
IBM Communications Server for AIX

Management Services Programmer’s Guide

V6.3

SC31-8594-02

���

IBM Communications Server for AIX

Management Services Programmer’s Guide

V6.3

SC31-8594-02

���

Note:

Before using this information and the product it supports, be sure to read the general information under Appendix C,

“Notices,” on page 47.

Third Edition (November 2005)

This edition applies to IBM Communications Server for AIX, Version 6.3, program number 5765-E51, and to all

subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address below.

IBM welcomes your comments. You may send your comments to the following address:

 International Business Machines Corporation

 Attn: z/OS Communications Server Information Development

 Department AKCA, Building 501

 P.O. Box 12195, 3039 Cornwallis Road

 Research Triangle Park, North Carolina

 27709-2195

 U.S.A.

You can send us comments electronically by using one of the following methods:

v Fax (USA and Canada): 1-919-254-4028

v Internet e-mail: comsvrcf@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . v

About This Book . vii

Who Should Use This Book . vii

How to Use This Book . vii

Organization of This Book . vii

Typographic Conventions . viii

Support of Existing Applications . viii

What’s New . viii

Where to Find More Information . ix

Chapter 1. Introduction to Management Services 1

SNA Management Services Support Levels . 1

CS/AIX Management Services Support . 1

Management Services Application Programming Interface . 1

Management Services Applications . 2

MS Applications That Only Send Data . 2

MS Applications That Both Send and Receive Data . 2

NMVT Routing . 4

Chapter 2. Writing MS Applications . 5

Description of the MS API Entry Points . 5

Synchronous Entry Point: ms . 6

Asynchronous Entry Point: ms_async . 7

The Callback Routine Specified on the ms_async Entry Point 9

Scope of Target Handle . 10

MS API Header File . 10

Compiling and Linking the MS Application . 11

AIX Applications . 11

Linux Applications . 11

Chapter 3. Management Services Verbs . 13

CONNECT_MS_NODE . 14

VCB Structure . 14

Supplied Parameters . 14

Returned Parameters . 14

DISCONNECT_MS_NODE . 16

VCB Structure . 16

Supplied Parameters . 16

Returned Parameters . 16

REGISTER_MS_APPLICATION . 18

VCB Structure . 18

Supplied Parameters . 18

Returned Parameters . 19

REGISTER_NMVT_APPLICATION . 21

VCB Structure . 21

Supplied Parameters . 21

Returned Parameters . 23

SEND_MDS_MU . 24

VCB Structure . 25

Supplied Parameters . 25

Returned Parameters . 26

TRANSFER_MS_DATA . 28

VCB Structure . 28

© Copyright IBM Corp. 2000, 2005 iii

Supplied Parameters . 29

Returned Parameters . 30

UNREGISTER_MS_APPLICATION . 32

VCB Structure . 32

Supplied Parameters . 32

Returned Parameters . 33

UNREGISTER_NMVT_APPLICATION . 34

VCB Structure . 34

Supplied Parameters . 35

Returned Parameters . 35

Chapter 4. Management Services Indications 37

FP_NOTIFICATION . 37

VCB Structure . 38

Parameters . 38

MDS_MU_RECEIVED . 38

VCB Structure . 39

Parameters . 39

MS_STATUS . 40

VCB Structure . 40

Parameters . 40

NMVT_RECEIVED . 41

VCB Structure . 41

Parameters . 41

Appendix A. MS Function Sets . 43

Base Function Sets . 43

Optional Function Sets . 43

Function Sets Not Supported . 43

Appendix B. Accessibility . 45

Using assistive technologies . 45

Keyboard navigation of the user interface . 45

z/OS information . 45

Appendix C. Notices . 47

Trademarks . 49

Bibliography . 51

CS/AIX Version 6.3Publications . 51

IBM Communications Server for AIX Version 4 Release 2 Publications 52

IBM Redbooks . 52

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications 53

AnyNet/2 Sockets and SNA publications . 53

AIX Operating System Publications . 53

Systems Network Architecture (SNA) Publications . 53

Host Configuration Publications . 54

z/OS Communications Server Publications . 54

Multiprotocol Transport Networking publications . 54

TCP/IP Publications . 54

X.25 Publications . 55

APPC Publications . 55

Programming Publications . 55

Other IBM Networking Publications . 55

Index . 57

Communicating Your Comments to IBM . 59

iv IBM Communications Server for AIX MS Programmer’s Guide

Tables

1. Typographic Conventions . viii

© Copyright IBM Corp. 2000, 2005 v

vi IBM Communications Server for AIX MS Programmer’s Guide

About This Book

This book is a guide for writing Management Services (MS) applications to use the

Communications Server for AIX MS application programming interface (API).

Communications Server for AIX (hereafter referred to as CS/AIX) is an

IBM®software product that enables a server running the AIX®operating system to

exchange information with other nodes on an SNA network.

The MS API can be used by applications running on either a server or an AIX or

Linux client. It cannot be used by applications running on Windows clients.

This book contains the information required to develop C-language application

programs that use the MS API to communicate with remote network management

applications. It also provides a brief overview of MS concepts and provides

detailed reference information for experienced MS programmers.

This book applies to V6.3 of CS/AIX running on AIX Version 5.2 and higher base

operating system.

To submit comments and suggestions about Communications Server for AIX MS

Programmer’s Guide, use the Reader’s Comment Form located at the back of this

book. This form provides instructions for submitting your comments by mail, by

FAX, or by electronic mail.

Who Should Use This Book

This book is intended for experienced C programmers who write Management

Services applications for systems with CS/AIX. Programmers may or may not have

prior experience with SNA or the communication facilities of CS/AIX.

Application programmers design and code transaction and application programs

that use the CS/AIX programming interfaces to send and receive data over an

SNA network. They should be thoroughly familiar with SNA, the remote program

with which the transaction or application program communicates, and the AIX or

Linux operating system programming and operating environments.

For additional information about CS/AIX publications, see the Bibliography.

How to Use This Book

This section explains how information is organized and presented in this book.

Organization of This Book

This book is organized as follows:

v Chapter 1, “Introduction to Management Services,” on page 1, provides an

overview of CS/AIX MS support. It describes the various levels of SNA network

management support, the function sets and optional subsets supported by the

CS/AIX MS API, and the functions provided by the CS/AIX MS verbs.

v Chapter 2, “Writing MS Applications,” on page 5, contains information about

writing, compiling, and linking MS applications.

© Copyright IBM Corp. 2000, 2005 vii

v Chapter 3, “Management Services Verbs,” on page 13, provides a detailed

description of each of the MS verbs, including parameters and return codes.

v Chapter 4, “Management Services Indications,” on page 37, provides a detailed

description of each of the indications sent from CS/AIX to the application,

including parameters and return codes.

v Appendix A, “MS Function Sets,” on page 43, lists the SNA MS option sets that

the CS/AIX MS API supports.

Typographic Conventions

Table 1, shows the typographic styles used in this document.

 Table 1. Typographic Conventions

Special Element Sample of Typography

Document title Communications Server for AIX Administration

Guide

File or path name ms_c.h

Command or AIX utility cc

Option or flag -L

Parameter opcode

Literal value or selection that the user can

enter (including default values)

0 (zero)

Constant AP_CONNECT_MS_NODE

Return value AP_STATE_CHECK

Variable representing a supplied value nnnn

Environment variable LD_RUN_PATH

Programming verb CONNECT_MS_NODE

User input cc -L /usr/lib/sna -lms -lsna

Function, call, or entry point ms_async

Data structure MS_CALLBACK

Hexadecimal value 0x20

Support of Existing Applications

CS/AIX V4R2, and earlier versions, provided support for network management

and management services applications using the Network Management (NMVT)

subroutines and Management Services (APPN) API subroutines. The MS API, as

described in this book, provides additional function for network management and

management services applications, and it is recommended that new applications be

written to this API. However, existing applications written to the older interfaces

are still supported. For more information about these interfaces, refer to the

Communications Server for AIX Transaction Program Reference V4R2, SC31–8212.

What’s New

Communications Server for AIX V6.3 replaces Communications Server for AIX

V6.1.

Releases of this product that are still supported are:

v Communications Server for AIX V6.1

The following releases of this product are no longer supported:

v Communications Server for AIX Version 6 (V6)

v Communications Server for AIX Version 5 (V5)

How to Use This Book

viii IBM Communications Server for AIX MS Programmer’s Guide

v Communications Server for AIX Version 4 Release 2 (V4R2)

v Communications Server for AIX Version 4 Release 1 (V4R1)

v SNA Server for AIX Version 3 Release 1.1 (V3R1.1)

v SNA Server for AIX Version 3 Release 1 (V3R1)

v AIX SNA Server/6000 Version 2 Release 2 (V2R2)

v AIX SNA Server/6000 Version 2 Release 1 (V2R1) on AIX 3.2

v AIX SNA Services/6000 Version 1

Where to Find More Information

In most cases, references to other books indicate titles in V6.3 of the IBM

Communications Server for AIX library. References to books from the previous

release of the library include the version and release numbers, V4R2. The previous

release may be useful if you are migrating from V4R2 to the current release. See

the Bibliography for other books in the CS/AIX library, as well as books that

contain additional information about topics related to SNA and AIX workstations.

The information in the CS/AIX books is also available in HTML format. You can

use this library to search for specific information or to view online versions of each

of the CS/AIX books.

What’s New

About This Book ix

x IBM Communications Server for AIX MS Programmer’s Guide

Chapter 1. Introduction to Management Services

This chapter introduces the CS/AIX Management Services (MS) application

programming interface (API). It includes information about the various types of

MS support in SNA and about accessing them through Communications Server for

AIX.

SNA Management Services Support Levels

SNA defines the following levels of MS support. Each level corresponds to a

different generation of products that implement this support.

NMVT-level

An NMVT-level product transfers management information by sending

network management vector transports (NMVTs) to, and receiving NMVTs

from, a host focal point over a session between the physical unit (PU) in

the node that supports the NMVT-level product and the system services

control point (SSCP) at the host. This session is called a PU-SSCP session.

 NetView Version 2, Release 1 or earlier provides NMVT-level support.

Migration-level

A migration-level product transfers management information by sending

and receiving CP_MSUs (Control Point Management Services Unit GDS

variables) over an LU-LU session between independent type 6.2 logical

units (LUs). A CP_MSU is a simple GDS variable containing an MS major

vector. Migration-level focal points can receive alerts, but they do not

support other MS categories.

 OS/400®is an example of a migration-level product.

MDS-level

An MDS (Multiple Domain Support)-level product transfers management

information by sending and receiving MDS_MUs (MDS Message Unit GDS

variables) over LU type 6.2 sessions. An MDS_MU consists of a header,

with detailed MS routing and correlation information, followed by a

CP_MSU containing an MS major vector. MDS-level products can

communicate with more than one focal point at the same time, although

they use only a single focal point for a particular MS category (such as

problem management).

 OS/2®Communications Server/2 and NetView Version 2, Release 2 (as a

subarea LU rather than a CP) provide MDS-level support.

CS/AIX Management Services Support

The CS/AIX MS API enables an application to communicate with other MS

products or applications on the SNA network. CS/AIX can support NMVT-level

and MDS-level applications. The partner MS application can implement any of the

levels described in “SNA Management Services Support Levels.” CS/AIX performs

any data conversion that is required.

Management Services Application Programming Interface

The CS/AIX MS API comprises the following elements:

© Copyright IBM Corp. 2000, 2005 1

MS verbs

Verbs are issued by an MS application to do the following:

v Inform CS/AIX when it needs CS/AIX resources to support receiving

MS data and status indications.

v Send MS data (in either NMVT format or MDS_MU format) to an MS

application elsewhere in the network.

v Register the application with CS/AIX to receive incoming MS data from

focal points (in either NMVT format or MDS_MU format).

v Register the application with CS/AIX to receive information about

which focal point is responsible for a particular MS category, so that

CS/AIX can route MDS_MU data to the appropriate application.

For more information about MS verbs, see Chapter 3, “Management

Services Verbs,” on page 13.

MS indications

Indications are either generated locally by CS/AIX or used to forward data

received from the network. For more information about MS indications, see

Chapter 4, “Management Services Indications,” on page 37.

Management Services Applications

The verbs and entry points you use when you write an MS application depend on

whether the MS application:

v Only sends data

v Sends and receives data

MS Applications That Only Send Data

This most simple type of application only sends data and never receives any data

from the CS/AIX node. This type of application can use either the synchronous or

asynchronous entry point and needs to use only one or both of the following verbs

to send data:

v The SEND_MDS_MU verb sends data in MDS_MU format, which CS/AIX sends

to a remote MS application.

v The TRANSFER_MS_DATA verb sends data in NMVT format, which CS/AIX

sends to a remote MS application. The data can be either a complete NMVT or

subvectors to which CS/AIX adds the required NMVT header information.

For more information about the synchronous and asynchronous entry points, see

“Description of the MS API Entry Points” on page 5.

MS Applications That Both Send and Receive Data

This type of application both sends data and receives data and status indications

from the CS/AIX node. When you write this type of application, you must include

the following verbs (except where noted, you can use either the synchronous or

asynchronous entry point):

1. Issue a CONNECT_MS_NODE verb to establish communication with the

CS/AIX node, so that the application can register to receive data, focal point

indications, or both.

2. Register with the CS/AIX node to indicate the type of data that the application

wants to receive. You must use the asynchronous entry point to register with

CS/AIX using either or both of the following verbs:

Management Services Application Programming Interface

2 IBM Communications Server for AIX MS Programmer’s Guide

v The REGISTER_MS_APPLICATION verb registers the application with

CS/AIX as an MDS-level application that can accept MDS_MUs. An option

on the verb enables the application to request information about the focal

point for a particular MS category. CS/AIX uses the MDS_MU_RECEIVED

indication, the FP_NOTIFICATION indication, or both, to pass the required

data to the application.

v The REGISTER_NMVT_APPLICATION verb registers the application with

CS/AIX in one of the following ways:

– As an NMVT-level application that accepts NMVTs with a particular MS

major vector key. CS/AIX then uses the NMVT_RECEIVED indication to

pass NMVTs to the application.

– As an MDS-level application that accepts NMVTs with a particular MS

major vector key after they have been converted to MDS_MUs. CS/AIX

converts the received NMVTs to MDS_MUs and uses the

MDS_MU_RECEIVED indication to pass the MDS_MUs to the application.

This usage allows an MDS-level application to receive NMVT-level data

and status indications without having to understand NMVT-level data

formats.
When the application registers with CS/AIX, it supplies the address of a

callback routine. CS/AIX calls this callback routine when data of the

requested type arrives at the node. For more information about the data

structures that CS/AIX supplies to the callback routine, see Chapter 4,

“Management Services Indications,” on page 37.
3. After registering itself, the application can do any of the following:

v Send data to the CS/AIX node using either or both of the following verbs:

– The SEND_MDS_MU verb supplies data in MDS_MU format, which

CS/AIX sends to a remote MS application.

– The TRANSFER_MS_DATA verb supplies data in NMVT format, which

CS/AIX sends to a remote MS application. The data can be either a

complete NMVT or subvectors to which CS/AIX adds the required NMVT

header information.
v Receive status information from the CS/AIX node when CS/AIX returns the

following status indications:

– The FP_NOTIFICATION indication provides information about the focal

point for a particular MS category. CS/AIX returns this indication to an

MDS-level application that has registered to receive focal point

information.

– The MS_STATUS indication informs the application of changes in the

status of the CS/AIX system (when the application’s communications path

to its connected node has been lost, or when the CS/AIX software has

stopped). CS/AIX returns this indication to both MDS-level and

NMVT-level applications.
v Receive data from the CS/AIX node when CS/AIX returns the following

received data indications:

– The MDS_MU_RECEIVED data indication returns an MDS_MU to an

MDS-level application. The returned MDS_MU is one of the following:

- The MDS_MU sent by a remote application if the MS application

registered using REGISTER_MS_APPLICATION verb

- An MDS_MU converted from an incoming NMVT if the MS application

registered using the REGISTER_NMVT_APPLICATION verb
– The NMVT_RECEIVED data indication returns an NMVT to an

NMVT-level application that has registered to receive NMVTs.

Management Services Applications

Chapter 1. Introduction to Management Services 3

4. When the application completes, it must end its registration with CS/AIX by

issuing one of the following verbs:

v The UNREGISTER_MS_APPLICATION verb ends the application’s

registration with CS/AIX. After the application issues this call, CS/AIX no

longer sends MDS_MUs to the application.

v The UNREGISTER_NMVT_APPLICATION verb ends the application’s

registration with CS/AIX so that it no longer accepts NMVTs with a

particular MS major vector key.
5. After the application ends its registration with CS/AIX, it must issue a

DISCONNECT_MS_NODE verb to end communication with the CS/AIX node

and free the resources associated with the application.

For more information about the synchronous and asynchronous entry points, see

“Description of the MS API Entry Points” on page 5.

NMVT Routing

When CS/AIX receives an NMVT from a remote node, it uses the MS major vector

key and the destination application name subfields of the NMVT to determine to

which MS application to send the NMVT in the following order of preference:

1. CS/AIX attempts to find an NMVT-level application that has registered with an

application name matching the NMVT’s destination name, in the following

order of preference:

a. An application that has registered to accept the specific major vector key

carried on the incoming NMVT

b. An application that has registered to accept SNA Service Point Command

Facility (SPCF) keys, if the major vector key is in the range 0x8061–0x8064

c. An application that has registered to accept all keys
2. If CS/AIX cannot find a suitable NMVT-level application, CS/AIX attempts to

find an MDS-level application that has registered with an application name

matching the NMVT’s destination name and has registered to accept NMVTs

after conversion to MDS_MUs. The order of preference for selecting an

application that can accept the appropriate major vector key is the same as for

NMVT-level applications.

Management Services Applications

4 IBM Communications Server for AIX MS Programmer’s Guide

Chapter 2. Writing MS Applications

This chapter describes how an MS application:

v Uses the MS API entry points

v Schedules asynchronous events

v Is compiled and linked to use the MS API

Description of the MS API Entry Points

An application accesses the MS API using the following entry point function calls:

ms An application uses this entry point to issue an MS verb synchronously.

CS/AIX does not return control to the application until verb processing

has finished. All MS verbs except REGISTER_MS_APPLICATION and

REGISTER_NMVT_APPLICATION can be issued through this entry point.

 An application can use only this entry point if both of the following

conditions are true:

v The application only needs to send MS data using the

TRANSFER_MS_DATA verb or the SEND_MDS_MU verb or both. (The

application does not need to receive MS data or status indications.)

v The application can suspend while waiting for CS/AIX to completely

process a verb.

The ms entry point is defined in the MS header file /usr/include/sna/ms_c.h

(AIX) or /opt/ibm/sna/include/ms_c.h (Linux).

ms_async

An application uses this entry point to issue an MS verb asynchronously.

CS/AIX returns control to the application immediately, with a returned

value indicating whether verb processing is still in progress or has

completed. If the returned value indicates that verb processing is still in

progress, CS/AIX uses an application-supplied callback routine to return

the results of the verb processing. If the returned value indicates that verb

processing is complete, the callback routine will not be invoked.

 All MS verbs can be issued through this entry point. The

REGISTER_MS_APPLICATION and REGISTER_NMVT_APPLICATION

verbs must be issued through this entry point.

 An application must use this entry point if either of the following

conditions is true:

v The application needs to receive MS data and status indications.

v The application cannot suspend while waiting for CS/AIX to completely

process a verb.

The ms_async entry point is defined in the MS header file

/usr/include/sna/ms_c.h (AIX) or /opt/ibm/sna/include/ms_c.h (Linux).

Callback routine for ms_async

An application must supply a pointer to a callback routine when it uses

the asynchronous MS API entry point. CS/AIX uses this callback routine

both for completion of a verb and also for returning MS data and status

indications.

© Copyright IBM Corp. 2000, 2005 5

Synchronous Entry Point: ms

An application uses ms to issue an MS verb synchronously. CS/AIX does not return

control to the application until verb processing has finished.

Function Call

 void ms (

 AP_UINT32 target_handle,

 void * msvcb

);

Supplied Parameters

An application supplies the following parameters when it uses the ms entry point:

target_handle

For the UNREGISTER_MS_APPLICATION,

UNREGISTER_NMVT_APPLICATION, and DISCONNECT_MS_NODE

verbs, the application supplies the value that was returned on the

CONNECT_MS_NODE verb. This parameter is used to identify the target

CS/AIX node.

 For all other verbs, this parameter is not used; set it to 0 (zero).

msvcb Pointer to a Verb Control Block (VCB) that contains the parameters for the

verb being issued. The VCB structure for each verb is described in

Chapter 3, “Management Services Verbs,” on page 13. These structures are

defined in the MS API header file /usr/include/sna/ms_c.h (AIX) or

/opt/ibm/sna/include/ms_c.h (Linux).

Note: The MS VCBs contain many parameters marked as “reserved”; some

of these are used internally by the CS/AIX software, and others are

not used in this version but may be used in future versions. Your

application must not attempt to access any of these reserved

parameters; instead, it must set the entire contents of the VCB to

zero to ensure that all of these parameters are zero, before it sets

other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values

The ms entry point does not have a return value. When the call returns, the

application should examine the return code in the VCB to determine whether the

verb completed successfully and to determine parameters it needs for further

verbs. In particular, when the CONNECT_MS_NODE verb completes successfully,

the VCB contains the target_handle that the application should use when the

application issues subsequent verbs.

Using the Synchronous Entry Point

Only one synchronous verb can be outstanding at any time for each target handle.

A synchronous verb fails with the primary return code AP_STATE_CHECK and

secondary return code AP_SYNC_PENDING if another synchronous verb for the same

target handle is in progress.

Description of the MS API Entry Points

6 IBM Communications Server for AIX MS Programmer’s Guide

Asynchronous Entry Point: ms_async

An application uses ms_async to issue an MS verb asynchronously. The application

also supplies a pointer to a callback routine. CS/AIX returns control to the

application immediately with a returned value that indicates whether verb

processing is still in progress or has completed. In most cases, verb processing is

still in progress when control returns to the application. In these cases, CS/AIX

uses the application-supplied callback routine to return the results of the verb

processing at a later time. In some cases, verb processing is complete when

CS/AIX returns control to the application, so CS/AIX does not use the

application’s callback routine.

Function Call

 unsigned short ms_async(

 AP_UINT32 target_handle,

 void * msvcb,

 VMV_CALLBACK comp_proc,

 AP_CORR corr

);

 typedef void (*VMV_CALLBACK) (

 AP_UINT32 target_handle,

 void * msvcb,

 AP_CORR corr

);

 typedef union ap_corr {

 void * corr_p;

 AP_UINT32 corr_l;

 AP_INT32 corr_i;

 } AP_CORR;

For more information about the parameters in the VMV_CALLBACK structure, see “The

Callback Routine Specified on the ms_async Entry Point” on page 9.

Supplied Parameters

An application supplies the following parameters when it uses the ms_async entry

point:

target_handle

Identifier for the target CS/AIX node. For the REGISTER_*,

UNREGISTER_*, and DISCONNECT_MS_NODE verbs, the application

supplies the value that was returned on the CONNECT_MS_NODE verb.

 For all other verbs, this parameter is not used; set it to 0 (zero).

msvcb Pointer to a Verb Control Block (VCB) that contains the parameters for the

verb being issued. The VCB structure for each verb is described in

Chapter 3, “Management Services Verbs,” on page 13. These structures are

defined in the MS API header file /usr/include/sna/ms_c.h (AIX) or

/opt/ibm/sna/include/ms_c.h (Linux).

Note: The MS VCBs contain many parameters marked as “reserved”; some

of these are used internally by the CS/AIX software, and others are

not used in this version but may be used in future versions. Your

application must not attempt to access any of these reserved

parameters; instead, it must set the entire contents of the VCB to

zero to ensure that all of these parameters are zero, before it sets

other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

Description of the MS API Entry Points

Chapter 2. Writing MS Applications 7

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

comp_proc

The callback routine that CS/AIX will call when the verb completes. For

more information about the requirements for a callback routine, see “The

Callback Routine Specified on the ms_async Entry Point” on page 9.

corr An optional correlator for use by the application. This parameter is defined

as a C union so that the application can specify any of three different

parameter types: pointer, unsigned long, or integer.

 CS/AIX does not use this value, but passes it as a parameter to the

callback routine when the verb completes. This value enables the

application to correlate the returned information with its other processing.

Returned Values

The asynchronous entry point returns one of the following values:

AP_COMPLETED

The verb has already completed. The application can examine the

parameters in the VCB to determine whether the verb completed

successfully. CS/AIX does not call the supplied callback routine for this

verb.

AP_IN_PROGRESS

The verb has not yet completed. The application can continue with other

processing, including issuing other MS verbs, provided that they do not

depend on the completion of the current verb. However, the application

should not attempt to examine or modify the parameters in the VCB

supplied to this verb.

 CS/AIX calls the supplied callback routine to indicate when the verb

processing completes. The application can then examine the VCB

parameters.

Using the Asynchronous Entry Point

When using the asynchronous entry point, note the following:

v If an application specifies a null pointer in the comp_proc parameter, the verb

will complete synchronously (as though the application issued the verb using

the synchronous entry point).

v If the call to ms_async is made from within an application callback, specifying a

null pointer in the comp_proc parameter is not permitted. In such cases, CS/AIX

rejects the verb with primary return code value AP_PARAMETER_CHECK and

secondary return code value AP_SYNC_NOT_ALLOWED.

v The application must not attempt to use or modify any parameters in the VCB

until the callback routine has been called.

v Multiple verbs do not necessarily complete in the order in which they were

issued. In particular, if an application issues an asynchronous verb followed by a

synchronous verb, the completion of the synchronous verb does not guarantee

that the asynchronous verb has already completed.

Description of the MS API Entry Points

8 IBM Communications Server for AIX MS Programmer’s Guide

The Callback Routine Specified on the ms_async Entry Point

When using the asynchronous MS API entry point, the application must supply a

pointer to a callback routine. CS/AIX uses this callback routine both for

completion of a verb and also for returning MS data and status indications. The

application must examine the opcode parameter in the VCB to determine which

event is contained in the callback routine.

This section describes how CS/AIX uses the callback routine and the functions that

the callback routine must perform.

Callback Function

 typedef void (*VMV_CALLBACK) (

 AP_UINT32 target_handle,

 void * msvcb,

 AP_CORR corr

);

 typedef union ap_corr {

 void * corr_p;

 AP_UINT32 corr_l;

 AP_INT32 corr_i;

 } AP_CORR;

Supplied Parameters

CS/AIX calls the callback routine with the following parameters:

target_handle

For MS data and status indications, CS/AIX passes the target handle that

was supplied with the REGISTER_MS_APPLICATION or

REGISTER_NMVT_APPLICATION verb. For completion of verbs, this

parameter is undefined.

msvcb One of the following:

v For MS data and status indications, a pointer to a VCB supplied by

CS/AIX.

v For completion of verbs, a pointer to the VCB supplied by the

application. The VCB now includes the returned parameters set by

CS/AIX.

corr The correlator value supplied by the application. This value enables the

application to correlate the returned information with its other processing.

 The callback routine need not use all of these parameters (except as described in

“Using the Callback Routine for Indications”). The callback routine can perform all

the necessary processing on the returned parameters, or it can simply set a variable

to inform the MS application that the verb has completed.

Returned Values

The callback function does not return any values.

Using the Callback Routine for Indications

The callback routine supplied with the REGISTER_MS_APPLICATION VCB can

receive the following indications:

v FP_NOTIFICATION (if the application requested this information when

registering)

v MDS_MU_RECEIVED

v MS_STATUS

Description of the MS API Entry Points

Chapter 2. Writing MS Applications 9

The callback routine supplied with the REGISTER_NMVT_APPLICATION VCB

can receive the following indications:

v NMVT_RECEIVED (if the application did not request conversion from

NMVT-level data to MDS-level data)

v MDS_MU_RECEIVED (if the application requested conversion from NMVT-level

data to MDS-level data)

v MS_STATUS

Although the application allocates the VCBs for MS verbs, CS/AIX allocates the

VCBs for indications. Therefore, the application has access to the VCB information

only from within the callback routine; the VCB pointer that CS/AIX supplies to the

callback routine is not valid outside the callback routine. The application must

either complete all the required processing from within the callback routine, or it

must make a copy of any VCB data that it needs to use outside this routine.

Processing of indications in the callback routine must fulfill the following

additional requirements:

v If an NMVT-level application uses REGISTER_NMVT_APPLICATION to receive

incoming NMVTs, it must be capable of receiving a data length of 512 bytes (the

maximum NMVT size).

v If an MDS-level application uses REGISTER_NMVT_APPLICATION to receive

incoming NMVTs after conversion to MDS_MUs, it must be capable of receiving

a data length of 700 bytes, which allows for the maximum NMVT size together

with the MDS_MU header information. (This requirement does not apply to an

application using REGISTER_MS_APPLICATION to receive MDS_MUs, because

the application can specify the maximum data length it can accept, and CS/AIX

segments the data if necessary.)

v If an MDS-level application uses REGISTER_MS_APPLICATION to receive

incoming MDS_MUs, it must be capable of receiving data of length up to the

value specified for the max_rcv_size parameter on the

REGISTER_MS_APPLICATION verb.

Scope of Target Handle

Each application that needs to use MS must issue the CONNECT_MS_NODE verb

to obtain its own handle. No two MS applications can use the same MS target

handle.

In particular, if the application that issued CONNECT_MS_NODE later forks to

create a child process, the child process cannot issue any MS verbs that use the

target handle obtained by the parent process. However, the child process can issue

another CONNECT_MS_NODE to obtain its own target handle.

MS API Header File

The header file to be used with MS applications is ms_c.h. This file contains the

definitions of the MS API entry points and the MS VCBs. It also includes the

common interface header file values_c.h; these two files contain all the constants

defined for supplied and returned parameter values at the MS API. The file

values_c.h also includes definitions of parameter types such as AP_UINT16 that are

used in the MS VCBs. Both files are stored in the directory /usr/include/sna (AIX)

or /opt/ibm/sna/include (Linux).

Description of the MS API Entry Points

10 IBM Communications Server for AIX MS Programmer’s Guide

Compiling and Linking the MS Application

AIX Applications

To compile and link 32–bit applications, use the following options:

-bimport:/usr/lib/sna/ms_r.exp -I

/usr/include/sna

 To compile and link 64–bit applications, use the following options:

-bimport:/usr/lib/sna/ms_r64_5.exp -I

/usr/include/sna

Linux Applications

Before compiling and linking an MS application, specify the directory where

shared libraries are stored, so that the application can find them at run time. To do

this, set the environment variable LD_RUN_PATH to /opt/ibm/sna/lib, or to

/opt/ibm/sna/lib64 if you are compiling a 64–bit application.

To compile and link 32–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib -lms -lsna_r -lpthread

 To compile and link 64–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib64 -lms -lsna_r -lpthread

Compiling and Linking the MS Application

Chapter 2. Writing MS Applications 11

Compiling and Linking the MS Application

12 IBM Communications Server for AIX MS Programmer’s Guide

Chapter 3. Management Services Verbs

For each MS verb, this chapter provides the following information:

v Purpose and usage of the verb.

v Verb Control Block (VCB) structure used by the verb. All the VCB structures are

defined in the header file /usr/include/sna/ms_c.h (AIX) or

/opt/ibm/sna/include/ms_c.h (Linux).

v Supplied parameters (VCB fields supplied to the verb). For each parameter, the

following information is listed:

– Description

– Valid values and their meanings

– Additional information where necessary
v Returned parameters. When a verb completes, it contains the following returned

parameters:

primary_rc

This parameter indicates whether the verb completed successfully. If the

verb did not complete successfully, this parameter indicates a category of

reasons for unsuccessful execution.

secondary_rc

This parameter indicates a specific reason for unsuccessful execution.
In addition, some verbs have additional returned parameters.

Many of the supplied and returned parameter values are numeric. To simplify

coding, make the applications more portable, and make the program source easier

to read, these values are represented by symbolic constants defined in the header

file ms_c.h. For example, the opcode (operation code) parameter for the

SEND_MDS_MU verb is the value represented by the symbolic constant

AP_SEND_MDS_MU.

Because different systems store these values differently in memory, it is important

that you use the symbolic constant, and not the numeric value, when setting

values for supplied parameters or when testing values of returned parameters. The

value shown in the header file may not be in the format recognized by your

system.

Note: The MS VCBs contain many parameters marked as “reserved”; some of

these are used internally by the CS/AIX software, and others are not used in

this version but may be used in future versions. Your application must not

attempt to access any of these reserved parameters; instead, it must set the

entire contents of the VCB to zero to ensure that all of these parameters are

zero, before it sets other parameters that are used by the verb. This ensures

that CS/AIX will not misinterpret any of its internally-used parameters, and

also that your application will continue to work with future CS/AIX

versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

© Copyright IBM Corp. 2000, 2005 13

CONNECT_MS_NODE

This verb connects an application to a CS/AIX node. It returns a handle that

should be used on all subsequent calls to the MS entry points.

An application that only sends data using either the TRANSFER_MS_DATA verb

or the SEND_MDS_MU verb and does not need to receive MS data or status

indications does not need to issue this verb or supply a handle to any subsequent

calls to the MS entry points.

VCB Structure

typedef struct connect_ms_node

{

AP_UINT16 opcode; /* Verb operation code */

unsigned char reserv2; /* reserved */

unsigned char format; /* reserved */

AP_UINT16 primary_rc; /* Primary return code */

AP_UINT32 secondary_rc; /* Secondary return code */

unsigned char node_name[64]; /* Name of Node to connect to */

AP_UINT32 target_handle; /* Handle to identify Node on */

 /* subsequent verbs */

} CONNECT_MS_NODE;

Supplied Parameters

An application supplies the following parameters when it issues the

CONNECT_MS verb:

opcode AP_CONNECT_MS_NODE

node_name

Name of the CS/AIX node to connect to. This is an ASCII character string.

 If the application will be registering to receive NMVTs to act as a service

point for an NMVT-level version of the NetView program, specify the

name of a node that owns a direct connection to the NetView host (the

node whose PU-SSCP session is used to transmit NMVTs to the NetView

program). For more information about NMVT-level programs, see

Chapter 1, “Introduction to Management Services,” on page 1.

 If any of the following conditions is true, you can set this parameter to all

binary zeros (you do not need to specify the node name):

v CS/AIX is running with all components on a single AIX computer (not

on a LAN).

v The CS/AIX LAN contains only one server.

v The application is MDS-level and will be sending and receiving data in

MDS_MU format and not in NMVT format.

When the CS/AIX LAN has multiple servers and this parameter is set to

all binary zeros, the application will be connected to the node on the same

server as the application, if available, or to any other available node.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful. If the verb execution was successful, CS/AIX also returns

a target handle that the application uses on subsequent MS entry points. If the

verb execution was not successful, CS/AIX returns parameters to indicate the

reason the execution was not successful.

CONNECT_MS_NODE

14 IBM Communications Server for AIX MS Programmer’s Guide

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc

AP_OK

secondary_rc

Not used.

target_handle

Returned value for use on future verbs directed to this node.

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_NODE_NAME

The node_name parameter did not match the name of any CS/AIX

node.

State Check: If the verb does not execute because of a state error, CS/AIX returns

the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

One of the following:

AP_CONNECT_FAILED

An error occurred in connecting to the node either because the

specified node is not active or, if a null node name was specified,

because no nodes are active.

AP_INVALID_TARGET_STATE

The target handle used on the call to MS was not set to 0 (zero).

For CONNECT_MS_NODE, the target handle must be set to 0

(zero).

AP_SYNC_PENDING

The application used the synchronous entry point to issue this

verb, but another synchronous verb was in progress for this target

handle. Only one synchronous verb can be in progress on a

particular target handle at any time.

AP_SYNC_NOT_ALLOWED

The application used the synchronous MS entry point to issue this

verb within a callback routine. The application must use the

asynchronous entry point to issue any verb from a callback routine.

CS/AIX Software Not Active: If the verb does not execute because the CS/AIX

software is not active, CS/AIX returns the following parameter:

CONNECT_MS_NODE

Chapter 3. Management Services Verbs 15

primary_rc

One of the following:

AP_COMM_SUBSYSTEM_NOT_LOADED

The CS/AIX software has not been started or has been stopped.

AP_COMM_SUBSYSTEM_ABENDED

The CS/AIX software has failed.

 CS/AIX does not return a secondary_rc when the CS/AIX software is not active.

System Error: If the verb does not execute because of a system error, CS/AIX

returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR

An operating system call failed during processing of the verb.

secondary_rc

The return code from the operating system call. For the meaning of this

return code, check the returned value in the file /usr/include/sys/errno.h.

DISCONNECT_MS_NODE

This verb disconnects an application from a node, freeing all resources associated

with that connection. The node from which the application wants to disconnect is

identified by the target_handle parameter on the call.

VCB Structure

typedef struct disconnect_ms_node

{

AP_UINT16 opcode; /* Verb operation code */

unsigned char reserv2; /* reserved */

unsigned char format; /* reserved */

AP_UINT16 primary_rc; /* Primary return code */

AP_UINT32 secondary_rc; /* Secondary return code */

} DISCONNECT_MS_NODE;

Supplied Parameters

An application supplies the following parameter when it issues

DISCONNECT_MS_NODE:

opcode AP_DISCONNECT_MS_NODE

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

AP_OK

 CS/AIX does not return a secondary_rc when the verb executes successfully.

CONNECT_MS_NODE

16 IBM Communications Server for AIX MS Programmer’s Guide

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_TARGET_HANDLE

The supplied target handle was not a valid value returned on a

previous CONNECT_MS_NODE verb.

State Check: If the verb does not execute because of a state error, CS/AIX returns

the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

One of the following:

AP_INVALID_TARGET_STATE

The application issued DISCONNECT_MS_NODE while

CONNECT_MS_NODE or a previous DISCONNECT_MS_NODE

was still outstanding.

AP_SYNC_PENDING

The application used the synchronous entry point to issue this

verb, but another synchronous verb was in progress for this target

handle. Only one synchronous verb can be in progress on a

particular target handle at any time.

AP_VERB_IN_PROGRESS

The application issued DISCONNECT_MS_NODE while a previous

asynchronous MS verb was still outstanding.

AP_SYNC_NOT_ALLOWED

The application used the synchronous MS entry point to issue this

verb within a callback routine. The application must use the

asynchronous entry point to issue any verb from a callback routine.

CS/AIX Software Not Active: If the verb does not execute successfully because

the CS/AIX software is not active, CS/AIX returns the following parameter:

primary_rc

AP_COMM_SUBSYSTEM_ABENDED

The CS/AIX software has failed.

 CS/AIX does not return a secondary_rc when the CS/AIX software is not active.

System Error: If the verb does not execute because of a system error, CS/AIX

returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR

An operating system call failed during processing of the verb.

DISCONNECT_MS_NODE

Chapter 3. Management Services Verbs 17

secondary_rc

The return code from the operating system call. For the meaning of this

return code, check the returned value in the file /usr/include/sys/errno.h.

REGISTER_MS_APPLICATION

The REGISTER_MS_APPLICATION verb registers the MS application with CS/AIX

as an MDS-level application that can receive MDS_MUs. Before issuing this verb,

the application must issue CONNECT_MS_NODE to obtain a target handle for the

CS/AIX node. This handle is a required parameter to the MS entry point for

REGISTER_MS_APPLICATION.

An application must always issue this verb using the asynchronous MS entry point

and supply a callback routine. CS/AIX uses this callback routine to return received

MDS_MUs to the application. (For more information about the MS entry points,

see Chapter 2, “Writing MS Applications,” on page 5.)

VCB Structure

 typedef struct register_ms_application

{

 AP_UINT16 opcode; /* Verb operation code */

 unsigned char reserv2; /* reserved */

 unsigned char format; /* reserved */

 AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 unsigned char ms_appl_name[8]; /* MS application name */

 unsigned char ms_category[8]; /* MS category */

 AP_UINT16 max_rcv_size; /* Maximum size that can be received */

} REGISTER_MS_APPLICATION;

Supplied Parameters

The application supplies the following parameters when it issues the

REGISTER_MS_APPLICATION verb:

opcode AP_REGISTER_MS_APPLICATION

ms_appl_name

A name identifying this application. An application can register more than

once using different application names. The name has the following

requirements:

v It cannot match the name used by any other application that is currently

registered as an MS application.

v It cannot be either NODE or UNIX, which are reserved for use by CS/AIX

components.

v It must be eight characters long; pad on the right with EBCDIC space

characters (0x40) if necessary.

v It can be one of the following:

– An EBCDIC string, using type-1134 characters (uppercase A–Z and

numerals 0–9)

– One of the MS Discipline-Specific Application Programs specified in

an appendix of IBM Systems Network Architecture: Management Services

Reference

ms_category

If the application needs to obtain the name of its focal point for a

particular MS category, specify the category name here. If the application

DISCONNECT_MS_NODE

18 IBM Communications Server for AIX MS Programmer’s Guide

does not need to obtain focal point information, set this parameter to eight

binary zeros. The application can register more than once for different MS

category names.

 The MS category name can be one of the following:

v A user-defined category name, an 8-byte EBCDIC string using type-1134

characters (uppercase A–Z and numerals 0–9)

v One of the category names specified in the MS Discipline-Specific

Application Programs table of an appendix of IBM Systems Network

Architecture: Management Services Reference

Names of either type should be padded to eight bytes with trailing space

(0x40) characters if necessary.

 CS/AIX returns details of the focal point using an FP_NOTIFICATION

indication on the callback routine that was supplied with

REGISTER_MS_APPLICATION. If the focal point subsequently changes,

CS/AIX sends another FP_NOTIFICATION with the new information.

max_rcv_size

The maximum number of bytes that the application can accept in one

message. If an incoming MDS_MU is longer than this size, CS/AIX

segments it and delivers each segment in a separate MDS_MU_RECEIVED

signal.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

AP_OK

 CS/AIX does not return a secondary_rc when the verb executes successfully.

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

One of the following:

AP_MS_APPL_NAME_ALREADY_REGD

Another application is currently registered with the specified name,

or the application specified one of the two reserved names, NODE

and UNIX.

AP_INVALID_APPLICATION_NAME

The supplied application name contains a character not in the

REGISTER_MS_APPLICATION

Chapter 3. Management Services Verbs 19

EBCDIC type-1134 character set, and the name is not one of the MS

Discipline-Specific Application Program names.

AP_INVALID_CATEGORY_NAME

The supplied category name contains a character not in the

EBCDIC type-1134 character set, and the name is not one of the MS

Discipline-Specific Application Program category names.

AP_INVALID_TARGET_HANDLE

The target handle supplied by the entry point used by the verb is

not a valid value returned on a previous CONNECT_MS_NODE

verb.

AP_SYNC_NOT_ALLOWED

The application used the synchronous MS entry point to issue this

verb within a callback routine. The application must use the

asynchronous entry point to issue any verb from a callback routine.

State Check: If the verb does not execute because of a state error, CS/AIX returns

the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_INVALID_TARGET_STATE

The application issued this verb while CONNECT_MS_NODE or

DISCONNECT_MS_NODE was outstanding.

CS/AIX Software Not Active: If the verb does not execute because the CS/AIX

software is not active, CS/AIX returns the following parameter:

primary_rc

One of the following:

AP_COMM_SUBSYSTEM_NOT_LOADED

The CS/AIX software is not loaded.

AP_COMM_SUBSYSTEM_ABENDED

The CS/AIX software has failed.

 CS/AIX does not return a secondary_rc when the CS/AIX software is not active.

MDS Support Not Configured: If the verb does not execute because the CS/AIX

configuration does not allow it, CS/AIX returns the following parameter:

primary_rc

AP_FUNCTION_NOT_SUPPORTED

The CS/AIX local node is not configured to support MDS-level

network management applications. Only NMVT-level applications

can be used.

 CS/AIX does not return a secondary_rc when it is not configured for MDS-level

support.

System Error: If the verb does not execute because of a system error, CS/AIX

returns the following parameters:

primary_rc

REGISTER_MS_APPLICATION

20 IBM Communications Server for AIX MS Programmer’s Guide

AP_UNEXPECTED_SYSTEM_ERROR

An operating system call failed during processing of the verb.

secondary_rc

The return code from the operating system call. For the meaning of this

return code, check the returned value in the file /usr/include/sys/errno.h.

REGISTER_NMVT_APPLICATION

The REGISTER_NMVT_APPLICATION verb registers the MS application with

CS/AIX as an NMVT-level application that can receive NMVTs. This verb is

normally used by an NMVT-level application, but it can also be used by an

MDS-level application that can receive NMVTs after they have been converted to

MDS_MUs. Before issuing this verb, the application must issue

CONNECT_MS_NODE to obtain a target handle for the CS/AIX node. This handle

is a required parameter to the MS entry point for

REGISTER_NMVT_APPLICATION.

An application must always issue this verb using the asynchronous MS entry point

and supply a callback routine. CS/AIX uses this callback routine to return received

NMVTs to the application. For more information about the MS entry points, see

Chapter 2, “Writing MS Applications,” on page 5.

CS/AIX routes an NMVT to this application only if both the destination name and

the MS major vector key in the NMVT match the values supplied on this call. For

more information, see “NMVT Routing” on page 4.

VCB Structure

 typedef struct register_nmvt_application

{

 AP_UINT16 opcode; /* Verb operation code */

 unsigned char reserv2; /* reserved */

 unsigned char format; /* reserved */

 AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 unsigned char ms_appl_name[8]; /* MS application name */

 AP_UINT16 ms_vector_key_type; /* MS vector key accepted by appl */

 unsigned char conversion_required; /* MDS level application requesting */

 /* MDS_MUs */

} REGISTER_NMVT_APPLICATION;

Supplied Parameters

An application supplies the following parameters when it issues the

REGISTER_NMVT_APPLICATION verb:

opcode AP_REGISTER_NMVT_APPLICATION

ms_appl_name

A name identifying this application. An application can register more than

once using different application names. This name has the following

requirements:

v It cannot match the name used by any other application that is currently

registered to accept the same range of keys as specified by the

ms_vector_key_type parameter.

v It cannot be either NODE and UNIX, which are reserved for use by CS/AIX

components.

REGISTER_MS_APPLICATION

Chapter 3. Management Services Verbs 21

v It must be eight characters long; pad on the right with EBCDIC space

characters (0x40) if necessary.

v It can be one of the following:

– An EBCDIC string, using type-1134 characters (uppercase A–Z and

numerals 0–9)

– One of the MS Discipline-Specific Application Programs specified in

an appendix of IBM Systems Network Architecture: Management Services

Reference

Incoming NMVTs will be routed to this application only if the value

specified in this parameter matches the Destination Application Name

(0x50) subfield of the MS major vector within the NMVT.

ms_vector_key_type

The MS major vector key or keys accepted by the application. CS/AIX

routes incoming NMVTs to the application that issued this verb only if the

MS major vector key in the NMVT matches the value or values specified

here.

 Specify one of the following:

0xnnnn The 2-byte hexadecimal value of a particular major vector key.

AP_SPCF_KEYS

Accept all major vector keys in the range 0x8061–0x8064. This

value is intended for use by an application that is implementing

the SNA Service Point Command Facility (SPCF) function; do not

use it if your application is not implementing this function. The

ms_appl_name parameter must not match the application name of

any other application that is registered to accept SPCF keys.

AP_ALL_KEYS

Accept all major vector keys. The ms_appl_name parameter must

not match the application name of any other application that is

registered to accept all keys.

An application can issue multiple REGISTER_NMVT_APPLICATION verbs

(with the same application name or different application names) to accept

NMVTs for more than one key or range of keys.

 CS/AIX uses both the name and the key to determine which application

receives the NMVT. Therefore, two or more applications can register to

accept NMVTs for the same range of keys (AP_SPCF_KEYS or AP_ALL_KEYS),

provided they use different application names. However, only one

application can accept NMVTs for a specific key. If you specify a particular

major vector key, the verb returns an error if another application has

already registered to accept NMVTs for the specified key.

conversion_required

Specifies whether the registering application is MDS-level and requires

conversion of NMVTs to MDS_MUs. Specify one of the following:

AP_YES The application is MDS-level; NMVTs should be converted to

MDS_MUs.

AP_NO The application is NMVT-level; NMVTs should not be converted.

REGISTER_NMVT_APPLICATION

22 IBM Communications Server for AIX MS Programmer’s Guide

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

AP_OK

 CS/AIX does not return a secondary_rc when the verb executes successfully.

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

One of the following values:

AP_ALL_APPL_ALREADY_REGISTERED

Indicates one of the following error conditions:

v This application has already registered to accept all keys.

v Another application has registered to accept all keys using the

same application name.

v The application registered to accept all keys using one of the two

reserved names, NODE and UNIX.

AP_INVALID_APPLICATION_NAME

The supplied application name contains a character not in the

EBCDIC type-1134 character set, and the name is not one of the MS

Discipline-Specific Application Program names.

AP_INVALID_TARGET_HANDLE

The target handle supplied by the entry point used with the verb is

not a valid value returned on a previous CONNECT_MS_NODE

verb.

AP_KEY_APPL_ALREADY_REGISTERED

Indicates one of the following error conditions:

v Another application has already registered to accept NMVTs for

this specific key. Only one application can register for each key.

v The application registered to accept a specific key using one of

the two reserved names NODE and UNIX.

AP_SPCF_APPL_ALREADY_REGD

Indicates one of the following error conditions:

v This application has already registered to accept SPCF keys.

v Another application has registered to accept SPCF keys using the

same application name.

REGISTER_NMVT_APPLICATION

Chapter 3. Management Services Verbs 23

v The application registered to accept SPCF keys using one of the

two reserved names NODE and UNIX.

AP_SYNC_NOT_ALLOWED

The application used the synchronous MS entry point to issue this

verb within a callback routine. The application must use the

asynchronous entry point to issue any verb from a callback routine.

State Check: If the verb fails to execute because of a state error, CS/AIX returns

the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_INVALID_TARGET_STATE

The application issued this verb while CONNECT_MS_NODE or

DISCONNECT_MS_NODE was outstanding.

CS/AIX Software Not Active: If the verb does not execute because the CS/AIX

software is not active, CS/AIX returns the following parameter:

primary_rc

One of the following:

AP_COMM_SUBSYSTEM_NOT_LOADED

The CS/AIX software is not loaded.

AP_COMM_SUBSYSTEM_ABENDED

The CS/AIX software has failed.

 CS/AIX does not return a secondary_rc when the CS/AIX software is not active.

System Error: If the verb does not execute because of a system error, CS/AIX

returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR

An operating system call failed during processing of the verb.

secondary_rc

The return code from the operating system call. For the meaning of this

return code, check the returned value in the file /usr/include/sys/errno.h.

SEND_MDS_MU

An MDS-level application uses this verb to send network management data in

MDS_MU format. An MDS-level application can also send data in NMVT format

using TRANSFER_MS_DATA. To send alert information, always use

TRANSFER_MS_DATA. Do not use SEND_MDS_MU to send alert information.

The application can supply a complete MDS_MU to be sent, or it can supply some

of the required subvectors and request CS/AIX to add additional subvectors. For

more information about the format of MDS_MUs, including the format of the

subvectors that CS/AIX adds, refer to IBM Systems Network Architecture: Formats.

If the destination application is NMVT-level, CS/AIX automatically converts the

supplied MDS_MU to an NMVT.

REGISTER_NMVT_APPLICATION

24 IBM Communications Server for AIX MS Programmer’s Guide

An error that occurs while sending the MDS_MU to the destination application is

reported to the application in different ways, depending on where it is detected:

v If the CS/AIX local node detects an error, it returns an error return code to the

SEND_MDS_MU verb.

v If a remote node detects an error, it sends an error MDS_MU. CS/AIX returns

the error MDS_MU to the application in an MDS_MU_RECEIVED indication,

provided the application has registered to receive MDS_MUs.

VCB Structure

 typedef struct send_mds_mu

{

 AP_UINT16 opcode; /* Verb operation code */

 unsigned char reserv2; /* reserved */

 unsigned char format; /* reserved */

 AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 unsigned char options; /* Verb options */

 unsigned char reserv3; /* reserved */

 unsigned char originator_id[8]; /* Originator ID */

 unsigned char pu_name[8]; /* Physical unit name */

 unsigned char reserv4[4]; /* reserved */

 AP_UINT16 dlen; /* Length of data */

 unsigned char *dptr; /* Data */

} SEND_MDS_MU;

Supplied Parameters

An application supplies the following parameters when it issues SEND_MDS_MU:

opcode AP_SEND_MDS_MU

options This parameter is a one-byte value, with individual bits used as follows to

indicate the options selected. Bit 0 is the most significant and bit 7 is the

least significant bit. For compatibility with other implementations, the bit

values for bits 0–3 are defined so that a value of 1 indicates no action and

a value of 0 indicates an action.

Bit 0 Add Date/Time subvector to the data. Set this bit to one of the

following values:

0 Requests that CS/AIX add the subvector

1 Requests that CS/AIX not add the subvector

Bit 1 Add Product Set ID subvector to the data. Set this bit to one of the

following:

0 Requests that CS/AIX add the subvector. If the application

supplies data that already contains a Product Set ID

subvector, CS/AIX adds its own Product Set ID subvector

immediately preceding the existing one.

1 Requests that CS/AIX not add the subvector.

Bit 2 Reserved. Must be set to 0.

Bit 3 Log the data in the CS/AIX error log file. Set this bit to one of the

following:

0 Requests that CS/AIX log the data.

1 Requests that CS/AIX not log the data.

SEND_MDS_MU

Chapter 3. Management Services Verbs 25

Bit 4 Specifies whether MS is to use default or direct routing to send the

MS data to the destination application. Set this bit to one of the

following:

0 Requests that CS/AIX use default routing. Specify default

routing unless the application has received an

FP_NOTIFICATION indication that describes the

destination application and has the fp_routing parameter set

to AP_DIRECT. For more information, see

“FP_NOTIFICATION” on page 37.

1 Requests that CS/AIX use direct routing.

Bits 5-7

Reserved. Must be set to 0.

originator_id

Name of the component that issued the verb. If the data is being logged in

the CS/AIX error log file, this name is used to identify the originator of

the log message; otherwise, it is not used.

 This optional parameter is an ASCII string of up to eight characters, using

any locally displayable characters. Set the first character to 0x00 if you do

not want to include it.

pu_name

Destination physical unit for this MDS-MU. Set this to one of the

following:

A name of a PU

Specify an 8-byte type-A EBCDIC string, padded to the right with

EBCDIC spaces (0x40). Applications that use SEND_MDS_MU to

respond to MDS_MU_RECEIVED indications that were converted

from incoming NMVTs should specify the pu_name received in the

MDS_MU_RECEIVED indication.

 In this case, the pu_name must match a pu_name specified on the

definition of a link station (LS); the MDS_MU is sent over this link

station. For more information about defining an LS, refer to

Communications Server for AIX Administration Guide.

All binary zeros

Use this value for MDS_MUs that are to be transported using the

normal MDS routing protocols.

dlen Length of the data string supplied by the application.

dptr A pointer to the data string supplied by the application. This data string

must contain a complete MDS_MU, except as follows:

v If the application used the options parameter to add one or more

subvectors, these subvectors can be omitted from the supplied data.

v The Origin Net ID and Origin NAU Name fields can be set to all EBCDIC

spaces (0x40); in this case, CS/AIX fills in the appropriate information

before sending the data.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

SEND_MDS_MU

26 IBM Communications Server for AIX MS Programmer’s Guide

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

AP_OK

 CS/AIX does not return a secondary_rc when the verb executes successfully.

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

One of the following:

AP_INVALID_DATA_SIZE

The length field in the supplied MDS_MU does not correspond to

the value in the dlen parameter.

AP_INVALID_MDS_MU_FORMAT

The supplied data string does not contain a valid MDS_MU.

AP_INVALID_PU_NAME

CS/AIX cannot find an active PU with the name specified by the

supplied pu_name parameter.

State Check: If the verb fails to execute because of a state error, CS/AIX returns

the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

One of the following:

AP_SSCP_PU_SESSION_NOT_ACTIVE

The application specified a PU name, but no session exists between

this PU and an SSCP.

AP_SYNC_PENDING

This verb was issued using the synchronous entry point, but

another synchronous verb was in progress for this target handle.

Only one synchronous verb can be in progress on a particular

target handle at any time.

AP_SYNC_NOT_ALLOWED

The application used the synchronous MS entry point to issue this

verb within a callback routine. The application must use the

asynchronous entry point to issue any verb from a callback routine.

CS/AIX Software Not Active: If the verb does not execute because the CS/AIX

software is not active, CS/AIX returns the following parameter:

primary_rc

SEND_MDS_MU

Chapter 3. Management Services Verbs 27

AP_COMM_SUBSYSTEM_ABENDED

The CS/AIX software has failed.

 CS/AIX does not return a secondary_rc when the CS/AIX software is not active.

MDS Support Not Configured: If the verb does not execute because the CS/AIX

configuration does not allow it, CS/AIX returns the following parameter:

primary_rc

AP_FUNCTION_NOT_SUPPORTED

The CS/AIX local node is not configured to support MDS-level

network management applications. Only NMVT-level applications

can be used.

 CS/AIX does not return a secondary_rc when it is not configured for MDS-LEVEL

support.

System Error: If the verb does not execute because of a system error, CS/AIX

returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR

An operating system call failed during processing of the verb.

secondary_rc

The return code from the operating system call. For the meaning of this

return code, check the returned value in the file /usr/include/sys/errno.h.

TRANSFER_MS_DATA

This verb is used by:

v NMVT-level applications to respond to previously received NMVT requests and

to send unsolicited NMVTs

v NMVT-level and MDS-level applications to send unsolicited NMVTs (such as

alert information)

The application can supply a complete NMVT to be sent, or it can supply some of

the required subvectors and request CS/AIX to add header information or

additional subvectors. For more information about the format of NMVTs, including

the format of the headers and subvectors that CS/AIX adds, refer to IBM Systems

Network Architecture: Formats.

VCB Structure

 typedef struct transfer_ms_data

{

 AP_UINT16 opcode; /* Verb operation code */

 unsigned char data_type; /* Type of data supplied by appl */

 unsigned char format; /* reserved */

 AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 unsigned char options; /* Verb options */

 unsigned char reserv3; /* reserved */

 unsigned char originator_id[8]; /* Originator ID */

 unsigned char pu_name[8]; /* Physical unit name */

 unsigned char reserv4[4]; /* reserved */

 AP_UINT16 dlen; /* Length of data */

 unsigned char *dptr; /* Data */

} TRANSFER_MS_DATA;

SEND_MDS_MU

28 IBM Communications Server for AIX MS Programmer’s Guide

Supplied Parameters

The application supplies the following parameters when it issues the

TRANSFER_MS_DATA verb:

opcode SV_TRANSFER_MS_DATA

data_type

Specify one of the following values:

SV_NMVT

The data contains a complete NMVT. CS/AIX converts the data to

MDS_MU or CP_MSU format if the data contains an alert and the

alert is to be sent to an MDS-level or migration-level focal point.

 An application that is responding to an NMVT_RECEIVED

indication must supply a complete NMVT and must use the value

SV_NMVT to indicate this.

SV_ALERT_SUBVECTORS

The data contains MS subvectors in the SNA-defined format for an

alert major vector. CS/AIX adds an NMVT header and an alert

major vector header. CS/AIX converts the data to MDS_MU or

CP_MSU format if the alert is to be sent to an MDS-level or

migration-level focal point.

SV_USER_DEFINED

The data contains a complete NMVT request unit. CS/AIX always

logs the data but does not send it to any focal point.

SV_PDSTATS_SUBVECTORS

The data contains problem determination statistics. CS/AIX always

logs the data but does not send it to any focal point.

options A one-byte value, with individual bits indicating the options selected. Bit 0

is the most significant and bit 7 is the least significant bit. For compatibility

with other implementations, the bit values for bits 0–3 are defined so that a

value of 1 indicates no action and a value of 0 indicates an action. (Bits 1–3

are ignored if the data_type parameter is set to SV_USER_DEFINED.)

Bit 0 Add Date/Time subvector to the data. Set this bit to one of the

following values:

0 Requests that CS/AIX add the subvector

1 Requests that CS/AIX not add the subvector

Bit 1 Add Product Set ID subvector to the data. Set this bit to one of the

following:

0 Requests that CS/AIX add the subvector. If the application

supplies data that already contains a Product Set ID

subvector, CS/AIX adds its own Product Set ID subvector

immediately preceding the existing one.

1 Requests that CS/AIX not add the subvector.

Bit 2 Send the data to the focal point or the PU specified by the pu_name

parameter if this verb is being used to send a reply to a previously

received NMVT. Set this bit to one of the following:

0 Requests that CS/AIX send the data

1 Requests that CS/AIX not send the data

TRANSFER_MS_DATA

Chapter 3. Management Services Verbs 29

Bit 3 Log the data in the CS/AIX error log file. Set this bit to one of the

following:

0 Requests that CS/AIX log the data.

1 Requests that CS/AIX not log the data.

Bits 4–7

Reserved. Must be set to 0.

originator_id

Name of the component that issued the verb. If the data is being logged in

the CS/AIX error log file, this name is used to identify the originator of

the log message; otherwise, it is not used.

 This optional parameter is an ASCII string of up to eight characters, using

any locally displayable characters. Set the first character to 0x00 if you do

not want to include it.

pu_name

Destination physical unit for this NMVT. Set this to one of the following:

A name of a PU

Specify an 8-byte type-A EBCDIC string, padded to the right with

EBCDIC spaces (0x40).

 Applications that use TRANSFER_MS_DATA to respond to

NMVT_RECEIVED indications should specify the pu_name received

in the NMVT_RECEIVED indication.

 Applications that send unsolicited alerts normally should not

specify a pu_name (they should set this parameter to all binary

zeros) unless the application expressly wishes the alert data to be

sent to a specific physical unit. In this case, the pu_name must

match a pu_name specified on the definition of a link station (LS);

the NMVT is sent over this link station. For more information

about defining an LS, refer to Communications Server for AIX

Administration Guide.

All binary zeros

To specify no pu_name. The data contained in

TRANSFER_MS_DATA verbs that have the data_type parameter set

to SV_NMVT and all binary zeros specified for the pu_name parameter

are sent over the default PU session if it is available.

dlen Length of the data supplied by the application.

 The maximum length of an NMVT is 512 bytes. If the application is

supplying a complete NMVT, the data length must not exceed 512 bytes. If

the application is supplying alert subvectors, or requesting CS/AIX to add

one or more subvectors to the supplied data, the total length after addition

of any required headers and subvectors must not exceed 512 bytes.

dptr A pointer to the data string supplied by the application. The data must be

in the valid format for an NMVT, alert subvectors, or problem

determination statistics, as specified by the data_type parameter.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

TRANSFER_MS_DATA

30 IBM Communications Server for AIX MS Programmer’s Guide

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc

SV_OK

 CS/AIX does not return a secondary_rc when the verb executes successfully.

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

SV_PARAMETER_CHECK

secondary_rc

One of the following:

SV_INVALID_DATA_TYPE

The supplied data_type parameter is not one of the valid values.

AP_INVALID_DATA_SIZE

One of the following occurred:

v The application supplied a data string longer than the maximum

NMVT size of 512 bytes.

v The application supplied data as alert subvectors, or specified

that CS/AIX should add one or more subvectors to it, but the

added headers and subvectors increased the data size beyond

512 bytes.

AP_INVALID_PU_NAME

CS/AIX could not find an active PU with the name specified by

the supplied pu_name parameter.

State Check: If the verb fails to execute because of a state error, CS/AIX returns

the following parameters:

primary_rc

SV_STATE_CHECK

secondary_rc

One of the following:

AP_SYNC_PENDING

This verb was issued using the synchronous entry point, but

another synchronous verb was in progress for this target handle.

Only one synchronous verb can be in progress on a particular

target handle at any time.

SV_SSCP_PU_SESSION_NOT_ACTIVE

The application requested CS/AIX to send data by setting bit 2 of

the options parameter to 0, but the session to the appropriate PU

was not active.

AP_SYNC_NOT_ALLOWED

The application used the synchronous MS entry point to issue this

TRANSFER_MS_DATA

Chapter 3. Management Services Verbs 31

verb within a callback routine. The application must use the

asynchronous entry point to issue any verb from a callback routine.

CS/AIX Software Not Active: If the verb does not execute successfully because

the CS/AIX software is not active, CS/AIX returns one of the following

parameters:

primary_rc

AP_COMM_SUBSYSTEM_ABENDED

The CS/AIX software has failed.

 CS/AIX does not return a secondary_rc when the CS/AIX software is not active.

System Error: If the verb does not execute because of a system error, CS/AIX

returns the following parameters:

primary_rc

SV_UNEXPECTED_DOS_ERROR

An operating system call failed during processing of the verb.

secondary_rc

The return code from the operating system call. For the meaning of this

return code, check the returned value in the file /usr/include/sys/errno.h.

UNREGISTER_MS_APPLICATION

The UNREGISTER_MS_APPLICATION verb indicates to CS/AIX that this

application, which previously registered to receive MDS_MUs, no longer wants to

receive them. After this verb completes successfully, CS/AIX no longer sends any

received MDS_MUs to the application.

Before terminating, an application should always issue

UNREGISTER_MS_APPLICATION for all its registered application names,

followed by DISCONNECT_MS_NODE.

VCB Structure

typedef struct unregister_ms_application

{

 AP_UINT16 opcode; /* Verb operation code */

 unsigned char reserv2; /* reserved */

 unsigned char format; /* reserved */

 AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 unsigned char ms_appl_name[8]; /* MS application name */

} UNREGISTER_MS_APPLICATION;

Supplied Parameters

The application supplies the following parameters when it issues

UNREGISTER_MS_APPLICATION:

opcode AP_UNREGISTER_MS_APPLICATION

ms_appl_name

The name identifying the application that is unregistering. This must be a

name that the application has previously specified using

REGISTER_MS_APPLICATION. The string must be eight characters long;

pad on the right with EBCDIC space characters (0x40) if necessary.

TRANSFER_MS_DATA

32 IBM Communications Server for AIX MS Programmer’s Guide

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

AP_OK

 CS/AIX does not return a secondary_rc when the verb executes successfully.

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

One of the following:

AP_INVALID_TARGET_HANDLE

The supplied target handle was not a valid value returned on a

previous CONNECT_MS_NODE verb.

AP_MS_APPL_NAME_NOT_REGD

The application has not previously issued

REGISTER_MS_APPLICATION with the application name

specified on this verb.

State Check: If the verb fails to execute because of a state error, CS/AIX returns

the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

One of the following:

AP_INVALID_TARGET_STATE

The application issued this verb while CONNECT_MS_NODE or

DISCONNECT_MS_NODE was outstanding.

AP_SYNC_PENDING

This verb was issued using the synchronous entry point, but

another synchronous verb was in progress for this target handle.

Only one synchronous verb can be in progress on a particular

target handle at any time.

AP_SYNC_NOT_ALLOWED

The application used the synchronous MS entry point to issue this

verb within a callback routine. The application must use the

asynchronous entry point to issue any verb from a callback routine.

UNREGISTER_MS_APPLICATION

Chapter 3. Management Services Verbs 33

CS/AIX Software Not Active: If the verb does not execute because the CS/AIX

software is not active, CS/AIX returns the following parameter:

primary_rc

AP_COMM_SUBSYSTEM_ABENDED

The CS/AIX software has failed.

 CS/AIX does not return a secondary_rc when the CS/AIX software is not active.

MDS Support Not Configured: If the verb does not execute because the CS/AIX

configuration does not allow it, CS/AIX returns the following parameter:

primary_rc

AP_FUNCTION_NOT_SUPPORTED

The CS/AIX local node is not configured to support MDS-level

network management applications. Only NMVT-level applications

can be used.

 CS/AIX does not return a secondary_rc when it is not configured for MDS-LEVEL

support.

System Error: If the verb does not execute because of a system error, CS/AIX

returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR

An operating system call failed during processing of the verb.

secondary_rc

The return code from the operating system call. For the meaning of this

return code, check the returned value in the file /usr/include/sys/errno.h.

UNREGISTER_NMVT_APPLICATION

The UNREGISTER_NMVT_APPLICATION verb indicates to CS/AIX that this

application, which previously registered to receive NMVTs for a given application

name, no longer wants to receive them for that name.

If the application used the same application name in multiple

REGISTER_NMVT_APPLICATION verbs to accept different types of NMVTs,

unregistering this name means that the application no longer receives any of these

NMVTs. However, if the application registered using more than one name, it

continues to receive NMVTs of the types specified for any remaining application

names.

Before terminating, an application should always issue

UNREGISTER_NMVT_APPLICATION for all its registered application names,

followed by DISCONNECT_MS_NODE.

VCB Structure

typedef struct unregister_nmvt_application

{

 AP_UINT16 opcode; /* Verb operation code */

 unsigned char reserv2; /* reserved */

 unsigned char format; /* reserved */

UNREGISTER_MS_APPLICATION

34 IBM Communications Server for AIX MS Programmer’s Guide

AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 unsigned char ms_appl_name[8]; /* MS application name */

} UNREGISTER_NMVT_APPLICATION;

Supplied Parameters

An application supplies the following parameters when it issues

UNREGISTER_NMVT_APPLICATION:

opcode AP_UNREGISTER_NMVT_APPLICATION

ms_appl_name

The name identifying the application that is unregistering. This must be a

name that the application has previously specified using

REGISTER_NMVT_APPLICATION. The string must be eight characters

long; pad on the right with EBCDIC space characters (0x40) if necessary.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

AP_OK

 CS/AIX does not return a secondary_rc when the verb executes successfully.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

One of the following:

AP_APPL_NOT_REGISTERED

The application has not previously issued

REGISTER_NMVT_APPLICATION with the application name

specified on this verb.

AP_INVALID_TARGET_HANDLE

The supplied target handle was not a valid value returned on a

previous CONNECT_MS_NODE verb.

State Check: If the verb fails to execute because of a state error, CS/AIX returns

the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

One of the following:

AP_INVALID_TARGET_STATE

The application issued this verb while CONNECT_MS_NODE or

DISCONNECT_MS_NODE was outstanding.

UNREGISTER_NMVT_APPLICATION

Chapter 3. Management Services Verbs 35

AP_SYNC_PENDING

This verb was issued using the synchronous entry point, but

another synchronous verb was in progress for this target handle.

Only one synchronous verb can be in progress on a particular

target handle at any time.

AP_SYNC_NOT_ALLOWED

The application used the synchronous MS entry point to issue this

verb within a callback routine. The application must use the

asynchronous entry point to issue any verb from a callback routine.

CS/AIX Software Not Active: If the verb does not execute because the CS/AIX

software is not active, CS/AIX returns the following parameter:

primary_rc

AP_COMM_SUBSYSTEM_ABENDED

The CS/AIX software has failed.

 CS/AIX does not return a secondary_rc when the CS/AIX software is not active.

System Error: If the verb does not execute because of a system error, CS/AIX

returns the following parameters:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR

An operating system call failed during processing of the verb.

secondary_rc

The return code from the operating system call. For the meaning of this

return code, check the returned value in the file /usr/include/sys/errno.h.

UNREGISTER_NMVT_APPLICATION

36 IBM Communications Server for AIX MS Programmer’s Guide

Chapter 4. Management Services Indications

For each indication, this chapter provides the following information:

v Purpose of the indication, and the conditions in which CS/AIX returns it to an

application.

v Description of the indication. For consistency, the term verb control block (VCB)

is used to describe the indications, although this structure is not associated with

a verb issued by the application. All the VCB structures are defined in the

header file /usr/include/sna/ms_c.h (AIX) or /opt/ibm/sna/include/ms_c.h

(Linux).

v For each parameter in the VCB structure, the following information is listed:

– Description

– Values that can be returned and their meanings

– Additional information where necessary

Many of the supplied and returned parameter values are numeric. To simplify

coding, make the applications more portable, and make the program source easier

to read, these values are represented by symbolic constants defined in the header

file ms_c.h. For example, the opcode (operation code) parameter for the

FP_NOTIFICATION indication is the value represented by the symbolic constant

AP_FP_NOTIFICATION.

Because different systems store these values differently in memory, it is important

that you use the symbolic constant, and not the numeric value, when setting

values for supplied parameters or when testing values of returned parameters. The

value shown in the header file may not be in the format recognized by your

system.

Note: Although the application allocates the VCBs for MS verbs, CS/AIX allocates

the VCBs for indications. Therefore, the application has access to the VCB

information only from within the callback routine; the VCB pointer that

CS/AIX supplies to the callback routine is not valid outside the callback

routine. The application must either complete all the required processing

from within the callback routine, or it must make a copy of any VCB data

that it needs to use outside this routine.

FP_NOTIFICATION

CS/AIX sends this status indication to an MDS-level application that has requested

information about the focal point for a particular MS category. The application

requests this information by issuing REGISTER_MS_APPLICATION with the name

of a particular MS category specified as part of the focal point data string. CS/AIX

sends FP_NOTIFICATION to inform the application of its current focal point for

that category. Each time the focal point changes, CS/AIX sends another

FP_NOTIFICATION.

This indication is returned using the callback routine that the application supplied

on the REGISTER_MS_APPLICATION verb. For more information about the

requirements for this callback routine, see “The Callback Routine Specified on the

ms_async Entry Point” on page 9.

© Copyright IBM Corp. 2000, 2005 37

VCB Structure

typedef struct fp_notification

{

 AP_UINT16 opcode;

 unsigned char reserv2; /* reserved */

 unsigned char format; /* reserved */

 AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 unsigned char fp_routing; /* routing to use with this focal point */

 unsigned char reserv1; /* reserved */

 AP_UINT16 fp_data_length; /* Length of incoming focal point data */

 unsigned char *fp_data; /* Focal point data */

} FP_NOTIFICATION;

Parameters

CS/AIX includes the following parameters when it sends FP_NOTIFICATION to

an MDS-level application:

opcode AP_FP_NOTIFICATION

fp_routing

Specifies whether applications should use default or direct routing when

sending MDS_MUs to this focal point. Possible values are:

AP_DEFAULT

MDS_MUs should be delivered to the focal point using default

routing.

AP_DIRECT

MDS_MUs should be routed on a session directly to the focal

point.

fp_data_length

Length of focal point data. This can be up to 78 bytes.

fp_data Focal point data, which consists of the following:

v Focal Point Notification (0xE1) subvector

v Focal Point Identification (0x21) subvector, which contains an MS

Category subfield. The MS Category subfield identifies the category for

which the application requested focal point information and contains the

following subfields:

– Focal point network identifier (NETID)

– Focal point network accessible unit (NAU) name

– Application ID

When sending an MDS_MU in the MS category associated with this focal

point, the application should include the information from these subfields

in the MDS_MU to ensure that it is routed to the appropriate focal point.

For full details of the information contained in these subvectors, refer to

the IBM manual System Network Architecture: Formats.

MDS_MU_RECEIVED

CS/AIX uses this data indication to route an MDS_MU to an MDS-level

application in the following cases:

v A remote MDS-level application has sent an MDS_MU, and this application has

used REGISTER_MS_APPLICATION to accept MDS_MUs.

FP_NOTIFICATION

38 IBM Communications Server for AIX MS Programmer’s Guide

v A remote application has sent an NMVT, and this application has used

REGISTER_NMVT_APPLICATION to accept NMVTs after conversion to

MDS_MUs. For information about how CS/AIX determines which MS

application receives an incoming NMVT, see “NMVT Routing” on page 4.

To return the MDS_MU_RECEIVED indication, CS/AIX uses the callback routine

that the application supplied on the REGISTER_MS_APPLICATION or

REGISTER_NMVT_APPLICATION verb. For more information about the

requirements for this callback routine, see “The Callback Routine Specified on the

ms_async Entry Point” on page 9.

VCB Structure

typedef struct mds_mu_received

{

 AP_UINT16 opcode; /* Verb operation code */

 unsigned char reserv2; /* reserved */

 unsigned char format; /* reserved */

 AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 unsigned char first_message; /* First message for current MDS_MU */

 unsigned char last_message; /* Last message for current MDS_MU */

 unsigned char pu_name[8]; /* Physical unit name */

 unsigned char reserv3[8]; /* reserved */

 AP_UINT16 mds_mu_length; /* Length of incoming MDS_MU */

 unsigned char *mds_mu; /* MDS_MU data */

} MDS_MU_RECEIVED;

Parameters

CS/AIX includes the following parameters when it sends the

MDS_MU_RECEIVED indication to the MS application:

opcode AP_MDS_MU_RECEIVED

first_message

Indicates whether this message is the first, or only, message for this

MDS_MU. The MDS_MU is normally sent to the application as a single

message (both first_message and last_message are AP_YES). However, if the

MDS_MU is larger than the max_rcv_size specified when the application

issued REGISTER_MS_APPLICATION, CS/AIX segments the MDS_MU

and sends it to the application as multiple messages. Possible values are:

AP_YES First or only message for this MDS_MU.

AP_NO Second or subsequent message for this MDS_MU.

last_message

Indicates whether this message is the last, or only, message for this

MDS_MU. The MDS_MU is normally sent to the application as a single

message (both first_message and last_message are AP_YES). However, if the

MDS_MU is larger than the max_rcv_size specified when the application

issued REGISTER_MS_APPLICATION, CS/AIX segments the MDS_MU

and sends it to the application as multiple messages. Possible values are:

AP_YES Last or only message for this MDS_MU.

AP_NO First or subsequent message for a segmented MDS_MU. At least

one more message follows.

pu_name

If the MDS_MU was converted from an incoming NMVT, this parameter is

the name of the physical unit from which the NMVT was received. If the

MDS_MU_RECEIVED

Chapter 4. Management Services Indications 39

NMVT requires a response, the application must send the response using

the SEND_MDS_MU verb, and must set the pu_name parameter of the

SEND_MDS_MU to this name.

 The MDS_MU was converted from an incoming NMVT only if the

application used the REGISTER_NMVT_APPLICATION verb to register

itself as an MDS-level application that accepts NMVTs after conversion to

MDS_MUs. If the MDS_MU was received from the MDS-level transport

mechanism, this parameter is set to binary zeros.

mds_mu_length

Length of MDS_MU data included on this message. This can be a complete

MDS_MU or a segment of complete MDS_MU, depending on the

first_message and last_message parameters.

mds_mu

A pointer to the MDS_MU data string.

MS_STATUS

CS/AIX sends this status indication to a registered application (either MDS-level or

NMVT-level) to inform the application of one of the following changes in the

status of the CS/AIX system:

v The application’s communications path to the CS/AIX local node has been lost

because the connected node or an associated component is no longer active.

v The CS/AIX software has been stopped.

CS/AIX returns the MS_STATUS indication on the callback routine that the

application supplied to the REGISTER_MS_APPLICATION or

REGISTER_NMVT_APPLICATION verb. For more information about the

requirements for this callback routine, see “The Callback Routine Specified on the

ms_async Entry Point” on page 9.

After the application receives the MS_STATUS indication, CS/AIX rejects all

subsequent verbs using the relevant target handle, except for

DISCONNECT_MS_NODE.

VCB Structure

typedef struct ms_status

{

 AP_UINT16 opcode; /* Verb operation code */

 unsigned char reserv2; /* reserved */

 unsigned char format; /* reserved */

 AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 AP_UINT32 status; /* status being reported */

 AP_UINT32 dead_target_handle; /* Handle of dead connection */

 unsigned char reserv1[32]; /* reserved */

} MS_STATUS;

Parameters

CS/AIX includes the following parameters when it sends the MS_STATUS

indication to the MS application:

opcode AP_MS_STATUS

status

MDS_MU_RECEIVED

40 IBM Communications Server for AIX MS Programmer’s Guide

AP_TARGET_HAS_DIED

This value indicates that the connected node or the CS/AIX

software is no longer running.

dead_target_handle

A null value for this parameter indicates that the CS/AIX software on the

local computer (where the application is running) has been stopped. All

target handles that the application was using are disconnected and are no

longer valid.

 A non-null value for this parameter indicates the target handle of the failed

node. The application should issue DISCONNECT_MS_NODE for this

target handle to free the resources associated with it.

 The application can attempt to reconnect to a target node by periodically

issuing CONNECT_MS_NODE; this call will fail until the target node or

the local CS/AIX software is restarted.

NMVT_RECEIVED

CS/AIX uses this data indication to route an NMVT received from a remote node

to an NMVT-level application that has registered to receive NMVTs. For

information about how CS/AIX determines which MS application receives an

incoming NMVT, see “NMVT Routing” on page 4.

This indication is returned using the callback routine that the application supplied

on the REGISTER_NMVT_APPLICATION verb. For more information about the

requirements for this callback routine, see “The Callback Routine Specified on the

ms_async Entry Point” on page 9.

VCB Structure

typedef struct nmvt_received

{

 AP_UINT16 opcode; /* Verb operation code */

 unsigned char reserv2; /* reserved */

 unsigned char format; /* reserved */

 AP_UINT16 primary_rc; /* Primary return code */

 AP_UINT32 secondary_rc; /* Secondary return code */

 unsigned char pu_name[8]; /* Physical unit name */

 unsigned char reserv3[6]; /* reserved */

 AP_UINT16 nmvt_length; /* Length of incoming NMVT */

 unsigned char *nmvt; /* NMVT data */

} NMVT_RECEIVED;

Parameters

CS/AIX includes the following parameters when it sends the NMVT_RECEIVED

indication to the MS application:

opcode AP_NMVT_RECEIVED

pu_name

Name of the physical unit from which the NMVT originated. This is an

8-byte EBCDIC type-A string, padded on the right with EBCDIC spaces if

the name is shorter than 8 bytes.

 If the incoming NMVT requires a response, the application must send the

response using TRANSFER_MS_DATA and must set the pu_name

parameter of TRANSFER_MS_DATA to the pu_name returned here.

MS_STATUS

Chapter 4. Management Services Indications 41

nmvt_length

Length of NMVT data, which can be up to 512 bytes.

nmvt Full NMVT, containing MS major vector of the type or types specified on

the REGISTER_NMVT_APPLICATION.

NMVT_RECEIVED

42 IBM Communications Server for AIX MS Programmer’s Guide

Appendix A. MS Function Sets

This appendix provides information about the SNA MS function sets that the

CS/AIX MS API supports. For more information about these function sets, refer to

the IBM manual Systems Network Architecture: APPN Architecture Reference.

Base Function Sets

The CS/AIX MS API supports the following base function sets:

v Management Services—Multiple-Domain Support (MDS)

 150 SNA/MS MDS Common Base

 151 SNA/MS MDS End Node Support

 152 SNA/MS MDS Network Node Support
v Management Services—MS Capabilities Function Set

 160 SNA/MS MS_CAPS Base End Node Support

 161 SNA/MS MS_CAPS Have a Backup or Implicit Focal Point

 163 SNA/MS MS_CAPS Base Network Node Support
v Management Services—Entry Point Alert Function Set

 170 SNA/MS MS EP Alert Base Subset

Optional Function Sets

The CS/AIX MS API supports the following optional function sets:

v Management Services—MS Capabilities Function Set

 162 SNA/MS MS_CAPS Be a Sphere of Control (SOC) End Node

 164 SNA/MS MS_CAPS Have a Subarea FP
v Management Services—Entry Point Alert Function Set

 171 SNA/MS Problem Diagnosis Data in Alert

 174 SNA/MS Operator Initiated Alert

 175 SNA/MS Qualified Message Data in Alert

 176 SNA/MS Self-Defining Message Text Subvector in Alert

 177 SNA/MS LAN Alert

 178 SNA/MS SDLC/LAN LLC Alert

 179 SNA/MS X.21 Alert

 181 SNA/MS X.25 Alert

 182 SNA/MS Held Alert for CPMS

Function Sets Not Supported

CS/AIX MS does not provide support for the following function sets:

v Management Services—File Services (option sets 1500, 1501).

v Management Services—Change Management (option sets 1510–1518).

v Management Services—Operations Management (option sets 1520, 1521). Option

set 1520, SNA/MS Common Operations Services, is implemented by the CS/AIX

Service Point Command Facility.

© Copyright IBM Corp. 2000, 2005 43

Function Sets Not Supported

44 IBM Communications Server for AIX MS Programmer’s Guide

Appendix B. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS™ enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to SA22-7787

z/OS TSO/E Primer, SA22-7794 z/OS TSO/E User’s Guide, and SC34-4822 z/OS ISPF

User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces.

These guides describe how to use TSO/E and ISPF, including the use of keyboard

shortcuts or function keys (PF keys). Each guide includes the default settings for

the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2000, 2005 45

46 IBM Communications Server for AIX MS Programmer’s Guide

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2005 47

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation, Site Counsel

 P.O. Box 12195

 3039 Cornwallis Road

 Research Triangle Park, NC 27709-2195

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in

source language, which illustrates programming techniques on various operating

platforms. You may copy, modify, and distribute these sample programs in any

form without payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any

form without payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application programming

interfaces.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows: © (your company name) (year). Portions of

this code are derived from IBM Corp. Sample Programs. © IBM Corp. 2000, 2005.

All rights reserved.

48 IBM Communications Server for AIX MS Programmer’s Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 ACF/VTAM

 Advanced Peer-to-Peer Networking

 AIX

 AIXwindows

 AnyNet

 Application System/400

 APPN

 AS/400

 CICS

 DATABASE 2

 DB2

 Enterprise System/3090

 Enterprise System/4381

 Enterprise System/9000

 ES/3090

 ES/9000

 eServer

 IBM

 IBMLink

 IMS

 MVS

 MVS/ESA

 Operating System/2

 Operating System/400

 OS/2

 OS/400

 PowerPC

 PowerPC Architecture

 pSeries

 S/390

 System/390

 VSE/ESA

 VTAM

 WebSphere

 zSeries

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc., in

the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed

exclusively through The Open Group.

Intel is a trademark of Intel Corporation.

Linux is a trademark of Linus Torvalds.

RedHat and RPM are trademarks of Red Hat, Inc.

SuSE Linux is a trademark of SuSE Linux AG.

UnitedLinux is a trademark of UnitedLinux LLC.

Microsoft, Windows, Windows NT, Windows 2003, and the Windows logo are

trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix C. Notices 49

50 IBM Communications Server for AIX MS Programmer’s Guide

Bibliography

The following IBM publications provide information about the topics discussed in

this library. The publications are divided into the following broad topic areas:

v CS/AIX, Version 6.3

v IBM Communications Server for AIX, Version 4 Release 2

v Redbooks™

v AnyNet/2 and SNA

v Block Multiplexer and S/390 ESCON Channel PCI Adapter

v AIX operating system

v Systems Network Architecture (SNA)

v Host configuration

v z/OS Communications Server

v Multiprotocol Transport Networking

v Transmission Control Protocol/Internet Protocol (TCP/IP)

v X.25

v Advanced Program-to-Program Communication (APPC)

v Programming

v Other IBM networking topics

For books in the CS/AIX library, brief descriptions are provided. For other books,

only the titles, order numbers, and, in some cases, the abbreviated title used in the

text of this book are shown here.

CS/AIX Version 6.3Publications

The CS/AIX library comprises the following books. In addition, softcopy versions

of these documents are provided on the CD-ROM. See IBM Communications Server

for AIX Quick Beginnings for information about accessing the softcopy files on the

CD-ROM. To install these softcopy books on your system, you require 9–15 MB of

hard disk space (depending on which national language versions you install).

v IBM Communications Server for AIX Migration Guide (SC31-8585)

This book explains how to migrate from Communications Server for AIX Version

4 Release 2 or earlier to CS/AIX Version 6.

v IBM Communications Server for AIX Quick Beginnings (GC31-8583)

This book is a general introduction to CS/AIX, including information about

supported network characteristics, installation, configuration, and operation.

v IBM Communications Server for AIX Administration Guide (SC31-8586)

This book provides an SNA and CS/AIX overview and information about

CS/AIX configuration and operation.

v IBM Communications Server for AIX Administration Command Reference (SC31-8587)

This book provides information about SNA and CS/AIX commands.

v IBM Communications Server for AIX CPI-C Programmer’s Guide (SC31-8591)

This book provides information for experienced “C” or Java™ programmers

about writing SNA transaction programs using the CS/AIX CPI

Communications API.

© Copyright IBM Corp. 2000, 2005 51

v IBM Communications Server for AIX APPC Programmer’s Guide (SC31-8590)

This book contains the information you need to write application programs

using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX LUA Programmer’s Guide (SC31-8592)

This book contains the information you need to write applications using the

Conventional LU Application Programming Interface (LUA).

v IBM Communications Server for AIX CSV Programmer’s Guide (SC31-8593)

This book contains the information you need to write application programs

using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX MS Programmer’s Guide (SC31-8594)

This book contains the information you need to write applications using the

Management Services (MS) API.

v IBM Communications Server for AIX NOF Programmer’s Guide (SC31-8595)

This book contains the information you need to write applications using the

Node Operator Facility (NOF) API.

v IBM Communications Server for AIX Diagnostics Guide (SC31-8588)

This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX AnyNet® Guide to APPC over TCP/IP

(GC31-8598)

This book provides installation, configuration, and usage information for the

AnyNet APPC over TCP/IP function of CS/AIX.

v IBM Communications Server for AIX AnyNet Guide to Sockets over SNA (GC31-8597)

This book provides installation, configuration, and usage information for the

AnyNet Sockets over SNA function of CS/AIX.

v IBM Communications Server for AIX APPC Application Suite User’s Guide

(SC31-8596)

This book provides information about APPC applications used with CS/AIX.

v IBM Communications Server for AIX Glossary (GC31-8589)

This book provides a comprehensive list of terms and definitions used

throughout the IBM Communications Server for AIX library.

IBM Communications Server for AIX Version 4 Release 2 Publications

The following book is from a previous release of Communications Server for AIX,

and does not apply to Version 6. You may find this book useful as a reference for

information that is still supported, but not included in Version 6.

v IBM Communications Server for AIX Transaction Program Reference. (SC31-8212)

This book provides Version 4 Release 2 information about the transaction

programming APIs. Applications written to use the Version 4 Release 2 APIs can

still be used with Version 6.

IBM Redbooks

IBM maintains an International Technical Support Center that produces

publications known as Redbooks. Similar to product documentation, Redbooks

cover theoretical and practical aspects of SNA technology. However, they do not

include the information that is supplied with purchased networking products.

The following books contain information that may be useful for CS/AIX:

v IBM Communications Server for AIX Version 6 (SG24-5947)

52 IBM Communications Server for AIX MS Programmer’s Guide

v IBM CS/AIX Understanding and Migrating to Version 5: Part 2 - Performance

(SG24-2136)

v Load Balancing for Communications Servers (SG24-5305)

On the World Wide Web, users can download Redbook publications by using

http://www.redbooks.ibm.com.

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications

The following books contain information about the Block Multiplexer and the

S/390 ESCON Channel PCI Adapter:

v AIX Version 4.1 Block Multiplexer Channel Adapter: User’s Guide and Service

Information (SC31-8196)

v AIX Version 4.1 Enterprise Systems Connection Adapter: User’s Guide and

Service Information (SC31-8196)

v AIX Version 4.3 S/390 ESCON Channel PCI: User’s Guide and Service

Information (SC23-4232)

v IBM Communications Server for AIX Channel Connectivity User’s Guide

(SC31-8219)

AnyNet/2 Sockets and SNA publications

The following books contain information about AnyNet/2 Sockets and SNA

v AnyNet/2 Version 2.0: Guide to Sockets over SNA (GV40-0376)

v AnyNet/2 Version 2.0: Guide to SNA over TCP/IP (GV40-0375)

v AnyNet/2: Guide to Sockets over SNA Gateway Version 1.1 (GV40-0374)

v z/OS V1R2.0 Communications Server: AnyNet Sockets over SNA (SC31-8831)

v z/OS V1R2.0 Communications Server: AnyNet SNA over TCP/IP (SC31-8832)

AIX Operating System Publications

The following books contain information about the AIX operating system:

v AIX Version 5.3 System Management Guide: Operating System and Devices

(SC23-4910)

v AIX Version 5.3 System Management Concepts: Operating System and Devices

(SC23-4908)

v AIX Version 5.3 System Management Guide: Communications and Networks

(SC23-4909)

v AIX Version 5.3 Performance Management Guide (SC23-4905)

v AIX Version 5.3 Performance Tools Guide and Reference (SC23-4906)

v Performance Toolbox Version 2 and 3 Guide and Reference (SC23-2625)

v AIXlink/X.25 Version 2.1 for AIX: Guide and Reference (SC23-2520)

Systems Network Architecture (SNA) Publications

The following books contain information about SNA networks:

v Systems Network Architecture: Format and Protocol Reference Manual—Architecture

Logic for LU Type 6.2 (SC30-3269)

v Systems Network Architecture: Formats (GA27-3136)

v Systems Network Architecture: Guide to SNA Publications (GC30-3438)

Bibliography 53

v Systems Network Architecture: Network Product Formats (LY43-0081)

v Systems Network Architecture: Technical Overview (GC30-3073)

v Systems Network Architecture: APPN Architecture Reference (SC30-3422)

v Systems Network Architecture: Sessions between Logical Units (GC20-1868)

v Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)

v Systems Network Architecture: Transaction Programmer’s Reference Manual for LU

Type 6.2 (GC30-3084)

v Systems Network Architecture: 3270 Datastream Programmer’s Reference (GA23-0059)

v Networking Blueprint Executive Overview (GC31-7057)

v Systems Network Architecture: Management Services Reference (SC30-3346)

Host Configuration Publications

The following books contain information about host configuration:

v ES/9000, ES/3090 IOCP User’s Guide Volume A04 (GC38-0097)

v 3174 Establishment Controller Installation Guide (GG24-3061)

v 3270 Information Display System 3174 Establishment Controller: Planning Guide

(GA27-3918)

v OS/390 Hardware Configuration Definition (HCD) User’s Guide (SC28-1848)

v ESCON Director Planning (GA23-0364)

z/OS Communications Server Publications

The following books contain information about z/OS Communications Server:

v z/OS V1R7 Communications Server: SNA Network Implementation Guide

(SC31-8777-05)

v z/OS V1R7 Communications Server: SNA Diagnostics (Vol 1: GC31-6850-00, Vol 2:

GC31-6851-00)

v z/OS V1R6 Communications Server: Resource Definition Reference (SC31-8778-04)

Multiprotocol Transport Networking publications

The following books contain information about Multiprotocol Transport

Networking architecture:

v Multiprotocol Transport Networking: Formats (GC31-7074)

v Multiprotocol Transport Networking Architecture: Technical Overview

(GC31-7073)

TCP/IP Publications

The following books contain information about the Transmission Control

Protocol/Internet Protocol (TCP/IP) network protocol:

v z/OS V1R7 Communications Server: IP Configuration Guide (SC31-8775-07)

v z/OS V1R7 Communications Server: IP Configuration Reference (SC31-8776-08)

v z/VM V5R1 TCP/IP Planning and Customization (SC24-6125-00)

54 IBM Communications Server for AIX MS Programmer’s Guide

X.25 Publications

The following books contain information about the X.25 network protocol:

v AIXLink/X.25 for AIX: Guide and Reference (SC23-2520)

v RS/6000® AIXLink/X.25 Cookbook (SG24-4475)

v Communications Server for OS/2 Version 4 X.25 Programming (SC31-8150)

APPC Publications

The following books contain information about Advanced Program-to-Program

Communication (APPC):

v APPC Application Suite V1 User’s Guide (SC31-6532)

v APPC Application Suite V1 Administration (SC31-6533)

v APPC Application Suite V1 Programming (SC31-6534)

v APPC Application Suite V1 Online Product Library (SK2T-2680)

v APPC Application Suite Licensed Program Specifications (GC31-6535)

v z/OS V1R2.0 Communications Server: APPC Application Suite User’s Guide

(SC31-8809)

Programming Publications

The following books contain information about programming:

v Common Programming Interface Communications CPI-C Reference (SC26-4399)

v Communications Server for OS/2 Version 4 Application Programming Guide

(SC31-8152)

Other IBM Networking Publications

The following books contain information about other topics related to CS/AIX:

v SDLC Concepts (GA27-3093-04)

v Local Area Network Concepts and Products: LAN Architecture (SG24-4753-00)

v Local Area Network Concepts and Products: LAN Adapters, Hubs and ATM

(SG24-4754-00)

v Local Area Network Concepts and Products: Routers and Gateways (SG24-4755-00)

v Local Area Network Concepts and Products: LAN Operating Systems and Management

(SG24-4756-00)

v IBM Network Control Program Resource Definition Guide (SC30-3349)

Bibliography 55

56 IBM Communications Server for AIX MS Programmer’s Guide

Index

A
accessibility 45

AIX applications
compiling and linking 11

asynchronous entry point 5

C
callback routine

comp_proc parameter 8

overview 9

requirements 9

supplied to REGISTER_* verbs 9

child process 10

communications with the node
ending 16

failure 40

starting 14

comp_proc (callback routine) 8

compiling AIX applications 11

compiling Linux applications 11

CONNECT_MS_NODE
overview 14

returned parameters 14

supplied parameters 14

VCB structure 14

corr (correlator) 8, 9

CP_MSU 1

CS/AIX MS support 1

D
data structure

MDS_MU 38

NMVT 41

disability 45

DISCONNECT_MS_NODE
overview 16

returned parameters 16

supplied parameters 16

VCB structure 16

E
entry points 5

F
focal point, getting information about 37

FP_NOTIFICATION
how used 3

overview 37

parameters 38

VCB structure 38

H
header file 13

I
indications 2, 37

K
keyboard 45

L
linking AIX applications 11

linking Linux applications 11

Linux applications
compiling and linking 11

M
MDS support not configured 20, 28, 34

MDS_MU
conversion from NMVT 4, 38

errors in sending 25

received data indication 38

use by MDS-level products 1

MDS_MU_RECEIVED
how used 3

overview 38

parameters 39

VCB structure 39

MDS-level products 1

migration-level products 1

MS category, focal point for 37

ms entry point
overview 5

returned values 6

supplied parameters 6

MS function sets
base 43

optional 43

MS verbs, summary 2

ms_async entry point
callback routine 9

function call 7

overview 5

returned values 8

supplied parameters 7

ms_c.h header file 13

MS_STATUS
description 40

how used 3

parameters 40

VCB structure 40

multiple processes 10

N
NMVT

conversion to MDS_MU 4, 38

destination name 4

major vector key 4

received data indication 41

© Copyright IBM Corp. 2000, 2005 57

NMVT (continued)
routing 4

NMVT_RECEIVED
description 41

how used 3

parameters 41

VCB structure 41

NMVT-level products 1

node, communications with
ending 16

failure 40

starting 14

R
received data indication

MDS_MU 38

NMVT 41

received data indications 2, 37

receiving MS data 3

REGISTER_MS_APPLICATION
description 18

returned parameters 19

supplied parameters 18

VCB structure 18

when to use 3

REGISTER_NMVT_APPLICATION
description 21

returned parameters 23

supplied parameters 21

VCB structure 21

when to use 3

registering with the local node
MDS-level application 18, 21

NMVT-level application 21

S
SEND_MDS_MU

description 24

how used 2, 3

returned parameters 26

supplied parameters 25

VCB structure 25

sending data
MDS_MU format 24

NMVT format 28

sending MS data 2, 3

sending NMVTs 2, 3

shortcut keys 45

SNA MS support 1, 43

symbolic constants 13, 37

synchronous entry point 5, 6

T
target handle 6, 7, 9

TRANSFER_MS_DATA
description 28

how used 2, 3

returned parameters 30

supplied parameters 29

VCB structure 29

U
UNREGISTER_MS_APPLICATION

description 32

how used 4

returned parameters 33

supplied parameters 32

VCB structure 32

UNREGISTER_NMVT_APPLICATION
description 34

how used 4

returned parameters 35

supplied parameters 35

VCB structure 35

unregistering with the local node
MDS-level application 32

NMVT-level application 34

V
VCB structure, pointer to 6, 7, 9

VCB structures, defined in header file 13

verb summary 2

verbs, reference information 13

58 IBM Communications Server for AIX MS Programmer’s Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of

the methods listed below to send your comments to IBM. Whichever method you

choose, make sure you send your name, address, and telephone number if you

would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject

matter, or completeness of this document. However, the comments you send

should pertain to only the information in this manual and the way in which the

information is presented. To request additional publications, or to ask questions or

make comments about the functions of IBM products or systems, you should talk

to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate without incurring any

obligation to you.

Please send your comments to us in either of the following ways:

v If you prefer to send comments by FAX, use this number: 1+919-254-4028

v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com.
v If you prefer to send comments by post, use this address:

International Business Machines Corporation

Attn: z/OS Communications Server Information Development

P.O. Box 12195, 3039 Cornwallis Road

Department AKCA, Building 501

Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2000, 2005 59

60 IBM Communications Server for AIX MS Programmer’s Guide

����

Program Number: 5765-E51

Printed in USA

SC31-8594-02

	Contents
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions

	Support of Existing Applications
	What's New
	Where to Find More Information

	Chapter 1. Introduction to Management Services
	SNA Management Services Support Levels
	CS/AIX Management Services Support
	Management Services Application Programming Interface
	Management Services Applications
	MS Applications That Only Send Data
	MS Applications That Both Send and Receive Data

	NMVT Routing

	Chapter 2. Writing MS Applications
	Description of the MS API Entry Points
	Synchronous Entry Point: ms
	Function Call
	Supplied Parameters
	Returned Values
	Using the Synchronous Entry Point

	Asynchronous Entry Point: ms_async
	Function Call
	Supplied Parameters
	Returned Values
	Using the Asynchronous Entry Point

	The Callback Routine Specified on the ms_async Entry Point
	Callback Function
	Supplied Parameters
	Returned Values
	Using the Callback Routine for Indications

	Scope of Target Handle

	MS API Header File
	Compiling and Linking the MS Application
	AIX Applications
	Linux Applications

	Chapter 3. Management Services Verbs
	CONNECT_MS_NODE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	DISCONNECT_MS_NODE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	REGISTER_MS_APPLICATION
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	REGISTER_NMVT_APPLICATION
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	SEND_MDS_MU
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	TRANSFER_MS_DATA
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	UNREGISTER_MS_APPLICATION
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	UNREGISTER_NMVT_APPLICATION
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution

	Chapter 4. Management Services Indications
	FP_NOTIFICATION
	VCB Structure
	Parameters

	MDS_MU_RECEIVED
	VCB Structure
	Parameters

	MS_STATUS
	VCB Structure
	Parameters

	NMVT_RECEIVED
	VCB Structure
	Parameters

	Appendix A. MS Function Sets
	Base Function Sets
	Optional Function Sets
	Function Sets Not Supported

	Appendix B. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Appendix C. Notices
	Trademarks

	Bibliography
	CS/AIX Version 6.3Publications
	IBM Communications Server for AIX Version 4 Release 2 Publications
	IBM Redbooks
	Block Multiplexer and S/390 ESCON Channel PCI Adapter publications
	AnyNet/2 Sockets and SNA publications
	AIX Operating System Publications
	Systems Network Architecture (SNA) Publications
	Host Configuration Publications
	z/OS Communications Server Publications
	Multiprotocol Transport Networking publications
	TCP/IP Publications
	X.25 Publications
	APPC Publications
	Programming Publications
	Other IBM Networking Publications

	Index
	Communicating Your Comments to IBM

