatically defined when you configure the node. This is the default LU—if
your application does not specify a particular LU, it can use this one. If the
application uses the default LU, you do not need to define a local LU. Check the
documentation for your APPC application, or contact the application programmer.

If you are configuring dependent LUs of type 6.2 for use with APPC or CPI-C
applications, you may wish to define them as members of the default pool. An
application that does not specify a particular local LU is assigned an unused LU
from the pool of LUs defined as default LUs.

You can define dependent LU 6.2s as default LUs (and you can define default LUs
on more than node). An application requesting a default LU can be assigned to any
of these LUs as available; the LU does not have to be on the same computer as the
application. However, if you are defining partner LUs for the applications, the
partner LUs must be defined on all nodes where default LUs are defined, so that
the application can contact the correct partner LU using any of the default local
LUs defined on any node.

Independent APPC and 5250 use independent LUs. Each LU-LU session involves a
local LU and a partner LU. For the local LU, you can use the predefined default
LU associated with the node control point, or you can configure new local LUs.
The partner LU need not be configured at all if the Communications Server for
Linux node is an end node or network node in an APPN network, because APPN
can locate partner LUs dynamically. However, you do have to configure the
partner LU if your network is not an APPN network or if the node is a LEN node.
In this case, you must configure the remote node where the partner LU resides,
then define the partner LU on the remote node. (If the partner LU is the default
LU on the remote node, you do not need to define it explicitly because it is added
automatically when you define the remote node.)

To configure an APPC local LU, use one of the following methods:

Motif administration program
Select APPC and either New independent local LU or New dependent
local LU from the Services menu on the Node window.

Command-line administration program
Issue the following command:

define_local_lu

You can use the advanced dialog to specify sync point support, attach routing
characteristics, whether password substitution should be used, restrictions on SSCP
access, the system name associated with the LU, and security.

Local LU Configuration Parameters
The following parameters are required for local LU configuration:

LU name
The LU name of the local LU.

Configuring APPC Communication

80

If you do not know what name to use, consult your SNA network planner.

This LU name is the second part of the fully qualified LU name of the
local LU. The first part of the fully qualified LU name (the network name)
is always the same as the first part of the CP name of the local node.

LU alias
The LU alias of the LU. If you do not enter an alias, the LU name is used
as the alias.

Host LS/DLUR PU
The name of the host link station or DLUR PU to which the LU belongs.
(This field applies only if the LU is a dependent LU.)

LU number
The LU number of the dependent LU. (This field applies only if the LU is
a dependent LU.)

Member of default pool
Whether to make the LU a member of the default dependent APPC LU
pool. An application that does not specify a particular local LU to use is
assigned an available LU from the default pool.

This field applies only if the LU is a dependent LU.

Additional Configuration
After performing the local LU configuration, continue with the following
configuration tasks:
v To define a remote node, see “Defining Remote Nodes.”
v To define a partner LU, see “Defining Partner LUs” on page 83.
v To define an invokable TP, see “Defining TPs” on page 86.
v To define a mode, see “Defining Modes and Classes of Service” on page 92.
v To define CPI-C side information, see “Defining CPI-C Side Information” on

page 96.
v To define APPC security, see “Configuring APPC Security” on page 98.
v To configure 5250 communication, see Chapter 7, “Configuring User

Applications,” on page 101.

Defining Remote Nodes
You must define a remote node (and the partner LUs on the node) in the following
situations:
v If the local node is a LEN node, you must define all of the remote nodes and

any partner LUs on the remote node with which it communicates using APPC.
A LEN node is not able to dynamically locate partner LUs; the remote node
definition enables it to do so.

v If the remote node is a LEN node and the local node is a network node that acts
as the LEN node’s network node server, you must define the LEN node (and its
partner LUs) as a remote node on the network node server. This definition
enables nodes in the rest of the APPN network to locate LUs on the LEN node.

v If the remote node is in a different APPN network, you must define the remote
node because it cannot be dynamically located.

If you need to define the remote node and did not do so when you were defined
the link station, you must do so before you can use APPC communications over
the link.

Defining Local LUs

Chapter 6. Configuring APPC Communication 81

When you add a remote node definition, a partner LU with the same name as the
remote node is automatically added; this is the control point LU for the remote
node. If your application uses this partner LU, you do not need to add another
partner LU, although you may want to add an LU alias for the partner LU. To add
an alias, double click on the partner LU and enter the alias in the Partner LU
Configuration dialog.

If both the local node and the remote node are end nodes or network nodes and
are part of an APPN network, partner LUs are located dynamically when needed.
In this case, do not define the remote node where the LUs are located, because
defining the node can cause the protocols in APPN that dynamically locate LUs to
malfunction.

To prevent this malfunction, Communications Server for Linux does not permit
you to define a remote node with which it has CP-CP sessions active (or with
which it has had CP-CP sessions in the past). Additionally, if you have previously
defined a remote node and Communications Server for Linux establishes CP-CP
sessions with it, the entry is temporarily converted into a dynamic one. You should
correct the fault by deleting the remote node definition when the node is inactive.

To configure a remote node, use one of the following methods:

Motif administration program
Select APPC and New remote node from the Services menu on the Node
window.

Command-line administration program
To define a remote node, issue the following command:

define_directory_entry

To define a partner LU, issue the following command:

define_partner_lu

Remote Node Configuration Parameters
The following parameter is required for remote node configuration:

Node’s SNA network name
The fully qualified CP name of the remote node. The value entered on this
dialog must match the CP name configured at that remote node.

Additional Configuration
After performing the remote node configuration, continue with the following
configuration tasks:
v To define a partner LU, see “Defining Partner LUs” on page 83.
v To define an invokable TP, see “Defining TPs” on page 86.
v To define a mode, see “Defining Modes and Classes of Service” on page 92.
v To define CPI-C side information, see “Defining CPI-C Side Information” on

page 96.
v To define APPC security, see “Configuring APPC Security” on page 98.
v To configure 5250 communication, see Chapter 7, “Configuring User

Applications,” on page 101.

Defining Remote Nodes

82

Defining Partner LUs
If both the local node and the remote node are network nodes, or if one is a
network node and the other is an end node, and your application uses an LU
name to refer to the partner LU, there is no need to define the partner LU, because
it can be dynamically located using APPN. However, if your application uses an
LU alias to refer to its partner LU, you should add a partner LU alias definition.

If either the local node or the remote node is a LEN node, you must define the
partner LU as a child of the remote node, because a LEN node cannot take part in
dynamic location of LUs. If your application uses the control point LU of the
remote node as its partner LU, the control point LU was defined automatically
when you defined the remote node.

You can use wildcards to configure multiple partner LUs that are all located on the
same remote node and whose names start with the same characters. Using
wildcards means that you do not need to configure each partner LU individually.

To configure a partner LU, use one of the following methods:

Motif administration program
You can use the Motif administration program to add a partner LU alias,
add a definition of a partner LU on a specific remote node, or define
multiple partner LUs using wildcards. Select APPC, New partner LUs, and
one of the following from the Services menu on the Node window.
v Partner LU alias

v Partner LU on remote node

v Wildcard partner LU on remote node

Command-line administration program
To define a partner LU, issue the following command:

define_partner_lu

To define a LEN node as a partner LU, issue the following commands:

define_adjacent_len_node

define_directory_entry

Partner LU Configuration Parameters
The following parameters are required for partner LU configuration:

Partner LU name
The fully qualified LU name of the partner LU. This name must match the
name that is configured at the remote node for this LU. If you do not
know what that name is, consult your SNA network planner.

This field applies when you define partner LU on a specific remote node
or when you define a partner LU alias.

Wildcard partner LU name
A name that matches the fully qualified LU names of multiple partner LUs.
(This field applies only if you define partner LUs using wildcards.) The
wildcard partner LU name consists of two strings, each of 1–8 characters:
v The first string can be a complete SNA network name that matches the

first part of the fully qualified partner LU names exactly, or a wildcard

Defining Partner LUs

Chapter 6. Configuring APPC Communication 83

prefix that matches the beginning of the network name for the partner
LUs. If you supply a wildcard prefix as the value for the first string,
leave the second string blank. For example, a wildcard entry of A would
match all LUs in the SNA networks named A, ANT, or APPN (but not
BUFFALO or ZEBRA).

v If you supply a complete SNA network name for the first string, you can
also enter a value for the second string. (You cannot specify the second
string without supplying a valid SNA network name for the first string.)
The second string is treated as a wildcard prefix, which must match the
start of the second part of the fully qualified partner LU names. For
example, a wildcard entry of A.F would match partner LUs names
A.FRED or A.FREDDY (but not APPN.FRED or A.B).

If you leave both strings blank, the wildcard partner LU definition matches
any partner LU name.

Alias A locally displayable alias for the partner LU. You do not have to specify
an LU alias if there is no local application that refers to the partner LU
using an LU alias.

This field applies when you define partner LU on a specific remote node
or when you define a partner LU alias.

Uninterpreted Name
The uninterpreted name used by dependent local LUs when requesting the
host to start an LU-LU session between the partner LU and the local LU.
This name enables the partner LU name configured locally (and used by
applications) to differ from the partner LU name configured on the host.

The default uninterpreted name is the second part of the partner LU name.
This is correct in most cases. If in doubt, consult your SNA network
planner.

This field applies when you define partner LU on a specific remote node
or when you define a partner LU alias.

Supports parallel sessions
Whether the partner LU can support more than one session at a time. In
most cases, the partner LU supports many sessions at one time, but some
LEN nodes do not support parallel sessions.

This field applies when you define partner LU on a specific remote node
or when you define a partner LU alias.

Location
The fully qualified CP name of the node on which the partner LU resides,
or of a node that can provide access to the partner LU. If you supply the
name of a remote node that has not yet been defined, you need to define it
if you cannot discover the node dynamically.

This field applies only if you define a partner LU on a specific remote
node.

Defining Link Station Routing for a Partner LU
You can use link station routing to identify the location of a partner LU by the link
station that is used to reach it.

Note:

Defining Partner LUs

84

1. Link station routing is not required in an APPN network, where
resources can be located dynamically. You are not recommended to use
link station routing in an APPN network because it bypasses the normal
APPN routing mechanisms.

2. You cannot use link station routing with an Enterprise Extender
(HPR/IP) link station. This is because all traffic on this link type must
flow over an RTP connection, which is not fixed to a particular link
station and can switch to a different path.

To configure link station routing for a partner LU, use one of the following
methods:

Motif administration program
Select APPC, New partner LUs, and Partner LU on link station from the
Services menu on the Node window.

Command-line administration program
Issue the following command:

define_ls_routing

Link Station Routing Parameters
The following parameters are required for link station routing configuration:

LU name
The name of the local LU that controls the link station (if the partner LU is
to be located through a specific link station).

LS name
The name of the link station.

Partner LU name
Either the fully qualified LU name of the partner LU or a wildcard name:
v A fully qualified LU name consists of two strings, each of 1–8 characters.

This name must match the name that is configured at the remote node
for this LU. If you do not know what that name is, consult your SNA
network planner.

v A wildcard partner LU name matches the fully qualified LU names of
multiple partner LUs. The wildcard partner LU name consists of two
strings, each of 1–8 characters:
– The first string can be a complete SNA network name that matches

the first part of the fully qualified partner LU names exactly, or a
wildcard prefix that matches the beginning of the network name for
the partner LUs. If you supply a wildcard prefix as the value for the
first string, leave the second string blank. For example, a wildcard
entry of A would match all LUs in the SNA networks named A, ANT,
or APPN (but not BUFFALO or ZEBRA).

– If you supply a complete SNA network name for the first string, you
can also enter a value for the second string. (You cannot specify the
second string without supplying a valid SNA network name for the
first string.) The second string is treated as a wildcard prefix, which
must match the start of the second part of the fully qualified partner
LU names. For example, a wildcard entry of A.F would match partner
LUs names A.FRED or A.FREDDY (but not APPN.FRED or A.B).

If you leave both strings blank, the wildcard partner LU definition
matches any partner LU name.

Defining Partner LUs

Chapter 6. Configuring APPC Communication 85

Use partner LU name as a wildcard
Whether to use the partner LU name as a wildcard, rather than as a literal
fully qualified LU name.

Additional Configuration
After performing the partner LU configuration, continue with the following
configuration tasks:
v To define an invokable TP, see “Defining TPs.”
v To define a mode, see “Defining Modes and Classes of Service” on page 92.
v To define CPI-C side information, see “Defining CPI-C Side Information” on

page 96.
v To define APPC security, see “Configuring APPC Security” on page 98.
v To configure 5250 communication, see Chapter 7, “Configuring User

Applications,” on page 101.

Defining TPs
This section explains how to define an APPC TP.

In most cases, you do not need to define TPs that run on the Communications
Server for Linux system; but you do need to configure a TP definition in the
following cases:

APPC Characteristics
If the TP on the Communications Server for Linux computer is the
invoking TP (or source TP—the TP that starts the APPC conversation) and
you do not need to restrict access to the TP, you do not need to define the
TP. You can, however, define an APPC TP, as described in “TP Definition
Parameters” on page 91, to specify the following characteristics:
v To define conversation security for the TP.
v To indicate whether the TP uses basic or mapped conversations.
v To specify sync point processing.
v To specify handling of PIP data.

Invokable TPs
To enable a TP to be started automatically in response to an incoming
allocation request, define it as an invokable TP as described in “TP
Invocation Parameters on a Server” on page 88.

An invokable TP (or target TP) is one that is started in response to an
incoming allocation request. You must create a TP definition for an
invokable TP. An invokable TP can be an APPC TP that issues
RECEIVE_ALLOCATE, or a CPI-C application that issues
Accept_Conversation or Accept_Incoming.

Note: In this manual, the phrase “Receive_Allocate” is used to indicate
any of these three API calls.

You can also define an invokable TP to route incoming allocation requests
to a running TP.

For an invokable TP, you can also specify a timeout value, to limit the wait
for an allocation request. (You can only configure this option using
command-line administration.)

Defining Partner LUs

86

Communications Server for Linux uses the invokable TP definition for the
following purposes:
v When a TP issues Receive_Allocate, Communications Server for Linux

searches for an invokable TP definition with the appropriate TP name. If
the definition exists, and includes a value for the Receive_Allocate
timeout, Communications Server for Linux uses this value when
processing the Receive_Allocate; otherwise it uses the default (no
timeout, which causes the TP to wait indefinitely).

v When an incoming Allocate request arrives at the target system, and the
requested TP is not already running with a Receive_Allocate
outstanding, Communications Server for Linux searches for a TP
definition with the TP name specified on the incoming Allocate. If the
definition exists, Communications Server for Linux uses the information
in this definition to start the TP (if multiple instances are permitted or
the TP is not already running), or to determine that it should queue the
incoming Allocate (if the TP is already running and multiple instances
are not permitted).

If necessary, you can configure both types of definitions for the same TP (for
example, to define conversation security for an invokable TP).

To configure a TP definition, use one of the following methods:

To define APPC characteristics:
Use either of the following methods:

Motif administration program
Select APPC and Transaction Programs from the Services menu on
the Node window. When Communications Server for Linux
displays the TP window, select the bottom pane and click on the
New button, or select an existing TP definition and click on the
Properties button.

Command-line administration program
Issue the snaadmin define_tp command.

To define an invokable TP:
The configuration methods for servers and clients are different:
v On a server, use either of the following methods:

Motif administration program
Select APPC and Transaction Programs from the Services menu
on the Node window. When Communications Server for Linux
displays the TP window, select the top pane and click on the
New button, or select an existing invokable TP definition and
click on the Properties button.

Command-line administration
Issue the snatpinstall command.

v

AIX, LINUX

On an IBM Remote API Client on AIX or Linux, issue the snatpinstall
command.

v

WINDOWS

Defining TPs

Chapter 6. Configuring APPC Communication 87

On a Windows client, change to the directory where the client software
was installed, and issue the tpinst32 command. (This command applies
to both 32–bit and x64 versions of Windows.)

For information about using the snatpinstall or tpinst32 command, see
Appendix B, “Configuring an Invokable TP from the Command Line,” on page
171.

TP Invocation Parameters on a Server
This section describes the parameters required by the Motif administration
program or the command-line administration program when configuring an
invokable TP on a server. For information about configuring an invokable TP on a
client, see Appendix B, “Configuring an Invokable TP from the Command Line,”
on page 171.

The following parameters are required for a TP that can be invoked on the local
node:

TP name
A TP name in one of the following forms:

Application TP
If the TP is a user application, supply the name as normal
characters (up to 64 characters in length).

Service TP
If the TP is an SNA service transaction program, enter the name in
hexadecimal (up to eight hexadecimal digits, representing 4 bytes).

You can define multiple APPC invokable TPs that have the same TP name,
provided each TP definition specifies a different LU alias. You cannot do
this for CPI-C invokable TPs, because you cannot specify a particular LU
alias to use; each CPI-C invokable TP must have a different name.

Parameters are for invocation on any LU/on specific LU
If the TP is an APPC TP, this parameter specifies whether to make the TP
invokable on any LU or only on a specific LU. By default, the TP can be
invoked on any LU.

Note: If the TP is a CPI-C application, this field must be set to make the
TP invokable on any LU. CPI-C does not support accepting
incoming Attaches from a particular local LU; attempting to specify
this option for a CPI-C application will cause errors in routing the
incoming Attach to the TP.

LU alias
This field must not be used if the TP is a CPI-C application. If the TP is an
APPC application, it applies only if you specify that the parameters for this
TP definition are for invocation on any LU.

The local LU alias from which the TP is to accept incoming Attaches. This
name must match the name of a local APPC LU on the Communications
Server for Linux node. If you do not specify an LU alias, the TP accepts
incoming Attaches from any local LU.

If a non-blank LU alias is specified, the TP must use the extended form of
the RECEIVE_ALLOCATE verb and specify this LU alias as a parameter to

Defining TPs

88

the verb. This enables Communications Server for Linux to route the
incoming Attach to the correct TP. For more information about the different
forms of RECEIVE_ALLOCATE, refer to IBM Communications Server for AIX
or Linux APPC Programmer’s Guide. If you need to permit the TP to
determine the correct LU alias at run-time rather than building it into the
application, you can do this by setting an environment variable to contain
the appropriate LU alias (using the Environment parameter), and designing
the application to read this environment variable in order to determine
how to issue RECEIVE_ALLOCATE.

You can define multiple TPs that have the same TP name, provided each
TP definition specifies a different LU alias.

Multiple instances supported
If you do not select this option, the TP is a queued TP. Any incoming
Allocate requests arriving while the TP is running are queued until the TP
issues another Receive_Allocate, or until it finishes running and can be
restarted. An incoming Allocate request is routed to this TP only if it is
received by an LU that is configured to route incoming Allocate requests to
this computer, or if it is received by an LU on this computer that has no
routing information configured.

If you select this option, the TP is a nonqueued TP. Communications
Server for Linux starts a new copy of the TP each time an incoming
Allocate request arrives for it. A nonqueued TP cannot be started by an
operator; it is always started automatically by Communications Server for
Linux. For a nonqueued TP, Communications Server for Linux permits
more than one copy of the TP to be running at a time. All copies run with
the same user and group IDs and the same working directory, as defined
by the User ID and Group ID parameters. If the TP writes to files on the
local system, you need to ensure that different copies of the TP do not
overwrite each other’s files.

After a nonqueued TP has ended a conversation, it may terminate, or it
may issue another RECEIVE_ALLOCATE. For frequently-used programs,
this provides a way of avoiding the performance overhead of starting a
new instance of the program for each conversation. Each time an Attach is
received for a nonqueued, automatically started TP, Communications
Server for Linux checks whether there is already a RECEIVE_ALLOCATE
outstanding from an instance of this TP. If so, this TP is used for the
incoming conversation; otherwise, Communications Server for Linux starts
a new instance of the program.

Route incoming Allocates to running TP
This option applies only if multiple instances are not supported.

Select this option if the TP is a broadcast queued TP. Any incoming
Allocate requests arriving while the TP is running are queued until the TP
issues another Receive_Allocate, or until it finishes running and can be
restarted. When the TP is started, information about the TP is broadcast to
all servers on the LAN; if an LU on another computer receives an
incoming Allocate request and has no routing information configured, it
can dynamically locate the TP and route the Allocate request to it.

Using this option avoids having to configure explicit routing information
on LUs, and enables load-balancing by running more than one copy of the
same TP on different computers. However, if you want to avoid
broadcasting information in order to reduce LAN traffic, or if you need to

Defining TPs

Chapter 6. Configuring APPC Communication 89

ensure that incoming Allocate requests arriving at a particular LU are
always routed to the same copy of the TP, do not select this option.

Full path to TP executable
The full path and file name of the executable file for this TP.

The file must have execute permission for the user specified by the User ID
parameter. In addition, if the executable file is to be run with User ID set to
root, the file must be owned by root and must have setuid and setgid
permission in order to be started automatically by Communications Server
for Linux.

Arguments
Any command-line arguments to be passed to the TP, separated by spaces.
The arguments are passed to the TP in the same order as they appear here.

This value is optional. If it is not included, the TP is invoked without any
command-line arguments.

User ID
The user ID that Communications Server for Linux uses to start the TP.
This line is required, and must be specified. The ID must be a valid Linux
login ID on the Communications Server for Linux computer.

The TP is started in the home directory associated with this user ID. This
home directory is also the default path for trace files and any other files
accessed by the TP (unless the application overrides it by specifying a full
path). If the application specifies a file name without a path,
Communications Server for Linux searches for the file in this home
directory; if the application specifies a file name with a relative path,
Communications Server for Linux searches for the file in the specified
directory relative to this home directory.

The executable file for the TP, specified by the Full path to TP executable
parameter, must have execute permission for the specified user. In
addition, if User ID is set to root, the file must be owned by root and must
have setuid and setgid permission in order to be started automatically by
Communications Server for Linux.

Group ID
The group ID that Communications Server for Linux uses to start the TP.
This must be a valid Linux group ID on the Communications Server for
Linux computer.

This parameter is optional. If it is not included, the default is sna.

Standard input
Specify the full path name of the standard input file or device used by the
TP.

This parameter is optional. If it is not included, the default is /dev/null.

Standard output
Specify the full path name of the standard output file or device used by
the TP.

This parameter is optional. If it is not included, the default is /dev/null.

Standard error
Specify the full path name of the standard error file or device used by the
TP.

This parameter is optional. If it is not included, the default is /dev/null.

Defining TPs

90

Environment
Specify any environment variables required by the TP.

Each variable is specified in the form environment_variable=value, and can be
up to 255 characters long. The string environment_variable=value must not
contain space or tab characters before or after the = character.

In the Motif administration program, if you need to specify more than one
environment variable (up to a maximum of 64), separate them using the |
character. The variables are set in the same order as they appear here.

If the TP is a CPI-C application, note that you cannot set the environment
variable APPCLLU using this field. The local LU cannot be specified for an
automatically-loaded CPI-C application.

This field is optional. If it is not included, no environment variables are
used.

TP Definition Parameters
You can configure an APPC TP to specify conversation security, conversation type,
sync level, and handling of PIP data. The following parameters are required to
define a TP for APPC communication:

TP name
A TP name in one of the following forms:

Application TP
If the TP is a user application, supply the name as normal
characters (up to 64 characters in length).

Service TP
If the TP is an SNA service transaction program, supply the name
in hexadecimal (up to eight hexadecimal digits, representing 4
bytes).

Conversation level security required
Select this option if an allocation request must include a valid user name
and password (or an indicator that the password has already been
verified). If you do not select this option, no verification is required.

Restrict access
Select this option if the user name must be included on a security access
list. This field applies only if the Conversation level security required option is
selected.

Security access list
Name of a security access list that contains user IDs permitted to access
this TP. If the Restrict access option is selected, you must provide this value.

Conversation type
Specify whether the TP accepts only basic conversations, only mapped
conversations, or either type of conversation.

Sync level
Specify the levels of confirm synchronization that the TP accepts. For more
information on confirm synchronization, refer to the IBM Communications
Server for AIX or Linux APPC Programmer’s Guide. Select one of the
following values:
v None

v Confirm

v Sync-point

Defining TPs

Chapter 6. Configuring APPC Communication 91

v None or Confirm

v None, Confirm or Sync-point

PIP allowed
Select this option if the TP accepts PIP data (Program Initialization
Parameters).

Defining Modes and Classes of Service
A mode specifies a set of characteristics that a local LU (LU type 6.2) uses to
communicate with its partner LU. These characteristics include information about
the way data is transmitted between the two LUs (such as maximum RU lengths
and pacing window sizes), and about whether the LUs can establish parallel
sessions.

In addition, you may need to specify requirements for the communication path
between the LUs, such as enforcing a certain level of network security, minimizing
transmission time, or avoiding the use of expensive communication links. You can
define these requirements using a class of service (COS), which specifies minimum
and maximum acceptable values for characteristics such as transmission time,
transmission cost, and network security. The COS also specifies weightings
associated with different ranges of these values. This enables the node to calculate
the best route across the network when two or more routes to the same remote LU
are available.

If the Communications Server for Linux node is a network node, the definition of
each mode includes the name of the required COS for that mode. If the
Communications Server for Linux node is a LEN node or end node, you do not
need to associate a COS with the mode; the COS name is determined dynamically.

SNA defines a number of standard modes and associated COSs that cover the
requirements of most systems; you generally do not need to define additional
modes and COSs. You need to define a mode only if the required mode is not one
of the predefined standard modes, which can be viewed in the Modes window.

The default mode is used if the mode name in an incoming conversation is
unrecognized. If you do not specify a default mode, the default mode is the blank
mode name.

The standard mode names and their associated COS names are shown in Table 2.
For more information about the parameters associated with these standard names,
refer to the IBM SNA manuals LU 6.2 Reference—Peer Protocols (for modes) and
APPN Architecture Reference (for COSs).

Table 2. Standard Mode and COS Names

Mode Name Associated COS Name Purpose

(blank) #CONNECT Sessions that do not specify a mode name
(basic default COS parameters)

#BATCH #BATCH Sessions used by batch-processing applications
#BATCHSC #BATCHSC Sessions used by batch-processing applications,

with a minimal level of routing security
#BATCHC #BATCH Sessions using compression in batch-processing

applications

Defining TPs

92

Table 2. Standard Mode and COS Names (continued)

Mode Name Associated COS Name Purpose

#BATCHCS #BATCH Sessions using compression in batch-processing
applications, with a minimal level of routing
security

#INTER #INTER Sessions used by interactive applications
#INTERSC #INTERSC Sessions used by interactive applications, with a

minimal level of routing security
#INTERC #INTER Sessions using compression in interactive

applications
#INTERCS #INTER Sessions using compression in interactive

applications, with a minimal level of routing
security

SNASVCMG SNASVCMG CNOS (change number of sessions) and
management services sessions

CPSVCMG CPSVCMG CP-CP sessions between nodes
CPSVRMGR CPSVRMGR CP-CP sessions used for dependent LU

requester (DLUR)
QPCSUPP #CONNECT Sessions used for 5250 emulation

Once a mode has been configured, it can be used by any APPC or CPI-C
application to activate a session between a local LU and a partner LU. An APPC
application must specify the mode to use, but a CPI-C application can use CPI-C
side information (which includes the mode name). For more information about
configuring CPI-C side information, see “Defining CPI-C Side Information” on
page 96.

To configure a mode or class of service, use one of the following methods:

Motif administration program
Select APPC and Modes from the Services menu on the Node window,
then choose New on the Mode window.

Command-line administration program
To define a mode, issue the following command:

define_mode

To change the default mode, issue the following command:

define_defaults

To define a class of service, issue the following command:

define_cos

Mode Configuration Parameters
The following parameters are required for mode configuration:

Name The name of the mode you are defining. The mode name is a string of 1–8
characters.

APPC applications that use this mode, including both local and remote
applications, may also use this name, so check the name with your
application developer (or refer to your product documentation for a
third-party application).

Defining Modes and Classes of Service

Chapter 6. Configuring APPC Communication 93

COS name
The name of the class of service for this mode. The name is a string of 1–8
characters. Usually you can simply specify #INTER for modes used for
interactive data exchange and #BATCH for modes used for bulk data
transfer.

This field applies only to a network node.

If you do not know what value to specify, consult your SNA network
planner.

Session limits
Use the following fields to specify session limits:

Initial session limit
The maximum number of sessions (up to the maximum session
limit) that a pair of LUs can have using this mode, unless a
different maximum is negotiated using CNOS.

Normally, use the value 8 for this field. If you are in doubt, consult
your SNA network planner or APPC application developer (or for
a third-party application, the product documentation).

Maximum session limit
The maximum number of sessions (up to 32,767) permitted
between a pair of LUs using this mode, even with CNOS
negotiation.

This field is usually set to the same value as the initial session
limit. If you are in doubt, consult your SNA network planner or
APPC application developer (or for a third-party application, the
product documentation).

Minimum contention winner sessions
The number of sessions (up to the session limit) that
Communications Server for Linux must reserve for use by the local
LU as the contention winner.

This field can usually safely be set to 0, but if you are not sure,
consult your SNA network planner.

The sum of the minimum contention winner sessions and the
minimum contention loser sessions must not exceed the initial
session limit.

Minimum contention loser sessions
The minimum number of sessions that Communications Server for
Linux must reserve for use by the local LU as the contention loser.
Together with the value in the Minimum contention winner sessions
field, this value determines how to resolve contention for a session.

This can usually safely be set to 0, but if you are not sure, consult
your SNA network planner.

The sum of the minimum contention winner sessions and the
minimum contention loser sessions must not exceed the initial
session limit.

Auto-activated sessions
The number of sessions (up to the minimum contention winner
count) that are automatically activated after CNOS negotiation has
taken place for a session between a local LU and partner LU using
this mode. Specifying a value for this field enables an LU that uses

Defining Modes and Classes of Service

94

this mode to start sessions automatically in response to a request
from a TP for a conversation to be allocated immediately.

Receive pacing window
Use these fields to specify how many RUs can be received before an SNA
pacing response is sent:

Initial window size
The initial setting for the number of request units (RUs) that the
local LU can receive before it must send a pacing response to the
remote LU. This can be safely set to 4.

Setting it higher can improve performance in some circumstances,
but doing so also increases memory usage.

Maximum window size
The maximum number of request units (RUs) that the local LU can
receive before it must send a pacing response to the remote LU.

This value is optional. If it is not supplied, the maximum receive
pacing window is unlimited. If a value is supplied, it is used to
limit the size of the receive pacing window for adaptive pacing. If
adaptive pacing is not used, this value is ignored.

The pacing window can be from 0 through 32767 bytes. A value of 0
specifies an unlimited window.

If the adjacent node supports only fixed pacing, these values determine the
fixed-pacing window size; but the adjacent node can still set a window
size through negotiation. If the adjacent node uses adaptive pacing, these
values set the initial window size.

Specify timeout
Select this option if you want to specify the number of seconds (0 - 65535)
that an LU 6.2 session using this mode must be inactive before it can time
out. Changing this value affects only sessions that are activated using this
definition (not sessions that are already active).

If you use a value of 0, sessions are timed out as soon as they become free.

Restrict maximum RU size
Select this option if you want to specify the maximum RU size, which
determines how much data is buffered before being sent to the partner LU.

The upper limit can be from 256 through 62440 bytes. You can safely set
the upper limit to 1024 bytes. Setting it higher can improve performance in
some circumstances, but doing so also increases memory usage.

The lower limit can be 0 or a value from 256 through the upper limit you
specify.

If the value in this field is different from the RU size defined for the
remote node, the size used for a session with that node can be negotiated
to establish an appropriate RU size for the session. The actual value cannot
be lower than the lower limit field.

These numbers, together with the send and receive pacing values, can be
used to tune the session-level throughput between the local and partner
LUs. If you do not know what values to use, start with the default values
and adjust them as needed to maximize throughput.

Defining Modes and Classes of Service

Chapter 6. Configuring APPC Communication 95

Compression supported
Whether data compression is supported for sessions using this mode. If
you do not set this option, compression will not be used.

If you set this option, you can specify the maximum compression levels to
be used for inbound data and for outbound data. These are separate
options so that you can specify different levels for the two directions, or
use compression in one direction but not in the other. In each direction,
you can select None for no compression, or one of the values RLE (minimum
compression), LZ9, or LZ10 (maximum compression).

Reset to SNA defined values
If you are modifying a standard mode using the Motif dialog, you can
click on this button to reset the values of the mode parameters to the
SNA-defined values.

Additional Configuration
After performing the mode configuration, continue with the following
configuration tasks:
v To define CPI-C side information, see “Defining CPI-C Side Information.”
v To define APPC security, see “Configuring APPC Security” on page 98.
v To configure 5250 communication, see Chapter 7, “Configuring User

Applications,” on page 101.

Defining CPI-C Side Information
If you are supporting a CPI-C application that uses CPI-C symbolic destination
names, you need to define the CPI-C side information. The side information
associates the symbolic destination name with information about the partner TP,
partner LU, mode, and security for the conversation.

To determine the symbolic destination name for CPI-C, consult the application
developer (or for a third-party application, consult the product documentation).

To configure CPI-C side information, use one of the following methods:

Motif administration program
Select APPC and CPI-C from the Services menu on the Node window.

Command-line administration program
Issue the following command:

define_cpic_side_info

CPI-C Configuration Parameters
For each CPI-C symbolic destination name used by the application, collect the
following information:

Name The symbolic destination name used by the CPI-C applications (also
known as TPs) that you want to run. This name can be 1–8 characters in
length.

The application developer (or for a third-party application, the product
documentation) can provide this name.

Defining Modes and Classes of Service

96

Local LU
The local LU for any conversations initiated by TPs using this side
information using one of the following methods:

Local LU alias
An alias for a local LU.

Use default LU
Specify this option to use a member of the default pool (if one
exists) or the node control point LU (if no default pool is defined).

If the APPCLLU environment variable is set, the local LU information you
supply is ignored, and the LU specified for the environment variable is
used instead.

Partner LU
Either an alias or the fully qualified partner LU name for conversations
initiated by local TPs using this side information. The partner LU must be
an LU that is configured on the computer that runs the partner TP.

Mode The name of the APPC mode that is to be used to access the partner LU. In
most cases, the mode is one of the following predefined modes:
v A blank name
v #BATCH

v #BATCHSC

v #INTER

v #INTERSC

v QPCSUPP

Partner TP
The name of the transaction program with which the CPI-C application
communicates:
v If the TP is a user application, specify the name as normal characters (up

to 64 characters in length).
v If the TP is a service TP, specify the name in hexadecimal (up to 8

hexadecimal digits, representing 4 bytes).

The application developer (or for a third-party application, the product
documentation) can provide this information.

Security
The level of conversation-level security you want to use. The options are as
follows:

None The partner TP does not require security parameters to be checked.

Same The partner TP uses security, but accepts verification by the local
TP of the user ID and password provided by the initiating TP. If
you choose a security level of Same, you also need to specify a
valid user ID that is accepted by the partner TP.

Program
The partner TP requires a User ID and password. If you choose a
security level of Program, you need to specify a valid user ID and
password that are accepted by the partner TP.

Program strong
The partner TP requires a user ID and password. Both the local
and remote nodes must support security enhancements so that the
password is encrypted.

Defining CPI-C Side Information

Chapter 6. Configuring APPC Communication 97

Refer to the documentation for the CPI-C application or consult the
application programmer to find out what security parameters to use.

User ID
If you have chosen a security level of Same, Program, or Program strong,
specify a user ID to be sent on the initiating message to the remote
application. This value must match a user ID that the application is
defined to accept.

This user ID is not related to Linux login user IDs on either the local or the
remote node. If the remote node is running Communications Server for
Linux, the user ID must be configured on the remote node using the
Conversation Security Configuration dialog.

Password
If the security level is specified as Program or Program strong, specify a
password to be sent when the conversation is allocated. This value must
match the password defined at the remote application for use with the
supplied user name.

This password is not related to Linux login passwords on either the local
or the remote node. If the remote node is running Communications Server
for Linux, the password must be configured on the remote node using the
Conversation Security Configuration dialog.

Additional Configuration
After performing the CPI-C configuration, continue with the following
configuration tasks:
v To define APPC security, see “Configuring APPC Security.”
v To configure 5250 communication, see Chapter 7, “Configuring User

Applications,” on page 101.

Configuring APPC Security
You can perform the following configuration tasks for APPC security:
v Configuring session security as described in “Configuring Session Security”
v Configuring conversation security as described in “Configuring Conversation

Security” on page 99
v Configuring security access lists as described in “Configuring a Security Access

List” on page 100

Configuring Session Security
Session-level security is used to validate LU-LU sessions. Each definition consists
of a local LU name, a partner LU name, and a password.

Communications Server for Linux uses the password to validate sessions between
the local LU and partner LU. (The passwords are not related to Linux logon
passwords.)

To configure session security, use one of the following methods:

Motif administration program
Select APPC, Security, and Session-level security from the Services menu
on the Node window.

Command-line administration program
Issue the following command:

Defining CPI-C Side Information

98

define_lu_lu_password

Session Security Configuration Parameters
The following parameters are required for session security configuration:

Local LU
The LU name of the local LU. The name is a string of 1–8 characters.

Partner LU
The fully qualified LU name of the partner LU.

Password
A password that Communications Server for Linux can use to validate
sessions between the local LU and the partner LU. The password is an
EBCDIC formatted character string (represented as a 16-digit hexadecimal
number) that is used to create a key, which is exchanged when the session
is established. This password is not related to Linux login passwords on
either the local or the remote node.

Additional Configuration
After performing the session security configuration, continue with the following
configuration tasks:
v To configure conversation security, see “Configuring Conversation Security.”
v To configure 5250 communication, see Chapter 7, “Configuring User

Applications,” on page 101.

Configuring Conversation Security
Conversation security is used to validate incoming conversations. Each definition
consists of a user ID and a password. This user ID is not related to Linux login
user IDs on either the local or the remote node.

To configure conversation security, use one of the following methods:

Motif administration program
Select APPC, Security, and Conversation-level security from the Services
menu on the Node window.

Command-line administration program
Issue the following command:

define_userid_password

Conversation Security Configuration Parameters
The following parameters are required for conversation security configuration:

User ID
The user ID to be accepted in an incoming conversation from a remote
node. The user ID can be up to 10 characters long.

Password
The password to be accepted in an incoming conversation from a remote
node. The password can be up to 10 characters long.

Additional Configuration
After configuring conversation security, you can configure 5250 communication as
described in Chapter 7, “Configuring User Applications,” on page 101.

Configuring APPC Security

Chapter 6. Configuring APPC Communication 99

Configuring a Security Access List
You can define an APPC security access list to control access to an LU or TP (or
both). This list can be referred to by the definition for an APPC local LU or TP.

To configure a security access list, use one of the following methods:

Motif administration program
Select APPC, Security, and Conversation-level security from the Services
menu on the Node window, then select the Security Access Lists pane and
choose New.

Command-line administration program
Issue the following command:

define_security_access_list

Security Access List Configuration Parameters
The following parameters are required for security access list configuration:

Name Name of the security access list. The definition for an APPC TP or local LU
can use this name to refer to the access list.

Users in access list
The names of users included in the security access list.

Additional Configuration
After performing the security access list configuration, continue with the following
configuration tasks:
v Configure TP access as described in “Defining TPs” on page 86.

Configuring APPC Security

100

Chapter 7. Configuring User Applications

This chapter provides instructions for configuring SNA resources to support user
applications that use any of the following communication: 3270, 5250, and LUA.
The SNA resources required by such applications are LUs.

For 3270, LUA, and dependent APPC communication, you must configure
dependent LUs. For independent APPC and 5250 communication, you can use the
default control point LU (defined automatically when you configure the local
node) or define independent LUs.

Before you can configure the resources described in this chapter, you must perform
the following configuration:
v Configure the node as described in “Configuring the Node” on page 54.
v Configure connectivity as described in Chapter 4, “Defining Connectivity

Components,” on page 59. For 3270, LUA, and dependent APPC communication,
you must configure the link to support dependent LU traffic. For independent
APPC and 5250 communication, the link must support independent LU traffic.
You do not need to configure a direct link to the host if you are using upstream
SNA gateway or DLUR. For more information, see “Configuring SNA Gateway”
on page 111 and “Defining DLUR PUs” on page 71.

The following list describes the configuration tasks required for each type of user
application:

3270 applications
For 3270 communication, configure the following resources:
1. For a 3270 display or printer, define a dependent LU as described in

“Defining LU Types 0–3” on page 75.
2. To enable 3270 displays to select from a pool of LUs, define an LU pool

as described in “Defining LU Pools” on page 77. If a display uses a
dedicated LU, you can skip this step.

5250 applications
For 5250 communication, configure the following resources:
1. Configure the node for APPC communication:

a. If you can use the local node’s control point LU, you do not need to
configure a local LU. If you need a local LU definition (for example,
to use session security), define the local LU as described in
“Defining Local LUs” on page 80.

b. If the local node is a LEN node, you must define the AS/400
system as a remote node as described in “Defining Remote Nodes”
on page 81.
If the local node is an APPN end node or network node, you can
use the control point LU on the AS/400 system as a partner LU, so
you do not need to configure any other partner LUs.

You do not need to define any modes, because 5250 uses the standard
mode QPCSUPP.

LUA applications
To support an LUA application, configure the following resources:

© Copyright IBM Corp. 2000, 2009 101

1. Define a dependent LU as described in “Defining LU Types 0–3” on
page 75.

2. To enable an LUA application to select from a pool of LUs, define an
LU pool as described in “Defining LU Pools” on page 77. If the
application uses a dedicated LU, you can skip this step.

An LUA application uses the LU 0–3 resources of the node to communicate
with a host application. You do not need to define any additional
resources.

Configuring User Applications

102

Chapter 8. Configuring Passthrough Services

Passthrough services on a server running Communications Server for Linux enable
communication between an SNA host and local systems that are not directly
connected to the host.

Communications Server for Linux includes TN server support for TN3270, TN3287,
and TN3270E clients, collectively referred to as “TN3270 clients.” To configure this
function, see “Configuring TN Server.”

Communications Server for Linux also includes TN Redirector support for
passthrough TCP/IP host access to TN3270, TN3270E, TN5250 and VT clients,
referred to collectively as “Telnet clients”. To configure this function, see
“Configuring TN Redirector” on page 107.

SNA gateway provides connectivity between the host and local systems. You can
configure LUs on the local node to support this function (see “Configuring SNA
Gateway” on page 111) or you can define a template that is used to support
downstream LUs that have not been explicitly configured (see “Defining DLCs,
Ports, and Connection Networks” on page 60).

DLUR supports dependent LU sessions between the host and nodes in an APPN
network. To configure this function, see “Configuring DLUR” on page 113.

Configuring TN Server
TN server enables TN3270 clients to communicate with a host through an
intermediate Communications Server for Linux node that implements the TN
server. The TN3270 clients connect to the TN server using TCP/IP, and use LUs
defined on the TN server. The TN server LUs establish sessions with LUs at the
host to support TN3270 sessions for the clients.

Before you can configure TN server, you must perform the following configuration
tasks:
v Define the local node as described in “Configuring the Node” on page 54.
v Configure a port and link station for dependent traffic between the local node

and the host, as described in Chapter 4, “Defining Connectivity Components,”
on page 59.

v Define the TN3270 LUs on the local node that are used for communication with
the host. To add the LUs, see “Defining LU Types 0–3” on page 75.

v If you are going to use any LU pools, define them as described in “Defining LU
Pools” on page 77.

To configure TN server, perform the following tasks:
v Configure a TN server access record for each TN3270 client who will use the

server, or a default record that enables any client to access the server (see
“Configuring TN Server Access Records” on page 104).

v If you are supporting TN3270E or TN3287 clients, you can define an association
record for display and printer LUs (see “Configuring TN Server Association
Records” on page 107). This record enables a TN3270E or TN3287 client to select

© Copyright IBM Corp. 2000, 2009 103

a specific printer (by selecting the associated display LU). The client must be
authorized to select an LU in the TN server access record.

Additional options for TN server enable you to force printer responses, specify a
keep-alive method for all TN3270 sessions, and specify how to access the external
LDAP server that holds a revocation list used to check authorization for TN3270
clients. To access these options, use the Services menu on the TN Server window.

Configuring TN Server Access Records
TN server access records indicate which TN3270 clients can access the TN server
and which LUs they should use. Each access record identifies a TN3270 client that
is permitted to access the TN server, the TCP/IP port that the client connects to,
and the LU or LU pool that the client uses.

You can also define a default record that enables access by any TN3270 client (with
the same LUs or LU pools for all clients).

TN3270 clients can use the TN server only when the node, port, and link station
are active.

To configure a TN server access record, use one of the following methods:

Motif administration program
Select TN server from the Services menu on the Node window, and TN
server from the submenu. On the resulting window, select the TN Server
Client Access Permissions pane and choose New.

Command-line administration program
Issue the following command:

define_tn3270_access

Note: If you define a TN server access record using the command-line
administration program, snaadmin, or a NOF application, you can use the
listen_local_address parameter to specify an address on the local TN Server
computer to which the TN3270 client will connect. If you do this, the access
record will not be displayed in the Motif administration program, so you
cannot use that program to view or manage it. You can still manage it using
the command-line administration program or a NOF application.

TN Server Access Record Configuration Parameters
The following parameters are required for TN server access record configuration:

TN3270 client address
The address that identifies the TN3270 client to which the access record
applies:

Default record
Permit access by any TN3270 client.

TCP/IP name or alias
Permit access by a named TN3270 client. If you know the TCP/IP
name of the client, select this option and enter the name. On many
computers, you can find out the computer’s TCP/IP name using
the hostname command.

TCP/IP address
Permit access from a specific TCP/IP address. If you know the

Configuring TN Server

104

TCP/IP address of the TN3270 client, select this option and enter
the address. This can be either of the following.
v An IPv4 dotted-decimal address (such as 193.1.11.100).
v An IPv6 colon-hexadecimal address (such as

2001:0db8:0000:0000:0000:0000:1428:57ab or
2001:db8::1428:57ab).

Support TN3270E
The level of TN3270 support provided by the node:

TN3270 Support only the TN3270 protocol. Selecting this option disables
server support for TN3270E protocols, even if they are supported
on the client.

TN3270E
Support both TN3270 and TN3270E protocols (the default).

TN3270 and TN3287 protocols are always supported, regardless of which
option you choose.

For an AS/400 TN3270 client, this option must be set to TN3270E.

TCP/IP port number
The TCP/IP port number (on the TN server) for the port to which the
TN3270 client connects.

Note: TCP/IP ports are completely unrelated to SNA ports.

The well-known port number for the TN3270 service is 23. If you choose a
different port number that is not in use on the TN server, you also need to
configure that port number on the TN3270 clients (or start the TN3270
clients using an option to specify the port number). Port numbers above
2000 are likely to be available. Port numbers in the range 256–1023 may
give slightly better security, but are more likely to be in use.

If you want a TN3270 client to be able to use more than one LU or LU
pool, define multiple access records, each with a different TCP/IP port
number, so that you can identify the different LUs or LU pools by
specifying different port numbers.

Display LU assigned
The name of the LU that the TN3270 client accesses when it is active. The
LU must be a dependent LU on the local node. You can specify the name
of an LU pool rather than the name of a particular LU.

Printer LU assigned
The name of the default printer LU or LU pool for clients that use this
access record. This LU must be defined as a dependent LU on the local
node.

Allow access to specific LU
Specify this option to enable TN3270E and TN3287 clients to request a
specific LU for a session. (This option is not available to TN3270 clients.)

SSL secure session
Specify this option to indicate that this session uses Secure Sockets Layer
(SSL) to access the server.

This option is available only if you have installed the additional software
required to support SSL on the server; otherwise you cannot select it.

Configuring TN Server

Chapter 8. Configuring Passthrough Services 105

Note: If this session’s TCP/IP port number parameter indicates that it uses
the Telnet daemon’s TCP/IP port, do not use SSL for this session. If
you use SSL on a session that uses the Telnet daemon’s TCP/IP port,
Telnet clients will not be able to use telnet to access the
Communications Server for Linux computer while the node is
active.

Perform client authentication
This option appears only if you have selected the SSL secure session option.

Specify this option to indicate that the TN Server requires the session to
use client authentication. The client must send a valid certificate
(information identifying it as a valid client authorized to use the TN
Server).

As well as checking that the certificate is valid, the TN Server may also
need to check the certificate against a certificate revocation list on an
external LDAP server, to ensure that the user’s authorization has not been
revoked. In this case, you also need to use the TN Server Advanced
Parameters dialog to specify how to access this server.

Security level
Indicates the SSL security level required for this session. The session will
use the highest security level that both client and server can support; if the
client cannot support the requested level of security or higher, the session
will not be started.

This option appears only if you have selected the SSL secure session option.

Possible values are:

Authenticate Only
Certificates must be exchanged, but encryption will not be used.
This option is typically used to avoid the overhead of encryption
when the client is connecting across a secure intranet.

Authenticate Minimum
The client must request a certificate from the server to check its
validity; encryption is not required (but can be used if the client
requests it).

40 Bit Minimum
The client must support at least 40–bit encryption.

56 Bit Minimum
The client must support at least 56–bit encryption.

128 Bit Minimum
The client must support at least 128–bit encryption.

168 Bit Minimum
The client must support at least 168–bit encryption.

Note: Using encryption requires additional software to be installed with
Communications Server for Linux; see IBM Communications Server for
Linux Quick Beginnings for more information. Depending on your
location, you may not be able to use all the encryption levels listed
because the software required to support them is not available in
your country.

Configuring TN Server

106

Additional Configuration
After performing the TN server access configuration, continue with the following
configuration tasks:
v Configure TN server association records as described in “Configuring TN Server

Association Records.”

Configuring TN Server Association Records
A TN server association record defines an association between a printer LU and
display LU, so that the TN3270E or TN3287 protocol can connect the two. If the
access record for the client permits selection of a specific LU, this record enables a
client to select a specific printer by specifying the associated display LU.

To configure a TN server association record, use one of the following methods:

Motif administration program
Select TN Server from the Services menu on the Node window, then select
the Association Records pane on the TN Server window and choose New.

Command-line administration program
Issue the following command:

define_tn3270_association

TN Server Association Record Configuration Parameters
The following parameters are required for TN server association record
configuration:

Display LU
The name of the display LU (which must be defined on the local node).

Printer LU
The name of the printer LU (which must be defined on the local node). Do
not specify a printer LU that has been entered on another TN server
association record.

Configuring TN Redirector
TN Redirector enables TN3270, TN3270E, TN5250 and VT clients, collectively
known as Telnet clients, to communicate with a host through an intermediate
Communications Server for Linux node that implements the TN redirector. The
clients connect to the TN redirector using TCP/IP; the TN redirector then
establishes a separate TCP/IP connection to the host.

To configure TN Redirector, perform the following tasks:
v Configure a TN Redirector access record for each Telnet client who will use the

server, or a default record that enables any client to access the server (see
“Configuring TN Redirector Access Records”).

Configuring TN Redirector Access Records
TN redirector access records indicate which Telnet clients can access the TN
redirector over a TCP/IP link. Each access record identifies a Telnet client that is
permitted to access the TN redirector, the TCP/IP port that the client uses to
connect to Communications Server for Linux, the TCP/IP port that
Communications Server for Linux uses to connect to the host, and the SSL security
settings. You can also define default records that enable access by any client.

Configuring TN Server

Chapter 8. Configuring Passthrough Services 107

If you want to permit any client to use the TN redirector and you want all clients
to use the same host access configuration, you can define a default record.

Telnet clients can use the TN redirector only when the node is active.

To configure a TN redirector access record, use one of the following methods:

Motif administration program
Select TN server from the Services menu on the Node window, and TN
server from the submenu. On the resulting window, select the TN
Redirector Client Access Permissions pane and choose New.

Command-line administration program
Issue the following command:

define_tn_redirect

Note: If you define a TN redirector access record using the command-line
administration program, snaadmin, or a NOF application, you can use the
listen_local_address parameter to specify an address on the local TN Server
computer to which the TN3270 client will connect. If you do this, the access
record will not be displayed in the Motif administration program, so you
cannot use that program to view or manage it. You can still manage it using
the command-line administration program or a NOF application.

TN Redirector Access Record Configuration Parameters
TN redirector access record configuration consists of two groups of parameters, for
the client and host TCP/IP connections.

The client parameters are as follows:

Telnet client address
The address that identifies the Telnet client to which the access record
applies:

Default record
Permit access by any Telnet client.

TCP/IP name or alias
Permit access by a named Telnet client. If you know the TCP/IP
name of the client, select this option and enter the name. On many
computers, you can find out the computer’s TCP/IP name using
the hostname command.

TCP/IP address
Permit access from a specific TCP/IP address. If you know the
TCP/IP address of the client, select this option and enter the
address. This can be either of the following.
v An IPv4 dotted-decimal address (such as 193.1.11.100).
v An IPv6 colon-hexadecimal address (such as

2001:0db8:0000:0000:0000:0000:1428:57ab or
2001:db8::1428:57ab).

TCP/IP port number
The TCP/IP port number (on the TN server) for the port to which the
client connects.

Note: TCP/IP ports are completely unrelated to SNA ports.

Configuring TN Redirector

108

You also need to configure this port number on the clients (or start the
clients using an option to specify the port number). Port numbers above
2000 are likely to be available. Port numbers in the range 256–1023 may
give slightly better security, but are more likely to be in use.

SSL secure session
Specify this option to indicate that this session uses Secure Sockets Layer
(SSL) to access the server.

This option is available only if you have installed the additional software
required to support SSL on the server; otherwise you cannot select it.

Perform client authentication
This option appears only if you have selected the SSL secure session option.

Specify this option to indicate that the TN Server requires the session to
use client authentication. The client must send a valid certificate
(information identifying it as a valid client authorized to use the TN
Server).

As well as checking that the certificate is valid, the TN Redirector may also
need to check the certificate against a certificate revocation list on an
external LDAP server, to ensure that the user’s authorization has not been
revoked. In this case, you also need to use the TN Server Advanced
Parameters dialog (accessed from the Services menu on the TN Server
window) to specify how to access this server.

Security level
Indicates the SSL security level required for the client session. The session
will use the highest security level that both client and server can support;
if the client cannot support the requested level of security or higher, the
session will not be started.

This option appears only if you have selected the SSL secure session option.

Possible values are:

Authenticate Only
Certificates must be exchanged, but encryption will not be used.
This option is typically used to avoid the overhead of encryption
when the client is connecting across a secure intranet.

Authenticate Minimum
The client must request a certificate from the server to check its
validity; encryption is not required (but can be used if the client
requests it).

40 Bit Minimum
The client must support at least 40–bit encryption.

56 Bit Minimum
The client must support at least 56–bit encryption.

128 Bit Minimum
The client must support at least 128–bit encryption.

168 Bit Minimum
The client must support at least 168–bit encryption.

Note: Using encryption requires additional software to be installed with
Communications Server for Linux; see IBM Communications Server for
Linux Quick Beginnings for more information. Depending on your

Configuring TN Redirector

Chapter 8. Configuring Passthrough Services 109

location, you may not be able to use all the encryption levels listed
because the software required to support them is not available in
your country.

The destination host parameters are as follows:

Address
The address that identifies the host to which the access record applies:

TCP/IP name or alias
Access to a named host. If you know the TCP/IP name of the host,
select this option and enter the name. On many computers, you
can find out the computer’s TCP/IP name using the hostname
command.

TCP/IP address
Access to a specific TCP/IP address. If you know the TCP/IP
address of the host, select this option and enter the address. This
can be either of the following.
v An IPv4 dotted-decimal address (such as 193.1.11.100).
v An IPv6 colon-hexadecimal address (such as

2001:0db8:0000:0000:0000:0000:1428:57ab or
2001:db8::1428:57ab).

TCP/IP port number
The TCP/IP port number that the TN Redirector uses to access the host.

Note: TCP/IP ports are completely unrelated to SNA ports.

You also need to configure this port number on the host. Port numbers
above 2000 are likely to be available. Port numbers in the range 256–1023
may give slightly better security, but are more likely to be in use.

SSL secure session
Specify this option to indicate that TN Redirector uses Secure Sockets
Layer (SSL) to access the host.

This option is available only if the host supports SSL.

Security level
Indicates the SSL security level required for the host session. The session
will use the highest security level that both host and server can support; if
the host cannot support the requested level of security or higher, the
session will not be started.

This option appears only if you have selected the SSL secure session option.

Possible values are:

Authenticate Only
Certificates must be exchanged, but encryption will not be used.
This option is typically used to avoid the overhead of encryption
when the host connection is across a secure intranet.

Authenticate Minimum
The host must request a certificate from the server to check its
validity; encryption is not required (but can be used if the host
requests it).

40 Bit Minimum
The host must support at least 40–bit encryption.

Configuring TN Redirector

110

56 Bit Minimum
The host must support at least 56–bit encryption.

128 Bit Minimum
The host must support at least 128–bit encryption.

168 Bit Minimum
The host must support at least 168–bit encryption.

Note: Using encryption requires additional software to be installed with
Communications Server for Linux; see IBM Communications Server for
Linux Quick Beginnings for more information. Depending on your
location, you may not be able to use all the encryption levels listed
because the software required to support them is not available in
your country.

Configuring SNA Gateway
Normally, a dependent LU session requires a direct communications link to the
host computer. However, a node running Communications Server for Linux that
has a direct communications link to the host can also provide SNA gateway
facilities to LUs on downstream computers, enabling them to access the host over
the communications link from the Communications Server for Linux node. The
downstream computer must contain an SNA PU type 2.0 or 2.1 to support
dependent communication with the host. For example, the downstream computer
could be another computer running Communications Server for Linux in a
standalone configuration.

Using the SNA gateway feature, all the data transferred between the host and the
downstream computer is routed through the Communications Server for Linux
local node. This enables a downstream computer to share a host connection with
Communications Server for Linux or with other downstream computers, instead of
requiring a direct link. For example, you can set up several downstream computers
connected to Communications Server for Linux over a local token ring network, so
that they all access the same long-distance SDLC leased line from Communications
Server for Linux to the host.

Using SNA gateway also simplifies the configuration at the host. The host
configuration needs to include only the Communications Server for Linux
computer and its host communications link; the LUs at the downstream computers
are configured as part of the resources of the Communications Server for Linux
computer. The host computer is not aware that SNA gateway is being used.

Before configuring SNA gateway, you must perform the following configuration
tasks:
v Define the local node as described in “Configuring the Node” on page 54.
v Configure a port and link station for dependent traffic between the local node

and the host, as described in Chapter 4, “Defining Connectivity Components,”
on page 59. Also, configure ports and link stations for dependent traffic between
the local node and the downstream nodes. For downstream links, you can
configure a template on the port to support implicit downstream LUs (LUs that
are not explicitly defined on the local node).

v Define the LUs on the local node that are used for communication with the host
(the upstream LUs). Upstream LUs, including Dependent LU 6.2 LUs, must be

Configuring TN Redirector

Chapter 8. Configuring Passthrough Services 111

defined using the LU Type 0–3 Configuration dialog, specifying an LU type of
unrestricted (unknown). To add the LUs, see “Defining LU Types 0–3” on page
75.

v If you are going to use any LU pools, define them as described in “Defining LU
Pools” on page 77.

To enable SNA gateway, you must configure LUs on the local node to support
sessions with downstream workstations. (If you configured a template on the port
to support implicit downstream LUs, you may not need to define downstream LUs
explicitly.) The LUs defined on the local node are referred to as “downstream
LUs.” To configure downstream LUs, you need the LU numbers that are used on
the downstream nodes, and the name of the host LU. (The LUs that are defined on
the downstream nodes can be any dependent LU type.)

To configure downstream LUs, use one of the following methods:

Motif administration program
Select SNA gateway and New downstream LU from the Services menu on
the Node window.

Command-line administration program
Issue one of the following commands:

define_downstream_lu

define_downstream_lu_range

Downstream LU Configuration Parameters
The following parameters are required for downstream LU configuration:

Downstream LU name
A name for each downstream LU. The LU name is used only to identify
the LU locally, and does not need to match any configuration on the
downstream node.

If you are defining a range of LUs, specify a base name of 1–5 characters.
Communications Server for Linux adds a three-digit decimal string to the
base name to create an LU name for each LU number you specify.

Downstream PU name
The name of the link station to the downstream node.

LU number
The LU number must match the LU number defined on the downstream
node. Contact your SNA network planner if you do not know what LU
number to use.

You can configure several LUs with consecutive LU numbers by defining a
range of LUs.

Upstream LU name
The name of the host LU or a pool of LUs with which the downstream
LUs will communicate.

Delayed logon
To reduce the user startup time, Communications Server for Linux displays
a logon screen without assigning an upstream LU; a 3270 user must hit a
key before the user is associated with an upstream LU.

Configuring SNA Gateway

112

Allow timeout
To reduce the number of LUs required, an LU without an active PLU-SLU
session is disassociated from the upstream LU after this number of
seconds.

Additional Configuration
After performing the downstream LUs for SNA gateway configuration, continue
with the following configuration tasks:
v To configure user applications, see Chapter 7, “Configuring User Applications,”

on page 101.

Configuring DLUR
Normally, a dependent LU session requires a direct communications link to the
host computer. If many nodes (including a host node) are connected together in an
APPN network, some of them may have an indirect connection through another
node instead of a direct connection to the host. Without a direct connection, it is
not possible to establish dependent LU sessions to the host from LUs in these
indirectly connected nodes.

Dependent LU requester (DLUR) is an APPN feature designed to overcome this
limitation. DLUR can be configured on an APPN node (such as a node running
Communications Server for Linux). It works in conjunction with dependent LU
server (DLUS) at the host, to route sessions from dependent LUs on the DLUR
node across the APPN network to the DLUS host.

The route to the host can span multiple nodes and can take advantage of APPN’s
network management, dynamic resource location, and route calculation facilities.
DLUR must be available on the node where the LUs are defined, and DLUS must
be available on the host node, but you do not have to enable DLUR on any
intermediate nodes in the session route.

Note: You cannot configure DLUR on a LEN node.

If the Communications Server for Linux DLUR node is a network node, it can also
provide passthrough DLUR facilities for dependent LUs on downstream computers
connected to the Communications Server for Linux node. (Only network nodes
support this function.) These downstream LUs can use DLUR on the
Communications Server for Linux node to access the host across the network, in
the same way that LUs internal to the node do.

Note: You cannot configure passthrough DLUR on an end node.

The tasks you need to perform to configure DLUR depend on whether the
dependent LUs are on the local node or on downstream nodes.

To configure DLUR support on the local node, you must perform the following
configuration tasks:
1. Define the local node as described in “Configuring the Node” on page 54. If

you are providing passthrough DLUR support for downstream nodes, define
the node as an APPN network node.

2. Configure connectivity to the APPN network. APPN connectivity requires at
least a port and link station for independent traffic between the local node and
the adjacent APPN network node, as described in Chapter 4, “Defining
Connectivity Components,” on page 59.

Configuring SNA Gateway

Chapter 8. Configuring Passthrough Services 113

3. Define a DLUR PU on the local node as described in “Defining DLUR PUs” on
page 71. (The DLUR PU supports connectivity to the host.)

4. To configure DLUR to support LUs on the local node, you must add the LUs
on the local node, as described in Chapter 7, “Configuring User Applications,”
on page 101. The LUs can be configured to support 3270 display, 3270 printer,
or LUA. Depending on the requirements of the user applications supported by
the LUs, you may also need to perform further configuration.

To configure passthrough DLUR support for downstream nodes, you must perform
the following configuration tasks:
1. Define the local node as an APPN network node (see “Configuring the Node”

on page 54).
2. Configure connectivity to the downstream nodes. Configure ports and link

stations for dependent traffic between the local node and each downstream
node, as described in Chapter 4, “Defining Connectivity Components,” on page
59. (You do not need to define a DLUR PU to support DLUR for downstream
nodes.)

3. A downstream node can support multiple PUs. In this case, each downstream
PU is associated with a different link, so you need to configure multiple links
between the Communications Server for Linux DLUR node and the
downstream node, and you need to know the downstream PU name for each
link.

Configuring DLUR

114

Chapter 9. Managing Communications Server for Linux from
NetView

Communications Server for Linux includes a remote command facility (RCF) that
operates in conjunction with the NetView program at a host computer, enabling a
NetView operator to issue commands from the host NetView program to the
Communications Server for Linux computer. (For a brief overview of NetView and
RCF commands, see “Using the Host NetView Program.”)

The Communications Server for Linux RCF provides the following two functions:
v Service point command facility (SPCF) enables a NetView operator to issue

Communications Server for Linux administration commands from NetView
using the same syntax as for the command-line administration program
snaadmin. This facility is described in “Using SPCF” on page 118.

v UNIX command facility (UCF) enables a NetView operator to issue Linux
operating system commands from NetView. This facility is described in “Using
UCF” on page 119.

Both of these functions can be accessed from the NetView console in the same way,
and the overall syntax for issuing the commands is the same.

Using the Host NetView Program
The Communications Server for Linux RCF operates in conjunction with the
NetView program at a host computer. The host must be running NetView Version
1 Release 2, or a later version; Communications Server for Linux does not support
NetView Version 1 Release 1.

To use the NetView program, you need the following:
v Login ID and password for the host NetView program (contact your host

personnel for this information)
v Service point name for Communications Server for Linux, defined at the host for

the NetView program (contact your host personnel for this information)
v DLC, port, and link station to access the host computer on which the NetView

program is running

You may want to test the RCF function by using 3270 emulation to access NetView
from Communications Server for Linux instead of accessing it directly from the
host. In this case, you also require the following:
v 3270 LU configured at the host
v 3270 session using this LU

Consult your host administrator to obtain the necessary configuration information.

To access the NetView program, follow these steps:
1. Ensure that the Communications Server for Linux software is started, using a

node configuration file that includes a definition of RCF access parameters (the
define_rcf_access record).

2. If you are accessing the NetView program using 3270 emulation, start the 3270
emulation program and activate the session to the host.

© Copyright IBM Corp. 2000, 2009 115

3. Follow the instructions given to you by the host administrator for starting
NetView and logging on. (The sequence of operations may vary with different
versions of NetView.)

4. Issue SPCF or UCF commands as required.
5. If you are using 3270 emulation to access NetView, follow the instructions in

your 3270 documentation for ending 3270 emulation when you have finished
issuing commands.

NetView Screen Display
The layout of the NetView screen varies with different versions of NetView at
different hosts. A typical layout is shown in Figure 19.

The display includes an input area at the bottom of the screen; this is the area into
which you can type commands. The line ??? divides the main screen area (where
NetView displays responses to your commands) from the input area.

Changing the Size of the Command Input Area
By default, the input area is one line, but for some of the longer commands you
need more than one line. On some versions of NetView, you can specify an input
area of one, two, or three lines by using the input command. To do this, type the
following command:

input n

In this command, n is 1, 2, or 3, indicating the number of lines you want. If this
command does not work on the version of NetView you are using, contact your
NetView support personnel.

Overview of RCF Command Syntax
Both SPCF and UCF commands use the RCF command syntax:

runcmd sp=spname, appl=component, commandtext

NetView uses the runcmd utility to send a command string to a remote system.
The command includes the following parameters:

sp=spname
Indicate the service point name (defined at NetView) that corresponds to
the Communications Server for Linux node. The host NetView personnel
can give you this information.

NCCF N E T V I E W

???
runcmd sp=abcdpu01,appl=node,query_node

[SCAN DDAC12 07/18/95 13:52:24 A

RUNCMD SP=ADCDPU01,APL=NODE,START_DLC,DLC_NAME=TOKR01
COMMAND ISSUED SUCCESSFULLY

Figure 19. Example of a NetView Screen

Using the Host NetView Program

116

appl=component
Indicate the name of the Communications Server for Linux component to
which NetView should send the command, as follows:

node The Communications Server for Linux node associated with the
service point name spname (for SPCF commands)

unix The UCF daemon program running on the Communications Server
for Linux computer associated with the service point name spname
(for UCF commands)

commandtext
Supplies the text of the command being issued. For SPCF, this is a
command issued to the Communications Server for Linux command-line
administration program. For UCF, it is a command for the Linux operating
system. For more information about the commands that can be used, see
“Restrictions on Administration Commands Used with SPCF” on page 118
or “Permitted Commands” on page 120.

Uppercase Characters and Escape Characters
Although Linux distinguishes between uppercase and lowercase alphabetic
characters, the NetView program may not do so. The NetView netvasis command
can be used to provide mixed-case input to runcmd, but Communications Server
for Linux RCF has no way to determine whether netvasis is in use. Because RCF
cannot determine whether an alphabetic character received from the host was
originally uppercase or lowercase, it assumes that received characters are intended
to be lowercase. Also, the host character set may not support the square bracket
characters [and], which are required in some commands.

RCF provides support for uppercase characters and square bracket characters using
the backslash character \, as follows:
v To include an uppercase character in the command string, include a backslash

character before it. Any alphabetic character not preceded by a backslash is
interpreted as lowercase.

v To include the square bracket characters [and], use the sequences \(and \),
respectively.

v To include the backslash character \ itself, type it twice.

If a single backslash is followed by any other nonalphabetic character, the
backslash is ignored and the character is left unchanged.

Some examples are shown in Table 3.

Table 3. Using Escape Characters in RCF Commands

Characters to Produce Input

ABcd \a\bcd
[] \(\)
\a \\a
\[\\\(

The escape characters you would normally use on the Linux command line, to
prevent the Linux shell from interpreting special characters, are not required with
RCF. For example, do not use escape characters with strings containing the
characters * or $, as you would when entering them on the Linux command line.

Using the Host NetView Program

Chapter 9. Managing Communications Server for Linux from NetView 117

Also, when using SPCF to issue administration commands, be aware that constant
names such as LIST_FROM_NEXT are not case-sensitive. You do not need to escape
these characters to make them uppercase.

Using SPCF
SPCF enables you to issue commands from the NetView console to manage the
running Communications Server for Linux system. These commands are the same
as those you can issue using the Communications Server for Linux command-line
management program snaadmin (as described in IBM Communications Server for
Linux Administration Command Reference).

For information about the syntax of an SPCF command, see “Overview of RCF
Command Syntax” on page 116. The command text following the appl=node
parameter is a command issued to the Communications Server for Linux
command-line administration program, in the same format as you would specify it
to the snaadmin program on the Linux command line. Refer to IBM
Communications Server for Linux Administration Command Reference for information
about the syntax of administration commands and the parameters for individual
commands.

Restrictions on Administration Commands Used with SPCF
You cannot use the command-line option -i to specify input from a file or from
standard input. All commands must be entered directly at the NetView console.

With query_* commands, you can use the command-line options -a (return all
entries) and -d (return detailed information) in the same way as when entering
commands on the Linux command line.

To provide security, you can set up the Communications Server for Linux
configuration so that only certain types of commands are permitted from SPCF. For
example, you can permit remote users to issue query_* commands, but not to
activate or deactivate Communications Server for Linux components. You can
control access separately for each of the following groups of commands:
v define_*, set_*, delete_*, add_*, and remove_* commands, and also init_node

v query_* commands
v “Action” commands: start_*, stop_*, activate_*, deactivate_*, and also aping,

initialize_session_limit, change_session_limit, and reset_session_limit

For more information about setting up security options for SPCF, refer to the
description of the define_rcf_access command in IBM Communications Server for
Linux Administration Command Reference.

Examples of SPCF Commands
The following example shows how you could issue the define_lu_0_to_3
command using SPCF. This example uses backslash characters to indicate
uppercase letters in the two character strings LU$01 and PU2. There is no need to
make the characters in the constant name 3270_display_model_2 uppercase,
because the snaadmin program accepts this string in lowercase.

runcmd sp=myspname, appl=node, define_lu_0_to_3, lu_name=\l\u$01,

nau_address=1, pu_name=\p\u2, lu_model=3270_display_model_2

Using the Host NetView Program

118

The following example shows how you could issue the query_lu_0_to_3 command
using SPCF. The -a option indicates “return all entries,” so there is no need to
specify an LU name or PU name. The -d option indicates “return detailed
information,” so there is no need to specify this using the list_options parameter.
These two options act in exactly the same way as for the snaadmin program.

runcmd sp=myspname, appl=node, -a -d query_lu_0_to_3

Using UCF
UCF enables a NetView operator to issue Linux commands on a computer running
Communications Server for Linux by typing the command text at the NetView
console, and to view output from these commands. The facility is not restricted to
commands related to Communications Server for Linux; subject to the restrictions
in “Permitted Commands” on page 120, any type of command can be issued.

By using UCF, a remote operator can monitor activity on the Communications
Server for Linux computer, diagnose problems, and in some cases take corrective
action.

You can specify whether Communications Server for Linux supports UCF by using
the define_rcf_access command (refer to IBM Communications Server for Linux
Administration Command Reference). If the configuration specifies that UCF is
supported, Communications Server for Linux starts the UCF daemon program
when the node is started. The UCF daemon processes Linux commands from the
UCF by starting a new Linux shell for each command and running the command
in that shell. If UCF support is not included, Communications Server for Linux
does not start this program.

The configuration specifies the name of the UCF user, which must be a valid login
name on the Communications Server for Linux computer. The UCF shell is started
using the shell program, login ID, permissions, and .login or .profile specified for
that user. (If no shell program is specified, /bin/sh is used.) This means that the
normal Linux system security features can be used to restrict the UCF user’s access
to files and commands, and therefore to limit the range of commands available
from UCF.

For more information about setting up the UCF configuration, refer to the
description of the define_rcf_access command in IBM Communications Server for
Linux Administration Command Reference.

UCF Command Syntax
The syntax of a UCF command is as follows:

runcmd sp=spname, appl=unix, unix_command

NetView uses the runcmd utility to send a command to a remote system. The
command includes the following parameters:

sp=spname
Specify spname, which is the name of your service point as defined at
NetView. The host NetView personnel can give you this information.

Using SPCF

Chapter 9. Managing Communications Server for Linux from NetView 119

appl=unix
Instruct NetView to send the command to the UCF daemon program on
the Communications Server for Linux computer associated with the service
point name spname.

unix_command
Supply the Linux operating system command. This command is entered as
you would enter it on the Linux command line, except for the escape
characters to indicate uppercase letters or square bracket characters (as
described in “Overview of RCF Command Syntax” on page 116).

The escape characters you would normally use on the Linux command
line, to prevent the Linux shell from interpreting special characters, are not
required with UCF. For example, do not use escape characters with strings
containing the characters * or $, as you would when entering them on the
Linux command line.

Permitted Commands
The UCF is designed for use with commands that complete (whether or not any
output is produced) without any further interaction from the user. For example,
you can issue the command cat filename, which completes after displaying the
contents of filename, or mv filename1 filename2, which completes with no output
unless an error occurs.

Output generated by a UCF command is returned to UCF when the Linux
operating system command completes. This leads to the following restrictions:
v Any output generated after the command completes is not returned to UCF. For

example, if you issue a command followed by & to run it in the background,
UCF receives the operating system message giving the process ID of the
background command, but does not receive any subsequent output that is
generated. Similarly, you can use UCF to start a daemon process, but you cannot
see any output generated by the process.

v The UCF cannot be used with a command that requires further input from the
user before it completes (for example, a command such as vi filename that starts
an interactive process, or a command such as tail -f filename that does not
complete until it is stopped by the user).

Because all Linux commands run with the login ID and permissions of the
configured UCF user, the valid commands are limited by the access rights of the
UCF user’s login. In particular, root or superuser commands are not permitted. For
more information, see “UCF Security” on page 122.

Example of a UCF Command
The following is an example of a UCF command as you would enter it from
NetView:

runcmd sp=myspname, appl=unix, grep \temp \(ab\)*.c >\t\e\m\p.out

The command that would run on the Linux computer is:

grep Temp [ab]*.c >TEMP.out

Output from Linux System Commands
When a command is issued successfully, the following messages are displayed on
the NetView screen:

Using UCF

120

= = = EXECUTING UNIX COMMAND = = =
(any output from the command, including error messages)
= = = UNIX COMMAND COMPLETED = = =

These messages may not appear on the NetView screen at the same time. The
EXECUTING UNIX COMMAND message appears as soon as the UCF daemon
program receives the command and returns control to the NetView operator. Any
output from the command is sent to NetView as it is produced, and may appear as
a series of separate messages; the UNIX COMMAND COMPLETED message
appears when the Linux command has finished and its shell has ended.

If the output from the Linux command contains tab characters, Communications
Server for Linux converts each tab to a space character before sending the output
to NetView. Otherwise the output is sent unchanged.

If you issue a command when a previous command is still in progress (that is,
before the UNIX COMMAND COMPLETED message is received), the following
message is displayed:

= = = COMMAND QUEUED = = =

The second command is queued, and is executed when the previous command has
completed.

Canceling a Command
UCF provides a method of canceling a command that is still in progress. This can
be used to stop the current command from executing, or to cancel an interactive
command such as vi filename that cannot complete without further input. It is
equivalent to using an interrupt sequence such as Ctrl + C to stop a process
running on a terminal, or using the Linux kill command to stop the process.

In addition to canceling the command that is currently executing, Communications
Server for Linux cancels any commands that are queued after it.

The command syntax is the same as for the Linux command, with the string
ux-cancel instead of the command text. For example:

runcmd sp=myspname, appl=unix, ux-cancel

For each outstanding command (the one currently executing and any queued
commands), the following message is displayed:

= = = UNIX COMMAND CANCELLED = = =

This message indicates that the Linux shell in which the command was running
has been stopped. Further Linux commands can be issued as necessary.

If a command starts a daemon process on the Linux computer, this process may
not be stopped by ux-cancel. You may need to use the Linux kill command (either
on a terminal or by using UCF) to stop such a process explicitly.

If no UCF command is running when ux-cancel is used, UCF displays the
following message:

NO OUTSTANDING COMMANDS

Using UCF

Chapter 9. Managing Communications Server for Linux from NetView 121

In this case, the ux-cancel command is ignored. No action is necessary. This
message can be displayed when the ux-cancel command is issued after the
previous command finishes but before the UNIX COMMAND COMPLETED
message is received.

UCF Security
Because the UCF enables a remote operator to issue commands on the Linux
computer and to receive output from these commands, it is important to consider
the security implications. For example, you need to ensure that the operator cannot
access private information or issue Linux commands that can disrupt other users.

The Communications Server for Linux configuration includes a specific Linux
system user name as the UCF user; this must be a valid login ID on the
Communications Server for Linux computer. All UCF commands run with this
user’s ID, and therefore with the access permissions of this user.

It is intended that you use the normal security features provided by Linux to
restrict the commands the UCF user can access, in order to permit only those
commands you consider reasonable for use from UCF. The following guidelines
may be useful:
v The UCF user name should be one that is used solely for UCF; you should not

use an existing login that is also used for other purposes. This makes it easier to
define the privileges of this user to include only those that are reasonable for
UCF; it also enables you to identify processes that were started using UCF.

v You may need to restrict the users and groups for which the UCF user can
change a user ID or group ID. In particular, the UCF user must not be permitted
to do the following:
– Become root or superuser.
– Use the group ID system, which enables access to the snaadmin program.

(The functions of this program should be accessed using SPCF, as described
earlier in this chapter, instead of UCF.)

Using UCF

122

Chapter 10. Managing Communications Server for Linux
Client/Server Systems

Communications Server for Linux can operate as a standalone system with all SNA
components and applications on a single Linux system, or can operate as part of a
client/server domain. A client/server domain includes both servers (SNA nodes)
and IBM Remote API Clients (which can access SNA connectivity through a
server).

In a domain with multiple Communications Server for Linux servers, one server
holds the master copy of the Communications Server for Linux domain
configuration file. This server is known as the master server. You can define other
servers in the domain to be backup servers. The domain configuration file is
copied to backup servers—either when they are started, or when the master copy
is changed—so that all backup servers hold a copy of the latest information.

Remote API Clients can be computers running AIX, Linux, Linux for pSeries, Linux
for System z, or Microsoft Windows.

Servers and clients communicate across the Communications Server for Linux
domain using TCP/IP; both IPv4 and IPv6 addressing are supported. A client can
access one or more servers at the same time, and can run concurrent applications
as needed. For information about the networking requirements for a client/server
configuration, see “IP Networking Requirements” on page 125.

The TCP/IP connections used between clients and servers may flow across
physical LANS, WANs, or virtual paths between servers running under VM. In the
Communications Server for Linux books, the term LAN is used for all of these.

AIX, LINUX

For Remote API Clients on AIX or Linux, you must supply information about the
Communications Server for Linux network and servers. For information about this
function, and for instructions on enabling and disabling the Communications
Server for Linux software on clients, see “Managing Remote API Clients on AIX or
Linux” on page 143.

All administration commands can be issued on a server. However, there are
restrictions on which commands can be issued on AIX and Linux clients.
v You can issue any query or status command on a an AIX or Linux client.
v Some other administration commands, defined in IBM Communications Server

for Linux Administration Command Reference, explicitly say that they can be
issued from an IBM Remote API Client. Otherwise these commands are available
only from a server.

WINDOWS

For Windows clients, you must supply information that Communications Server
for Linux can use to enable the client software. If you plan to have invokable TPs

© Copyright IBM Corp. 2000, 2009 123

on the Windows client, you must also supply information about the TPs. For
information about these functions, and for instructions on enabling and disabling
the Communications Server for Linux software on a Windows client, see
“Managing Remote API Clients on Windows” on page 128.

Administration commands, defined in IBM Communications Server for Linux
Administration Command Reference, cannot be issued from a Windows client.

Changing Client/Server Configuration
When you install the Communications Server for Linux software, as described in
IBM Communications Server for Linux Quick Beginnings, it is initially installed in
standalone mode (with all components on a single Linux computer). If you want to
run Communications Server for Linux as a client/server system, you can then
configure one server to be the master server, and configure any other servers as
backup servers. (You are recommended to configure all servers other than the
master as backup servers.)

Communications Server for Linux includes a command-line application program,
snanetutil, to make a server part of a client/server domain. To do this, use the
following command on each server (starting with the master server):

sna stop
snanetutil master_name [domain_name]
sna start

The parameters in the snanetutil command are as follows.

master_name
The name of the master server in the domain to which the server belongs.
If you are moving the server into an existing domain, this must match the
name of the existing master server in that domain.

domain_name
The name of the domain to which the server belongs. This parameter is
optional; if you do not specify it, Communications Server for Linux uses
the default domain name ibmcs_domain.

To configure each server other than the master as a backup server, issue the
following command. You can do this on the backup server itself or on the master
server, but the Communications Server for Linux software must be running on the
master server in either case.

snaadmin add_backup, backup_name=server_name

server_name is the name of the server that you want to add as a backup server.

You can also use the snanetutil program to move the server out of an existing
domain so that it runs as a standalone system.

Note: Do not use this option unless you want to stop running Communications
Server for Linux as a client/server system and use it simply as a standalone
node. If you remove all the servers from an existing domain, any clients left
in that domain will be unable to access SNA resources.

Managing Communications Server for Linux Client/Server Systems

124

To move a server out of its domain so that it runs as a standalone system, use the
following command:

snanetutil -d

Moving Clients Into a Different Domain
The snanetutil program allows you to move servers between different
client/server domains. If you want to move clients between domains, you need to
do this by modifying the client configuration.

On each Remote API Client on Windows that is to be moved, use the Client
Configuration Utility to change the domain parameter to match the new domain
name. See “Remote API Client on Windows Configuration” on page 130 for more
information.

On each Remote API Client on AIX or Linux that is to be moved, change the
domain entry in the Configuration section of the client network data file to match
the new domain name. See “Client Network Data File (sna_clnt.net)” on page 144
for more information.

IP Networking Requirements
Remote API Clients can communicate with Communications Server for Linux
servers using TCP/IP, or using HTTPS via a WebSphere server. See “HTTPS Access
for Remote API Clients” on page 128 for more details about using HTTPS
connections.

Before you can run the Remote API Client, you must configure TCP/IP port
addresses on both the clients and servers in your network. If you encounter
problems with the default port assignments, you may need to resolve conflicts as
described in “Setting Up IP Port Numbers” on page 126.

In addition, you may wish to set clients up so that the TCP/IP connection is
dropped automatically when the client is finished using Communications Server
for Linux, as described in “LAN Access Timeout” on page 127.

IPv4 and IPv6 Addressing
Computers in a Communications Server for Linux client/server domain can use
either IPv4 or IPv6 addresses, but all servers in the domain must use the same
addressing format (IPv4 or IPv6).
v If the servers use IPv4, clients must also use IPv4.
v If the servers use IPv6, clients can use either IPv6 or IPv4.

For more details of how to set up and use IPv4 and IPv6 addressing, see IBM
Communications Server for Linux Quick Beginnings.

Host Names in Client/Server Configuration
Communications Server for Linux uses fully-qualified IP hostnames for its internal
communications between servers and clients. Normally the local system can
determine these names from network configuration (such as DNS). If this is not
possible, you should use a fully-qualified name (such as newbox.this.co.uk)rather
than an alias (such as newbox) whenever a hostname is required in configuration.

Changing Client/Server Configuration

Chapter 10. Managing Communications Server for Linux Client/Server Systems 125

The local server name for each computer is taken from the /etc/hosts file. The entry
in this file must specify the IP address first, then the fully-qualified name, and
finally the alias, for example:
9.42.108.28 newbox.this.co.uk newbox

If the server is multi-homed (for example, if it has two or more TCP/IP network
interfaces so that it appears with different IP addresses), the entries in the
/etc/hosts file must specify the same IP name for all addresses, so that the name
can be resolved correctly for all network interfaces. For example:
9.42.108.28 newbox.this.co.uk newbox
9.42.80.127 newbox.this.co.uk newbox

You also need to include the line multi on in the /etc/host.conf file to indicate that
the server is multi-homed.

Setting Up IP Port Numbers
Communications Server for Linux uses both TCP/IP and UDP/IP communications
to send client/server data across the LAN. By default, it uses the port number 1553
for both types of communications. For most installations, this port number should
be suitable; you do not need to change it.

If you encounter problems enabling the Communications Server for Linux
software, check the error log file for messages indicating that the port number used
by Communications Server for Linux clashes with the port number used by
another program. If you find such messages, take the following steps:
1. Check the /etc/services file on the computer where the error occurred, to see if

another program is listed as using the port number 1553 for either TCP/IP or
UDP/IP communications. If this is the case, first try to change the other
program to use a different port.

2. If you cannot do this, or if no program is listed as using port 1553, find another
port number that is not listed in the file as being used by any program. Check
the /etc/services file on all other Communications Server for Linux computers
in the same domain, to ensure that the number is not used on any other
computer.

3. In the /etc/services file on each computer in the domain, add two lines in the
following form:
sna-cs nnnn/tcp
sna-cs nnnn/udp

The nnnn entry is the new port number. This must be set to the same value on
all computers in the Communications Server for Linux domain.

4.

WINDOWS

If your Communications Server for Linux domain includes Windows clients,
add the same two lines to the services file on each Windows computer. The
services file is in the same format as the Linux file, and is generally stored in
the home directory of the Windows TCP/IP software; see your Windows
TCP/IP documentation for more information if necessary.

5. Re-enable the Communications Server for Linux server and Remote API Client
software.

IP Networking Requirements

126

Note: You are advised to use a firewall to protect port 1553 on the server (or the
new port number you have specified for client/server communications), to
prevent unauthorized access. Both TCP and UDP traffic should be permitted
to and from other Communications Server for Linux servers and Remote
API Clients, but no other computers should be permitted to access the port.

LAN Access Timeout
If the client is communicating with Communications Server for Linux servers
across a network for which connection charges are payable, you may want to
ensure that the TCP/IP connection from the client is dropped automatically after
applications on the client have stopped using Communications Server for Linux
resources. This does not automatically disable the SNA software on the client; it
remains active, and attempts to re-establish contact with a server if an application
requires it at a later time.

The lan_access_timeout parameter (in the sna_clnt.net file for a Remote API Client
on AIX or Linux, or the Registry for a Remote API Client on Windows) enables
you to disable the SNA software on the client. The TCP/IP connection is dropped
when none of the following events have occurred on the client for the specified
time:
v APPC or CPI-C conversations active (or attempts to start a conversation)
v LUA sessions active
v CSV TRANSFER_MS_DATA verbsfrom a Windows client
v MS verbs (Linux clients only)
v NOF verbs (except the query_central_logger or query_node_all verbs)
v Administration commands (except the following events, which do not cause the

client to restart the connection):
– Error or audit messages logged by the client (these are logged locally on the

client, even if central logging is being used)
– The administration commands query_central_logger or query_node_all (these

return the information that was available before the TCP/IP connection was
dropped, and so may not match the current status of the LAN)

– The NOF verbs query_central_logger or query_node_all (as for the
equivalent administration commands)

In particular, the TCP/IP connection is dropped if you enable the SNA software
but do not start any Communications Server for Linux applications on the client
within the specified timeout.

When one of these events occurs while the TCP/IP connection is down, the client
re-starts the attempt to contact a server, as described for the * and servername
parameters in “Client Network Data File (sna_clnt.net)” on page 144, or “Servers”
on page 134.

Incoming Attaches for invoked TPs on this client cannot be accepted while the
TCP/IP connection is down; the Attach is rejected as though the target system
were inactive. This means that automatically started TPs on the client are not
available if no other applications on the client are running and the TCP/IP
connection has timed out. However, operator-started TPs on the client can be used
at any time, because a Receive_Allocate verb issued by the TP re-establishes the
TCP/IP connection.

IP Networking Requirements

Chapter 10. Managing Communications Server for Linux Client/Server Systems 127

HTTPS Access for Remote API Clients
If you are running a client/server system in which Remote API Clients connect to
Communications Server for Linux servers using HTTPS, you will need a computer
running WebSphere Application Server to provide HTTPS access from these clients
to the servers. For instructions on how to install and configure this server, see IBM
Communications Server for Linux Quick Beginnings.

If you add new servers to the Communications Server for Linux domain and you
want Remote API Clients to be able to access these servers using HTTPS, you will
need to update the WebSphere server configuration file to include these servers.
This file is named snahttpsrv.cfg, and is stored on the WebSphere server in the
directory specified by the USER_INSTALL_ROOT environment variable. If you
are not sure where this is, take the following steps.
1. Start the WebSphere administration console.
2. In the administration console menu bar, choose Environment, Manage

WebSphere Variables.
3. Look for the USER_INSTALL_ROOT variable in this list, and note its value

(which is the path of a directory on the WebSphere server). The list of
environment variables may span two or more pages, so you may need to use
the Next button to scroll through the list.

Edit the configuration file using a text editor to include a list of all
Communications Server for Linux servers that can be accessed by Remote API
Clients using HTTPS. Each server must be specified on a separate line of the file,
in the following format:

server=servername.domainname.com

On each Remote API Client that will access the new server, you also need to add
the new server name to the list of servers in the client network data file (or in the
Windows Registry for a Windows Client). See the section for the appropriate client
type later in this chapter.

Managing Remote API Clients on Windows

WINDOWS

Communications Server for Linux enables machines running Microsoft Windows to
act as clients in the Communications Server for Linux domain. The
Communications Server for Linux client software includes API libraries that are
compatible with Microsoft Host Integration Server, the Windows Open Systems
Architecture (WOSA), and the interfaces provided by IBM Personal
Communications and Communications Server for Windows. This enables
applications written for these implementations to run unchanged on the Remote
API Client on Windows.

The Remote API Client on Windows supports the following WOSA APIs:
v Windows APPC
v Windows CPI-C
v Windows LUA
v Windows CSV

HTTPS Access for Remote API Clients

128

For more information about Windows SNA APIs, see the documentation provided
with Microsoft Host Integration Server.

SNA network information, and other information required by the Remote API
Client on Windows, is held in the Windows Registry.

The client must be enabled before you can use Communications Server for Linux
applications or emulation programs on the client. For more information, see
“Enabling a Remote API Client on Windows.” When the client is enabled, it
contacts a server running Communications Server for Linux over the TCP/IP
network in order to access Communications Server for Linux features.

The operation of the client is also controlled by the information in the Windows
Registry. The Windows Registry contains information about the following:
v Configuration information specific to Remote API Clients on Windows
v Servers that the client can access
v Logging and tracing options for applications running on the client
v Additional options for CPI-C and CSV applications running on the client
v Invokable TPs (APPC or CPI-C) that can run on the client

The most commonly used parameters can also be modified using the Client
Configuration Utility, which is the preferred method for modifying them. For more
information, see “Remote API Client on Windows Configuration” on page 130.

Note: If the client uses HTTPS to access its servers, you will need to modify the
client configuration to specify the names of these servers and the WebSphere
server providing HTTPS access to them before you can use the client. See
“Remote API Client on Windows Configuration” on page 130 for more
information.

Enabling a Remote API Client on Windows
The Remote API Client on Windows runs as a Windows service. The installation
program configures it to start automatically when the computer starts. If necessary,
you can start it manually in either of the following ways.
v Start the client service from the Services applet under Control Panel,

Administrative Tools.
v Type net start sxclient from a command window or from the Start / Run

icon.

The client then uses the information in the Windows Registry, defined using the
Client Configuration Utility and described in “Remote API Client on Windows
Configuration” on page 130, to locate a server running Communications Server for
Linux.

Note: If you are using Microsoft Windows Vista, you need to run net start
sxclient from a command prompt that has administrator authority. To
access this command prompt, use the right-hand mouse button on the
Command Prompt icon, select ’Run as administrator’, and type the
administrator password at the prompt.

Managing Remote API Clients on Windows

Chapter 10. Managing Communications Server for Linux Client/Server Systems 129

Viewing Status of a Remote API Client on Windows
The Client Monitor places an icon in the system tray that displays the Client’s
status when you move the mouse pointer over it. The Monitor is set up to run
automatically when the computer starts, but you can also run it manually in either
of the following ways:
v From the Start menu, choose Client Monitor from the Remote API Client on

Windows program group.
v From a command prompt, change to the directory where the client software is

installed, and run the sxclappl command.

The Client Monitor normally displays information in the language that you
selected when installing the client software. If you prefer to see this information in
a different language, you can do this by starting the Client Monitor from a
command prompt: change to the directory where the client software is installed,
and then to the subdirectory corresponding to your preferred language, before
running the sxclappl command. For example, to see the information in French, run
the sxclappl command from the fr_FR subdirectory below the directory where the
client software is installed.

The Client Monitor shows the status as one of the following:

Not Active
The client has not been started.

Not Connected
The client has been started, but has not yet made contact with a server (or
has lost contact).

Server_Name
The client is connected to the named server.

Disabling a Remote API Client on Windows
Before disabling the client, ensure that all Communications Server for Linux
applications (3270 and 5250 emulation programs, or applications using the
Communications Server for Linux APIs) on the client have been stopped.

To disable the client, stop the Client service in one of the following ways.
v Stop the Client service from the Services applet under Control Panel,

Administrative Tools.
v Type net stop sxclient from a command window or from the Start / Run icon.

On a computer running Windows Terminal Services, this means that all users are
prevented from using the client.

Note: If you are using Microsoft Windows Vista, you need to run net stop
sxclient from a command prompt that has administrator authority. To
access this command prompt, use the right-hand mouse button on the
Command Prompt icon, select ’Run as administrator’, and type the
administrator password at the prompt.

Remote API Client on Windows Configuration
On Remote API Clients on Windows, configuration information is held in the
Windows Registry. The Registry contains SNA network information(similar to the

Managing Remote API Clients on Windows

130

information held in the client network data file on Remote API Clients on AIX or
Linux). It also contains some additional configuration information that is specific to
Remote API Clients on Windows.

Note: Configuration information for a CPI-C application (the local TP name and
local LU alias) can be specified either in environment variables or in the
registry. You may need to use environment variables if you are using
Windows Terminal Server and need to run multiple copies of the same
application using different local LUs. For more details, see “Appl_Name” on
page 142.

The Client Configuration Utility provides a simple way of modifying the most
commonly used client configuration parameters, and is the preferred method for
modifying these parameters. You can start this program in either of the following
ways:
v From the Start menu, choose Configuration Utility from the Remote API Client

on Windows program group.
v From a command prompt, change to the directory where the client software is

installed, and run the sxclconf command.

The Configuration Utility normally displays information in the language that you
selected when installing the client software. If you prefer to see this information in
a different language, you can do this by starting the Configuration Utility from a
command prompt: change to the directory where the client software is installed,
and then to the subdirectory corresponding to your preferred language, before
running the sxclconf command. For example, to see the information in French, run
the sxclconf command from the fr_FR subdirectory below the directory where the
client software is installed.

The program displays the same Configuration window that was displayed in the
initial install process. Refer to the Remote API Client on Windows installation
chapter in IBM Communications Server for Linux Quick Beginningsfor more
details of how to modify these configuration parameters.

Note: After changing the client configuration parameters, you need to stop and
restart the client before your changes take effect. For details of how to do
this, see “Disabling a Remote API Client on Windows” on page 130 and
“Enabling a Remote API Client on Windows” on page 129.

In the Registry, the information is contained in values configured under subkeys of
the following key:
\\HKEY_LOCAL_MACHINE\SOFTWARE\SNA Client\SxClient\Parameters

The possible values for each Registry subkey are as follows:
Configuration

domain = domain_name
maximum_process_count = nn
maximum_header_count = nn
maximum_element_count = nn
invoked_tps = YES | NO
lan_access_timeout = nn
broadcast_attempt_count = nn
server_lost_timeout = nn
client_start_timeout = nn

Servers
Server1 = * | [webservername : [portnumber :]]servername1

Managing Remote API Clients on Windows

Chapter 10. Managing Communications Server for Linux Client/Server Systems 131

Server2 = [webservername : [portnumber :]]servername2
.
.
.

Server9 = [webservername : [portnumber :]]servername9
Logging

exception_logging_enabled = YES | NO
audit_logging_enabled = YES | NO
log_directory = directory
error_file = error_filename
backup_error_file = backup_error_filename
error_file_wrap_size = error_file_size
audit_file = audit_filename
backup_audit_file = backup_audit_filename
audit_file_wrap_size = audit_file_size
succinct_errors = YES | NO
succinct_audits = YES | NO

API_tracing
file1 = trace_filename_1
file2 = trace_filename_2
flip_size = filesize
truncation_length = length
all_api = YES | NO
appc = YES | NO
cpic = YES | NO
csv = YES | NO
rui = YES | NO
nof = YES | NO

CS_tracing
file1 = cs_trace_filename_1
file2 = cs_trace_filename_2
flip_size = filesize
admin_msg = YES | NO
datagram = YES | NO
data = YES | NO
send = YES | NO
receive = YES | NO

Internal_tracing
file1 = internal_trace_filename_1
file2 = internal_trace_filename_2
flip_size = filesize
trace_level = nn
trace_flushing = YES | NO

Appl_Name
APPCTPN = tp_name
APPCLLU = lu_name

CSV_data
CSVTBLG = table_G_filename

Note: The domain = domain_name value is the only required value in the Registry.

The following sections explain the configuration parameters. Where a parameter
takes the values YES or NO, any string beginning with Y or y is interpreted as YES,
and any string beginning with N or n is interpreted as NO.

Configuration
The Configuration subkey contains configuration information for the client, as
follows:

domain The Registry data type of this value is REG_SZ.

Managing Remote API Clients on Windows

132

The domain_name value indicates the domain name of the Communications
Server for Linux LAN, as specified during the client installation. This line
is required.

maximum_process_count
The Registry data type of this value is REG_SZ.

Specify the maximum total number of APPC, CPI-C, LUA and NOF
applications that can run on this client at any one time.

This parameter is optional; the default value is 240, which should normally
be sufficient. If you see error messages reporting a failure to allocate an
IPC control block, you may need to increase the maximum process count
by specifying this parameter; the largest value you can specify is 1024.

maximum_header_count, maximum_element_count
The Registry data type of these values is REG_SZ.

These two parameters are optional; the default values are 20000 and 30000,
which should normally be sufficient. You will not normally need to supply
values for these parameters except as instructed by support personnel.

invoked_tps
The Registry data type of this value is REG_SZ.

Specify one of the following values:

YES This client is used to run invoked TPs (APPC TPs that issue
RECEIVE_ALLOCATE, or CPI-C applications that issue
Accept_Conversation or Accept_Incoming). In this case, you may
also need to define the TP on this client. For more information, see
“Defining TPs” on page 86 or Appendix B, “Configuring an
Invokable TP from the Command Line,” on page 171.

NO This client is not used to run invoked TPs.

This line is optional. If it is not specified, the default is NO.

lan_access_timeout
The Registry data type of this value is REG_SZ.

Specify the time in seconds for which the IP or HTTPS connection from the
client to a server should be kept active while no applications on the client
are using Communications Server for Linux resources. For more
information, see “LAN Access Timeout” on page 127.

The valid range is 0–65535. The minimum timeout is 60 seconds (lower
values are rounded up to 60 seconds). To deactivate the connection more
quickly, disable the client.

This parameter is optional. If it is not specified, the default is no timeout,
and the connection is kept active as long as the client is running.

broadcast_attempt_count
The Registry data type of this value is REG_SZ.

If the client uses the broadcast method to contact a server (specified by the
* entry described in “Servers” on page 134), this parameter specifies the
maximum number of broadcasts to be made in one attempt to contact a
server.

The valid range is 1–65535. The minimum value is 1; if a higher value is
specified, the client retries every 10 seconds until it contacts a server or

Managing Remote API Clients on Windows

Chapter 10. Managing Communications Server for Linux Client/Server Systems 133

until this count is reached. If the count is reached without contacting a
server, the client then attempts to contact a named server (as described in
“Servers”).

This parameter is optional. If it is not specified, the default is 5.

server_lost_timeout
The Registry data type of this value is REG_SZ.

If the client loses contact with a server and needs to reconnect, or if it has
failed to contact a server using either broadcasts or named servers (as
described in “Servers”), this parameter specifies the time in seconds for
which the client waits before attempting to contact a server. If the client
has lost contact with the server, Communications Server for Linux does not
wait for the full timeout period, but retries after a random period between
5 seconds and the specified timeout; this is to avoid bursts of network
traffic caused by large numbers of clients attempting to contact a server at
the same time.

This parameter is optional. The valid range is 5–65535. If it is not specified,
the default is 200 (seconds).

client_start_timeout
The Registry data type of this value is REG_DWORD.

Specify the time in seconds that an application waits while the client starts
and tries to contact a server. Values between 0 and 300 are valid; values
outside this range are forced into the range. The default value is 10
seconds.

This parameter can be used to control events when both the application
and the client are configured to be started on system startup (either by
being in the Startup Folder or by being an automatically started service).
The application waits for the number of seconds specified in this field, to
enable the client to get in first. In this way, the client can connect to a
server to provide the resources required by the application, before the
application fails due to the lack of those resources.

Servers
The Servers subkey contains information about Communications Server for Linux
configuration servers on which the client can access resources. This list should
contain the names of the master configuration server and any backup servers in
the same domain as the client. For information about configuring master and
backup servers, see “Configuring Client/Server Functions” on page 53.

Note: The format and meaning of this subkey depends on whether the client is on
the same private network as its servers or connecting across a public
network using HTTPS, as noted below.

Server1
The Registry data type of this value is REG_SZ.

Enter an asterisk (*) or a server name:
v To indicate that the client is on the same private network as its servers

and should attempt to find a server running Communications Server for
Linux by using a UDP broadcast message to all computers on its TCP/IP
subnet (or on all subnets that it can access, if the client computer
contains more than one LAN adapter card), specify *.
This option is available only if the client uses IPv4 addressing. UDP
broadcasts are not supported for IPv6.

Managing Remote API Clients on Windows

134

The client retries the broadcast every 10 seconds, up to the number of
attempts specified by the broadcast_attempt_count parameter, until it
contacts a server. If the limit specified by broadcast_attempt_count is
reached before a server has been contacted, the client then tries using
directed messages to one or more named servers (specified by the
following lines of the file).

v In situations where the client is on the same private network as its
servers but cannot reach any servers using UDP broadcasts, and must
use directed messages, specify the name of the first server it should try
to contact. The webservername and portnumber parameters are not used
and should not be specified. This applies in the following cases:
– When the client uses IPv6 addressing (UDP broadcasts are not

supported for IPv6).
– When the Communications Server for Linux LAN spans multiple

TCP/IP subnets, and there are no Communications Server for Linux
servers in any TCP/IP subnet that the client can access using UDP.

– When UDP support is not installed on the client.

In other cases, the use of UDP broadcasts is optional; to specify that
broadcasts should not be attempted, specify the name of the first server
instead of *.

v If the client uses HTTPS to access its servers, UDP broadcasts are not
supported. In this case, specify the name of the WebSphere server that
provides HTTPS support and the name of the Communications Server
for Linux server, in the following format:
webservername : servername1

This assumes that WebSphere is set up to use the default port 443 for
HTTPS connections. If your network administrator has configured
WebSphere to use a different port number, include the port number in
the following format:
webservername : portnumber : servername1

For more details about configuring WebSphere to support HTTPS
connections, refer to IBM Communications Server for Linux Quick
Beginnings.

Note: If you are not using UDP broadcasts, you must use the parameters
Server2–Server9 to specify the names of any other servers that this
client needs to access. The client can use resources on the servers
that are specified in this file, but cannot use resources on other
servers.

Server2–Server9
The Registry data type of this value is REG_SZ.

Specify the names of additional Communications Server for Linux servers
that contain resources used by this client. Use the same format as for
Server1.

If the client has tried to contact a server using a UDP broadcast (or has
tried to contact the server specified in Server1), but has received no
response, it then attempts to contact the server specified in Server2 using a
directed message. If this fails, it tries the server specified in Server3, and so
on. These server names are optional, but provide a backup mechanism if
the broadcast method of locating a server fails or if the server specified by
Server1 is unavailable.

Managing Remote API Clients on Windows

Chapter 10. Managing Communications Server for Linux Client/Server Systems 135

If the client tries all the servers listed without success, it waits for the
number of seconds specified by the server_lost_timeout parameter, then
restarts the process of trying to contact a server (either with UDP
broadcasts or with the first server listed).

The parameters Server2–Server9 cannot be set to * to indicate the use of
UDP broadcasts. Only the Server1 parameter can be used to indicate this,
because the * value must precede any server names in the file.

Logging
The Logging subkey specifies logging options for the client. These options can be
used to specify client logging settings that override the logging options specified
for the domain as a whole. For more information about specifying domain logging
options, see “Configuring Logging” on page 55.

If central logging is enabled, all log messages are written to a central file on a
server. In this case, only the exception_logging_enabled and audit_logging_enabled
parameters specified here are used; the remaining parameters are ignored.

The logging options are specified as follows:

exception_logging_enabled
The Registry data type of this value is REG_SZ.

Set this parameter to one of the following values:

YES Record exception messages.

NO Do not record exception messages.

This parameter is optional. If it is not specified, the client uses the global
domain settings to determine whether exception messages are recorded.
(The initial default is that exception messages are recorded.)

audit_logging_enabled
The Registry data type of this value is REG_SZ.

Set this parameter to one of the following values:

YES Record audit messages.

NO Do not record audit messages.

This parameter is optional. If it is not specified, the client uses the global
domain settings to determine whether audit messages are recorded. (The
initial default is that audit messages are recorded.)

log_directory
The Registry data type of this value is REG_SZ.

The full path of the directory where log files are stored on this client. All
the log files and backup log files (specified in the following parameters)
are stored in this directory. If you are using the log filtering facility
described in IBM Communications Server for Linux Diagnostics Guide, the file
logfilter.txt (which controls this facility) is also stored in this directory.

This parameter is optional. If it is not specified, the files are stored in the
Windows installation directory.

error_file
The Registry data type of this value is REG_SZ.

Name of the file to which error messages are written. This parameter is
optional. If it is not specified, the default is sna.err.

Managing Remote API Clients on Windows

136

To log error and audit messages to a single file, specify the same file name
for both this parameter and the audit_file parameter.

backup_error_file
The Registry data type of this value is REG_SZ.

Name of the backup error log file. When the error log file reaches the size
specified in error_file_wrap_size, Communications Server for Linux copies its
contents to the backup file (overwriting any existing file), then clears the
error log file.

This parameter is optional. If it is not specified, the default is bak.err.

To log error and audit messages to a single file, specify the same file name
for both this parameter and the backup_audit_file parameter.

error_file_wrap_size
The Registry data type of this value is REG_DWORD.

The maximum size of the log file specified by error_file. When a message
written to the file causes the file size to exceed this limit, Communications
Server for Linux copies the current contents of the log file to the backup
log file, then clears the log file. This means that the maximum amount of
disk space taken up by error log files is approximately twice the value of
the error_file_wrap_size parameter.

This parameter is optional. If it is not specified, the default is 1000000
(bytes). If you are logging error and audit messages to the same file, this
parameter must be set to the same value as the audit_file_wrap_size
parameter.

audit_file
The Registry data type of this value is REG_SZ.

Name of the file to which audit messages are written. This parameter is
optional. If it is not specified, the default is sna.aud.

To log error and audit messages to a single file, specify the same file name
for both this parameter and the error_file parameter.

backup_audit_file
The Registry data type of this value is REG_SZ.

Name of the backup audit log file. When the audit log file reaches the size
specified in audit_file_wrap_size, Communications Server for Linux copies
its contents to the backup file (overwriting any existing file), then clears
the audit log file.

This parameter is optional. If it is not specified, the default is bak.aud.

To log error and audit messages to a single file, specify the same file name
for both this parameter and the backup_error_file parameter.

audit_file_wrap_size
The Registry data type of this value is REG_DWORD.

The maximum size of the log file specified by audit_file. When a message
written to the file causes the file size to exceed this limit, Communications
Server for Linux copies the current contents of the log file to the backup
log file and clears the log file. This means that the maximum amount of
disk space taken up by audit log files is approximately twice the value of
the audit_file_wrap_size parameter.

Managing Remote API Clients on Windows

Chapter 10. Managing Communications Server for Linux Client/Server Systems 137

This parameter is optional. If it is not specified, the default is 1000000
(bytes). If you are logging error and audit messages to the same file, this
parameter must be set to the same value as the error_file_wrap_size
parameter.

succinct_errors
The Registry data type of this value is REG_SZ.

Specifies whether to use succinct logging or verbose logging in the error
log file. This setting applies to both exception logs and problem logs. You
can specify either of the following values:

YES Use succinct logging: each message in the log file contains a
summary of the message header information (such as the message
number and log type) and the message text string and parameters.
To obtain more details of the cause of the log and any action
required, you can use the snahelp utility on a computer running
Linux.

NO Use verbose logging: each message in the log file includes a full
listing of the message header information, the message text string
and parameters, and additional information on the cause of the log
and any action required.

This parameter is optional. If it is not specified, the default is taken from
the previous set_global_log_type command issued to the master server (or
set using the Motif administration program). The initial default, before any
set_global_log_type command has been issued, is to use succinct logging.

If you are using central logging, the choice of succinct or verbose logging
for messages from all computers is determined by the setting of this
parameter on the server acting as the central logger; this setting may either
be from the set_global_log_type command, or from a set_log_type
command issued to that server to override the default.

succinct_audits
The Registry data type of this value is REG_SZ.

Specifies whether to use succinct logging or verbose logging in the audit
log file. The permitted values and their meanings are the same as for the
succinct_errors parameter.

API_tracing
The API_tracing subkey specifies API tracing options for applications running on
the client. For more information about tracing, refer to IBM Communications Server
for Linux Diagnostics Guide. The tracing options are specified as follows:

file1 The Registry data type of this value is REG_SZ.

The full path name of the trace file, or of the first trace file if tracing is to
two files (see the description of the file2 parameter).

This parameter is required if you want to enable API tracing.

file2 The Registry data type of this value is REG_SZ.

The full path name of the second trace file. This parameter is optional; to
indicate that tracing is to one file instead of two files, do not include this
line.

If both file1 and file2 are specified, tracing is to two files. When the first file
reaches the size specified by the flip_size parameter, the second file is
cleared, and tracing continues to the second file. When this file then

Managing Remote API Clients on Windows

138

reaches the size specified by flip_size, the first file is cleared, and tracing
continues to the first file. This ensures that tracing can continue for long
periods without using excessive disk space; the maximum space required
is approximately twice the value of the flip_size parameter.

flip_size
The Registry data type of this value is REG_DWORD.

The maximum size of the trace file. If two file names are specified, tracing
switches between the two files when the current file reaches this size. If
only one file name is specified, this parameter is ignored; the file size is
not limited.

This parameter is optional. If it is not specified, the default is 1000000
(bytes).

truncation_length
The Registry data type of this value is REG_DWORD.

The maximum length, in bytes, of the information written to the trace file
for each message. If a message is longer than this, Communications Server
for Linux writes only the start of the message to the trace file, and discards
the data beyond truncation_length. This enables you to record the most
important information for each message but avoid filling up the file with
long messages.

This parameter is optional. If it is not specified, Communications Server for
Linux does not truncate messages (all the data from each message is
written to the file).

all_api The Registry data type of this value is REG_SZ.

To trace messages for all APIs, set this parameter to YES. In this case,
Communications Server for Linux ignores the parameters from appc
through nof.

To disable tracing for all APIs, set all_api and all of the parameters from
appc through nof to NO.

To trace only messages for specific APIs, set all_api to NO, and use the
parameters from appc through nof to indicate which APIs to trace.

This parameter is optional. If it is not specified, the default is NO.

appc The Registry data type of this value is REG_SZ.

To trace APPC API messages, set this parameter to YES; otherwise, set it to
NO.

This parameter is optional. If it is not specified, the default is NO. If the
all_api parameter is set to YES, this parameter is ignored, and APPC
messages are traced.

cpic The Registry data type of this value is REG_SZ.

To trace CPI-C API messages, set this parameter to YES; otherwise, set it to
NO.

This parameter is optional. If it is not specified, the default is NO. If the
all_api parameter is set to YES, this parameter is ignored, and CPI-C
messages are traced.

csv The Registry data type of this value is REG_SZ.

Managing Remote API Clients on Windows

Chapter 10. Managing Communications Server for Linux Client/Server Systems 139

To trace CSV API messages, set this parameter to YES; otherwise, set it to
NO.

This parameter is optional. If it is not specified, the default is NO. If the
all_api parameter is set to YES, this parameter is ignored, and CSV
messages are traced.

rui The Registry data type of this value is REG_SZ.

To trace LUA RUI messages, set this parameter to YES; otherwise, set it to
NO.

This parameter is optional. If it is not specified, the default is NO. If the
all_api parameter is set to YES, this parameter is ignored, and LUA RUI
messages are traced.

nof The Registry data type of this value is REG_SZ.

To trace NOF API messages, set this parameter to YES; otherwise, set it to
NO. NOF messages are not used directly by applications on Windows
clients, but are used internally by Communications Server for Linux
components in obtaining configuration information.

This parameter is optional. If it is not specified, the default is NO. If the
all_api parameter is set to YES, this parameter is ignored, and NOF
messages are traced.

CS_tracing
The CS_tracing subkey specifies options for client/server tracing (tracing on
messages between the client and Communications Server for Linux servers). For
more information about tracing, refer to IBM Communications Server for Linux
Diagnostics Guide. The tracing options are specified as follows:

file1 The Registry data type of this value is REG_SZ.

The full path name of the trace file, or of the first trace file if tracing is to
two files (see the description of the file2 parameter).

This parameter is required if you want to enable client/server tracing; you
also need to set the trace_flags parameter.

file2 The Registry data type of this value is REG_SZ.

The full path name of the second trace file. This parameter is optional; to
indicate that tracing is to one file instead of two files, do not include this
line.

If both file1 and file2 are specified, tracing is to two files. When the first file
reaches the size specified by the flip_size parameter, the second file is
cleared, and tracing continues to the second file. When this file then
reaches the size specified by flip_size, the first file is cleared, and tracing
continues to the first file. This ensures that tracing can continue for long
periods without using excessive disk space; the maximum space required
is approximately twice the value of the flip_size parameter.

flip_size
The Registry data type of this value is REG_DWORD.

The maximum size of the trace file. If two file names are specified, tracing
switches between the two files when the current file reaches this size. If
only one file name is specified, this parameter is ignored; the file size is
not limited.

Managing Remote API Clients on Windows

140

This parameter is optional. If it is not specified, the default is 1000000
(bytes).

admin_msg
The Registry data type of this value is REG_SZ.

To trace internal messages relating to client/server topology, set this
parameter to YES; otherwise, set it to NO.

This parameter is optional. If it is not specified, the default is NO.

datagram
The Registry data type of this value is REG_SZ.

To trace datagram messages, set this parameter to YES; otherwise, set it to
NO.

This parameter is optional. If it is not specified, the default is NO.

data The Registry data type of this value is REG_SZ.

To trace data messages, set this parameter to YES; otherwise, set it to NO.

This parameter is optional. If it is not specified, the default is NO.

send The Registry data type of this value is REG_SZ.

To trace all data messages sent from the client to the server, set this
parameter to YES; otherwise, set it to NO.

This parameter is optional. If it is not specified, the default is NO.

receive The Registry data type of this value is REG_SZ.

To trace all data messages received by the client from the server, set this
parameter to YES; otherwise, set it to NO.

This parameter is optional. If it is not specified, the default is NO.

Internal_tracing
The Internal_tracing subkey specifies options for tracing the internal operation of
the client. For more information about tracing, refer to IBM Communications Server
for Linux Diagnostics Guide. The tracing options are specified as follows:

file1 The Registry data type of this value is REG_SZ.

The full path name of the trace file, or of the first trace file if tracing is to
two files (see the description of the file2 parameter).

This parameter is required if you want to enable internal tracing; you also
need to set the trace_level parameter.

file2 The Registry data type of this value is REG_SZ.

The full path name of the second trace file. This parameter is optional; to
indicate that tracing is to one file instead of two files, do not include this
line.

If both file1 and file2 are specified, tracing is to two files. When the first file
reaches the size specified by the flip_size parameter, the second file is
cleared, and tracing continues to the second file. When this file then
reaches the size specified by flip_size, the first file is cleared, and tracing
continues to the first file. This ensures that tracing can continue for long
periods without using excessive disk space; the maximum space required
is approximately twice the value of the flip_size parameter.

Managing Remote API Clients on Windows

Chapter 10. Managing Communications Server for Linux Client/Server Systems 141

flip_size
The Registry data type of this value is REG_DWORD.

The maximum size of the trace file. If two file names are specified, tracing
switches between the two files when the current file reaches this size. If
only one file name is specified, this parameter is ignored; the file size is
not limited.

This parameter is optional. If it is not specified, the default is 1000000
(bytes).

trace_level
The Registry data type of this value is REG_DWORD.

The level of detail included in the trace. The range of valid values is from
0 (all tracing) to 20 (no tracing).

This parameter is optional. If it is not specified, the default is 20 (no
tracing).

trace_flushing
The Registry data type of this value is REG_SZ.

If this parameter is set to YES, each trace statement is flushed to disk
immediately. This slows operation considerably, but ensures that trace data
is not lost if a crash occurs.

This parameter is optional. If it is not specified, the default is NO.

Appl_Name
The Appl_Name subkey specifies options for a CPI-C application.

Note: These options can be specified either in environment variables or in the
registry. Communications Server for Linux checks the environment variable
first, and uses this information if it is specified; it uses the registry entry
only if the environment variable is not specified. You may need to use
environment variables if you are using Windows Terminal Server and need
to run multiple copies of the same application using different local LUs.

To set these options in the registry for one or more applications, include a section
in this format for each application, and replace the Appl_Name variable with the
application program’s executable name (not including the .exe file name extension).

For more information about CPI-C, refer to IBM Communications Server for AIX or
Linux CPI-C Programmer’s Guide.

The options are specified as follows:

APPCLLU
This option can be specified using the APPCLLU environment variable
instead of in the registry.

The Registry data type of this value is REG_SZ.

The name of the local LU that this application uses.

This parameter is optional. If it is not specified, the application attempts to
use the default LU (the LU associated with a local node’s control point).

APPCTPN
This option can be specified using the APPCTPN environment variable
instead of in the registry.

Managing Remote API Clients on Windows

142

The Registry data type of this value is REG_SZ.

The TP name of the application. This name is used in log and trace files to
identify the application. For an invoked application (one that issues
Accept_Conversation), it is also used to match the TP name on an
incoming Allocate request with the correct application; the invoked
application can also use the Specify_Local_TP_Name call to specify
additional names to be matched with incoming Allocate requests.

This parameter is optional. If it is not specified, the default is
CPIC_DEFAULT_TPNAME.

CSV_data
The CSV_data subkey specifies options for applications that use the CSV interface.
It applies only to applications that use the CONVERT verb to perform character
conversion with a user-defined conversion table (Table G). For more information
about the CONVERT verb, refer to IBM Communications Server for AIX or Linux CSV
Programmer’s Guide.

If no applications on the client use this function, you do not need to include this
section.

The only option in this section is as follows:

CSVTBLG
The Registry data type of this value is REG_SZ.

The full path name of the file containing the user-defined Table G
conversion table. This parameter is required if CSV applications need to
perform Table G character conversion (there is no default); otherwise it is
optional.

Managing Remote API Clients on AIX or Linux

AIX, LINUX

The Remote API Client can run on AIX, Linux, Linux for pSeries, or Linux for
System z.

Client information for a Remote API Client on AIX or Linux is stored in the
sna_clnt.net file, which is created when you install the SNA software on the client.
That file must be present before you can enable the client software.

Note: If the client uses HTTPS to access its servers, you will need to modify the
sna_clnt.net file to specify the names of these servers and the WebSphere
server providing HTTPS access to them before you can use the client. See
“Client Network Data File (sna_clnt.net)” on page 144 for more information.

Enabling and disabling Remote API Clients on AIX or Linux
To enable the Remote API Client software on AIX or Linux, enter the following
command at the command prompt:

sna start [-t]

Managing Remote API Clients on Windows

Chapter 10. Managing Communications Server for Linux Client/Server Systems 143

When you install the client, the installation utility automatically updates the
startup file /etc/rc.sna (AIX) or /etc/rc.d/init.d/snastart (Linux) to include the sna
start command. This ensures that the client is started automatically at system
startup. If you do not want it to be started automatically, you can remove or
comment out this line, and then follow the instructions in this section to enable the
software manually.

The only option is as follows:

-t Activates client/server tracing. This enables you to diagnose problems that
occur during the client’s attempt to connect to a server. If you do not use
this option, client/server tracing is inactive at all interfaces; you can then
activate it as required, using the command-line administration program
snaadmin.

This option is equivalent to selecting the Set all tracing on field in the Motif
administration program, except that it does not enable DLC tracing.

Tracing degrades the performance of Communications Server for Linux
components. After the software is enabled, you can use the command-line
administration program snaadmin to stop tracing when it is no longer
required. For more information about tracing, refer to IBM Communications
Server for Linux Diagnostics Guide.

To stop the Remote API Client, enter the following command at the command
prompt:

sna stop

Client Network Data File (sna_clnt.net)
The sna_clnt.net file defines the Communications Server for Linux facilities
available on a Remote API Client on AIX or Linux, and the servers the client can
access. (For information about the equivalent file on a Windows client, see
Chapter 10, “Managing Communications Server for Linux Client/Server Systems,”
on page 123.)

It also includes information about setting up the IP port numbers that
Communications Server for Linux uses for client/server communications. The
default port numbers should be suitable in most cases; you need to refer to this
information only if Communications Server for Linux logs error messages
indicating that there is a port number clash with another program on the same
computer.

A client computer does not hold a copy of the domain configuration file or the
SNA network data file; it holds only the information it needs to access servers on
the Communications Server for Linux LAN, and relies on a server to provide the
necessary configuration information.

The SNA network information required is held in the file sna_clnt.net, which is
stored in the directory /etc/sna on AIX or /etc/opt/ibm/sna on Linux. This file is set
up during the client installation process; it is an ASCII text file that can be
modified later as required using a standard text editor.

Note: After changing the parameters in this file, you need to stop and restart the
client before your changes take effect. For details of how to do this, see
“Enabling and disabling Remote API Clients on AIX or Linux” on page 143.

Managing Remote API Clients on AIX or Linux

144

The contents of the file are as follows:
domain = domain_name
maximum_process_count = nn
maximum_header_count = nn
maximum_element_count = nn
invoked_tps = YES | NO
lan_access_timeout = nn
broadcast_attempt_count = nn
server_lost_timeout = nn
*
[webservername : [portnumber :]]servername1
[webservername : [portnumber :]]servername2
.
.
.

The following list describes the parameters in each line of the file:

domain The domain_name parameter value indicates the domain name of the
Communications Server for Linux LAN; this name is set to
ibmcs_domainduring the client installation. This line is required.

maximum_process_count
Specify the maximum total number of APPC, CPI-C, LUA and NOF
applications that can run on this client at any one time.

This parameter is optional; the default value is 240, which should normally
be sufficient. If you see error messages reporting a failure to allocate an
IPC control block, you may need to increase the maximum process count
by specifying this parameter; the largest value you can specify is 4096.

maximum_header_count, maximum_element_count
These two parameters are optional; the default values are 1250 and 1800,
which should normally be sufficient. You will not normally need to supply
values for these parameters except as instructed by support personnel.

invoked_tps
Specify invoked_tps = YES if this client is used to run invoked TPs (APPC
TPs that issue the RECEIVE_ALLOCATE verb, or CPI-C applications that
issue the Accept_Conversation or Accept_Incoming verbs). In this case, you
may also need to define the TP on this client. For more information, see
“Defining TPs” on page 86.

Specify invoked_tps = NO if this client is not used to run invoked TPs.

This line is optional; if it is not included, the default is NO.

lan_access_timeout
Specify the time in seconds for which the IP or HTTPS connection from the
client to a server should be kept active while no applications on the client
are using Communications Server for Linux resources. For more
information, see “LAN Access Timeout” on page 127.

The minimum timeout is 60 seconds (lower values are rounded up to 60
seconds). To bring down the connection more quickly, disable the
Communications Server for Linux software on the client.

To indicate no timeout, so that the connection is kept active as long as the
Communications Server for Linux software is running on the client, do not
specify this parameter.

This parameter is optional; if it is not specified, the default is no timeout.

Managing Remote API Clients on AIX or Linux

Chapter 10. Managing Communications Server for Linux Client/Server Systems 145

broadcast_attempt_count
If the client uses the broadcast method to contact a server (specified by the
* entry), this parameter specifies the maximum number of broadcasts to be
made in one attempt to contact a server. The minimum value is 1; if a
higher value is specified, the client retries every 10 seconds until it contacts
a server or until this count is reached. If the count is reached without
contacting a server, the client then attempts to contact a named server.

This parameter is optional; if it is not specified, the default is 5.

server_lost_timeout
If the client loses contact with a server and needs to reconnect, or if it has
failed to contact a server using either broadcasts or named servers, this
parameter specifies the time in seconds for which the client waits before
beginning or restarting the attempt to contact a server. If the client has lost
contact with the server, Communications Server for Linux does not wait
for the full timeout period, but retries after a random period between 5
seconds and the specified timeout; this is to avoid bursts of network traffic
caused by large numbers of clients attempting to contact a server at the
same time.

This parameter is optional; if it is not specified, the default is 200 seconds.

* This line indicates that the client is on the same private network as its
servers and should attempt to contact a server running Communications
Server for Linux by using a UDP broadcast message to all computers on its
TCP/IP subnet (or on all subnets that it can access, if the client computer
contains more than one LAN adapter card).

This option is available only if the client uses IPv4 addressing. UDP
broadcasts are not supported for IPv6.

The client retries the broadcast every 10 seconds, up to the number of
attempts specified by the broadcast_attempt_count parameter, until it
contacts a server. If the limit specified by broadcast_attempt_count is reached
before a server has been contacted, the client then tries using directed
messages to one or more named servers (specified by the following lines of
the file).

The use of UDP broadcasts is optional; to specify that broadcasts should
not be attempted, do not include this line. If this line is included, it must
precede any server names in the file.

In situations where the client is on the same private network as its servers
but cannot reach any servers using UDP broadcasts, do not include this
line. This applies in the following cases:
v When the Communications Server for Linux LAN spans multiple

TCP/IP subnets, and there are no Communications Server for Linux
servers in any TCP/IP subnet that the client can access using UDP

v When UDP support is not installed on the client

If the client uses HTTPS to access its servers, UDP broadcasts are not
supported. In this case, specify the server names explicitly as described
below.

Note: If you are not using UDP broadcasts, you must specify the names of
any other servers that this client needs to access, as described below.
The client can use resources on the specified servers, but cannot use
resources on other servers.

Managing Remote API Clients on AIX or Linux

146

server names
Specify the names of one or more Communications Server for Linux
serversthat contain resources used by this client. This list should contain
the names of the master configuration server and any backup servers in
the same domain as the client. For information about configuring master
and backup servers, see “Configuring Client/Server Functions” on page 53.
It must also contain the names of any other servers that this client needs to
access. The client can use resources on the specified servers, but cannot use
resources on other servers.

If the client uses IPv6 addressing, UDP broadcasts are not supported. You
must specify at least one server name instead of using the * option.

If the client uses HTTPS to access its servers, UDP broadcasts are not
supported. In this case, specify the name of the WebSphere server that
provides HTTPS support and the name of the Communications Server for
Linux server, in the following format:

webservername : servername1

This assumes that WebSphere is set up to use the default port 443 for
HTTPS connections. If your network administrator has configured
WebSphere to use a different port number, include the port number in the
following format:

webservername : portnumber : servername1

For more details about configuring WebSphere to support HTTPS
connections, refer to IBM Communications Server for Linux Quick Beginnings.

If the * line (to indicate the use of UDP broadcasts) is not included, or if
the client tried to contact a server using this method but received no
response, the client attempts to contact the first server listed using a
directed message. If this fails, the client tries the second server listed, and
so on. This means that you can balance the load between two or more
configuration servers by changing the order in which the servers are listed.

If the * line (to indicate the use of UDP broadcasts) is not included, at least
one server name must be specified; otherwise, server names are optional.

If the client tries all the servers listed without success, it waits for the time
specified by server_lost_timeout above, and then restarts the process of
trying to contact a server (either with UDP broadcasts or with the first
server listed).

In addition to the sna_clnt.net, an additional file server.current is stored in the
same directory (/var/sna on AIX or /var/opt/ibm/sna on Linux). This is a text file
containing the name of the server, if any, to which the client is currently connected.
You can check this file to determine which server is acting as the client’s
connection point into the domain.

Defining Client TPs
For information about defining TPs on a Remote API Client system, see “Defining
TPs” on page 86 or Appendix B, “Configuring an Invokable TP from the Command
Line,” on page 171.

Managing Remote API Clients on AIX or Linux

Chapter 10. Managing Communications Server for Linux Client/Server Systems 147

148

Appendix A. Configuration Planning Worksheets

This appendix provides worksheets for configuring specific functions of
Communications Server for Linux. The worksheets summarize the basic
configuration parameters needed to enable each function; for information about
advanced configuration parameters, see the appropriate section in the body of this
book, or refer to IBM Communications Server for Linux Administration Command
Reference.

To gather all of the information needed to configure a node, you must complete
worksheets in the following categories:

Node configuration
Complete one of the worksheets contained in “Node Worksheets,”
depending on the capabilities of the node and the characteristics of the
network in which it operates.

Connectivity configuration
Complete one or more of the worksheets contained in “Connectivity
Worksheets” on page 152, depending on the link protocols used to
communicate with the other systems in your network.

Passthrough services configuration
Complete the worksheets in “Passthrough Services Worksheets” on page
161, for any passthrough services to be supported by the node.

Application support configuration
Complete one or more of the worksheets contained in “User Application
Support Worksheets” on page 165, depending on the types of user
applications to be supported by the node.

Node Worksheets
Complete only one of the following worksheets:
v “APPN Network Node”
v “APPN End Node” on page 150
v “APPN Branch Network Node” on page 150
v “LEN Node” on page 151

APPN Network Node
Complete this worksheet if the local node is an APPN network node (a node that
provides routing services in an APPN network).

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Parameters Dialog

APPN support Network node

© Copyright IBM Corp. 2000, 2009 149

Motif Field Valid Entry/Notes
Your Implementation
Value

Control point name NETNAME.CPNAME (each 1–8 type A
EBCDIC characters)

To connect to a VTAM host, this name
must match the NETID= and
CPNAME= entries in the VTAM PU
statement.

Control point alias Up to 8 characters

Node ID 8 hexadecimal digits

Connectivity Configuration: See “Connectivity Worksheets” on page 152.

Client/Server Configuration: Not required for a standalone node.

Configuration server? Should the node act as a configuration
server, to store information about
domain resources in the
Communications Server for Linux
LAN?

Application Configuration: See “User Application Support Worksheets” on page 165.

APPN End Node
Complete this worksheet if the local node is an APPN end node (a node that can
use dynamic routing information but does not provide routing services for other
nodes).

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Parameters Dialog

APPN support End node

Control point name NETNAME.CPNAME (each 1–8 type A
EBCDIC characters)

To connect to a VTAM host, this name
must match the NETID= and
CPNAME= entries in the VTAM PU
statement.

Control point alias Up to 8 characters

Node ID 8 hexadecimal digits

Connectivity Configuration: See “Connectivity Worksheets” on page 152.

Client/Server Configuration: Not required for a standalone node.

Configuration server? Should the node act as a configuration
server, to store information about
domain resources in the
Communications Server for Linux
LAN?

Application Configuration: See “User Application Support Worksheets” on page 165.

APPN Branch Network Node
Complete this worksheet if the local node is an APPN branch network node (a
node that provides network node functions to end nodes in a branch separated

Node Worksheets

150

from the main APPN network, while acting as an end node in the main network
itself).

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Parameters Dialog

APPN support Branch network node

Control point name NETNAME.CPNAME (each 1–8 type A
EBCDIC characters)

To connect to a VTAM host, this name
must match the NETID= and
CPNAME= entries in the VTAM PU
statement.

Control point alias Up to 8 characters

Node ID 8 hexadecimal digits

Connectivity Configuration: See “Connectivity Worksheets” on page 152.

Client/Server Configuration: Not required for a standalone node.

Configuration server? Should the node act as a configuration
server, to store information about
domain resources in the
Communications Server for Linux
LAN?

Application Configuration: See “User Application Support Worksheets” on page 165.

LEN Node
Complete this worksheet if the local node is a LEN node (a node that does not
support APPN functions or a standalone system that communicates only with a
host computer).

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Parameters Dialog

APPN support LEN node

Control point name NETNAME.CPNAME (each 1–8 type A
EBCDIC characters)

To connect to a VTAM host, this name
must match the NETID= and
CPNAME= entries in the VTAM PU
statement.

Control point alias Up to 8 characters

Node ID 8 hexadecimal digits

Connectivity Configuration: See “Connectivity Worksheets” on page 152.

Client/Server Configuration: Not required for a standalone node.

Configuration server? Should the node act as a configuration
server, to store information about
domain resources in the
Communications Server for Linux
LAN?

Application Configuration: See “User Application Support Worksheets” on page 165.

Node Worksheets

Appendix A. Configuration Planning Worksheets 151

Connectivity Worksheets
For each link protocol used to communicate with another node, complete one of
the following worksheets. If necessary, you can configure more than one link
station on a port.
v “SDLC”
v “Token Ring” on page 154
v “Ethernet” on page 156
v “QLLC (X.25)” on page 158
v “Multipath Channel” on page 159
v “Enterprise Extender (HPR/IP)” on page 160

SDLC
Complete this worksheet to support connectivity using the SDLC link protocol.

Motif Field Valid Entry/Notes
Your Implementation
Value

SDLC Port Dialog

SNA port name Up to 8 characters
SDLC card number 0 to number_of_cards_minus_1
Port number 0 to number_of_ports_on_card_minus_1
Initially active Select if needed

Line Details

Type Leased line

Switched outgoing

Switched incoming
Link role Negotiable

Primary

Primary multi-drop

Secondary

Secondary multi-PU

For switched incoming or leased line:

Poll address Only for nonprimary, switched
incoming ports

On a VTAM host, the poll address is
configured as the ADDR= parameter in
the VTAM PU definition.

On an AS/400 system, the poll address
is the STNADR parameter of the Line
Description.

SDLC Link Station Dialog

Node Worksheets

152

Motif Field Valid Entry/Notes
Your Implementation
Value

Link station fields

Name Up to 8 characters
SNA port name Up to 8 characters
Activation By administrator

On node startup

On demand
LU traffic Any

Independent only

Dependent only

Independent LU traffic

Remote node NETNAME.CPNAME (each 1–8 type A
EBCDIC characters; optional)

If the remote system is a VTAM host,
you can find the network name (the
first eight characters of the fully
qualified name) in the NETID
parameter of the VTAM start list. The
last eight characters are in the
SSCPNAME parameter of the VTAM
start list.

Remote node type Discover

Network node

End or LEN node

Dependent LU traffic

Remote node role Host

Downstream (SNA Gateway)

Downstream (DLUR)
Local node ID 8 hexadecimal digits (defaults to node

name)

In a VTAM configuration, the first
three digits should match the IDBLK
parameter in the PU definition, and the
last five should match the IDNUM
parameter.

On an AS/400 system, the node ID is
configured in the EXCHID parameter.

Remote node ID 8 hexadecimal digits (optional)
Downstream PU name 1–8 type A EBCDIC characters
Upstream DLUS name NETNAME.LUNAME (each 1–8 type A

EBCDIC characters)

Contact information

Connectivity Worksheets

Appendix A. Configuration Planning Worksheets 153

Motif Field Valid Entry/Notes
Your Implementation
Value

Poll address For switched incoming ports, only
configured on the port.

2 hexadecimal digits:

v C1 for point-to-point

v 0xFF for primary switched outgoing
(destination address unknown)

v Unique addresses for primary to
multi-drop

On a VTAM host, the poll address is
configured as the ADDR= parameter in
the VTAM PU definition.

On an AS/400 system, the poll address
is the STNADR parameter of the Line
Description.

Token Ring
Complete this worksheet to support connectivity using the token ring link
protocol.

Motif Field Valid Entry/Notes
Your Implementation
Value

Token Ring SAP Dialog

SNA port name Up to 8 characters
Token ring card number 0 to number_of_cards_minus_1
Local SAP number Hexadecimal (multiple of 4)
Initially active Select if needed
Define on connection
network

Select if needed

CN name NETNAME.CNNAME (each 1–8 type A
EBCDIC characters)

Token Ring Link Station Dialog

Link station fields

Name Up to 8 characters
SNA port name Up to 8 characters
Activation By administrator

On node startup

On demand
LU traffic Any

Independent only

Dependent only

Independent LU traffic

Connectivity Worksheets

154

Motif Field Valid Entry/Notes
Your Implementation
Value

Remote node NETNAME.CPNAME (each 1–8 type A
EBCDIC characters; optional)

If the remote system is a VTAM host,
you can find the network name (the
first eight characters of the fully
qualified name) in the NETID
parameter of the VTAM start list. The
last eight characters are in the
SSCPNAME parameter of the VTAM
start list.

Remote node type Discover

End or LEN node

Network node

Dependent LU traffic

Remote node role Host

Downstream (SNA Gateway)

Downstream (DLUR)
Local node ID 8 hexadecimal digits (defaults to node

name)

In a VTAM configuration, the first
three digits should match the IDBLK
parameter in the PU definition, and the
last five should match the IDNUM
parameter.

On an AS/400 system, the node ID is
configured in the EXCHID parameter.

Remote node ID 8 hexadecimal digits (optional)
Downstream PU name 1–8 type A EBCDIC characters
Upstream DLUS name NETNAME.LUNAME (each 1–8 type A

EBCDIC characters)

Contact information

MAC address Hexadecimal digits

If the remote end of this link is a
VTAM host, you can find its MAC
address in the MACADDR= parameter
of the VTAM Port definition.

If you are configuring a link to an
AS/400 system, the MAC address is
the ADPTADR parameter in the Line
Description.

Connectivity Worksheets

Appendix A. Configuration Planning Worksheets 155

Motif Field Valid Entry/Notes
Your Implementation
Value

SAP number Hexadecimal (multiple of 4)

If the remote end of this link is a
VTAM host, the SAP number is the
SAPADDR= parameter of the VTAM
PU definition.

If you are configuring a link to an
AS/400 system, the SAP number is the
SSAP parameter in the Line
Description.

Ethernet
Complete this worksheet to support connectivity using the Ethernet link protocol.

Motif Field Valid Entry/Notes
Your Implementation
Value

Ethernet SAP Dialog

SNA port name Up to 8 characters
Ethernet card number 0 to number_of_cards_minus_1
Local SAP number Hexadecimal (multiple of 4)
Initially active Select if needed
Define on connection
network

Select if needed

CN name NETNAME.CNNAME (each 1–8 type A
EBCDIC characters)

Ethernet type Select Standard or 802.3
Ethernet Link Station Dialog

Link station fields

Name Up to 8 characters
SNA port name Up to 8 characters
Activation By administrator

On node startup

On demand
LU traffic Any

Independent only

Dependent only

Independent LU traffic

Connectivity Worksheets

156

Motif Field Valid Entry/Notes
Your Implementation
Value

Remote node NETNAME.CPNAME (each 1–8 type A
EBCDIC characters; optional)

If the remote system is a VTAM host,
you can find the network name (the
first eight characters of the fully
qualified name) in the NETID
parameter of the VTAM start list. The
last eight characters are in the
SSCPNAME parameter of the VTAM
start list.

Remote node type Discover

Network node

End or LEN node

Dependent LU traffic

Remote node role Host

Downstream (SNA Gateway)

Downstream (DLUR)
Local node ID 8 hexadecimal digits (defaults to node

name)

In a VTAM configuration, the first
three digits should match the IDBLK
parameter in the PU definition, and the
last five should match the IDNUM
parameter.

On an AS/400 system, the node ID is
configured in the EXCHID parameter.

Remote node ID 8 hexadecimal digits (optional)
Downstream PU name 1–8 type A EBCDIC characters
Upstream DLUS name NETNAME.LUNAME (each 1–8 type A

EBCDIC characters)

Contact information

MAC address Hexadecimal digits

If the remote end of this link is a
VTAM host, you can find its MAC
address in the MACADDR= parameter
of the VTAM Port definition.

If you are configuring a link to an
AS/400 system, the MAC address is
the ADPTADR parameter in the Line
Description.

Connectivity Worksheets

Appendix A. Configuration Planning Worksheets 157

Motif Field Valid Entry/Notes
Your Implementation
Value

SAP number Hexadecimal (multiple of 4)

If the remote end of this link is a
VTAM host, the SAP number is the
SAPADDR= parameter of the VTAM
PU definition.

If you are configuring a link to an
AS/400 system, the SAP number is the
SSAP parameter in the Line
Description.

QLLC (X.25)
Complete this worksheet to support connectivity using the QLLC (X.25) link
protocol.

Motif Field Valid Entry/Notes
Your Implementation
Value

QLLC Port Dialog

SNA port name Up to 8 characters
X.25 card number 0 to number_of_cards_minus_1
Initially active Select if needed
QLLC Link Station Dialog

Link station fields

Name Up to 8 characters
SNA port name Up to 8 characters
Activation By administrator

On node startup

On demand
LU traffic Any

Independent only

Dependent only

Independent LU traffic

Remote node NETNAME.CPNAME (each 1–8 type A
EBCDIC characters; optional)

If the remote system is a VTAM host,
you can find the network name (the
first eight characters of the fully
qualified name) in the NETID
parameter of the VTAM start list. The
last eight characters are in the
SSCPNAME parameter of the VTAM
start list.

Connectivity Worksheets

158

Motif Field Valid Entry/Notes
Your Implementation
Value

Remote node type Discover

Network node

End or LEN node

Dependent LU traffic

Remote node role Host

Downstream (SNA Gateway)

Downstream (DLUR)
Local node ID 8 hexadecimal digits (defaults to node

name)

In a VTAM configuration, the first
three digits should match the IDBLK
parameter in the PU definition, and the
last five should match the IDNUM
parameter.

On an AS/400 system, the node ID is
configured in the EXCHID parameter.

Remote node ID 8 hexadecimal digits (optional)
Downstream PU name 1–8 type A EBCDIC characters
Upstream DLUS name NETNAME.LUNAME (each 1–8 type A

EBCDIC characters)

Contact information

Remote X.25 address Hexadecimal digits (only for SVC);
1–4096 (only for PVC)

Multipath Channel
Complete this worksheet to support connectivity using the Multipath Channel link
protocol.

Motif Field Valid Entry/Notes
Your Implementation
Value

Multipath Channel Port Dialog

SNA port name Up to 8 characters

Port number Must match the device number of the
MultiPath Channel device

Initially active Select if needed

Multipath Channel Link Station Dialog

Link station fields

Name Up to 8 characters

SNA port name Up to 8 characters

Activation By administrator

On node startup

On demand

Connectivity Worksheets

Appendix A. Configuration Planning Worksheets 159

Motif Field Valid Entry/Notes
Your Implementation
Value

Independent LU traffic

Remote node NETNAME.CPNAME (each 1–8 type A
EBCDIC characters; optional)

If the remote system is a VTAM host,
you can find the network name (the
first eight characters of the fully
qualified name) in the NETID
parameter of the VTAM start list. The
last eight characters are in the
SSCPNAME parameter of the VTAM
start list.

Remote node type Discover

Network node

End or LEN node

Enterprise Extender (HPR/IP)
Complete this worksheet to support connectivity using the Enterprise Extender
link protocol.

Motif Field Valid Entry/Notes Your Implementation Value

Enterprise Extender Port Dialog

SNA port name Up to 8 characters

Initially active Select if needed

Protocol Whether link stations on this port use IPv4
or IPv6 addresses.

Local IP interface The identifier for the local network adapter
card to be used for the IP link, if you have
access to multiple IP networks. If you have
access to only one IP network, you can
leave this field blank.

Define on connection
network

Select if needed

CN name NETNAME.CNNAME (each 1–8 type A
EBCDIC characters)

Enterprise Extender Link Station Dialog

Link station fields

Name Up to 8 characters

SNA port name Up to 8 characters

Activation By administrator

On node startup

On demand

Independent LU traffic

Connectivity Worksheets

160

Motif Field Valid Entry/Notes Your Implementation Value

Remote node NETNAME.CPNAME (each 1–8 type A
EBCDIC characters; optional)

If the remote system is a VTAM host, you
can find the network name (the first eight
characters of the fully qualified name) in the
NETID parameter of the VTAM start list.
The last eight characters are in the
SSCPNAME parameter of the VTAM start
list.

Remote node type Discover

End or LEN node

Network node

Contact information

Remote IP host name IPv4 dotted-decimal address (such as
193.1.11.100), IPv6 colon-hexadecimal
address (such as
2001:0db8:0000:0000:0000:0000:1428:57ab
or 2001:db8::1428:57ab), name (such as
newbox.this.co.uk), or alias (such as
newbox). The protocol parameter on the port
determines whether this is an IPv4 or IPv6
address.

If you specify a name or alias, the Linux
system must be able to resolve this to a
fully qualified name (either using the local
TCP/IP configuration or using a Domain
Name server).

Passthrough Services Worksheets
Complete worksheets for any of the passthrough services described in the
following sections, if the service is to be supported by the local node:
v “DLUR on the Local Node”
v “Passthrough DLUR for Downstream Nodes” on page 162
v “SNA Gateway” on page 162
v “TN Server” on page 163
v “TN Redirector” on page 164

DLUR on the Local Node
Complete this worksheet to support DLUR on the local node.

Motif Field Valid Entry/Notes Your Implementation Value

Node Configuration: See “Node Worksheets” on page 149.

Connectivity Configuration: See “Connectivity Worksheets” on page 152. To support DLUR on the local
node, configure connectivity to the APPN network.

DLUR PU: .

PU name 1–8 type A EBCDIC characters

DLUS name NETNAME.LUNAME (each 1–8 type A
EBCDIC characters)

Connectivity Worksheets

Appendix A. Configuration Planning Worksheets 161

Motif Field Valid Entry/Notes Your Implementation Value

Backup DLUS name This parameter is optional.

NETNAME.LUNAME (each 1–8 type A
EBCDIC characters)

PU ID 8 hexadecimal digits

In a VTAM configuration, the first three
digits should match the IDBLK parameter in
the PU definition, and the last five digits
should match the IDNUM setting.

On an AS/400 system, the PU ID is
configured in the EXCHID parameter.

Initially active Select if needed

Compression supported Select if needed

Retry contacting DLUS
indefinitely

Select if needed

Local LU and Application Configuration: See “User Application Support Worksheets” on page 165. You
must configure local dependent LUs and any application support you require.

Passthrough DLUR for Downstream Nodes
If the local node is an APPN network node, you can provide passthrough DLUR
services for downstream nodes. Complete this worksheet to support DLUR.

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Configuration: Configure the node as a network node (see “APPN Network Node” on
page 149).

Connectivity Configuration: See “Connectivity Worksheets” on page 152. Configure
connectivity to the APPN network and also connectivity for dependent traffic to the
downstream nodes.

SNA Gateway
Complete this worksheet if the local node is to support SNA gateway.

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Configuration: See “Node Worksheets” on page 149.

Connectivity Configuration: See “Connectivity Worksheets” on page 152. Configure
connectivity for dependent traffic to host, and links for dependent traffic to each
downstream node.

Local LU and Application Configuration: See “User Application Support Worksheets” on
page 165.

LU Pool Dialog

Pool name 1–8 type AE EBCDIC characters

LU lists Names of the LUs (type 0–3) to assign
to the pool

Downstream LU Dialog

Downstream LU name 1–8 type A EBCDIC characters (1–5 for
the base name for a range of LUs)

Downstream PU name type A EBCDIC string

Passthrough Services Worksheets

162

Motif Field Valid Entry/Notes
Your Implementation
Value

LU numbers 1–255 (for a range, supply first and last
numbers)

Upstream LU name Type A EBCDIC string (for LU name)
or type AE EBCDIC string (for LU pool
name)

TN Server
Complete this worksheet if the local node is to support TN3270 clients.

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Configuration: See “Node Worksheets” on page 149.

Connectivity Configuration: See “Connectivity Worksheets” on page 152 (configure for
dependent LU traffic to host).

Local LU and Application Configuration: See “User Application Support Worksheets” on
page 165.

LU Pool Dialog

Pool name 1–8 type AE EBCDIC characters

LU lists Names of the LUs (type 0–3) to assign
to the pool

TN Server Access Dialog

TN3270 client address Specify one of the following:

v Default record (any TN3270 client)

v TCP/IP address (IP address of client,
either IPv4 or IPv6 address)

v TCP/IP name or alias

Support TN3270E Select to support TN3270E (in addition
to TN3270 and TN3287)

TN3270 port and LUs

TCP/IP port number Usually 23.

Display LU Assigned LU or pool name

Printer LU Assigned LU or pool name

Allow access to specific
LU

Select if needed

SSL secure session Select if needed

Perform client
authentication

Select if needed

Encryption strength Specify one of the following:

v Authenticate Only

v Authenticate Minimum

v 40 Bit Minimum

v 56 Bit Minimum

v 128 Bit Minimum

v 168 Bit Minimum

TN Server Association Dialog

Passthrough Services Worksheets

Appendix A. Configuration Planning Worksheets 163

Motif Field Valid Entry/Notes
Your Implementation
Value

Display LU LU name

Printer LU LU name

TN Redirector
Complete this worksheet if the local node is to support Telnet clients using TN
Redirector.

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Configuration: See “Node Worksheets” on page 149.

TN Redirector Access Dialog

Telnet client address Specify one of the following:

v Default record (any Telnet client)

v TCP/IP address (IP address of client,
either IPv4 or IPv6 address)

v TCP/IP name or alias
TCP/IP port number Usually 23.
SSL secure session Select if needed
Perform client
authentication

Select if needed

Encryption strength Specify one of the following:

v Authenticate Only

v Authenticate Minimum

v 40 Bit Minimum

v 56 Bit Minimum

v 128 Bit Minimum

v 168 Bit Minimum

Host address Specify one of the following:

v TCP/IP address (IP address of host,
eithe IPv4 or IPv6 address)

v TCP/IP name or alias
TCP/IP port number
SSL secure session Select if needed
Encryption strength Specify one of the following:

v Authenticate Only

v Authenticate Minimum

v 40 Bit Minimum

v 56 Bit Minimum

v 128 Bit Minimum

v 168 Bit Minimum

Passthrough Services Worksheets

164

User Application Support Worksheets
Complete the following worksheets if the corresponding user-level applications are
to be supported by the local node:
v “APPC”
v “CPI-C” on page 168
v “5250” on page 168
v “3270” on page 168
v “LUA” on page 169

APPC
Complete this worksheet if the local node is to support APPC applications.

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Configuration: See “Node Worksheets” on page 149.

Connectivity Configuration: See “Connectivity Worksheets” on page 152.

Local LU Dialog: Not required if you can use the default control point LU.

LU name 1–8 type A EBCDIC characters
LU alias Up to 8 characters

Dependent LU parameters

Host LS/DLUR PU Name of dependent link station to
host or DLUR PU (must be defined
before defining an LU)

LU number 1–255

This value must match the LOCADDR
parameter in the VTAM/NCP LU
resource definition statement.

Member of default pool Select if needed (only for dependent
LU)

Local LU parameters

Support syncpoint Select if needed
Disable password
substitution

Select if needed

Restrict to specific
SSCP

Select if needed (only for dependent
LU).

The SSCP ID is defined in the SSCPID=
field of the VTAM start list.

Remote Node Dialog: Only configure if the local node is a LEN node.

Node’s SNA network
name

NETNAME.CPNAME (each 1–8 type A
EBCDIC characters)

Partner LU Dialog: Only required for communication with a LEN node, to define a partner
LU alias, or if the local node is a LEN node.

Partner LU name (NETNAME.LUNAME (each 1–8 type
A EBCDIC characters)

Alias Up to 8 characters

User Application Support Worksheets

Appendix A. Configuration Planning Worksheets 165

Motif Field Valid Entry/Notes
Your Implementation
Value

Uninterpreted name 1–8 type AE EBCDIC characters (if host
LU name is different from PLU name
used locally)

Supports parallel
sessions

Select if supported

Location NETNAME.CPNAME (each 1–8 type A
EBCDIC characters)

LS Routing Dialog: Only required if partner LU is located by link station.

LU name 1–8 type A EBCDIC characters
LS name Up to 8 characters
Partner LU name (NETNAME.LUNAME (each 1–8 type

A EBCDIC characters)
Use partner LU name
as a wildcard

Select if needed

Mode Dialog: Only required if you are using a nonstandard mode.

Name 1–8 type A EBCDIC characters
COS name 1–8 type A EBCDIC characters

Session limits

Initial session limit Up to maximum session limit;
recommended value is 8

Maximum session limit Up to 32767
Minimum contention
winner sessions

Up to maximum session limit;
recommended value is 0.

Minimum contention
loser sessions

Recommended value is 0.

Auto-activated sessions 0 to minimum_contention_winners

Receive pacing window

Initial window size Recommended value is 4
Maximum window size Optional
Session timeout
Maximum RU size Recommended upper limit is 1024.

Compression supported

Max inbound
compression

None

RLE

LZ9

LZ10
Max outbound
compression

None

RLE

LZ9

LZ10

Session Security Dialog: Only required if session security is required for sessions between a
specific local and partner LU.

Local LU 1–8 type A EBCDIC characters

User Application Support Worksheets

166

Motif Field Valid Entry/Notes
Your Implementation
Value

Partner LU 1–8 type A EBCDIC characters
Password 16-digit hexadecimal number

TP Invocation Dialog: Only required if local TP is to be started in response to requests from
remote systems.

TP name User application: up to 64 ASCII
characters

Service TP: up to 8 hexadecimal digits
Restrict to specific LU Select if needed
LU alias Up to 8 characters
Multiple instances
supported

Select for nonqueued TPs; if not
selected, incoming Allocate requests are
queued if the TP is already running

Route incoming
Allocates to running
TP

Select for a broadcast queued TP

Full path to TP
executable

Path and file name of the executable
file (defaults to TP name)

Arguments Any valid arguments to the executable
User ID Up to 64 characters
Group ID Up to 64 characters

TP Definition Dialog: Defines APPC characteristics.

TP name User application: up to 64 ASCII
characters

Service TP: up to 8 hexadecimal digits
Conversation level
security required

Select to require a valid user name and
password on allocation requests

Restrict access Select to require that user names be
included on a security access list

Security access list Name of security access list
Conversation type Basic

Mapped

Either
Sync level None

Confirm

Sync-point

None or Confirm

None, Confirm, or Sync-point
PIP allowed Select if needed

Conversation Security Dialog: Only required if conversation security is required for a local
TP that is to be started in response to requests from remote systems.

User ID Up to 10 characters
Password Up to 10 characters

User Application Support Worksheets

Appendix A. Configuration Planning Worksheets 167

CPI-C
Complete this worksheet if the local node is to support CPI-C applications.

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Configuration: See “Node Worksheets” on page 149.

Connectivity Configuration: See “Connectivity Worksheets” on page 152.

APPC Configuration: See “APPC” on page 165.

CPI-C Destination Dialog

Symbolic destination
name

1–8 characters

Local LU Alias (up to 8 characters) or fully
qualified name (NETNAME.LUNAME,
each 1–8 type A EBCDIC characters)

Partner LU Alias (up to 8 characters) or fully
qualified name (NETNAME.LUNAME,
each 1–8 type A EBCDIC characters)

Mode Type A EBCDIC string
Partner TP name User application: up to 64 characters

Service TP: up to 8 hexadecimal digits
Security None

Same

Program
User ID Only for security level of Same or

Program (not related to user login ID)
Password Only for security level of Program (not

related to user login password)

5250
Complete this worksheet if the local node is to support 5250 communications.

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Configuration: See “Node Worksheets” on page 149.

Connectivity Configuration: See “Connectivity Worksheets” on page 152 (configure for
independent traffic).

APPC Configuration: See “APPC” on page 165.

3270
Complete this worksheet if the local node is to support 3270 communications.

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Configuration: See “Node Worksheets” on page 149.

Connectivity Configuration: See “Connectivity Worksheets” on page 152 (configure for
dependent traffic).

User Application Support Worksheets

168

Motif Field Valid Entry/Notes
Your Implementation
Value

LU Type 0–3 Dialog

LU name 1–8 type A EBCDIC characters (or 1–5
characters for a base name for a range
of LUs)

Host LS/DLUR PU Name of dependent link station to
host or DLUR PU (must be defined
before defining an LU)

LU numbers 1–255 (for a range, supply first and last
numbers)

This value must match the LOCADDR
parameter in the VTAM/NCP LU
resource definition statement.

LU type 3270 model 2 (80x24) display

3270 model 3 (80x32) display

3270 model 4 (80x43) display

3270 model 5 (132x27) display

3270 Printer

SCS Printer
LU in pool Select desired option (only for display

and unrestricted LUs).
Pool name 1–8 type AE EBCDIC characters

LU Pool Dialog

Pool name 1–8 type AE EBCDIC characters
LU lists Names of the LUs (type 0–3) to assign

to the pool

LUA
Complete this worksheet if the local node is to support LUA applications.

Motif Field Valid Entry/Notes
Your Implementation
Value

Node Configuration: See “Node Worksheets” on page 149.

Connectivity Configuration: See “Connectivity Worksheets” on page 152 (configure for
dependent traffic).

LU Type 0–3 Dialog

LU name 1–8 type A EBCDIC characters (or 1–5
characters for a base name for a range
of LUs)

Host LS/DLUR PU Name of dependent link station to
host or DLUR PU (must be defined
before defining an LU)

User Application Support Worksheets

Appendix A. Configuration Planning Worksheets 169

Motif Field Valid Entry/Notes
Your Implementation
Value

LU numbers 1–255 (for a range, supply first and last
numbers)

This value must match the LOCADDR
parameter in the VTAM/NCP LU
resource definition statement.

LU type Unrestricted

LU in pool Select desired option (only for display
and unrestricted LUs)

Pool name 1–8 type AE EBCDIC characters

LU Pool Dialog

Pool name 1–8 type AE EBCDIC characters

LU lists Names of the LUs (type 0–3) to assign
to the pool

User Application Support Worksheets

170

Appendix B. Configuring an Invokable TP from the Command
Line

Communications Server for Linux includes a command-line utility that enables a
user or the writer of a TP installation program to define an invokable TP. You can
run this utility on a server or client.

The syntax of the command is different depending on whether you are defining,
removing, or querying TP definitions, and is different for a Remote API Client on
Windows.

WINDOWS

Before using the tpinst32 command, change to the directory where the client
software is installed.

The tpinst32 command normally displays information in the language that you
selected when installing the client software. If you prefer to see this information in
a different language, change to the subdirectory corresponding to your preferred
language before running the command. For example, to see the information in
French, change to the fr_FR subdirectory below the directory where the client
software is installed.

Define an invokable TP:

AIX, LINUX

snatpinstall -a file_name

WINDOWS

tpinst32 -a file_name

Note: The tpinst32 command applies to both 32–bit and x64 versions of
Windows.

This command adds one or more TP definitions from the specified
file_name. If the TP named in the file has already been defined, the
information in the file replaces the existing definition. For information
about the required file format, see “File Format for an Invokable TP
Definition” on page 172.

© Copyright IBM Corp. 2000, 2009 171

Remove an invokable TP definition:

AIX, LINUX

snatpinstall -r -t TP_name [-l LU_alias]

This command removes the entry that has the specified TP name and (if
more than one APPC TP is defined with the same TP name) the specified
LU alias. Omit the option -l LU_alias if the entry is for a CPI-C application,
or if there is only one APPC TP defined with the specified TP name.

WINDOWS

tpinst32 -r -t TP_name

This command removes the entry that has the specified TP name.

Query invokable TP definitions:

AIX, LINUX

snatpinstall -q [-t TP_name] [-l LU_alias]

This command queries the entry that has the specified TP name and (if
more than one APPC TP is defined with the same TP name) the specified
LU alias. Omit the option -l LU_alias if the entry is for a CPI-C application,
or if there is only one APPC TP defined with the specified TP name. If you
do not include the option -t TP_name, the command queries all invokable
TP definitions.

WINDOWS

tpinst32 -q -t TP_name

This command queries the entry that has the specified TP name. If you do
not include the option -t TP_name, the command queries all invokable TP
definitions.

File Format for an Invokable TP Definition
The file that supplies configuration information for an invokable TP is an ASCII
text file that can be modified using any standard text editor. Each entry in the file
has the following format:
[TPname]
PATH = full_pathname_of_executable_file
ARGUMENTS = command-line_arguments_separated_by_spaces
TYPE = QUEUED | QUEUED-BROADCAST | NON-QUEUED
TIMEOUT = nnn

Configuring an Invokable TP from the Command Line

172

AIX, LINUX

USERID = user_ID
GROUP = group_ID
LUALIAS = LU_alias
ENV = environment_variable=value

.

.

.
ENV = environment_variable=value

WINDOWS

SHOW = MAXIMIZED | MINIMIZED | HIDDEN | NORMAL | NOACTIVATE |
MINNOACTIVATE

SECURITY_TYPE = APPLICATION | SERVICE
SERVICE_NAME = name_of_installed_service
USERID = domain_name\user_ID

The parameters are as follows. For an operator-started TP, the only parameters
used are the TP name, the TP type, the timeout value, and (for an APPC TP on
AIX or Linux) the LU alias; the other parameters apply only to automatically
started TPs.

AIX, LINUX

On AIX or Linux, Communications Server for Linux returns an error message if
you enter an invalid parameter.

WINDOWS

On Windows machines, Communications Server for Linux ignores invalid
parameters.

TPname
The name of the TP (1–64 characters, with no embedded space characters).
The TP name specified on the Receive_Allocate, or on the incoming
Allocate request, is matched against this name. If the TP is an
automatically started TP, it must specify this TP name on the
Receive_Allocate when it starts up, to enable Communications Server for
Linux to route the incoming Attach to the correct TP.

This name must be enclosed within square brackets. The name can be
specified as an ASCII string, enclosed in double quotation marks (for
example, ["TPNAME1"]). Alternatively, it can be specified as a hexadecimal
array representing the EBCDIC characters of the TP name (for example,
[<53504E414D45F1>]) or as a combination of the two (for example,

File Format for an Invokable TP Definition

Appendix B. Configuring an Invokable TP from the Command Line 173

[<3f>"TP1"]). In this example, the first character is the unprintable
character 0x3f, and the following characters are "TP1".

Communications Server for Linux converts a supplied ASCII string to
EBCDIC, but does not perform any conversion on a hexadecimal string
(which is assumed to be in EBCDIC already). It then pads the name with
EBCDIC spaces on the right (to a total of 64 characters) before matching
against the specified TP name.

PATH The path and file name of the executable file for this TP.

This line is optional. If it is not included, Communications Server for Linux
assumes that the executable file name is the same as the TP name. If you
specify a file name with no path, the default path for AIX or Linux systems
is /etc/opt/ibm/sna; for a Windows client, Communications Server for
Linux uses the normal Windows mechanisms for locating the executable
file.

ARGUMENTS
Any command-line arguments to be passed to the TP, separated by spaces.
These arguments are passed to the TP in the same order as they appear on
the command line.

This line is optional. If it is not included, the TP is invoked without any
command-line arguments.

TYPE Specify one of the following values:

QUEUED The TP is a queued TP. Any incoming Allocate requests arriving
while the TP is running are queued until the TP issues another
Receive_Allocate, or until it finishes running and can be restarted.
An incoming Allocate request is routed to this TP only if it is
received by an LU that is configured to route incoming Allocate
requests to this computer.

QUEUED-BROADCAST
The TP is a broadcast queued TP. Any incoming Allocate requests
arriving while the TP is running are queued until the TP issues
another Receive_Allocate, or until it finishes running and can be
restarted. When the TP is started, information about the TP is
broadcast to all servers on the LAN; if an LU on another computer
receives an incoming Allocate request and has no routing
information configured, it can dynamically locate the TP and route
the Allocate request to it.

Using QUEUED-BROADCAST instead of QUEUED avoids having to
configure explicit routing information for LUs, and enables
load-balancing by running more than one copy of the same TP on
different computers. However, if you want to avoid broadcasting
information in order to reduce LAN traffic, or if you need to
ensure that incoming Allocate requests arriving at a particular LU
are always routed to the same copy of the TP, you should use
QUEUED.

NON-QUEUED
The TP is a nonqueued TP. Communications Server for Linux starts
a new copy of the TP each time an incoming Allocate request
arrives for it. Do not specify the TIMEOUT parameter for a
nonqueued TP.

File Format for an Invokable TP Definition

174

A TP defined as nonqueued cannot be started by an operator; it is
always started automatically by Communications Server for Linux.
Do not specify NON-QUEUED if the TP is to be operator-started. If a
user attempts to start a nonqueued TP, Communications Server for
Linux rejects the Receive_Allocate because no incoming Allocate
request is waiting for it.

After a nonqueued TP has ended a conversation, it may terminate,
or it may issue another Receive_Allocate. For frequently-used
programs, this provides a way of avoiding the performance
overhead of starting a new instance of the program for each
conversation. Each time an Attach is received for a nonqueued,
automatically started TP, Communications Server for Linux checks
whether there is already a Receive_Allocate outstanding from an
instance of this TP. If so, this TP is used for the incoming
conversation; otherwise, Communications Server for Linux starts a
new instance of the program.

If you use NON-QUEUED, more than one copy of the TP can be
running at a time. If the TP writes to files, you need to ensure that
different copies of the TP do not overwrite each other’s files. To do
this, use one of the following methods:
v Ensure that the TP appends data to an existing file instead of

creating the file (so that all copies of the TP append data to the
same file)

v Design the TP to generate file names at run-time, based on the
process ID with which the TP is running (so that each copy of
the TP writes to a different file).

This line is optional. If it is not included, or if an invalid value is specified,
the default is QUEUED.

TIMEOUT
The maximum length of time, in seconds, that a Receive_Allocate call
issued by the TP should block if there is no incoming Allocate request
pending. If no incoming Allocate is received in this time, the call fails with
a return code indicating “State check - Allocate not pending.”

A timeout value of 0 indicates that the call always fails unless an incoming
Allocate is already pending when the call is issued. A timeout value of −1
indicates that the call waits indefinitely for an incoming Allocate and does
not time out.

This line is optional. If it is not included, or if an invalid value (a
non-numeric value) is specified, the default is −1 (infinite).

Do not specify this parameter if the TYPE parameter is set to NON-QUEUED.
Communications Server for Linux uses a timeout value of 0 for nonqueued
TPs, because the TP is always started in response to an incoming Allocate
and so there is always one pending.

AIX, LINUX

USERID
Specify the user ID that Communications Server for Linux uses to start the
TP. The TP is started in the home directory associated with this user ID.
This home directory is also the default path for trace files and any other
files accessed by the TP (unless the application overrides it by specifying a

File Format for an Invokable TP Definition

Appendix B. Configuring an Invokable TP from the Command Line 175

full path). If the application specifies a file name without a path,
Communications Server for Linux searches for the file in this home
directory; if the application specifies a file name with a relative path,
Communications Server for Linux searches for the file in the specified
directory relative to this home directory.

This line is required, and must be specified. The ID must be a valid login
ID on the Communications Server for Linux computer; it can be up to 64
characters, unless your AIX or Linux configuration restricts user names to
fewer characters.

The executable file for the TP, specified by the PATH parameter, must have
execute permission for the specified user. In addition, if USERID is set to
root, the file must be owned by root and must have setuid and setgid
permission in order to be started automatically by Communications Server
for Linux.

GROUP
Specify the group ID that Communications Server for Linux uses to start
the TP. This must be a valid group ID on the Communications Server for
Linux computer; it can be up to 64 characters, unless your AIX or Linux
configuration restricts group names to fewer characters.

This line is optional; if it is not included, the default is other.

LUALIAS
Specify the local LU alias from which the TP is to accept incoming
Attaches.

Note: This parameter can be used only if the TP is an APPC TP. If the TP
is a CPI-C application, do not specify this parameter. CPI-C does not
support accepting incoming Attaches from a particular local LU;
specifying an LU alias (even a blank LU alias) for a CPI-C
application will cause errors in routing the incoming Attach to the
TP.

This is an eight-character name that must match the name of a
Communications Server for Linux local APPC LU.

To indicate that the TP accepts incoming Attaches from any local LU, set
this parameter to two double quotation mark characters, "", indicating a
blank LU alias. If the invokable TP data file contains more than one entry
for the same TP name, only one of these entries can specify a blank LU
alias; each of the others must specify a different explicit LU alias.
Communications Server for Linux matches an incoming Attach for this TP
name to a TP specifying the appropriate LU alias, if possible, or to a TP
specifying a blank LU alias if no LU alias match can be found.

If a non-blank LU alias is specified in the file, the TP must use the
extended form of the APPC RECEIVE_ALLOCATE verb and specify this
LU alias as a parameter to the verb. This enables Communications Server
for Linux to route the incoming Attach to the correct TP. For more
information about the different forms of RECEIVE_ALLOCATE, refer to
IBM Communications Server for AIX or Linux APPC Programmer’s Guide. If
you need to permit the TP to determine the correct LU alias at run-time
rather than building it into the application, you can do this by setting an
environment variable to contain the appropriate LU alias (using the ENV
parameter), and designing the application to read this environment
variable in order to determine how to issue RECEIVE_ALLOCATE.

File Format for an Invokable TP Definition

176

This line is optional; if it is not included, the default is to accept incoming
Attaches from any local LU, and the TP can use either form of the APPC
RECEIVE_ALLOCATE verb.

ENV Specify any environment variables required by the TP. Each variable is
specified in the form environment_variable=value on a separate ENV line. Up
to 64 ENV lines can be included; the variables are set in the same order as
they appear here.

The string environment_variable=value must not contain space or tab
characters before or after the = character.

WINDOWS

SHOW
This parameter applies only if the application is a GUI application; it is
ignored if the application is a console application. Specify how the
application should be displayed when it is started. This parameter is
passed to the application, and not processed by Communications Server
for Linux; it is the application’s responsibility to interpret it and act on it.
You can enter any of the following values:

MAXIMIZED
The application is maximized.

MINIMIZED
The application is minimized.

HIDDEN The application does not appear on the screen.

NORMAL The application is displayed at its normal size and position.

NOACTIVATE
The application is displayed at its normal size and position, and
the focus remains on the previously active window. This
application’s window does not become the active window.

MINNOACTIVATE
The application is minimized, and the focus remains on the
previously active window.

This parameter is optional. If it is not included, the default is NORMAL.

SECURITY_TYPE
Specify the security type of the TP executable:

APPLICATION
The TP executable is started as an application using the
CreateProcess system call.

SERVICE
The TP executable is started as a service using the StartService
system call. In this case, the service must have been previously
installed with the Service Control Manager using the name
specified by the SERVICE_NAME parameter.

This value refers to a TP running as a Windows Service (not to an
SNA service TP with a name consisting of 4 characters specified in
hexadecimal). Windows allows only one copy of a Service to be
running at a time, and so the TYPE parameter should not be set to
NON-QUEUED; if you specify this value, the value QUEUED-BROADCAST
will be used instead.

File Format for an Invokable TP Definition

Appendix B. Configuring an Invokable TP from the Command Line 177

SERVICE_NAME
The name of the service installed with the Service Control Manager. This
parameter is only used if the SECURITY_TYPE is SERVICE.

USERID
Specify the domain and user ID that the client should use to start the TP
when the SECURITY_TYPE is APPLICATION. The format for this parameter
is domain_name\user_ID if the Windows Client computer is part of a
domain, or computer_name\user_ID (indicating the Windows Client’s own
computer name instead of a domain name) if the Windows Client
computer is not part of a domain.

The client attempts to start the TP in the specified user’s logon session. If
USERID is blank or unspecified, the TP is started in the console session. If
the specified user is not logged on, or no user is logged on at the console,
the TP is not started and the Communications Server for Linux server is
notified of the failure.

Note the following points about the format of these entries:
v You can include a comment line by including # as the first character of the line;

Communications Server for Linux then ignores this line. Communications Server
for Linux also ignores completely blank lines.

v Each parameter=value entry must be on one line; it cannot contain line-break
characters. The maximum length of a line is 255 characters; additional characters
are ignored.

v White space (space characters and tab characters) at the start or end of a line, or
before or after the = character, is ignored (except in the string
environment_variable=value for the ENV parameter).

v Each TP definition begins with the line identifying the TP name, and ends with
the end of the file or the next TP name.

v Except for the ENV line, which can occur up to 64 times, do not specify the
same parameter more than once for the same TP. If you do specify the same
parameter more than once, only the last instance of each keyword is used.

File Format for an Invokable TP Definition

178

Appendix C. Configuring TN3270 LU models for DDDLU

When a TN3270 client connects to the host through the Communications Server for
Linux TN Server using DDDLU, Communications Server for Linux needs to send
information to the host about the LU model required by the client. It normally
determines the LU model using a standard mapping from the terminal type
(device type) specified by the client.

If you need to change the mapping between TN3270 device types and LU models,
you can do this using the tn3270dev.dat file. A sample version of this file is
provided in /opt/ibm/sna/samples. Copy this file into /etc/opt/ibm/sna, and
make your changes there using a standard ASCII text editor such as vi. The
changes will take effect next time you restart Communications Server for Linux.

Each line in the file represents the mapping between a TN3270 device and the LU
model string that should be sent to the host for this device. It consists of the
following entries, separated by spaces.
v The first entry is the single character Y if this mapping is for a TN3270E client

(using the TN3270 extensions), or N if it is for a standard TN3270 client.
v The second entry is the terminal type (device type) specified by the client. This

is a text string of maximum 40 characters; the valid characters are letters A-Z,
numbers 0–9, / and -.

v The third entry is the 7–character LU model string that Communications Server
for Linux sends to the host to identify the correct LU model for this client.

The sample file provided with Communications Server for Linux includes
mappings for 18 standard device types in both TN3270 and TN3270E versions (36
entries in all).
v If you need to specify a different LU model string for one or more of these

standard devices, change the third entry on the appropriate line of the file to
specify the required 7–character string.

v If you need to support additional device types that are not included in the
sample file, add a new line to the file for each device type, using the format
described above.

© Copyright IBM Corp. 2000, 2009 179

Configuring TN3270 LU models for DDDLU

180

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2009 181

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to IBM’s application programming
interfaces.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows: ® (your company name) (year). Portions of
this code are derived from IBM Corp. Sample Programs. ® Copyright IBM Corp.
2000, 2005, 2006, 2007, 2008, 2009. All rights reserved.

182

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix D. Notices 183

184

Bibliography

The following IBM publications provide information about the topics discussed in
this library. The publications are divided into the following broad topic areas:
v Communications Server for Linux, Version 6.4
v Systems Network Architecture (SNA)
v Host configuration
v z/OS Communications Server
v Transmission Control Protocol/Internet Protocol (TCP/IP)
v X.25
v Advanced Program-to-Program Communication (APPC)
v Programming
v Other IBM networking topics

For books in the Communications Server for Linux library, brief descriptions are
provided. For other books, only the titles and order numbers are shown here.

Communications Server for Linux Version 6.4 Publications
The Communications Server for Linux library comprises the following books. In
addition, softcopy versions of these documents are provided on the CD-ROM. See
IBM Communications Server for Linux Quick Beginnings for information about
accessing the softcopy files on the CD-ROM. To install these softcopy books on
your system, you require 9–15 MB of hard disk space (depending on which
national language versions you install).
v IBM Communications Server for Linux Quick Beginnings (GC31-6768 and

GC31-6769)
This book is a general introduction to Communications Server for Linux,
including information about supported network characteristics, installation,
configuration, and operation. There are two versions of this book:

GC31-6768 is for Communications Server for Linux on the i686, x86_64, and
ppc64 platforms
GC31-6769 is for Communications Server for Linux on System z.

v IBM Communications Server for Linux Administration Guide (SC31-6771)
This book provides an SNA and Communications Server for Linux overview and
information about Communications Server for Linux configuration and
operation.

v IBM Communications Server for Linux Administration Command Reference
(SC31-6770)
This book provides information about SNA and Communications Server for
Linux commands.

v IBM Communications Server for AIX or Linux CPI-C Programmer’s Guide
(SC23-8591)
This book provides information for experienced “C” or Java™programmers about
writing SNA transaction programs using the Communications Server for Linux
CPI Communications API.

v IBM Communications Server for AIX or Linux APPC Programmer’s Guide
(SC23-8592)

© Copyright IBM Corp. 2000, 2009 185

This book contains the information you need to write application programs
using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX or Linux LUA Programmer’s Guide (SC23-8590)
This book contains the information you need to write applications using the
Conventional LU Application Programming Interface (LUA).

v IBM Communications Server for AIX or Linux CSV Programmer’s Guide (SC23-8589)
This book contains the information you need to write application programs
using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX or Linux MS Programmer’s Guide (SC23-8596)
This book contains the information you need to write applications using the
Management Services (MS) API.

v IBM Communications Server for Linux NOF Programmer’s Guide (SC31-6778)
This book contains the information you need to write applications using the
Node Operator Facility (NOF) API.

v IBM Communications Server for Linux Diagnostics Guide (SC31-6779)
This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX or Linux APPC Application Suite User’s Guide
(SC23-8595)
This book provides information about APPC applications used with
Communications Server for Linux.

v IBM Communications Server for Linux Glossary (GC31-6780)
This book provides a comprehensive list of terms and definitions used
throughout the Communications Server for Linux library.

Systems Network Architecture (SNA) Publications
The following books contain information about SNA networks:
v Systems Network Architecture: Format and Protocol Reference Manual—Architecture

Logic for LU Type 6.2 (SC30-3269)
v Systems Network Architecture: Formats (GA27-3136)
v Systems Network Architecture: Guide to SNA Publications (GC30-3438)
v Systems Network Architecture: Network Product Formats (LY43-0081)
v Systems Network Architecture: Technical Overview (GC30-3073)
v Systems Network Architecture: APPN Architecture Reference (SC30-3422)
v Systems Network Architecture: Sessions between Logical Units (GC20-1868)
v Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)
v Systems Network Architecture: Transaction Programmer’s Reference Manual for LU

Type 6.2 (GC30-3084)
v Systems Network Architecture: 3270 Datastream Programmer’s Reference (GA23-0059)
v Networking Blueprint Executive Overview (GC31-7057)
v Systems Network Architecture: Management Services Reference (SC30-3346)

Host Configuration Publications
The following books contain information about host configuration:
v ES/9000, ES/3090 IOCP User’s Guide Volume A04 (GC38-0097)
v 3174 Establishment Controller Installation Guide (GG24-3061)
v 3270 Information Display System 3174 Establishment Controller: Planning Guide

(GA27-3918)

186

v OS/390 Hardware Configuration Definition (HCD) User’s Guide (SC28-1848)

z/OS Communications Server Publications
The following books contain information about z/OS Communications Server:
v z/OS V1R7 Communications Server: SNA Network Implementation Guide (SC31-8777)
v z/OS V1R7 Communications Server: SNA Diagnostics (Vol 1: GC31-6850, Vol 2:

GC31-6851)
v z/OS V1R6 Communications Server: Resource Definition Reference (SC31-8778)

TCP/IP Publications
The following books contain information about the Transmission Control
Protocol/Internet Protocol (TCP/IP) network protocol:
v z/OS V1R7 Communications Server: IP Configuration Guide (SC31-8775)
v z/OS V1R7 Communications Server: IP Configuration Reference (SC31-8776)
v z/VM V5R1 TCP/IP Planning and Customization (SC24-6125)

X.25 Publications
The following books contain information about the X.25 network protocol:
v Communications Server for OS/2 Version 4 X.25 Programming (SC31-8150)

APPC Publications
The following books contain information about Advanced Program-to-Program
Communication (APPC):
v APPC Application Suite V1 User’s Guide (SC31-6532)
v APPC Application Suite V1 Administration (SC31-6533)
v APPC Application Suite V1 Programming (SC31-6534)
v APPC Application Suite V1 Online Product Library (SK2T-2680)
v APPC Application Suite Licensed Program Specifications (GC31-6535)
v z/OS V1R2.0 Communications Server: APPC Application Suite User’s Guide

(SC31-8809)

Programming Publications
The following books contain information about programming:
v Common Programming Interface Communications CPI-C Reference (SC26-4399)
v Communications Server for OS/2 Version 4 Application Programming Guide

(SC31-8152)

Other IBM Networking Publications
The following books contain information about other topics related to
Communications Server for Linux:
v SDLC Concepts (GA27-3093)
v Local Area Network Concepts and Products: LAN Architecture (SG24-4753)
v Local Area Network Concepts and Products: LAN Adapters, Hubs and ATM

(SG24-4754)
v Local Area Network Concepts and Products: Routers and Gateways (SG24-4755)

Bibliography 187

v Local Area Network Concepts and Products: LAN Operating Systems and Management
(SG24-4756)

v IBM Network Control Program Resource Definition Guide (SC30-3349)

188

Index

Numerics
3270

LU configuration 75
pool configuration 77
worksheet 168

5250
worksheet 168

A
Activation parameter 66
Adapter card number parameter 61
adjacent node 12
administration

responsibilities 29
tools 30

Advanced Peer-to-Peer Networking
(APPN) 1

Alias parameter 84
alias, partner LU 83
Allow access to specific LU

parameter 105
Allow timeout parameter 113
ANR

description 12, 19
dynamic rerouting 23

API
description 6
included with Communications Server

for Linux 6
proprietary 6

API tracing
Remote API Client on Windows 138

APPC
configuration 79
security 98
worksheet 165

APPCLLU
Remote API Client on Windows 142

APPCTPN
Remote API Client on Windows 142

application
program 5
worksheets 149

application programming interface
(API) 6

Application System/400 (AS/400) 12
APPN

branch network node 5, 151
connection network 25
control point 15
description 1, 12
end node 5, 14, 150
functions 12
network 12, 23
network example 13
network node 4, 14, 149
node types 13
route selection 22

APPN support parameter 54

Arguments parameter 90
AS/400 (Application System/400) 12
Assigned LUs parameter 78
audit log file 35
Auto-activated sessions parameter 94
automatic network routing (ANR) 12, 19

B
Backup DLUS Name parameter 72
backup master server 53
backup server 123
basic conversation 11
BIND request 9
boundary node 3
Branch Extender 26
Branch link type parameter 69
branch network node 5
Branch Network Node 26
broadcast search 19

C
central logging 35
characters, in RCF commands 117
CICS (Customer Information Control

System) 7
class of service (COS) 12
client

ARGUMENTS parameter 174
defining TP on 147
invokable TP configuration 171
managing 123
network data file 35
networking requirements 125
PATH parameter 174
SECURITY_TYPE parameter 177
SERVICE_NAME parameter 178
SHOW parameter 177
TIMEOUT parameter 175
TPname parameter 173
TYPE parameter 174

Client Configuration Utility,
Windows 131

client/server
configuration 53
tracing 140, 144

cluster controller 3
CN (connection network) 13
CN name parameter 63, 64
command-line administration program

command types 52
description 33
from a client 52
help 52
using 51

commands
modifying configuration servers 53

communication controller 3
communication controller node 2

communications link 3
compression supported parameter 72, 96
configuration

APPC communication 79
APPC security 98
connection network 60
connectivity 59
CPI-C side information 96
dependent LU 75
DLC 60
DLUR 113
files 34
node 54
passthrough services 103
port 60
security access list 100
SNA gateway 111
tasks 53
TN Redirector access records 107
TN server access records 104
TN server association records 107
TP 86

configuration server 53
adding 53
removing 53

Configure downstream LUs for implicit
PU access parameter 64

connection network
additional configuration needs 64
APPN 25
configuration 60, 61
configuration methods 60
description 13
topology information 20

connectivity
configuration 59
description 5
direct 23
worksheets 149, 152

control data 9
control point (CP) 8
Control point alias parameter 55
Control point name parameter 55
conversation

description 10
security 99

Conversation level security required
parameter 91

conversation security
configuration methods 99
parameters 99

Conversation type parameter 91
COS

description 12
purpose 92
types 92

COS name parameter 94
CP (control point) 8
CP-CP session 9

© Copyright IBM Corp. 2000, 2009 189

CPI-C (Common Programming Interface
for Communications)

side information 96
worksheet 168

CPI-C side information
additional configuration needs 98
configuration methods 96
parameters 96, 97, 98

CSVTBLG
Remote API Client on Windows 143

Customer Information Control System
(CICS) 7

D
data file

client network 35
domain configuration 34
invokable TP 34
node configuration 34
SNA network 34
TP definition 34

data link control (DLC) 59
DCA (Document Content

Architecture) 7
DDDLU

LU model for TN3270 179
Define on connection network

parameter 63
Delayed logon parameter 112
dependent LU

configuring 75
description 9

dependent LU server (DLUS) 28
dependent node 3
Destination host address parameter 110
diagnostic tools 35
dialog 42
direct connectivity 23
directed search 18
directory

end node 16, 17
for Communications Server for Linux

executable programs 38
LEN node 16, 17
network node 16, 18

disabling the Communications Server for
Linux software

Remote API Client on Windows 130
disabling the software 40
Display LU assigned parameter 105
Display LU parameter 107
DLC

additional configuration needs 64
configuration 59, 61
configuration methods 60

DLUR
additional configuration needs 73
configuration 113
description 28
worksheet 161

DLUR downstream nodes 73
DLUR PU

configuration methods 72
parameters 72, 73

DLUS
description 28

DLUS Name parameter 72, 73
Document Content Architecture

(DCA) 7
domain

configuration file 34
description 2

domain name
changing 124

domain resources 53
Domain window 42
Downstream LU name parameter 112
downstream LUs for SNA gateway

additional configuration needs 113
configuration methods 112
parameters 112, 113

Downstream PU Name parameter 70, 73

E
EN (end node) 4
enabling the Communications Server for

Linux software
on a server 38
problems during initialization 40
Remote API Client on Windows 129

enabling the SNA software
Remote API Client on AIX or

Linux 144
end node

APPN 14
description 4
directory 16, 17
in sample APPN network 13

Enterprise Extender (HPR/IP)
port configuration 60
worksheet 160

ENV parameter 177
Environment parameter 91
error log file 35
escape characters, RCF 117
Ethernet

port configuration 60
worksheet 156

Ethernet type parameter 63

F
FEP (front-end processor) 3
formats 1
front-end processor (FEP) 3
full logging 35
Full path to TP executable parameter 90
fully qualified CP name 16
fully qualified LU name 16

G
GDS (general data stream) 7
general data stream (GDS) 7
Group ID parameter 90
GROUP parameter 176

H
help

command-line administration
program 52

Motif administration program 51
High-Performance Routing (HPR) 12, 19
host 3
Host LS/DLUR PU parameter 76, 81
host node 2
HPR

description 12, 19
HPR supported on implicit links

parameter 64
HTTPS 128

I
IMS/VS (Information Management

System/Virtual Storage) 7
independent LU

configuration 79
description 9

Information Management System/Virtual
Storage (IMS/VS) 7

Initial session limit parameter 94
Initial window size parameter 95
Initially active parameter 61, 72
intermediate routing 22
intermediate session routing (ISR) 19, 23
internal tracing

Remote API Client on Windows 141
invokable TP 10

data file 34
defining to Communications Server

for Linux 86
using snatpinstall 171

invoking TP 10, 86
IP address formats 125
IP port numbers 126
IPv4 address 125
IPv6 address 125
ISR 19, 23

K
kernel components, tracing 39
kernel memory limit 39

L
LAN access timeout 127
LAN tracing

on a client 144
LEN node

description 4, 5, 14
directory 16, 17
features 13
worksheet 151

Line details parameter 61
Link level error recovery on implicit links

parameter 64
link station

additional configuration needs 71
configuration 64, 65
description 5

190

link station (continued)
parameters 66, 67, 68, 69, 70

Link station name parameter 85
link station routing

parameters 85
Linux client

domain name 145
maximum_element_count 145
maximum_header_count 145
maximum_process_count 145

Linux commands 115
Local IP interface parameter 63
local LU

additional configuration needs 81
configuration methods 80
defining 80
description 8
parameters 80, 81

Local LU alias parameter 97
Local LU name parameter 85
Local LU parameter 97, 99
local node

LU 8
Local node ID parameter 69
Local SAP number parameter 63
local topology database 19
locating resources 15
Location parameter 84
log files

configuring 55
types 56

log messages 35
logging 57

Remote API Client on Windows 136
logical record 11
logical unit (LU) 6
low-entry networking (LEN) node 4
LS (link station) 64
LU

description 6
types 7

LU 0
description 7

LU 1 7
LU 2 7
LU 3 7
LU 6.2

configuration 79
description 7

LU alias parameter 81, 88
LU in pool parameter 77
LU name parameter 75, 80
LU number parameter 76, 81, 112
LU pool

configuration methods 78
defining 77
parameters 78
viewing 77

LU traffic parameter 66
LU type parameter 76
LU types 0–3

additional configuration needs 77
configuration methods 75
parameters 75, 76, 77

LU-LU session 8
LUA

configuration 75

LUA (continued)
pool configuration 77
worksheet 169

LUALIAS parameter 176

M
MAC (medium access control) 26
MAC address parameter 67
Management Services (MS) 14
Management Services (MS) API 6
mapped conversation 11
master server 53, 123

specifying 124
Maximum active template instances

parameter 64
Maximum RU size parameter 95
Maximum session limit parameter 94
Maximum window size parameter 95
medium access control (MAC) 26
Member of default pool parameter 81
Minimum contention loser sessions

parameter 94
Minimum contention winner sessions

parameter 94
mixed network 2, 27
mode 92

additional configuration needs 96
configuration 93
description 11
parameters 93, 94, 95, 96
standard 92

Mode parameter 97
Motif administration program

description 30
dialog 48, 50
Domain window 42
help 51
invoking 41
Node window 44
resource items 47
resource windows 42
tool bar buttons 47
using 41

MPC
port configuration 60

MPC group parameter 68
MS (Management Services) 14
Multipath Channel

worksheet 159
Multipath Channel (MPC)

port configuration 60
Multiple instances supported

parameter 89
multiple sessions 10

N
Name parameter

CPI-C symbolic destination 96
link station 66
LU pool 78
mode 93
security access list 100

NAP (network access process) 128
NAU (network accessible unit) 6

NetView
changing size of command input

area 116
commands 115
description 115
program 115
screen display 116
service point 115
version numbers 115

network
management 115
mixed 27
topology database 19
types 2

network access process (NAP) 128
network accessible unit (NAU) 6
network addressable unit 6
network data file

description 34
Remote API Client on AIX or

Linux 144
network management data 9
network node

directory 16, 18
sample configuration 13

network node server 5, 14
NN (network node) 4
node

additional configuration needs 55
configuration file 34
configuration methods 54
parameters 54, 55
peer 2
peripheral 2
purpose 54
SNA 2
subarea 2
types 2, 4
worksheets 149

Node ID parameter 55
Node Operator Facility (NOF) API 6
node resources 53
Node window 44
Node’s SNA network name

parameter 82
NOF (Node Operator Facility) API 35

P
parallel sessions 10
Parameters are for invocation on any LU

parameter 88
partner LU 8

additional configuration needs 86
alias, defining 83
configuration methods 83
multiple, defining with wildcards 83
parameters 83, 84
remote node, defining 83

Partner LU name parameter 83, 85
Partner LU parameter 97, 99
Partner TP parameter 97
passthrough DLUR 73
passthrough services

configuring 103
worksheets 149, 161

Password parameter 98, 99

Index 191

path for Communications Server for
Linux executable programs 38

peer network 2
node types 4
route selection 12

peer-to-peer communications 1
peripheral node 3
physical unit (PU) 6
physical unit control point (PUCP) 8
PIP allowed parameter 92
planning worksheets 37
Poll address parameter 67
Pool name parameter 77
port

additional configuration needs 64
configuration 60, 61
parameters 61, 63, 64

Port number parameter 61
primary LU 9
Printer LU assigned parameter 105
Printer LU parameter 107
printers 3
problem determination aids

logging 55
overview 35

Protocol parameter 63
protocols 1
PU

description 6
for DLUR 71

PU ID parameter 72
PU Name parameter 72
PUCP (physical unit control point) 8

Q
QLLC

port configuration 60
worksheet 158

R
Rapid Transport Protocol (RTP) 12, 19
RCF

command syntax 116
facilities 33
valid characters 117

Receive pacing window parameter 95
Remote API Client on AIX or Linux

* 146
broadcast_attempt_count 146
invoked_tps 145
lan_access_timeout 145
management 143
server names 147
server_lost_timeout 146

Remote API Client on Windows
admin_msg 141
all_api 139
API tracing information 138
appc 139
APPCLLU 142
APPCTPN 143
audit_file 137
audit_file_wrap_size 137
audit_logging_enabled 136

Remote API Client on Windows
(continued)

backup_audit_file 137
backup_error_file 137
broadcast_attempt_count 133
Client Configuration Utility 131
client_start_timeout 134
client/server tracing information 140
configuration 130
configuration information 132
CPI-C application data 142
cpic 139
csv 139
CSV application data 143
CSVTBLG 143
data 141
datagram 141
disabling 130
domain 133
enabling 129
error_file 136
error_file_wrap_size 137
exception_logging_enabled 136
file1 138
file1 (CS_tracing) 140
file1 (Internal_tracing) 141
file2 138
file2 (CS_tracing) 140
file2 (Internal_tracing) 141
flip_size 139
flip_size (CS_tracing) 140
flip_size (Internal_tracing) 142
internal tracing information 141
invoked TPs 133
lan_access_timeout 133
log_directory 136
logging information 136
maximum_element_count 133
maximum_header_count 133
maximum_process_count 133
nof 140
receive 141
rui 140
send 141
server information 134
server_lost_timeout 134
Server1 134
Server2-Server9 135
status 130
succinct_audits 138
succinct_errors 138
trace_flushing 142
trace_level 142
truncation_length 139

remote command facility (RCF) 33
remote job entry (RJE) 7
remote node

additional configuration needs 82
configuration methods 82
defining 81
LU 8
Node’s SNA network name

parameter 82
partner LU 83

Remote node ID parameter 70
Remote node name parameter 68
Remote node role parameter 70

Remote node type parameter 69
Remote X.25 address parameter 68
request unit (RU) 95
Reset to SNA defined values

parameter 96
resource names 16
resources, locating 15
Restrict access parameter 91
Restrict maximum RU size parameter 95
Retry contacting DLUS indefinitely

parameter 73
RJE (remote job entry) 7
route 11
Route incoming Allocates to running TP

parameter 89
route selection 11, 19, 22
RTP

description 12, 19
endpoints 23

RU (request unit) 95

S
SAP (service access point) 26
SAP number parameter 68
SATF

direct connectivity 23
in APPN network 25

SDLC
port configuration 60
worksheet 152

secondary LU 9
Secure Sockets Layer (SSL) 105, 109

client authentication 106, 109
data encryption 106, 109
server authentication 106, 109, 110

security
APPC 98
conversation 99
session 98
UCF 119, 122

security access list
additional configuration needs 100
configuration methods 100
parameters 100
purpose 100

Security access list parameter 91
Security parameter 97
SEND function 11
server

adding 53
disabling 40
enabling 38
relationship to client 123
removing 53

service access point (SAP) 26
service point 115
service point command facility

(SPCF) 33, 115
session

description 8
routing 19
types 8

session security
additional configuration needs 99
configuration methods 98
parameters 99

192

Session timeout parameter 95
shared-access transport facility

(SATF) 23
SNA

APPN concepts 12
basic concepts 2
description 1
hierarchical structure 2
layers 2
network 1
network data file 34, 144
network types 2
subarea 1

SNA gateway
purpose 111
worksheet 162

SNA network information
Remote API Client on Windows 130

SNA port name parameter 61, 66
sna_clnt.net file 144
snaadmin program 33
snanetutil program 124
source TP 10, 86
SPCF

command syntax 116
commands 118
description 33, 115

Specify timeout parameter 95
SSCP (system services control point) 8
SSCP-dependent LU 9
SSCP-LU session 9
SSCP-PU session 9
Standard error parameter 90
Standard input parameter 90
Standard output parameter 90
start command 39
status

Remote API Client on Windows 130
stop command 41
subarea network

description 2
example 3
node types 2
route selection 12

subarea node 2
subarea SNA 1
succinct logging 35
Support TN3270E parameter 105
Supports parallel sessions parameter 84
Sync level parameter 91
system services control point (SSCP) 8

T
target TP 10, 86
task sheets 37
TCP/IP port number parameter 105,

108, 110
TDU (topology database update) 21
Telnet client address parameter 108
terminal 3
terminal controller 3
TN Redirector

access record 107, 108
access record parameters 108, 110
worksheet 164

TN server
access record 104, 107
access record parameters 104, 105
association record 107
association record parameters 107
worksheet 163

TN3270 client
DDDLU 179
LU model for DDDLU 179

TN3270 client address parameter 104
token ring

port configuration 60
worksheet 154

topology and routing services (TRS) 19
topology database update (TDU) 21
topology information 9

connection network 20
local 20

TP
APPC definition parameters 91, 92
client 147
configuration 86
configuration methods 87
description 5
invocation parameters 88, 89, 90, 91
invokable 10, 86
invoking 10, 86
source 10, 86
target 10, 86

TP configuration parameters
ENV 177
GROUP 176
LUALIAS 176
USERID, AIX or Linux 176
USERID, Windows 178

TP name parameter 88, 91
trace file 36
tracing

client/server 144
LAN 144

tracing kernel components 39
transaction program (TP) 5
transmission group 19
transport network 12
troubleshooting 35
TRS (topology and routing services) 19
type 2.0 node 3
type 2.1 node 3
type 4 node 2
type 5 node 2

U
UCF

access to files 122
canceling a command 121
command syntax 116, 119
daemon program 119
description 33, 115
output 120
permissions 119
permitted commands 120
sample command 120
security 119, 122
user 119
user name 122
using 119

UCF (continued)
valid commands 120

UDP/IP communications 126
Uninterpreted Name parameter 84
UNIX command facility (UCF) 33
Upstream DLUS name parameter 70
Upstream LU name parameter 112
Use default LU parameter 97
user application support worksheets 165
User ID parameter 90, 98, 99
USERID parameter

AIX or Linux 176
Windows 178

Users in access list parameter 100
ux-cancel command 121

V
version numbers, NetView 115
version, IP address 125
virtual routing node (VRN) 25
Virtual Terminal Access Method

(VTAM) 12
VRN

description 25
VTAM (Virtual Terminal Access

Method) 12

W
Web administration package

description 32
WebSphere Application Server 128
Wildcard partner LU name

parameter 83
wildcards 83
window

CPI-C Destination Names 42
description 42
Domain 41, 42
LU Pools 42
menus 42
Node 42, 44
resource 42
resource items 47
tool bar buttons 47

Windows client
network access process (NAP) 128

Windows Open Systems Architecture
(WOSA) 128

worksheets 37
WOSA (Windows Open Systems

Architecture) 128

X
xsnaadmin program 30

Index 193

194

����

Program Number: 5724-i33

Printed in USA

SC31-6771-03

	Contents
	Tables
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions
	Graphic Conventions

	What Is New for This Release
	New Functions
	Functions That Have Been Retired

	Where to Find More Information

	Chapter 1. SNA Terms and Concepts
	Systems Network Architecture
	Basic SNA Concepts
	Network Types
	SNA Nodes
	Node Types in a Subarea Network
	Node Types in a Peer Network

	Connectivity
	Transaction Programs
	Application Programming Interfaces
	Network Accessible Units
	Physical Units
	Logical Units
	Control Points

	Sessions
	Session Types
	Logical Unit Attributes for Sessions
	Multiple and Parallel Sessions

	Conversations
	Modes
	Route Selection
	Class of Service

	Basic APPN Concepts
	APPN Node Types
	APPN Network Nodes
	APPN End Nodes
	LEN Nodes

	APPN Control Point
	Locating Resources
	Resource Names
	Directory Services

	Session Routing
	Topology and Routing Services
	Intermediate Routing
	Direct Connectivity
	APPN Connection Networks

	Branch Extender

	Accessing Subarea Networks from APPN Networks

	Chapter 2. Administering Communications Server for Linux
	Overview of Communications Server for Linux Administration
	Administration Responsibilities
	Administration Tools
	Motif Administration Program
	Web Administration Package
	Command-Line Administration Program
	Remote Command Facility
	Configuration Files
	NOF Applications
	Diagnostic Tools

	Administration Permissions

	Planning for Communications Server for Linux Configuration
	Planning Worksheets
	Task Sheets

	Enabling and Disabling Communications Server for Linux on the Local System
	Specifying the Path to Communications Server for Linux Programs
	Enabling Communications Server for Linux Servers
	Advanced Options for the sna start Command

	Disabling Communications Server for Linux Servers

	Using the Motif Administration Program
	Invoking the Motif Administration Program
	Resource Windows
	Domain Window
	Node Window
	Resource Items
	Tool Bar Buttons

	Resource Dialogs
	Status Dialogs
	Help Windows

	Using the Command-Line Administration Program

	Chapter 3. Basic Configuration Tasks
	Configuring Client/Server Functions
	Configuring the Node
	Node Configuration Parameters
	Additional Configuration

	Configuring Logging

	Chapter 4. Defining Connectivity Components
	Defining DLCs, Ports, and Connection Networks
	DLC, Connection Network, and Port Configuration Parameters
	Additional Port Parameters for SDLC
	Additional Port Parameters for Token Ring and Ethernet
	Additional Port Parameters for Enterprise Extender (HPR/IP)
	Additional Port Parameters for Implicit Links

	Additional Configuration

	Defining Link Stations
	Link Station Configuration Parameters
	Common Link Station Parameters
	Parameters for Independent LU Traffic
	Parameters for Dependent LU Traffic

	Additional Configuration

	Defining DLUR PUs
	DLUR PU Configuration Parameters
	Parameters for Passthrough DLUR for Downstream Nodes
	Additional Configuration

	Chapter 5. Configuring Dependent LUs
	Defining LU Types 0–3
	LU Types 0–3 Configuration Parameters
	Additional Configuration

	Defining LU Pools
	LU Pool Configuration Parameters

	Chapter 6. Configuring APPC Communication
	Defining Local LUs
	Local LU Configuration Parameters
	Additional Configuration

	Defining Remote Nodes
	Remote Node Configuration Parameters
	Additional Configuration

	Defining Partner LUs
	Partner LU Configuration Parameters
	Defining Link Station Routing for a Partner LU
	Link Station Routing Parameters

	Additional Configuration

	Defining TPs
	TP Invocation Parameters on a Server
	TP Definition Parameters

	Defining Modes and Classes of Service
	Mode Configuration Parameters
	Additional Configuration

	Defining CPI-C Side Information
	CPI-C Configuration Parameters
	Additional Configuration

	Configuring APPC Security
	Configuring Session Security
	Session Security Configuration Parameters
	Additional Configuration

	Configuring Conversation Security
	Conversation Security Configuration Parameters
	Additional Configuration

	Configuring a Security Access List
	Security Access List Configuration Parameters
	Additional Configuration

	Chapter 7. Configuring User Applications
	Chapter 8. Configuring Passthrough Services
	Configuring TN Server
	Configuring TN Server Access Records
	TN Server Access Record Configuration Parameters
	Additional Configuration

	Configuring TN Server Association Records
	TN Server Association Record Configuration Parameters

	Configuring TN Redirector
	Configuring TN Redirector Access Records
	TN Redirector Access Record Configuration Parameters

	Configuring SNA Gateway
	Downstream LU Configuration Parameters
	Additional Configuration

	Configuring DLUR

	Chapter 9. Managing Communications Server for Linux from NetView
	Using the Host NetView Program
	NetView Screen Display
	Changing the Size of the Command Input Area
	Overview of RCF Command Syntax
	Uppercase Characters and Escape Characters

	Using SPCF
	Restrictions on Administration Commands Used with SPCF
	Examples of SPCF Commands

	Using UCF
	UCF Command Syntax
	Permitted Commands
	Example of a UCF Command
	Output from Linux System Commands
	Canceling a Command
	UCF Security

	Chapter 10. Managing Communications Server for Linux Client/Server Systems
	Changing Client/Server Configuration
	Moving Clients Into a Different Domain

	IP Networking Requirements
	IPv4 and IPv6 Addressing
	Host Names in Client/Server Configuration
	Setting Up IP Port Numbers
	LAN Access Timeout

	HTTPS Access for Remote API Clients
	Managing Remote API Clients on Windows
	Enabling a Remote API Client on Windows
	Viewing Status of a Remote API Client on Windows
	Disabling a Remote API Client on Windows
	Remote API Client on Windows Configuration
	Configuration
	Servers
	Logging
	API_tracing
	CS_tracing
	Internal_tracing
	Appl_Name
	CSV_data

	Managing Remote API Clients on AIX or Linux
	Enabling and disabling Remote API Clients on AIX or Linux
	Client Network Data File (sna_clnt.net)

	Defining Client TPs

	Appendix A. Configuration Planning Worksheets
	Node Worksheets
	APPN Network Node
	APPN End Node
	APPN Branch Network Node
	LEN Node

	Connectivity Worksheets
	SDLC
	Token Ring
	Ethernet
	QLLC (X.25)
	Multipath Channel
	Enterprise Extender (HPR/IP)

	Passthrough Services Worksheets
	DLUR on the Local Node
	Passthrough DLUR for Downstream Nodes
	SNA Gateway
	TN Server
	TN Redirector

	User Application Support Worksheets
	APPC
	CPI-C
	5250
	3270
	LUA

	Appendix B. Configuring an Invokable TP from the Command Line
	File Format for an Invokable TP Definition

	Appendix C. Configuring TN3270 LU models for DDDLU
	Appendix D. Notices
	Trademarks

	Bibliography
	Communications Server for Linux Version 6.4 Publications
	Systems Network Architecture (SNA) Publications
	Host Configuration Publications
	z/OS Communications Server Publications
	TCP/IP Publications
	X.25 Publications
	APPC Publications
	Programming Publications
	Other IBM Networking Publications

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

