
IBM Communications Server for AIX

LUA Programmer’s Guide

V6.3

SC31-8592-02

���

IBM Communications Server for AIX

LUA Programmer’s Guide

V6.3

SC31-8592-02

���

Note:

Before using this information and the product it supports, be sure to read the general information under Appendix C,

“Notices,” on page 157.

Third Edition (November 2005)

This edition applies to IBM Communications Server for AIX, Version 6.3, program number 5765-E51, and to all

subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address below.

IBM welcomes your comments. You may send your comments to the following address:

 International Business Machines Corporation

 Attn: z/OS Communications Server Information Development

 Department AKCA, Building 501

 P.O. Box 12195, 3039 Cornwallis Road

 Research Triangle Park, North Carolina

 27709-2195

 U.S.A.

You can send us comments electronically by using one of the following methods:

v Fax (USA and Canada): 1-919-254-4028

v Internet e-mail: comsvrcf@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . vii

Figures . ix

About This Book . xi

Who Should Use This Book . xi

How to Use This Book . xi

Organization of This Book . xi

Typographic Conventions . xii

Graphic Conventions . xii

What’s New . xiii

Where to Find More Information . xiii

Chapter 1. Concepts . 1

What Is LUA? . 1

Choosing Which Interface to Use . 1

LUs and Sessions . 2

Configuration . 4

LUA Verbs . 5

RUI Verb Summary . 5

SLI Verb Summary . 5

Asynchronous Verb Completion . 6

A Sample LUA Communication Sequence . 7

LUA Compatibility . 10

Chapter 2. Designing and Writing LUA Applications 13

LUA Entry Points for AIX or Linux Applications . 13

RUI Function Call . 13

SLI Function Call . 14

Supplied Parameters . 14

Returned Values . 14

Usage . 14

Callback Routine for Asynchronous Verb Completion . 15

LUA Entry Points for Windows Applications . 16

RUI . 17

WinRUIStartup . 18

WinRUI . 20

WinRUIGetLastInitStatus . 22

WinRUICleanup . 25

GetLuaReturnCode . 25

SLI . 26

WinSLIStartup . 27

WinSLI . 29

WinSLICleanup . 31

Issuing an LUA Verb . 31

SNA Information . 34

BIND Checking: RUI . 34

BIND Checking: SLI . 34

Negative Responses and SNA Sense Codes . 35

Pacing . 36

Segmentation . 36

Modification of Nonstandard Host Response/Request Header (RH) Bits 36

Courtesy Acknowledgments . 37

Purging Data to End of Chain . 37

© Copyright IBM Corp. 2000, 2005 iii

SNA Information for RUI Primary . 37

Responsibilities of the Primary RUI application . 37

Pacing . 38

Segmentation . 38

Restrictions . 38

Courtesy Acknowledgments . 38

Purging Data to End of Chain . 39

Configuration Information . 39

Data Link Control (DLC), Port, and Link Station (LS) . 39

LU . 39

LU Pool (Optional) . 40

AIX or Linux Considerations . 40

LUA Header File . 40

Multiple Processes and Multiple Sessions . 40

Compiling and Linking the LUA Application . 41

Windows Considerations . 41

Multiple Sessions and Multiple Tasks . 41

Compiling and Linking LUA Programs . 41

Terminating Applications . 42

Writing Portable Applications . 42

Chapter 3. LUA VCB Structure . 45

LUA Verb Control Block (VCB) Format . 45

LUA_VERB_RECORD Data Structure . 46

Common Data Structure . 46

Specific Data Structure . 52

Chapter 4. RUI Verbs . 55

RUI_BID . 55

Supplied Parameters . 55

Returned Parameters . 56

Interaction with Other Verbs . 61

Usage and Restrictions . 61

RUI_INIT . 61

Supplied Parameters . 62

Returned Parameters . 64

Interaction with Other Verbs . 67

Usage and Restrictions . 68

RUI_INIT_PRIMARY . 68

Supplied Parameters . 68

Returned Parameters . 69

Interaction with Other Verbs . 71

Usage and Restrictions . 72

RUI_PURGE . 72

Supplied Parameters . 72

Returned Parameters . 73

Interaction with Other Verbs . 76

RUI_READ . 76

Supplied Parameters . 76

Returned Parameters . 78

Interaction with Other Verbs . 83

Usage and Restrictions . 84

RUI_REINIT . 84

Supplied Parameters . 84

Returned Parameters . 85

Interaction with Other Verbs . 87

Usage and Restrictions . 87

RUI_TERM . 88

Supplied Parameters . 88

Returned Parameters . 89

iv IBM Communications Server for AIX LUA Programmer’s Guide

Interaction with Other Verbs . 91

RUI_WRITE . 92

Supplied Parameters . 92

Returned Parameters . 94

Interaction with Other Verbs . 98

Usage and Restrictions . 98

Chapter 5. SLI Verbs . 99

SLI_BID . 99

Supplied Parameters . 99

Returned Parameters . 100

Interaction with Other Verbs . 105

Usage and Restrictions . 105

SLI_CLOSE . 106

Supplied Parameters . 106

Returned Parameters . 107

Interaction with Other Verbs . 111

Usage and Restrictions . 111

SLI_OPEN . 112

Supplied Parameters . 112

Return Value from SLI Entry Point . 115

Returned Parameters . 116

Interaction with Other Verbs . 120

Usage and Restrictions . 120

SLI_PURGE . 120

Supplied Parameters . 120

Returned Parameters . 121

Interaction with Other Verbs . 124

SLI_RECEIVE . 124

Supplied Parameters . 125

Returned Parameters . 126

Interaction with Other Verbs . 132

Usage and Restrictions . 133

SLI_SEND . 133

Supplied Parameters . 133

Returned Parameters . 135

Interaction with Other Verbs . 141

Usage and Restrictions . 141

SLI_BIND_ROUTINE . 142

Supplied Parameters . 142

Returned Parameters . 142

Interaction with Other Verbs . 143

Usage and Restrictions . 143

SLI_SDT_ROUTINE . 143

Supplied Parameters . 143

Returned Parameters . 143

Interaction with Other Verbs . 144

Usage and Restrictions . 144

SLI_STSN_ROUTINE . 144

Supplied Parameters . 144

Returned Parameters . 145

Interaction with Other Verbs . 145

Usage and Restrictions . 145

Chapter 6. Sample LUA Application . 147

Processing Overview . 147

Testing the Application . 148

Host Requirements . 149

Configuration for the Sample Application . 149

Compiling and Linking the Sample Application . 149

Contents v

Running the Sample Application . 149

Appendix A. Return Code Values . 151

Primary Return Codes . 151

Secondary Return Codes . 151

Appendix B. Accessibility . 155

Using assistive technologies . 155

Keyboard navigation of the user interface . 155

z/OS information . 155

Appendix C. Notices . 157

Trademarks . 159

Bibliography . 161

CS/AIX Version 6.3Publications . 161

IBM Communications Server for AIX Version 4 Release 2 Publications 162

IBM Redbooks . 162

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications 163

AnyNet/2 Sockets and SNA publications . 163

AIX Operating System Publications . 163

Systems Network Architecture (SNA) Publications . 163

Host Configuration Publications . 164

z/OS Communications Server Publications . 164

Multiprotocol Transport Networking publications . 164

TCP/IP Publications . 164

X.25 Publications . 165

APPC Publications . 165

Programming Publications . 165

Other IBM Networking Publications . 165

Index . 167

Communicating Your Comments to IBM . 169

vi IBM Communications Server for AIX LUA Programmer’s Guide

Tables

1. Typographic Conventions . xii

2. SLI_SEND Parameter Settings based on Message Type 141

© Copyright IBM Corp. 2000, 2005 vii

viii IBM Communications Server for AIX LUA Programmer’s Guide

Figures

1. SNA Components Used for LUA Communications . 3

2. SNA Components Used for RUI Primary Communications 4

3. RUI Communication Sequence . 9

4. SLI Communication Sequence . 10

5. Program Flow for the Sample LUA Application . 148

© Copyright IBM Corp. 2000, 2005 ix

x IBM Communications Server for AIX LUA Programmer’s Guide

About This Book

This book is a guide for developing C-language application programs that use the

Conventional Logical Unit Application (LUA) interface to communicate with a

Systems Network Architecture (SNA) host computer. The Communications Server

for AIX implementation of LUA is based on the IBM®implementation of the

Request/Response Unit Interface (RUI) in its OS/2®products (such as

Communications Server for OS/2), with modifications for the AIX or Linux

environment.

IBMCommunications Server for AIX (hereafter referred to as CS/AIX) is an IBM

software product that enables a server running AIX®to exchange information with

other nodes on an SNA network.

This book applies to V6.3 of CS/AIX running on AIX Version 5.2 and higher base

operating system.

To submit comments and suggestions about Communications Server for AIX LUA

Programmer’s Guide, use the Reader’s Comment Form located at the back of this

book. This form provides instructions for submitting your comments by mail, by

FAX, or by electronic mail.

Who Should Use This Book

This book is intended for experienced C programmers who write Systems Network

Architecture (SNA) transaction programs for systems with CS/AIX. Programmers

may or may not have prior experience with SNA or the communication facilities of

CS/AIX.

Application programmers design and code transaction and application programs

that use the CS/AIX programming interfaces to send and receive data over an

SNA network. They should be thoroughly familiar with SNA, the remote program

with which the transaction or application program communicates, and the AIX or

Linux operating system programming and operating environments.

More detailed information about writing application programs is provided in the

manual for each API. For additional information about CS/AIX publications, see

the Bibliography.

How to Use This Book

This section explains how information is organized and presented in this book.

Organization of This Book

This book is organized as follows:

v Chapter 1, “Concepts,” on page 1, introduces the fundamental concepts of LUA.

It is intended for programmers who are not familiar with LUA.

v Chapter 2, “Designing and Writing LUA Applications,” on page 13, contains

general information a programmer needs when writing LUA applications. This

chapter also includes information about SNA concepts relevant to the design of

LUA applications, and on compiling and linking an LUA application.

© Copyright IBM Corp. 2000, 2005 xi

v Chapter 3, “LUA VCB Structure,” on page 45, describes the structure of the Verb

Control Block (VCB) used for all LUA verbs.

v Chapter 4, “RUI Verbs,” on page 55, describes each RUI verb in detail. Each

description includes the following: purpose, verb record format, supplied

parameters and returned values, and details on how the verb interacts with

other RUI verbs.

v Chapter 5, “SLI Verbs,” on page 99, describes each SLI verb in detail. Each

description includes the following: purpose, verb record format, supplied

parameters and returned values, and details on how the verb interacts with

other SLI verbs.

v Chapter 6, “Sample LUA Application,” on page 147, describes the CS/AIX

sample LUA application that illustrates the use of LUA RUI verbs. This chapter

also includes instructions for compiling, linking, and running the sample

application (including the CS/AIX configuration steps necessary).

v Appendix A, “Return Code Values,” on page 151, lists all the possible return

codes in the LUA interface in numerical order and gives their meanings.

Typographic Conventions

Table 1 shows the typographic styles used in this document.

 Table 1. Typographic Conventions

Special Element Sample of Typography

Emphasized words back up files before deleting

Document title Communications Server for AIX Administration

Guide

File or path name /usr/spool/uucp/myfile.bkp

Program or application snaadmin

Command or AIX / Linux utility define_node; cd

General reference to all commands of a

particular type

query_* (indicates all of the administration

commands that query details of a resource)

Option or flag -i

Parameter or Motif field opcode; LU name

Literal value or selection that the user can

enter (including default values)

255; On node startup

Constant or signal AP_GET_LU_STATUS

Return value AP_INVALID_FORMAT; 0; −1

Variable representing a supplied value filename; LU_name; user_ID

Environment variable PATH

Programming verb GET_LU_STATUS

User input 0p1

Computer output CLOSE

Function, call, or entry point ioctl

Data structure termios

3270 key ENTER

Keyboard keys Ctrl+D; Enter

Hexadecimal value 0x20

Graphic Conventions

AIX, LINUX

How to Use This Book

xii IBM Communications Server for AIX LUA Programmer’s Guide

This symbol is used to indicate the start of a section of text that applies only to the

AIX or Linux operating system. It applies to AIX servers and to the IBM Remote

API Client running on AIX, Linux, Linux for pSeries or Linux for zSeries.

WINDOWS

This symbol is used to indicate the start of a section of text that applies to the IBM

Remote API Client on Windows.

This symbol indicates the end of a section of operating system specific text. The

information following this symbol applies regardless of the operating system.

What’s New

Communications Server for AIX V6.3 replaces Communications Server for AIX

V6.1.

Releases of this product that are still supported are:

v Communications Server for AIX V6.1

The following releases of this product are no longer supported:

v Communications Server for AIX Version 6 (V6)

v Communications Server for AIX Version 5 (V5)

v Communications Server for AIX Version 4 Release 2 (V4R2)

v Communications Server for AIX Version 4 Release 1 (V4R1)

v SNA Server for AIX Version 3 Release 1.1 (V3R1.1)

v SNA Server for AIX Version 3 Release 1 (V3R1)

v AIX SNA Server/6000 Version 2 Release 2 (V2R2)

v AIX SNA Server/6000 Version 2 Release 1 (V2R1) on AIX 3.2

v AIX SNA Services/6000 Version 1

In addition, the following changes have been made to this documentation:

v The Session Level Interface (SLI) is now included within the LUA interface.

v Communications Server for AIX now supports Primary RUI as part of the LUA

interface. This allows you to write an application that acts as an SNA primary

for communications with downstream PUs.

Where to Find More Information

See the bibliography for other books in the CS/AIX library, as well as books that

contain additional information about topics related to SNA and AIX workstations.

The information in the CS/AIX books is also available in HTML format. You can

use this library to search for specific information or to view online versions of each

of the CS/AIX books.

How to Use This Book

About This Book xiii

xiv IBM Communications Server for AIX LUA Programmer’s Guide

Chapter 1. Concepts

This chapter introduces the fundamental concepts of LUA—the Conventional LU

(Logical Unit) Application Programming Interface (API).

The topics covered in this chapter are as follows:

v What is LUA?

v Choosing which interface to use (RUI or SLI)

v LUs and sessions

v LUA verbs

v A sample LUA communication sequence

v LUA compatibility

What Is LUA?

LUA (the Conventional LU Application Programming Interface) is an API that

enables you to write CS/AIX applications to communicate with host applications.

The LUA interface is provided at the request/response unit (RU) level, allowing

the programmer control over the Systems Network Architecture (SNA) messages

sent between CS/AIX and the host. It can be used to communicate with any of the

LU types 0, 1, 2, or 3 at the host; it is up to the application to send the appropriate

SNA messages as required by the host application.

For example, you can use LUA to write a 3270 emulation program that

communicates with a host 3270 application; a simple version of this is included as

a sample LUA application with CS/AIX, and described in Chapter 6, “Sample LUA

Application,” on page 147.

AIX, LINUX

If your CS/AIX system supports SNA Gateway for communications with

downstream PUs, you can also write an LUA application that acts as the SNA

primary for communications with secondary LUs on these downstream PUs. This

allows you to emulate a host application on the CS/AIX node, or to offload

processing from a host application to the CS/AIX node. This function is described

as “Primary RUI”; it is specific to CS/AIX and may not be provided by other LUA

implementations.

Choosing Which Interface to Use

LUA includes two different programming interfaces at different levels:

© Copyright IBM Corp. 2000, 2005 1

v The Request Unit Interface (RUI) is provided at the request/response unit (RU)

level, allowing the programmer control over the Systems Network Architecture

(SNA) messages sent between CS/AIX and the host. It is up to the application to

build and send the appropriate SNA messages as required by the host

application.

The RUI interface supports SNA Function Management Profiles 2, 3, 4, 7, and 18,

and SNA Transmission Services Profiles 2, 3, 4, and 7.

v The Session-Level Interface (SLI) is a higher-level interface, allowing the

programmer to work at a logical message level rather than being concerned with

the detail of individual RUs. For example:

– The session can be established and terminated with a single SLI verb (rather

than with a sequence of RUI verbs corresponding to the individual RUs

involved in session startup and termination).

– The SLI library controls chaining when the application needs to send or

receive data that is longer than the maximum RU length specified in the

BIND.

– For most SNA commands sent to the host, the SLI library can build the

appropriate RU at the request of the application.
The SLI interface supports SNA Function Management Profiles 3 and 4, and

SNA Transmission Services Profiles 3 and 4.

An application can use only one of these interfaces for each session. For example,

if it starts a session using the RUI, it cannot subsequently issue SLI verbs on that

session.

You should consider the following points before deciding which API to use.

v The SLI handles some of the detail of individual RUs and their contents,

simplifying the processing required in the application. The RUI requires the

application to deal with each RU individually.

v The RUI provides control over the detailed contents of RUs sent to the host, and

allows the use of a wide range of SNA bind profiles. The SLI does not provide

the same degree of control or flexibility.

AIX, LINUX

v The RUI includes Primary RUI(AIX or Linux only), which allows you to write

an application that acts as an SNA primary for communications with

downstream PUs. The SLI interface does not provide this function.

LUs and Sessions

Figure 1 on page 3, shows the SNA components used for LUA communications

with a host.

Choosing Which Interface to Use

2 IBM Communications Server for AIX LUA Programmer’s Guide

An LUA application uses an LU of type 0–3 that communicates with the host

system by means of the CS/AIX node. There are three sessions between the

CS/AIX node and the host node, as follows:

v The physical unit-system services control point (PU-SSCP) session, between the

PU 2.1 and the host’s system services control point (SSCP); this is used for

controlling the PU.

v The SSCP session, between the CS/AIX LU and the SSCP; this is used for

controlling the LU.

v The LU session, between the CS/AIX LU and the host LU; this is used for data

transfer between the LU and the host application.

The LUA application programming interface enables applications to send and

receive data on the SSCP session and on the LU session. It does not provide access

to the PU-SSCP session. An LUA application can send data on this session using

the Management Services (MS) verb TRANSFER_MS_DATA; for more information,

refer to the Communications Server for AIX MS Programmer’s Guide.

WINDOWS

For Windows operating systems, TRANSFER_MS_DATA is provided as part of the

Common Service Verb (CSV) API; for more information, refer to the

Communications Server for AIX CSV Programmer’s Guide.

AIX, LINUX

Figure 2 on page 4, shows the SNA components used for LUA communications

using RUI primary to a downstream LU.

LUA
application

LUA LU

Node

Host
application

Host LU

Host
SSCP

LU Session

SSCP Session

PU-SSCP Session

Figure 1. SNA Components Used for LUA Communications

LUs and Sessions

Chapter 1. Concepts 3

An RUI Primary application uses an LU of type 0–3 that communicates with the

downstream LU by means of the CS/AIX node. From the point of the downstream

LU, the CS/AIX LU acts as the host LU, and the CS/AIX node acts as the host

SSCP. The three sessions between these components, and the restrictions on access

to these sessions, are equivalent to those for an LUA application communicating

with a host.

Each of the LU sessions provides two priorities of messages: normal and

expedited. Expedited flow messages take precedence over other messages waiting

to be transmitted on the same session. There are four different flows on which a

message can be sent or received:

v SSCP session, expedited flow

v LU session, expedited flow

v SSCP session, normal flow

v LU session, normal flow

The LU session normal flow carries application data; the other flows are used for

control messages and start-up.

The CS/AIX implementation of LUA does not enable applications to send data on

the SSCP expedited flow, and will not return data to an application on this flow.

Configuration

Each LU used by an LUA application must be configured using the Motif

administration program, the command-line administration program, or the node

operator facility (NOF) API (for more information, refer to the Communications

Server for AIX Administration Guide or the Communications Server for AIX NOF

Programmer’s Guide). In addition, the CS/AIX configuration may include LU pools.

A pool is a group of LUs with similar characteristics, such that an application can

use any free LU from the group. This can be used to allocate LUs on a first-come,

first-served basis when there are more applications than LUs available, or to

provide a choice of LUs on different connections.

Primary RUI
application

LUA LU

Node

LUA
application

Downstream
LU

Downstream
PU

LU Session

SSCP Session

PU-SSCP Session

Figure 2. SNA Components Used for RUI Primary Communications

LUs and Sessions

4 IBM Communications Server for AIX LUA Programmer’s Guide

LUA Verbs

An application accesses LUA through LUA verbs. Each verb supplies parameters to

LUA, which performs the desired function and returns parameters to the

application.

RUI Verb Summary

The following list contains a brief summary of each of the LUA RUI verbs (for a

detailed explanation of each verb, see Chapter 4, “RUI Verbs,” on page 55):

RUI_BID

This verb enables the application to determine when information from the

host is available to be read.

RUI_INIT

This verb sets up the SSCP session for an LUA application.

AIX, LINUX

RUI_INIT_PRIMARY

This verb sets up the SSCP session for an LUA application acting as the

SNA primary for communications with a downstream LU.

RUI_PURGE

This verb cancels an outstanding RUI_READ verb.

RUI_READ

This verb receives data or status information sent from the host to the LUA

application’s LU, on either the SSCP session or the LU session.

AIX, LINUX

RUI_REINIT

This verb re-establishes the SSCP session for an LUA application after a

session failure. It is intended for use by an application that was using an

LU from a pool, and needs to re-establish the session using the same LU in

order to continue its processing.

RUI_TERM

This verb ends the SSCP session for an LUA application. It also brings

down the LU session if it is active.

RUI_WRITE

This verb sends data to the host on either the SSCP session or the LU

session.

SLI Verb Summary

The following list contains a brief summary of each of the LUA SLI verbs (for a

detailed explanation of each verb, see Chapter 5, “SLI Verbs,” on page 99):

LUA Verbs

Chapter 1. Concepts 5

SLI_BID

This verb enables the application to determine when information from the

host is available to be read.

SLI_CLOSE

This verb ends the session for an LUA application.

SLI_OPEN

This verb sets up the session for an LUA application.

SLI_PURGE

This verb cancels an outstanding SLI_RECEIVE verb.

SLI_RECEIVE

This verb receives data or status information sent from the host to the LUA

application’s LU, on either the SSCP session or the LU session.

SLI_SEND

This verb sends data to the host on either the SSCP session or the LU

session.

 On the SLI_OPEN verb, the application can optionally specify the addresses of its

own routines to process BIND, STSN, and SDT requests from the host. If it

provides these routines, and a request of the appropriate type arrives from the

host, LUA sends an additional verb to the appropriate application-supplied routine

to allow it to process the request, as follows.

SLI_BIND_ROUTINE

LUA sends this verb to the application-supplied BIND routine when a

BIND request arrives from the host. The application can accept the BIND,

negotiate BIND parameters, or reject the BIND as described in “SNA

Information” on page 34.

 If the application does not provide a BIND routine, LUA performs limited

BIND checking and responds to the host appropriately.

SLI_STSN_ROUTINE

LUA sends this verb to the application-supplied STSN routine when an

STSN request arrives from the host. The application can respond to the

STSN or reject it with an appropriate SNA sense code, as described in

“SNA Information” on page 34.

 If the application does not provide an STSN routine, LUA returns a

positive response indicating that no data is available.

SLI_SDT_ROUTINE

LUA sends this verb to the application-supplied SDT routine when an SDT

request arrives from the host. The application can respond to the SDT or

reject it with an appropriate SNA sense code, as described in “SNA

Information” on page 34.

 If the application does not provide an SDT routine, LUA returns a positive

response.

Asynchronous Verb Completion

Some LUA verbs complete quickly, after some local processing (for example the

RUI_PURGE verb); however, most verbs take some time to complete, because they

require messages to be sent to and received from the node or from the host

application. Because of this, LUA is implemented as an asynchronous interface;

LUA Verbs

6 IBM Communications Server for AIX LUA Programmer’s Guide

control can be returned to the application while a verb is still in progress, so the

application is free to continue with further processing (including issuing other

LUA verbs).

AIX, LINUX

When the verb completes, LUA calls a callback routine supplied by the application.

This routine may perform further processing on the returned data, issue further

LUA verbs, or simply act as an indicator that the verb has completed.

v RUI verbs may complete synchronously or asynchronously. The application

should check the primary return code in the VCB to determine which

completion mode applies for each verb.

v SLI verbs always complete asynchronously. After issuing the verb, the

application must not access the VCB until its callback routine has been called. It

can process the VCB either from within the callback routine, or from the

program’s main thread of execution after the callback routine has completed.

WINDOWS

When the verb completes, LUA either posts a message to a window handle

supplied by the application or signals an event handle supplied by the application.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

A Sample LUA Communication Sequence

Figure 3 on page 9, shows a sample LUA communication sequence using RUI

verbs, and Figure 4 on page 10, shows the equivalent sequence using SLI verbs.

In the RUI example, the application performs the following steps:

1. Issues the RUI_INIT verb to establish the SSCP session. The RUI_INIT verb

does not complete until CS/AIX has received an activate logical unit (ACTLU)

message from the host and sent a positive response; however, these messages

are handled by CS/AIX and not exposed to the LUA application.

2. Sends an INITSELF message to the SSCP, to request a BIND, and reads the

response.

3. Reads a BIND message from the host, and writes the response. This establishes

the LU session.

4. Reads an SDT message from the host, which indicates that initialization is

complete and data transfer can begin.

5. Sends a chain of data consisting of three RUs (the last indicates that a definite

response is required), and reads the response.

6. Reads a chain of data consisting of two RUs, and writes the response.

7. Reads an UNBIND message from the host, and writes the response. This

terminates the LU session.

LUA Verbs

Chapter 1. Concepts 7

8. Issues the RUI_TERM verb to terminate the SSCP session. (CS/AIX sends a

NOTIFY message to the host and waits for a positive response; however, these

messages are handled by CS/AIX and not exposed to the LUA application.)

The SLI example shows the same sequence of messages flowing between the host

and the application. The SLI verbs used are similar to those used in the RUI

example, but note the following differences:

v SLI_OPEN handles the complete session initialization; the application does not

need to read and write each individual RU in the initialization sequence, as in

the RUI example.

v LUA uses the application’s BIND and SDT routines (specified on SLI_OPEN) to

allow the application to process the BIND and SDT messages from the host.

These routines must return synchronously. All other SLI verbs complete

asynchronously.

v SLI_RECEIVE and SLI_SEND handle complete chains of data, so the application

needs only one verb to receive or send the data even though it is long enough to

require two or three RUs. (In the RUI example, the application must receive or

send each RU with a separate verb.)

The list that follows shows the abbreviations used in Figure 3 on page 9and

Figure 4 on page 10.

 SSCP norm SSCP session, normal flow

LU norm LU session, normal flow

LU exp LU session, expedited flow

+rsp Positive response to the indicated message

BC Begin chain

MC Middle of chain

EC End chain

CD Change direction indicator set

RQD Definite response required

Figure 3 on page 9, shows the RUI verbs used to start a session, exchange data,

and end the session, and the SNA messages sent and received. The arrows indicate

the direction in which SNA messages flow.

A Sample LUA Communication Sequence

8 IBM Communications Server for AIX LUA Programmer’s Guide

Figure 4 on page 10, shows the equivalent SLI verbs used for the same SNA

message sequence.

INITSELF

ACTLU

RUI_READ (SSCP norm)

RUI_WRITE return

LUA Application LU Host Application
RUI_INIT

RUI_INIT return

RUI_WRITE (SSCP norm)

RUI_WRITE return

RUI_READ (SSCP norm)

RUI_READ return

RUI_WRITE (LU exp)

RUI_WRITE return

RUI_READ (LU exp)

RUI_READ return

RUI_WRITE (LU exp)

RUI_WRITE return

RUI_READ (LU exp)

RUI_READ return

RUI_WRITE (LU norm)

RUI_WRITE return

RUI_WRITE (LU norm)

RUI_WRITE return

RUI_WRITE (LU norm)

RUI_WRITE return

RUI_READ (LU norm)

RUI_READ return

RUI_READ (LU norm)

RUI_READ return

RUI_READ (LU norm)

RUI_READ return

RUI_WRITE (LU norm)

RUI_WRITE return

RUI_READ (LU exp)

RUI_READ return

RUI_WRITE (LU exp)

RUI_WRITE return

RUI_TERM

RUI_TERM return

ACTLU

ACTLU +rsp

INITSELF +rsp

BIND

BIND +rsp

SDT

SDT +rsp

data, BC

data, MC

data, EC,CD,RQD

data +rsp

data +BC

data, EC,RQD

data, +rsp

UNBIND

UNBIND, +rsp

(NOTIFY)

(NOTIFY +rsp)

Figure 3. RUI Communication Sequence

A Sample LUA Communication Sequence

Chapter 1. Concepts 9

LUA Compatibility

AIX, LINUX

The RUI_INIT_PRIMARY and RUI_REINIT verbs are extensions to the standard

LUA interface specification. They are not available on a Remote API Client on

Windows, and may not be available in other LUA implementations.

INITSELF

ACTLU

SLI Application LU Host Application
SLI_OPEN

SLI_BIND_ROUTINE return

SLI_SDT_ROUTINE return

SLI_BIND_ROUTINE

SLI_SDT_ROUTINE

SLI_OPEN completion

SLI_SEND (LU norm)

SLI_SEND completion

SLI_RECEIVE (LU norm)

SLI_RECEIVE completion

SLI_RECEIVE (LU norm)

SLI_RECEIVE completion

SLI_SEND (LU norm)

SLI_SEND completion

SLI_RECEIVE (SSCP norm)

SLI_RECEIVE completion

(Primary rc STATUS,
secondary rc NOT_READY)

SLI_CLOSE

SLI_CLOSE completion

ACTLU

ACTLU +rsp

INITSELF +rsp

BIND

BIND +rsp

SDT

SDT +rsp

data, BC

data, MC

data, EC,CD,RQD

data +rsp

data +BC

data, EC,RQD

data, +rsp

UNBIND

UNBIND, +rsp

(NOTIFY)

(NOTIFY +rsp)

Figure 4. SLI Communication Sequence

LUA Compatibility

10 IBM Communications Server for AIX LUA Programmer’s Guide

WINDOWS

The implementation of LUA on the Remote API Client on Windows is designed to

be compatible with Windows LUA (as defined by the WOSA SNA specification);

applications written for Windows LUA can be used with the Remote API Client

without modification.

LUA Compatibility

Chapter 1. Concepts 11

LUA Compatibility

12 IBM Communications Server for AIX LUA Programmer’s Guide

Chapter 2. Designing and Writing LUA Applications

The information contained in this chapter will help you write LUA application

programs. The following topics are covered:

v LUA entry points for AIX or Linux applications

v LUA entry points for Windows applications

v Issuing an LUA verb

v SNA information

v Configuration information

v AIX or Linux considerations

v Windows considerations

v Writing portable applications

LUA Entry Points for AIX or Linux Applications

Applications running on AIX or Linux access LUA using the RUI or SLI function

call, specifying the address of a Verb Control Block (VCB) containing information

for an LUA verb. CS/AIX returns control to the application immediately.

The returned VCB contains a value indicating whether verb processing is still in

progress or has completed.

v In some cases, verb processing is still in progress when control returns to the

application; CS/AIX then uses an application-supplied callback routine to return

the results of the verb processing.

v In other cases, verb processing is complete when CS/AIX returns control to the

application; CS/AIX does not use the application’s callback routine. This applies

particularly if the verb failed LUA’s initial parameter checks or state checks and

so cannot be acted on.

v For SLI_OPEN, if the initial checks succeed, the SLI function call returns a

non-zero value representing the session ID of the new session. CS/AIX then uses

the application-supplied callback routine in the same way as for other verbs. The

application can use the new session ID to issue a limited range of subsequent

verbs on the session, without waiting for the callback routine to be called. For

details of which verbs can be issued in this situation, see “Interaction with Other

Verbs” on page 120.

Note: Because of the way operating system callback routines operate, it is possible

that the application’s callback routine will be called before control returns to

the application from its initial function call for the verb. This means that, if

the callback routine modifies or deletes the returned VCB, the program’s

main thread of execution may be unable to check the VCB parameters to

determine that the verb is operating asynchronously. You may need to take

account of this in your application design.

The entry points RUI and SLI are defined in the LUA header file

/usr/include/sna/lua_c.h (AIX) or /opt/ibm/sna/include/lua_c.h (Linux).

RUI Function Call

 void RUI(verb)

 LUA_VERB_RECORD * verb;

© Copyright IBM Corp. 2000, 2005 13

SLI Function Call

 AP_UINT32 SLI(verb)

 LUA_VERB_RECORD * verb;

Supplied Parameters

Supplied parameter is:

verb Pointer to a Verb Control Block (VCB) that contains the parameters for the

verb being issued. The VCB structure is defined in the LUA header file

lua_c.h, and is described in Chapter 3, “LUA VCB Structure,” on page 45.

Note: The LUA VCB contains many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values

For RUI, and for all SLI verbs except for SLI_OPEN, the entry point does not

return a value. The returned parameters in the VCB indicate whether the verb has

completed synchronously or will complete asynchronously; after the verb has

completed, the VCB contains the results of the verb.

For SLI_OPEN, the entry point returns a value indicating whether the VCB passed

LUA’s initial checks:

v A return value of 0 (zero) indicates that the verb failed LUA’s initial checks (for

example because the application supplied incorrect parameters). CS/AIX will not

call the application-supplied callback routine.

v A non-zero value represents the session ID of the new session that SLI_OPEN

will start.

This return value does not indicate that the verb has completed. CS/AIX will

call the application-supplied callback routine to indicate SLI_OPEN completion

when the session has been set up.

For more information, see “Usage.”

Usage

Sometimes LUA is sometimes able to complete all the processing for a verb as soon

as it is issued. This applies particularly if the verb failed LUA’s initial parameter

checks or state checks and so cannot be acted on. When this happens, the verb

returns synchronously; the primary return code is set to a value other than

LUA_IN_PROGRESS, and the lua_flag2.async bit is set to 0 (zero). (For information

about these returned parameters, see Chapter 4, “RUI Verbs,” on page 55 or

Chapter 5, “SLI Verbs,” on page 99.)

LUA Entry Points for AIX or Linux Applications

14 IBM Communications Server for AIX LUA Programmer’s Guide

At other times, LUA must wait for information from the remote LU or from the

node before it can complete the verb. In this case, the verb returns asynchronously;

the primary return code is set to LUA_IN_PROGRESS, and the lua_flag2.async bit is set

to 1. The application can now perform other processing, or wait for notification

from LUA that the verb has completed. LUA issues this notification by setting the

primary return code to its final value, leaving lua_flag2.async set to 1.

As part of the supplied VCB, the application supplies a pointer to a callback

routine (in the lua_post_handle parameter). If the verb completes synchronously,

LUA does not call the callback routine. If the verb completes asynchronously, LUA

indicates the verb completion by calling the callback routine with one

parameter—a pointer to the original verb control block (VCB). For more

information, see “Callback Routine for Asynchronous Verb Completion.”

Note:

1. It is not possible for an application to predict whether a particular verb

will complete synchronously or asynchronously.

2. If the lua_flag2.async parameter indicates that the verb will complete

asynchronously, the program’s main thread of execution should not

access any other parameters in the VCB at this point. When LUA calls

the callback routine, the application can then access the VCB parameters.

3. Because of the way operating system callback routines operate, it is

possible that the application’s callback routine will be called before

control returns to the application from its initial function call for the

verb. This means that, if the callback routine modifies or deletes the

returned VCB, the program’s main thread of execution may be unable to

check the VCB parameters to determine that the verb is operating

asynchronously. You may need to take account of this in your application

design.

Callback Routine for Asynchronous Verb Completion

To enable an LUA verb to complete asynchronously, the application must supply a

pointer to a callback routine. This section describes how CS/AIX uses this routine,

and the functions that it must perform.

Function Call

 void callback (verb)

 LUA_VERB_RECORD * verb;

 { .

 .

 }

Supplied Parameters

CS/AIX calls the routine with the following parameter:

verb Pointer to the VCB supplied by the application, including the returned

parameters set by CS/AIX. The callback routine may perform all the

necessary processing on the returned parameters in the VCB, or may

simply set a variable to inform the main program that the verb has

completed.

Note: Because of the way operating system callback routines operate, it is possible

that the application’s callback routine will be called before control returns to

the application from its initial function call for the verb. This means that, if

the callback routine modifies or deletes the returned VCB, the program’s

main thread of execution may be unable to check the VCB parameters to

LUA Entry Points for AIX or Linux Applications

Chapter 2. Designing and Writing LUA Applications 15

determine that the verb is operating asynchronously. You may need to take

account of this in your application design.

Returned Values

There are no returned values.

LUA Entry Points for Windows Applications

WINDOWS

A Windows application accesses LUA using the following functions:

RUI Issues an RUI verb. If the verb completes asynchronously, LUA indicates

the completion by signaling an event handle supplied by the application.

WinRUIStartup

Registers the application as a Windows RUI user, and determines whether

the LUA software supports the level of function required by the

application.

WinRUI Issues an RUI verb. If the verb completes asynchronously, LUA will

indicate the completion by posting a message to the application window.

WinRUIGetLastInitStatus

Checks the status of an RUI session (initiated by a previous RUI_INIT verb

that is still outstanding), requests notification of changes to the session

status, or cancels this notification.

WinRUICleanup

Unregisters the application when it has finished using RUI .

GetLuaReturnCode

Generates a printable character string for the primary and secondary return

codes obtained on an LUA verb.

SLI Issues an SLI verb. If the verb completes asynchronously, LUA indicates

the completion by signaling an event handle supplied by the application.

WinSLIStartup

Registers the application as a Windows SLI user, and determines whether

the LUA software supports the level of function required by the

application.

WinSLI Issues an SLI verb. If the verb completes asynchronously, LUA will indicate

the completion by posting a message to the application window.

WinSLICleanup

Unregisters the application when it has finished using SLI.

 An RUI application must call WinRUIStartup before attempting to issue any LUA

verbs using the WinRUI call.

While an RUI_INIT verb is outstanding, the application can use

WinRUIGetLastInitStatus to determine the status of the LUA session initiated by

this verb; it can then cancel the RUI_INIT verb if necessary. The

WinRUIGetLastInitStatus function can be used to check the current status without

requesting notification of subsequent changes, to request asynchronous notification

of subsequent changes to the session status, or to cancel a previous request for

notification of status changes.

LUA Entry Points for AIX or Linux Applications

16 IBM Communications Server for AIX LUA Programmer’s Guide

If a verb returns with non-LUA_OK return codes, the application can use

GetLuaReturnCode to obtain a text string representation of these return codes,

which can be used to generate standard error messages.

When it has finished issuing LUA verbs using the WinRUI call, it must call

WinRUICleanup before terminating; it must not attempt to issue any more RUI verbs

after calling WinRUICleanup.

An SLI application must call WinSLIStartup before attempting to issue any LUA

verbs using the WinSLI call.

If a verb returns with non-LUA_OK return codes, the application can use

GetLuaReturnCode to obtain a text string representation of these return codes,

which can be used to generate standard error messages.

When it has finished issuing LUA verbs using the WinSLI call, it must call

WinSLICleanup before terminating; it must not attempt to issue any more SLI verbs

after calling WinSLUICleanup.

The following sections describe these functions.

RUI

The application uses this function to issue an LUA RUI verb. If the verb completes

asynchronously, LUA indicates the completion by signaling an event handle

supplied by the application.

The application does not need to issue a WinRUIStartup verb before making this

call.

Function Call

 void WINAPI RUI(verb)

 LUA_VERB_RECORD FAR * verb;

Supplied Parameters

Supplied parameter is:

verb Pointer to a Verb Control Block (VCB) that contains the parameters for the

verb being issued. The VCB structure is defined in the LUA header file

winlua.h; this file is installed in the subdirectory /sdk within the directory

where you installed the Windows Client software. For an explanation of

the VCB structure, see Chapter 3, “LUA VCB Structure,” on page 45.

Note: The LUA VCB contains many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 17

memset(vcb, 0, sizeof(vcb));

Returned Values

The entry point does not return a value. When the call returns, the application can

examine the parameters in the VCB to determine whether the verb has completed

synchronously or will complete asynchronously. For more information, see

“Usage.”

Usage

Sometimes LUA is able to complete all the processing for a verb as soon as it is

issued. When this happens, the verb returns synchronously; the primary return

code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set

to 0 (zero). (For information about these returned parameters, see Chapter 4, “RUI

Verbs,” on page 55.)

At other times, LUA must wait for information from the remote LU or from the

node before it can complete the verb. In this case, the verb returns asynchronously;

the primary return code is set to LUA_IN_PROGRESS, and the lua_flag2.async bit is set

to 1. The application can now perform other processing, or wait for notification

from LUA that the verb has completed. LUA issues this notification by setting the

primary return code to its final value, leaving the lua_flag2.async bit set to 1.

As part of the supplied VCB, the application supplies an event handle in the

lua_post_handle parameter. The event must be in the nonsignaled state and the

handle must have EVENT_MODIFY_STATE access to the event. If the verb

completes synchronously, LUA does not signal this event handle. If the verb

completes asynchronously, LUA indicates the verb completion by signaling the

event handle.

The application issues a WaitForSingleObject or WaitForMultipleObject call to

wait on the event handle. When the event is signaled, the application examines the

primary return code and secondary return code to check for errors.

It is not possible for an application to predict whether a particular verb will

complete synchronously or asynchronously.

WinRUIStartup

The application uses this function to register as a Windows RUI user, and to

determine whether the LUA software supports the Windows LUA version that it

requires.

Function Call

 int WINAPI WinRUIStartup (

 WORD wVersionRequired;

 LUADATA far * lpData;

)

 typedef struct

 {

 WORD wVersion;

 char szDescription[41];

 } LUADATA;

Supplied Parameters

Supplied parameter is:

wVersionRequired

The version of Windows LUA that the application requires. CS/AIX

supports Version 1.0.

LUA Entry Points for Windows Applications

18 IBM Communications Server for AIX LUA Programmer’s Guide

The low-order byte specifies the major version number, and the high-order

byte specifies the minor version number. For example:

 Version wVersionRequired

1.0 0x0001

1.1 0x0101

2.0 0x0002

If the application can use more than one version, it should specify the

highest version that it can use.

Returned Values

The return value from the function is one of the following:

0 (zero)

The application was registered successfully, and the Windows LUA

software supports either the version number specified by the application or

a lower version. The application should check the version number in the

LUADATA structure to ensure that it is high enough.

WLUAVERNOTSUPPORTED

The version number specified by the application is not supported by the

Windows LUA software. The application was not registered.

WLUAINITREJECT

The application has already called WinRUIStartup and registered

successfully. It must not call this function more than once.

WLUASYSNOTREADY

The CS/AIX software has not been started, or the local node is not active.

The application was not registered.

WLUAFAILURE

An operating system error occurred during initialization of the Windows

LUA software. The application was not registered. Check the log files for

messages indicating the cause of the failure.

 If the return value from WinRUIStartup is 0 (zero), the LUADATA structure contains

information about the support provided by the Windows LUA software. If the

return value is nonzero, the contents of this structure are undefined and the

application should not check them. The parameters in this structure are as follows:

wVersion

The Windows LUA version number that the software supports, in the same

format as the wVersionRequired parameter (see “Supplied Parameters” on

page 18). CS/AIX supports Version 1.0.

 If the software supports the requested version number, this parameter is

set to the same value as the wVersionRequired parameter; otherwise it is set

to the highest version that the software supports, which will be lower than

the version number supplied by the application. The application must

check the returned value and take action as follows:

v If the returned version number is the same as the requested version

number, the application can use this Windows LUA implementation.

v If the returned version number is lower than the requested version

number, the application can use this Windows LUA implementation but

must not attempt to use features that are not supported by the returned

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 19

version number. If it cannot do this because it requires features not

available in the lower version, it should fail its initialization and not

attempt to issue any LUA verbs.

szDescription

A text string describing the Windows LUA software.

WinRUI

The application uses this function to issue an RUI verb. If the verb completes

asynchronously, LUA will indicate the completion by posting a message to the

application’s window handle.

Before using the WinRUI call for the first time, the application must use

RegisterWindowMessage to obtain the message identifier that LUA will use for

messages indicating asynchronous verb completion. For more information, see

“Usage” on page 21.

Function Call

 int WINAPI WinRUI (

 HWND hWnd,

 LUA_VERB_RECORD far * lpVCB

);

For the definition of the LUA_VERB_RECORD structure, see Chapter 3, “LUA VCB

Structure,” on page 45.

Supplied Parameters

Supplied parameters are:

hWnd A window handle that LUA will use to post a message indicating

asynchronous verb completion.

lpVCB A pointer to the VCB structure for the verb. For the WinRUI function, the

lua_post_handle parameter is reserved; leave it as 0 (zero).

 For more information about the VCB structure, see Chapter 3, “LUA VCB

Structure,” on page 45. For more information about on its usage for

individual verbs, see Chapter 4, “RUI Verbs,” on page 55.

Note: The LUA VCB contains many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values

The return value from the function is one of the following:

LUA Entry Points for Windows Applications

20 IBM Communications Server for AIX LUA Programmer’s Guide

0 (zero)

The function call was accepted, and the LUA verb will be processed. The

application should check the lua_flag2.async parameter in the VCB structure

to determine whether the verb has already completed synchronously or

will complete asynchronously, as described in “Synchronous and

Asynchronous Verb Completion.”

WLUAINVALIDHANDLE

The supplied hWnd parameter was not a valid window handle.

WLUASTARTUPNOTCALLED

The application has not issued the WinRUIStartup call, which is required

before issuing any LUA verbs.

 For information about the parameters returned in the VCB structure, see the

descriptions of individual verbs in Chapter 4, “RUI Verbs,” on page 55.

Usage

Before using WinRUI for the first time, the application must use the

RegisterWindowMessage call to obtain the message identifier that LUA will use for

messages indicating asynchronous verb completion. RegisterWindowMessage is a

standard Windows function call, not specific to LUA; refer to your Windows

documentation for more information about the function. (There is no need to issue

the call again before subsequent LUA verbs; the returned value will be the same

for all calls issued by the application.)

The application must pass the string WinRUI to the function; the returned value is a

message identifier (the value returned from the RegisterWindowMessage call).

Each time an LUA verb that was issued using the WinRUI entry point completes

asynchronously, LUA posts a message to the window handle specified on the

WinRUI call. The format of the message is as follows:

v The message identifier is the value returned from the RegisterWindowMessage

call.

v The lParam argument contains the address of the VCB that was supplied to the

original WinRUI call; the application can use this address to access the returned

parameters in the VCB structure.

v The wParam argument is undefined.

Synchronous and Asynchronous Verb Completion

Sometimes LUA is able to complete all the processing for a verb as soon as it is

issued. When this happens, the verb returns synchronously; the primary return

code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set

to 0 (zero). (For information about these returned parameters, see Chapter 4, “RUI

Verbs,” on page 55.)

To enable the verb to return asynchronously, the application supplies a window

handle to the LUA entry point. If the verb completes synchronously, LUA does not

use this window handle. If the verb completes asynchronously, LUA indicates the

verb completion by posting a message to this window handle; the message

includes a pointer to the original VCB.

It is not possible for an application to predict whether a particular verb will

complete synchronously or asynchronously.

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 21

Verbs can be issued from a callback, but they will not always complete

asynchronously. Such verbs may be returned synchronously if they fail from within

the library. The application should not reissue the failed verb from within the

callback.

If the user repeatedly issues RUI_INITs in parallel from the callback context, the

RUI_INITs will eventually fail with a memory error. However, if verbs are issued

from the application thread, allowing the availability of all the system memory,

more attempts will complete successfully.

WinRUIGetLastInitStatus

The application uses this function to determine the status of a previous RUI_INIT

verb that is still outstanding. It can use the returned information to decide whether

to cancel the session initiation (by issuing RUI_TERM) or to wait for the session to

be established.

The function can be used to do any of the following:

v Request information about the current status of the session initiated by a specific

RUI_INIT verb.

v Request asynchronous notification of changes to session status for a specific

session or for all sessions. When the session status changes, LUA will indicate

this by either posting a message to the application’s window handle or by

signaling the application’s event handle.

v Cancel a previous request for asynchronous notification of changes to session

status.

Before using the WinRUI call for the first time, the application must use

WinRUIStartup to register as a Windows LUA application. If it requires

asynchronous notification of status changes, it must also use

RegisterWindowMessage to obtain the message identifier that LUA will use for this

notification. For more information about these calls, see “WinRUIStartup” on page

18 and “Usage” on page 24.

Function Call

 int WINAPI WinRUIGetLastInitStatus (

 DWORD Sid,

 HANDLE StatusHandle,

 DWORD NotifyType,

 BOOL ClearPrevious

);

Supplied Parameters

Supplied parameters are:

Sid To obtain information about the session status for a specific RUI_INIT

verb, or to cancel a previous request for notification of session status

changes for this verb, specify the session ID returned on the initial return

from the RUI_INIT verb.

 To request notification on session status changes for all outstanding

RUI_INIT verbs, specify 0 (zero). In this case, the StatusHandle parameter

must specify a valid Windows handle, because the information will always

be returned asynchronously.

 To cancel notification of session status changes for all outstanding

RUI_INIT verbs, specify 0 (zero).

LUA Entry Points for Windows Applications

22 IBM Communications Server for AIX LUA Programmer’s Guide

StatusHandle

To obtain the current session status for a specific RUI_INIT verb, without

requesting notification of subsequent changes, specify a null handle.

 To request notification on session status changes, either for a specific

RUI_INIT verb or for all outstanding RUI_INIT verbs, specify a Windows

handle or an event handle that LUA will use when the session status

changes.

 If the ClearPrevious parameter is set to TRUE, to cancel a previous

notification request, LUA ignores this parameter.

NotifyType

If requesting asynchronous notification, this parameter determines how

LUA should identify the RUI_INIT verb on the asynchronous notification

message. Allowed values:

WLUA_NTFY_MSG_CORRELATOR

The StatusHandle parameter contains a window handle. Identify the

verb using the lua_correlator value supplied on the RUI_INIT verb.

WLUA_NTFY_MSG_SID

The StatusHandle parameter contains a window handle. Identify the

verb using the lua_sid value returned on the RUI_INIT verb.

WLUA_NTFY_EVENT

The StatusHandle parameter contains an event handle.

If the StatusHandle parameter is null (to request current status information),

or if the ClearPrevious parameter is set to TRUE (to cancel a previous

notification request), LUA ignores this parameter.

ClearPrevious

To cancel a previous notification request, set this parameter to TRUE; LUA

ignores the StatusHandle and ClearPrevious parameters. To request either

current status or notification of future status changes, set this parameter to

FALSE.

Returned Values

If the function completed successfully, the return value from the function is one of

the following:

WLUALINKINACTIVE

The communications link to the host is not yet active.

WLUAPUINACTIVE

The communications link to the host is active, but an activate physical unit

(ACTPU) has not yet been received.

WLUAPUACTIVE

An ACTPU has been received from the host.

WLUAPUREACTIVATED

The PU has been reactivated by the host.

WLUALUINACTIVE

The communications link to the host is active, and an ACTPU has been

received, but an ACTLU has not yet been received.

WLUALUACTIVE

The LU is active.

WLUALUREACTIVATED

The LU has been reactivated.

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 23

WLUAGETLU

The application is establishing contact with the node.

 If the application requested notification of status changes, one of these values will

be included in a Windows message sent to the application each time the status

changes. For more information, see “Usage.”

The following return values indicate that the function failed:

WLUASYSNOTREADY

The SNA software is not running.

WLUANTFYINVALID

The NotifyType parameter was set to a value that was not valid.

WLUAINVALIDHANDLE

The supplied StatusHandle parameter was not a valid window handle.

WLUASTARTUPNOTCALLED

The application has not issued the WinRUIStartup call, which is required

before issuing any LUA verbs.

WLUAUNKNOWN

Internal error: the session status is unknown.

WLUASIDINVALID

The supplied Sid parameter did not match the session ID of an outstanding

RUI_INIT verb.

WLUASIDZERO

The application supplied a zero session ID (indicating all sessions), but

did not specify either a Windows handle (to indicate asynchronous

notification) or a ClearPrevious value of TRUE (to clear a previous

notification request).

WLUAGLOBALHANDLER

The application has previously requested notification of status changes for

all RUI_INIT verbs; it cannot request notification for a specific session

unless it first clears the “all sessions” notification.

Usage

If the application is requesting asynchronous notification of status changes using a

Windows message, it must use the RegisterWindowMessage call before its first

WinRUIGetLastInitStatus call, to obtain the message identifier that LUA will use

for messages indicating status changes.

The RegisterWindowMessage call is a standard Windows function call, not specific

to LUA; refer to your Windows documentation for more information about the

function. (There is no need to issue the call again before subsequent calls to this

function; the returned value will be the same for all calls issued by the

application.)

The application must pass the string “WinRUI” to the function; the returned value is

a message identifier (the value returned from the RegisterWindowMessage call).

Each time the session status changes, LUA posts a message to the window handle

specified on the WinRUI call. The format of the message is as follows:

v The message identifier is the value returned from the RegisterWindowMessage

call.

LUA Entry Points for Windows Applications

24 IBM Communications Server for AIX LUA Programmer’s Guide

v The lParam argument contains either the correlator value supplied to the original

RUI_INIT verb or the session ID returned on the original RUI_INIT verb, as

defined by the NotifyType parameter. The application can use this value to

correlate the message with the original verb.

v The wParam argument contains the session status (one of the values listed for

successful execution in “Returned Values” on page 23), or the value WLUAUNKNOWN

if an internal error occurred during processing.

If the application is requesting asynchronous notification of status changes using

an event handle, implement it as follows:

WinRUIGetLastInitStatus(Sid,EventHandle,WLUA_NOTIFY_EVENT,FALSE);

The event whose handle is given will be signaled when a change in state occurs.

Since no information is returned when an event is signaled, a further call must be

issued to determine the status, as follows:

Status = WinRUIGetLastInitStatus(Sid,NULL,0,FALSE);

Note: In this case, a Sid must be specified.

WinRUICleanup

The application uses this function to unregister as a Windows RUI user, after it has

finished issuing RUI verbs.

Function Call

 BOOL WINAPI WinRUICleanup (void);

Supplied Parameters

There are no supplied parameters for this function.

Returned Values

The return value from the function is one of the following:

TRUE The application was unregistered successfully.

FALSE An error occurred during processing of the call, and the application was

not unregistered. Check the log files for messages indicating the cause of

the failure.

GetLuaReturnCode

The application uses this function to obtain a printable character string indicating

the primary and secondary return codes from a supplied VCB. The string can be

used to generate application error messages for non-LUA_OK return codes.

Function Call

 int WINAPI GetLuaReturnCode (

 struct LUA_COMMON FAR * vcbptr,

 unsigned int buffer_length,

 unsigned char far * buffer_addr

);

Supplied Parameters

Supplied parameters are:

vcbptr A pointer to the VCB structure for the verb. For more information about

the VCB structure and on its usage for individual verbs, see Chapter 4,

“RUI Verbs,” on page 55.

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 25

buffer_length

The length (in bytes) of the buffer supplied by the application to hold the

returned data string. The recommended length is 256 bytes.

buffer_addr

The address of the buffer supplied by the application to hold the returned

data string.

Returned Values

The return value from the function is one of the following:

0 (zero)

The function completed successfully.

0x20000001

LUA could not read from the supplied VCB, or could not write to the

supplied data buffer.

0x20000002

The supplied data buffer is too small to hold the returned character string.

0x20000003

The dynamic link library, LUASTR32.DLL, which generates the returned

character strings for this function, could not be loaded.

 If the return value is 0 (zero), the returned character string is in the buffer

identified by the buffer_addr parameter. This string is terminated by a null character

(binary zero), but does not include a trailing new-line (\n) character.

SLI

The application uses this function to issue an LUA SLI verb. If the verb completes

asynchronously, LUA indicates the completion by signaling an event handle

supplied by the application.

Function Call

 void WINAPI SLI(verb)

 LUA_VERB_RECORD FAR * verb;

Supplied Parameters

Supplied parameter is:

verb Pointer to a Verb Control Block (VCB) that contains the parameters for the

verb being issued. The VCB structure is defined in the LUA header file

winlua.h; this file is installed in the subdirectory /sdk within the directory

where you installed the Windows Client software. For an explanation of

the VCB structure, see Chapter 3, “LUA VCB Structure,” on page 45.

Note: The LUA VCB contains many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

LUA Entry Points for Windows Applications

26 IBM Communications Server for AIX LUA Programmer’s Guide

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values

The entry point does not return a value. When the call returns, the application can

examine the parameters in the VCB to determine whether the verb has completed

synchronously or will complete asynchronously. For more information, see

“Usage.”

Usage

Sometimes LUA is able to complete all the processing for a verb as soon as it is

issued. When this happens, the verb returns synchronously; the primary return

code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set

to 0 (zero). (For information about these returned parameters, see Chapter 5, “SLI

Verbs,” on page 99.)

At other times, LUA must wait for information from the remote LU or from the

node before it can complete the verb. In this case, the verb returns asynchronously;

the primary return code is set to LUA_IN_PROGRESS, and the lua_flag2.async bit is set

to 1. The application can now perform other processing, or wait for notification

from LUA that the verb has completed. LUA issues this notification by setting the

primary return code to its final value, leaving the lua_flag2.async bit set to 1.

As part of the supplied VCB, the application supplies an event handle in the

lua_post_handle parameter. The event must be in the nonsignaled state and the

handle must have EVENT_MODIFY_STATE access to the event. If the verb

completes synchronously, LUA does not signal this event handle. If the verb

completes asynchronously, LUA indicates the verb completion by signaling the

event handle.

The application issues a WaitForSingleObject or WaitForMultipleObject call to

wait on the event handle. When the event is signaled, the application examines the

primary return code and secondary return code to check for errors.

It is not possible for an application to predict whether a particular verb will

complete synchronously or asynchronously.

WinSLIStartup

The application uses this function to register as a Windows SLI user, and to

determine whether the LUA software supports the Windows LUA version that it

requires.

Function Call

 int WINAPI WinSLIStartup (

 WORD wVersionRequired;

 LUADATA far * lpData;

)

 typedef struct

 {

 WORD wVersion;

 char szDescription[41];

 } LUADATA;

Supplied Parameters

Supplied parameter is:

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 27

wVersionRequired

The version of Windows LUA that the application requires. CS/AIX

supports Version 1.0.

 The low-order byte specifies the major version number, and the high-order

byte specifies the minor version number. For example:

 Version wVersionRequired

1.0 0x0001

1.1 0x0101

2.0 0x0002

If the application can use more than one version, it should specify the

highest version that it can use.

Returned Values

The return value from the function is one of the following:

0 (zero)

The application was registered successfully, and the Windows LUA

software supports either the version number specified by the application or

a lower version. The application should check the version number in the

LUADATA structure to ensure that it is high enough.

WLUAVERNOTSUPPORTED

The version number specified by the application is not supported by the

Windows LUA software. The application was not registered.

WLUAINITREJECT

The application has already called WinSLIStartup and registered

successfully. It must not call this function more than once.

WLUASYSNOTREADY

The CS/AIX software has not been started, or the local node is not active.

The application was not registered.

WLUAFAILURE

An operating system error occurred during initialization of the Windows

LUA software. The application was not registered. Check the log files for

messages indicating the cause of the failure.

 If the return value from WinSLIStartup is 0 (zero), the LUADATA structure contains

information about the support provided by the Windows LUA software. If the

return value is nonzero, the contents of this structure are undefined and the

application should not check them. The parameters in this structure are as follows:

wVersion

The Windows LUA version number that the software supports, in the same

format as the wVersionRequired parameter (see “Supplied Parameters” on

page 18). CS/AIX supports Version 1.0.

 If the software supports the requested version number, this parameter is

set to the same value as the wVersionRequired parameter; otherwise it is set

to the highest version that the software supports, which will be lower than

the version number supplied by the application. The application must

check the returned value and take action as follows:

v If the returned version number is the same as the requested version

number, the application can use this Windows LUA implementation.

LUA Entry Points for Windows Applications

28 IBM Communications Server for AIX LUA Programmer’s Guide

v If the returned version number is lower than the requested version

number, the application can use this Windows LUA implementation but

must not attempt to use features that are not supported by the returned

version number. If it cannot do this because it requires features not

available in the lower version, it should fail its initialization and not

attempt to issue any LUA verbs.

szDescription

A text string describing the Windows LUA software.

WinSLI

The application uses this function to issue an SLI verb. If the verb completes

asynchronously, LUA will indicate the completion by posting a message to the

application’s window handle.

Before using the WinSLI call for the first time, the application must use

RegisterWindowMessage to obtain the message identifier that LUA will use for

messages indicating asynchronous verb completion. For more information, see

“Usage” on page 30.

Function Call

 int WINAPI WinSLI (

 HWND hWnd,

 LUA_VERB_RECORD far * lpVCB

);

For the definition of the LUA_VERB_RECORD structure, see Chapter 3, “LUA VCB

Structure,” on page 45.

Supplied Parameters

Supplied parameters are:

hWnd A window handle that LUA will use to post a message indicating

asynchronous verb completion.

lpVCB A pointer to the VCB structure for the verb. For the WinSLI function, the

lua_post_handle parameter is reserved; leave it as 0 (zero).

 For more information about the VCB structure, see Chapter 3, “LUA VCB

Structure,” on page 45. For more information about on its usage for

individual verbs, see Chapter 5, “SLI Verbs,” on page 99.

Note: The LUA VCB contains many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 29

Returned Values

The return value from the function is one of the following:

0 (zero)

The function call was accepted, and the LUA verb will be processed. The

application should check the lua_flag2.async parameter in the VCB structure

to determine whether the verb has already completed synchronously or

will complete asynchronously, as described in “Synchronous and

Asynchronous Verb Completion.”

WLUAINVALIDHANDLE

The supplied hWnd parameter was not a valid window handle.

WLUASTARTUPNOTCALLED

The application has not issued the WinSLIStartup call, which is required

before issuing any SLI verbs.

 For information about the parameters returned in the VCB structure, see the

descriptions of individual verbs in Chapter 5, “SLI Verbs,” on page 99.

Usage

Before using WinSLI for the first time, the application must use the

RegisterWindowMessage call to obtain the message identifier that LUA will use for

messages indicating asynchronous verb completion. RegisterWindowMessage is a

standard Windows function call, not specific to LUA; refer to your Windows

documentation for more information about the function. (There is no need to issue

the call again before subsequent LUA verbs; the returned value will be the same

for all calls issued by the application.)

The application must pass the string WinSLI to the function; the returned value is a

message identifier (the value returned from the RegisterWindowMessage call).

Each time an LUA verb that was issued using the WinSLI entry point completes

asynchronously, LUA posts a message to the window handle specified on the

WinSLI call. The format of the message is as follows:

v The message identifier is the value returned from the RegisterWindowMessage

call.

v The lParam argument contains the address of the VCB that was supplied to the

original WinSLI call; the application can use this address to access the returned

parameters in the VCB structure.

v The wParam argument is undefined.

Synchronous and Asynchronous Verb Completion

Sometimes LUA is able to complete all the processing for a verb as soon as it is

issued. When this happens, the verb returns synchronously; the primary return

code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set

to 0 (zero). (For information about these returned parameters, see Chapter 5, “SLI

Verbs,” on page 99.)

To enable the verb to return asynchronously, the application supplies a window

handle to the LUA entry point. If the verb completes synchronously, LUA does not

use this window handle. If the verb completes asynchronously, LUA indicates the

verb completion by posting a message to this window handle; the message

includes a pointer to the original VCB.

It is not possible for an application to predict whether a particular verb will

complete synchronously or asynchronously.

LUA Entry Points for Windows Applications

30 IBM Communications Server for AIX LUA Programmer’s Guide

Verbs can be issued from a callback, but they will not always complete

asynchronously. Such verbs may be returned synchronously if they fail from within

the library. The application should not reissue the failed verb from within the

callback.

If the user repeatedly issues SLI_OPENs in parallel from the callback context, the

SLI_OPENs will eventually fail with a memory error. However, if verbs are issued

from the application thread, allowing the availability of all the system memory,

more attempts will complete successfully.

WinSLICleanup

The application uses this function to unregister as a Windows SLI user, after it has

finished issuing SLI verbs.

Function Call

 BOOL WINAPI WinSLICleanup (void);

Supplied Parameters

There are no supplied parameters for this function.

Returned Values

The return value from the function is one of the following:

TRUE The application was unregistered successfully.

FALSE An error occurred during processing of the call, and the application was

not unregistered. Check the log files for messages indicating the cause of

the failure.

Issuing an LUA Verb

The steps required to issue an LUA verb are as follows. The examples indicate the

use of the RUI_INIT verb.

1. Include the LUA header file in the application’s source code.

AIX, LINUX

 #include < lua_c.h>

WINDOWS

#include < winlua.h >

AIX, LINUX

2. Set up a callback function that LUA will use to indicate that the verb has

completed asynchronously. (For more information, see “LUA Entry Points for

AIX or Linux Applications” on page 13.)

 void callback(verb)

 LUA_VERB_RECORD * verb;

 {

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 31

.

 .

 .

 }

WINDOWS

If this is the first LUA verb from the application, and the application will be

issuing RUI verbs using the WinRUI call, issue the WinRUIStartup call to

initialize the application’s use of LUA. Similarly, if the application will be

issuing SLI verbs using the WinSLI call, issue the WinSLIStartup call to initialize

the application’s use of LUA. (For more information, see “LUA Entry Points for

Windows Applications” on page 16.) This call must be issued once before the

application’s first LUA verb; it must not be repeated before subsequent verbs.

Also issue the RegisterWindowMessage call, to obtain the message identifier that

LUA will use when posting messages to indicate the completion of an LUA

verb. (For more information, see “LUA Entry Points for Windows Applications”

on page 16.) This call must be issued once before the application’s first LUA

verb; there is no need to repeat it before subsequent verbs.

3. Create a variable for the VCB structure.

LUA_VERB_RECORD rui_init;

The LUA_VERB_RECORD structure is declared in the header file lua_c.h (AIX

or Linux applications) or winlua.h (Windows applications); for an explanation

of the VCB structure, see Chapter 3, “LUA VCB Structure,” on page 45.

4. Clear (set to 0) the variables within the VCB.

 memset(rui_init, 0, sizeof(rui_init));

LUA requires that all reserved parameters, and all parameters not required by

the particular verb being issued, must be set to 0 (zero). For details about

reserved parameters, see “LUA Verb Control Block (VCB) Format” on page 45.

The simplest way to do this is to set the entire VCB to zeros before setting the

parameters required for this particular verb.

5. Assign values to the VCB parameters that supply information to LUA.

rui_init.common.lua_verb = LUA_VERB_RUI

rui_init.common.lua_verb_length = sizeof(LUA_COMMON);

rui_init.common.lua_opcode = LUA_OPCODE_RUI_INIT;

memcpy (rui_init.common.lua_luname, "THISLU ", 8);

AIX, LINUX

rui_init.common.lua_post_handle = (unsigned long) callback;

WINDOWS

The rui_init.common.lua_post_handle parameter is reserved; leave it as 0 (zero).

The values LUA_VERB_RUI and LUA_OPCODE_RUI_INIT are symbolic

constants. These constants are defined in the header file lua_c.h (AIX or Linux

applications) or winlua.h (Windows applications); you are recommended to use

the symbolic constants and not the integer values, for portability between

different systems. (For more information, see “Writing Portable Applications”

on page 42.)

Issuing an LUA Verb

32 IBM Communications Server for AIX LUA Programmer’s Guide

6. Invoke LUA. The address of the VCB structure is a parameter to the function

call.

AIX, LINUX

RUI (&rui_init);

WINDOWS

The WinRUI entry point requires an additional parameter, which is a window

handle for the window to which LUA will post a message indicating

asynchronous completion of the verb.

WinRUI (handle, (LUA_VERB_RECORD far *) &rui_init);

7. Check the lua_flag2.async parameter to find out whether the verb has completed

synchronously or will complete asynchronously.

 if (rui_init.common.lua_flag2.async)

 {

 /* verb will complete asynchronously */

 /* using the supplied callback routine */

 /* continue with other processing */

 .

 .

 .

 }

 else

 {

 /* verb has completed synchronously */

 /* callback routine will not be called */

 /* process the returned values here */

 .

 .

 .

 }

If the lua_flag2.async parameter indicates that the verb will complete

asynchronously, the program’s main thread of execution should not access any

other parameters in the VCB at this point. When LUA calls the callback routine,

the application can then access the VCB parameters.

8. Use the variables returned by LUA. If Step 7 indicates that the verb will

complete asynchronously, this step must not be performed until the verb has

completed; on AIX or Linux systems, the processing is typically done by the

callback routine. If Step 7 indicates that the verb has completed synchronously,

the processing should be done by the main code path because the callback

routine will not be called.

 if(rui_init.common.lua_prim_rc == LUA_OK)

 {

 /* Init OK */

 .

 .

 .

 }

 else

 {

 /* Do error routine */

 .

 .

 .

 }

Issuing an LUA Verb

Chapter 2. Designing and Writing LUA Applications 33

SNA Information

This section explains some SNA information that you need to consider when

writing CS/AIX LUA applications for communications with a host. If you are

writing an RUI Primary application for communications with a downstream LU,

see “SNA Information for RUI Primary” on page 37.

This guide does not attempt to explain SNA concepts in detail. If you need specific

information about SNA message flows, refer to the documentation for the host

application for which you are designing your CS/AIX LUA application.

BIND Checking: RUI

During initialization of the LU session, the host sends a BIND message to the

CS/AIX LUA application that contains information such as RU sizes to be used by

the LU session. CS/AIX returns this message to the LUA application on an

RUI_READ verb. It is the responsibility of the LUA application to check that the

parameters specified on the BIND are suitable. The application has the following

options:

v Accept the BIND as it is, by issuing an RUI_WRITE verb containing an OK

response to the BIND. No data needs to be sent on the response.

v Try to negotiate one or more BIND parameters (this is only permitted if the

BIND is negotiable). To do this, the application issues an RUI_WRITE verb

containing an OK response, but including the modified BIND as data.

v Reject the BIND by issuing an RUI_WRITE verb containing a negative response,

using an appropriate SNA sense code as data.

For more information about the RUI_WRITE verb, see Chapter 4, “RUI Verbs,” on

page 55.

The validation of the BIND parameters, and ensuring that all messages sent are

consistent with them, is the responsibility of the LUA application. However, the

following two restrictions apply:

v CS/AIX rejects any RUI_WRITE verb that specifies an RU length greater than

the size specified on the BIND.

v CS/AIX requires the BIND to specify that the secondary LU is the contention

winner, and that error recovery is the responsibility of the contention loser.

BIND Checking: SLI

During initialization of the LU session, the host sends a BIND message to the

CS/AIX LUA application that contains information such as RU sizes to be used by

the LU session.

On the SLI_OPEN verb, the application can optionally specify the address of its

own routine to process BIND requests from the host. If it has done so, LUA sends

an additional verb SLI_BIND_ROUTINE to the application-supplied routine to

allow it to process the request, as follows. It is the responsibility of the LUA

application to check that the parameters specified on the BIND are suitable. The

application has the following options:

v Accept the BIND as it is, by returning the SLI_BIND_ROUTINE verb with a

primary return code of OK. The application does not modify the data buffer

containing the BIND.

SNA Information

34 IBM Communications Server for AIX LUA Programmer’s Guide

v Try to negotiate one or more BIND parameters (this is only permitted if the

BIND is negotiable). To do this, the application returns the SLI_BIND_ROUTINE

verb with a primary return code of OK, but including the modified BIND in the

data buffer.

v Reject the BIND by returning the SLI_BIND_ROUTINE verb with a primary

return code of LUA_NEGATIVE_RESPONSE, and replacing the BIND request in the

data buffer with an appropriate SNA sense code.

The validation of the BIND parameters, and ensuring that all messages sent are

consistent with them, is the responsibility of the LUA application. However,

CS/AIX requires the BIND to specify that the secondary LU is the contention

winner, and that error recovery is the responsibility of the contention loser.

Negative Responses and SNA Sense Codes

SNA sense codes may be returned to an LUA application in the following cases:

v When the host sends a negative response to a request from the LUA application,

this includes an SNA sense code indicating the reason for the negative response.

This is reported to the application on a subsequent RUI_READ or SLI_RECEIVE

verb, as follows:

– The primary return code is LUA_OK.

– The Request/Response Indicator, Response Type Indicator, and Sense Data

Included Indicator are all set to 1, indicating a negative response that includes

sense data.

– The data returned by the RUI_READ or SLI_RECEIVE verb is the SNA sense

code.
v When CS/AIX receives data that is not valid from the host, it generally sends a

negative response to the host and does not pass the data that is not valid to the

LUA application. This is reported to the application on a subsequent RUI_READ

or RUI_BID verb, or SLI_RECEIVE / SLI_BID, as follows:

– The primary return code is LUA_NEGATIVE_RSP.

– The secondary return code is the SNA sense code sent to the host.
v In some cases, CS/AIX detects that data supplied by the host is not valid, but

cannot determine the correct sense code to send. In this case, it passes the data

that is not valid in an Exception Request (EXR) to the LUA application on an

RUI_READ or SLI_RECEIVE verb as follows:

– The Request/Response Indicator is set to 0 (zero), indicating a request.

– The Sense Data Included Indicator is set to 1, indicating that sense data is

included (this indicator is normally used only for a request).

– The message data is replaced by a suggested SNA sense code.
The application must then send a negative response to the message; it may use

the sense code suggested by CS/AIX, or may alter it.

v CS/AIX may send a sense code to the application to indicate that data supplied

by the application was not valid. This is reported to the application on the

RUI_WRITE or SLI_SEND verb that supplied the data, as follows:

– The primary return code is LUA_UNSUCCESSFUL.

– The secondary return code is the SNA sense code.

Distinguishing SNA Sense Codes from Other Secondary Return

Codes

Note: The byte ordering used in LUA secondary return codes means that the most

significant byte of the numeric value is the last byte, not the first byte.

SNA Information

Chapter 2. Designing and Writing LUA Applications 35

For a secondary return code that is not a sense code, the two most significant bytes

of this value are always 0 (zero). As an example, 0x01000000 (LUA_INVALID_LUNAME)

is a standard LUA secondary return code and not a sense code.

For an SNA sense code, the two most significant bytes are nonzero; the most

significant byte gives the sense code category, and the next byte identifies a

particular sense code within that category. (The remaining bytes may contain

additional information, or may be 0.) As an example, 0x00000108

(LUA_RESOURCE_NOT_AVAILABLE) is a sense code.

All LUA secondary return codes, including those that are SNA sense codes, are

listed in Appendix A, “Return Code Values,” on page 151.

Information about SNA Sense Codes

If you need information about a returned sense code, refer to IBM’s Systems

Network Architecture: Formats. The sense codes are listed in numerical order by

category.

You can also retrieve online help information about a specific SNA sense code

generated on the CS/AIX computer, by typing sna -getsense followed by either the

category and modifier (the first four digits) or the entire sense code (all eight

digits) on the command line. For more information, see Communications Server for

AIX Diagnostics Guide.

Pacing

Pacing is handled by the LUA interface; an LUA application does not need to

control pacing, and should never set the Pacing Indicator flag.

If pacing is being used on data sent from the LUA application to the host (this is

determined by the BIND), an RUI_WRITE or SLI_SEND verb may take some time

to complete. This is because CS/AIX has to wait for a pacing response from the

host before it can send more data.

If an LUA application is used to transfer large quantities of data in one direction,

either to the host or from the host (for example, a file transfer application), then

the host configuration should specify that pacing is used in that direction; this is to

ensure that the node receiving the data is not flooded with data and does not run

out of data storage.

Segmentation

Segmentation of RUs is handled by the LUA interface. LUA always passes

complete RUs to the application, and the application should pass complete RUs to

LUA.

Modification of Nonstandard Host Response/Request Header

(RH) Bits

A host may send data to an LUA application with the BB (begin bracket) and RQE

(request exception) options set but without the EB (end bracket) option (begin

bracket and exception response but no end bracket). This combination of options is

not strictly valid in SNA, but is used by some host applications.

In order to support these host applications, CS/AIX modifies the host data to

specify definite response rather than exception response before sending it to the

application.

SNA Information

36 IBM Communications Server for AIX LUA Programmer’s Guide

Courtesy Acknowledgments

CS/AIX keeps a record of requests received from the host in order to correlate any

response sent by the application with the appropriate request. When the

application sends a response, CS/AIX correlates this with the data from the

original request, and can then free the storage associated with it.

If the host specifies exception response only (a negative response can be sent but a

positive response should not be sent), CS/AIX must still keep a record of the

request in case the application subsequently sends a negative response. If the

application does not send a response, the storage associated with this request

cannot be freed.

Because of this, CS/AIX allows the LUA application to issue a positive response to

an exception-response-only request from the host (this is known as a courtesy

acknowledgment). The response is not sent to the host, but is used by CS/AIX to

clear the storage associated with the request.

Purging Data to End of Chain

When the host sends a chain of request units to an LUA application, the

application may wait until the last RU in the chain is received before sending a

response, or it may send a negative response to an RU that is not the last in the

chain. If a negative response is sent mid-chain, CS/AIX purges all subsequent RUs

from this chain, and does not send them to the application.

When CS/AIX receives the last RU in the chain, it indicates this to the application

by setting the primary return code of an RUI_READ or RUI_BID verb, or

SLI_RECEIVE / SLI_BID, to LUA_NEGATIVE_RSP with a 0 (zero) secondary return

code.

The host may terminate the chain by sending a message such as CANCEL while in

mid-chain. In this case, the CANCEL message is returned to the application on an

RUI_READ or SLI_RECEIVE verb, and the LUA_NEGATIVE_RSP return code (see

“Negative Responses and SNA Sense Codes” on page 35) is not used.

SNA Information for RUI Primary

This section explains some SNA information that you need to consider when

writing CS/AIX RUI Primary applications for communications with a downstream

LU.

This guide does not attempt to explain SNA concepts in detail. If you need specific

information about SNA message flows, refer to the documentation for the host

application for which you are designing your CS/AIX LUA application.

Responsibilities of the Primary RUI application

A Primary RUI application has control of both LU-SSCP and PLU-SLU sessions at

the Request/Response Unit (RU) level, and can send and receive SNA RUs on

these sessions. The PU-SSCP session is internal to CS/AIX and the Primary RUI

application cannot access it.

Because a Primary RUI application works at the RU level, it has a large degree of

control over the data flow to and from the secondary LU. However, it takes greater

responsibility than a regular LUA application for ensuring that the SNA messages

it sends are valid and that the RU level protocols (for example bracketing and

SNA Information

Chapter 2. Designing and Writing LUA Applications 37

chaining) are used correctly. In particular, note that CS/AIX does not attempt to

verify the validity of RUs sent by a Primary RUI application.

The Primary RUI application is responsible for:

v Initializing downstream LUs using RUI_INIT_PRIMARY, and terminating them

using RUI_TERM

v Processing NOTIFY messages from the secondary LU as secondary applications

start and stop

v Processing INIT-SELF and TERM-SELF to activate and deactivate the PLU-SLU

session

v Building, sending, receiving and parsing 3270 datastream messages in data RUs

v Implementing RU level protocols (request control, bracketing, chaining,

direction)

v Cryptography (if required)

v Compression (if required).

Pacing

Pacing is handled by the LUA interface; an LUA application does not need to

control pacing, and should never set the Pacing Indicator flag.

If pacing is being used on data sent from the LUA application to the host (this is

determined by the BIND), an RUI_WRITE verb may take some time to complete.

This is because CS/AIX has to wait for a pacing response from the host before it

can send more data.

If an LUA application is used to transfer large quantities of data in one direction,

either to the host or from the host (for example, a file transfer application), then

the host configuration should specify that pacing is used in that direction; this is to

ensure that the node receiving the data is not flooded with data and does not run

out of data storage.

Segmentation

Segmentation of RUs is handled by the LUA interface. LUA always passes

complete RUs to the application, and the application should pass complete RUs to

LUA.

Restrictions

CS/AIX does not support the following for Primary RUI applications:

v Downstream PUs over DLUR

v Dynamically Defined Dependent LUs (DDDLU)

v Sending STSN (to reset sequence numbers, the application should UNBIND and

re-BIND the session).

Courtesy Acknowledgments

CS/AIX keeps a record of requests received from the host in order to correlate any

response sent by the application with the appropriate request. When the

application sends a response, CS/AIX correlates this with the data from the

original request, and can then free the storage associated with it.

If the host specifies exception response only (a negative response can be sent but a

positive response should not be sent), CS/AIX must still keep a record of the

SNA Information for RUI Primary

38 IBM Communications Server for AIX LUA Programmer’s Guide

request in case the application subsequently sends a negative response. If the

application does not send a response, the storage associated with this request

cannot be freed.

Because of this, CS/AIX allows the LUA application to issue a positive response to

an exception-response-only request from the host (this is known as a courtesy

acknowledgment). The response is not sent to the host, but is used by CS/AIX to

clear the storage associated with the request.

Purging Data to End of Chain

When the host sends a chain of request units to an LUA application, the

application may wait until the last RU in the chain is received before sending a

response, or it may send a negative response to an RU that is not the last in the

chain. If a negative response is sent mid-chain, CS/AIX purges all subsequent RUs

from this chain, and does not send them to the application.

When CS/AIX receives the last RU in the chain, it indicates this to the application

by setting the primary return code of an RUI_READ or RUI_BID verb to

LUA_NEGATIVE_RSP with a 0 (zero) secondary return code.

The host may terminate the chain by sending a message such as CANCEL while in

mid-chain. In this case, the CANCEL message is returned to the application on an

RUI_READ verb, and the LUA_NEGATIVE_RSP return code (see “Negative Responses

and SNA Sense Codes” on page 35) is not used.

Configuration Information

The CS/AIX configuration file, which is set up and maintained by the System

Administrator, contains information that is required for LUA applications to

communicate. For additional information, refer to the Communications Server for

AIX Administration Guide.

AIX, LINUX

For a Primary RUI application communicating with a downstream LU, the only

configuration required is the downstream LU (or a Downstream PU template).

The following components must be configured for use with an LUA application

communicating with a host:

Data Link Control (DLC), Port, and Link Station (LS)

The communications components that CS/AIX uses to communicate with the

remote host computer.

LU

An LU of type 0–3, with an LU number that matches that of a suitable LU on the

host.

SNA Information for RUI Primary

Chapter 2. Designing and Writing LUA Applications 39

LU Pool (Optional)

If required, you can configure more than one LU for use by the application, and

group the LUs into a pool. This means that an application can specify the pool

rather than a specific LU when attempting to start a session, and will be assigned

the first available LU from the pool.

An LUA application indicates to CS/AIX that it wants to start a session by issuing

an RUI_INIT or SLI_OPEN verb with an LU name. This name must match the

name of an LU of type 0–3, or of an LU pool, in the configuration file. CS/AIX

uses this name as follows:

v If the name supplied is the name of an LU that is not in a pool, a session will be

assigned using that LU if it is available (that is, if it is not already in use by a

program).

v If the name supplied is the name of an LU pool, or the name of any LU within

the pool, a session will be assigned using the named LU, if it is available, or

otherwise the first available LU in the pool. The RUI_INIT or SLI_OPEN verb

returns the name of the actual LU assigned (which may not be the same as the

name specified). The application can then use this returned LU name on

subsequent LUA verbs to identify the session.

AIX or Linux Considerations

AIX, LINUX

This section summarizes processing considerations of which you must be aware

when developing LUA applications on an AIX or Linux computer.

LUA Header File

The header file to be used with LUA applications is lua_c.h. This file contains the

definitions of the LUA entry points and the LUA VCBs. It also includes the

common interface header file values_c.h; these two files contain all the constants

defined for supplied and returned parameter values at the LUA interface. The file

values_c.h also includes definitions of parameter types such as AP_UINT16 that are

used in the LUA VCBs.

These two files are stored in /usr/include/sna (AIX) or /opt/ibm/sna/include

(Linux).

Multiple Processes and Multiple Sessions

If the process that issued RUI_INIT, RUI_INIT_PRIMARY, or SLI_OPEN then forks

to create a child process, the child process cannot issue any LUA verbs on the

session started by the parent process; the verbs will fail with return codes

LUA_UNSUCCESSFUL and LUA_INVALID_PROCESS. It can, however, issue another

RUI_INIT, RUI_INIT_PRIMARY, or SLI_OPEN to obtain its own session.

A single process may simultaneously use more than one LUA session, by issuing

multiple RUI_INIT, RUI_INIT_PRIMARY, or SLI_OPEN verbs. Each session must

use a different LU, but two or more sessions may use the same pool.

Two or more instances of the same LUA application can be run as different

processes, but they must use different LUs. This can be done either by providing a

Configuration Information

40 IBM Communications Server for AIX LUA Programmer’s Guide

mechanism for specifying the LU name at run time, or by using LU pools; if the

two processes specify the same pool, they will be allocated different LUs from that

pool.

Compiling and Linking the LUA Application

AIX Applications

To compile and link 32–bit applications, use the following options:

-bimport:/usr/lib/sna/lua_r.exp -I

/usr/include/sna

 To compile and link 64–bit applications, use the following options:

-bimport:/usr/lib/sna/lua_r64_5.exp -I

/usr/include/sna

Linux Applications

Before compiling and linking an LUA application, specify the directory where

shared libraries are stored, so that the application can find them at run time. To do

this, set the environment variable LD_RUN_PATH to /opt/ibm/sna/lib, or to

/opt/ibm/sna/lib64 if you are compiling a 64–bit application.

To compile and link 32–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib -llua -lsna_r -lpthread

 To compile and link 64–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib64 -llua -lsna_r -lpthread

Windows Considerations

WINDOWS

This section summarizes processing considerations of which you must be aware

when developing LUA applications on a Windows client.

Multiple Sessions and Multiple Tasks

A single task may simultaneously use more than one LUA session, by issuing

multiple RUI_INIT or SLI_OPEN verbs. Each session must use a different LU, but

two or more sessions may use the same pool.

Two or more instances of the same LUA application can be run as different tasks,

but they must use different LUs. This can be done by using LU pools; the two

tasks can specify the same pool, and will be allocated different LUs from that pool.

Compiling and Linking LUA Programs

This section provides information about compiling and linking LUA programs on a

Windows client.

AIX or Linux Considerations

Chapter 2. Designing and Writing LUA Applications 41

Compiler Options for Structure Packing

The VCB structures for LUA verbs are not packed. Do not use compiler options

that change this packing method.

DWORD parameters are on DWORD boundaries, WORD parameters are on

WORD boundaries, and BYTE parameters are on BYTE boundaries.

Header File

The header file to be included in Windows LUA applications is named winlua.h.

This file is installed in the subdirectory /sdk within the directory where you

installed the Windows Client software.

Load-Time Linking

To link the program to LUA at load time, link the program to the winsli32.lib

library.

Run-Time Linking

To link the program to LUA at run-time, include the following calls in the

program:

v LoadLibrary to load the LUA dynamic link library winsli32.dll.

v GetProcAddress to specify each of the LUA entry points required (such as SLI)

v FreeLibrary when the library is no longer required.

Terminating Applications

If an application must close (for example, if it receives a WM_CLOSE message as a

result of an ALT F4 from a user), it should call the WinRUICleanup or

WinSLICleanup function before terminating. If it does not do this, then the

application is left in an indeterminate state, although as much cleanup as possible

is done when the Windows LUA software detects that the application has

terminated.

Writing Portable Applications

CS/AIX’s implementation of LUA is designed to be compatible with the

implementation provided by IBM’s OS/2 Extended Edition. However, there are a

few differences between the implementations that are due to fundamental

operating system differences. These operating system differences are indicated in

the individual verb descriptions. In particular:

v The RUI_REINIT verb is an extension to the standard LUA interface

specification. It is not available on the Remote API Client on Windows, and may

not be available in other LUA implementations.

v Other LUA implementations generate certain additional return codes that are not

returned by the CS/AIX implementation; they may also make use of parameters

that are reserved for CS/AIX.

v OS/2 and Windows implementations use far pointers (far *) in all cases; AIX or

Linux implementations do not have a concept of far and near pointers, so the

word far must be omitted for AIX or Linux implementations.

v The asynchronous verb return feature is supported differently by different

operating systems. You may need to rewrite the sections of an LUA application

Windows Considerations

42 IBM Communications Server for AIX LUA Programmer’s Guide

written for one operating system that relate to asynchronous verb returns if you

are porting the application to another operating system.

v Other LUA implementations may not support LU pools.

The following guidelines are provided for writing CS/AIX LUA applications so

that they will be portable to other environments:

v Include the LUA header file without any path name prefix. This enables the

application to be used in an environment with a different file system. Use

include options on the compiler to locate the file (see “Compiling and Linking

the LUA Application” on page 41).

v Use the symbolic constant names for parameter values and return codes, not the

numeric values shown in the header file; this ensures that the correct value will

be used regardless of the way these values are stored in memory.

v When accessing SNA sense codes in a data buffer, use the symbolic constants

rather than the numeric values; this ensures that the byte storage order will be

correct for your particular system.

v Include a check for return codes other than those applicable to your current

operating system (for example using a “default” case in a switch statement), and

provide appropriate diagnostics.

v Ensure that any parameters shown as reserved are set to 0 (zero).

v Set the lua_verb_length parameter as described in Chapter 4, “RUI Verbs,” on

page 55 or Chapter 5, “SLI Verbs,” on page 99..

Writing Portable Applications

Chapter 2. Designing and Writing LUA Applications 43

Writing Portable Applications

44 IBM Communications Server for AIX LUA Programmer’s Guide

Chapter 3. LUA VCB Structure

This chapter contains details of the LUA verb control block structure used for all

LUA verbs.

Symbolic constants are defined in the header files lua_c.h and values_c.h (AIX or

Linux operating system) or winlua.h (Windows operating system)for many

parameter values. For portability, use the symbolic constant and not the numeric

value when setting values for supplied parameters, or when testing values of

returned parameters. The file values_c.h also includes definitions of parameter

types such as AP_UINT16 that are used in the LUA VCBs.

Parameters marked as “reserved” should always be set to 0 (zero).

LUA Verb Control Block (VCB) Format

The verb control block consists of two parts:

v Common data structure, used for all verbs

v Specific data structure, used only for the following verbs:

– RUI_BID

– The extended version of RUI_INIT (in the AIX or Linux environment)

– SLI_BID

– SLI_OPEN

– SLI_SEND

The definition of some parts of the VCB structure, in particular the ordering of bit

fields, varies between different operating systems. For clarity, only one version of

the ordering is shown here, although both versions are defined in the header file.

When setting or testing values in bit fields, the application should access

individual bits by name, to avoid dependencies on the bit ordering, rather than

using bitwise AND or OR operations on complete bytes.

AIX, LINUX

To allow for these differences, the LUA header file contains the following

information:

v A #include statement for the file /usr/include/sna/svconfig.h (AIX) or

/opt/ibm/sna/include/svconfig.h (Linux).

v The type definition for bit fields in the LUA data structures. This definition

ensures that the data structures are stored in the correct format. The definition

depends on the setting of PUCHARQD, which is in the file svconfig.h.

Note: The LUA VCB contains many parameters marked as “reserved”; some of

these are used internally by the CS/AIX software, and others are not used in

this version but may be used in future versions. Your application must not

attempt to access any of these reserved parameters; instead, it must set the

© Copyright IBM Corp. 2000, 2005 45

entire contents of the VCB to zero to ensure that all of these parameters are

zero, before it sets other parameters that are used by the verb. This ensures

that CS/AIX will not misinterpret any of its internally-used parameters, and

also that your application will continue to work with future CS/AIX

versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

LUA_VERB_RECORD Data Structure

typedef struct

{

 struct LUA_COMMON common;

 struct LUA_SPECIFIC specific;

} LUA_VERB_RECORD;

Common Data Structure

AIX, LINUX

struct LUA_COMMON

{

 AP_UINT16 lua_verb; /* Verb Code */

 AP_UINT16 lua_verb_length; /* Length of Verb Record */

 AP_UINT16 lua_prim_rc; /* Primary Return Code */

 AP_UINT32 lua_sec_rc; /* Secondary Return Code */

 AP_UINT16 lua_opcode; /* Verb Operation Code */

 AP_UINT32 lua_correlator; /* User Correlation Field */

 unsigned char lua_luname[8]; /* Local LU Name */

 AP_UINT16 lua_extension_list_offset; /* Offset of DLL Extention List*/

 AP_UINT16 lua_cobol_offset; /* Offset of Cobol Extension */

 AP_UINT32 lua_sid; /* Session ID */

 AP_UINT16 lua_max_length; /* Receive Buffer Length */

 AP_UINT16 lua_data_length; /* Data Length */

 char * lua_data_ptr; /* Data Buffer Pointer */

 unsigned long lua_post_handle; /* Posting handle */

 struct LUA_TH { /* LUA TH Fields */

 BIT_FIELD_TYPE flags_fid : 4; /* Format Identification Type 2 */

 BIT_FIELD_TYPE flags_mpf : 2; /* Segmenting Mapping Field */

 BIT_FIELD_TYPE flags_odai : 1; /* OAF-DAF Assignor Indicator */

 BIT_FIELD_TYPE flags_efi : 1; /* Expedited Flow Indicator */

 BIT_FIELD_TYPE : 8; /* Reserved Field */

 unsigned char daf; /* Destination Address Field */

 unsigned char oaf; /* Originating Address Field */

 unsigned char snf[2]; /* Sequence Number Field */

 } lua_th;

 struct LUA_RH { /* LUA RH Fields */

 BIT_FIELD_TYPE rri : 1; /* Request-Response Indicator */

 BIT_FIELD_TYPE ruc : 2; /* RU Category */

 BIT_FIELD_TYPE : 1; /* Reserved Field */

 BIT_FIELD_TYPE fi : 1; /* Format Indicator */

 BIT_FIELD_TYPE sdi : 1; /* Sense Data Included Ind */

 BIT_FIELD_TYPE bci : 1; /* Begin Chain Indicator */

 BIT_FIELD_TYPE eci : 1; /* End Chain Indicator */

 BIT_FIELD_TYPE dr1i : 1; /* DR 1 Indicator */

 BIT_FIELD_TYPE : 1; /* Reserved Field */

 BIT_FIELD_TYPE dr2i : 1; /* DR 2 Indicator */

 BIT_FIELD_TYPE ri : 1; /* Response Indicator */

 BIT_FIELD_TYPE : 2; /* Reserved Field */

 BIT_FIELD_TYPE qri : 1; /* Queued Response Indicator */

LUA Verb Control Block (VCB) Format

46 IBM Communications Server for AIX LUA Programmer’s Guide

BIT_FIELD_TYPE pi : 1; /* Pacing Indicator */

 BIT_FIELD_TYPE bbi : 1; /* Begin Bracket Indicator */

 BIT_FIELD_TYPE ebi : 1; /* End Bracket Indicator */

 BIT_FIELD_TYPE cdi : 1; /* Change Direction Indicator */

 BIT_FIELD_TYPE : 1; /* Reserved Field */

 BIT_FIELD_TYPE csi : 1; /* Code Selection Indicator */

 BIT_FIELD_TYPE edi : 1; /* Enciphered Data Indicator */

 BIT_FIELD_TYPE pdi : 1; /* Padded Data Indicator */

 BIT_FIELD_TYPE : 1; /* Reserved Field */

 } lua_rh;

 struct LUA_FLAG1 { /* LUA_FLAG1 */

 BIT_FIELD_TYPE bid_enable : 1; /* Bid Enabled Indicator */

 BIT_FIELD_TYPE reserv1 : 1; /* reserved */

 BIT_FIELD_TYPE close_abend : 1; /* Close Immediate Flag */

 BIT_FIELD_TYPE nowait : 1; /* Don’t Wait for Data Flag */

 BIT_FIELD_TYPE sscp_exp : 1; /* SSCP expedited flow */

 BIT_FIELD_TYPE sscp_norm : 1; /* SSCP normal flow */

 BIT_FIELD_TYPE lu_exp : 1; /* LU expedited flow */

 BIT_FIELD_TYPE lu_norm : 1; /* lu normal flow */

 } lua_flag1;

 unsigned char lua_message_type; /* sna message command type */

 struct LUA_FLAG2 { /* LUA_FLAG2 */

 BIT_FIELD_TYPE bid_enable : 1; /* Bid Enabled Indicator */

 BIT_FIELD_TYPE async : 1; /* flags asynchronous verb */

 completion */

 BIT_FIELD_TYPE : 2; /* reserved */

 BIT_FIELD_TYPE sscp_exp : 1; /* SSCP expedited flow */

 BIT_FIELD_TYPE sscp_norm : 1; /* SSCP normal flow */

 BIT_FIELD_TYPE lu_exp : 1; /* LU expedited flow */

 BIT_FIELD_TYPE lu_norm : 1; /* lu normal flow */

 } lua_flag2;

 unsigned char lua_resv56[7]; /* Reserved Field */

 unsigned char lua_encr_decr_option; /* Cryptography Option */

} ;

WINDOWS

struct LUA_COMMON

{

 unsigned short lua_verb; /* Verb Code */

 unsigned short lua_verb_length; /* Length of Verb Record */

 unsigned short lua_prim_rc; /* Primary Return Code */

 unsigned long lua_sec_rc; /* Secondary Return Code */

 unsigned short lua_opcode; /* Verb Operation Code */

 unsigned long lua_correlator; /* User Correlation Field */

 unsigned char lua_luname[8]; /* Local LU Name */

 unsigned short lua_extension_list_offset; /* Offset of DLL Extention List*/

 unsigned short lua_cobol_offset; /* Offset of Cobol Extension */

 unsigned long lua_sid; /* Session ID */

 unsigned short lua_max_length; /* Receive Buffer Length */

 unsigned short lua_data_length; /* Data Length */

 char far *lua_data_ptr; /* Data Buffer Pointer */

 unsigned long lua_post_handle; /* Posting handle */

 struct LUA_TH { /* LUA TH Fields */

 unsigned char flags_fid : 4; /* Format Identification Type 2 */

 unsigned char flags_mpf : 2; /* Segmenting Mapping Field */

 unsigned char flags_odai : 1; /* OAF-DAF Assignor Indicator */

 unsigned char flags_efi : 1; /* Expedited Flow Indicator */

 unsigned char : 8; /* Reserved Field */

 unsigned char daf; /* Destination Address Field */

 unsigned char oaf; /* Originating Address Field */

 unsigned char snf[2]; /* Sequence Number Field */

 } lua_th;

LUA Verb Control Block (VCB) Format

Chapter 3. LUA VCB Structure 47

struct LUA_RH { /* LUA RH Fields */

 unsigned char rri : 1; /* Request-Response Indicator */

 unsigned char ruc : 2; /* RU Category */

 unsigned char : 1; /* Reserved Field */

 unsigned char fi : 1; /* Format Indicator */

 unsigned char sdi : 1; /* Sense Data Included Ind */

 unsigned char bci : 1; /* Begin Chain Indicator */

 unsigned char eci : 1; /* End Chain Indicator */

 unsigned char dr1i : 1; /* DR 1 Indicator */

 unsigned char : 1; /* Reserved Field */

 unsigned char dr2i : 1; /* DR 2 Indicator */

 unsigned char ri : 1; /* Response Indicator */

 unsigned char : 2; /* Reserved Field */

 unsigned char qri : 1; /* Queued Response Indicator */

 unsigned char pi : 1; /* Pacing Indicator */

 unsigned char bbi : 1; /* Begin Bracket Indicator */

 unsigned char ebi : 1; /* End Bracket Indicator */

 unsigned char cdi : 1; /* Change Direction Indicator */

 unsigned char : 1; /* Reserved Field */

 unsigned char csi : 1; /* Code Selection Indicator */

 unsigned char edi : 1; /* Enciphered Data Indicator */

 unsigned char pdi : 1; /* Padded Data Indicator */

 unsigned char : 1; /* Reserved Field */

 } lua_rh;

 struct LUA_FLAG1 { /* LUA_FLAG1 */

 unsigned char bid_enable : 1; /* Bid Enabled Indicator */

 unsigned char reserv1 : 1; /* reserved */

 unsigned char close_abend : 1; /* Close Immediate Flag */

 unsigned char nowait : 1; /* Don’t Wait for Data Flag */

 unsigned char sscp_exp : 1; /* SSCP expedited flow */

 unsigned char sscp_norm : 1; /* SSCP normal flow */

 unsigned char lu_exp : 1; /* LU expedited flow */

 unsigned char lu_norm : 1; /* lu normal flow */

 } lua_flag1;

 unsigned char lua_message_type; /* sna message command type */

 struct LUA_FLAG2 { /* LUA_FLAG2 */

 unsigned char bid_enable : 1; /* Bid Enabled Indicator */

 unsigned char async : 1; /* flags asynchronous verb */

 completion */

 unsigned char : 2; /* reserved */

 unsigned char sscp_exp : 1; /* SSCP expedited flow */

 unsigned char sscp_norm : 1; /* SSCP normal flow */

 unsigned char lu_exp : 1; /* LU expedited flow */

 unsigned char lu_norm : 1; /* lu normal flow */

 } lua_flag2;

 unsigned char lua_resv56[7]; /* Reserved Field */

 unsigned char lua_encr_decr_option; /* Cryptography Option */

} ;

The following list explains the fields in these data structures.

lua_verb

Identifies this as an LUA verb.

 Possible values:

LUA_VERB_RUI

RUI verb.

LUA Verb Control Block (VCB) Format

48 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_VERB_SLI

SLI verb.

lua_verb_length

Length of the verb control block (VCB).

lua_prim_rc

Primary return code set by LUA.

lua_sec_rc

Secondary return code set by LUA.

lua_opcode

Verb operation code that identifies the LUA verb being issued.

lua_correlator

A four-byte correlator that you can use to correlate this verb with other

processing in your application. LUA does not use this parameter.

lua_luname

The LU name used by the LUA session (in ASCII). This can be an LU

name or an LU pool name; for more information, see “RUI_INIT” on page

61 or “SLI_OPEN” on page 112.

AIX, LINUX

For RUI_INIT_PRIMARY, this must match the dslu_name parameter of a

downstream LU configured for use with SNA Gateway (or a downstream

LU created implicitly by defining a downstream LU template).

lua_extension_list_offset

This field is reserved.

lua_cobol_offset

This field is reserved.

lua_sid The session ID of the LUA session on which this verb is issued.

lua_max_length

The length of the buffer supplied to RUI_READ, RUI_INIT_PRIMARY, or

SLI_RECEIVE to receive data, or the total length of a waiting RU returned

to RUI_BID.

lua_data_length

The length of the data to be sent, or the actual length of data received.

lua_data_ptr

A pointer to the data to be sent, or the data buffer to receive data.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

LUA Verb Control Block (VCB) Format

Chapter 3. LUA VCB Structure 49

If the VCB is used in an RUI or SLI function call, set this field to an event

handle. If the VCB is used in a WinRUI or WinSLI function call, this field is

reserved.

lua_th A data structure containing the TH (transmission header) of the message

sent or received, as follows:

lua_th.flags_fid

Format Identification type 2: 4 bits

lua_th.flags_mpf

Segmenting mapping field: 2 bits

lua_th.flags_odai

Origin Address Field-Destination Address Field (OAF-DAF)

Assignor Indicator

lua_th.flags_efi

Expedited Flow Indicator

lua_th.daf

DAF (Destination address field)

lua_th.oaf

OAF (Originating address field)

lua_th.snf

Sequence Number Field

lua_rh A data structure containing the RH (request/response header) of the

message sent or received, as follows:

lua_rh.rri

Request-Response Indicator

lua_rh.ruc

RU category: 2 bits

lua_rh.fi

Format Indicator

lua_rh.sdi

Sense Data Included Indicator

lua_rh.bci

Begin Chain Indicator

lua_rh.eci

End Chain Indicator

lua_rh.dr1i

Definite Response 1 Indicator

lua_rh.dr2i

Definite Response 2 Indicator

lua_rh.ri

Exception Response Indicator (for a request), or Response Type

Indicator (for a response)

lua_rh.qri

Queued Response Indicator

LUA Verb Control Block (VCB) Format

50 IBM Communications Server for AIX LUA Programmer’s Guide

lua_rh.pi

Pacing Indicator

lua_rh.bbi

Begin Bracket Indicator

lua_rh.ebi

End Bracket Indicator

lua_rh.cdi

Change Direction Indicator

lua_rh.csi

Code Selection Indicator

lua_rh.edi

Enciphered Data Indicator

lua_rh.pdi

Padded Data Indicator

lua_flag1

A data structure containing flags for messages supplied by the application,

as follows:

lua_flag1.bid_enable

Bid Enable Indicator

lua_flag1.close_abend

Close Immediate Indicator

lua_flag1.nowait

No Wait For Data flag

lua_flag1.sscp_exp

SSCP expedited flow

lua_flag1.sscp_norm

SSCP normal flow

lua_flag1.lu_exp

LU expedited flow

lua_flag1.lu_norm

LU normal flow

lua_message_type

The type of SNA message received by an RUI_READ or SLI_RECEIVE

verb (or indicated to an RUI_BID or SLI_BID verb)

lua_flag2

A data structure containing flags for messages returned by LUA, as

follows:

lua_flag2.bid_enable

Bid Enabled Indicator

lua_flag2.async

Asynchronous verb completion flag

lua_flag2.sscp_exp

SSCP expedited flow

lua_flag2.sscp_norm

SSCP normal flow

LUA Verb Control Block (VCB) Format

Chapter 3. LUA VCB Structure 51

lua_flag2.lu_exp

LU expedited flow

lua_flag2.lu_norm

LU normal flow

lua_encr_decr_option

Cryptography option. For SLI, this parameter is reserved and must be set

to zero.

Specific Data Structure

The specificdata structure is included for the following verbs:

v RUI_BID

v Extended form of RUI_INIT

v SLI_BID

v SLI_OPEN

v SLI_SEND
union LUA_SPECIFIC

{

struct SLI_OPEN open;

unsigned char lua_sequence_number[2];

unsigned char lua_peek_data[12];

struct RUI_INIT init;

} ;

AIX, LINUX

struct SLI_OPEN

{

 unsigned char lua_init_type; /* Type of Session Initiation */

 unsigned char lua_session_type; /* How to process host UNBIND */

 AP_UINT16 lua_wait; /* Secondary Retry Wait Time */

 struct LUA_EXT_ENTRY

 {

 unsigned char lua_routine_type; /* Extension Routine Type */

 unsigned long lua_routine_ptr; /* Ptr to Extension Routine */

 } lua_open_extension[MAX_EXTENSIONS];

 char reserved[93]; /* Padding */

 unsigned char lua_ending_delim; /* Extension List Delimiter */

};

WINDOWS

struct SLI_OPEN

{

 unsigned char lua_init_type; /* Type of Session Initiation */

 unsigned char lua_session_type; /* How to process host UNBIND */

 AP_UINT16 lua_wait; /* Secondary Retry Wait Time */

 struct LUA_EXT_ENTRY

 {

 unsigned char lua_routine_type; /* Extension Routine Type */

 unsigned char lua_module_name[9]; /* Extension DLL module name */

 unsigned char lua_procedure_name[33]; /* Procedure name to call */

 } lua_open_extension[MAX_EXTENSIONS];

LUA Verb Control Block (VCB) Format

52 IBM Communications Server for AIX LUA Programmer’s Guide

char reserved[93]; /* Padding */

 unsigned char lua_ending_delim; /* Extension List Delimiter */

};

struct RUI_INIT

{

unsigned char rui_init_format;

unsigned char lua_puname[8];

unsigned char lua_lunumber;

unsigned char wait_for_link;

};

For RUI_BID and SLI_BID, this data structure contains the following field:

lua_peek_data

Up to 12 bytes of the data waiting to be read.

AIX, LINUX

For the extended form of the RUI_INIT verb, this data structure contains the

following fields. For more information about the extended form of RUI_INIT, see

“RUI_INIT” on page 61.

rui_init_format

Reserved—this parameter must be set to 0 (zero).

lua_puname

The name of the local PU that owns the LU to be used for this session. The

PU name must be specified in the definition of an LS or of an internal PU

in the CS/AIX configuration.

lua_lunumber

The LU number of the LU to be used for this session. This must match the

LU number of a type 0–3 LU that is configured for the PU name specified

by lua_puname.

wait_for_link

Normally, if the application issues RUI_INIT for an LU that cannot

currently be used because the underlying communications link is inactive,

the RUI_INIT verb fails. Set this parameter to 1 to override this default

behavior so that LUA waits for the link and LU to become active before

RUI_INIT completes, or 0 (zero) to use the default behavior.

WINDOWS

The extended form of the RUI_INIT verb does not apply to Windows. The

RUI_INIT data structure is not used.

For SLI_OPEN, this data structure contains the following fields. See “SLI_OPEN”

on page 112 for detailed information about these parameters.

LUA Verb Control Block (VCB) Format

Chapter 3. LUA VCB Structure 53

lua_init_type

Specifies how LUA initiates the session (whether the primary or secondary

is responsible for session initiation, and the sequence of SNA messages

required).

lua_session_type

Specifies how LUA should process an UNBIND type X’01’ (normal):

whether this is a normal or dedicated session.

lua_wait

Retry timeout (in seconds) for secondary-initiated session startup.

lua_open_extension

Structure containing information about the application’s SLI_OPEN

extension routines, if any.

lua_open_extension.lua_routine_type

Type of extension routine (BIND, SDT, or STSN).

AIX, LINUX

lua_open_extension.lua_routine_ptr

Pointer to the extension routine entry point.

WINDOWS

lua_open_extension.lua_module_name

Name of the DLL containing the extension module.

lua_open_extension.lua_procedure_name

Procedure name to call within the extension module DLL.

lua_ending_delim

The CS/AIX SLI interface does not use this parameter; it is provided for

compatibility with applications originally written for other SLI

implementations.

 For SLI_SEND, this data structure contains the following field.

lua_sequence_number

The sequence number of the RU that LUA uses to send the data (or of the

first RU, if the data requires a chain of RUs). This is stored in line format.

LUA Verb Control Block (VCB) Format

54 IBM Communications Server for AIX LUA Programmer’s Guide

Chapter 4. RUI Verbs

This chapter contains a description of each LUA RUI verb. The following

information is provided for each verb:

v Purpose of the verb.

v Parameters (VCB fields) supplied to and returned by LUA. The description of

each parameter includes information about the valid values for that parameter,

and any additional information necessary.

v Interaction with other verbs.

v Additional information describing the use of the verb.

For details of the Verb Control Block (VCB) used for all verbs, see Chapter 3, “LUA

VCB Structure,” on page 45.

Symbolic constants are defined in the header files lua_c.h and values_c.h (AIX or

Linux operating system) or winlua.h (Windows operating system)for many

parameter values. For portability, use the symbolic constant and not the numeric

value when setting values for supplied parameters, or when testing values of

returned parameters. The file values_c.h also includes definitions of parameter

types such as AP_UINT16 that are used in the LUA VCBs.

Parameters marked as “reserved” should always be set to 0 (zero).

RUI_BID

The RUI_BID verb is used by the application to determine when a received

message is waiting to be read. This enables the application to determine what data,

if any, is available before issuing the RUI_READ verb.

When a message is available, the RUI_BID verb returns with details of the message

flow on which it was received, the message type, the TH and RH of the message,

and up to 12 bytes of message data.

The main difference between RUI_BID and RUI_READ is that RUI_BID enables the

application to check the data without removing it from the incoming message

queue, so it can be left and accessed at a later stage. The RUI_READ verb removes

the message from the queue, so once the application has read the data it must

process it.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_VERB_RECORD).

lua_opcode

LUA_OPCODE_RUI_BID

© Copyright IBM Corp. 2000, 2005 55

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session (as returned on the RUI_INIT or

RUI_INIT_PRIMARY verb).

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a

previous RUI_INIT or RUI_INIT_PRIMARY verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.

If the VCB is used in a WinRUI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the

verb completed synchronously.

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb completed successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

RUI_BID

56 IBM Communications Server for AIX LUA Programmer’s Guide

lua_max_length

The total number of bytes in the waiting message.

lua_data_length

The number of bytes of data returned in the lua_peek_data parameter; from

0 to 12.

lua_th The TH of the received message.

lua_rh The RH of the received message.

lua_message_type

Message type of the received message that will be one of the following:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIND

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_CLEAR

 LUA_MESSAGE_TYPE_CRV

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SHUTD

 LUA_MESSAGE_TYPE_SIGNAL

 LUA_MESSAGE_TYPE_SDT

 LUA_MESSAGE_TYPE_STSN

 LUA_MESSAGE_TYPE_UNBIND

AIX, LINUX

The following values can be returned only to an RUI primary application

(one that started the session using RUI_INIT_PRIMARY):

 LUA_MESSAGE_TYPE_INIT_SELF

 LUA_MESSAGE_TYPE_NOTIFY

 LUA_MESSAGE_TYPE_TERM_SELF

RUI_BID

Chapter 4. RUI Verbs 57

lua_flag2

One of the following flags will be set to 1 to indicate on which message

flow the data was received:

 lua_flag2.sscp_exp

 lua_flag2.lu_exp

 lua_flag2.sscp_norm

 lua_flag2.lu_norm

lua_peek_data

The first 12 bytes of the message data (or all of the message data if it is

shorter than 12 bytes)

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

An RUI_TERM verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

LUA_BID_ALREADY_ENABLED

The RUI_BID verb was rejected because a previous RUI_BID verb

was already outstanding for this session. Only one RUI_BID can be

outstanding for each session at any time.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

RUI_BID

58 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION

An RUI_INIT or RUI_INIT_PRIMARY verb has not yet completed

successfully for the LU name specified on this verb, or the session

has failed.

Negative Response Sent to Host: The following return code indicates that

CS/AIX detected an error in the data received from the host. Instead of passing the

received message to the application on an RUI_READ verb, CS/AIX discards the

message (and the rest of the chain if it is in a chain), and sends a negative response

to the host. LUA informs the application on a subsequent RUI_READ or RUI_BID

verb that a negative response was sent.

lua_prim_rc

LUA_NEGATIVE_RSP

lua_sec_rc

The secondary return code contains the sense code sent to the host on the

negative response. See “SNA Information” on page 34, for information

about interpreting the sense code values that can be returned.

 A 0 (zero) secondary return code indicates that, following a previous

RUI_WRITE of a negative response to a message in the middle of a chain,

CS/AIX has now received and discarded all messages from this chain.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

same process that issued the RUI_INIT or RUI_INIT_PRIMARY

verb for this session. Only the process that started a session can

issue verbs on that session.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated. Contact your System Administrator if necessary.

RUI_BID

Chapter 4. RUI Verbs 59

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed.

 If the session was started using RUI_INIT (not

RUI_INIT_PRIMARY) and the secondary return code is not

LUA_RUI_LOGIC_ERROR, then this LU can be reinitialized using an

RUI_REINIT. If it is not reinitialized, then an RUI_TERM must be

issued before an RUI_INIT or RUI_INIT_PRIMARY can be issued

for the same LU.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software was not started, or the node was

either not started or not configured properly for LUA applications.

Check the CS/AIX LUA configuration parameters and start the

Remote API Client and the node before running your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

RUI_BID

60 IBM Communications Server for AIX LUA Programmer’s Guide

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Interaction with Other Verbs

The RUI_INIT or RUI_INIT_PRIMARY verb must complete successfully before this

verb can be issued.

Only one RUI_BID for each session can be outstanding at any one time.

After the RUI_BID verb has completed successfully, it may be re-issued by setting

the lua_flag1.bid_enable parameter on a subsequent RUI_READ verb. If the verb is

to be re-issued in this way, the application program must not free or modify the

storage associated with the RUI_BID verb record.

If a message arrives from the host when an RUI_READ and an RUI_BID are both

outstanding, the RUI_READ completes and the RUI_BID is left in progress.

Usage and Restrictions

Each message that arrives will only be bid once. Once an RUI_BID verb has

indicated that data is waiting on a particular session flow, the application should

issue the RUI_READ verb to receive the data. Any subsequent RUI_BID will not

report data arriving on that session flow until the message which was bid has been

accepted by issuing an RUI_READ verb.

The following items describe the difference between the lua_max_length and

lua_data_length parameters returned on this verb:

v The lua_max_length parameter indicates the length of the waiting message. When

issuing the RUI_READ verb to accept the message, the application should

supply a data buffer of at least this size, to ensure that the message can be

received without truncation.

v The lua_data_length parameter indicates the length of data in lua_peek_data. If this

is less than 12, indicating that the waiting message is shorter than 12 bytes, the

remaining bytes in lua_peek_data are undefined and the application should not

attempt to examine them.

RUI_INIT

The RUI_INIT verb establishes the SSCP-LU session for a given LU, or establishes

an SSCP-LU session for the first available LU in a given LU pool.

AIX, LINUX

In general, the application specifies the name of an LU or an LU pool to be used

for the session. CS/AIX also provides an extended form of RUI_INIT, in which the

application can identify the LU by specifying its PU name and LU number instead

of its LU name; this function is not supported by other LUA implementations. The

differences between the normal and extended versions of RUI_INIT are indicated

where appropriate in the parameter descriptions in this section.

If the RUI application acts as an SNA primary for communications with a

downstream LU, it must use RUI_INIT_PRIMARY instead of RUI_INIT.

RUI_BID

Chapter 4. RUI Verbs 61

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record.

AIX, LINUX

 Set this to sizeof(LUA_VERB_RECORD).

 For compatibility with other LUA implementations, the value

sizeof(LUA_COMMON) is also accepted if you are using the standard form of

RUI_INIT and not the extended form.

WINDOWS

Set this to sizeof(LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_INIT

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU or LU pool for which you want to start the

session. This must match the name of an LU of type 0–3, or of an LU pool,

configured for CS/AIX. The name is used as follows:

v If the name is the name of an LU that is not in a pool, CS/AIX attempts

to start the session using this LU. An application can start multiple

sessions by using multiple RUI_INIT verbs with a different LU for each

verb; it cannot start more than one session for the same LU.

v If the name is the name of an LU pool, or the name of an LU within a

pool, CS/AIX attempts to start the session using the named LU, if it is

available, or otherwise the first available LU from the pool. An

application can start multiple sessions using the same pool; CS/AIX will

assign a different LU from the pool for each session. The name of the

actual LU used for the session is a returned parameter on the RUI_INIT

verb.

This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

AIX, LINUX

RUI_INIT

62 IBM Communications Server for AIX LUA Programmer’s Guide

The application can use the extended form of RUI_INIT to identify the LU

by its PU name and LU number, instead of by its LU name. To do this, set

lua_luname to eight binary zeros, and specify the PU name and LU number

in the lua_puname and lua_lunumber parameters.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine. If the verb completes asynchronously, LUA

will call this routine to indicate completion of the verb.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.

If the VCB is used in a WinRUI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

lua_encr_decr_option

Session-level cryptography option. CS/AIX accepts the following two

values:

0 Session-level cryptography is not used.

128 Encryption and decryption are performed by the application

program.

Any other value will result in the return code LUA_ENCR_DECR_LOAD_ERROR.

(Values in the range 1 to 127, indicating user-defined encryption and

decryption routines, are supported by OS/2 Extended Edition’s LUA

implementation but not by CS/AIX.)

AIX, LINUX

 The following parameters are used only if the lua_luname parameter is set to eight

binary zeros (the extended form of RUI_INIT). If lua_luname specifies the LU name

(the standard form of RUI_INIT), these parameters are reserved.

lua_puname

The name of the PU that owns the LU to be used for the session. The

name must be in ASCII, padded with spaces on the right (0x20). It must

match a PU name defined in the CS/AIX configuration.

lua_lunumber

The LU number of the LU to be used for the session. This must match the

LU number of a type 0–3 LU configured to use the specified PU.

 An application can start multiple sessions by using multiple RUI_INIT

verbs with a different LU for each verb; it cannot start more than one

session for the same LU.

RUI_INIT

Chapter 4. RUI Verbs 63

wait_for_link

Normally, if the application issues RUI_INIT for an LU that cannot

currently be used because the underlying communications link is inactive,

the RUI_INIT verb fails. Set this parameter to 1 to override this default

behavior so that LUA waits for the link and LU to become active before

RUI_INIT completes, or 0 (zero) to use the default behavior.

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 if the verb

completed synchronously. (RUI_INIT will always complete asynchronously,

unless it returns an error such as LUA_PARAMETER_CHECK.)

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb executes successfully, LUA returns the following parameters.

lua_prim_rc

LUA_OK

lua_sid A session ID for the new session. This can be used by subsequent verbs to

identify this session.

lua_luname

The name of the LU used by the new session. If the LU name in the

request parameters specified an LU pool, or if the application used the

extended form of RUI_INIT and specified the PU name and LU number

instead of the LU name, CS/AIX uses this parameter to return the name of

the actual LU assigned to the session. Subsequent verbs must use this

returned name (not the name specified in the request parameters) to

identify the session.

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

An RUI_TERM verb was issued before the RUI_INIT had

completed.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

RUI_INIT

64 IBM Communications Server for AIX LUA Programmer’s Guide

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_INVALID_LUNAME

The LU identified by the lua_luname parameter could not be found

on any active nodes.Check that the LU name or LU pool name is

defined in the configuration file and that the node on which it is

configured has been started.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

AIX, LINUX

 The following parameters are used only if the lua_luname parameter is set

to eight binary zeros (the extended form of RUI_INIT). If lua_luname

specifies the LU name (the standard form of RUI_INIT), these parameters

are reserved.

LUA_INVALID_FORMAT

The reserved parameter rui_init_format was set to a nonzero value.

LUA_INVALID_PUNAME

The lua_puname parameter did not match any PU name defined in

the CS/AIX configuration.

LUA_INVALID_LUNUMBER

The lua_lunumber parameter did not match the number of a type

0–3 LU defined to use the specified PU.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_DUPLICATE_RUI_INIT

An RUI_INIT verb is currently being processed for this session.

RUI_INIT

Chapter 4. RUI Verbs 65

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

LUA_COMMAND_COUNT_ERROR

The verb specified the name of an LU pool, or the name of an LU

in a pool, but all LUs in the pool are in use.

LUA_ENCR_DECR_LOAD_ERROR

The verb specified a value for lua_encr_decr_option other than 0 or

128.

LUA_INVALID_PROCESS

The LU specified by the lua_luname parameter is in use by another

process.

LUA_LINK_NOT_STARTED

The connection to the host has not been started; none of the links it

could use are active.

(any other value)

Any other secondary return code here is an SNA sense code. For

information about interpreting the SNA sense codes that can be

returned, see “SNA Information” on page 34.

The following sense code values are specific to CS/AIX, and may indicate

mismatches between the CS/AIX configuration and the host configuration:

0x10020000

The host has not sent an activate physical unit (ACTPU) for the PU

that owns the requested LU.

0x10110000

The host has not sent an ACTLU for the requested LU. This

generally indicates that the LU is not configured at the host.

0x10120000

The host has not sent an ACTLU for the requested LU. The host

supports DDDLU (Dynamic Definition of Dependent LUs), but

DDDLU processing for this LU has failed.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

This return code indicates one of the following conditions:

v The Remote API Client software was not started. Start the

Remote API Client before running your application.

v There are no active CS/AIX nodes. The local node that owns the

requested LU, or a local node that owns one or more LUs in the

requested LU pool, must be started before you can use LUA

verbs. Contact your System Administrator if necessary.

lua_prim_rc

RUI_INIT

66 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed.

 If the secondary return code is not LUA_RUI_LOGIC_ERROR, then this

LU can be reinitialized using an RUI_REINIT. If it is not

reinitialized, then an RUI_TERM must be issued before an

RUI_INIT can be issued for the same LU.

lua_sec_rc

LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the

communications link or with the host LU.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Interaction with Other Verbs

This verb must be the first LUA verb issued for the session.

Until this verb has completed successfully, the only other LUA verb that can be

issued for this session is RUI_TERM (which will terminate a pending RUI_INIT).

All other verbs issued on this session must identify the session using one of the

following returned parameters from this verb:

v The session ID, returned to the application in the lua_sid parameter

v The LU name, returned to the application in the lua_luname parameter

RUI_INIT

Chapter 4. RUI Verbs 67

Usage and Restrictions

The RUI_INIT verb completes after an ACTLU is received from the host. If

necessary, the verb waits indefinitely. If an ACTLU has already been received prior

to the RUI_INIT verb, LUA sends a NOTIFY to the host to inform it that the LU is

ready for use. Neither the ACTLU or NOTIFY is visible to the LUA application.

Once the RUI_INIT verb has completed successfully, this session uses the LU for

which the session was started. No other LUA session (from this or any other

application) can use the LU until the RUI_TERM verb is issued.

If the RUI_INIT verb returns with an LUA_IN_PROGRESS primary return code then

the Session ID will be returned in the lua_sid parameter. This Session ID is the

same as that returned when the verb completes successfully and can be used with

the RUI_TERM verb to terminate an outstanding RUI_INIT verb.

RUI_INIT_PRIMARY

AIX, LINUX

The RUI_INIT_PRIMARY verb establishes the SSCP-LU session for an SNA

Primary application that is communicating with a downstream LU. (If the RUI

application acts as an SNA secondary and communicates with a host LU, it must

use RUI_INIT instead of RUI_INIT_PRIMARY.)

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_INIT_PRIMARY

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU for which you want to start the session. This

must match the name of a downstream LU configured for use with SNA

Gateway, or an LU created implicitly from a downstream LU template.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_max_length

The length of a buffer supplied to receive a copy of the ACTLU(+RSP) RU

received from the downstream PU. If the application does not need to

receive this information, it can specify a null pointer in the lua_data_ptr

parameter, in which case it does not need to provide a data buffer.

RUI_INIT

68 IBM Communications Server for AIX LUA Programmer’s Guide

lua_data_ptr

A pointer to the buffer supplied to receive a copy of the ACTLU(+RSP) RU

received from the downstream PU. If the application does not need to

receive this information, it can specify a null pointer, and the information

will not be returned.

lua_post_handle

A pointer to a callback routine. If the verb completes asynchronously, LUA

will call this routine to indicate completion of the verb. For more

information, see Chapter 2, “Designing and Writing LUA Applications,” on

page 13.

lua_encr_decr_option

Session-level cryptography option. CS/AIX accepts the following two

values:

0 Session-level cryptography is not used.

128 Encryption and decryption are performed by the application

program.

Any other value will result in the return code LUA_ENCR_DECR_LOAD_ERROR.

(Values in the range 1 to 127, indicating user-defined encryption and

decryption routines, are supported by OS/2 Extended Edition’s LUA

implementation but not by CS/AIX.)

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 if the verb

completed synchronously. (RUI_INIT_PRIMARY will always complete

asynchronously, unless it returns an error such as LUA_PARAMETER_CHECK.)

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb executes successfully, LUA returns the following parameters.

lua_prim_rc

LUA_OK

lua_sid A session ID for the new session. This can be used by subsequent verbs to

identify this session.

lua_data_length

The length of the ACTLU(+RSP) RU received from the downstream PU.

LUA places the data in the buffer specified by lua_data_ptr.

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

RUI_INIT_PRIMARY

Chapter 4. RUI Verbs 69

lua_sec_rc

LUA_TERMINATED

An RUI_TERM verb was issued before the RUI_INIT_PRIMARY

had completed.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_INVALID_LUNAME

The LU identified by the lua_luname parameter could not be found

on any active nodes.Check that the LU name is defined in the

configuration file and that the nodeon which it is configured has

been started.

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_DUPLICATE_RUI_INIT_PRIMARY

An RUI_INIT_PRIMARY verb is currently being processed for this

session.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

LUA_ENCR_DECR_LOAD_ERROR

The verb specified a value for lua_encr_decr_option other than 0 or

128.

LUA_INVALID_PROCESS

The LU specified by the lua_luname parameter is in use by another

process.

(any other value)

Any other secondary return code here is an SNA sense code. For

RUI_INIT_PRIMARY

70 IBM Communications Server for AIX LUA Programmer’s Guide

information about interpreting the SNA sense codes that can be

returned, see “SNA Information” on page 34.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

This return code indicates one of the following conditions:

v The Remote API Client software was not started. Start the

Remote API Client before running your application.

v There are no active CS/AIX nodes. The local node that owns the

requested downstream LU must be started before you can use

LUA verbs. Contact your System Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed.

 An RUI_TERM must be issued before another

RUI_INIT_PRIMARY can be issued for the same LU.

lua_sec_rc

LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the

communications link or with the host LU.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Interaction with Other Verbs

This verb must be the first LUA verb issued for the session.

Until this verb has completed successfully, the only other LUA verb that can be

issued for this session is RUI_TERM (which will terminate a pending

RUI_INIT_PRIMARY).

All other verbs issued on this session must identify the session using one of the

following parameters from this verb:

v The session ID, returned to the application in the lua_sid parameter

RUI_INIT_PRIMARY

Chapter 4. RUI Verbs 71

v The LU name, supplied bythe application in the lua_luname parameter

Usage and Restrictions

The RUI_INIT_PRIMARY verb completes after an ACTLU positive response is

received from the downstream LU. If necessary, the verb waits indefinitely. If the

application needs to check the contents of this ACTLU positive response, it can do

so by supplying a data buffer on RUI_INIT_PRIMARY (using the lua_max_length

and lua_data_ptr parameters) in which CS/AIX returns the contents of the received

message.

Once the RUI_INIT_PRIMARY verb has completed successfully, this session uses

the LU for which the session was started. No other LUA session (from this or any

other application) can use the LU until the RUI_TERM verb is issued, or until an

LUA_SESSION_FAILURE primary return code is received.

If the RUI_INIT_PRIMARY verb returns with an LUA_IN_PROGRESS primary return

code then the Session ID will be returned in the lua_sid parameter. This Session ID

is the same as that returned when the verb completes successfully and can be used

with the RUI_TERM verb to terminate an outstanding RUI_INIT_PRIMARY verb.

RUI_PURGE

The RUI_PURGE verb cancels a previous RUI_READ. An RUI_READ may wait

indefinitely if it is sent without using the lua_flag1.nowait (immediate return)

option, and no data is available on the specified flow; RUI_PURGE forces the

waiting verb to return (with the primary return code LUA_CANCELLED).

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_PURGE

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session, as returned on the RUI_INIT or

RUI_INIT_PRIMARY verb.

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

RUI_INIT_PRIMARY

72 IBM Communications Server for AIX LUA Programmer’s Guide

lua_sid The session ID of the session. This must match a session ID returned on a

previous RUI_INIT or RUI_INIT_PRIMARY verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_data_ptr

A pointer to the RUI_READ VCB that is to be purged.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.

If the VCB is used in a WinRUI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the

verb completed synchronously.

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb completed successfully, the following parameters are returned:

lua_prim_rc

LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

RUI_PURGE

Chapter 4. RUI Verbs 73

LUA_TERMINATED

An RUI_TERM verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_BAD_DATA_PTR

The lua_data_ptr parameter was set to 0 (zero).

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION

An RUI_INIT or RUI_INIT_PRIMARY verb has not yet completed

successfully for the LU name specified on this verb, or the session

has failed.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

RUI_PURGE

74 IBM Communications Server for AIX LUA Programmer’s Guide

same process that issued the RUI_INIT or RUI_INIT_PRIMARY

verb for this session. Only the process that started a session can

issue verbs on that session.

LUA_NO_READ_TO_PURGE

Either the lua_data_ptr parameter did not contain a pointer to an

RUI_READ VCB, or the RUI_READ verb completed before the

RUI_PURGE verb was issued.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed.

 If the session was started using RUI_INIT (not

RUI_INIT_PRIMARY) and the secondary return code is not

LUA_RUI_LOGIC_ERROR, then this LU can be reinitialized using an

RUI_REINIT. If it is not reinitialized, then an RUI_TERM must be

issued before an RUI_INIT or RUI_INIT_PRIMARY can be issued

for the same LU.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

RUI_PURGE

Chapter 4. RUI Verbs 75

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software was not started, or the node was

either not started or not configured properly for LUA applications.

Check the CS/AIX LUA configuration parameters and start the

Remote API Client and the node before running your application.

Interaction with Other Verbs

This verb can only be used when an RUI_READ has been issued and is pending

completion (that is, the primary return code is IN_PROGRESS).

RUI_READ

The RUI_READ verb receives data or status information sent from the host to the

application’s LU.

You can specify a particular message flow (LU normal, LU expedited, SSCP

normal, or SSCP expedited) from which to read data, or you can specify more than

one message flow. You can have multiple RUI_READ verbs outstanding, provided

that no two of them specify the same flow.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_READ

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session, as returned on the RUI_INIT or

RUI_INIT_PRIMARY verb.

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

RUI_PURGE

76 IBM Communications Server for AIX LUA Programmer’s Guide

This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a

previous RUI_INIT or RUI_INIT_PRIMARY verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_max_length

The length of the buffer supplied to receive the data.

lua_data_ptr

A pointer to the buffer supplied to receive the data.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.

If the VCB is used in a WinRUI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

lua_flag1 parameters

Set the lua_flag1.nowait parameter to 1 if you want the RUI_READ verb to

return as soon as possible whether or not data is available to be read, or

set it to 0 (zero) if you want the verb to wait for data before returning.

Note: Setting the lua_flag1.nowait parameter to 1 does not mean that the

verb will complete synchronously. The LUA library needs to

communicate with the local node to determine whether or not any

data is available, and this normally requires an asynchronous verb

return to avoid blocking the application. The parameter means that,

if there is no data available immediately, the asynchronous verb

return will occur as soon as possible to indicate this.

Set the lua_flag1.bid_enable parameter to 1 to re-enable the most recent

RUI_BID verb (equivalent to issuing RUI_BID again with exactly the same

parameters as before), or set it to 0 (zero) if you do not want to re-enable

RUI_BID. Re-enabling the previous RUI_BID re-uses the VCB originally

allocated for it, so this VCB must not have been freed or modified. (For

more information, see “Interaction with Other Verbs” on page 83.)

 Set one or more of the following flags to 1 to indicate which message flow

to read data from:

 lua_flag1.sscp_exp

 lua_flag1.lu_exp

RUI_READ

Chapter 4. RUI Verbs 77

lua_flag1.sscp_norm

 lua_flag1.lu_norm

 If more than one flag is set, the highest-priority data available will be

returned. The order of priorities (highest first) is: SSCP expedited, LU

expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2

group will be set to indicate which flow the data was read from (see

“Returned Parameters”).

 The CS/AIX implementation of LUA does not return data on the SSCP

expedited flow. The application can set the sscp_exp flag, for compatibility

with other LUA implementations, but data will never be returned on this

flow.

Returned Parameters

LUA always returns the following parameters:

lua_flag2.async

This parameter is set to 1 if the verb completed asynchronously, or 0 if the

verb completed synchronously.

lua_flag2.bid_enable

This parameter is set to 1 if an RUI_BID was successfully re-enabled, or to

0 if it was not re-enabled.

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution or Truncated Data

If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

 The following parameters are returned if the verb completes successfully. They are

also returned if the verb returns with truncated data because the lua_data_length

parameter supplied was too small (see “Other Conditions” on page 81).

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

lua_data_length

The length of the data received. LUA places the data in the buffer specified

by lua_data_ptr.

lua_th Information from the transmission header (TH) of the received message.

lua_rh Information from the request/response header (RH) of the received

message.

lua_message_type

Message type of the received message that will be one of the following:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIND

RUI_READ

78 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_CLEAR

 LUA_MESSAGE_TYPE_CRV

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SHUTD

 LUA_MESSAGE_TYPE_SIGNAL

 LUA_MESSAGE_TYPE_SDT

 LUA_MESSAGE_TYPE_STSN

 LUA_MESSAGE_TYPE_UNBIND

AIX, LINUX

The following values can be returned only to an RUI primary application

(one that started the session using RUI_INIT_PRIMARY):

 LUA_MESSAGE_TYPE_INIT_SELF

 LUA_MESSAGE_TYPE_NOTIFY

 LUA_MESSAGE_TYPE_TERM_SELF

lua_flag2 parameters

One of the following flags will be set to 1, to indicate on which message

flow the data was received:

 lua_flag2.lu_exp

 lua_flag2.sscp_norm

 lua_flag2.lu_norm

 The CS/AIX implementation of LUA does not return data on the SSCP

expedited flow, and so the sscp_exp flag will never be set (although it may

be set by other LUA implementations).

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

RUI_READ

Chapter 4. RUI Verbs 79

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb or by an internal

error:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

Possible values are:

LUA_PURGED

This RUI_READ verb has been canceled by an RUI_PURGE verb.

LUA_TERMINATED

An RUI_TERM verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_BAD_DATA_PTR

The lua_data_ptr parameter contained a value that was not valid.

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

LUA_BID_ALREADY_ENABLED

The lua_flag1.bid_enable parameter was set to re-enable an RUI_BID

verb, but the previous RUI_BID verb was still in progress.

LUA_DUPLICATE_READ_FLOW

The flow flags in the lua_flag1 group specified one or more session

flows for which an RUI_READ verb was already outstanding. Only

one RUI_READ at a time can be waiting on each session flow.

LUA_INVALID_FLOW

None of the lua_flag1 flow flags was set. At least one of these flags

must be set to 1 to indicate which flow or flows to read from.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_NO_PREVIOUS_BID_ENABLED

The lua_flag1.bid_enable parameter was set to re-enable an RUI_BID

verb, but there was no previous RUI_BID verb that could be

enabled. (For more information, see “Interaction with Other Verbs”

on page 83.)

RUI_READ

80 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION

An RUI_INIT or RUI_INIT_PRIMARY verb has not yet completed

successfully for the LU name specified on this verb, or the session

has failed.

Negative Response Sent to Host: The following primary return code indicates

one of the following two cases, which can be distinguished by the secondary

return code:

v CS/AIX detected an error in the data received from the host. Instead of passing

the received message to the application on an RUI_READ verb, CS/AIX discards

the message (and the rest of the chain if it is in a chain), and sends a negative

response to the host. LUA informs the application on a subsequent RUI_READ

or RUI_BID verb that a negative response was sent.

v The LUA application previously sent a negative response to a message in the

middle of a chain. CS/AIX has purged subsequent messages in this chain, and is

now reporting to the application that all messages from the chain have been

received and purged.

lua_prim_rc

LUA_NEGATIVE_RSP

lua_sec_rc

A nonzero secondary return code contains the sense code sent to the host

on the negative response. This indicates that CS/AIX detected an error in

the host data, and sent a negative response to the host. For information

about interpreting the sense code values that can be returned, see “SNA

Information” on page 34.

 A 0 (zero) secondary return code indicates that, following a previous

RUI_WRITE of a negative response to a message in the middle of a chain,

CS/AIX has now received and discarded all messages from this chain.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

LUA_DATA_TRUNCATED

The lua_data_length parameter was smaller than the actual length of

data received on the message. Only lua_data_length bytes of data

were returned to the verb; the remaining data was discarded.

RUI_READ

Chapter 4. RUI Verbs 81

Additional parameters are also returned if this secondary return

code is obtained; see “Successful Execution or Truncated Data” on

page 78.

LUA_NO_DATA

The lua_flag1.nowait parameter was set to indicate immediate return

without waiting for data, and no data was currently available on

the specified session flow or flows.

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

same process that issued the RUI_INIT or RUI_INIT_PRIMARY

verb for this session. Only the process that started a session can

issue verbs on that session.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed.

 If the session was started using RUI_INIT (not

RUI_INIT_PRIMARY) and the secondary return code is not

LUA_RUI_LOGIC_ERROR, then this LU can be reinitialized using an

RUI_REINIT. If it is not reinitialized, then an RUI_TERM must be

issued before an RUI_INIT or RUI_INIT_PRIMARY can be issued

for the same LU.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

WINDOWS

RUI_READ

82 IBM Communications Server for AIX LUA Programmer’s Guide

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

 The Remote API Client software was not started, or the node was either

not started or not configured properly for LUA applications. Check the

CS/AIX LUA configuration parameters and start the Remote API Client

and the node before running your application.

Interaction with Other Verbs

The RUI_INIT or RUI_INIT_PRIMARY verb must have completed successfully

before this verb can be issued.

While an existing RUI_READ is pending, you can issue another RUI_READ only if

it specifies a different session flow or flows from pending RUI_READs; you cannot

have more than one RUI_READ outstanding for the same session flow.

The lua_flag1.bid_enable parameter can only be used if the following are true:

v RUI_BID has already been issued successfully and has completed

v The storage allocated for the RUI_BID verb has not been freed or modified

v No other RUI_BID is pending

If you use this parameter to re-enable a previous RUI_BID, at least one of the

message flow flags on RUI_READ must still be set, to indicate the flow or flows on

which the application will accept data. If the first data to be received is on a flow

accepted by the RUI_READ verb, RUI_READ will return with this data, and

RUI_BID will not return. Otherwise, RUI_BID will return to indicate that there is

data to be read (since RUI_BID accepts data on all flows, it will always accept the

data if RUI_READ does not). The application must then issue another RUI_READ

on the appropriate flow to obtain the data.

If you want to use RUI_BID to handle data on all flows, rather than having the

data on a particular flow handled by RUI_READ in preference to RUI_BID, you

need to re-issue RUI_BID explicitly instead of using RUI_READ to re-enable the

previous RUI_BID.

RUI_READ

Chapter 4. RUI Verbs 83

Usage and Restrictions

If the data received is longer than the lua_max_length parameter, it will be

truncated; only lua_max_length bytes of data will be returned. The primary and

secondary return codes LUA_UNSUCCESSFUL and LUA_DATA_TRUNCATED will also be

returned.

Once a message has been read using the RUI_READ verb, it is removed from the

incoming message queue, and cannot be accessed again. (The RUI_BID verb may

be used as a non-destructive read; the application can use it to check the type of

data available, but the data remains on the incoming queue and need not be used

immediately.)

Pacing may be used on the primary-to-secondary half-session (this is specified in

the host configuration), in order to protect the LUA application from being flooded

with messages. If the LUA application is slow to read messages, CS/AIX delays

the sending of pacing responses to the host in order to slow it down.

RUI_REINIT

AIX, LINUX

The RUI_REINIT verb re-establishes the SSCP-LU session after a session failure. It

is intended for use by an application that was using an LU from a pool, and needs

to ensure that it accesses the same LU in order to continue processing. (Normally,

an application recovers from a session failure by issuing RUI_TERM followed by a

second RUI_INIT; however, if the application was using an LU from a pool, the

second RUI_INIT will not necessarily get the same LU as the original one.)

This verb cannot be used to restart a Primary RUI session (one that was started

using RUI_INIT_PRIMARY).

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record. Set this to

sizeof(LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_REINIT

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU that was being used by the failed session.

This must match the name returned on the original RUI_INIT verb (not

necessarily the same as the name that was supplied to the verb).

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

RUI_READ

84 IBM Communications Server for AIX LUA Programmer’s Guide

This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on

the previous RUI_INIT verb for the failed session.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_post_handle

A pointer to a callback routine. If the verb completes asynchronously, LUA

will call this routine to indicate completion of the verb. For more

information, see Chapter 2, “Designing and Writing LUA Applications,” on

page 13.

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 if the verb

completed synchronously. (RUI_REINIT will always complete

asynchronously, unless it returns an error such as LUA_PARAMETER_CHECK.)

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb executes successfully, LUA returns the following parameter:

lua_prim_rc

LUA_OK

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

An RUI_TERM verb was issued before the RUI_REINIT had

completed.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

RUI_REINIT

Chapter 4. RUI Verbs 85

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

Possible values are:

LUA_NO_RUI_SESSION

An RUI_INIT verb has not previously completed successfully for

the specified LU name or session ID.

LUA_DUPLICATE_RUI_INIT

An RUI_REINIT verb is currently being processed for this session.

LUA_REINIT_INVALID

Session failure has not occurred for this session.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

LUA_INVALID_PROCESS

The original RUI_INIT verb was issued from a different operating

system process.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

This return code indicates one of the following conditions:

v The Remote API Client software was not started. Start the

Remote API Client before running your application.

v There are no active CS/AIX nodes. The local node that owns the

requested LU, or a local node that owns one or more LUs in the

requested LU pool, must be started before you can use LUA

verbs. Contact your System Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

RUI_REINIT

86 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_SESSION_FAILURE

The LUA session has failed.

 If the secondary return code is not LUA_RUI_LOGIC_ERROR, then this

LU can be reinitialized using an RUI_REINIT. If it is not

reinitialized, then an RUI_TERM must be issued before an

RUI_INIT can be issued for the same LU.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the

communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Interaction with Other Verbs

This verb can only be issued if a previous LUA verb has returned with primary

return code LUA_SESSION_FAILURE, and with a secondary return code other than

LUA_RUI_LOGIC_ERROR.

Until this verb has completed successfully, the only other LUA verb that can be

issued for this session is RUI_TERM (which will terminate a pending

RUI_REINIT).

Usage and Restrictions

The RUI_REINIT verb completes after an ACTLU is received from the host. If

necessary, the verb waits indefinitely. If an ACTLU has already been received prior

to the RUI_REINIT verb, the verb returns immediately with primary return code

LUA_OK.

Once the RUI_REINIT verb has completed successfully, this session uses the LU for

which the session was started. No other LUA session (from this or any other

application) can use the LU until the RUI_TERM verb is issued, or until an

LUA_SESSION_FAILURE primary return code is received.

RUI_REINIT

Chapter 4. RUI Verbs 87

If the secondary return code is not LUA_RUI_LOGIC_ERROR, then this LU can be

reinitialized using an RUI_REINIT. If it is not reinitialized, then an RUI_TERM

must be issued before an RUI_INIT can be issued for the same LU.

The session ID of the restarted session is the same as the session ID before the

failure. Unlike RUI_INIT, RUI_REINIT does not return this session ID; the

application should either use the session ID that was returned to the original

RUI_INIT verb, or access the session using its LU name.

RUI_TERM

The RUI_TERM verb ends both the LU session and the SSCP session for a given

LU.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_TERM

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session, as returned on the RUI_INIT or

RUI_INIT_PRIMARY verb (or the LU name that was specified on an

outstanding RUI_INIT, RUI_INIT_PRIMARY, or RUI_REINIT verb).

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a

previous RUI_INIT or RUI_INIT_PRIMARY verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

RUI_REINIT

88 IBM Communications Server for AIX LUA Programmer’s Guide

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.

If the VCB is used in a WinRUI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 if the verb

completed synchronously.

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

RUI_TERM

Chapter 4. RUI Verbs 89

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION

Either there is no LUA session with the LU name specified on this

verb, or the session has failed.

 If the RUI_TERM verb was issued to cancel an outstanding

RUI_INIT, RUI_INIT_PRIMARY, or RUI_REINIT verb, using the

lua_luname parameter supplied to the outstanding verb, this return

code may indicate that the RUI_INIT, RUI_INIT_PRIMARY, or

RUI_REINIT completed before this verb was processed. The verb

may have completed unsuccessfully (and so there is no session), or

RUI_INIT may have completed successfully using a different LU

from the pool specified by lua_luname (and so there is no session

for the specified LU name).

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

LUA_COMMAND_COUNT_ERROR

An RUI_TERM was already pending when the verb was issued.

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

same process that issued the RUI_INIT or RUI_INIT_PRIMARY

verb for this session. Only the process that started a session can

issue verbs on that session.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed.

lua_sec_rc

Possible values are:

RUI_TERM

90 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software was not started, or the node was

either not started or not configured properly for LUA applications.

Check the CS/AIX LUA configuration parameters and start the

Remote API Client and the node before running your application.

Interaction with Other Verbs

This verb may be issued at any time after the RUI_INIT, RUI_INIT_PRIMARY, or

RUI_REINIT verb has been issued (whether or not it has completed).

If any other LUA verb is pending when RUI_TERM is issued, no further

processing on the pending verb will take place, and it will return with a primary

return code of LUA_CANCELLED.

After this verb has completed, no other LUA verb can be issued for this session.

RUI_TERM

Chapter 4. RUI Verbs 91

AIX, LINUX

If the session was started using RUI_INIT_PRIMARY, CS/AIX terminates the

session by sending DACTLU to the downstream LU. RUI_TERM does not wait for

the DACTLU response before returning. The application can reissue

RUI_INIT_PRIMARY as soon as RUI_TERM has finished, to start a new session

with the downstream LU; however, CS/AIX cannot process this

RUI_INIT_PRIMARY until it has received the DACTLU response, and so the

RUI_INIT_PRIMARY may take some time to complete.

RUI_WRITE

The RUI_WRITE verb sends an SNA request or response unit from the LUA

application to the host, over either the LU session or the SSCP session.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_RUI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_COMMON).

lua_opcode

LUA_OPCODE_RUI_WRITE

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session, as returned on the RUI_INIT or

RUI_INIT_PRIMARY verb.

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a

previous RUI_INIT or RUI_INIT_PRIMARY verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_data_length

The length of the supplied data. When sending data on the LU normal

flow, the maximum length is as specified in the BIND received from the

host; for all other flows the maximum length is 256 bytes.

RUI_TERM

92 IBM Communications Server for AIX LUA Programmer’s Guide

When sending a positive response, this parameter is normally set to 0

(zero). LUA will complete the response based on the supplied sequence

number. In the case of a positive response to a BIND or STSN, an extended

response is allowed, so a nonzero value may be used.

 When sending a negative response, set this parameter to the length of the

SNA sense code (four bytes), which is supplied in the data buffer.

lua_data_ptr

A pointer to the buffer containing the supplied data.

 For a request, or a positive response that requires data, the buffer should

contain the entire RU. The length of the RU must be specified in

lua_data_length.

 For a negative response, the buffer should contain the SNA sense code.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.

If the VCB is used in a WinRUI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

lua_th.snf

Required only when sending a response. The sequence number of the

request to which this is the response.

lua_rh When sending a request, most of the lua_rh bits must be set to correspond

to the RH (request header) of the message to be sent. Do not set lua_rh.pi

and lua_rh.qri; these will be set by LUA.

 When sending a response, only the following two lua_rh bits are used. The

others must be 0 (zero). The lua_rh bits are:

lua_rh.rri

Set to 1 to indicate a response

lua_rh.ri

Set to 0 for a positive response, or 1 for a negative response

lua_flag1 parameters

Set one of the following flags to 1 to indicate which message flow the data

is to be sent on:

 lua_flag1.lu_exp

 lua_flag1.sscp_norm

 lua_flag1.lu_norm

RUI_WRITE

Chapter 4. RUI Verbs 93

One and only one of the flags must be set to 1. CS/AIX does not allow

applications to send data on the SSCP expedited flow (the

lua_flag1.sscp_exp flag).

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the

verb completed synchronously.

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

lua_th The completed TH of the message written, including the fields filled in by

LUA. You may need to save the value of lua_th.snf (the sequence number)

for correlation with responses from the host.

lua_rh The completed RH of the message written, including the fields filled in by

LUA.

lua_flag2 parameters

One of the following flags will be set to 1 to indicate which message flow

the data was sent on:

 lua_flag2.lu_exp

 lua_flag2.sscp_norm

 lua_flag2.lu_norm

 The CS/AIX implementation of LUA does not allow applications to send

data on the SSCP expedited flow, and so will never set the sscp_exp flag

(although other LUA implementations may set it).

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

The verb was canceled because an RUI_TERM verb was issued for

this session.

RUI_WRITE

94 IBM Communications Server for AIX LUA Programmer’s Guide

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_BAD_DATA_PTR

The lua_data_ptr parameter contained a value that was not valid.

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

LUA_DUPLICATE_WRITE_FLOW

An RUI_WRITE was already outstanding for the session flow

specified on this verb (the session flow is specified by setting one

of the lua_flag1 flow flags to 1). Only one RUI_WRITE at a time can

be outstanding on each session flow.

LUA_INVALID_FLOW

The lua_flag1.sscp_exp flow flag was set, indicating that the message

should be sent on the SSCP expedited flow. CS/AIX does not allow

applications to send data on this flow.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_MULTIPLE_WRITE_FLOWS

More than one of the lua_flag1 flow flags was set to 1. One and

only one of these flags must be set to 1, to indicate which session

flow the data is to be sent on.

LUA_REQUIRED_FIELD_MISSING

This return code indicates one of the following cases:

v None of the lua_flag1 flow flags was set. One and only one of

these flags must be set to 1.

v The RUI_WRITE verb was used to send a response, and the

response required more data than was supplied.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

RUI_WRITE

Chapter 4. RUI Verbs 95

lua_sec_rc

Possible values are:

LUA_MODE_INCONSISTENCY

The SNA message sent on the RUI_WRITE was not valid at this

time. This is caused by trying to send data on the LU session

before the session is bound. Check the sequence of SNA messages

sent.

LUA_NO_RUI_SESSION

An RUI_INIT or RUI_INIT_PRIMARY verb has not yet completed

successfully for the LU name specified on this verb, or the session

has failed.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

LUA_FUNCTION_NOT_SUPPORTED

This return code indicates one of the following cases:

v The lua_rh.fi bit (Format Indicator) was set to 1, but the first byte

of the supplied RU was not a recognized request code.

v The lua_rh.ruc parameter (RU category) specified the Network

Control (NC) category; CS/AIX does not allow applications to

send requests in this category.

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

same process that issued the RUI_INIT or RUI_INIT_PRIMARY

verb for this session. Only the process that started a session can

issue verbs on that session.

LUA_INVALID_SESSION_PARAMETERS

The application used RUI_WRITE to send a positive response to a

BIND message received from the host. However, the CS/AIX node

cannot accept the BIND parameters as specified, and has sent a

negative response to the host. For more information about the

BIND profiles accepted by CS/AIX, see “SNA Information” on

page 34.

LUA_RSP_CORRELATION_ERROR

When using RUI_WRITE to send a response, the lua_th.snf

parameter (which indicates the sequence number of the received

message being responded to) did not contain a valid value.

LUA_RU_LENGTH_ERROR

The lua_data_length parameter contained a value that was not valid.

When sending data on the LU normal flow, the maximum length is

as specified in the BIND received from the host; for all other flows

the maximum length is 256 bytes.

(any other value)

Any other secondary return code here is an SNA sense code

indicating that the supplied SNA data was not valid or could not

be sent. For information about interpreting the SNA sense codes

that can be returned, see “SNA Information” on page 34.

RUI_WRITE

96 IBM Communications Server for AIX LUA Programmer’s Guide

The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed.

 If the session was started using RUI_INIT (not

RUI_INIT_PRIMARY) and the secondary return code is not

LUA_RUI_LOGIC_ERROR, then this LU can be reinitialized using an

RUI_REINIT. If it is not reinitialized, then an RUI_TERM must be

issued before an RUI_INIT or RUI_INIT_PRIMARY can be issued

for the same LU.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

RUI_WRITE

Chapter 4. RUI Verbs 97

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software was not started, or the node was

either not started or not configured properly for LUA applications.

Check the CS/AIX LUA configuration parameters and start the

Remote API Client and the node before running your application.

Interaction with Other Verbs

The RUI_INIT or RUI_INIT_PRIMARY verb must be issued successfully before this

verb can be issued.

While an existing RUI_WRITE is pending, you can issue a second RUI_WRITE

only if it specifies a different session flow from the pending RUI_WRITE; that is,

you cannot have more than one RUI_WRITE outstanding for the same session

flow.

The RUI_WRITE verb can be issued on the SSCP normal flow at any time after a

successful RUI_INIT or RUI_INIT_PRIMARY verb. RUI_WRITE verbs on the LU

expedited or LU normal flows are permitted only after a BIND has been received,

and must abide by the protocols specified on the BIND.

Usage and Restrictions

Successful completion of RUI_WRITE indicates that the message was queued

successfully to the data link; it does not necessarily indicate that the message was

sent successfully, or that the host accepted it.

Pacing may be used on the secondary-to-primary half-session (this is specified on

the BIND), in order to prevent the LUA application from sending more data than

the CS/AIX LU or the host LU can handle. If this is the case, an RUI_WRITE on

the LU normal flow may be delayed by LUA and may take some time to complete.

RUI_WRITE

98 IBM Communications Server for AIX LUA Programmer’s Guide

Chapter 5. SLI Verbs

This chapter contains a description of each LUA SLI verb. The following

information is provided for each verb:

v Purpose of the verb.

v Parameters (VCB fields) supplied to and returned by LUA. The description of

each parameter includes information about the valid values for that parameter,

and any additional information necessary.

v Interaction with other verbs.

v Additional information describing the use of the verb.

For details of the Verb Control Block (VCB) used for all verbs, see Chapter 3, “LUA

VCB Structure,” on page 45.

Symbolic constants are defined in the header files lua_c.h and values_c.h (AIX

operating system) or winlua.h (Windows operating system)for many parameter

values. For portability, use the symbolic constant and not the numeric value when

setting values for supplied parameters, or when testing values of returned

parameters. The file values_c.h also includes definitions of parameter types such as

AP_UINT16 that are used in the LUA VCBs.

Parameters marked as “reserved” should always be set to 0 (zero).

SLI_BID

The SLI_BID verb is used by the application to determine when a received

message is waiting to be read. This enables the application to determine what data,

if any, is available before issuing the SLI_RECEIVE verb.

When a message is available, the SLI_BID verb returns with details of the message

flow on which it was received, the message type, the TH and RH of the message,

and up to 12 bytes of message data.

The main difference between SLI_BID and SLI_RECEIVE is that SLI_BID enables

the application to check the data without removing it from the incoming message

queue, so it can be left and accessed at a later stage. The SLI_RECEIVE verb

removes the message from the queue, so once the application has read the data it

must process it.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_VERB_RECORD).

lua_opcode

LUA_OPCODE_SLI_BID

© Copyright IBM Corp. 2000, 2005 99

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session (as returned on the SLI_OPEN verb).

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a

previous SLI_OPEN verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.

If the VCB is used in a WinSLI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the

verb completed synchronously.

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb completed successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

SLI_BID

100 IBM Communications Server for AIX LUA Programmer’s Guide

lua_data_length

The number of bytes of data returned in the lua_peek_data parameter; from

0 to 12.

lua_th The TH of the received message.

lua_rh The RH of the received message.

lua_message_type

Message type of the received message, which is one of the following:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIND

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SIGNAL

 LUA_MESSAGE_TYPE_STSN

 The SLI uses the application’s LUA interface extension routines to receive

and respond to the BIND and STSN requests.

lua_flag2

One of the following flags will be set to 1 to indicate on which message

flow the data was received:

 lua_flag2.sscp_exp

 lua_flag2.lu_exp

 lua_flag2.sscp_norm

 lua_flag2.lu_norm

lua_peek_data

The first 12 bytes of the message data (or all of the message data if it is

shorter than 12 bytes)

 If lua_rh.rri is off (request unit) and lua_rh.sdi is on (sense data included),

this indicates that LUA has converted a request unit sent by the host into

an exception request (EXR). In this case, bytes 0–3 of lua_peek_data contain

the sense data associated with the exception, and bytes 4–6 contain up to

the first 3 bytes of the original request unit.

SLI_BID

Chapter 5. SLI Verbs 101

Successful Execution: Status Information

If the verb returned LUA status information instead of data, LUA returns the

following parameters:

lua_prim_rc

LUA_STATUS

lua_sec_rc

LUA_READY

The SLI session is now ready to process additional commands. This

status is used after a previous LUA_NOT_READY status was reported,

or after an SLI_CLOSE verb completed with lua_prim_rc set to

LUA_CANCELLED and lua_sec_rc set to RECEIVED_UNBIND_HOLD or

RECEIVED_UNBIND_NORMAL.

LUA_NOT_READY

The SLI session has been temporarily suspended for one of the

following reasons:

v A CLEAR command was received. The session resumes when an

SDT command is received.

v An UNBIND command type X’02’ (BIND forthcoming) was

received. The session is suspended until a BIND, optional CRV

and STSN, and SDT commands are received; it resumes after the

SDT. Any user extension routines that were supplied by the

original SLI_OPEN verb will be called again.

v An UNBIND command type X’01’ (normal) was received, and

the SLI_OPEN verb for this session specified lua_session_type

LUA_SESSION_TYPE_DEDICATED. The session is suspended until a

BIND, optional CRV and STSN, and SDT commands are

received; it resumes after the SDT. Any user extension routines

that were supplied by the original SLI_OPEN verb will be called

again.

The application should issue another SLI_BID or SLI_RECEIVE to

receive the READY status when the session resumes. It can continue

to issue SLI_SEND and SLI_RECEIVE verbs for SSCP normal-flow

data even though the session status is LUA_NOT_READY.

LUA_INIT_COMPLETE

The application issued SLI_OPEN with type

LUA_OPEN_TYPE_PRIM_SSCP, and the underlying RUI_INIT verb has

now completed. The application can now issue SLI_SEND and

SLI_RECEIVE verbs for SSCP normal-flow data.

LUA_SESSION_END_REQUESTED

The host has sent a SHUTD command, requesting the application

to shut down the session. The application should issue SLI_CLOSE

as soon as it is ready to close the session.

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

SLI_BID

102 IBM Communications Server for AIX LUA Programmer’s Guide

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

An SLI_CLOSE verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

LUA_INVALID_LUNAME

The LU identified by the lua_luname parameter could not be found

on any active nodes.Check that the LU name or LU pool name is

defined in the configuration file and that the node on which it is

configured has been started.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_NO_SLI_SESSION

An SLI_OPEN verb has not yet completed successfully for the LU

specified on this verb, or the session has failed.

LUA_SLI_BID_PENDING

The SLI_BID verb was rejected because a previous SLI_BID verb

SLI_BID

Chapter 5. SLI Verbs 103

was already outstanding for this session. Only one SLI_BID can be

outstanding for each session at any time.

Negative Response Sent to Host: The following return code indicates that

CS/AIX detected an error in the data received from the host. Instead of passing the

received message to the application on an SLI_RECEIVE verb, CS/AIX discards the

message (and the rest of the chain if it is in a chain), and sends a negative response

to the host. LUA informs the application on a subsequent SLI_RECEIVE or

SLI_BID verb that a negative response was sent.

lua_prim_rc

LUA_NEGATIVE_RSP

lua_sec_rc

The secondary return code contains the sense code sent to the host on the

negative response. See “SNA Information” on page 34, for information

about interpreting the sense code values that can be returned.

 A 0 (zero) secondary return code indicates that, following a previous

SLI_SEND of a negative response to a message in the middle of a chain,

CS/AIX has now received and discarded all messages from this chain.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

same process that issued the SLI_OPEN verb for this session. Only

the process that started a session can issue verbs on that session.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated. Contact your System Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed. To restart it, the application can reissue

SLI_OPEN.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_RECEIVED_UNBIND

This return code indicates that the host sent an UNBIND command

to end the session. This value can occur only if the SLI_OPEN verb

for this session specified lua_session_type

LUA_SESSION_TYPE_DEDICATED.

SLI_BID

104 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_RUI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Interaction with Other Verbs

The SLI_OPEN verb must complete successfully before this verb can be issued.

Only one SLI_BID for each session can be outstanding at any one time.

After the SLI_BID verb has completed successfully, it may be re-issued by setting

the lua_flag1.bid_enable parameter on a subsequent SLI_RECEIVE verb. If the verb is

to be re-issued in this way, the application program must not free or modify the

storage associated with the SLI_BID verb record.

If a message arrives from the host when an SLI_RECEIVE and an SLI_BID are both

outstanding, the SLI_RECEIVE completes and the SLI_BID is left in progress.

Usage and Restrictions

Each message that arrives will only be bid once. Once an SLI_BID verb has

indicated that data is waiting on a particular session flow, the application should

issue the SLI_RECEIVE verb to receive the data. Any subsequent SLI_BID will not

report data arriving on that session flow until the message which was bid has been

accepted by issuing an SLI_RECEIVE verb.

SLI_BID

Chapter 5. SLI Verbs 105

If there is data available on more than one session flow, the data on the

highest-priority flow will be returned to the application. The flow priorities are as

follows (highest to lowest):

v SSCP expedited

v LU expedited

v SSCP normal

v LU normal

Once a message has been read using the SLI_RECEIVE verb, it is removed from

the incoming message queue, and cannot be accessed again. The application can

use SLI_BID as a non-destructive read to check the type of data available and

determine how to process it, and then issue a subsequent SLI_RECEIVE to collect

the data. However, if it issues the SLI_RECEIVE with multiple lua_flag1 flags set to

accept data on more than one flow, it may receive a different message from the one

identified in the SLI_BID, if data arrived on a higher-priority flow between the

SLI_BID and SLI_RECEIVE verbs. To ensure that it receives the same message that

was identified in the SLI_BID, it should set the lua_flag1 flags on SLI_RECEIVE to

accept data only on the flow identified in the SLI_BID response.

The lua_data_length parameter indicates the length of data in lua_peek_data. If this is

less than 12, indicating that the waiting message is shorter than 12 bytes, the

remaining bytes in lua_peek_data are undefined and the application should not

attempt to examine them.

SLI_CLOSE

The SLI_CLOSE verb ends both the LU session and the SSCP session for a given

LU.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_VERB_RECORD).

lua_opcode

LUA_OPCODE_SLI_CLOSE

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session, as returned on the SLI_OPEN verb (or the

LU name that was specified on an outstanding SLI_OPEN verb).

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

SLI_BID

106 IBM Communications Server for AIX LUA Programmer’s Guide

lua_sid The session ID of the session. This must match a session ID returned on a

previous SLI_OPEN verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.

If the VCB is used in a WinSLI function call, this field is reserved.

lua_flag1 parameters

Set the lua_flag1.close_abend parameter to 1 if you want the session to be

closed immediately, or set it to 0 (zero) if you want the SLI to go through

the normal exchange of SNA messages with the host to close the session

gracefully. For more details of normal or abend close processing, see

“Usage and Restrictions” on page 111.

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the

verb completed synchronously.

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

SLI_CLOSE

Chapter 5. SLI Verbs 107

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

LUA_INVALID_LUNAME

The LU identified by the lua_luname parameter could not be found

on any active nodes.Check that the LU name or LU pool name is

defined in the configuration file and that the node on which it is

configured has been started.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

Possible values are:

LUA_CLOSE_PENDING

The application issued SLI_CLOSE (normal) when an SLI_CLOSE

(either normal or abend) was already in progress, or issued

SLI_CLOSE (abend) when an SLI_CLOSE (abend) was already in

progress. A second SLI_CLOSE is valid only if it is an an

SLI_CLOSE (abend) following an earlier SLI_CLOSE (normal).

LUA_NO_SLI_SESSION

Either there is no LUA session with the LU name specified on this

verb, or the session has failed.

 If the SLI_CLOSE verb was issued to cancel an outstanding

SLI_OPEN verb, using the lua_luname parameter supplied to the

outstanding verb, this return code may indicate that the SLI_OPEN

completed before this verb was processed. The verb may have

completed unsuccessfully (and so there is no session), or

SLI_OPEN may have completed successfully using a different LU

from the pool specified by lua_luname (and so there is no session

for the specified LU name).

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by a message sent from the host:

SLI_CLOSE

108 IBM Communications Server for AIX LUA Programmer’s Guide

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

Possible values are:

LUA_RECEIVED_UNBIND_HOLD

This SLI_CLOSE verb has been canceled by an UNBIND type 0x02

(UNBIND with BIND forthcoming) from the host. The session is

not closed; the application should issue SLI_BID or SLI_RECEIVE

to get status information. Any user extension routines specified by

the application on the SLI_OPEN verb will be called again when

the host sends the new BIND.

LUA_RECEIVED_UNBIND_NORMAL

This SLI_CLOSE verb has been canceled by an UNBIND type 0x01

(normal UNBIND) from the host, and the lua_session_type

parameter on the SLI_OPEN that started the session was set to

LUA_SESSION_TYPE_DEDICATED. The session is not closed; the

application should issue SLI_BID or SLI_RECEIVE to get status

information. Any user extension routines specified by the

application on the SLI_OPEN verb will be called again when the

host sends the new BIND. If the application wants to end the

session without waiting for a new BIND, it should issue

SLI_CLOSE (abend).

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

same process that issued the SLI_OPEN verb for this session. Only

the process that started a session can issue verbs on that session.

LUA_NAU_INOPERATIVE

A required SNA component (such as the LUA LU) is not active or

is in an abnormal state.

LUA_NO_SESSION

The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

SLI_CLOSE

Chapter 5. SLI Verbs 109

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software was not started, or the node was

either not started or not configured properly for LUA applications.

Check the CS/AIX LUA configuration parameters and start the

Remote API Client and the node before running your application.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed. To restart it, the application can reissue

SLI_OPEN.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_NEGATIVE_RSP_CHASE

This return code indicates that the LUA session has been closed

because SLI received a negative response to a CHASE command.

LUA_NEGATIVE_RSP_SHUTD

This return code indicates that the LUA session has been closed

because SLI received a negative response to a SHUTD command.

LUA_NEGATIVE_RSP_RSHUTD

This return code indicates that the LUA session has been closed

because SLI received a negative response to an RSHUTD

command.

LUA_RECEIVED_UNBIND

This return code indicates that the host sent an UNBIND command

to end the session. This value can occur only if the SLI_OPEN verb

for this session specified lua_session_type

LUA_SESSION_TYPE_DEDICATED.

LUA_UNEXPECTED_SNA_SEQUENCE

This return code indicates that the LUA session has been closed

because SLI received an unexpected SNA message from the host.

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

SLI_CLOSE

110 IBM Communications Server for AIX LUA Programmer’s Guide

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

Interaction with Other Verbs

This verb may be issued at any time after the SLI_OPEN verb has been issued. If

SLI_OPEN has not yet completed and the application wants to cancel it, it should

do so by issuing SLI_CLOSE with lua_flag1.close_abend set to 1 (indicating an

abnormal close).

While an SLI_CLOSE (normal) is pending, the application can issue an SLI_CLOSE

(abend) if it determines that it needs to end the session quickly without waiting for

normal close processing.

If any other LUA verb is pending when SLI_CLOSE is issued, no further

processing on the pending verb will take place, and it will return with a primary

return code of LUA_CANCELLED.

After this verb has completed, no other LUA verb can be issued for this session.

The application can issue SLI_OPEN for the same LU or a different LU, to start a

new session.

Usage and Restrictions

Session close processing may be initiated either by the host (primary-initiated

close) or by the LUA application (secondary-initiated close), as follows. In both

cases the application normally sets lua_flag1.close_abend to 0 (zero), indicating a

normal close in which LUA and the host exchange the usual sequence of messages

to end the session.

Primary-initiated close

The host initiates close processing by sending a SHUTD command, which

is returned to the application as a status value of

LUA_SESSION_END_REQUESTED on an SLI_BID or SLI_RECEIVE verb.

 When the application is ready to close the session, it responds by issuing

SLI_CLOSE. This results in the following sequence of messages between

LUA and the host.

v LUA sends CHASE to the host and receives the response.

v LUA sends Shutdown Complete (SHUTC) to the host and receives the

response.

v Optionally, the host sends CLEAR; LUA receives this and sends the

response.

v The host sends UNBIND; LUA receives this and sends the response.

v LUA stops the RUI session, and the SLI_CLOSE verb returns.

Secondary-initiated close

The application initiates close processing by issuing SLI_CLOSE. This

results in the following sequence of messages between LUA and the host.

v LUA sends RSHUTD to the host and receives the response.

v Optionally, the host sends CLEAR; LUA receives this and sends the

response.

v The host sends UNBIND; LUA receives this and sends the response.

v LUA stops the RUI session, and the SLI_CLOSE verb returns.

SLI_CLOSE

Chapter 5. SLI Verbs 111

While an SLI_CLOSE (normal) is in progress, the host may interrupt it by sending

one of the following messages:

v UNBIND type 0x02 (UNBIND with BIND forthcoming)

v UNBIND type 0x01 (normal UNBIND), if the lua_session_type parameter on the

SLI_OPEN that started the session was set to LUA_SESSION_TYPE_DEDICATED

In either of these cases, the SLI_CLOSE verb returns with the primary return code

CANCELLED. The session is not closed; the application should issue SLI_BID or

SLI_RECEIVE to get status information. Any user extension routines specified by

the application on the SLI_OPEN verb will be called again when the host sends the

new BIND.

If the application needs to end the session quickly without waiting for the usual

message sequence, or to close a dedicated session without waiting for a new BIND

after the host has send UNBIND (normal), it does this by issuing SLI_CLOSE with

lua_flag1.close_abend set to 1. This ends the SLI session; LUA will do all the required

cleanup processing to inform the host that the session has ended.

Before issuing SLI_CLOSE (normal), with lua_flag1.close_abend set to 0 (zero), the

application should ensure that it has received all outstanding messages from the

host and sent all the required responses. If a response is required and has not been

sent, LUA automatically changes the close type and performs CLOSE (abend)

processing as above.

SLI_OPEN

The SLI_OPEN verb establishes the SNA session for a given LU, or for the first

available LU in a given LU pool.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_VERB_RECORD).

lua_opcode

LUA_OPCODE_SLI_OPEN

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU or LU pool for which you want to start the

session. This must match the name of an LU of type 0–3, or of an LU pool,

configured for CS/AIX. The name is used as follows:

v If the name is the name of an LU that is not in a pool, CS/AIX attempts

to start the session using this LU. An application can start multiple

sessions by using multiple SLI_OPEN verbs with a different LU for each

verb; it cannot start more than one session for the same LU.

SLI_CLOSE

112 IBM Communications Server for AIX LUA Programmer’s Guide

v If the name is the name of an LU pool, or the name of an LU within a

pool, CS/AIX attempts to start the session using the named LU, if it is

available, or otherwise the first available LU from the pool. An

application can start multiple sessions using the same pool; CS/AIX will

assign a different LU from the pool for each session. The name of the

actual LU used for the session is a returned parameter on the SLI_OPEN

verb.

This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_data_length

The length of the unformatted LOGON or INITSELF data supplied in the

lua_data_ptr parameter, or zero if no data is to be supplied.

lua_data_ptr

A pointer to the message, if any, that must be sent to the host to start the

session. This depends on the lua_init_type parameter, as follows.

v If lua_init_type is LUA_INIT_TYPE_SEC_IS, the application must provide an

INITSELF request unit containing the required user information such as

the mode name and PLU name.

v If lua_init_type is LUA_INIT_TYPE_SEC_LOG, the application must provide

an unformatted LOGON message to be sent on the SSCP normal flow.

v If lua_init_type is LUA_INIT_TYPE_PRIM or LUA_INIT_TYPE_PRIM_SSCP, this

parameter is not used and the application must supply a null pointer.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously. (If the verb fails LUA’s initial checks

and the SLI entry point returns zero, LUA will not call this routine.)

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.

If the VCB is used in a WinSLI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

lua_encr_decr_option

This parameter is reserved and must be set to zero.

lua_init_type

Specifies how LUA should initiate the session. Possible values are:

LUA_INIT_TYPE_SEC_IS

Secondary-initiated: send the application’s INITSELF message

(indicated by lua_data_ptr) to the host.

LUA_INIT_TYPE_SEC_LOG

Secondary-initiated: send the application’s unformatted LOGON

message (indicated by lua_data_ptr) to the host.

SLI_OPEN

Chapter 5. SLI Verbs 113

LUA_INIT_TYPE_PRIM

Primary-initiated: wait for a BIND from the host.

LUA_INIT_TYPE_PRIM_SSCP

Primary-initiated with SSCP access: allow the application to issue

SLI_SEND and SLI_RECEIVE verbs on the SSCP normal flow, so

that it can provide its own INITSELF or LOGON messages and

receive their responses. After issuing SLI_OPEN, the application

can issue SLI_BID or SLI_RECEIVE to get the status indication

INIT_COMPLETE, and can then use SLI_SEND and SLI_RECEIVE to

send INITSELF or LOGON messages and receive their responses.

lua_session_type

Specifies how LUA should process an UNBIND type X’01’ (normal).

Possible values are:

LUA_SESSION_TYPE_NORMAL

Send a positive response, and issue RUI_TERM so that a

NOTIFY(disabled) is sent to the SSCP. The SSCP-LU flow is

disabled.

LUA_SESSION_TYPE_DEDICATED

Send a positive response, and suspend the SLI session until BIND,

optional CRV and STSN, and SDT commands are received.

NOTIFY(disabled) is not sent to the SSCP. In this case the

application can end the suspended session, without waiting for a

new BIND from the host, by issuing SLI_CLOSE (abend).

lua_wait

Timeout (in seconds) for retrying a secondary-initiated session initiation.

This parameter is ignored if lua_init_type is LUA_INIT_TYPE_PRIM or

LUA_INIT_TYPE_PRIM_SSCP.

 LUA retries the session initiation after this timeout (by resending the

application’s INITSELF or LOGON message) if the host responds to the

initial attempt with one of the following messages.

v A negative response to the INITSELF or LOGON with a secondary

return code of RESOURCE_NOT_AVAILABLE, SESSION_LIMIT_EXCEEDED,

SSCP_LU_SESS_NOT_ACTIVE, or SESSION_SERVICE_PATH_ERROR.

v A Network Services Procedure Error (NSPE) message.

v A NOTIFY command, which indicates a procedure error.

If this parameter is set to zero, LUA does not retry the session initiation.

lua_open_extension

Information about the application’s SLI_OPEN extension routines, if any.

This parameter is an array of structures, each of which holds information

about a specific extension routine.

 The application can specify 0–3 extension routines, each of which identifies

the application’s routine for handling a specific SNA message during

session initialization (as indicated by the lua_routine_type parameter). These

must be specified in consecutive elements in the array, starting with the

first; the supplied entries must end with one in which

lua_open_extension.lua_routine_type is set to LUA_ROUTINE_TYPE_END,

indicating the end of the list.

lua_open_extension.lua_routine_type

Type of extension routine. Possible values are:

SLI_OPEN

114 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_ROUTINE_TYPE_BIND

Routine for checking and responding to a BIND message

from the host.

LUA_ROUTINE_TYPE_SDT

Routine for checking and responding to an SDT message

from the host.

LUA_ROUTINE_TYPE_STSN

Routine for checking and responding to an STSN message

from the host.

LUA_ROUTINE_TYPE_END

This value indicates the end of the list of extension

routines. It must be used in the array element immediately

following the other routines (or in the first array element if

the application is not specifying any extension routines).

AIX, LINUX

lua_open_extension.lua_routine_ptr

Pointer to the extension routine entry point. This parameter is not

used in the last array entry, in which

lua_open_extension.lua_routine_type is set to LUA_ROUTINE_TYPE_END.

 LUA calls this entry point with the SLI_BIND_ROUTINE,

SLI_SDT_ROUTINE, or SLI_STSN_ROUTINE verb, according to

the value of the lua_routine_type parameter.

WINDOWS

lua_open_extension.lua_module_name

Name of the DLL containing the extension module. This parameter

is not used in the last array entry, in which

lua_open_extension.lua_routine_type is set to LUA_ROUTINE_TYPE_END.

lua_open_extension.lua_procedure_name

Procedure name to call within the extension module DLL. This

parameter is not used in the last array entry, in which

lua_open_extension.lua_routine_type is set to LUA_ROUTINE_TYPE_END.

 LUA calls this entry point with the SLI_BIND_ROUTINE,

SLI_SDT_ROUTINE, or SLI_STSN_ROUTINE verb, according to

the value of the lua_routine_type parameter.

lua_ending_delim

The CS/AIX SLI interface does not use this parameter; it is provided for

compatibility with applications originally written for other SLI

implementations.

Return Value from SLI Entry Point

The SLI_OPEN verb is the only verb for which the SLI entry point returns a value.

v If the verb fails LUA’s initial checks (for example because the application

supplied incorrect parameters), the SLI function call returns a value of zero to

SLI_OPEN

Chapter 5. SLI Verbs 115

indicate this. The application should check the lua_prim_rc and lua_sec_rc

parameters to determine the cause of the failure. CS/AIX does not call the

application-supplied callback routine.

v If the initial checks succeed, the SLI function call returns a non-zero value

representing the session ID of the new session. If lua_init_type was set to

LUA_INIT_TYPE_PRIM_SSCP, the application can use this session ID for subsequent

SLI_BID or SLI_RECEIVE verbs on the SSCP normal flow (to receive the

INIT_COMPLETE status indicator), and then for SLI_SEND and SLI_RECEIVE verbs

on this flow.

CS/AIX then uses the application-supplied callback routine in the same way as

for other SLI verbs.

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the

verb completed synchronously.

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb executes successfully, LUA returns the following parameters.

lua_prim_rc

LUA_OK

lua_sid A session ID for the new session. This is the same as the return value from

the SLI entry point for this verb, and can be used by subsequent verbs to

identify this session.

lua_luname

The name of the LU used by the new session. If the LU name in the

request parameters specified an LU pool, CS/AIX uses this parameter to

return the name of the actual LU assigned to the session. Subsequent verbs

must use this returned name (not the name specified in the request

parameters) to identify the session.

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

An SLI_CLOSE verb was issued before the SLI_OPEN had

completed.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

SLI_OPEN

116 IBM Communications Server for AIX LUA Programmer’s Guide

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_DATA_LENGTH_ERROR

The lua_init_type parameter specified a secondary-initiated session,

but the application did not supply the required data to be sent to

the host.

LUA_INVALID_LUNAME

The LU identified by the lua_luname parameter could not be found

on any active nodes.Check that the LU name or LU pool name is

defined in the configuration file and that the node on which it is

configured has been started.

LUA_INVALID_OPEN_DATA

The lua_init_type parameter was set to LUA_INIT_TYPE_SEC_IS, but

the data buffer indicated by lua_data_ptr did not contain a valid

INITSELF command.

LUA_INVALID_OPEN_INIT_TYPE

The lua_init_type parameter was not set to a valid value.

LUA_INVALID_OPEN_ROUTINE_TYPE

The lua_routine_type parameter was not set to a valid value.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_INVALID_SESSION_TYPE

The lua_session_type parameter was not set to a valid value.

LUA_INVALID_SLI_ENCR_OPTION

The lua_encr_decr_option parameter was not set to a valid value. For

CS/AIX, this parameter must be set to 0 (zero).

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

LUA_BAD_DATA_PTR

The lua_data_ptr parameter contained a value that was not valid.

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

SLI_OPEN

Chapter 5. SLI Verbs 117

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

LUA_DUPLICATE_RUI_INIT

An SLI_OPEN verb is currently being processed for this session.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

LUA_COMMAND_COUNT_ERROR

The verb specified the name of an LU pool, or the name of an LU

in a pool, but all LUs in the pool are in use.

LUA_INVALID_PROCESS

The LU specified by the lua_luname parameter is in use by another

process.

LUA_LINK_NOT_STARTED

The connection to the host has not been started; none of the links it

could use are active.

LUA_SESSION_ALREADY_OPEN

The application supplied an LU name for which a session has

already been started.

LUA_NAU_INOPERATIVE

A required SNA component (such as the LUA LU) is not active or

is in an abnormal state.

LUA_NO_SESSION

The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

(any other value)

Any other secondary return code here is an SNA sense code. For

information about interpreting the SNA sense codes that can be

returned, see “SNA Information” on page 34.

The following sense code values are specific to CS/AIX, and may indicate

mismatches between the CS/AIX configuration and the host configuration:

0x10020000

The host has not sent an activate physical unit (ACTPU) for the PU

that owns the requested LU.

SLI_OPEN

118 IBM Communications Server for AIX LUA Programmer’s Guide

0x10110000

The host has not sent an ACTLU for the requested LU. This

generally indicates that the LU is not configured at the host.

0x10120000

The host has not sent an ACTLU for the requested LU. The host

supports DDDLU (Dynamic Definition of Dependent LUs), but

DDDLU processing for this LU has failed.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

This return code indicates one of the following conditions:

v The Remote API Client software was not started. Start the

Remote API Client before running your application.

v There are no active CS/AIX nodes. The local node that owns the

requested LU, or a local node that owns one or more LUs in the

requested LU pool, must be started before you can use LUA

verbs. Contact your System Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed. To restart it, the application can reissue

SLI_OPEN.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

The LUA session has failed because of a problem with the

communications link or with the host LU.

LUA_SLI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

lua_prim_rc

SLI_OPEN

Chapter 5. SLI Verbs 119

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Interaction with Other Verbs

The SLI_OPEN verb must be the first LUA verb issued for the session.

Until this verb has completed successfully, the only other LUA verbs that can be

issued for this session are:

v SLI_CLOSE with lua_flag1.close_abend set to 1 (indicating an abnormal close),

which will cancel the pending SLI_OPEN

v If lua_init_type was set to LUA_INIT_TYPE_PRIM_SSCP:

– SLI_BID or SLI_RECEIVE to get the INIT_COMPLETE status indication

– SLI_SEND and SLI_RECEIVE for SSCP normal-flow data, to send INITSELF

or LOGON messages and receive their responses.

All other verbs issued on this session must identify the session using one of the

following returned parameters from this verb:

v The session ID, returned to the application in the lua_sid parameter (and as the

return value from the SLI entry point)

v The LU name, returned to the application in the lua_luname parameter

Usage and Restrictions

Once the SLI_OPEN verb has completed successfully, this session uses the LU for

which the session was started. No other LUA session (from this or any other

application) can use the LU until the SLI_CLOSE verb is issued, or until an

LUA_SESSION_FAILURE primary return code is received.

If the SLI_OPEN verb returns with an LUA_IN_PROGRESS primary return code, the

Session ID will be returned in the lua_sid parameter. This Session ID is the same as

that returned when the verb completes successfully, and can be used to issue other

verbs on the session.

SLI_PURGE

The SLI_PURGE verb cancels a previous SLI_RECEIVE. An SLI_RECEIVE may

wait indefinitely if it is sent without using the lua_flag1.nowait (immediate return)

option, and no data is available on the specified flow; SLI_PURGE forces the

waiting verb to return (with the primary return code LUA_CANCELLED).

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

SLI_OPEN

120 IBM Communications Server for AIX LUA Programmer’s Guide

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_VERB_RECORD).

lua_opcode

LUA_OPCODE_SLI_PURGE

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session, as returned on the SLI_OPEN verb.

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a

previous SLI_OPEN verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_data_ptr

A pointer to the SLI_RECEIVE VCB that is to be purged.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.

If the VCB is used in a WinSLI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the

verb completed synchronously.

 Other returned parameters depend on whether the verb completed successfully;

see the following sections.

SLI_PURGE

Chapter 5. SLI Verbs 121

Successful Execution

If the verb completed successfully, the following parameters are returned:

lua_prim_rc

LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

An SLI_CLOSE verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_BAD_DATA_PTR

The lua_data_ptr parameter was set to 0 (zero).

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

SLI_PURGE

122 IBM Communications Server for AIX LUA Programmer’s Guide

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

Possible values are:

LUA_NO_RECEIVE_TO_PURGE

The lua_data_ptr parameter was not set to the address of a previous

SLI_RECEIVE VCB.

LUA_NO_SLI_SESSION

An SLI_OPEN verb has not yet completed successfully for the LU

name specified on this verb, or the session has failed.

LUA_SLI_PURGE_PENDING

An SLI_PURGE verb was already pending when this verb was

issued. Only one SLI_PURGE can be outstanding at a time.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

same process that issued the SLI_OPEN verb for this session. Only

the process that started a session can issue verbs on that session.

LUA_NO_RECEIVE_TO_PURGE

The previous SLI_RECEIVE verb completed before the application

issued SLI_PURGE. This is not an error condition, so the

application program should be designed to handle this without

reporting errors.

LUA_NAU_INOPERATIVE

A required SNA component (such as the LUA LU) is not active or

is in an abnormal state.

LUA_NO_SESSION

The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

SLI_PURGE

Chapter 5. SLI Verbs 123

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software was not started, or the node was

either not started or not configured properly for LUA applications.

Check the CS/AIX LUA configuration parameters and start the

Remote API Client and the node before running your application.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed. To restart it, the application can reissue

SLI_OPEN.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_RECEIVED_UNBIND

This return code indicates that the host sent an UNBIND command

to end the session. This value can occur only if the SLI_OPEN verb

for this session specified lua_session_type

LUA_SESSION_TYPE_DEDICATED.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Interaction with Other Verbs

This verb can only be used when an SLI_RECEIVE has been issued and is pending

completion (that is, the primary return code is IN_PROGRESS).

SLI_RECEIVE

The SLI_RECEIVE verb receives a complete chain of data, or status information,

sent from the host to the application’s LU.

SLI_PURGE

124 IBM Communications Server for AIX LUA Programmer’s Guide

You can specify a particular message flow (LU normal, LU expedited, SSCP

normal, or SSCP expedited) from which to read data, or you can specify more than

one message flow. You can have multiple SLI_RECEIVE verbs outstanding,

provided that no two of them specify the same flow.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_VERB_RECORD).

lua_opcode

LUA_OPCODE_SLI_RECEIVE

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session, as returned on the SLI_OPEN verb.

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a

previous SLI_OPEN verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_max_length

The length of the buffer supplied to receive the data.

lua_data_ptr

A pointer to the buffer supplied to receive the data.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.

If the VCB is used in a WinSLI function call, this field is reserved.

SLI_RECEIVE

Chapter 5. SLI Verbs 125

For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

lua_flag1 parameters

Set the lua_flag1.nowait parameter to 1 if you want the SLI_RECEIVE verb

to return as soon as possible whether or not data is available to be read, or

set it to 0 (zero) if you want the verb to wait for data before returning.

Note:

1. Setting the lua_flag1.nowait parameter to 1 does not mean that the

verb will complete synchronously. The LUA library needs to

communicate with the local node to determine whether or not

any data is available, and this requires an asynchronous verb

return to avoid blocking the application. The parameter means

that, if there is no data available immediately, the asynchronous

verb return will occur as soon as possible to indicate this.

2. If the first RU of a multiple-RU chain is available when the

application issues SLI_RECEIVE, the lua_flag1.nowait parameter is

ignored; SLI_RECEIVE waits until the complete chain of data has

arrived before returning.

Set the lua_flag1.bid_enable parameter to 1 to re-enable the most recent

SLI_BID verb (equivalent to issuing SLI_BID again with exactly the same

parameters as before), or set it to 0 (zero) if you do not want to re-enable

SLI_BID. Re-enabling the previous SLI_BID re-uses the VCB originally

allocated for it, so this VCB must not have been freed or modified. (For

more information, see “Interaction with Other Verbs” on page 132.)

 Set one or more of the following flags to 1 to indicate which message flow

to read data from:

 lua_flag1.sscp_exp

 lua_flag1.lu_exp

 lua_flag1.sscp_norm

 lua_flag1.lu_norm

 If more than one flag is set, the highest-priority data available will be

returned. The order of priorities (highest first) is: SSCP expedited, LU

expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2

group will be set to indicate which flow the data was read from (see

“Returned Parameters”).

 The CS/AIX implementation of LUA does not return data on the SSCP

expedited flow. The application can set the sscp_exp flag, for compatibility

with other LUA implementations, but data will never be returned on this

flow.

Returned Parameters

LUA always returns the following parameters:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the

verb completed synchronously.

lua_flag2.bid_enable

This parameter is set to 1 if an SLI_BID was successfully re-enabled, or to 0

if it was not re-enabled.

SLI_RECEIVE

126 IBM Communications Server for AIX LUA Programmer’s Guide

Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution or Truncated Data

If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

 The following parameters are returned if the verb completes successfully. They are

also returned if the verb returns with truncated data because the lua_data_length

parameter supplied was too small (see “Other Conditions” on page 130).

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

lua_data_length

The length of the data received. LUA places the data in the buffer specified

by lua_data_ptr.

 If lua_rh.rri is off (request unit) and lua_rh.sdi is on (sense data included),

this indicates that LUA has converted a request unit sent by the host into

an exception request (EXR). In this case, bytes 0–3 of the data buffer

contain the sense data associated with the exception, and bytes 4–6 contain

up to the first 3 bytes of the original request unit.

lua_th Information from the transmission header (TH) of the received message.

lua_rh Information from the request/response header (RH) of the received

message.

lua_message_type

Message type of the received message, which is one of the following:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

 LUA_MESSAGE_TYPE_SIGNAL

lua_flag2 parameters

One of the following flags will be set to 1, to indicate on which message

flow the data was received:

SLI_RECEIVE

Chapter 5. SLI Verbs 127

lua_flag2.lu_exp

 lua_flag2.sscp_norm

 lua_flag2.lu_norm

 The CS/AIX implementation of LUA does not return data on the SSCP

expedited flow, and so the sscp_exp flag will never be set (although it may

be set by other LUA implementations).

Successful Execution: Status Information

Note: SLI_RECEIVE can return status information only if there is no SLI_BID verb

outstanding. If both verbs are in progress when status information becomes

available, the status is returned on the SLI_BID verb, and the SLI_RECEIVE

remains in progress.

If the verb returned LUA status information instead of data, LUA returns the

following parameters:

lua_prim_rc

LUA_STATUS

lua_sec_rc

LUA_READY

The SLI session is now ready to process additional commands. This

status is used after a previous LUA_NOT_READY status was reported,

or after an SLI_CLOSE verb completed with lua_prim_rc set to

LUA_CANCELLED and lua_sec_rc set to RECEIVED_UNBIND_HOLD or

RECEIVED_UNBIND_NORMAL.

LUA_NOT_READY

The SLI session has been temporarily suspended for one of the

following reasons:

v A CLEAR command was received. The session resumes when an

SDT command is received.

v An UNBIND command type X’02’ (BIND forthcoming) was

received. The session is suspended until a BIND, optional CRV

and STSN, and SDT commands are received; it resumes after the

SDT. Any user extension routines that were supplied by the

original SLI_OPEN verb will be called again.

v An UNBIND command type X’01’ (normal) was received, and

the SLI_OPEN verb for this session specified lua_session_type

LUA_SESSION_TYPE_DEDICATED. The session is suspended until a

BIND, optional CRV and STSN, and SDT commands are

received; it resumes after the SDT. Any user extension routines

that were supplied by the original SLI_OPEN verb will be called

again.

The application should issue another SLI_BID or SLI_RECEIVE to

receive the READY status when the session resumes. It can continue

to issue SLI_SEND and SLI_RECEIVE verbs for SSCP normal-flow

data even though the session status is LUA_NOT_READY.

LUA_INIT_COMPLETE

The application issued SLI_OPEN with type

LUA_OPEN_TYPE_PRIM_SSCP, and the underlying RUI_INIT verb has

now completed. The application can now issue SLI_SEND and

SLI_RECEIVE verbs for SSCP normal-flow data.

SLI_RECEIVE

128 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_SESSION_END_REQUESTED

The host has sent a SHUTD command, requesting the application

to shut down the session. The application should issue SLI_CLOSE

as soon as it is ready to close the session.

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb or by a message

from the host:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

Possible values are:

LUA_PURGED

This SLI_RECEIVE verb has been canceled by an SLI_PURGE verb.

LUA_TERMINATED

An SLI_CLOSE verb was issued while this verb was pending.

LUA_CANCEL_COMMAND_RECEIVED

The host sent a CANCEL command to cancel the remainder of the

chain of data being received.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_BAD_DATA_PTR

The lua_data_ptr parameter contained a value that was not valid.

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

LUA_BID_ALREADY_ENABLED

The lua_flag1.bid_enable parameter was set to re-enable an SLI_BID

verb, but the previous SLI_BID verb was still in progress.

LUA_INVALID_FLOW

None of the lua_flag1 flow flags was set. At least one of these flags

must be set to 1 to indicate which flow or flows to read from.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

SLI_RECEIVE

Chapter 5. SLI Verbs 129

LUA_NO_PREVIOUS_BID_ENABLED

The lua_flag1.bid_enable parameter was set to re-enable an SLI_BID

verb, but there was no previous SLI_BID verb that could be

enabled. (For more information, see “Interaction with Other Verbs”

on page 132.)

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

Possible values are:

LUA_NO_SLI_SESSION

An SLI_OPEN verb has not yet completed successfully for the LU

name specified on this verb, or the session has failed.

LUA_RECEIVE_ON_FLOW_PENDING

The flow flags in the lua_flag1 group specified one or more session

flows for which an SLI_RECEIVE verb was already outstanding.

Only one SLI_RECEIVE at a time can be waiting on each session

flow.

Negative Response Sent to Host: The following primary return code indicates

that CS/AIX detected an error in the data received from the host. Instead of

passing the received message to the application on an SLI_RECEIVE verb, CS/AIX

discards the message and sends a negative response to the host. LUA informs the

application on a subsequent SLI_RECEIVE or SLI_BID verb that a negative

response was sent.

lua_prim_rc

LUA_NEGATIVE_RSP

lua_sec_rc

The sense code sent to the host on the negative response. This indicates

that CS/AIX detected an error in the host data, and sent a negative

response to the host. For information about interpreting the sense code

values that can be returned, see “SNA Information” on page 34.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

SLI_RECEIVE

130 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_DATA_TRUNCATED

The lua_data_length parameter was smaller than the actual length of

data received on the message. Only lua_data_length bytes of data

were returned to the verb; the remaining data was discarded.

Additional parameters are also returned if this secondary return

code is obtained; see “Successful Execution or Truncated Data” on

page 127.

LUA_NO_DATA

The lua_flag1.nowait parameter was set to indicate immediate return

without waiting for data, and no data was currently available on

the specified session flow or flows.

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

same process that issued the SLI_OPEN verb for this session. Only

the process that started a session can issue verbs on that session.

LUA_NAU_INOPERATIVE

A required SNA component (such as the LUA LU) is not active or

is in an abnormal state.

LUA_NO_SESSION

The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software was not started, or the node was

either not started or not configured properly for LUA applications.

Check the CS/AIX LUA configuration parameters and start the

Remote API Client and the node before running your application.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed. To restart it, the application can reissue

SLI_OPEN.

lua_sec_rc

Possible values are:

SLI_RECEIVE

Chapter 5. SLI Verbs 131

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_RECEIVED_UNBIND

This return code indicates that the host sent an UNBIND command

to end the session. This value can occur only if the SLI_OPEN verb

for this session specified lua_session_type

LUA_SESSION_TYPE_DEDICATED.

LUA_RUI_WRITE_FAILURE

An RUI_WRITE verb used in processing this SLI verb has failed

with an unexpected error return code.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

Interaction with Other Verbs

The SLI_OPEN verb must have completed successfully before this verb can be

issued.

While an existing SLI_RECEIVE is pending, you can issue another SLI_RECEIVE

only if it specifies a different session flow or flows from pending SLI_RECEIVEs;

you cannot have more than one SLI_RECEIVE outstanding for the same session

flow.

The lua_flag1.bid_enable parameter can only be used if the following are true:

v SLI_BID has already been issued successfully and has completed

v The storage allocated for the SLI_BID verb has not been freed or modified

v No other SLI_BID is pending

If you use this parameter to re-enable a previous SLI_BID, at least one of the

message flow flags on SLI_RECEIVE must still be set, to indicate the flow or flows

on which the application will accept data. If the first data to be received is on a

flow accepted by the SLI_RECEIVE verb, SLI_RECEIVE will return with this data,

and SLI_BID will not return. Otherwise, SLI_BID will return to indicate that there

is data to be read (since SLI_BID accepts data on all flows, it will always accept the

data if SLI_RECEIVE does not). The application must then issue another

SLI_RECEIVE on the appropriate flow to obtain the data.

SLI_RECEIVE

132 IBM Communications Server for AIX LUA Programmer’s Guide

If you want to use SLI_BID to handle data on all flows, rather than having the

data on a particular flow handled by SLI_RECEIVE in preference to SLI_BID, you

need to re-issue SLI_BID explicitly instead of using SLI_RECEIVE to re-enable the

previous SLI_BID.

Usage and Restrictions

If the data received is longer than the lua_max_length parameter, it will be

truncated; only lua_max_length bytes of data will be returned. The primary and

secondary return codes LUA_UNSUCCESSFUL and LUA_DATA_TRUNCATED will also be

returned.

If the SLI_RECEIVE verb sets bits in lua_flag1 to accept data on more than one

flow, and there is data available on more than one of the specified flows, the data

on the highest-priority flow will be returned to the application. The flow priorities

are as follows (highest to lowest):

v SSCP expedited

v LU expedited

v SSCP normal

v LU normal

Once a message has been read using the SLI_RECEIVE verb, it is removed from

the incoming message queue, and cannot be accessed again. The application can

use SLI_BID as a non-destructive read to check the type of data available and

determine how to process it, and then issue a subsequent SLI_RECEIVE to collect

the data. However, if it issues the SLI_RECEIVE with multiple lua_flag1 flags set to

accept data on more than one flow, it may receive a different message from the one

identified in the SLI_BID, if data arrived on a higher-priority flow between the

SLI_BID and SLI_RECEIVE verbs. To ensure that it receives the same message that

was identified in the SLI_BID, it should set the lua_flag1 flags on SLI_RECEIVE to

accept data only on the flow identified in the SLI_BID response.

Pacing may be used on the primary-to-secondary half-session (this is specified in

the host configuration), in order to protect the LUA application from being flooded

with messages. If the LUA application is slow to read messages, CS/AIX delays

the sending of pacing responses to the host in order to slow it down.

SLI_SEND

The SLI_SEND verb sends an SNA request or response unit from the LUA

application to the host, over either the LU session or the SSCP session.

An application can have at most two SLI_SEND verbs outstanding at a time, which

must be on different session flows.

Supplied Parameters

The application supplies the following parameters:

lua_verb

LUA_VERB_SLI

lua_verb_length

The length in bytes of the LUA verb record.

 Set this to sizeof(LUA_VERB_RECORD).

SLI_RECEIVE

Chapter 5. SLI Verbs 133

lua_opcode

LUA_OPCODE_SLI_SEND

lua_correlator

Optional. A four-byte value that you can use to correlate this verb with

other processing within your application. LUA does not use or change this

information.

lua_luname

The name in ASCII of the LU used by the session. This must match the LU

name of an active LUA session, as returned on the SLI_OPEN verb.

 This parameter is required only if the lua_sid parameter is 0 (zero). If a

session ID is supplied in lua_sid, LUA does not use this parameter.

 This parameter must be eight bytes long; pad on the right with spaces,

0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a

previous SLI_OPEN verb.

 This parameter is optional; if you do not specify the session ID, you must

specify the LU name for the session in the lua_luname parameter.

lua_data_length

The length of the supplied data.

 When sending a positive response, this parameter is normally set to 0

(zero). LUA will complete the response based on the supplied sequence

number. In the case of a positive response to a BIND or STSN, an extended

response is allowed, so a nonzero value may be used.

 When sending a negative response, set this parameter to the length of the

SNA sense code (four bytes), which is supplied in the data buffer.

lua_data_ptr

A pointer to the buffer containing the supplied data.

 For a request, or a positive response that requires data, the buffer should

contain the entire RU. The length of the RU must be specified in

lua_data_length.

 For a negative response, the buffer should contain the SNA sense code.

lua_post_handle

AIX, LINUX

 A pointer to a callback routine that LUA will call to indicate completion if

the verb completes asynchronously.

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.

If the VCB is used in a WinSLI function call, this field is reserved.

 For more information, see Chapter 2, “Designing and Writing LUA Applications,”

on page 13.

SLI_SEND

134 IBM Communications Server for AIX LUA Programmer’s Guide

lua_th.snf

Required only when sending a response. The sequence number of the

request to which this is the response.

lua_rh When sending a request, most of the lua_rh bits must be set to correspond

to the RH (request header) of the message to be sent. Do not set lua_rh.pi

and lua_rh.qri; these will be set by LUA.

 When sending a response, only the following two lua_rh bits are used. The

others must be 0 (zero). The lua_rh bits are:

lua_rh.rri

Set to 1 to indicate a response

lua_rh.ri

Set to 0 for a positive response, or 1 for a negative response

lua_flag1 parameters

Set one of the following flags to 1 to indicate which message flow the data

is to be sent on:

 lua_flag1.lu_exp

 lua_flag1.sscp_norm

 lua_flag1.lu_norm

 One and only one of the flags must be set to 1.CS/AIX does not allow

applications to send data on the SSCP expedited flow (the

lua_flag1.sscp_exp flag).

lua_message_type

Message type of the message to be sent. Possible values are:

 LUA_MESSAGE_TYPE_LU_DATA

 LUA_MESSAGE_TYPE_SSCP_DATA

 LUA_MESSAGE_TYPE_RSP

 LUA_MESSAGE_TYPE_BID

 LUA_MESSAGE_TYPE_BIS

 LUA_MESSAGE_TYPE_CANCEL

 LUA_MESSAGE_TYPE_CHASE

 LUA_MESSAGE_TYPE_LUSTAT_LU

 LUA_MESSAGE_TYPE_LUSTAT_SSCP

 LUA_MESSAGE_TYPE_QC

 LUA_MESSAGE_TYPE_QEC

 LUA_MESSAGE_TYPE_RELQ

 LUA_MESSAGE_TYPE_RTR

 LUA_MESSAGE_TYPE_SBI

Returned Parameters

LUA always returns the following parameter:

lua_flag2.async

This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the

verb completed synchronously.

SLI_SEND

Chapter 5. SLI Verbs 135

Other returned parameters depend on whether the verb completed successfully;

see the following sections.

Successful Execution

If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc

LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this

verb, rather than specifying the session ID, LUA supplies the session ID.

lua_th The completed TH of the message written, including the fields filled in by

LUA. You may need to save the value of lua_th.snf (the sequence number)

for correlation with responses from the host.

lua_flag2 parameters

One of the following flags will be set to 1 to indicate which message flow

the data was sent on:

 lua_flag2.lu_exp

 lua_flag2.sscp_norm

 lua_flag2.lu_norm

 The CS/AIX implementation of LUA does not allow applications to send

data on the SSCP expedited flow, and so will never set the sscp_exp flag

(although other LUA implementations may set it).

lua_sequence_number

The sequence number of the RU that LUA uses to send the data (or of the

first RU, if the data requires a chain of RUs). This is stored in line format.

Successful Execution: Status Information

If the verb returned LUA status information, LUA returns the following

parameters:

lua_prim_rc

LUA_STATUS

lua_sec_rc

LUA_READY

The SLI session is now ready to process additional commands. This

status is used after a previous LUA_NOT_READY status was reported,

or after an SLI_CLOSE verb completed with lua_prim_rc set to

LUA_CANCELLED and lua_sec_rc set to RECEIVED_UNBIND_HOLD or

RECEIVED_UNBIND_NORMAL.

LUA_NOT_READY

The SLI session has been temporarily suspended for one of the

following reasons:

v A CLEAR command was received. The session resumes when an

SDT command is received.

v An UNBIND command type X’02’ (BIND forthcoming) was

received. The session is suspended until a BIND, optional CRV

and STSN, and SDT commands are received; it resumes after the

SDT. Any user extension routines that were supplied by the

original SLI_OPEN verb will be called again.

v An UNBIND command type X’01’ (normal) was received, and

the SLI_OPEN verb for this session specified lua_session_type

SLI_SEND

136 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_SESSION_TYPE_DEDICATED. The session is suspended until a

BIND, optional CRV and STSN, and SDT commands are

received; it resumes after the SDT. Any user extension routines

that were supplied by the original SLI_OPEN verb will be called

again.

The application should issue SLI_BID or SLI_RECEIVE to receive

the READY status when the session resumes. It can continue to issue

SLI_SEND and SLI_RECEIVE verbs for SSCP normal-flow data

even though the session status is LUA_NOT_READY.

LUA_INIT_COMPLETE

The application issued SLI_OPEN with type

LUA_OPEN_TYPE_PRIM_SSCP, and the underlying RUI_INIT verb has

now completed. The application can now issue SLI_SEND and

SLI_RECEIVE verbs for SSCP normal-flow data.

LUA_SESSION_END_REQUESTED

The host has sent a SHUTD command, requesting the application

to shut down the session. The application should issue SLI_CLOSE

as soon as it is ready to close the session.

Unsuccessful Execution

If a verb does not complete successfully, LUA returns a primary return code to

indicate the type of error and a secondary return code to provide specific details

about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not

complete successfully because it was canceled by another verb:

lua_prim_rc

LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED

The verb was canceled because an SLI_CLOSE verb was issued for

this session.

Parameter Check: The following return codes indicate that the verb did not

complete successfully because a supplied parameter was in error:

lua_prim_rc

LUA_PARAMETER_CHECK

lua_sec_rc

Possible values are:

LUA_BAD_DATA_PTR

The lua_data_ptr parameter contained a value that was not valid.

LUA_BAD_SESSION_ID

The lua_sid parameter did not match the session ID of any active

LUA LU session.

LUA_INVALID_FLOW

More than one of the lua_flag1 flow flags was set to 1. One and

only one of these flags must be set to 1, to indicate which session

flow the data is to be sent on.

SLI_SEND

Chapter 5. SLI Verbs 137

The lua_flag1.sscp_exp flow flag was set, indicating that the message

should be sent on the SSCP expedited flow. CS/AIX does not allow

applications to send data on this flow.

LUA_INVALID_MESSAGE_TYPE

The lua_message_type parameter was not set to a valid value.

AIX, LINUX

LUA_INVALID_POST_HANDLE

The lua_post_handle parameter was not a valid pointer to a callback

routine.

LUA_REQUIRED_FIELD_MISSING

None of the lua_flag1 flow flags was set. One and only one of these

flags must be set to 1.

LUA_RESERVED_FIELD_NOT_ZERO

A reserved field in the verb record, or a parameter that is not used

by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

The value of the lua_verb_length parameter was less than the length

of the verb record required for this verb.

LUA_DATA_LENGTH_ERROR

The application used SLI_SEND to send LUSTAT to the host, but

did not provide the required 4 bytes of status information.

State Check: The following return codes indicate that the verb was issued in a

session state in which it was not valid:

lua_prim_rc

LUA_STATE_CHECK

lua_sec_rc

Possible values are:

LUA_MAX_NUMBER_OF_SENDS

The application already had two SLI_SEND verbs in progress

when it issued this verb. An application can have at most two

SLI_SEND verbs outstanding at a time, which must be on different

session flows.

LUA_NO_SLI_SESSION

An SLI_OPEN verb has not yet completed successfully for the LU

name specified on this verb, or the session has failed.

LUA_SEND_ON_FLOW_PENDING

An SLI_SEND was already outstanding for the session flow

specified on this verb (the session flow is specified by setting one

of the lua_flag1 flow flags to 1). Only one SLI_SEND at a time can

be outstanding on each session flow.

Other Conditions: The following return codes indicate that the verb record

supplied was valid, but the verb did not complete successfully:

SLI_SEND

138 IBM Communications Server for AIX LUA Programmer’s Guide

lua_prim_rc

LUA_UNSUCCESSFUL

lua_sec_rc

Possible values are:

LUA_INVALID_PROCESS

The operating system process that issued this verb was not the

same process that issued the SLI_OPEN verb for this session. Only

the process that started a session can issue verbs on that session.

LUA_INVALID_SESSION_PARAMETERS

The application used SLI_SEND to send a positive response to a

BIND message received from the host. However, the CS/AIX node

cannot accept the BIND parameters as specified, and has sent a

negative response to the host. For more information about the

BIND profiles accepted by CS/AIX, see “SNA Information” on

page 34.

LUA_RSP_CORRELATION_ERROR

When using SLI_SEND to send a response, the lua_th.snf parameter

(which indicates the sequence number of the received message

being responded to) did not contain a valid value.

LUA_RU_LENGTH_ERROR

The lua_data_length parameter contained a value that was not valid.

When sending data on the LU normal flow, the maximum length is

as specified in the BIND received from the host; for all other flows

the maximum length is 256 bytes.

LUA_NAU_INOPERATIVE

A required SNA component (such as the LUA LU) is not active or

is in an abnormal state.

LUA_NO_SESSION

The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

(any other value)

Any other secondary return code here is an SNA sense code

indicating that the supplied SNA data was not valid or could not

be sent. For information about interpreting the SNA sense codes

that can be returned, see “SNA Information” on page 34.

 The following return codes indicate that the verb did not complete successfully for

other reasons:

lua_prim_rc

SLI_SEND

Chapter 5. SLI Verbs 139

LUA_COMM_SUBSYSTEM_ABENDED

A required CS/AIX software component (such as the node) has

terminated or has been stopped. Contact your System

Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software was not started, or the node was

either not started or not configured properly for LUA applications.

Check the CS/AIX LUA configuration parameters and start the

Remote API Client and the node before running your application.

lua_prim_rc

LUA_SESSION_FAILURE

The LUA session has failed. To restart it, the application can reissue

SLI_OPEN.

lua_sec_rc

Possible values are:

LUA_LU_COMPONENT_DISCONNECTED

This return code indicates that the LUA session has failed because

of a problem with the communications link or with the host LU.

LUA_RECEIVED_UNBIND

This return code indicates that the host sent an UNBIND command

to end the session. This value can occur only if the SLI_OPEN verb

for this session specified lua_session_type

LUA_SESSION_TYPE_DEDICATED.

LUA_SLI_LOGIC_ERROR

This return code indicates one of the following:

v The host system has violated SNA protocols

v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact

your System Administrator if necessary), and check that the host is

sending correct data. If this does not solve the problem, contact

your CS/AIX support personnel.

lua_prim_rc

LUA_INVALID_VERB

Either the lua_verb parameter or the lua_opcode parameter was not

valid. The verb did not execute.

lua_prim_rc

LUA_STACK_TOO_SMALL

The stack size of the application is too small for LUA to complete

the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR

An operating system error occurred.

lua_sec_rc

This value is the operating system return code. Check your operating

system documentation for the meaning of this return code.

SLI_SEND

140 IBM Communications Server for AIX LUA Programmer’s Guide

Interaction with Other Verbs

The SLI_OPEN verb must be issued successfully before this verb can be issued.

While an existing SLI_SEND is pending, you can issue a second SLI_SEND only if

it specifies a different session flow from the pending SLI_SEND; that is, you cannot

have more than one SLI_SEND outstanding for the same session flow. You cannot

have more than two SLI_SENDs outstanding in total.

The SLI_SEND verb can be issued on the SSCP normal flow at any time after a

successful SLI_OPEN verb that specifies primary-initiated session initiation with

SSCP access. SLI_SEND verbs on other flows or for other session initiation types

are permitted only after a BIND has been received, and must abide by the

protocols specified on the BIND.

Usage and Restrictions

Table 2 shows the valid settings for various parameters on SLI_SEND, depending

on the type of SNA message being sent.

 Table 2. SLI_SEND Parameter Settings based on Message Type

SLI_SEND

parameter

LU_DATA,

SSCP_DATA

RSP BID, BIS, RTR CHASE QC QEC, RELQ,

SBL, SIG RQR

LUSTAT_LU,

LUSTAT_SSCP

lua_rh FI, DR1I, DR2I,

RI, BBI, EBI,

CDI, CSI, EDI

RI SDI, QRI SDI, QRI, EBI,

CDI

SDI 0 SDI, QRI,

DR1I, DR2I, RI,

BBI, EBI, CDI

lua_th 0 SNF 0 0 0 0 0

lua_data_ptr Required (null

if no data)

Required (null

if no data)

null null null null Required

lua_data_length Required Required (0 if

no data)

0 0 0 0 Required

lua_flag1 flow

flags

0 Required (set

one)

0 0 0 0 0

When the application sends an SNA response, it must do the following. LUA will

fill in the appropriate request code based on the supplied sequence number.

v Set lua_message_type to LUA_MESSAGE_TYPE_RSP.

v Set lua_th.snf to the sequence number of the request to which this is a response.

v Set the appropriate lua_flag1 flow flag.

v For a positive response that requires only the request code, set both lua_rh.ri and

lua_data_length to 0 (zero).

v For a negative response:

– Set lua_rh.ri to 1.

– Set lua_data_ptr to point to an appropriate SNA sense code.

– Set lua_data_length to 4 (the length of the sense code).

Successful completion of SLI_SEND indicates that the message was queued

successfully to the data link; it does not necessarily indicate that the message was

sent successfully, or that the host accepted it.

Pacing may be used on the secondary-to-primary half-session (this is specified on

the BIND), in order to prevent the LUA application from sending more data than

the CS/AIX LU or the host LU can handle. If this is the case, an SLI_SEND on the

LU normal flow may be delayed by LUA and may take some time to complete.

SLI_SEND

Chapter 5. SLI Verbs 141

SLI_BIND_ROUTINE

This verb is sent from LUA to the application (using the BIND extension routine

entry point supplied by the application on the SLI_OPEN verb), and not from the

application to LUA.

The SLI_BIND_ROUTINE verb passes a BIND request from the host to the LUA

application. The application can accept the BIND as it is, modify it in an attempt to

negotiate the BIND parameters, or reject it with an appropriate SNA sense code.

Supplied Parameters

LUA supplies the the following parameters to the application:

lua_verb

LUA_VERB_SLI

lua_verb_length

The length in bytes of the LUA verb record.

lua_opcode

LUA_OPCODE_SLI_BIND_ROUTINE

lua_luname

The name in ASCII of the LU used by the session.

lua_sid The session ID of the session.

lua_data_length

The length of the supplied BIND RU.

lua_data_ptr

A pointer to the buffer containing the supplied BIND RU.

lua_th The TH parameters from the BIND.

lua_rh The RH parameters from the BIND.

Returned Parameters

The parameters returned by the application depend on whether the verb

completed successfully; see the following sections.

Successful Execution: BIND Accepted or Negotiated

If the application decides to accept or negotiate the BIND, it returns the following

parameters:

lua_prim_rc

LUA_OK

lua_data_ptr

A pointer to the buffer containing the supplied BIND RU. If the application

is accepting the BIND as is, it must not modify the contents of the buffer; if

it is attempting to negotiate one or more parameters in the BIND, it must

modify the data to set the appropriate parameters to its preferred values.

Unsuccessful Execution: BIND Rejected

If the application decides to reject the BIND, it returns the following parameters:

lua_prim_rc

LUA_NEGATIVE_RSP

lua_data_length

The length of the returned SNA sense code (in the lua_data_ptr parameter).

SLI_BIND_ROUTINE

142 IBM Communications Server for AIX LUA Programmer’s Guide

lua_data_ptr

A pointer to the buffer containing the SNA sense code associated with the

application’s reason for rejecting the BIND.

Interaction with Other Verbs

LUA will call this routine from within its processing of the SLI_OPEN verb (after

the application issues SLI_OPEN and before its asynchronous return).

Usage and Restrictions

There is no asynchronous return mechanism for the application’s extension

routines. The routine must return synchronously.

SLI_SDT_ROUTINE

This verb is sent from LUA to the application (using the SDT extension routine

entry point supplied by the application on the SLI_OPEN verb), and not from the

application to LUA.

The SLI_SDT_ROUTINE verb passes an SDT request from the host to the LUA

application. The application can respond with an SDT response, or reject it with an

appropriate SNA sense code.

Supplied Parameters

LUA supplies the the following parameters to the application:

lua_verb

LUA_VERB_SLI

lua_verb_length

The length in bytes of the LUA verb record.

lua_opcode

LUA_OPCODE_SLI_SDT_ROUTINE

lua_luname

The name in ASCII of the LU used by the session.

lua_sid The session ID of the session.

lua_data_length

The length of the supplied SDT RU.

lua_data_ptr

A pointer to the buffer containing the supplied SDT RU.

lua_th The TH parameters from the SDT.

lua_rh The RH parameters from the SDT.

Returned Parameters

The parameters returned by the application depend on whether the verb

completed successfully; see the following sections.

Successful Execution: SDT Response

If the application decides to accept the SDT, it returns the following parameters:

lua_prim_rc

LUA_OK

SLI_BIND_ROUTINE

Chapter 5. SLI Verbs 143

lua_data_ptr

A pointer to the buffer containing the supplied SDT response RU.

Unsuccessful Execution: SDT Rejected

If the application decides to reject the SDT, it returns the following parameters:

lua_prim_rc

LUA_NEGATIVE_RSP

lua_data_length

The length of the returned SNA sense code (in the lua_data_ptr parameter).

lua_data_ptr

A pointer to the buffer containing the SNA sense code associated with the

application’s reason for rejecting the SDT.

Interaction with Other Verbs

LUA will call this routine from within its processing of the SLI_OPEN verb (after

the application issues SLI_OPEN and before its asynchronous return).

Usage and Restrictions

There is no asynchronous return mechanism for the application’s extension

routines. The routine must return synchronously.

SLI_STSN_ROUTINE

This verb is sent from LUA to the application (using the STSN extension routine

entry point supplied by the application on the SLI_OPEN verb), and not from the

application to LUA.

The SLI_STSN_ROUTINE verb passes an STSN request from the host to the LUA

application. The application can respond with an STSN response, or reject it with

an appropriate SNA sense code.

Supplied Parameters

LUA supplies the the following parameters to the application:

lua_verb

LUA_VERB_SLI

lua_verb_length

The length in bytes of the LUA verb record.

lua_opcode

LUA_OPCODE_SLI_STSN_ROUTINE

lua_luname

The name in ASCII of the LU used by the session.

lua_sid The session ID of the session.

lua_data_length

The length of the supplied STSN RU.

lua_data_ptr

A pointer to the buffer containing the supplied STSN RU.

lua_th The TH parameters from the STSN.

lua_rh The RH parameters from the STSN.

SLI_SDT_ROUTINE

144 IBM Communications Server for AIX LUA Programmer’s Guide

Returned Parameters

The parameters returned by the application depend on whether the verb

completed successfully; see the following sections.

Successful Execution: STSN Response

If the application decides to accept the STSN, it returns the following parameters:

lua_prim_rc

LUA_OK

lua_data_ptr

A pointer to the buffer containing the supplied STSN response RU.

Unsuccessful Execution: STSN Rejected

If the application decides to reject the STSN, it returns the following parameters:

lua_prim_rc

LUA_NEGATIVE_RSP

lua_data_length

The length of the returned SNA sense code (in the lua_data_ptr parameter).

lua_data_ptr

A pointer to the buffer containing the SNA sense code associated with the

application’s reason for rejecting the STSN.

Interaction with Other Verbs

LUA will call this routine from within its processing of the SLI_OPEN verb (after

the application issues SLI_OPEN and before its asynchronous return).

Usage and Restrictions

There is no asynchronous return mechanism for the application’s extension

routines. The routine must return synchronously.

SLI_STSN_ROUTINE

Chapter 5. SLI Verbs 145

146 IBM Communications Server for AIX LUA Programmer’s Guide

Chapter 6. Sample LUA Application

This chapter describes the CS/AIX sample LUA program lsample.c, written for the

AIX or Linux operating system, which illustrates the use of LUA RUI verbs. This

file is stored in the directory /usr/lib/sna/samples (AIX) or /opt/ibm/sna/samples

(Linux).

The following information is provided:

v Processing overview of the application

v Instructions for compiling, linking, and running the application

Processing Overview

The application is a very simple 3270 emulation program. It provides an

unformatted display of screen data sent from the host (on both the LU and SSCP

sessions), together with status messages (indicating whether the application is

connected to the LU session or the SSCP session). When a definite-response request

is received from the host, a positive response is sent automatically. Data typed in

by the user is sent to the host, with the exception of two special keystrokes:

[(left square bracket)

Toggles between the LU and SSCP sessions

] (right square bracket)

Terminates the application

 Once it has completed some initialization processing, the program essentially

consists of two main loops: one reading data from the host and one sending data

supplied by the user to the host. These are implemented as follows:

The read loop uses recursive calls to the RUI_READ verb. The following

processing is performed by the callback routine, which LUA calls when the verb

completes asynchronously:

v Any screen data is written to the screen

v Any session status information is processed

v If a response is required, a positive response is built and sent

v The RUI_READ verb is then re-issued to continue the loop

If the verb completes synchronously, the same routine used as a callback routine is

called explicitly on return. This ensures that the same processing is done whatever

the type of return.

The write loop reads data from the keyboard. If either of the two special

keystrokes is supplied, it is acted on; otherwise, the incoming data is translated to

extended binary coded decimal interchange code (EBCDIC) (using the CSV

CONVERT verb) to be sent to the host on either the LU session or the SSCP

session, depending on which the application is currently connected to. The data is

sent using the RUI_WRITE verb; again, the callback routine is used whether or not

the verb returns asynchronously. The program waits for a semaphore to be cleared

by the callback routine before continuing with the loop.

© Copyright IBM Corp. 2000, 2005 147

When the user types the] keystroke to terminate the application, the program

breaks out of the write loop and issues the RUI_TERM verb to end the session. The

session is also terminated if the read loop encounters a non-LUA_OK return code

from the RUI_READ verb.

The program flow can be represented by the diagram shown in Figure 5:

Testing the Application

After examining the source code for the sample application, you may want to test

it. The following steps are required:

1. Ensure that you have access to a suitable host computer against which you can

run the application

2. Compile and link the application

3. Configure CS/AIX for use with LUA (this task will normally be performed by

your System Administrator)

4. Run the application

Issue_verb

Initialization

Issue_read

Control returns
to application

Callback
routine

read_done
Read data from

keyboard

other_done

Response
required?

Issue_rsp

rsp_done

Yes

No

Figure 5. Program Flow for the Sample LUA Application

Processing Overview

148 IBM Communications Server for AIX LUA Programmer’s Guide

These steps are explained in more detail in the following sections.

Host Requirements

To run the sample application, you will need an LU on the host computer. Because

the sample application is emulating a 3270 display terminal, the LU must be

configured at the host as a 3270 display LU (LU type 2) such as 3278 or 3279. The

LU number assigned at the host must be used when configuring the LU on

CS/AIX.

Configuration for the Sample Application

CS/AIX must be configured to include the required LU. This task is usually

performed by the System Administrator. The following components are required:

v A DLC, port, and LS

v An LU of type 0–3, with an LU number which matches that of a suitable LU on

the host

These components can be given any names you wish; the only information

required by the application is the LU to be used for the session. This is passed to

the application as a single command-line parameter (the LU name), or as two

command-line parameters (the PU name and LU number). The following items

also apply to LU configuration:

v The LU number configured for this LU in the CS/AIX configuration must match

the LU number assigned at the host.

v You can configure an LU pool for use with the application, containing one or

more LUs. To access the pool, you can then supply either the name of the pool

or the name of any LU within it; the first available LU from the pool will be

used.

Compiling and Linking the Sample Application

To compile and link the program for an AIX or Linux system, take the following

steps.

1. Copy the file lsample.c from the directory /usr/lib/sna/samples to a private

directory.

2. To compile and link the program for AIX, use the following command:

 cc -o lsample -I /usr/include/sna -bimport:/usr/lib/sna/lua.exp -bimport:/usr/lib/sna/csv.exp lsample.c

To compile and link the program for Linux, use the following command:

 gcc -o lsample -I /opt/ibm/sna/include -L /opt/ibm/sna/lib -llua -lsna -lcsv -lpLiS -lpthread lsample.c

Running the Sample Application

This section assumes you have compiled and linked the sample application as

described in “Compiling and Linking the Sample Application.”

The sample application uses the CSV interface as well as LUA; it includes calls to

the CSV CONVERT verb to translate user-supplied data from ASCII to EBCDIC

before sending it to the host, and to translate data received from the host into

ASCII before displaying it on the screen. This translation uses a user-defined

translation table (Table G), which is stored in a file on the CS/AIX computer. A

suitable file, luatblg.dat, is supplied with the LUA sample application program

source, in the directory /usr/lib/sna/samples (AIX) or /opt/ibm/sna/samples

(Linux).

Testing the Application

Chapter 6. Sample LUA Application 149

To run the sample application, follow these steps:

1. Ensure that the CS/AIX software is started, and that the LS to the host is

active; contact your System Administrator if necessary.

2. Set the environment variable SNATBLG to the name of the file containing the

Table G translation table. Include the full path of the file if it is not in the

current directory.

3. Start the application by entering one of the following commands:

lsample luname

lsample puname lunumber

In this example, luname is the name of the LU you configured for this

application (or the name of the LU pool or any LU within it).

In this example, puname is the name of the PU that owns the required LU, and

lunumber is the LU number (specified as a decimal number).

The application will display the message LU active when it has successfully

established a session to the host.

4. Enter data as you would normally do to log on and access host applications.

5. To switch between the LU session and the SSCP session, press the [(left square

bracket) key followed by Enter.

The application will display the message LU session or SSCP session to

indicate the session you are currently connected to. It also switches

automatically when a BIND or UNBIND message is received.

6. When you have finished with host applications, follow any steps you would

normally take to end the applications and log off.

7. To terminate the application, press the] (right square bracket) key followed by

Enter.

The application will display the message Closedown followed by Terminated

to indicate that it has ended the session with the host. There may also be a

“Read failed” message, with return codes that indicate that an outstanding

RUI_READ verb was canceled by the RUI_TERM verb.

Testing the Application

150 IBM Communications Server for AIX LUA Programmer’s Guide

Appendix A. Return Code Values

This appendix lists all the possible return codes in the LUA interface in numerical

order. The values are defined in the LUA header file lua_c.h (for AIX or Linux) or

winlua.h (for Windows).

You can use this appendix as a reference to check the meaning of a return code

received by your application.

Primary Return Codes

The following primary return codes are used in LUA applications.

LUA_OK 0x0100

LUA_STATE_CHECK 0x0200

LUA_COMM_SUBSYSTEM_ABENDED 0x03F0

LUA_COMM_SUBSYSTEM_NOT_LOADED 0x04F0

LUA_INVALID_VERB_SEGMENT 0x08F0

LUA_SESSION_FAILURE 0x0F00

LUA_UNEXPECTED_DOS_ERROR 0x11F0

LUA_UNSUCCESSFUL 0x1400

LUA_STACK_TOO_SMALL 0x15F0

LUA_NEGATIVE_RSP 0x1800

LUA_CANCELLED 0x2100

LUA_IN_PROGRESS 0x3000

LUA_STATUS 0x4000

LUA_INVALID_VERB 0xFFFF

Secondary Return Codes

The following secondary return codes are used in LUA applications.

LUA_SEC_RC_OK 0x00000000

LUA_INVALID_LUNAME 0x01000000

LUA_BAD_SESSION_ID 0x02000000

LUA_DATA_TRUNCATED 0x03000000

LUA_BAD_DATA_PTR 0x04000000

LUA_DATA_SEG_LENGTH_ERROR 0x05000000

LUA_RESERVED_FIELD_NOT_ZERO 0x06000000

LUA_INVALID_POST_HANDLE 0x07000000

LUA_PURGED 0x0C000000

LUA_BID_VERB_SEG_ERROR 0x0F000000

LUA_NO_PREVIOUS_BID_ENABLED 0x10000000

LUA_NO_DATA 0x11000000

LUA_BID_ALREADY_ENABLED 0x12000000

LUA_VERB_RECORD_SPANS_SEGMENTS 0x13000000

LUA_INVALID_FLOW 0x14000000

LUA_NOT_ACTIVE 0x15000000

LUA_VERB_LENGTH_INVALID 0x16000000

LUA_REQUIRED_FIELD_MISSING 0x19000000

LUA_READY 0x30000000

LUA_NOT_READY 0x31000000

LUA_INIT_COMPLETE 0x32000000

LUA_SESSION_END_REQUESTED 0x33000000

LUA_NO_SLI_SESSION 0x34000000

LUA_SESSION_ALREADY_OPEN 0x35000000

LUA_INVALID_OPEN_INIT_TYPE 0x36000000

LUA_INVALID_OPEN_DATA 0x37000000

LUA_UNEXPECTED_SNA_SEQUENCE 0x38000000

LUA_NEG_RSP_FROM_BIND_ROUTINE 0x39000000

LUA_NEG_RSP_FROM_CRV_ROUTINE 0x3A000000

© Copyright IBM Corp. 2000, 2005 151

LUA_NEG_RSP_FROM_STSN_ROUTINE 0x3B000000

LUA_CRV_ROUTINE_REQUIRED 0x3C000000

LUA_STSN_ROUTINE_REQUIRED 0x3D000000

LUA_INVALID_OPEN_ROUTINE_TYPE 0x3E000000

LUA_MAX_NUMBER_OF_SENDS 0x3F000000

LUA_SEND_ON_FLOW_PENDING 0x40000000

LUA_INVALID_MESSAGE_TYPE 0x41000000

LUA_RECEIVE_ON_FLOW_PENDING 0x42000000

LUA_DATA_LENGTH_ERROR 0x43000000

LUA_CLOSE_PENDING 0x44000000

LUA_NEGATIVE_RSP_CHASE 0x46000000

LUA_NEGATIVE_RSP_SHUTC 0x47000000

LUA_NEGATIVE_RSP_RSHUTD 0x48000000

LUA_NO_RECEIVE_TO_PURGE 0x4A000000

LUA_CANCEL_COMMAND_RECEIVED 0x4D000000

LUA_RUI_WRITE_FAILURE 0x4E000000

LUA_INVALID_SESSION_TYPE 0x4F000000

LUA_SLI_BID_PENDING 0x51000000

LUA_SLI_PURGE_PENDING 0x52000000

LUA_PROCEDURE_ERROR 0x53000000

LUA_INVALID_SLI_ENCR_OPTION 0x54000000

LUA_RECEIVED_UNBIND 0x55000000

LUA_RECEIVED_UNBIND_HOLD 0x56000000

LUA_RECEIVED_UNBIND_NORMAL 0x57000000

LUA_SLI_LOGIC_ERROR 0x7F000000

LUA_TERMINATED 0x80000000

LUA_NO_RUI_SESSION 0x81000000

LUA_DUPLICATE_RUI_INIT 0x82000000

LUA_INVALID_PROCESS 0x83000000

LUA_API_MODE_CHANGE 0x85000000

LUA_COMMAND_COUNT_ERROR 0x87000000

LUA_NO_READ_TO_PURGE 0x88000000

LUA_MULTIPLE_WRITE_FLOWS 0x89000000

LUA_DUPLICATE_READ_FLOW 0x8A000000

LUA_DUPLICATE_WRITE_FLOW 0x8B000000

LUA_LINK_NOT_STARTED 0x8C000000

LUA_INVALID_ADAPTER 0x8D000000

LUA_ENCR_DECR_LOAD_ERROR 0x8E000000

LUA_ENCR_DECR_PROC_ERROR 0x8F000000

LUA_INVALID_PUNAME 0x90000000

LUA_UNAUTHORIZED_ACCESS 0x90020000

LUA_INVALID_LUNUMBER 0x91000000

LUA_INVALID_FORMAT 0x92000000

LUA_DUPLICATE_RUI_REINIT 0x93000000

LUA_REINIT_INVALID 0x94000000

LUA_TCPCV_LENGTH_INVALID 0x95000000

LUA_LINK_NOT_STARTED_RETRY 0x95FF0000

LUA_NEG_RSP_FROM_SDT_ROUTINE 0x96000000

LUA_NEG_NOTIFY_RSP 0xBE000000

LUA_RUI_LOGIC_ERROR 0xBF000000

LUA_COBOL_NOT_SUPPORTED 0xC0000000

LUA_DUPLICATE_RUI_INIT_PRIMARY 0xC2000000

LUA_LU_INOPERATIVE 0xFF000000

The following secondary return codes are SNA sense codes. They are listed both in

the standard byte ordering used by LUA and in the byte ordering used for SNA

sense codes in SNA reference manuals.

LUA_RESOURCE_NOT_AVAILABLE 0x00000108 (SNA sense 0801 0000)

LUA_RU_DATA_ERROR 0x00000110 (SNA sense 1001 0000)

LUA_INCORRECT_SEQUENCE_NUMBER 0x00000120 (SNA sense 2001 0000)

LUA_INVALID_SC_OR_NC_RH 0x00000140 (SNA sense 4001 0000)

LUA_RU_LENGTH_ERROR 0x00000210 (SNA sense 1002 0000)

LUA_CHAINING_ERROR 0x00000220 (SNA sense 2002 0000)

LUA_FUNCTION_NOT_SUPPORTED 0x00000310 (SNA sense 1003 0000)

LUA_BRACKET 0x00000320 (SNA sense 2003 0000)

LUA_BB_NOT_ALLOWED 0x00000340 (SNA sense 4003 0000)

Secondary Return Codes

152 IBM Communications Server for AIX LUA Programmer’s Guide

LUA_NAU_INOPERATIVE 0x00000380 (SNA sense 8003 0000)

LUA_DIRECTION 0x00000420 (SNA sense 2004 0000)

LUA_EB_NOT_ALLOWED 0x00000440 (SNA sense 4004 0000)

LUA_SESSION_LIMIT_EXCEEDED 0x00000508 (SNA sense 0805 0000)

LUA_DATA_TRAFFIC_RESET 0x00000520 (SNA sense 2005 0000)

LUA_NO_SESSION 0x00000580 (SNA sense 8005 0000)

LUA_DATA_TRAFFIC_QUIESCED 0x00000620 (SNA sense 2006 0000)

LUA_EXCEPTION_RSP_NOT_ALLOWED 0x00000640 (SNA sense 4006 0000)

LUA_CATEGORY_NOT_SUPPORTED 0x00000710 (SNA sense 1007 0000)

LUA_DATA_TRAFFIC_NOT_RESET 0x00000720 (SNA sense 2007 0000)

LUA_DEFINITE_RSP_NOT_ALLOWED 0x00000740 (SNA sense 4007 0000)

LUA_NO_BEGIN_BRACKET 0x00000820 (SNA sense 2008 0000)

LUA_PACING_NOT_SUPPORTED 0x00000840 (SNA sense 4008 0000)

LUA_MODE_INCONSISTENCY 0x00000908 (SNA sense 0809 0000)

LUA_SC_PROTOCOL_VIOLATION 0x00000920 (SNA sense 2009 0000)

LUA_CD_NOT_ALLOWED 0x00000940 (SNA sense 4009 0000)

LUA_IMMEDIATE_REQ_MODE_ERROR 0x00000A20 (SNA sense 200A 0000)

LUA_NO_RESPONSE_NOT_ALLOWED 0x00000A40 (SNA sense 400A 0000)

LUA_BRACKET_RACE_ERROR 0x00000B08 (SNA sense 800B 0000)

LUA_QUEUED_RESPONSE_ERROR 0x00000B20 (SNA sense 200B 0000)

LUA_CHAINING_NOT_SUPPORTED 0x00000B40 (SNA sense 400B 0000)

LUA_ERP_SYNC_EVENT_ERROR 0x00000C20 (SNA sense 200C 0000)

LUA_BRACKETS_NOT_SUPPORTED 0x00000C40 (SNA sense 400C 0000)

LUA_RSP_BEFORE_SENDING_REQ 0x00000D20 (SNA sense 200D 0000)

LUA_CD_NOT_SUPPORTED 0x00000D40 (SNA sense 400D 0000)

LUA_RSP_CORRELATION_ERROR 0x00000E20 (SNA sense 200E 0000)

LUA_RSP_PROTOCOL_ERROR 0x00000F20 (SNA sense 200F 0000)

LUA_INCORRECT_USE_OF_FI 0x00000F40 (SNA sense 400F 0000)

LUA_ALTERNATE_CODE_NOT_SUPPORT 0x00001040 (SNA sense 4001 0000)

LUA_INCORRECT_RU_CATEGORY 0x00001140 (SNA sense 4011 0000)

LUA_INSUFFICIENT_RESOURCES 0x00001208 (SNA sense 0812 0000)

LUA_INCORRECT_REQUEST_CODE 0x00001240 (SNA sense 4012 0000)

LUA_BB_REJECT_NO_RTR 0x00001308 (SNA sense 0813 0000)

LUA_INCORRECT_SPEC_OF_SDI_RTI 0x00001340 (SNA sense 4013 0000)

LUA_BB_REJECT_RTR 0x00001408 (SNA sense 0814 0000)

LUA_INCORRECT_DR1I_DR2I_ERI 0x00001440 (SNA sense 4014 0000)

LUA_INCORRECT_USE_OF_QRI 0x00001540 (SNA sense 4015 0000)

LUA_INCORRECT_USE_OF_EDI 0x00001640 (SNA sense 4016 0000)

LUA_INCORRECT_USE_OF_PDI 0x00001740 (SNA sense 4017 0000)

LUA_RECEIVER_IN_TRANSMIT_MODE 0x00001B08 (SNA sense 081B 0000)

LUA_REQUEST_NOT_EXECUTABLE 0x00001C08 (SNA sense 081C 0000)

LUA_INVALID_SESSION_PARAMETERS 0x00002108 (SNA sense 0821 0000)

LUA_UNIT_OF_WORK_ABORTED 0x00002408 (SNA sense 0824 0000)

LUA_FM_FUNCTION_NOT_SUPPORTED 0x00002608 (SNA sense 0826 0000)

LUA_LU_COMPONENT_DISCONNECTED 0x00003108 (SNA sense 0831 0000)

LUA_INVALID_PARAMETER_FLAGS 0x00003308 (SNA sense 0833 0000)

LUA_INVALID_PARAMETER 0x00003508 (SNA sense 0835 0000)

LUA_CRYPTOGRAPHY_INOPERATIVE 0x00004808 (SNA sense 0848 0000)

LUA_REQ_RESOURCES_NOT_AVAIL 0x00004B08 (SNA sense 084B 0000)

LUA_SSCP_LU_SESSION_NOT_ACTIVE 0x00005708 (SNA sense 0857 0000)

LUA_SYNC_EVENT_RESPONSE 0x00006708 (SNA sense 0867 0000)

LUA_SESSION_SERVICE_PATH_ERROR 0x00007D08 (SNA sense 087D 0000)

LUA_NEGOTIABLE_BIND_ERROR 0x01003508 (SNA sense 0835 0001)

LUA_REC_CORR_TABLE_FULL 0x01007808 (SNA sense 0878 0001)

LUA_NON_UNIQ_ID 0x011000C0 (SNA sense C000 1001)

LUA_INV_NAU_ADDR 0x012000C0 (SNA sense C000 2001)

LUA_BIND_FM_PROFILE_ERROR 0x02003508 (SNA sense 0835 0002)

LUA_SSCP_PLU_SESS_NOT_ACTIVE 0x02005708 (SNA sense 0857 0002)

LUA_SEND_CORR_TABLE_FULL 0x02007808 (SNA sense 0878 0002)

LUA_NON_UNIQ_NAU_AD 0x021000C0 (SNA sense C000 1002)

LUA_INV_ADPT_NUM 0x022000C0 (SNA sense C000 2002)

LUA_BIND_TS_PROFILE_ERROR 0x03003508 (SNA sense 0835 0003)

LUA_SSCP_SLU_SESS_INACT 0x03005708 (SNA sense 0857 0003)

LUA_SLU_SESSION_LIMIT_EXCEEDED 0x0A000508 (SNA sense 0805 000A)

LUA_BIND_LU_TYPE_ERROR 0x0E003508 (SNA sense 0835 000E)

LUA_HDX_BRACKET_STATE_ERROR 0x21010510 (SNA sense 1005 0121)

LUA_RESPONSE_ALREADY_SENT 0x22010510 (SNA sense 1005 0122)

Secondary Return Codes

Appendix A. Return Code Values 153

LUA_EXR_SENSE_INCORRECT 0x23010510 (SNA sense 1005 0123)

LUA_RESPONSE_OUT_OF_ORDER 0x24010510 (SNA sense 1005 0124)

LUA_CHASE_RESPONSE_REQUIRED 0x25010510 (SNA sense 1005 0125)

Secondary Return Codes

154 IBM Communications Server for AIX LUA Programmer’s Guide

Appendix B. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS™ enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to SA22-7787

z/OS TSO/E Primer, SA22-7794 z/OS TSO/E User’s Guide, and SC34-4822 z/OS ISPF

User’s Guide Vol Ifor information about accessing TSO/E and ISPF interfaces. These

guides describe how to use TSO/E and ISPF, including the use of keyboard

shortcuts or function keys (PF keys). Each guide includes the default settings for

the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2000, 2005 155

156 IBM Communications Server for AIX LUA Programmer’s Guide

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2005 157

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation, Site Counsel

 P.O. Box 12195

 3039 Cornwallis Road

 Research Triangle Park, NC 27709-2195

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in

source language, which illustrates programming techniques on various operating

platforms. You may copy, modify, and distribute these sample programs in any

form without payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any

form without payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application programming

interfaces.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows: © (your company name) (year). Portions of

this code are derived from IBM Corp. Sample Programs. © IBM Corp. 2000, 2005.

All rights reserved.

158 IBM Communications Server for AIX LUA Programmer’s Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 ACF/VTAM

 Advanced Peer-to-Peer Networking

 AIX

 AIXwindows

 AnyNet

 Application System/400

 APPN

 AS/400

 CICS

 DATABASE 2

 DB2

 Enterprise System/3090

 Enterprise System/4381

 Enterprise System/9000

 ES/3090

 ES/9000

 eServer

 IBM

 IBMLink

 IMS

 MVS

 MVS/ESA

 Operating System/2

 Operating System/400

 OS/2

 OS/400

 PowerPC

 PowerPC Architecture

 pSeries

 S/390

 System/390

 VSE/ESA

 VTAM

 WebSphere

 zSeries

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc., in

the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed

exclusively through The Open Group.

Intel is a trademark of Intel Corporation.

Linux is a trademark of Linus Torvalds.

RedHat and RPM are trademarks of Red Hat, Inc.

SuSE Linux is a trademark of SuSE Linux AG.

UnitedLinux is a trademark of UnitedLinux LLC.

Microsoft, Windows, Windows NT, Windows 2003, and the Windows logo are

trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix C. Notices 159

160 IBM Communications Server for AIX LUA Programmer’s Guide

Bibliography

The following IBM publications provide information about the topics discussed in

this library. The publications are divided into the following broad topic areas:

v CS/AIX, Version 6.3

v IBM Communications Server for AIX, Version 4 Release 2

v Redbooks™

v AnyNet/2 and SNA

v Block Multiplexer and S/390 ESCON Channel PCI Adapter

v AIX operating system

v Systems Network Architecture (SNA)

v Host configuration

v z/OS Communications Server

v Multiprotocol Transport Networking

v Transmission Control Protocol/Internet Protocol (TCP/IP)

v X.25

v Advanced Program-to-Program Communication (APPC)

v Programming

v Other IBM networking topics

For books in the CS/AIX library, brief descriptions are provided. For other books,

only the titles, order numbers, and, in some cases, the abbreviated title used in the

text of this book are shown here.

CS/AIX Version 6.3Publications

The CS/AIX library comprises the following books. In addition, softcopy versions

of these documents are provided on the CD-ROM. See IBM Communications Server

for AIX Quick Beginnings for information about accessing the softcopy files on the

CD-ROM. To install these softcopy books on your system, you require 9–15 MB of

hard disk space (depending on which national language versions you install).

v IBM Communications Server for AIX Migration Guide (SC31-8585)

This book explains how to migrate from Communications Server for AIX Version

4 Release 2 or earlier to CS/AIX Version 6.

v IBM Communications Server for AIX Quick Beginnings (GC31-8583)

This book is a general introduction to CS/AIX, including information about

supported network characteristics, installation, configuration, and operation.

v IBM Communications Server for AIX Administration Guide (SC31-8586)

This book provides an SNA and CS/AIX overview and information about

CS/AIX configuration and operation.

v IBM Communications Server for AIX Administration Command Reference (SC31-8587)

This book provides information about SNA and CS/AIX commands.

v IBM Communications Server for AIX CPI-C Programmer’s Guide (SC31-8591)

This book provides information for experienced “C” or Java™ programmers

about writing SNA transaction programs using the CS/AIX CPI

Communications API.

© Copyright IBM Corp. 2000, 2005 161

v IBM Communications Server for AIX APPC Programmer’s Guide (SC31-8590)

This book contains the information you need to write application programs

using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX LUA Programmer’s Guide (SC31-8592)

This book contains the information you need to write applications using the

Conventional LU Application Programming Interface (LUA).

v IBM Communications Server for AIX CSV Programmer’s Guide (SC31-8593)

This book contains the information you need to write application programs

using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX MS Programmer’s Guide (SC31-8594)

This book contains the information you need to write applications using the

Management Services (MS) API.

v IBM Communications Server for AIX NOF Programmer’s Guide (SC31-8595)

This book contains the information you need to write applications using the

Node Operator Facility (NOF) API.

v IBM Communications Server for AIX Diagnostics Guide (SC31-8588)

This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX AnyNet® Guide to APPC over TCP/IP

(GC31-8598)

This book provides installation, configuration, and usage information for the

AnyNet APPC over TCP/IP function of CS/AIX.

v IBM Communications Server for AIX AnyNet Guide to Sockets over SNA (GC31-8597)

This book provides installation, configuration, and usage information for the

AnyNet Sockets over SNA function of CS/AIX.

v IBM Communications Server for AIX APPC Application Suite User’s Guide

(SC31-8596)

This book provides information about APPC applications used with CS/AIX.

v IBM Communications Server for AIX Glossary (GC31-8589)

This book provides a comprehensive list of terms and definitions used

throughout the IBM Communications Server for AIX library.

IBM Communications Server for AIX Version 4 Release 2 Publications

The following book is from a previous release of Communications Server for AIX,

and does not apply to Version 6. You may find this book useful as a reference for

information that is still supported, but not included in Version 6.

v IBM Communications Server for AIX Transaction Program Reference. (SC31-8212)

This book provides Version 4 Release 2 information about the transaction

programming APIs. Applications written to use the Version 4 Release 2 APIs can

still be used with Version 6.

IBM Redbooks

IBM maintains an International Technical Support Center that produces

publications known as Redbooks. Similar to product documentation, Redbooks

cover theoretical and practical aspects of SNA technology. However, they do not

include the information that is supplied with purchased networking products.

The following books contain information that may be useful for CS/AIX:

v IBM Communications Server for AIX Version 6 (SG24-5947)

162 IBM Communications Server for AIX LUA Programmer’s Guide

v IBM CS/AIX Understanding and Migrating to Version 5: Part 2 - Performance

(SG24-2136)

v Load Balancing for Communications Servers (SG24-5305)

On the World Wide Web, users can download Redbook publications by using

http://www.redbooks.ibm.com.

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications

The following books contain information about the Block Multiplexer and the

S/390 ESCON Channel PCI Adapter:

v AIX Version 4.1 Block Multiplexer Channel Adapter: User’s Guide and Service

Information (SC31-8196)

v AIX Version 4.1 Enterprise Systems Connection Adapter: User’s Guide and

Service Information (SC31-8196)

v AIX Version 4.3 S/390 ESCON Channel PCI: User’s Guide and Service

Information (SC23-4232)

v IBM Communications Server for AIX Channel Connectivity User’s Guide

(SC31-8219)

AnyNet/2 Sockets and SNA publications

The following books contain information about AnyNet/2 Sockets and SNA

v AnyNet/2 Version 2.0: Guide to Sockets over SNA (GV40-0376)

v AnyNet/2 Version 2.0: Guide to SNA over TCP/IP (GV40-0375)

v AnyNet/2: Guide to Sockets over SNA Gateway Version 1.1 (GV40-0374)

v z/OS V1R2.0 Communications Server: AnyNet Sockets over SNA (SC31-8831)

v z/OS V1R2.0 Communications Server: AnyNet SNA over TCP/IP (SC31-8832)

AIX Operating System Publications

The following books contain information about the AIX operating system:

v AIX Version 5.3 System Management Guide: Operating System and Devices

(SC23-4910)

v AIX Version 5.3 System Management Concepts: Operating System and Devices

(SC23-4908)

v AIX Version 5.3 System Management Guide: Communications and Networks

(SC23-4909)

v AIX Version 5.3 Performance Management Guide (SC23-4905)

v AIX Version 5.3 Performance Tools Guide and Reference (SC23-4906)

v Performance Toolbox Version 2 and 3 Guide and Reference (SC23-2625)

v AIXlink/X.25 Version 2.1 for AIX: Guide and Reference (SC23-2520)

Systems Network Architecture (SNA) Publications

The following books contain information about SNA networks:

v Systems Network Architecture: Format and Protocol Reference Manual—Architecture

Logic for LU Type 6.2 (SC30-3269)

v Systems Network Architecture: Formats (GA27-3136)

v Systems Network Architecture: Guide to SNA Publications (GC30-3438)

Bibliography 163

v Systems Network Architecture: Network Product Formats (LY43-0081)

v Systems Network Architecture: Technical Overview (GC30-3073)

v Systems Network Architecture: APPN Architecture Reference (SC30-3422)

v Systems Network Architecture: Sessions between Logical Units (GC20-1868)

v Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)

v Systems Network Architecture: Transaction Programmer’s Reference Manual for LU

Type 6.2 (GC30-3084)

v Systems Network Architecture: 3270 Datastream Programmer’s Reference (GA23-0059)

v Networking Blueprint Executive Overview (GC31-7057)

v Systems Network Architecture: Management Services Reference (SC30-3346)

Host Configuration Publications

The following books contain information about host configuration:

v ES/9000, ES/3090 IOCP User’s Guide Volume A04 (GC38-0097)

v 3174 Establishment Controller Installation Guide (GG24-3061)

v 3270 Information Display System 3174 Establishment Controller: Planning Guide

(GA27-3918)

v OS/390 Hardware Configuration Definition (HCD) User’s Guide (SC28-1848)

v ESCON Director Planning (GA23-0364)

z/OS Communications Server Publications

The following books contain information about z/OS Communications Server:

v z/OS V1R7 Communications Server: SNA Network Implementation Guide

(SC31-8777-05)

v z/OS V1R7 Communications Server: SNA Diagnostics (Vol 1: GC31-6850-00, Vol 2:

GC31-6851-00)

v z/OS V1R6 Communications Server: Resource Definition Reference (SC31-8778-04)

Multiprotocol Transport Networking publications

The following books contain information about Multiprotocol Transport

Networking architecture:

v Multiprotocol Transport Networking: Formats (GC31-7074)

v Multiprotocol Transport Networking Architecture: Technical Overview

(GC31-7073)

TCP/IP Publications

The following books contain information about the Transmission Control

Protocol/Internet Protocol (TCP/IP) network protocol:

v z/OS V1R7 Communications Server: IP Configuration Guide (SC31-8775-07)

v z/OS V1R7 Communications Server: IP Configuration Reference (SC31-8776-08)

v z/VM V5R1 TCP/IP Planning and Customization (SC24-6125-00)

164 IBM Communications Server for AIX LUA Programmer’s Guide

X.25 Publications

The following books contain information about the X.25 network protocol:

v AIXLink/X.25 for AIX: Guide and Reference (SC23-2520)

v RS/6000® AIXLink/X.25 Cookbook (SG24-4475)

v Communications Server for OS/2 Version 4 X.25 Programming (SC31-8150)

APPC Publications

The following books contain information about Advanced Program-to-Program

Communication (APPC):

v APPC Application Suite V1 User’s Guide (SC31-6532)

v APPC Application Suite V1 Administration (SC31-6533)

v APPC Application Suite V1 Programming (SC31-6534)

v APPC Application Suite V1 Online Product Library (SK2T-2680)

v APPC Application Suite Licensed Program Specifications (GC31-6535)

v z/OS V1R2.0 Communications Server: APPC Application Suite User’s Guide

(SC31-8809)

Programming Publications

The following books contain information about programming:

v Common Programming Interface Communications CPI-C Reference (SC26-4399)

v Communications Server for OS/2 Version 4 Application Programming Guide

(SC31-8152)

Other IBM Networking Publications

The following books contain information about other topics related to CS/AIX:

v SDLC Concepts (GA27-3093-04)

v Local Area Network Concepts and Products: LAN Architecture (SG24-4753-00)

v Local Area Network Concepts and Products: LAN Adapters, Hubs and ATM

(SG24-4754-00)

v Local Area Network Concepts and Products: Routers and Gateways (SG24-4755-00)

v Local Area Network Concepts and Products: LAN Operating Systems and Management

(SG24-4756-00)

v IBM Network Control Program Resource Definition Guide (SC30-3349)

Bibliography 165

166 IBM Communications Server for AIX LUA Programmer’s Guide

Index

A
accessibility 155

ACTLU 7

AIX applications
compiling and linking 41

AIX environment considerations 40

ASCII to EBCDIC translation 149

asynchronous verb completion 7, 15

B
BIND 7

BIND parameters, negotiating 34, 35

C
callback routine 7, 15

CANCEL 37, 39

child process 40

common data structure 46, 47

compatibility, with IBM OS/2 Extended Edition 42

compiling AIX applications 41

compiling and linking 41

compiling Linux applications 41

configuration information 4, 39

courtesy acknowledgment 37, 39

CSV CONVERT verb 149

D
disability 155

E
EBCDIC to ASCII translation 149

entry point 13

establishing the SSCP session 7

expedited flow 4

F
function calls for LUA 16

G
GetLuaReturnCode call 25

I
INITSELF 7

K
keyboard 155

L
linking AIX applications 41

linking Linux applications 41

Linux applications
compiling and linking 41

LU pools 4, 41

LU session 3

LU types 1

LUA concepts 1

LUA definition 1

LUA entry point 13

Windows 16

LUA verb, issuing 31

LUA verbs summary
RUI 5

SLI 5

LUA_VERB_RECORD data structure 46

M
multiple processes 40

N
normal flow 4

NOTIFY 8

P
pacing 36

RUI primary 38

portability to other environments 42

primary return codes 151

PU-SSCP session 3

purging 37, 39

R
reserved parameters 42, 45, 55, 99

return codes
primary 151

secondary 151

RU 1, 2

RUI 2

RUI and SLI, comparison 1

RUI entry point 13

RUI verbs summary 5

RUI_BID
interaction with other verbs 61

returned parameters 56

supplied parameters 55

usage and restrictions 61

RUI_INIT
interaction with other verbs 67

supplied parameters 62

usage and restrictions 68

RUI_INIT_PRIMARY
interaction with other verbs 71

supplied parameters 68

© Copyright IBM Corp. 2000, 2005 167

RUI_INIT_PRIMARY (continued)
usage and restrictions 72

RUI_PURGE
interaction with other verbs 76

returned parameters 73

supplied parameters 72

RUI_READ
interaction with other verbs 83

returned parameters 78

supplied parameters 76

usage and restrictions 84

RUI_REINIT
interaction with other verbs 87

returned parameters 85

supplied parameters 84

usage and restrictions 87

RUI_TERM
interaction with other verbs 91

returned parameters 89

supplied parameters 88

RUI_WRITE
interaction with other verbs 98

returned parameters 94

supplied parameters 92

usage and restrictions 98

S
sample application

configuration 149

host requirements 149

processing overview 147

running 149

testing 148

sample LUA communication sequence 7

SDT 7

secondary return codes 151

segmentation 36

RUI primary 38

shortcut keys 155

SLI 2

SLI and RUI, comparison 1

SLI entry point 13

SLI verbs summary 5

SLI_BID
interaction with other verbs 105

returned parameters 100

supplied parameters 99

usage and restrictions 105

SLI_BIND_ROUTINE
interaction with other verbs 143

returned parameters 142

supplied parameters 142

usage and restrictions 143

SLI_CLOSE
interaction with other verbs 111

returned parameters 107

supplied parameters 106

usage and restrictions 111

SLI_OPEN
interaction with other verbs 120

returned parameters 116

supplied parameters 112

usage and restrictions 120

SLI_PURGE
interaction with other verbs 124

returned parameters 121

SLI_PURGE (continued)
supplied parameters 120

SLI_RECEIVE
interaction with other verbs 132

returned parameters 126

supplied parameters 125

usage and restrictions 133

SLI_SDT_ROUTINE
interaction with other verbs 144

returned parameters 143, 144

supplied parameters 143

usage and restrictions 144

SLI_SEND
interaction with other verbs 141

returned parameters 135

supplied parameters 133

usage and restrictions 141

SLI_STSN_ROUTINE
interaction with other verbs 145

returned parameters 145

supplied parameters 144

usage and restrictions 145

SNA components required for LUA communications 2, 3

SNA information 34

RUI Primary 37

SNA messages, relationship to LUA verbs 8

SNA sense codes 35, 43

values 152

specific data structure 52

SSCP 3

SSCP session 3

synchronous verb completion 14, 21, 30

U
UNBIND 7

V
VCB

common data structure 45

format 45

specific data structure 45

structure 14

W
window handle 7

Windows environment considerations 41

168 IBM Communications Server for AIX LUA Programmer’s Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of

the methods listed below to send your comments to IBM. Whichever method you

choose, make sure you send your name, address, and telephone number if you

would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject

matter, or completeness of this document. However, the comments you send

should pertain to only the information in this manual and the way in which the

information is presented. To request additional publications, or to ask questions or

make comments about the functions of IBM products or systems, you should talk

to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate without incurring any

obligation to you.

Please send your comments to us in either of the following ways:

v If you prefer to send comments by FAX, use this number: 1+919-254-4028

v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com.
v If you prefer to send comments by post, use this address:

International Business Machines Corporation

Attn: z/OS Communications Server Information Development

P.O. Box 12195, 3039 Cornwallis Road

Department AKCA, Building 501

Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2000, 2005 169

170 IBM Communications Server for AIX LUA Programmer’s Guide

����

Program Number: 5765-E51

Printed in USA

SC31-8592-02

	Contents
	Tables
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions
	Graphic Conventions

	What's New
	Where to Find More Information

	Chapter 1. Concepts
	What Is LUA?
	Choosing Which Interface to Use
	LUs and Sessions
	Configuration

	LUA Verbs
	RUI Verb Summary
	SLI Verb Summary
	Asynchronous Verb Completion

	A Sample LUA Communication Sequence
	LUA Compatibility

	Chapter 2. Designing and Writing LUA Applications
	LUA Entry Points for AIX or Linux Applications
	RUI Function Call
	SLI Function Call
	Supplied Parameters
	Returned Values
	Usage
	Callback Routine for Asynchronous Verb Completion
	Function Call
	Supplied Parameters
	Returned Values

	LUA Entry Points for Windows Applications
	RUI
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinRUIStartup
	Function Call
	Supplied Parameters
	Returned Values

	WinRUI
	Function Call
	Supplied Parameters
	Returned Values
	Usage
	Synchronous and Asynchronous Verb Completion

	WinRUIGetLastInitStatus
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinRUICleanup
	Function Call
	Supplied Parameters
	Returned Values

	GetLuaReturnCode
	Function Call
	Supplied Parameters
	Returned Values

	SLI
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinSLIStartup
	Function Call
	Supplied Parameters
	Returned Values

	WinSLI
	Function Call
	Supplied Parameters
	Returned Values
	Usage
	Synchronous and Asynchronous Verb Completion

	WinSLICleanup
	Function Call
	Supplied Parameters
	Returned Values

	Issuing an LUA Verb
	SNA Information
	BIND Checking: RUI
	BIND Checking: SLI
	Negative Responses and SNA Sense Codes
	Distinguishing SNA Sense Codes from Other Secondary Return Codes
	Information about SNA Sense Codes

	Pacing
	Segmentation
	Modification of Nonstandard Host Response/Request Header (RH) Bits
	Courtesy Acknowledgments
	Purging Data to End of Chain

	SNA Information for RUI Primary
	Responsibilities of the Primary RUI application
	Pacing
	Segmentation
	Restrictions
	Courtesy Acknowledgments
	Purging Data to End of Chain

	Configuration Information
	Data Link Control (DLC), Port, and Link Station (LS)
	LU
	LU Pool (Optional)

	AIX or Linux Considerations
	LUA Header File
	Multiple Processes and Multiple Sessions
	Compiling and Linking the LUA Application
	AIX Applications
	Linux Applications

	Windows Considerations
	Multiple Sessions and Multiple Tasks
	Compiling and Linking LUA Programs
	Compiler Options for Structure Packing
	Header File
	Load-Time Linking
	Run-Time Linking

	Terminating Applications

	Writing Portable Applications

	Chapter 3. LUA VCB Structure
	LUA Verb Control Block (VCB) Format
	LUA_VERB_RECORD Data Structure
	Common Data Structure
	Specific Data Structure

	Chapter 4. RUI Verbs
	RUI_BID
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_INIT
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_INIT_PRIMARY
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_PURGE
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs

	RUI_READ
	Supplied Parameters
	Returned Parameters
	Successful Execution or Truncated Data
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_REINIT
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_TERM
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs

	RUI_WRITE
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	Chapter 5. SLI Verbs
	SLI_BID
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Successful Execution: Status Information
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_CLOSE
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_OPEN
	Supplied Parameters
	Return Value from SLI Entry Point
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_PURGE
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs

	SLI_RECEIVE
	Supplied Parameters
	Returned Parameters
	Successful Execution or Truncated Data
	Successful Execution: Status Information
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_SEND
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Successful Execution: Status Information
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_BIND_ROUTINE
	Supplied Parameters
	Returned Parameters
	Successful Execution: BIND Accepted or Negotiated
	Unsuccessful Execution: BIND Rejected

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_SDT_ROUTINE
	Supplied Parameters
	Returned Parameters
	Successful Execution: SDT Response
	Unsuccessful Execution: SDT Rejected

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_STSN_ROUTINE
	Supplied Parameters
	Returned Parameters
	Successful Execution: STSN Response
	Unsuccessful Execution: STSN Rejected

	Interaction with Other Verbs
	Usage and Restrictions

	Chapter 6. Sample LUA Application
	Processing Overview
	Testing the Application
	Host Requirements
	Configuration for the Sample Application
	Compiling and Linking the Sample Application
	Running the Sample Application

	Appendix A. Return Code Values
	Primary Return Codes
	Secondary Return Codes

	Appendix B. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Appendix C. Notices
	Trademarks

	Bibliography
	CS/AIX Version 6.3Publications
	IBM Communications Server for AIX Version 4 Release 2 Publications
	IBM Redbooks
	Block Multiplexer and S/390 ESCON Channel PCI Adapter publications
	AnyNet/2 Sockets and SNA publications
	AIX Operating System Publications
	Systems Network Architecture (SNA) Publications
	Host Configuration Publications
	z/OS Communications Server Publications
	Multiprotocol Transport Networking publications
	TCP/IP Publications
	X.25 Publications
	APPC Publications
	Programming Publications
	Other IBM Networking Publications

	Index
	Communicating Your Comments to IBM

