
IBM Communications Server for AIX

Common Service Verbs Programmer’s

Guide

V6.3

SC31-8593-02

���

IBM Communications Server for AIX

Common Service Verbs Programmer’s

Guide

V6.3

SC31-8593-02

���

Note:

Before using this information and the product it supports, be sure to read the general information under Appendix C,

“Notices,” on page 45.

Third Edition (November 2005)

This edition applies to IBM Communications Server for AIX, Version 6.3, program number 5765-E51, and to all

subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments is provided at the back of this publication. If the

form has been removed, you may send your comments to the following address:

 International Business Machines Corporation

 Attn: z/OS Communications Server Information Development

 Department AKCA, Building 501

 P.O. Box 12195, 3039 Cornwallis Road

 Research Triangle Park, North Carolina

 27709-2195

 U.S.A.

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada)

1+919-254-4028

Internet e-mail

v comsvrcf@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . v

About This Book . vii

Who Should Use This Book . vii

How to Use This Book . vii

Organization of This Book . vii

Typographic Conventions . vii

Graphic Conventions . viii

What Is New for This Release . viii

Where to Find More Information . ix

Chapter 1. Concepts . 1

Summary of Common Service Verbs . 1

CSV Entry Points: AIX or Linux Systems . 2

CSV Entry Points: Windows . 3

ACSSVC_C . 3

WinCSVStartup . 4

WinCSV . 6

WinAsyncCSV . 6

WinCSVCleanup . 8

GetCsvReturnCode . 8

Issuing a Verb . 9

AIX or Linux Considerations . 10

CSV Header File . 11

Multithreaded Applications . 11

Compiling and Linking the CSV Application . 11

Windows Considerations . 11

Compiling and Linking a CSV Application . 12

Writing Portable Applications . 12

Chapter 2. Common Service Verbs Reference 13

CONVERT . 13

VCB Structure . 14

Supplied Parameters . 14

Returned Parameters . 16

Creating a Type-G Conversion Table . 18

COPY_TRACE_TO_FILE . 19

VCB Structure . 19

Supplied Parameters . 19

Returned Parameters . 19

DEFINE_TRACE . 21

VCB Structure . 21

Supplied Parameters . 21

Returned Parameters . 23

SNACTL Environment Variable . 24

GET_CP_CONVERT_TABLE . 24

VCB Structure . 24

Supplied Parameters . 25

Returned Parameters . 26

LOG_MESSAGE . 27

VCB Structure . 27

Supplied Parameters . 27

Returned Parameters . 29

Creating a Log Message File . 30

TRANSFER_MS_DATA . 33

© Copyright IBM Corp. 2000, 2005 iii

VCB Structure . 33

Supplied Parameters . 34

Returned Parameters . 35

Appendix A. Code Pages . 39

ASCII Code Pages . 39

EBCDIC Code Pages . 40

Appendix B. Accessibility . 43

Using assistive technologies . 43

Keyboard navigation of the user interface . 43

z/OS information . 43

Appendix C. Notices . 45

Trademarks . 47

Bibliography . 49

CS/AIX Version 6.3Publications . 49

IBM Communications Server for AIX Version 4 Release 2 Publications 50

IBM Redbooks . 50

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications 51

AnyNet/2 Sockets and SNA publications . 51

AIX Operating System Publications . 51

Systems Network Architecture (SNA) Publications . 51

Host Configuration Publications . 52

z/OS Communications Server Publications . 52

Multiprotocol Transport Networking publications . 52

TCP/IP Publications . 52

X.25 Publications . 53

APPC Publications . 53

Programming Publications . 53

Other IBM Networking Publications . 53

Index . 55

Communicating Your Comments to IBM . 57

iv IBM Communications Server for AIX CSV Programmer’s Guide

Tables

1. Typographic Conventions . vii

© Copyright IBM Corp. 2000, 2005 v

vi IBM Communications Server for AIX CSV Programmer’s Guide

About This Book

This book is a guide for using the Communications Server for AIX Common

Service Verbs (CSVs) in C-language application programs. Communications Server

for AIX (hereafter referred to as CS/AIX) is a software product that enables a

server running the AIX®operating system to exchange information with other

nodes on an SNA network.

This book applies to V6.3 of CS/AIX running on AIX Version 5.2 and higher base

operating system.

To submit comments and suggestions about the Communications Server for AIX CSV

Programmer’s Guide, use the Reader’s Comment Form located at the back of this

book. This form provides instructions for submitting your comments by mail, by

FAX, or by electronic mail.

Who Should Use This Book

This book is intended for experienced C programmers who write Systems Network

Architecture (SNA) transaction programs for systems with CS/AIX. Programmers

may or may not have prior experience with SNA or the communication facilities of

CS/AIX.

Application programmers design and code transaction and application programs

that use the CS/AIX programming interfaces to send and receive data over an

SNA network. They should be thoroughly familiar with SNA, the remote program

with which the transaction or application program communicates, and the AIX or

Linux operating system programming and operating environments.

How to Use This Book

This section explains how information is organized and presented in this book.

Organization of This Book

This book is organized as follows:

v Chapter 1, “Concepts,” on page 1, summarizes Common Service Verbs and

explains how to use them in C programs.

v Chapter 2, “Common Service Verbs Reference,” on page 13, describes each verb

in detail. Each description includes the verb’s purpose, verb control block (VCB),

and supplied and returned parameters.

v Appendix A, “Code Pages,” on page 39, lists the ASCII and EBCDIC code pages

that are supported by the GET_CP_CONVERT_TABLE verb.

Typographic Conventions

Table 1 shows the typographic styles used in this document.

 Table 1. Typographic Conventions

Special Element Sample of Typography

Document title Communications Server for AIX Administration

Guide

© Copyright IBM Corp. 2000, 2005 vii

Table 1. Typographic Conventions (continued)

Special Element Sample of Typography

File or path name acssvcc.h

Program or application snamsgf

Command or AIX / Linux utility kill

Option or flag -I

Parameter or Motif field wVersionRequired; primary_rc

Literal value or selection that the user can

enter (including default values)

0x0001; 0

Constant or signal SIGPOLL; SV_ASCII_TO_EBCDIC

Return value WCSVVERNOTSUPPORTED; 0; AP_OK

Variable representing a supplied value programname

Environment variable LD_RUN_PATH

Programming verb CONVERT; TRANSFER_MS_DATA

Function, call, or entry point ACSSVC_P

Data structure WCSVDATA

Hexadecimal value 0x20

Graphic Conventions

AIX, LINUX

This symbol is used to indicate the start of a section of text that applies only to the

AIX or Linux operating system. It applies to AIX servers and to the IBM Remote

API Client running on AIX, Linux, Linux for pSeries or Linux for zSeries.

WINDOWS

This symbol is used to indicate the start of a section of text that applies to the IBM

Remote API Client on Windows.

This symbol indicates the end of a section of operating system specific text. The

information following this symbol applies regardless of the operating system.

What Is New for This Release

Communications Server for AIX V6.3 replaces Communications Server for AIX

V6.1.

Releases of this product that are still supported are:

v Communications Server for AIX V6.1

The following releases of this product are no longer supported:

v Communications Server for AIX Version 6 (V6)

v Communications Server for AIX Version 5 (V5)

v Communications Server for AIX Version 4 Release 2 (V4R2)

v Communications Server for AIX Version 4 Release 1 (V4R1)

How to Use This Book

viii IBM Communications Server for AIX CSV Programmer’s Guide

v SNA Server for AIX Version 3 Release 1.1 (V3R1.1)

v SNA Server for AIX Version 3 Release 1 (V3R1)

v AIX SNA Server/6000 Version 2 Release 2 (V2R2)

v AIX SNA Server/6000 Version 2 Release 1 (V2R1) on AIX 3.2

v AIX SNA Services/6000 Version 1

In addition, the following changes have been made to this documentation:

v It is now possible to run CSV applications on IBM Remote API clients, running

on AIX, Windows or Linux. These clients can communicate with the CS/AIX

server (or with a CS Linux server) using TCP/IP, or using HTTPS via a

WebSphere server.

Where to Find More Information

See the bibliography for other books in the CS/AIX library, as well as books that

contain additional information about topics related to SNA and AIX workstations.

The information in the CS/AIX books is also available in HTML format. You can

use this library to search for specific information or to view online versions of each

of the CS/AIX books.

What Is New for This Release

About This Book ix

x IBM Communications Server for AIX CSV Programmer’s Guide

Chapter 1. Concepts

This chapter provides information that you need to know when developing CSV

application programs. It contains the following information:

v Summary of Common Service Verbs

v CSV entry points

v Issuing a verb

AIX, LINUX

v AIX or Linux considerations

WINDOWS

v Windows considerations

v Writing portable applications

Summary of Common Service Verbs

This section briefly describes Common Service Verbs. Chapter 2, “Common Service

Verbs Reference,” on page 13 contains a detailed description of each verb.

CONVERT

Converts a character string from ASCII to EBCDIC or from EBCDIC to

ASCII.

COPY_TRACE_TO_FILE

AIX, LINUX

 Copies the current contents of the trace file (or files) to another file for

storage.

DEFINE_TRACE

Enables or disables tracing for specific APIs.

GET_CP_CONVERT_TABLE

Creates and returns a 256-byte conversion table to translate character

strings from a source code page to a target code page.

LOG_MESSAGE

AIX, LINUX

 Takes a message from a message file, adds specified data to it, and records

the message in the error log file or the audit log file.

© Copyright IBM Corp. 2000, 2005 1

TRANSFER_MS_DATA

WINDOWS

 Builds a Systems Network Architecture (SNA) request unit (RU) containing

Network Management Vector Transport (NMVT) data. The verb can send

the NMVT data to NetView for centralized problem diagnosis and

resolution. The data can also be logged in the local error log file.

CSV Entry Points: AIX or Linux Systems

AIX, LINUX

A C program calls Common Service Verbs through the following entry point:

 void ACSSVC_C (

 void * vcbptr

);

The only parameter passed to the function is the address of a verb control block

(VCB). The VCB is a structure made up of variables that identify the verb to be

executed, supply information to be used by the verb, and contain information

returned by the verb when execution is complete. Each verb has its own VCB

structure, which is declared in the header file /usr/include/sna/acssvcc.h (AIX) or

/opt/ibm/sna/include/acssvcc.h (Linux) delivered with CS/AIX. Use #include to

include this file in any application program that issues Common Service Verbs.

Note: The CSV VCBs contain many parameters marked as “reserved”; some of

these are used internally by the CS/AIX software, and others are not used in

this version but may be used in future versions. Your application must not

attempt to access any of these reserved parameters; instead, it must set the

entire contents of the VCB to zero to ensure that all of these parameters are

zero, before it sets other parameters that are used by the verb. This ensures

that CS/AIX will not misinterpret any of its internally-used parameters, and

also that your application will continue to work with future CS/AIX

versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

For compatibility with other CSV implementations, CS/AIX also provides the entry

points ACSSVC_P and ACSSVC, which can be used in the same way as ACSSVC_C.

The entry points are defined in the CSV header file acssvcc.h.

Summary of Common Service Verbs

2 IBM Communications Server for AIX CSV Programmer’s Guide

CSV Entry Points: Windows

WINDOWS

A Windows application accesses CSV using the following functions:

ACSSVC_C

Issues a verb. The verb blocks; that is, the application’s thread is

suspended until CSV has finished processing the verb and returned the

results. This has the same effect as WinCSV.

WinCSVStartup

Registers the application as a Windows CSV user, and determines whether

the CSV software supports the level of function required by the

application.

WinCSV Issues a verb. The verb blocks; that is, the application’s thread is

suspended until CSV has finished processing the verb and returned the

results. This has the same effect as ACSSVC_C.

WinAsyncCSV

Issues a verb. With the exception of TRANSFER_MS_DATA, the verb

blocks; processing is the same as for the WinCSV entry point. The

TRANSFER_MS_DATA verb normally completes asynchronously and does

not block; CSV indicates the completion by posting a message to the

application window.

WinCSVCleanup

Unregisters the application when it has finished using CSV.

GetCsvReturnCode

Generates a printable character string for the primary and secondary return

codes obtained on a CSV verb.

 The entry points are defined in the Windows CSV header file wincsv.h. This file is

installed in the subdirectory /sdk within the directory where you installed the

Windows Client software.

The application must call WinCSVStartup before attempting to issue any verbs

using the WinCSV or WinAsyncCSV calls. It then issues verbs using either WinAsyncCSV

(asynchronous) or WinCSV (synchronous). If a verb returns with return codes that

indicate an error, the application can use GetCsvReturnCode to obtain a text string

representation of these return codes, which can be used to generate standard error

messages.

When the application has finished issuing verbs using the WinCSV or WinAsyncCSV

calls, it must call WinCSVCleanup before terminating; it must not attempt to issue

any more verbs after calling WinCSVCleanup.

The following sections describe these functions.

ACSSVC_C

The application uses this function to issue a verb. The verb blocks; that is, the

application’s thread is suspended until CSV has finished processing the verb and

returned the results.

CSV Entry Points: Windows

Chapter 1. Concepts 3

For compatibility with other CSV implementations, CS/AIX also provides the entry

points ACSSVC_P and ACSSVC, which can be used in the same way as ACSSVC_C. The

entry points are defined in the CSV header file sdk/wincsv.h.

Function Call

void ASCCVC_C (

 void * vcbptr

)

Supplied Parameters

The only parameter passed to the function is the address of a verb control block

(VCB). The VCB is a structure made up of variables that identify the verb to be

executed, supply information to be used by the verb, and contain information

returned by the verb when execution is complete. Each verb has its own VCB

structure, which is declared in the header file sdk/wincsv.h delivered with the

Remote API Client on Windows. Use #include to include this file in any

application program that issues Common Service Verbs.

Note: The CSV VCBs contain many parameters marked as “reserved”; some of

these are used internally by the CS/AIX software, and others are not used in

this version but may be used in future versions. Your application must not

attempt to access any of these reserved parameters; instead, it must set the

entire contents of the VCB to zero to ensure that all of these parameters are

zero, before it sets other parameters that are used by the verb. This ensures

that CS/AIX will not misinterpret any of its internally-used parameters, and

also that your application will continue to work with future CS/AIX

versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values

The function does not return a value.

WinCSVStartup

The application uses this function to register as a Windows CSV user, and to

determine whether the CSV software supports the Windows CSV version that it

requires.

Function Call

int WINAPI WinCSVStartup (

 WORD wVersionRequired,

 WCSVDATA far * lpData

);

typedef struct

{

 WORD wVersion;

 char szDescription[128];

} WCSVDATA;

Supplied Parameters

The supplied parameter is:

wVersionRequired

The version of Windows CSV that the application requires. CS/AIX

supports version 1.0.

CSV Entry Points: Windows

4 IBM Communications Server for AIX CSV Programmer’s Guide

The low-order byte of this parameter specifies the major version number,

and the high-order byte specifies the minor version number. For example:

 Version wVersionRequired

1.0 0x0001

1.1 0x0101

2.0 0x0002

If the application can use more than one version, it should specify the

highest version that it can use.

Returned Values

The return value from the function is one of the following:

0 (zero)

The application was registered successfully, and the Windows CSV

software supports either the version number specified by the application or

a lower version. The application should check the version number in the

WCSVDATA structure to ensure that it is high enough.

WCSVVERNOTSUPPORTED

The version number specified by the application was lower than the lowest

version supported by the Windows CSV software. The application was not

registered.

WCSVSYSNOTREADY

The Remote API Client software has not been started, or the local node is

not active. The application was not registered.

 If the return value from WinCSVStartup is zero, the WCSVDATA structure contains

information about the support provided by the Windows CSV software. If the

return value is nonzero, the contents of this structure are undefined and the

application should not check them. The parameters in this structure are as follows:

wVersion

The Windows CSV version number that the software supports, in the same

format as the wVersionRequired parameter (defined previously). CS/AIX

supports version 1.0.

 If the software supports the version number requested by the application,

this parameter is set to the same value as the wVersionRequired parameter;

otherwise it is set to the highest version that the software supports, which

will be lower than the version number supplied by the application. The

application must check the returned value and take action as follows:

v If the returned version number is the same as the requested version

number, the application can use this Windows CSV implementation.

v If the returned version number is lower than the requested version

number, the application can use this Windows CSV implementation but

must not attempt to use features that are not supported by the returned

version number. If it cannot do this because it requires features not

available in the lower version, it should fail its initialization and not

attempt to issue any CSV verbs.

szDescription

A text string describing the Windows CSV software.

CSV Entry Points: Windows

Chapter 1. Concepts 5

WinCSV

The application uses this function to issue a verb, which blocks until verb

processing is completed.

Function Call

void WINAPI WinCSV (

 long vcbptr

);

Supplied Parameters

The only parameter to the function is a pointer to the VCB structure for the verb.

This is defined as a long integer, and so needs to be cast from a pointer to a long

integer. For the definition of the VCB structure for each verb, see Chapter 2,

“Common Service Verbs Reference,” on page 13.

Note: The CSV VCBs contain many parameters marked as “reserved”; some of

these are used internally by the CS/AIX software, and others are not used in

this version but may be used in future versions. Your application must not

attempt to access any of these reserved parameters; instead, it must set the

entire contents of the VCB to zero to ensure that all of these parameters are

zero, before it sets other parameters that are used by the verb. This ensures

that CS/AIX will not misinterpret any of its internally-used parameters, and

also that your application will continue to work with future CS/AIX

versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values

The function does not return a value. When the call returns, the application should

check the primary_rc and secondary_rc parameters in the VCB structure to determine

whether the verb completed successfully. For information about the parameters

returned in the VCB structure, see the descriptions of individual verbs in

Chapter 2, “Common Service Verbs Reference,” on page 13.

WinAsyncCSV

The application uses this function to issue a verb.

For TRANSFER_MS_DATA, the verb may complete asynchronously; CSV will

indicate the completion by posting a message to the application’s window handle.

All other verbs complete synchronously.

Before using the WinAsyncCSV call for the first time, the application must use

RegisterWindowMessage to obtain the message identifier that CSV will use for

messages indicating asynchronous verb completion. For more information, see

“Windows Considerations” on page 11.

Function Call

HANDLE WINAPI WinAsyncCSV (

 HWND hWnd,

 long vcbptr

);

Supplied Parameters

The supplied parameters are:

CSV Entry Points: Windows

6 IBM Communications Server for AIX CSV Programmer’s Guide

hWnd A window handle that CSV will use to post a message indicating

asynchronous verb completion.

vcbptr A pointer to the VCB structure for the verb. This parameter is defined as a

long integer, and so needs to be cast from a pointer to a long integer. For

more information about the VCB structure and on its usage for individual

verbs, see Chapter 2, “Common Service Verbs Reference,” on page 13.

Note: The CSV VCBs contain many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values: TRANSFER_MS_DATA

If the function was successful, the return value is a handle. When the verb later

completes, CSV uses this handle as an identifier in the message passed to the

application’s window procedure (for more information, see “Usage”).

A return value of 0 indicates that the function call was not accepted.

Returned Values: Other Verbs

For all verbs other than TRANSFER_MS_DATA, the function operates in the same

way as the WinCSV entry point (described in the previous section), and does not

return a value. When the call returns, the application should check the primary_rc

and secondary_rc parameters in the VCB structure to determine whether the verb

completed successfully.

Usage

Before using WinAsyncCSV for the first time, the application must use the

RegisterWindowMessage call to obtain the message identifier that CSV will use for

messages indicating asynchronous verb completion. RegisterWindowMessage is a

standard Windows function call, not specific to CSV; refer to your Windows

documentation for more information about the function. (There is no need to issue

the call again before subsequent verbs; the returned value will be the same for all

calls issued by the application.)

The application must pass the string “WinAsyncCSV” to the function; the returned

value is a message identifier, as described below.

Each time a verb that was issued using the WinAsyncCSV entry point completes

asynchronously, CSV posts a message to the window handle specified on the

WinAsyncCSV call. The format of the message is as follows:

v The message identifier is the value returned from the RegisterWindowMessage

call.

CSV Entry Points: Windows

Chapter 1. Concepts 7

v The lParam argument contains the address of the VCB that was supplied to the

original WinAsyncCSV call; the application can use this address to access the

returned parameters in the VCB structure.

v The wParam argument contains the handle that was returned to the original

WinAsyncCSV call.

WinCSVCleanup

The application uses this function to unregister as a Windows CSV user, after it has

finished issuing verbs.

Function Call

BOOL WINAPI WinCSVCleanup (void);

Supplied Parameters

No parameters are supplied for this function.

Returned Values

The return value from the function is one of the following:

TRUE The application was unregistered successfully.

FALSE An error occurred during processing of the call, and the application was

not unregistered. Check the log files for messages indicating the cause of

the failure.

GetCsvReturnCode

This call returns a printable character string interpreting the return codes from a

supplied VCB. The string can be used to generate application error messages for

return codes other than AP_OK.

This call is designed to provide strings for display to the end user of an

application. For return codes indicating configuration problems or user errors (for

example if a required component is not configured or not started), the string

should provide sufficient information to help the user correct the problem. For

return codes indicating application errors (for example, if the application has

issued a verb that is not valid or failed to supply a required parameter), the user

will not generally be able to correct the problem; in these cases, the string may be

meaningful only to an application developer.

Function Call

int WINAPI GetCsvReturnCode (

 struct svc_hdr FAR * vcbbptr,

 unsigned int buffer_length,

 unsigned char FAR * buffer_addr

);

typedef struct svc_hdr

 {

 unsigned short opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Verb extension code - reserved. */

 unsigned char reserv2; /* Reserved. */

 unsigned short primary_rc; /* Primary return code from verb. */

 unsigned long secondary_rc; /* Secondary (qualifying) return code. */

Supplied Parameters

The supplied parameters are:

vcbptr A pointer to the VCB structure for the verb. For more information about

CSV Entry Points: Windows

8 IBM Communications Server for AIX CSV Programmer’s Guide

the VCB structure and on its usage for individual verbs, see Chapter 2,

“Common Service Verbs Reference,” on page 13.

buffer_length

The length (in bytes) of the buffer supplied by the application to hold the

returned data string. The recommended length is 256 bytes.

buffer_addr

The address of the buffer supplied by the application to hold the returned

data string.

Returned Values

The return value from the function is one of the following:

0x00000000

The function completed successfully.

0x20000001

CSV could not read from the supplied VCB, or could not write to the

supplied data buffer.

0x20000002

The supplied data buffer is too small to hold the returned character string.

0x20000003

The dynamic link library (CSVSTR32.DLL) which generates the returned

character strings for this function, could not be loaded.

 If the return value is 0x00000000, the returned character string is in the buffer

identified by the buffer_addr parameter. This string is terminated by a null character

(binary zero), but does not include a trailing new-line (\n) character.

Issuing a Verb

The major steps in issuing a Common Service Verb follow. Each step is illustrated

by sample code pertaining to the CONVERT verb; for more information about this

verb, see Chapter 2, “Common Service Verbs Reference,” on page 13.

1. Create a structure variable from the VCB structure that applies to the verb to be

issued.

AIX, LINUX

 #include <acssvcc.h>

 .

 .

 .

 struct convert conv_block;

WINDOWS

 #include <wincsv.h>

 .

 .

 .

 struct convert conv_block;

CSV Entry Points: Windows

Chapter 1. Concepts 9

The VCB structures are declared in the CSV header file acssvcc.h(for AIX or

Linux) or wincsv.h (for Windows). One of these structures is named convert.

2. Clear (set to zero) the variables within the structure.

 memset(&conv_block, 0, sizeof(conv_block));

This step is important to ensure that the application can later be upgraded to

work with future CSV versions (which can use fields that are reserved in the

current version). It also helps in debugging and interpreting trace data.

3. Assign values to the required VCB variables.

 conv_block.opcode = SV_CONVERT;

 conv_block.direction = SV_ASCII_TO_EBCDIC;

 conv_block.char_set = SV_AE;

 conv_block.len = sizeof(tpstart_name);

 conv_block.source = (unsigned char *) tpstart_name;

 conv_block.target = (unsigned char *) tpstart.tp_name;

The fields SV_CONVERT, SV_ASCII_TO_EBCDIC, and SV_AE are symbolic

constants representing integers. These constants are defined in the CSV header

file.

The character array tpstart_name contains an ASCII string to be converted to

EBCDIC and placed in the character array tpstart.tp_name.

4. Invoke the verb. The only parameter is a pointer to the structure containing the

VCB for the verb.

AIX, LINUX

 ACSSVC_C ((char *)&conv_block);

For compatibility with other CSV implementations, the entry points ACSSVC_P or

ACSSVC can be used instead of ACSSVC_C.

WINDOWS

 WinCSV ((long) ((char far *) &conv_block));

Use the values returned by the verb.

 if (conv_block.primary_rc == SV_OK)

 {

 /* other statements */

 .

 .

 .

 }

AIX or Linux Considerations

AIX, LINUX

This section summarizes the information you need to consider when developing

applications for use in the AIX or Linux environment.

Issuing a Verb

10 IBM Communications Server for AIX CSV Programmer’s Guide

CSV Header File

The header file to be used with CSV applications is acssvcc.h. This file contains the

definitions of the CSV entry points and verb control blocks. It also includes the

common interface header file values_c.h, which contains the constants defined for

supplied and returned parameter values at the CSV interface. Both of these files

are stored in /usr/include/sna (AIX) or /opt/ibm/sna/include (Linux).

Multithreaded Applications

The CS/AIX CSV library supports multithreaded applications. The only restrictions

are as follows:

v Only one verb can be outstanding at any time. A verb will fail with the return

codes AP_STATE_CHECK and AP_SYNC_PENDING if another verb is in progress.

v The application must perform any required clean-up processing before a thread

terminates. The CSV library does not maintain any correlation between threads

and verb usage, and will not perform this processing automatically when a

thread terminates.

Do not attempt to use multithreaded applications with a version of the library that

does not support DCE threads.

Compiling and Linking the CSV Application

AIX Applications

To compile and link 32–bit applications, use the following options:

-bimport:/usr/lib/sna/csv_r.exp -I

/usr/include/sna

 To compile and link 64–bit applications, use the following options:

-bimport:/usr/lib/sna/csv_r64_5.exp -I

/usr/include/sna

Linux Applications

Before compiling and linking a CSV application, specify the directory where shared

libraries are stored, so that the application can find them at run time. To do this,

set the environment variable LD_RUN_PATH to /opt/ibm/sna/lib, or to

/opt/ibm/sna/lib64 if you are compiling a 64–bit application.

To compile and link 32–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib -lcsv -lsna_r -lpthread

 To compile and link 64–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib64 -lcsv -lsna_r -lpthread

Windows Considerations

WINDOWS

AIX or Linux Considerations

Chapter 1. Concepts 11

This section summarizes processing considerations you need to be aware of when

developing applications on a Windows client.

Compiling and Linking a CSV Application

This section provides information about compiling and linking CSV programs on

Windows.

Compiler Options for Structure Packing

The VCB structures for CSV are not packed. Do not use compiler options that

change this packing method.

DWORD parameters are on DWORD boundaries, WORD parameters are on

WORD boundaries, and BYTE parameters are on BYTE boundaries.

Header Files

The CSV header file to be included in Windows CSV applications is named

wincsv.h. This file is installed in the subdirectory /sdk within the directory where

you installed the Windows Client software.

Load-Time Linking

To link the TP to CSV at load time, link the TP to the API library file wincsv32.lib.

Run-Time Linking

To link the TP to CSV at run-time, include the following calls in the TP:

v LoadLibrary to load the CSV dynamic link library wincsv32.dll

v GetProcAddress to specify CSV on each of the CSV entry points required (such

as WinAsyncCSV, WinCSVStartup, and WinCSVCleanup)

v FreeLibrary when the library is no longer required

Writing Portable Applications

The following guidelines are provided for writing CS/AIX applications so that

they will be portable to other environments:

v Include the CSV header file without any path name prefix. Use include options

on the compiler to locate the file (refer to the appropriate section for your

operating system, earlier in this chapter) This enables the application to be used

in an environment with a different file system.

v Use the symbolic constant names for parameter values and return codes, not the

numeric values shown in the header file; this ensures that the correct value will

be used regardless of the way these values are stored in memory.

v Include a check for return codes other than those applicable to your current

operating system (for example using a “default” case in a switch statement), and

provide appropriate diagnostics.

v Ensure that any parameters shown as reserved are set to 0.

Windows Considerations

12 IBM Communications Server for AIX CSV Programmer’s Guide

Chapter 2. Common Service Verbs Reference

This chapter contains a description of each of the Common Service Verbs. The

following information is provided for each verb:

v Definition of the verb.

v Structure defining the verb control block (VCB) used by the verb. The structure

is declared in the CSV header file.

v Parameters (VCB fields) supplied for and returned by the verb. For each

parameter, the following information is provided:

– Description

– Possible values

– Additional information
v Additional information describing the use of the verb.

Most parameters supplied with and returned by Common Service Verbs are

hexadecimal values. To simplify coding, these values are represented by

meaningful symbolic constants defined in the header file values_c.h, which is

included by the CSV header file acssvcc.h. For example, the opcode (operation code)

parameter for the CONVERT verb is the hexadecimal value represented by the

symbolic constant SV_CONVERT. The file values_c.h also includes definitions of

parameter types such as AP_UINT16 that are used in the CSV VCBs.

It is important that you use the symbolic constant and not the hexadecimal value

when setting values for supplied parameters, or when testing values of returned

parameters. This is because different systems store these values differently in

memory, so the value shown may not be in the format recognized by your system.

If you are writing applications for use in other environments as well as CS/AIX,

see “Writing Portable Applications” on page 12.

Note: The CSV VCBs contain many parameters marked as “reserved”; some of

these are used internally by the CS/AIX software, and others are not used in

this version but may be used in future versions. Your application must not

attempt to access any of these reserved parameters; instead, it must set the

entire contents of the VCB to zero to ensure that all of these parameters are

zero, before it sets other parameters that are used by the verb. This ensures

that CS/AIX will not misinterpret any of its internally-used parameters, and

also that your application will continue to work with future CS/AIX

versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

CONVERT

The CONVERT verb translates an ASCII character string to EBCDIC or an EBCDIC

character string to ASCII.

The string to be converted is called the source string. The converted string is called

the target string.

© Copyright IBM Corp. 2000, 2005 13

VCB Structure

AIX, LINUX

typedef struct convert

 {

 AP_UINT16 opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Verb extension code - reserved. */

 unsigned char reserv2; /* Reserved. */

 AP_UINT16 primary_rc; /* Primary return code from verb. */

 AP_UINT32 secondary_rc; /* Secondary (qualifying) return code. */

 unsigned char direction; /* Direction of conversion - ASCII to */

 /* EBCDIC or vice-versa. */

 unsigned char char_set; /* Character set to use for the */

 /* conversion A, AE, or user-defined G. */

 AP_UINT16 len; /* Length of string to be converted. */

 unsigned char *source; /* Pointer to string to be converted. */

 unsigned char *target; /* Address to put converted string at. */

 };

WINDOWS

typedef struct convert

 {

 unsigned short opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Verb extension code - reserved. */

 unsigned char reserv2; /* Reserved. */

 unsigned short primary_rc; /* Primary return code from verb. */

 unsigned long secondary_rc; /* Secondary (qualifying) return code. */

 unsigned char direction; /* Direction of conversion - ASCII to */

 /* EBCDIC or vice-versa. */

 unsigned char char_set; /* Character set to use for the */

 /* conversion A, AE, or user-defined G. */

 unsigned short len; /* Length of string to be converted. */

 unsigned char *source; /* Pointer to string to be converted. */

 unsigned char *target; /* Address to put converted string at. */

 };

Supplied Parameters

The program using this verb supplies the following parameters:

opcode SV_CONVERT

direction

Possible values are:

SV_ASCII_TO_EBCDIC

Convert from ASCII to EBCDIC characters.

SV_EBCDIC_TO_ASCII

Convert from EBCDIC to ASCII characters.

char_set

Specifies which character set to use in converting the source string.

Possible values are:

SV_A The type-A character set consists of the following:

v Uppercase letters

v Numerals 0–9

CONVERT

14 IBM Communications Server for AIX CSV Programmer’s Guide

v Special characters $, #, @, and space

This character set is supported by a system-supplied type-A

conversion table.

 The first character of the source string must be an uppercase letter

or the special character $, #, or @. Spaces are allowed only in

trailing positions. Lowercase letters can be supplied in positions

other than the first character, but will be translated to uppercase.

SV_AE The type-AE character set consists of the following:

v Uppercase letters

v Lowercase letters

v Numerals 0–9

v Special characters $, #, @, and space

This character set is supported by a system-supplied type-AE

conversion table.

 The first character of the source string can be any character in the

character set. Spaces are allowed only in trailing positions, unless

the string consists entirely of spaces. No case conversion is

performed.

SV_G The type-G character set is defined by a user-written conversion

table. This table is described in detail under “Creating a Type-G

Conversion Table” on page 18.

AIX, LINUX

 The file containing the table must be specified by the environment

variable SNATBLG; set this variable to the full path name of the file.

(If the environment variable is not set or the file is not found, the

system returns the SV_TABLE_ERROR return code.)

WINDOWS

For Win32 clients, the file containing the table must be specified by

the CSVTBLG value Registry Key as follows:

 \\HKEY_LOCAL_MACHINE\SOFTWARE\SNA

Client\SxClient\Parameters\CSV_data

 The CSVTBLG parameter is described in the Communications Server

for AIX Administration Guide. Set this parameter to the full path

name of the file. (If the file is not found, the system returns the

SV_TABLE_ERROR return code.)

len The number of characters to be converted.

source Address of buffer containing character string to be converted.

target Address of buffer to contain the converted character string.

CONVERT

Chapter 2. Common Service Verbs Reference 15

This buffer can overlap or coincide with the buffer pointed to by the

source parameter. In this case, the converted data string overwrites the

source data string.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

 SV_OK

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

SV_PARAMETER_CHECK

secondary_rc

Possible values are:

SV_CONVERSION_ERROR

One or more characters in the source string were not found in the

conversion table, or embedded spaces were found in a type-A or

type-AE string. These characters or spaces were converted to nulls

(0x00). The verb still executed.

SV_INVALID_CHARACTER_SET

The char_set parameter contained a value that is not valid.

WINDOWS

SV_INVALID_DATA_SEGMENT

The supplied source or target string extended beyond the

boundary of a data segment, or the target data segment was not a

read/write segment.

SV_INVALID_DIRECTION

The direction parameter contained a value that is not valid.

SV_INVALID_FIRST_CHARACTER

The first character of a type-A source string is not a valid value.

SV_TABLE_ERROR

The file containing the user-written type-G conversion table was

not defined correctly, could not be accessed, or was not in the

correct format.

CONVERT

16 IBM Communications Server for AIX CSV Programmer’s Guide

AIX, LINUX

The file containing the table must be specified by the environment

variable SNATBLG; set this variable to the full path name of the file.

WINDOWS

For Win32 clients, the file containing the table must be specified by

the CSVTBLG value Registry Key as follows:

 \\HKEY_LOCAL_MACHINE\SOFTWARE\SNA

Client\SxClient\Parameters\CSV_data

 The CSVTBLG parameter is described in the Communications Server

for AIX Administration Guide. Set this parameter to the full path

name of the file.

Other Conditions: Other conditions can result in the following primary return

codes (primary_rc).

WINDOWS

SV_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software has not been started. Consult the System

Administrator for corrective action.

SV_INVALID_VERB_SEGMENT

The supplied VCB extended beyond the boundary of a data segment.

SV_INVALID_VERB

The opcode parameter did not match the operation code of any verb. No

verb executed.

SV_UNEXPECTED_DOS_ERROR

The operating system has encountered an error while processing the verb.

The operating system return code is returned through the secondary_rc. If

the problem persists, consult the System Administrator for corrective

action.

AIX, LINUX

 For the meaning of the operating system return code, see the file

/usr/include/errno.h.

WINDOWS

CONVERT

Chapter 2. Common Service Verbs Reference 17

For the meaning of the operating system return code, refer to your

operating system documentation.

Creating a Type-G Conversion Table

You can use the GET_CP_CONVERT_TABLE verb to build a type-G, user-written

conversion table. The GET_CP_CONVERT_TABLE verb is described in detail later

in this chapter.

The table must be an ASCII file 32 lines long. Each line must consist of 32

hexadecimal digits, representing 16 characters. The first 16 lines (256 characters)

specify the EBCDIC characters to which ASCII characters are converted; the

remaining 16 lines specify the ASCII characters to which EBCDIC characters are

converted.

For CS/AIX, the hexadecimal digits A–F can be either uppercase or lowercase.

However, you may want to make these digits uppercase to ensure compatibility

with the CSV implementation provided in the IBM® OS/2®Extended Edition.

The file /usr/lib/sna/samples/snatblg.dat (AIX) or

/opt/ibm/sna/samples/snatblg.dat (Linux) delivered with CS/AIX contains a

sample type-G conversion table which converts the first 127 characters of an ASCII

code page to EBCDIC. Here is a listing of that file:

00010203372D2E2F1605250B0C0D0E0F

101112133C3D322618193F27221D351F

405A7F7B5B6C507D4D5D5C4E6B604B61

F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F

7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6

D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D

79818283848586878889919293949596

979899A2A3A4A5A6A7A8A9C06AD0A107

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000102030009007F0000000B0C0D0E0F

101112130000080018190000001D001F

00001C00000A171B0000000000050607

00001600001E0004000000001415001A

20000000000000000000002E3C282B00

2600000000000000000021242A293B5E

2D2F00000000000000007C2C255F3E3F

000000000000000000603A2340273D22

00616263646566676869000000000000

006A6B6C6D6E6F707172000000000000

007E737475767778797A0000005B0000

000000000000000000000000005D0000

7B414243444546474849000000000000

7D4A4B4C4D4E4F505152000000000000

5C00535455565758595A000000000000

30313233343536373839000000000000

CONVERT

18 IBM Communications Server for AIX CSV Programmer’s Guide

COPY_TRACE_TO_FILE

AIX, LINUX

The COPY_TRACE_TO_FILE verb copies the current contents of the API trace file

or files to a new file, and clears the trace files. This enables you to save a copy of

the current trace data for this application. For more information about API tracing,

refer to the Communications Server for AIX Diagnostics Guide.

All API tracing on this application (for any of the CS/AIX APIs) must be stopped

before you issue COPY_TRACE_TO_FILE. If any tracing is active, use the

DEFINE_TRACE verb to stop it before using this verb.

VCB Structure

typedef struct copy_trace_to_file

 {

 AP_UINT16 opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Verb extension code - reserved. */

 unsigned char reserv2; /* Reserved. */

 AP_UINT16 primary_rc; /* Primary return code from verb. */

 AP_UINT32 secondary_rc; /* Secondary (qualifying) return code. */

 unsigned char reserv3[8]; /* Reserved. */

 unsigned char file_name[64]; /* File name to write to. */

 unsigned char file_option; /* File options. New or overwrite. */

 unsigned char reserv4[12]; /* Reserved. */

 };

Supplied Parameters

The program using this verb supplies the following parameters:

opcode SV_COPY_TRACE_TO_FILE

file_name

The name (and optionally the path) of the file to hold the trace

information. This name can be up to 64 characters. If the file is not in the

current directory, specify the full path; ensure that it is a valid path on any

computer to which this verb is issued.

 If you set the file_option parameter to SV_NEW, the file name specified must

not be the name of an existing file.

file_option

Possible values are:

SV_NEW Create a new file with the name specified in file_name. An error is

returned if this file already exists.

SV_OVERWRITE

Overwrite the file if it exists, or create the file if it does not exist.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

COPY_TRACE_TO_FILE

Chapter 2. Common Service Verbs Reference 19

primary_rc

SV_OK

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

SV_PARAMETER_CHECK

secondary_rc

SV_INVALID_FILE_OPTION

The file_option parameter contained a value that was not valid.

State Check: If the verb does not execute successfully because of a state error, the

following parameters are returned:

primary_rc

SV_STATE_CHECK

secondary_rc

Possible values:

SV_TRACE_BUFFER_EMPTY

There was no trace information to copy to file. Either the trace files

were empty, or the SNATRC environment variable was not set up.

This environment variable must be set up before the application is

started. For information about how to control API tracing, refer to

the Communications Server for AIX Diagnostics Guide.

SV_TRACE_NOT_STOPPED

Tracing was still active when the verb was issued. Before issuing

COPY_TRACE_TO_FILE, tracing for the CSV, APPC, CPI-C, and

RUI interfaces must be turned off. Use DEFINE_TRACE to turn off

any active tracing before issuing COPY_TRACE_TO_FILE; for more

information, see “DEFINE_TRACE” on page 21.

Other Conditions: Other conditions can result in the following primary return

codes (primary_rc).

SV_FILE_ALREADY_EXISTS

You specified the value SV_NEW for the file_option parameter (to create a new

output file), but a file with the specified name already exists.

SV_INVALID_VERB

The opcode parameter did not match the operation code of any verb. No

verb executed.

SV_OUTPUT_DEVICE_FULL

There was insufficient space in the output file’s disk or directory to hold

the trace information. The trace files were not reset; the output file may

contain some of the available trace information, but is not complete.

SV_UNEXPECTED_DOS_ERROR

The operating system has encountered an error while processing the verb.

COPY_TRACE_TO_FILE

20 IBM Communications Server for AIX CSV Programmer’s Guide

The operating system return code is returned through the secondary_rc. If

the problem persists, consult the System Administrator for corrective

action.

 For the meaning of the operating system return code, refer to the file

/usr/include/errno.h.

DEFINE_TRACE

The DEFINE_TRACE verb enables or disables tracing for specified Application

Program Interfaces (APIs).

The trace files must be set up before the application which issues this verb is

started, using the SNATRC environment variable. For information about how to

control API tracing, refer to the Communications Server for AIX Diagnostics Guide.

The operation of this verb is affected by the SNACTL environment variable (for more

information, see “SNACTL Environment Variable” on page 24).

VCB Structure

typedef struct define_trace

 {

 AP_UINT16 opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Verb extension code - reserved. */

 unsigned char reserv2; /* Reserved. */

 AP_UINT16 primary_rc; /* Primary return code from verb. */

 AP_UINT32 secondary_rc; /* Secondary (qualifying) return code.*/

 unsigned char reserv3[8]; /* Reserved. */

 unsigned char dt_set; /* Trace state to be set (on/off). */

 unsigned char appc; /* Tracing for APPC. */

 unsigned char nof; /* Tracing for NOF. */

 unsigned char srpi; /* Reserved. */

 unsigned char sdlc; /* Reserved. */

 unsigned char tkn_rng_dlc; /* Reserved. */

 unsigned char pcnet_dlc; /* Reserved. */

 unsigned char dft; /* Reserved. */

 unsigned char acdi; /* Reserved. */

 unsigned char reserv5; /* Reserved. */

 unsigned char comm_serv; /* Tracing for Comm_Serv_API. */

 unsigned char ehllapi; /* Reserved. */

 unsigned char x25_api; /* Reserved. */

 unsigned char x25_dlc; /* Reserved. */

 unsigned char twinax; /* Reserved. */

 unsigned char ms; /* Tracing for MS. */

 unsigned char rui; /* Tracing for RUI interface of LUA. */

 unsigned char etherand; /* Reserved. */

 unsigned char subsym; /* Reserved. */

 unsigned char reserv7[8]; /* Reserved. */

 unsigned char reset_trc; /* Flag to reset the trace files. */

 AP_UINT16 trunc; /* Truncation size for trace records. */

 AP_UINT16 strg_size; /* Reserved. */

 unsigned char reserv8[1]; /* Reserved. */

 unsigned char phys_link[8]; /* Reserved. */

 unsigned char reserv9[56]; /* Reserved. */

 };

Supplied Parameters

The program using this verb supplies the following parameters:

opcode SV_DEFINE_TRACE

COPY_TRACE_TO_FILE

Chapter 2. Common Service Verbs Reference 21

dt_set Specifies whether the DEFINE_TRACE verb is being used to turn tracing

on or to turn tracing off.

 Possible values are:

SV_ON Enable tracing for a particular API if the parameter for that API (

appc, nof, comm_serv, ms or rui) has bit 0 set to 1; do not modify

tracing for the API if the parameter has bit 0 set to 0.

SV_OFF Disable tracing for a particular API if the parameter for that API

has bit 0 set to 1; do not modify tracing for the API if the

parameter has bit 0 set to 0.

appc Specifies whether the state of APPC and CPI-C tracing (on or off) is to be

changed. This option controls both APPC and CPI-C tracing; they cannot

be controlled independently.

 CS/AIX checks only the most significant bit (bit 0) of this byte; other bits

are ignored.

 To enable or disable tracing for APPC and CPI-C, depending on the dt_set

parameter, set the most significant bit of this byte to 1.

 To leave tracing in its current state for APPC and CPI-C, set the most

significant bit of this byte to zero.

nof Specifies whether the state of NOF tracing (on or off) is to be changed.

 CS/AIX checks only the most significant bit (bit 0) of this byte; other bits

are ignored.

 To enable or disable NOF tracing, depending on the dt_set parameter, set

the most significant bit of this byte to 1.

 To leave tracing in its current state for NOF, set the most significant bit of

this byte to zero.

comm_serv

Specifies whether the state of tracing for the Common Service Verbs (on or

off) is to be changed.

 CS/AIX checks only the most significant bit (bit 0) of this byte; other bits

are ignored.

 To enable or disable tracing for Common Service Verbs, depending on the

dt_set parameter, set the most significant bit of this byte to 1.

 To leave tracing in its current state for Common Service Verbs, set the most

significant bit of this byte to zero.

ms Specifies whether the state of MS tracing (on or off) is to be changed.

 CS/AIX checks only the most significant bit (bit 0) of this byte; other bits

are ignored.

 To enable or disable MS tracing, depending on the dt_set parameter, set the

most significant bit of this byte to 1.

 To leave tracing in its current state for MS, set the most significant bit of

this byte to zero.

rui Specifies whether the state of tracing for the RUI interface of LUA (on or

off) is to be changed.

 CS/AIX checks only the most significant bit (bit 0) of this byte; other bits

are ignored.

DEFINE_TRACE

22 IBM Communications Server for AIX CSV Programmer’s Guide

To enable or disable tracing for the RUI interface, depending on the dt_set

parameter, set the most significant bit of this byte to 1.

 To leave tracing in its current state for the RUI interface, set the most

significant bit of this byte to zero.

reset_trc

Specifies whether to reset the trace file or files. Possible values are:

SV_YES Reset the trace file or files; empty the files and discard their current

contents.

SV_NO Do not reset the trace files.

trunc The length at which each trace record is to be truncated. Specify zero if

you do not want truncation.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

SV_OK

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

SV_PARAMETER_CHECK

secondary_rc

Possible values are:

SV_INVALID_SET

The dt_set parameter contained a value that was not valid.

SV_INVALID_RESET_TRACE

The reset_trc parameter contained a value that was not valid.

Other Conditions: Other conditions can result in the following primary return

codes (primary_rc):

SV_INVALID_VERB

The opcode parameter did not match the operation code of any verb. No

verb executed.

SV_UNEXPECTED_DOS_ERROR

The operating system has encountered an error while processing the verb.

The operating system return code is returned through the secondary_rc. If

the problem persists, consult the System Administrator for corrective

action.

DEFINE_TRACE

Chapter 2. Common Service Verbs Reference 23

For the meaning of the operating system return code, refer to the file

/usr/include/errno.h.

SNACTL Environment Variable

The SNACTL environment variable is provided by CS/AIX for debugging

application programs which use the DEFINE_TRACE verb. If this variable is set,

DEFINE_TRACE verbs issued by the program will have no effect on tracing

(although they will still return SV_OK unless an error occurs). This can be used to

force tracing of a program which normally turns tracing off, or to suppress tracing

of a program which normally uses it. For more information about tracing and on

this environment variable, refer to the Communications Server for AIX Diagnostics

Guide.

GET_CP_CONVERT_TABLE

The GET_CP_CONVERT_TABLE verb creates and returns a 256-byte conversion

table to translate character strings from a source code page to a target code page. If

a character from the source code page does not exist in the target code page, the

translated (target) string differs from the original (source) string.

A code page is a table that associates specific ASCII or EBCDIC values with

specific characters. It is used to provide a national language variant of ASCII or

EBCDIC which supports characters specific to that language. For a list of code

pages supported by CS/AIX and the national languages for which they are used,

see Appendix A, “Code Pages,” on page 39.

VCB Structure

AIX, LINUX

typedef struct get_cp_convert_table

 {

 AP_UINT16 opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Verb extension code - reserved. */

 unsigned char reserv2; /* Reserved. */

 AP_UINT16 primary_rc; /* Primary return code from verb. */

 AP_UINT32 secondary_rc; /* Secondary (qualifying) return code. */

 AP_UINT16 source_cp; /* Source code page for conversion table.*/

 AP_UINT16 target_cp; /* Target code page for conversion table.*/

 unsigned char *conv_tbl_addr; /* Address to put conversion table at. */

 unsigned char char_not_fnd; /* Character not found option: either */

 /* substitute character or round trip. */

 unsigned char substitute_char; /* Substitute character to use. */

 };

WINDOWS

typedef struct get_cp_convert_table

 {

 unsigned short opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Verb extension code - reserved. */

 unsigned char reserv2; /* Reserved. */

 unsigned short primary_rc; /* Primary return code from verb. */

 unsigned long secondary_rc; /* Secondary (qualifying) return code. */

 unsigned short source_cp; /* Source code page for conversion table.*/

DEFINE_TRACE

24 IBM Communications Server for AIX CSV Programmer’s Guide

unsigned short target_cp; /* Target code page for conversion table.*/

 unsigned char *conv_tbl_addr; /* Address to put conversion table at. */

 unsigned char char_not_fnd; /* Character not found option: either */

 /* substitute character or round trip. */

 unsigned char substitute_char; /* Substitute character to use. */

 };

Supplied Parameters

The program using this verb supplies the following parameters:

opcode SV_GET_CP_CONVERT_TABLE

source_cp

Source code page (from which characters are converted).

 A decimal number which identifies the code page to be used. For a list of

valid code page numbers, see Appendix A, “Code Pages,” on page 39.

target_cp

Target code page (to which characters are converted).

 A decimal number which identifies the code page to be used. For a list of

valid code page numbers, see Appendix A, “Code Pages,” on page 39.

conv_tbl_addr

Address of buffer to contain the 256-byte conversion table.

char_not_fnd

Specifies the action to take if a character in the source code page does not

exist in the target code page.

 Possible values are:

SV_ROUND_TRIP

Store a unique value in the conversion table for each source

code-page character. This value is useful only if you build a second

conversion table to convert between the same two code pages in

the reverse direction. If you specify the SV_ROUND_TRIP value in

building both conversion tables, any character translated from one

code page to the other and then back will be unchanged.

SV_SUBSTITUTE

Store a substitute character (specified by the substitute_char

parameter) in the conversion table. Converting the translated

character string back to the original code page will not necessarily

recreate the original character string.

substitute_char

Specifies the character to store in the conversion table when a character

from the source code page has no equivalent in the target code page.

 Use this parameter only if the char_not_fnd parameter is set to

SV_SUBSTITUTE.

 When the target code page is an EBCDIC code page, this parameter should

be set to the EBCDIC value of the character you want to use, not to the

actual character. For example, to use the – character as the substitute

character in an ASCII to EBCDIC conversion table, supply the value 60 (the

value associated with the character – in EBCDIC), and not the actual

GET_CP_CONVERT_TABLE

Chapter 2. Common Service Verbs Reference 25

character –. When the target code page is an ASCII code page, you can

specify either the character or its ASCII value.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

SV_OK

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

SV_PARAMETER_CHECK

secondary_rc

Possible values are:

SV_INVALID_CHAR_NOT_FOUND

The char_not_fnd parameter contained a value that was not valid.

SV_INVALID_SOURCE_CODE_PAGE

The code page specified by the source_cp parameter is not

supported.

SV_INVALID_TARGET_CODE_PAGE

The code page specified by the target_cp parameter is not

supported.

Other Conditions: Other conditions can result in the following primary return

codes (primary_rc):

WINDOWS

SV_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software has not been started. Consult the System

Administrator for corrective action.

SV_INVALID_VERB_SEGMENT

The supplied VCB extended beyond the boundary of a data segment.

SV_INVALID_VERB

The opcode parameter did not match the operation code of any verb. No

verb executed.

GET_CP_CONVERT_TABLE

26 IBM Communications Server for AIX CSV Programmer’s Guide

SV_UNEXPECTED_DOS_ERROR

The operating system has encountered an error while processing the verb.

The operating system return code is returned through the secondary_rc. If

the problem persists, consult the System Administrator for corrective

action.

AIX, LINUX

For the meaning of the operating system return code, refer to the file

/usr/include/errno.h.

WINDOWS

For the meaning of the operating system return code, refer to your operating

system documentation.

LOG_MESSAGE

AIX, LINUX

The LOG_MESSAGE verb records a message in the CS/AIX error or audit log file.

The text for the message is taken from a user-defined message file; the verb can

also supply parameters to be inserted in the message.

If you use this verb, you will need to supply an appropriate message file for use

with the application. For more information, see “Creating a Log Message File” on

page 30.

For more information about the CS/AIX audit and error log files and the format of

the logged messages, refer to the Communications Server for AIX Diagnostics Guide.

VCB Structure

typedef struct log_message

 {

 AP_UINT16 opcode; /* Verb identifying operation code. */

 unsigned char opext; /* Verb extension code - reserved. */

 unsigned char reserv2; /* Reserved. */

 AP_UINT16 primary_rc; /* Primary return code from verb. */

 AP_UINT32 secondary_rc; /* Secondary (qualifying) return code. */

 AP_UINT16 msg_num; /* Number of message to log. */

 unsigned char origntr_id[8]; /* ID of the originator of the message. */

 unsigned char msg_file_name[3]; /* Message file to search for the */

 /* required message number. */

 unsigned char msg_act; /* Message action - how to log the msg. */

 AP_UINT16 msg_ins_len; /* Length of data for insertion in msg. */

 unsigned char *msg_ins_ptr; /* Address of data for insertion in msg.*/

 };

Supplied Parameters

The program using this verb supplies the following parameters:

GET_CP_CONVERT_TABLE

Chapter 2. Common Service Verbs Reference 27

opcode SV_LOG_MESSAGE

msg_num

Number of the message in the message file specified by msg_file_name.

 The message identifier shown in the CS/AIX log file consists of two parts:

the CS/AIX component identifier and the message number. The msg_num

parameter gives the message number; the component identifier for a

message logged by this verb is always 32,767.

origntr_id

Name of the component issuing the LOG_MESSAGE verb; a string of up to

eight characters. This parameter is optional; set the first byte to 0x00 if you

do not want to include it.

 If you specify this name, CS/AIX uses it as the first parameter inserted

into the message text; that is, this name replaces “%1” in the message text.

For further information, see “Creating a Log Message File” on page 30.

msg_file_name

Name of the file containing the text for the message to be logged. For

information about how to create this message file, see “Creating a Log

Message File” on page 30.

 The message file must have a name consisting of three characters followed

by the .msg extension. This parameter specifies only the base file name; the

.msg extension is added automatically.

 The message file must be stored in the directory /usr/lib/sna (AIX) or

/opt/ibm/sna/lib (Linux) on the computer where the application is running.

If CS/AIX is set up to use centralized logging on a single server, the same

message file must also be in /usr/lib/sna on the server that holds the log

file.

msg_act

Action to be taken when processing the message. This defines the log

category (problem, exception, or audit) of the logged message; refer to the

Communications Server for AIX Diagnostics Guide for more information about

log categories. Possible values are:

SV_PROBLEM

Log as a problem message.

SV_EXCEPTION

Log as an exception message.

SV_AUDIT

Log as an audit message.

For compatibility with other CSV implementations, the following values

are also supported. These are provided for migration only, because the

mapping between these values and the CS/AIX log categories is only

approximate and may not always give the most appropriate category; use

the values SV_PROBLEM, SV_EXCEPTION, or SV_AUDIT when writing new

applications.

SV_INTRV, SV_INTRV_16, SV_NO_INTRV_16

Equivalent to SV_PROBLEM

SV_NO_INTRV, SV_NO_INTRV_10

Equivalent to SV_EXCEPTION

LOG_MESSAGE

28 IBM Communications Server for AIX CSV Programmer’s Guide

SV_NO_INTRV_8, SV_NO_INTRV_6

Equivalent to SV_AUDIT

A message of type SV_EXCEPTION or SV_AUDIT, or equivalent, will be logged

only if CS/AIX is currently configured to log messages of the appropriate

type (exception or audit); otherwise the message will be ignored (although

the verb will still return SV_OK). Values other than SV_INTRV and

SV_NO_INTRV may not be supported by other CSV implementations.

msg_ins_len

Length of data to be inserted into the message (0–1000 characters). Specify

a length of 0 (zero) if no data is to be inserted.

msg_ins_ptr

Address of the data to be inserted into the message. This parameter is

ignored if msg_ins_len is 0 (zero).

 The data consists of 1–19 null-terminated strings. The total length of the

inserted data must not exceed 1000 characters.

 When you create a log message file, you specify the positions in the

message text where these data strings are to be inserted. For further

information, see “Creating a Log Message File” on page 30. The data

supplied to this verb must include a string for each parameter required by

the message text; the first string may be supplied in the origntr_id

parameter instead of in this data string.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc

SV_OK Either the message was logged successfully, or the message was

ignored because CS/AIX is not currently configured to log

messages of the specified type (exception or audit).

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

SV_PARAMETER_CHECK

secondary_rc

One of the following:

SV_INVALID_FIRST_CHARACTER

The first character of the msg_file_name parameter was zero or a

space character.

SV_INVALID_MESSAGE_ACTION

The msg_act parameter contained a value that was not valid.

LOG_MESSAGE

Chapter 2. Common Service Verbs Reference 29

There is no SV_PARAMETER_CHECK secondary return code indicating that the specified

message file was not found or could not be opened; this error will cause a return

code of SV_UNEXPECTED_DOS_ERROR.

Other Conditions: Other conditions can result in the following primary return

codes (primary_rc):

SV_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software has not been started. Contact the System

Administrator for corrective action.

SV_INVALID_VERB

The opcode parameter did not match the operation code of any verb. No

verb executed.

SV_UNEXPECTED_DOS_ERROR

The operating system has encountered an error while processing the verb.

The operating system return code is returned through the secondary_rc. If

the problem persists, consult the System Administrator for corrective

action.

 For the meaning of the operating system return code, refer to the file

/usr/include/errno.h.

Creating a Log Message File

The snamsgf program provided with CS/AIX, enables you to produce your own

message files to be used with the LOG_MESSAGE verb.

To use this facility, you must first create a text file containing the message numbers

and text, and then use snamsgf to convert it into a message file.

Message Source File Format

A message source file is a plain ASCII text file. You can include a comment line

anywhere in the file by using an asterisk (*) as the first character of the line.

CS/AIX ignores all the remaining text on this line.

The first line in the source file must be “ID:”, followed by a character string of 1–8

characters identifying the component logging the message. This string is printed

out at the start of each message in the log file. Specify a string that identifies the

user of this message file; for example, the name of the application if only one

application uses this message file, or a string identifying a group of applications

that use the same message file.

The rest of the message source file consists of entries for individual messages. Each

message is defined as a series of fields, as shown in the example that follows.

 ID:MYAPPL

 Message: 1

 Type: PROBLEM

 Cause Type: CSV

 Cause: The specified file could not be opened.

 Action: Check the reason shown on this message for more information.

 Flags: NONE

 String: Could not open the file.$

 Filename = %1\nReason = %2

The fields are as follows:

Message

A unique identifier for the message (a decimal number in the range

LOG_MESSAGE

30 IBM Communications Server for AIX CSV Programmer’s Guide

1–65,535). The messages in the file must be listed in ascending order of

message number. Numbers do not need to be consecutive; however, large

ranges of unused message numbers will increase the size of the message

file.

Type The category of log message. Specify PROBLEM, EXCEPTION, or AUDIT.

The actual category that CS/AIX uses when logging the message is

determined by the msg_act parameter of the LOG_MESSAGE verb. In the

source file, this information is included for readability, but CS/AIX ignores

it.

Cause type

A summary of the cause of the message. Specify CSV (to indicate that the

message was logged using the CSV LOG_MESSAGE verb), or one of the

following values:

Internal

Internal error in the application.

Resource

Resource shortage (for example, insufficient memory on the AIX

computer).

User User error (for example, parameters that are not valid supplied on

the command line to an application program).

SNA SNA protocol violation by a remote system.

Config

Configuration mismatch.

Audit A normal event, reported for information only.

Cause The cause of the condition being logged.

Action

Any action that the local System Administrator should take as a result of

the message. For audit messages, which provide accounting and progress

information instead of reporting error conditions, there is generally no

action required.

Flags Specify CONSOLE to indicate that the message should be written to the

AIX computer’s system console as well as to the log file, or NONE to

indicate that the message should be written only to the log file.

String The text of the message (1–256 characters). To include parameters supplied

to the LOG_MESSAGE verb, use %1, %2, and so on to indicate the position

of each parameter. When logging the message, CS/AIX replaces %1 with

the first parameter supplied to LOG_MESSAGE, %2 with the second

parameter, and so on.

 The origintr_id parameter supplied to LOG_MESSAGE, if any, replaces %1.

The first parameter in the data string supplied to LOG_MESSAGE replaces

%2 (if origntr_id was used) or %1 (if origntr_id was not used); the second

parameter in the data string replaces %3 or %2, and so on.

 The following also applies to these fields:

v Each field name (such as Message) must be at the start of a line, followed by a

colon. Spaces or tabs following the colon are ignored. All the text associated

with the field name must be in a single line (except when lines are concatenated

using the $ character, as described below); there is no limit on the length of the

line.

LOG_MESSAGE

Chapter 2. Common Service Verbs Reference 31

v In the Cause, Action, and String fields, the following characters can be used to

control the format of the text written to the log file:

\t Insert a tab character in the output text.

$ (followed by a new-line character in the source text)

Insert a new-line character in the output text, and continue with the

following line of the source file. This enables you to specify a text field

that extends over more than one line. The last line of the text field must

not end with a $ character.

\n Insert a new-line character in the output text, and continue with the

following character of the source file. This enables you to specify a text

field as a single line in the source file, and to specify where line breaks

will appear in the output. However, it is recommended that you split

long text fields into multiple lines using the $ character, as described

above, for readability.

\$ Insert a $ character in the output text.

%n (in the String parameter only)

Insert the nth parameter supplied to the log call in the output text.
The logging code does not insert new-line characters into text strings except

where \n or $ characters are included in the source text. To ensure that the

output text is easily readable on an 80-column screen, use these characters to

force line breaks.

v The fields Message, Type, Cause Type, Flags, and String must be specified. The

fields Cause and Action are optional; to indicate that one of these fields is not

used, specify the following string, with capitalization as shown:

@!* Not Used

For example, if the message is an audit message and no action is required, use

the following line:

 Action: @!* Not Used

In this case, CS/AIX will not include the Action field when writing the message

to the log file.

v The total length of the Cause and Action fields must not exceed 2048 characters.

Sample Log Message Output

The previous section shows a sample entry in the message source file. If you build

a message file from a source file containing this entry, an application can call

LOG_MESSAGE specifying message number 1 in this message file. The

application’s supplied data must contain two null-terminated strings, one

specifying the file name (for example, /usr/jim/myfile) and one specifying the

reason for the failure (for example, “File not found”). The output will then be as

follows:

 ------------------12:17:28 BST 05/13/1994 ------------------

 MYAPPL Message 32767-1, Subcode: 0

 Log category: PROBLEM Cause Type: CSV

 System: jimsbox

 Process ID: 12345

 Could not open the file.

 Filename = /usr/jim/myfile

 Reason = File not found

 Cause: The specified file could not be opened.

 Action: Check the reason shown on this message for more information.

LOG_MESSAGE

32 IBM Communications Server for AIX CSV Programmer’s Guide

This sample output assumes that verbose logging (not succinct logging) is being

used. For more information about succinct logging, and the format of entries in the

log file if it is being used, refer to the chapter on log messages in the

Communications Server for AIX Diagnostics Guide.

Creating the Message File from the Text File

To convert the text file into a message file, use the snamsgf program as follows:

snamsgf infile outfile

 The name of the input text file is infile, including a path if it is not in the current

directory.

The name of the output message file is outfile, as specified by the msg_file_name

parameter on LOG_MESSAGE. The output file must have a name consisting of 1–3

characters with the extension .msg; you need not specify the extension on the

command line.

The output file is created in the current directory. It must be stored in the directory

/usr/lib/sna (AIX) or /opt/ibm/sna (Linux) in order for CS/AIX to find it when it is

specified by a LOG_MESSAGE verb.

For example, the following command creates the message file new.msg from the

source text file /usr/fred/myfile.text:

snamsgf /usr/fred/myfile.text new

 The snamsgf program writes error messages to standard error if it detects errors in

the input file format.

TRANSFER_MS_DATA

WINDOWS

The TRANSFER_MS_DATA verb builds a request unit (RU) containing Network

Management Vector Transport (NMVT) data. The verb can send the NMVT data to

NetView for centralized problem diagnosis and resolution. The data can also be

logged in the local error log file.

The application can supply a complete NMVT to be sent, or it can supply some of

the required subvectors and request CS/AIX to add header information or

additional subvectors. For more information about the format of NMVTs, including

the format of the headers and subvectors that CS/AIX adds, refer to IBM Systems

Network Architecture: Formats.

VCB Structure

typedef struct transfer_ms_data

{

 unsigned short opcode; /* Verb operation code */

 unsigned char data_type; /* Type of data supplied by appl */

 unsigned char reserv2; /* reserved */

 unsigned short primary_rc; /* Primary return code */

LOG_MESSAGE

Chapter 2. Common Service Verbs Reference 33

unsigned long secondary_rc; /* Secondary return code */

 unsigned char options; /* Verb options */

 unsigned char reserv3; /* reserved */

 unsigned char originator_id[8]; /* Originator ID */

 unsigned short dlen; /* Length of data */

 unsigned char *dptr; /* Data */

} TRANSFER_MS_DATA;

Supplied Parameters

The program using this verb supplies the following parameters:

opcode SV_TRANSFER_MS_DATA

data_type

Possible values are:

SV_NMVT

The data contains a complete NMVT.

SV_ALERT_SUBVECTORS

The data contains MS subvectors in the SNA-defined format for an

Alert major vector. CS/AIX adds an NMVT header and an alert

major vector header.

SV_USER_DEFINED

The data contains a complete NMVT request unit. CS/AIX always

logs the data, and does not send it to NetView.

SV_PDSTATS_SUBVECTORS

The data contains problem determination statistics. CS/AIX always

logs the data, and does not send it to NetView.

options This parameter is a one-byte value, with individual bits indicating the

options selected. Bit 0 is the most significant and bit 7 is the least

significant bit. For compatibility with other implementations, the bit values

for bits 0–3 are defined so that a value of 1 indicates no action and a value

of 0 indicates an action. (Bits 1–3 are ignored if data_type is set to

SV_USER_DEFINED.)

 Bit 0—Add Date/Time (0x01) subvector to the data.

v To request CS/AIX to add the subvector, set this bit to 0.

v To request CS/AIX not to add the subvector, set this bit to 1.

Bit 1—Add Product Set ID (0x10) subvector to the data. If the application

supplies data that already contains a Product Set ID subvector, CS/AIX

adds its own Product Set ID subvector immediately preceding the existing

one.

v To request CS/AIX to add the subvector, set this bit to 0.

v To request CS/AIX not to add the subvector, set this bit to 1.

Bit 2—Send the data to NetView.

v To request CS/AIX to send the data, set this bit to 0.

v To request CS/AIX not to send the data, set this bit to 1.

If data_type is set to SV_USER_DEFINED or SV_PDSTATS_SUBVECTORS, this bit is

ignored; the data cannot be sent to NetView.

 Bit 3—Log the data in the CS/AIX error log file.

v To request CS/AIX to log the data, set this bit to 0.

v To request CS/AIX not to log the data, set this bit to 1.

TRANSFER_MS_DATA

34 IBM Communications Server for AIX CSV Programmer’s Guide

If data_type is set to SV_USER_DEFINED or SV_PDSTATS_SUBVECTORS, this bit is

ignored; the data is always logged.

 Bits 4–7 are reserved, and must be set to 0.

originator_id

Name of the component that issued the verb. If the data is being logged in

the CS/AIX error log file, this name is used to identify the originator of

the log message; otherwise it is not used.

 This is an ASCII string of up to eight characters, using any locally

displayable characters. The parameter is optional; set the first character to

0x00 if you do not want to include it.

dlen Length of the data supplied by the application.

 The maximum length of an NMVT is 512 bytes. If the application is

supplying a complete NMVT, the data length must not exceed 512 bytes. If

the application is supplying alert subvectors, or requesting CS/AIX to add

one or more subvectors to the supplied data, the total length after addition

of the required headers and/or subvectors must not exceed 512 bytes.

dptr A pointer to the data string supplied by the application. The data must be

in the valid format for an NMVT, alert subvectors, or problem

determination statistics, as specified by the data_type parameter.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

Successful Execution

If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc

SV_OK

secondary_rc

Not used.

Unsuccessful Execution

When a verb does not execute successfully, CS/AIX returns a primary return code

to indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

CS/AIX returns the following parameters:

primary_rc

SV_PARAMETER_CHECK

secondary_rc

Possible values are:

SV_INVALID_DATA_TYPE

The supplied data_type parameter was not one of the valid values.

SV_INVALID_DATA_SEGMENT

The supplied data string extended beyond the boundary of a data

segment.

TRANSFER_MS_DATA

Chapter 2. Common Service Verbs Reference 35

SV_DATA_EXCEEDS_RU_SIZE

One of the following occurred:

v The application supplied a data string longer than the maximum

NMVT size of 512 bytes.

v The application supplied data as alert subvectors, or specified

that CS/AIX should add one or more subvectors to it, but the

added headers and/or subvectors increased the data size beyond

512 bytes.

State Check: If the verb does not execute because of a state error, CS/AIX returns

the following parameters:

primary_rc

SV_STATE_CHECK

secondary_rc

SV_SSCP_PU_SESSION_NOT_ACTIVE

The application specified SV_SEND in the options parameter, but the

session to the appropriate PU was not active.

Other Conditions: Other conditions can result in the following primary return

codes (primary_rc):

primary_rc

SV_CANCELLED

The WinCSVCleanup call was issued while this verb (issued using

the asynchronous entry point) was still outstanding. This verb has

been cancelled; the data may not have been sent.

primary_rc

SV_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software has not been started, or has been

stopped.

primary_rc

SV_INVALID_VERB

The opcode parameter did not match the operation code of any

verb. No verb executed.

primary_rc

SV_INVALID_VERB_SEGMENT

The supplied VCB extended beyond the boundary of a data

segment.

primary_rc

SV_SERVER_RESOURCE_NOT_FOUND

A required CS/AIX component was not active; the data could not

be sent.

primary_rc

SV_SERVER_RESOURCES_LOST

A required CS/AIX resource was not available.

secondary_rc

TRANSFER_MS_DATA

36 IBM Communications Server for AIX CSV Programmer’s Guide

SV_SERVER_COMM_FAILURE

The communications path to a required CS/AIX component has

failed; the data could not be sent.

primary_rc

SV_THREAD_BLOCKING

The verb was issued using the synchronous CSV entry point, but a

synchronous verb is already in progress for this application. Only

one synchronous verb can be in progress at any time.

primary_rc

SV_UNEXPECTED_DOS_ERROR

The operating system has encountered an error while processing

the verb. The operating system return code is returned through the

secondary_rc. If the problem persists, consult the System

Administrator for corrective action.

 For the meaning of the operating system return code, refer to your

operating system documentation.

 This return code may also indicate that the application issuing the

verb was invoked using the Windows function SendMessage

instead of PostMessage; the application cannot issue any verbs in

this state. For more information, see “Windows Considerations” on

page 11.

TRANSFER_MS_DATA

Chapter 2. Common Service Verbs Reference 37

38 IBM Communications Server for AIX CSV Programmer’s Guide

Appendix A. Code Pages

This appendix lists the code pages supported by CS/AIX for use with the

GET_CP_CONVERT_TABLE verb, and the national language variants of ASCII or

EBCDIC that use each code page.

ASCII Code Pages

AIX, LINUX

8859 Generalized ASCII code page defined by ISO 8859, used to support all

language variants

437 US English

737 Greece

813 Greece

819 ANSI

850 International code page: US English, UK English, French, German, Italian,

Spanish, Finnish, Netherlands, Swedish, Swiss, Belgian, Latin American

852 Poland, Hungary, Romania, Slovakia, Czech, Croatia, Slovenia

855 Bulgaria, Serbia-Montenegro, FYR Macedonia

857 Turkey

858 Multilingual

860 Portuguese

861 Iceland

862 Hebrew

863 Canadian French

864 Arabic

865 Danish, Norwegian

866 Russia

869 Greece

874 Thailand

897 Japan

903 People’s Republic of China

912 Poland, Hungary, Romania, Slovakia, Czech, Croatia, Slovenia

915 Russia, Bulgaria, Serbia-Montenegro, FYR Macedonia

916 Hebrew

© Copyright IBM Corp. 2000, 2005 39

920 Turkey

921 Latvia, Lithuania

922 Estonia

923 ANSI

1008 Arabic

1041 Japan

1088 Korea

1089 Arabic

1114 Republic of China (Taiwan)

1115 People’s Republic of China

1124 Ukraine

1125 Ukraine

1126 Korea

1127 Arabic

1129 Vietnam

1131 Belarus

1133 Laos

1250 Poland, Hungary, Romania, Slovakia, Czech, Croatia, Slovenia

1251 Russia, Bulgaria, Serbia-Montenegro, FYR Macedonia

1252 United States / Multilingual

1253 Greece

1254 Turkey

1255 Hebrew

1256 Arabic

1257 Baltic

1258 Vietnam

EBCDIC Code Pages

037 US English, Canadian Bilingual, Netherlands, Portuguese

273 German

275 Brazil

277 Danish, Norwegian

278 Finnish, Swedish

280 Italian

284 Spanish, Latin American

285 UK English

290 Japan

297 French

ASCII Code Pages

40 IBM Communications Server for AIX CSV Programmer’s Guide

420 Arabic

424 Hebrew

500 Belgian (New), Swiss French, Swiss German

803 Arabic

833 Korea

836 People’s Republic of China

838 Thailand

870 Poland, Hungary, Romania, Slovakia, Czech, Croatia, Slovenia

871 Iceland

875 Greece

924 USA, Canada (French), Netherlands, Portugal, France, Finland

1025 Russia, Bulgaria, Serbia-Montenegro, FYR Macedonia

1026 Turkey

1027 Japan

1047 USA, Canada (French), Netherlands, Portugal

1112 Latvia, Lithuania

1122 Estonia

1123 Baltic

1130 Vietnam

1132 Laos

1140 USA, Canada (French), Netherlands, Portugal

1141 Germany, Austria

1142 Denmark, Norway

1143 Finland, Sweden

1144 Italy

1145 Latin America, Spain

1146 United Kingdom

1147 France

1148 Belgium, Switzerland (French), Switzerland (German)

EBCDIC Code Pages

Appendix A. Code Pages 41

EBCDIC Code Pages

42 IBM Communications Server for AIX CSV Programmer’s Guide

Appendix B. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS™ enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to SA22-7787

z/OS TSO/E Primer, SA22-7794 z/OS TSO/E User’s Guide, and SC34-4822 z/OS ISPF

User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces.

These guides describe how to use TSO/E and ISPF, including the use of keyboard

shortcuts or function keys (PF keys). Each guide includes the default settings for

the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2000, 2005 43

44 IBM Communications Server for AIX CSV Programmer’s Guide

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing Site Counsel

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2005 45

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation

 P.O. Box 12195

 3039 Cornwallis Road

 Research Triangle Park, NC 27709-2195

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in

source language, which illustrates programming techniques on various operating

platforms. You may copy, modify, and distribute these sample programs in any

form without payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any

form without payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application programming

interfaces.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows: ® (your company name) (year). Portions of

this code are derived from IBM Corp. Sample Programs. ® Copyright IBM Corp.

2000, 2005. All rights reserved.

46 IBM Communications Server for AIX CSV Programmer’s Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 ACF/VTAM

 Advanced Peer-to-Peer Networking

 AIX

 AIXwindows

 AnyNet

 Application System/400

 APPN

 AS/400

 CICS

 DATABASE 2

 DB2

 Enterprise System/3090

 Enterprise System/4381

 Enterprise System/9000

 ES/3090

 ES/9000

 eServer

 IBM

 IBMLink

 IMS

 MVS

 MVS/ESA

 Operating System/2

 Operating System/400

 OS/2

 OS/400

 PowerPC

 PowerPC Architecture

 pSeries

 S/390

 System/390

 VSE/ESA

 VTAM

 WebSphere

 zSeries

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc., in

the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed

exclusively through The Open Group.

Intel is a trademark of Intel Corporation.

Linux is a trademark of Linus Torvalds.

RedHat and RPM are trademarks of Red Hat, Inc.

SuSE Linux is a trademark of SuSE Linux AG.

UnitedLinux is a trademark of UnitedLinux LLC.

Microsoft, Windows, Windows NT, Windows 2003, and the Windows logo are

trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix C. Notices 47

48 IBM Communications Server for AIX CSV Programmer’s Guide

Bibliography

The following IBM publications provide information about the topics discussed in

this library. The publications are divided into the following broad topic areas:

v CS/AIX, Version 6.3

v IBM Communications Server for AIX, Version 4 Release 2

v Redbooks™

v AnyNet/2 and SNA

v Block Multiplexer and S/390 ESCON Channel PCI Adapter

v AIX operating system

v Systems Network Architecture (SNA)

v Host configuration

v z/OS Communications Server

v Multiprotocol Transport Networking

v Transmission Control Protocol/Internet Protocol (TCP/IP)

v X.25

v Advanced Program-to-Program Communication (APPC)

v Programming

v Other IBM networking topics

For books in the CS/AIX library, brief descriptions are provided. For other books,

only the titles, order numbers, and, in some cases, the abbreviated title used in the

text of this book are shown here.

CS/AIX Version 6.3Publications

The CS/AIX library comprises the following books. In addition, softcopy versions

of these documents are provided on the CD-ROM. See IBM Communications Server

for AIX Quick Beginnings for information about accessing the softcopy files on the

CD-ROM. To install these softcopy books on your system, you require 9–15 MB of

hard disk space (depending on which national language versions you install).

v IBM Communications Server for AIX Migration Guide (SC31-8585)

This book explains how to migrate from Communications Server for AIX Version

4 Release 2 or earlier to CS/AIX Version 6.

v IBM Communications Server for AIX Quick Beginnings (GC31-8583)

This book is a general introduction to CS/AIX, including information about

supported network characteristics, installation, configuration, and operation.

v IBM Communications Server for AIX Administration Guide (SC31-8586)

This book provides an SNA and CS/AIX overview and information about

CS/AIX configuration and operation.

v IBM Communications Server for AIX Administration Command Reference (SC31-8587)

This book provides information about SNA and CS/AIX commands.

v IBM Communications Server for AIX CPI-C Programmer’s Guide (SC31-8591)

This book provides information for experienced “C” or Java™ programmers

about writing SNA transaction programs using the CS/AIX CPI

Communications API.

© Copyright IBM Corp. 2000, 2005 49

v IBM Communications Server for AIX APPC Programmer’s Guide (SC31-8590)

This book contains the information you need to write application programs

using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX LUA Programmer’s Guide (SC31-8592)

This book contains the information you need to write applications using the

Conventional LU Application Programming Interface (LUA).

v IBM Communications Server for AIX CSV Programmer’s Guide (SC31-8593)

This book contains the information you need to write application programs

using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX MS Programmer’s Guide (SC31-8594)

This book contains the information you need to write applications using the

Management Services (MS) API.

v IBM Communications Server for AIX NOF Programmer’s Guide (SC31-8595)

This book contains the information you need to write applications using the

Node Operator Facility (NOF) API.

v IBM Communications Server for AIX Diagnostics Guide (SC31-8588)

This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX AnyNet® Guide to APPC over TCP/IP

(GC31-8598)

This book provides installation, configuration, and usage information for the

AnyNet APPC over TCP/IP function of CS/AIX.

v IBM Communications Server for AIX AnyNet Guide to Sockets over SNA (GC31-8597)

This book provides installation, configuration, and usage information for the

AnyNet Sockets over SNA function of CS/AIX.

v IBM Communications Server for AIX APPC Application Suite User’s Guide

(SC31-8596)

This book provides information about APPC applications used with CS/AIX.

v IBM Communications Server for AIX Glossary (GC31-8589)

This book provides a comprehensive list of terms and definitions used

throughout the IBM Communications Server for AIX library.

IBM Communications Server for AIX Version 4 Release 2 Publications

The following book is from a previous release of Communications Server for AIX,

and does not apply to Version 6. You may find this book useful as a reference for

information that is still supported, but not included in Version 6.

v IBM Communications Server for AIX Transaction Program Reference. (SC31-8212)

This book provides Version 4 Release 2 information about the transaction

programming APIs. Applications written to use the Version 4 Release 2 APIs can

still be used with Version 6.

IBM Redbooks

IBM maintains an International Technical Support Center that produces

publications known as Redbooks. Similar to product documentation, Redbooks

cover theoretical and practical aspects of SNA technology. However, they do not

include the information that is supplied with purchased networking products.

The following books contain information that may be useful for CS/AIX:

v IBM Communications Server for AIX Version 6 (SG24-5947)

50 IBM Communications Server for AIX CSV Programmer’s Guide

v IBM CS/AIX Understanding and Migrating to Version 5: Part 2 - Performance

(SG24-2136)

v Load Balancing for Communications Servers (SG24-5305)

On the World Wide Web, users can download Redbook publications by using

http://www.redbooks.ibm.com.

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications

The following books contain information about the Block Multiplexer and the

S/390 ESCON Channel PCI Adapter:

v AIX Version 4.1 Block Multiplexer Channel Adapter: User’s Guide and Service

Information (SC31-8196)

v AIX Version 4.1 Enterprise Systems Connection Adapter: User’s Guide and

Service Information (SC31-8196)

v AIX Version 4.3 S/390 ESCON Channel PCI: User’s Guide and Service

Information (SC23-4232)

v IBM Communications Server for AIX Channel Connectivity User’s Guide

(SC31-8219)

AnyNet/2 Sockets and SNA publications

The following books contain information about AnyNet/2 Sockets and SNA

v AnyNet/2 Version 2.0: Guide to Sockets over SNA (GV40-0376)

v AnyNet/2 Version 2.0: Guide to SNA over TCP/IP (GV40-0375)

v AnyNet/2: Guide to Sockets over SNA Gateway Version 1.1 (GV40-0374)

v z/OS V1R2.0 Communications Server: AnyNet Sockets over SNA (SC31-8831)

v z/OS V1R2.0 Communications Server: AnyNet SNA over TCP/IP (SC31-8832)

AIX Operating System Publications

The following books contain information about the AIX operating system:

v AIX Version 5.3 System Management Guide: Operating System and Devices

(SC23-4910)

v AIX Version 5.3 System Management Concepts: Operating System and Devices

(SC23-4908)

v AIX Version 5.3 System Management Guide: Communications and Networks

(SC23-4909)

v AIX Version 5.3 Performance Management Guide (SC23-4905)

v AIX Version 5.3 Performance Tools Guide and Reference (SC23-4906)

v Performance Toolbox Version 2 and 3 Guide and Reference (SC23-2625)

v AIXlink/X.25 Version 2.1 for AIX: Guide and Reference (SC23-2520)

Systems Network Architecture (SNA) Publications

The following books contain information about SNA networks:

v Systems Network Architecture: Format and Protocol Reference Manual—Architecture

Logic for LU Type 6.2 (SC30-3269)

v Systems Network Architecture: Formats (GA27-3136)

v Systems Network Architecture: Guide to SNA Publications (GC30-3438)

Bibliography 51

v Systems Network Architecture: Network Product Formats (LY43-0081)

v Systems Network Architecture: Technical Overview (GC30-3073)

v Systems Network Architecture: APPN Architecture Reference (SC30-3422)

v Systems Network Architecture: Sessions between Logical Units (GC20-1868)

v Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)

v Systems Network Architecture: Transaction Programmer’s Reference Manual for LU

Type 6.2 (GC30-3084)

v Systems Network Architecture: 3270 Datastream Programmer’s Reference (GA23-0059)

v Networking Blueprint Executive Overview (GC31-7057)

v Systems Network Architecture: Management Services Reference (SC30-3346)

Host Configuration Publications

The following books contain information about host configuration:

v ES/9000, ES/3090 IOCP User’s Guide Volume A04 (GC38-0097)

v 3174 Establishment Controller Installation Guide (GG24-3061)

v 3270 Information Display System 3174 Establishment Controller: Planning Guide

(GA27-3918)

v OS/390 Hardware Configuration Definition (HCD) User’s Guide (SC28-1848)

v ESCON Director Planning (GA23-0364)

z/OS Communications Server Publications

The following books contain information about z/OS Communications Server:

v z/OS V1R7 Communications Server: SNA Network Implementation Guide

(SC31-8777-05)

v z/OS V1R7 Communications Server: SNA Diagnostics (Vol 1: GC31-6850-00, Vol 2:

GC31-6851-00)

v z/OS V1R6 Communications Server: Resource Definition Reference (SC31-8778-04)

Multiprotocol Transport Networking publications

The following books contain information about Multiprotocol Transport

Networking architecture:

v Multiprotocol Transport Networking: Formats (GC31-7074)

v Multiprotocol Transport Networking Architecture: Technical Overview

(GC31-7073)

TCP/IP Publications

The following books contain information about the Transmission Control

Protocol/Internet Protocol (TCP/IP) network protocol:

v z/OS V1R7 Communications Server: IP Configuration Guide (SC31-8775-07)

v z/OS V1R7 Communications Server: IP Configuration Reference (SC31-8776-08)

v z/VM V5R1 TCP/IP Planning and Customization (SC24-6125-00)

52 IBM Communications Server for AIX CSV Programmer’s Guide

X.25 Publications

The following books contain information about the X.25 network protocol:

v AIXLink/X.25 for AIX: Guide and Reference (SC23-2520)

v RS/6000® AIXLink/X.25 Cookbook (SG24-4475)

v Communications Server for OS/2 Version 4 X.25 Programming (SC31-8150)

APPC Publications

The following books contain information about Advanced Program-to-Program

Communication (APPC):

v APPC Application Suite V1 User’s Guide (SC31-6532)

v APPC Application Suite V1 Administration (SC31-6533)

v APPC Application Suite V1 Programming (SC31-6534)

v APPC Application Suite V1 Online Product Library (SK2T-2680)

v APPC Application Suite Licensed Program Specifications (GC31-6535)

v z/OS V1R2.0 Communications Server: APPC Application Suite User’s Guide

(SC31-8809)

Programming Publications

The following books contain information about programming:

v Common Programming Interface Communications CPI-C Reference (SC26-4399)

v Communications Server for OS/2 Version 4 Application Programming Guide

(SC31-8152)

Other IBM Networking Publications

The following books contain information about other topics related to CS/AIX:

v SDLC Concepts (GA27-3093-04)

v Local Area Network Concepts and Products: LAN Architecture (SG24-4753-00)

v Local Area Network Concepts and Products: LAN Adapters, Hubs and ATM

(SG24-4754-00)

v Local Area Network Concepts and Products: Routers and Gateways (SG24-4755-00)

v Local Area Network Concepts and Products: LAN Operating Systems and Management

(SG24-4756-00)

v IBM Network Control Program Resource Definition Guide (SC30-3349)

Bibliography 53

54 IBM Communications Server for AIX CSV Programmer’s Guide

Index

A
accessibility 43

ACSSVC_C call 4

ACSSVC, ACSSVC_C, ACSSVC_P entry points 2

acssvcc.h header file 2

AIX applications
compiling and linking 11

API tracing 19

ASCII to EBCDIC character conversion 13

audit log file, logging a message to 27

B
blocking verbs, windows 6

C
character conversion, ASCII to EBCDIC 13

clearing trace files 19

code page conversion 24

compiling AIX applications 11

compiling and linking 12

compiling Linux applications 11

conversion table
A 14

AE 15

G 15, 18

type-G, creating 18

conversion tables, building 24

CONVERT
ASCII to EBCDIC 14

character set (A, AE, or G) 14

conversion error 16

EBCDIC to ASCII 14

returned parameters 16

supplied parameters 14

type-G conversion table, creating 18

VCB 14

verb 13

COPY_TRACE_TO_FILE
overwriting files 19

returned parameters 19, 20

state check 20

supplied parameters 19

VCB 19

verb 19

CSV entry point
windows 3, 6

D
DCE threads 11

DEFINE_TRACE
APPC 22

Common Service Verbs 22

CPI-C 22

enabling or disabling 22

LUA 23

MS 22

DEFINE_TRACE (continued)
NOF 22

resetting trace files 23

returned parameters 23

RUI 23

supplied parameters 21

truncation 23

VCB 21

verb 21

disability 43

E
EBCDIC to ASCII character conversion 13

entry points for CSV 2

error log file, logging a message to 27

F
function calls for CSV 2

G
GET_CP_CONVERT_TABLE

returned parameters 26

supplied parameters 25

type-G conversion table, creating 18

VCB 24

verb 24

GetCsvReturnCode call 8

K
keyboard 43

L
linking AIX applications 11

linking Linux applications 11

Linux applications
compiling and linking 11

log message file, creating 30

LOG_MESSAGE
inserting text into message 29

log category 28

message file name 28

returned parameters 29

supplied parameters 27

VCB 27

verb 27

M
message file, LOG_MESSAGE verb 28

multithreaded programs 11

© Copyright IBM Corp. 2000, 2005 55

S
sample code 9

sample type-G conversion table 18

sending data to the host NetView program 33

shortcut keys 43

snamsgf utility 30

symbolic constants for hexadecimal values 13

T
trace files 21

tracing
APPC 22

clearing files 19

Common Service Verbs 22

CPI-C 22

files 19

LUA 22

MS 22

NOF 22

resetting files 23

RUI 22

TRANSFER_MS_DATA 33

returned parameters 35

supplied parameters 34

VCB 34

V
verb control block 2

W
WinAsyncCSV call 6

WinCSVCleanup call 8

WinCSVStartup call 4

Windows considerations 12

56 IBM Communications Server for AIX CSV Programmer’s Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of

the methods listed below to send your comments to IBM. Whichever method you

choose, make sure you send your name, address, and telephone number if you

would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject

matter, or completeness of this document. However, the comments you send

should pertain to only the information in this manual and the way in which the

information is presented. To request additional publications, or to ask questions or

make comments about the functions of IBM products or systems, you should talk

to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate without incurring any

obligation to you.

Please send your comments to us in either of the following ways:

v If you prefer to send comments by FAX, use this number: 1+919-254-4028

v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com.
v If you prefer to send comments by post, use this address:

International Business Machines Corporation

Attn: z/OS Communications Server Information Development

P.O. Box 12195, 3039 Cornwallis Road

Department AKCA, Building 501

Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2000, 2005 57

58 IBM Communications Server for AIX CSV Programmer’s Guide

����

Program Number: 5765-E51

Printed in USA

SC31-8593-02

	Contents
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions
	Graphic Conventions

	What Is New for This Release
	Where to Find More Information

	Chapter 1. Concepts
	Summary of Common Service Verbs
	CSV Entry Points: AIX or Linux Systems
	CSV Entry Points: Windows
	ACSSVC_C
	Function Call
	Supplied Parameters
	Returned Values

	WinCSVStartup
	Function Call
	Supplied Parameters
	Returned Values

	WinCSV
	Function Call
	Supplied Parameters
	Returned Values

	WinAsyncCSV
	Function Call
	Supplied Parameters
	Returned Values: TRANSFER_MS_DATA
	Returned Values: Other Verbs
	Usage

	WinCSVCleanup
	Function Call
	Supplied Parameters
	Returned Values

	GetCsvReturnCode
	Function Call
	Supplied Parameters
	Returned Values

	Issuing a Verb
	AIX or Linux Considerations
	CSV Header File
	Multithreaded Applications
	Compiling and Linking the CSV Application
	AIX Applications
	Linux Applications

	Windows Considerations
	Compiling and Linking a CSV Application
	Compiler Options for Structure Packing
	Header Files
	Load-Time Linking
	Run-Time Linking

	Writing Portable Applications

	Chapter 2. Common Service Verbs Reference
	CONVERT
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Creating a Type-G Conversion Table

	COPY_TRACE_TO_FILE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	DEFINE_TRACE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	SNACTL Environment Variable

	GET_CP_CONVERT_TABLE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	LOG_MESSAGE
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Creating a Log Message File
	Message Source File Format
	Sample Log Message Output
	Creating the Message File from the Text File

	TRANSFER_MS_DATA
	VCB Structure
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Appendix A. Code Pages
	ASCII Code Pages
	EBCDIC Code Pages

	Appendix B. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Appendix C. Notices
	Trademarks

	Bibliography
	CS/AIX Version 6.3Publications
	IBM Communications Server for AIX Version 4 Release 2 Publications
	IBM Redbooks
	Block Multiplexer and S/390 ESCON Channel PCI Adapter publications
	AnyNet/2 Sockets and SNA publications
	AIX Operating System Publications
	Systems Network Architecture (SNA) Publications
	Host Configuration Publications
	z/OS Communications Server Publications
	Multiprotocol Transport Networking publications
	TCP/IP Publications
	X.25 Publications
	APPC Publications
	Programming Publications
	Other IBM Networking Publications

	Index
	Communicating Your Comments to IBM

