
IBM Communications Server for AIX

CPI-C Programmer’s Guide

V6.3

SC31-8591-02

���

IBM Communications Server for AIX

CPI-C Programmer’s Guide

V6.3

SC31-8591-02

���

Note:

Before using this information and the product it supports, be sure to read the general information under Appendix D,

“Notices,” on page 181.

Third Edition (November 2005)

This edition applies to IBM Communications Server for AIX, Version 6.3, program number 5765-E51, and to all

subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address below.

IBM welcomes your comments. You may send your comments to the following address:

 International Business Machines Corporation

 Attn: z/OS Communications Server Information Development

 Department AKCA, Building 501

 P.O. Box 12195, 3039 Cornwallis Road

 Research Triangle Park, North Carolina

 27709-2195

 U.S.A.

You can send us comments electronically by using one of the following methods:

v Fax (USA and Canada): 1-919-254-4028

v Internet e-mail: comsvrcf@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . xv

Figures . xvii

About This Book . xix

Who Should Use This Book . xix

How to Use This Book . xix

Organization of This Book . xix

Typographic Conventions . xx

Graphic Conventions . xx

What’s New . xxi

Where to Find More Information . xxi

Chapter 1. Concepts . 1

What Is CPI-C? . 1

CS/AIX CPI-C Option Set Support . 1

Communication between Programs . 2

Logical Unit 6.2 . 2

Sessions . 3

Conversations . 3

Contention . 3

Characteristics . 3

CPI-C Calls . 3

The Conversation Process . 3

Conversation Types . 4

A Simple Mapped Conversation . 4

Starting a Conversation . 4

Sending Data . 5

Receiving Data . 5

Ending a Conversation . 5

Confirmation Processing . 5

Establishing the Synchronization Level . 6

Sending a Confirmation Request . 6

Receiving a Confirmation Request . 6

Responding to a Confirmation Request . 6

Deallocating the Conversation . 6

Conversation States . 7

The Program’s View of the Conversation . 8

State Changes . 8

State Checks . 8

Changing Conversation States . 8

Initial States . 9

Changing to Receive State . 9

Changing to Send State . 10

Side Information . 10

Basic Conversations . 11

Logical Records . 11

Error Log Data . 12

Multiple Conversations . 12

Overview of Conversation Security . 12

Conversation Security for Multiple Conversations . 13

Already-Verified Conversation Security . 13

Nonblocking Operation . 14

CPI-C and LU 6.2 . 17

© Copyright IBM Corp. 2000, 2005 iii

Chapter 2. Writing CPI-C Applications . 19

CPI-C Call Summary . 19

Starting a Conversation . 19

Sending data . 21

Receiving Data . 22

Converting Data Between ASCII and EBCDIC . 22

Confirming Receipt of Data and Reporting Errors . 23

Issuing Calls in Nonblocking Mode . 23

Issuing Calls in Blocking Mode . 24

Getting Information . 25

Ending a Conversation . 25

Administering Side Information . 26

Initial Conversation Characteristics . 26

Side Information . 30

Local LU Alias . 31

Partner LU Name . 31

Partner Program Type and Name . 31

Mode Name . 31

Conversation Security Type . 31

Security User ID and Password . 31

Application-Specified Side Information . 32

Configuration . 32

Specifying the Local TP Name . 33

Specify_Local_TP_Name . 33

Context . 33

APPCTPN Environment Variable . 33

Default Value . 34

Specifying the Local LU . 34

Set_Local_LU_Name . 34

Context . 35

APPCLLU Environment Variable . 35

Side Information . 35

Default Local LU . 36

Control Point LU . 36

How Programs Get Started . 36

Invoked Program: Automatically Started . 36

Invoked Program: User-Started . 36

AIX or Linux Considerations . 37

CPI-C Header File . 37

Multiple Processes . 37

Compiling and Linking the CPI-C Application . 38

Java CPI-C Considerations . 38

Using Java CPI-C Classes . 38

Usage Example . 40

Compiling and Linking the Java CPI-C Application . 40

Running the Java CPI-C Application . 41

Windows Considerations . 41

Windows CPI-C Files . 41

Function Prototypes . 41

Multiple Processes and Multiple Conversations . 41

Windows Function Calls . 41

Blocking Calls . 42

Terminating Applications . 44

Compiling and Linking CPI-C Applications . 44

Writing Portable Applications . 44

Chapter 3. CPI-C Calls . 47

Information Provided for CPI-C Calls . 47

Data Types . 47

Data Structures . 48

Symbolic Constants . 48

iv IBM Communications Server for AIX CPI-C Programmer’s Guide

Strings . 48

Validity of Returned Parameters . 48

Information Provided for Windows Function Calls . 48

Accept_Conversation (cmaccp) . 49

Function Call . 49

Function Call for Java CPI-C . 49

Supplied Parameters . 49

Returned Parameters . 49

State When Issued . 50

State Change . 50

Usage Notes . 50

Accept_Incoming (cmacci) . 51

Function Call . 51

Function Call for Java CPI-C . 51

Supplied Parameters . 51

Returned Parameters . 51

State When Issued . 52

State Change . 52

Usage Notes . 52

Allocate (cmallc) . 53

Function Call . 53

Function Call for Java CPI-C . 53

Supplied Parameters . 54

Returned Parameters . 54

State When Issued . 54

State Change . 54

Usage Notes . 55

Cancel_Conversation (cmcanc) . 55

Function Call . 56

Function Call for Java CPI-C . 56

Supplied Parameters . 56

Returned Parameters . 56

State When Issued . 56

State Change . 56

Usage Notes . 57

Check_For_Completion (cmchck) . 57

Function Call . 57

Supplied Parameters . 57

Returned Parameters . 57

State When Issued . 58

State Change . 58

Usage Notes . 58

Confirm (cmcfm) . 58

Function Call . 59

Function Call for Java CPI-C . 59

Supplied Parameters . 59

Returned Parameters . 59

State When Issued . 60

State Change . 60

Usage Notes . 61

Confirmed (cmcfmd) . 61

Function Call . 61

Function Call for Java CPI-C . 61

Supplied Parameters . 61

Returned Parameters . 62

State When Issued . 62

State Change . 62

Usage Notes . 62

Convert_Incoming (cmcnvi) . 63

Function Call . 63

Function Call for Java CPI-C . 63

Contents v

Supplied Parameters . 64

Returned Parameters . 64

State When Issued . 64

State Change . 64

Usage Note . 65

Convert_Outgoing (cmcnvo) . 65

Function Call . 65

Function Call for Java CPI-C . 65

Supplied Parameters . 65

Returned Parameters . 66

State When Issued . 66

State Change . 66

Usage Note . 66

Deallocate (cmdeal) . 66

Function Call . 67

Function Call for Java CPI-C . 67

Supplied Parameters . 67

Returned Parameters . 67

State When Issued . 68

State Change . 68

Usage Notes . 69

Delete_CPIC_Side_Information (xcmdsi) . 69

Function Call . 69

Supplied Parameters . 69

Returned Parameters . 69

State When Issued . 70

State Change . 70

Usage Notes . 70

Extract_Conversation_Context (cmectx) . 70

Function Call . 70

Function Call for Java CPI-C . 70

Supplied Parameters . 70

Returned Parameters . 70

State When Issued . 71

State Change . 71

Usage Notes . 71

Extract_Conversation_Security_Type (xcecst) . 71

Function Call . 72

Supplied Parameters . 72

Returned Parameters . 72

State When Issued . 73

State Change . 73

Extract_Conversation_Security_User_ID (cmecsu) . 73

Extract_Conversation_Security_User_ID (xcecsu) . 73

Extract_Conversation_State (cmecs) . 73

Function Call . 74

Function Call for Java CPI-C . 74

Supplied Parameters . 74

Returned Parameters . 74

State When Issued . 75

State Change . 75

Extract_Conversation_Type (cmect) . 75

Function Call . 75

Function Call for Java CPI-C . 75

Supplied Parameters . 75

Returned Parameters . 75

State When Issued . 76

State Change . 76

Extract_CPIC_Side_Information (xcmesi) . 76

Function Call . 76

Supplied Parameters . 76

vi IBM Communications Server for AIX CPI-C Programmer’s Guide

Returned Parameters . 77

State When Issued . 78

State Change . 78

Usage Notes . 78

Extract_Local_LU_Name (cmelln) . 78

Function Call . 79

Function Call for Java CPI-C . 79

Supplied Parameters . 79

Returned Parameters . 79

State When Issued . 79

State Change . 79

Usage Notes . 80

Extract_Maximum_Buffer_Size (cmembs) . 80

Function Call . 80

Function Call for Java CPI-C . 80

Supplied Parameters . 80

Returned Parameters . 80

State When Issued . 80

State Change . 81

Extract_Mode_Name (cmemn) . 81

Function Call . 81

Function Call for Java CPI-C . 81

Supplied Parameters . 81

Returned Parameters . 81

State When Issued . 82

State Change . 82

Extract_Partner_LU_Name (cmepln) . 82

Function Call . 82

Function Call for Java CPI-C . 82

Supplied Parameters . 82

Returned Parameters . 82

State When Issued . 83

State Change . 83

Extract_Security_User_ID (cmesui or cmecsu) . 83

Function Call . 83

Function Call for Java CPI-C . 84

Supplied Parameters . 84

Returned Parameters . 84

State When Issued . 84

State Change . 84

Usage Notes . 85

Extract_Sync_Level (cmesl) . 85

Function Call . 85

Function Call for Java CPI-C . 85

Supplied Parameters . 85

Returned Parameters . 85

State When Issued . 86

State Change . 86

Extract_TP_Name (cmetpn) . 86

Function Call . 86

Function Call for Java CPI-C . 86

Supplied Parameters . 86

Returned Parameters . 87

State When Issued . 87

State Change . 87

Flush (cmflus) . 87

Sources of Buffered Data . 87

Function Call . 87

Function Call for Java CPI-C . 88

Supplied Parameters . 88

Returned Parameters . 88

Contents vii

State When Issued . 88

State Change . 88

Initialize_Conversation (cminit) . 89

Function Call . 89

Function Call for Java CPI-C . 89

Supplied Parameters . 89

Returned Parameters . 90

State When Issued . 90

State Change . 90

Usage Notes . 90

Initialize_For_Incoming (cminic) . 90

Function Call . 91

Function Call for Java CPI-C . 91

Supplied Parameters . 91

Returned Parameters . 91

State When Issued . 91

State Change . 91

Prepare_To_Receive (cmptr) . 91

Function Call . 92

Function Call for Java CPI-C . 92

Supplied Parameters . 92

Returned Parameters . 92

State When Issued . 93

State Change . 93

Usage Notes . 94

Receive (cmrcv) . 94

How a Program Receives Data . 94

Function Call . 95

Function Call for Java CPI-C . 95

Supplied Parameters . 95

Returned Parameters . 95

State When Issued . 99

State Change . 99

Usage Notes . 101

Release_Local_TP_Name (cmrltp) . 102

Function Call . 102

Function Call for Java CPI-C . 102

Supplied Parameters . 102

Returned Parameters . 102

State When Issued . 103

State Change . 103

Usage Notes . 103

Request_To_Send (cmrts) . 103

Action of the Partner Program . 103

When the Local Program Can Send Data . 103

Function Call . 104

Function Call for Java CPI-C . 104

Supplied Parameters . 104

Returned Parameters . 104

State When Issued . 104

State Change . 105

Usage Notes . 105

Send_Data (cmsend) . 105

Function Call . 105

Function Call for Java CPI-C . 106

Supplied Parameters . 106

Returned Parameters . 106

State When Issued . 107

State Change . 107

Usage Notes . 108

Send_Error (cmserr) . 108

viii IBM Communications Server for AIX CPI-C Programmer’s Guide

Function Call . 109

Function Call for Java CPI-C . 109

Supplied Parameters . 109

Returned Parameters . 109

State When Issued . 111

State Change . 111

Usage Notes . 112

Set_Conversation_Context (cmsctx) . 113

Function Call . 113

Function Call for Java CPI-C . 113

Supplied Parameters . 113

Returned Parameters . 113

State When Issued . 114

State Change . 114

Usage Notes . 114

Set_Conversation_Security_Password (cmscsp) . 114

Function Call . 114

Function Call for Java CPI-C . 114

Supplied Parameters . 115

Returned Parameters . 115

State When Issued . 115

State Change . 115

Usage Notes . 116

Set_Conversation_Security_Password (xcscsp) . 116

Set_Conversation_Security_Type (cmscst) . 116

Function Call . 116

Function Call for Java CPI-C . 116

Supplied Parameters . 117

Returned Parameters . 117

State When Issued . 118

State Change . 118

Usage Notes . 118

Set_Conversation_Security_Type (xcscst) . 118

Set_Conversation_Security_User_ID (cmscsu) . 118

Function Call . 119

Function Call for Java CPI-C . 119

Supplied Parameters . 119

Returned Parameters . 119

State When Issued . 120

State Change . 120

Usage Notes . 120

Set_Conversation_Security_User_ID (xcscsu) . 120

Set_Conversation_Type (cmsct) . 120

Function Call . 120

Function Call for Java CPI-C . 121

Supplied Parameters . 121

Returned Parameters . 121

State When Issued . 122

State Change . 122

Usage Notes . 122

Set_CPIC_Side_Information (xcmssi) . 122

Function Call . 122

Supplied Parameters . 122

Returned Parameters . 125

State When Issued . 125

State Change . 125

Usage Notes . 125

Set_Deallocate_Type (cmsdt) . 125

Function Call . 125

Function Call for Java CPI-C . 126

Supplied Parameters . 126

Contents ix

Returned Parameters . 127

State When Issued . 127

State Change . 127

Usage Notes . 127

Set_Error_Direction (cmsed) . 128

Function Call . 128

Function Call for Java CPI-C . 128

Supplied Parameters . 128

Returned Parameters . 128

State When Issued . 129

State Change . 129

Usage Notes . 129

Set_Fill (cmsf) . 129

Function Call . 129

Function Call for Java CPI-C . 129

Supplied Parameters . 130

Returned Parameters . 130

State When Issued . 130

State Change . 131

Usage Notes . 131

Set_Local_LU_Name (cmslln) . 131

Function Call . 131

Function Call for Java CPI-C . 131

Supplied Parameters . 131

Returned Parameters . 132

State When Issued . 132

State Change . 132

Usage Notes . 132

Set_Log_Data (cmsld) . 132

Function Call . 132

Function Call for Java CPI-C . 132

Supplied Parameters . 133

Returned Parameters . 133

State When Issued . 133

State Change . 133

Usage Notes . 134

Set_Mode_Name (cmsmn) . 134

Function Call . 134

Function Call for Java CPI-C . 134

Supplied Parameters . 134

Returned Parameters . 135

State When Issued . 135

State Change . 135

Usage Notes . 135

Set_Partner_LU_Name (cmspln) . 136

Function Call . 136

Function Call for Java CPI-C . 136

Supplied Parameters . 136

Returned Parameters . 137

State When Issued . 137

State Change . 137

Usage Notes . 137

Set_Prepare_To_Receive_Type (cmsptr) . 137

Function Call . 137

Function Call for Java CPI-C . 137

Supplied Parameters . 138

Returned Parameters . 138

State When Issued . 139

State Change . 139

Usage Notes . 139

Set_Processing_Mode (cmspm) . 139

x IBM Communications Server for AIX CPI-C Programmer’s Guide

Function Call . 140

Supplied Parameters . 140

Returned Parameters . 140

State When Issued . 141

State Change . 141

Usage Notes . 141

Set_Receive_Type (cmsrt) . 141

Function Call . 141

Function Call for Java CPI-C . 141

Supplied Parameters . 141

Returned Parameters . 142

State When Issued . 142

State Change . 142

Usage Notes . 142

Set_Return_Control (cmsrc) . 142

Function Call . 142

Function Call for Java CPI-C . 142

Supplied Parameters . 143

Returned Parameters . 143

State When Issued . 143

State Change . 143

Usage Notes . 144

Set_Send_Type (cmsst) . 144

Function Call . 144

Function Call for Java CPI-C . 144

Supplied Parameters . 144

Returned Parameters . 145

State When Issued . 145

State Change . 145

Usage Notes . 145

Set_Sync_Level (cmssl) . 146

Function Call . 146

Function Call for Java CPI-C . 146

Supplied Parameters . 146

Returned Parameters . 146

State When Issued . 147

State Change . 147

Usage Notes . 147

Set_TP_Name (cmstpn) . 147

Function Call . 147

Function Call for Java CPI-C . 148

Supplied Parameters . 148

Returned Parameters . 148

State When Issued . 149

State Change . 149

Usage Notes . 149

Specify_Local_TP_Name (cmsltp) . 149

Function Call . 149

Function Call for Java CPI-C . 149

Supplied Parameters . 150

Returned Parameters . 150

State When Issued . 150

State Change . 150

Usage Notes . 150

Specify_Windows_Handle (xchwnd) . 151

Function Call . 151

Supplied Parameters . 151

Returned Parameters . 152

State When Issued . 152

State Change . 152

Test_Request_to_Send_Received (cmtrts) . 152

Contents xi

Function Call . 152

Function Call for Java CPI-C . 152

Supplied Parameters . 153

Returned Parameters . 153

State When Issued . 153

State Change . 153

Wait_For_Conversation (cmwait) . 153

Function Call . 154

Supplied Parameters . 154

Returned Parameters . 154

State When Issued . 155

State Change . 155

Usage Notes . 155

WinCPICCleanup . 156

Function Call . 156

Supplied Parameters . 156

Returned Values . 156

WinCPICIsBlocking . 156

Function Call . 156

Supplied Parameters . 157

Returned Values . 157

WinCPICSetBlockingHook . 157

Function Call . 157

Supplied Parameters . 157

Returned Values . 157

Usage . 157

WinCPICStartup . 158

Function Call . 158

Supplied Parameters . 158

Returned Values . 158

WinCPICUnhookBlockingHook . 159

Function Call . 159

Supplied Parameters . 159

Returned Values . 159

WinCPICSetEvent . 160

Function Call . 160

Supplied Parameters . 160

Returned Parameters . 160

Usage Notes . 160

WinCPICExtractEvent . 161

Function Call . 161

Supplied Parameters . 161

Returned Parameters . 161

Usage Notes . 161

Chapter 4. Sample CPI-C Transaction Programs 163

Processing Overview . 163

Pseudocode . 163

CSAMPLE1 (Invoking Program) . 163

CSAMPLE2 (Invoked TP) . 164

Testing the TPs . 164

Chapter 5. Sample Java CPI-C Transaction Program 167

Overview . 167

Compiling, Linking, and Running the Sample Program . 167

Appendix A. Return Code Values . 169

Appendix B. Common Return Codes . 171

Return Codes from Any Partner Program . 171

xii IBM Communications Server for AIX CPI-C Programmer’s Guide

Non-CPI-C LU 6.2 Partner Program . 175

Appendix C. Conversation State Changes . 177

Appendix D. Notices . 181

Trademarks . 183

Bibliography . 185

CS/AIX Version 6.3Publications . 185

IBM Communications Server for AIX Version 4 Release 2 Publications 186

IBM Redbooks . 186

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications 187

AnyNet/2 Sockets and SNA publications . 187

AIX Operating System Publications . 187

Systems Network Architecture (SNA) Publications . 187

Host Configuration Publications . 188

z/OS Communications Server Publications . 188

Multiprotocol Transport Networking publications . 188

TCP/IP Publications . 188

X.25 Publications . 189

APPC Publications . 189

Programming Publications . 189

Other IBM Networking Publications . 189

Index . 191

Communicating Your Comments to IBM . 195

Contents xiii

xiv IBM Communications Server for AIX CPI-C Programmer’s Guide

Tables

 1. Typographic Conventions . xx

 2. Mapping Between X/Open Functions and IBM CPI-C 2.0 Functions 2

 3. A Simple Mapped Conversation . 4

 4. Confirmation Processing . 5

 5. Changing Conversation States . 8

 6. Nonblocking Operation . 15

 7. Set_* Calls to Change Initial Conversation Characteristics 20

 8. Extract_* Calls and Actions . 25

 9. Calls to Add, Replace, Retrieve, or Delete Side Information 26

10. Changing Initial Conversation Characteristics . 27

11. Java CPI-C Constants . 38

12. State Changes for the Allocate Call . 54

13. State Changes for the Confirm Call . 60

14. State Changes for the Confirmed Call . 62

15. Conversation States When Issuing the Deallocate Call 68

16. State Changes for the Deallocate Call . 68

17. State Changes for the Prepare_To_Receive Call . 93

18. State Changes When the Receive Call Is Issued in Receive State 99

19. State Changes When the Receive Call Is Issued in Send State 100

20. State Changes When the Receive Call Is Issued in Send-Pending State 100

21. State Changes When the Receive Call Is Issued in Any Allowable State 100

22. State Changes Caused by a Data Transmission Error 101

23. State Changes for the Send_Data Call . 107

24. State Changes for the Send_Error Call . 112

25. Conversation State Changes . 178

© Copyright IBM Corp. 2000, 2005 xv

xvi IBM Communications Server for AIX CPI-C Programmer’s Guide

Figures

1. Communication between Programs . 2

2. Multiple Conversations . 12

© Copyright IBM Corp. 2000, 2005 xvii

xviii IBM Communications Server for AIX CPI-C Programmer’s Guide

About This Book

This book is a guide for developing C-language or Java®application programs that

use Common Programming Interface for Communications (CPI-C) to exchange

data in a Systems Network Architecture (SNA) environment. Communications

Server for AIX (hereafter referred to as CS/AIX) is an IBM®software product that

enables a server running AIX®to exchange information with other nodes on an

SNA network.

The CS/AIX implementation of CPI-C is based on IBM’s implementation of CPI-C

in its OS/2®products (with modifications for the AIX environment).

Programs written to use the CS/AIX implementation of CPI-C can exchange data

with programs written to use other implementations of CPI-C that adhere to the

SNA Logical Unit (LU) 6.2 architecture.

This book applies to V6.3 of CS/AIX running on AIX Version 5.2 and higher base

operating system.

To submit comments and suggestions about Communications Server for AIX CPI-C

Programmer’s Guide, use the Reader’s Comment Form located at the back of this

book. This form provides instructions for submitting your comments by mail, by

FAX, or by electronic mail.

Who Should Use This Book

This book is intended for experienced C or Java programmers who write Systems

Network Architecture (SNA) transaction programs for systems with CS/AIX.

Programmers may or may not have prior experience with SNA or the

communication facilities of CS/AIX.

Application programmers design and code transaction and application programs

that use the CS/AIX programming interfaces to send and receive data over an

SNA network. They should be thoroughly familiar with SNA, the remote program

with which the transaction or application program communicates, and the AIX or

Linux operating system programming and operating environments.

More detailed information about writing application programs is provided in the

manual for each API or (for back-level APIs) in Communications Server for AIX

Transaction Program Reference V4R2 (SC31–8212). For additional information about

CS/AIX publications, see the bibliography.

How to Use This Book

This section explains how information is organized and presented in this book.

Organization of This Book

This book is organized as follows:

v Chapter 1, “Concepts,” on page 1, introduces the fundamental concepts of CPI-C.

It is intended for programmers who are not familiar with CPI-C.

v Chapter 2, “Writing CPI-C Applications,” on page 19, contains general

information a CPI-C programmer needs when writing CPI-C Applications.

© Copyright IBM Corp. 2000, 2005 xix

v Chapter 3, “CPI-C Calls,” on page 47, describes each CPI-C call in detail. Each

description includes the following: purpose, parameters, conversation states in

which the call can be issued, and conversation state changes after the call has

executed. Differences between the implementations of CPI-C for the different

operating systems are indicated where they occur.

v Chapter 4, “Sample CPI-C Transaction Programs,” on page 163, describes the

CS/AIX CPI-C sample programs that illustrate the use of CPI-C calls in a C

program, and includes instructions for compiling, linking, and running the

programs.

AIX, LINUX

v Chapter 5, “Sample Java CPI-C Transaction Program,” on page 167, describes the

CS/AIX Java CPI-C sample program that illustrates the use of CPI-C calls in a

Java application, and includes instructions for compiling, linking, and running

the program.

v Appendix A, “Return Code Values,” on page 169, lists all the possible return

codes in the CPI-C interface in numerical order and gives their meanings.

v Appendix B, “Common Return Codes,” on page 171, documents certain return

codes that are common to several calls.

v Appendix C, “Conversation State Changes,” on page 177, provides information

about CPI-C conversation states: which CPI-C calls are permitted in each state,

and the state to which the conversation changes on return from each call.

Typographic Conventions

Table 1 shows the typographic styles used in this document.

 Table 1. Typographic Conventions

Special Element Sample of Typography

Document title Communications Server for AIX Administration

Guide

File or path name cmc.h

Command or AIX / Linux utility vi

Option or flag -I

Parameter or Motif field data_received; request_to_send_received

Literal value or selection that the user can

enter (including default values)

0; 32,767

Constant or signal CM_NONE

Return value CM_OK; CM_PRODUCT_SPECIFIC_ERROR

Variable representing a supplied value functionname

Environment variable APPCTPN

Programming verb RECEIVE

User input cc -I

Function, call, or entry point WinCPICSetEvent

Data structure WCPICDATA

Hexadecimal value 0x20

Graphic Conventions

AIX, LINUX

How to Use This Book

xx IBM Communications Server for AIX CPI-C Programmer’s Guide

This symbol is used to indicate the start of a section of text that applies only to the

AIX or Linux operating system. It applies to AIX servers and to the IBM Remote

API Client running on AIX, Linux, Linux for pSeries or Linux for zSeries.

WINDOWS

This symbol is used to indicate the start of a section of text that applies to the IBM

Remote API Client on Windows.

This symbol indicates the end of a section of operating system specific text. The

information following this symbol applies regardless of the operating system.

What’s New

Communications Server for AIX V6.3 replaces Communications Server for AIX

V6.1.

Releases of this product that are still supported are:

v Communications Server for AIX V6.1

The following releases of this product are no longer supported:

v Communications Server for AIX Version 6 (V6)

v Communications Server for AIX Version 5 (V5)

v Communications Server for AIX Version 4 Release 2 (V4R2)

v Communications Server for AIX Version 4 Release 1 (V4R1)

v SNA Server for AIX Version 3 Release 1.1 (V3R1.1)

v SNA Server for AIX Version 3 Release 1 (V3R1)

v AIX SNA Server/6000 Version 2 Release 2 (V2R2)

v AIX SNA Server/6000 Version 2 Release 1 (V2R1) on AIX 3.2

v AIX SNA Services/6000 Version 1

Where to Find More Information

See the bibliography for other books in the CS/AIX library, as well as books that

contain additional information about topics related to SNA and AIX workstations.

The information in the CS/AIX books is also available in HTML format. You can

use this library to search for specific information or to view online versions of each

of the CS/AIX books.

How to Use This Book

About This Book xxi

xxii IBM Communications Server for AIX CPI-C Programmer’s Guide

Chapter 1. Concepts

This chapter introduces the fundamental concepts of CPI-C in a distributed

processing environment. The following topics are covered:

v What is CPI-C?

v An example of a simple mapped conversation

v Confirmation processing

v Conversation states

v How to change conversation states

v Side information

v Basic conversations

v Multiple conversations

v Conversation security

v Nonblocking operation

v CPI-C and LU 6.2

What Is CPI-C?

CPI-C stands for Common Programming Interface for Communications. CPI-C is a

portable application programming interface, or API, that enables peer-to-peer

communications among programs in an SNA environment.

CPI-C enables application programs distributed across a network to work together.

By communicating with each other and exchanging data, they can accomplish a

single processing task, such as querying a remote data base, copying a remote file,

or sending or receiving electronic mail.

These programs communicate as peers, on an equal (rather than hierarchical) basis.

Together, programs distributed across a local-area or wide-area network perform

distributed processing.

CS/AIX CPI-C Option Set Support

AIX, LINUX

For C programs (not for Java programs), CS/AIX CPI-C implements IBM’s CPI-C

2.0. It supports the mandatory CPI-C 2.0 conformance class, Conversations, and the

following optional conformance classes:

v LU 6.2

v Conversation-level nonblocking operation

v Server

v Data conversion routines

v Security

In addition, CS/AIX CPI-C provides support for additional functions that were

defined as part of the X/Open CPI-C implementation and have been incorporated

into IBM CPI-C 2.0. CS/AIX supports these entry points for back-compatibility

with existing CPI-C applications. Wherever possible, CPI-C programmers should

© Copyright IBM Corp. 2000, 2005 1

use the IBM CPI-C 2.0 versions of the functions. The mapping between the

X/Open functions and the IBM CPI-C 2.0 functions is shown in Table 2.

 Table 2. Mapping Between X/Open Functions and IBM CPI-C 2.0 Functions

X/Open Function IBM CPI-C 2.0 Function

Extract_Conversation_Security_User_ID (xcecsu) Extract_Security_User_ID (cmesui)

Set_Conversation_Security_Password (xcscsp) Set_Conversation_Security_Password (cmscsp)

Set_Conversation_Security_Type (xcscst) Set_Conversation_Security_Type (cmscst)

Set_Conversation_Security_User_ID (xcscsu) Set_Conversation_Security_User_ID (cmscsu)

For Java programs, CS/AIX implements Java CPI-C as in IBM’s CS/Windows

product (the package COM.ibm.eNetwork.cpic). It also includes three additional

CPI-C functions (Set_Conversation_Context, Set_Local_LU_Name, and

Extract_Local_LU_Name) which are part of the standard CS/AIX CPI-C

implementation but are not included in CS/Windows.

WINDOWS

CS/AIX CPI-C on Windows implements Windows CPI-C (as defined by the WOSA

SNA specification).

Communication between Programs

Many hardware and software elements in the SNA environment are required in

order for two programs to communicate with each other. The following diagram

illustrates the elements relevant to programmers.

Logical Unit 6.2

Each program is associated with a logical unit (LU), which is the program’s access

point into the network. CPI-C uses LU type 6.2, which supports peer-to-peer

communications between LUs. Several programs can be associated with the same

LU.

Program A Program A

LU 1 LU 2

Conversation

Session

Figure 1. Communication between Programs

What Is CPI-C?

2 IBM Communications Server for AIX CPI-C Programmer’s Guide

Sessions

Before two programs can communicate, their LUs must be connected through an

LU-to-LU session—a logical connection between the two LUs. The session is

established using a particular mode—a set of networking characteristics that

determines how the LUs use the session.

An LU type 6.2 can have multiple sessions (two or more concurrent sessions with

different partner LUs) and parallel sessions (two or more concurrent sessions with

the same partner LU). During configuration, the System Administrator or user

determines how many sessions a particular LU supports and whether the LU

supports parallel sessions.

Conversations

The communication between the two programs occurs as a conversation within the

LU-to-LU session. A program can be involved in several conversations

simultaneously.

Contention

When both LUs attempt to allocate a conversation on the same session at the same

time, one must win (the contention winner) and one must lose (the contention

loser). The mode used by the two LUs specifies the number of contention winner

and contention loser sessions for each LU; the contention winner LU and the

contention loser LU are determined when the session is established.

In a session, the contention loser LU must ask permission from the contention

winner LU before allocating a conversation. The contention winner may or may

not grant permission. The contention winner LU, on the other hand, simply

allocates a conversation when desired.

Characteristics

A conversation has a set of internal values that control the overall operation of the

conversation and the behavior of individual calls. These values are called

characteristics.

CPI-C Calls

A program accesses CPI-C through CPI-C calls. Each call performs a particular

action such as starting or ending a conversation, sending or receiving data, setting

an option that determines how subsequent CPI-C calls will operate, or obtaining

information about the options currently in use. On each call, the program supplies

parameters to CPI-C, which performs the requested function and returns new

parameters to the program.

The program issuing the call is referred to as the local program; the other program

is referred to as the partner program. Similarly, the LU serving the local program is

the local LU; the LU serving the partner program is the partner LU.

Programs and LUs residing on other nodes in the network are also called remote

programs and remote LUs.

The Conversation Process

A conversation begins when both of the following happen:

v One program (the invoking program) instructs CS/AIX to start another program

(the invoked program) and allocate a conversation between the two programs.

What Is CPI-C?

Chapter 1. Concepts 3

v The invoked program notifies CS/AIX that it is ready to communicate with the

invoking program.

During the conversation, the two programs exchange status information and

application data. Typically, a conversation ends when a program instructs CS/AIX

to deallocate the conversation.

Conversation Types

A conversation can be mapped or basic.

In general, mapped conversations are used by application programs. These are

programs that accomplish tasks for end users. Mapped conversations are less

complex than basic conversations. In a mapped conversation, the programs send

and receive data one record at a time.

Basic conversations are normally used by service programs. These are programs

that provide services to other local programs. Basic conversations provide an

experienced LU 6.2 programmer with a greater degree of control over the

transmission and handling of data. For further information, see “Basic

Conversations” on page 11.

A Simple Mapped Conversation

The example below charts a simple mapped conversation. It shows the CPI-C calls

used to start the conversation, exchange data, and end it. The arrow indicates the

flow of data. Some call parameters and some return codes are also shown,

enclosed in parentheses.

 Table 3. A Simple Mapped Conversation

Invoking Program Invoked Program

Initialize_Conversation

Allocate

Send_Data

Deallocate

→

Accept_Conversation

Receive

(data_received=CM_COMPLETE_DATA_RECEIVED)

(return_code=CM_DEALLOCATED_NORMAL)

Starting a Conversation

To start a conversation, the invoking program issues the following calls:

v Initialize_Conversation, which requests CPI-C to set the characteristics of the

conversation.

The Initialize_Conversation call specifies a symbolic destination name, which is

associated with a CPI-C side information entry in the CS/AIX configuration.

This entry specifies partner program, partner LU, mode, and security

information.

v Allocate, which requests that CS/AIX establish a conversation between the

invoking program and the invoked program.

What Is CPI-C?

4 IBM Communications Server for AIX CPI-C Programmer’s Guide

The invoked program issues the Accept_Conversation call, which informs CS/AIX

that the invoked program is ready to begin a conversation with the invoking

program.

Sending Data

The Send_Data call puts one data record (containing application data to be

transmitted) into the local LU’s send buffer which already contains the allocation

request. The transmission of the data to the partner program does not happen until

one of the following events occurs:

v The send buffer fills up

v The program issues a call that forces CS/AIX to flush the buffer (and send the

data to the partner program)

The Deallocate call flushes the send buffer sending the allocation request and data

to the partner program.

Receiving Data

The Receive call receives the data record and status information from the partner

program. If no data or status information is currently available, the local program,

by default, waits for data to arrive.

The data_received parameter of the Receive call tells the program whether it

received data and if so, whether the data is complete or not.

Ending a Conversation

To end a conversation, one of the programs issues the Deallocate call, which causes

CS/AIX to deallocate the conversation between the two programs.

Confirmation Processing

When a program sends data to its partner program, it can also request the partner

program to confirm that it has received the data successfully. The receiving

program must either confirm receipt of the data or indicate that an error has

occurred. The two programs are synchronized each time they exchange a

confirmation request and response. This is illustrated in Table 4.

 Table 4. Confirmation Processing

Invoking Program Invoked Program

Initialize_Conversation

Set_Sync_Level

(sync_level=CM_CONFIRM)

Allocate

Send_Data

Confirm

→

Accept_Conversation

Receive

(data_received=CM_COMPLETE_DATA_RECEIVED)

(status_received=CM_CONFIRM_RECEIVED)

Confirmed

←

(return_code=CM_OK)

Send_Data

A Simple Mapped Conversation

Chapter 1. Concepts 5

Table 4. Confirmation Processing (continued)

Invoking Program Invoked Program

Deallocate

→

Receive

(status_received=CM_CONFIRM_DEALLOC_RECEIVED)

Confirmed

←

(return_code=CM_OK)

Establishing the Synchronization Level

The synchronization level is one of the conversation’s characteristics. There are two

possible synchronization levels:

v CM_NONE, the default, under which confirmation processing does not occur

v CM_CONFIRM, under which the programs can request confirmation of receipt of

data and respond to such requests

The default synchronization level is CM_NONE; you can override this using the

Set_Sync_Level call.

Sending a Confirmation Request

Issuing the Confirm call does the following:

v It flushes the local LU’s send buffer (which sends any data contained in the

buffer to the partner program)

v It sends a confirmation request, which the partner program receives through the

status_received parameter of a Receive call

After issuing the Confirm call, the invoking program waits for confirmation from

the invoked program.

Receiving a Confirmation Request

The status_received parameter of the Receive call indicates any future action

required by the local program.

In the previous example, the first Received call has a status_received of

CM_CONFIRM_RECEIVED, indicating that a confirmation is required before the partner

program can continue.

Responding to a Confirmation Request

The invoked program issues the Confirmed call to confirm receipt of data; this

frees the invoking program to resume processing.

Deallocating the Conversation

Because the synchronization level of the conversation is set to CM_CONFIRM, the

Deallocate call sends a confirmation request with the data flushed from the buffer.

For the second Receive call, status_received is CM_CONFIRM_DEALLOC_RECEIVED,

indicating that the partner program requires a confirmation, generated by the

Confirmed call, before the conversation can be deallocated.

Confirmation Processing

6 IBM Communications Server for AIX CPI-C Programmer’s Guide

Conversation States

The state of the conversation governs which CPI-C calls can be issued by the

program. For instance, a program cannot issue the Send_Data call if the

conversation is not in Send or Send-Pending state. Possible conversation states are

summarized in the list below.

Reset The conversation has not started or has been terminated.

Initialize

The conversation has been initialized successfully.

Send The program can send data to the partner program and request

confirmation. When the conversation is in Send state, the program can also

begin to receive data, which can cause the state to change to Receive.

Send-Pending

The program issued a Receive call and received data as well as a send

indicator (status_received = CM_SEND_RECEIVED), indicating that the program

can begin to send data. This state is similar to Send state, except that the

program can provide additional information when reporting errors (to

indicate whether it detected an error in the received data or in its own

processing).

Receive

The program can receive application data and status information from the

partner program. When the conversation is in Receive state, the program

can also send error information and request permission to send data.

Confirm

The program has received a request for confirmation of receipt of data; it

must respond positively or send error information to the partner program.

Confirm-Deallocate

The program has received a request for confirmation and must respond

positively or send error information. If the program responds positively,

the partner program deallocates the conversation.

Confirm-Send

The program has received a request for confirmation; it must respond

positively or send error information. After responding, the program can

begin to send data.

AIX, LINUX

Initialize-Incoming

The program has successfully issued Initialize_For_Incoming and obtained

a conversation ID. It can now issue Accept_Incoming to accept an

incoming conversation.

WINDOWS

Pending-Post

The program has successfully issued the Receive call in nonblocking mode.

While the call is outstanding, it can issue a limited range of CPI-C calls on

this conversation, issue CPI-C calls on other conversations, or continue

with other processing.

Conversation States

Chapter 1. Concepts 7

The description of each CPI-C call includes information about the conversation

states in which it can be issued. For a table of which verbs can be issued in each

conversation state, see Appendix C, “Conversation State Changes,” on page 177.

The Program’s View of the Conversation

It is the conversation rather than the program that is in a particular state. A

program can be conducting several conversations, each of which is in a different

state. If a conversation is said to be in Send state, this is from the viewpoint of the

local program. To the partner program, the conversation is in another state (such as

Receive).

State Changes

A change in the conversation state can result from any of the following:

v A call issued by the local program

v A call issued by the partner program

v An error condition

State Checks

A state check occurs when a program issues a CPI-C call, and the conversation is

not in the appropriate state. For instance, a state check would occur if a program

issued the Send_Data call while the conversation was in Receive state. When a

state check occurs, CPI-C does not execute the call; it returns state-check

information through the return_code parameter.

Changing Conversation States

In Table 5, the conversation states appear in the left and right margins. This table

shows how CPI-C calls can change the state of the conversation from Send to

Receive and from Receive to Send.

 Table 5. Changing Conversation States

State Invoking Program Invoked Program State

Reset

Initialize_Conversation

Initialize

Set_Sync_Level

(sync_level=CM_CONFIRM)

Allocate

Send

Send_Data

Prepare_To_Receive Reset

→

Accept_Conversation

Receive

Receive

(status_received=CM_CONFIRM_SEND_RECEIVED)

Confirm-
Send

Confirmed

←

Send

(return_code=CM_OK)

Conversation States

8 IBM Communications Server for AIX CPI-C Programmer’s Guide

Table 5. Changing Conversation States (continued)

State Invoking Program Invoked Program State

Receive

Send_Data

Confirm

←

Receive

(status_received=

CM_CONFIRM_RECEIVED)

Confirm

Request_To_Send

Confirmed

→

Receive

(return_code=CM_OK)

(request_to_send_received=

CM_REQ_TO_SEND_RECEIVED)

Prepare_To_Receive

←

Receive

(status_received=

CM_CONFIRM_SEND_RECEIVED)

Confirm-
Send

Confirmed

→

Send

(return_code=CM_OK)

Receive

Send_Data

Deallocate

→

Receive

(status_received=

CM_CONFIRM_DEALLOC_RECEIVED)

Confirm-
Deallocate

Confirmed

←

Reset

(return_code=CM_OK)

Reset

Initial States

Before the conversation is allocated, both programs are in Reset state.

After the conversation is allocated, the initial state is Send for the invoking

program and Receive for the invoked program.

Changing to Receive State

The Prepare_To_Receive call enables a program to change the conversation from

Send to Receive state. This call does the following:

v It flushes the local LU’s send buffer.

v If the synchronization level is set to CM_CONFIRM, the Prepare_To_Receive call

sends a CM_CONFIRM_SEND indicator to the partner program through the

Changing Conversation States

Chapter 1. Concepts 9

status_received parameter of a Receive call. This indicator tells the partner

program that a Confirmed response is expected before the partner program can

begin to send data.

Changing to Send State

The conversation state for a program changes from Receive to Send when its

partner program begins to receive data (by issuing the Prepare_To_Receive call).

The local program (for which the conversation is in Receive state) can inform the

partner program that it wants to send data, by issuing the Request_To_Send call.

This request is communicated to the partner program through the

request_to_send_received parameter. (In the previous example, this parameter is

shown on the Confirm call; it is also returned to Send_Data and other calls.)

Issuing the Request_To_Send call does not change the state of the conversation,

because the partner program can ignore it. When the partner program issues the

Prepare_To_Receive call, the conversation state changes to Receive for the partner

program. The local program receives the SEND indication on a subsequent

RECEIVE verb, and can then send data.

Side Information

The information required for two programs to communicate is stored in CPI-C side

information entries in the CS/AIX configuration file. Each side information entry is

identified by a Symbolic Destination Name, which is the sym_dest_name parameter

specified by the Initialize_Conversation call. The parameter sym_dest_name is an

8-byte ASCII character string and can contain any displayable characters. It

contains the following fields:

v Partner LU name

v Partner program type and name

v Mode name

v Conversation security type (see “Multiple Conversations” on page 12)

v Security user ID and password required to access the partner program

CPI-C also provides two mechanisms for an application to override the configured

side information entries, as follows. Both of these mechanisms apply only to the

application’s own use of this information, and do not modify the original version

stored in the configuration file.

v The application can use the Set_CPIC_Side_Information,

Extract_CPIC_Side_Information, and Delete_CPIC_Side_Information calls to

manage its own local copy of complete side information entries. (These functions

are not available in Java CPI-C.)

v The application can use CPI-C Set_* functions (such as Set_Partner_LU_Name)

to override an individual parameter from the side information before allocating

the conversation.

For more information, see “Side Information” on page 30.

Changing Conversation States

10 IBM Communications Server for AIX CPI-C Programmer’s Guide

Basic Conversations

Basic conversations are normally used by service programs. These are programs

that provide services to other local programs. They are more complex than mapped

conversations but provide an experienced LU 6.2 programmer with a greater

degree of control over the transmission and handling of data. This section

summarizes the characteristics of basic conversations.

Logical Records

In a basic conversation, data is sent in the form of logical records. A logical record

is a record that has the general data stream (GDS) syntax described in this section.

For more information about GDS syntax, refer to IBM Systems Network Architecture:

Formats.

The sending TP must format the data into multiple logical records, and the

receiving TP must decode the logical records into usable data.

If a logical record is a single record, it consists of the following fields:

v A 2-byte record-length (LL) field

v A 2-byte GDS identifier (ID) field (for example, 0x12FF identifies the data as

application data)

v A data field that can range in length from 0 to 32,763 bytes

The first four bytes are called the LLID.

If a logical record has multiple parts, the first part has the same format as a single

record, and all subsequent parts consist of the following fields:

v A 2-byte record-length (LL) field

v A data field that can range in length from 0 to 32,765 bytes

The length recorded in the LL field includes the two bytes of the LL field (and the

two bytes of the ID field, if it is present). For example, a single part GDS with no

data has a value of 0x0004 for its LL field. The LL field must be in high-low

format, rather than byte-swapped format. For example, a length of 230 bytes is

represented as 0x00E6, rather than 0xE600.

Bit 0 of byte 0 of the LL (the most significant bit) is used to indicate length

continuation (segmentation). The following example shows ten bytes of data (each

data byte has the value DD) split into three GDS segments. The first and second

segments each contain four bytes of data, and the last segment contains two bytes

of data.

 The following values for the LL field are not valid:

v 0x0000

v 0x0001

v 0x8000

v 0x8001

8008 12FF DDDD DDDD

8006 DDDD DDDD

0004 DDDD

Basic Conversations

Chapter 1. Concepts 11

Error Log Data

In case of an error or abend in a basic conversation, a program can send an error

message, in the form of a general data stream (GDS) error log variable, to the

partner LU.

Multiple Conversations

A program can be involved in several conversations simultaneously. Each

conversation requires an LU-to-LU session. Multiple conversations are not

supported if the application uses a dependent LU (for more information, see

“Specifying the Local LU” on page 34).

A common use of multiple conversations is to have an invoked program invoke

another program, which, in turn, invokes another program, and so on. In the

diagram below, program A invokes program B; program B invokes program C.

 For more information about how CPI-C conversation security operates with

multiple conversations, see “Overview of Conversation Security.”

Overview of Conversation Security

You can use conversation security to require that the invoking program provide a

user ID and password before CPI-C allocates a conversation with the invoked TP.

In configuring the invoked TP, the System Administrator indicates whether to use

conversation security. If so, the invoking TP must provide a user ID and password

when allocating a conversation with the invoked program. These are either taken

from the side information or specified explicitly by the invoking program, and

must match a user ID and password configured for the invoked program.

CS/AIX also supports LU-LU session security, which provides security checking

when starting the session between the local and remote LUs. LU-LU session

security is specified during configuration, and does not require any action in CPI-C

programs. For more information, refer to the Communications Server for AIX

Administration Guide.

Program A Program B

LU 1 LU 2

Conversation

Session

Program C

LU 3

Conversation

Session

Figure 2. Multiple Conversations

Basic Conversations

12 IBM Communications Server for AIX CPI-C Programmer’s Guide

Conversation Security for Multiple Conversations

In the example shown in “Multiple Conversations” on page 12, when program A

invokes program B and B then invokes C as a result of the conversation with A,

the configuration of C may indicate that it will accept an “already-verified”

security indication. In this case, the user ID and password supplied by A must still

be verified against the configuration for B. However, when B invokes C, it sets the

security_type conversation characteristic to “same”, and CPI-C sends to C the user

ID supplied by A and an indication that security has already been verified. For

more information, see “Set_Conversation_Security_Type (cmscst)” on page 116.

AIX, LINUX

If the program is involved in more than one pair of incoming and outgoing

conversations in this way, it needs to indicate which incoming conversation is to

provide the user ID for an outgoing conversation. To do this, CPI-C associates each

conversation with a specific “context ID”. This is assigned and used as follows:

v Each time the program successfully issues Accept_Conversation or

Accept_Incoming, CPI-C assigns a new context ID to the conversation. The

program can determine the value of this context ID by issuing

Extract_Conversation_Context with the appropriate conversation ID.

v The program’s “current context” is normally the context ID associated with the

most recent Accept_Conversation or Accept_Incoming. The program can use

Set_Conversation_Context to set the current context to the context ID of another

of its incoming conversations (subject to the restriction described below).

v Any Allocate call is issued in the program’s current context. This means that, if

the conversation security type is “same”, the user ID from the incoming

conversation associated with the current context ID will be sent to the partner

program.

In the previous example, program B must ensure that its current context is the

context associated with the incoming conversation from program A, before issuing

the Allocate call to program C. This ensures that A’s user ID is sent on the

allocation request to program C. The current context will normally be the correct

one, unless B has issued another Accept_Conversation, Accept_Incoming, or

Set_Conversation_Context call since accepting the conversation from A.

When a program uses Set_Conversation_Context to change its current context,

CS/AIX does not retain the information from the previous context unless there is

still at least one active conversation associated with it. This means that, if B

finishes the conversation with A and then changes its current context to

communicate with a different program, it will not be able to return to the first

context ID in order to allocate the conversation with C. If it needs to end the

conversation with A before allocating the conversation to C, it must allocate the

conversation to C before changing its current context to any other value.

Already-Verified Conversation Security

AIX, LINUX

Overview of Conversation Security

Chapter 1. Concepts 13

In some cases, a program may need to indicate “already verified” security when it

has not itself been invoked by another program, but has obtained and verified the

appropriate security information by another means (for example, by a user

entering a user ID and password during a logon sequence). CS/AIX supports this

as follows:

v If the program specifying “already verified” was itself invoked by another

program, as described in “Conversation Security for Multiple Conversations” on

page 13, CPI-C sends the user ID from the current conversation context.

v Otherwise, CPI-C takes the AIX or Linux user name with which the program is

running, truncated to 10 characters if necessary, and uses this as the

conversation security user ID. Ensure that this name consists of valid AE-string

characters and is a valid user name for the program being invoked.

v If the application uses a different method of obtaining the security information

(for example, if it requires the user to specify a user ID and password explicitly,

rather than relying on the AIX or Linux system security), then it can use either

of the CPI-C functions Set_Conversation_Security_User_ID or

Set_CPIC_Side_Information to specify this user_id to CPI-C before allocating the

conversation.

Nonblocking Operation

AIX, LINUX

This section does not apply to Java CPI-C. Java CPI-C functions always operate in

blocking mode; that is, the function does not return control to the application until

the requested processing has completed.

By default, CPI-C functions operate in blocking mode; that is, the function does not

return control to the application until the requested processing has completed. For

example, the Confirm function does not return until CPI-C has sent a confirmation

request to the partner application and received either an OK or an error response

from it.

CPI-C functions can also operate in nonblocking mode; that is, the function returns

control to the application immediately, even if the requested processing has not yet

completed. This enables the application to continue with other processing that is

not related to this conversation, and obtain the results of the verb processing at a

later stage.

AIX, LINUX

The application can use the function Check_For_Completion to determine whether

a previous nonblocking function has now completed, or Wait_For_Conversation to

wait for it to complete. Table 6 on page 15 shows an example of the use of

nonblocking mode.

Overview of Conversation Security

14 IBM Communications Server for AIX CPI-C Programmer’s Guide

Table 6. Nonblocking Operation

Invoking Program Invoked Program

Initialize_Conversation

Allocate

Send_Data

Set_Processing Mode (CM_NON_BLOCKING)

Confirm

→

(return_code=CM_OPERATION_INCOMPLETE)

[Application can perform other processing not

related to this conversation.]

Accept_conversation

Receive

(data_received=CM_COMPLETE_DATA_RECEIVED)

(status_received=CM_CONFIRM_RECEIVED)

Wait_For_Conversation

[Application is suspended until processing for the

previous Confirm has completed]

Confirmed

←

(Wait_For_Conversation returns,

return_code=CM_OK,

conversation_return_code=CM_OK)

Send_Data

Deallocate

→

(return_code=CM_OPERATION_INCOMPLETE)

[Application performs other processing not

related to this conversation.]

Receive

(status_received=

CM_CONFIRM_DEALLOC_RECEIVED)

Confirmed

←

Check for Completion

(return_code=CM_OK)

Wait_For_Conversation

(return_code=CM_OK,

conversation_return_code=CM_OK)

[Conversation is now deallocated.]

The following steps explain the processing shown in the previous example.

1. After allocating the conversation and sending some data, the invoking program

issues Set_Processing_Mode to set the processing mode to CM_NON_BLOCKING.

This indicates that subsequent functions on this conversation can operate in

nonblocking mode.

2. The invoking program then issues Confirm, which returns

CM_OPERATION_INCOMPLETE. This indicates that the function was issued

successfully and is operating in nonblocking mode.

3. The program can now perform other processing not related to this

conversation, including issuing CPI-C functions on other conversations. It can

also issue a limited range of CPI-C functions on this conversation (such as the

Extract_* functions). This is different from the IBM CPI-C 2.0 specification, in

which the program cannot issue any functions on this conversation other than

Wait_For_Conversation or Cancel_Conversation.

4. At some later time, the program issues Wait_For_Conversation to wait for the

previous nonblocking function to complete. Since the partner program has not

Nonblocking Operation

Chapter 1. Concepts 15

yet issued Confirmed, processing for the previous Confirm function has not

completed, so the invoking program is suspended.

5. When the partner program issues Confirmed, this completes the processing of

the invoking program’s Confirm function. The Wait_For_Conversation function

then returns. The return_code of CM_OK indicates that Wait_For_Conversation

completed successfully; the conversation return_code of CM_OK indicates that the

Confirm function (for which it was waiting) completed successfully.

6. After sending additional data, the invoking program then issues Deallocate,

which returns CM_OPERATION_INCOMPLETE. This indicates that the function was

issued successfully and is operating in nonblocking mode. As before, the

program can now perform other processing not related to this conversation, but

cannot issue most CPI-C functions on this conversation.

7. The partner program receives the Deallocate request and replies with

Confirmed. This completes the processing for the Deallocate function.

8. The invoking program issues Check_For_Completion, to determine whether

any previous nonblocking functions on any of its conversations have

completed. Since the Deallocate processing has already completed,

Check_For_Completion returns with the conversation_ID of this conversation.

9. The program then issues Wait_For_Conversation, to get the result of the

Deallocate processing. This returns immediately because the Deallocate

processing has already completed.

WINDOWS

The application should use the Specify_Windows_Handle function before issuing

any verbs in nonblocking mode. This function specifies a Windows handle to

which CPI-C sends a message when the verb processing has completed. This

message notifies the application that the verb has completed; there is no need for

the application to issue an additional call to wait for the results of the verb

processing.

CPI-C can use an alternate method to indicate the verb has completed—signaling

an event handle. If the application registers an event with the conversation using

WinCPICSetEvent, then the application can call the Win32 functions

WaitForSingleObject or WaitForMultipleObjects to wait to be notified of the

completion of the verb.

If the outstanding call is a Receive call, the application can issue the following calls

while Receive is outstanding:

v Request_To_Send

v Send_Error

v Test_Request_to_Send_Received

v Cancel_Conversation

v Deallocate

As an alternative to using Specify_Windows_Handle or WinCPICSetEvent as

described previously, the application can use Wait_For_Conversation, as for AIX

systems. This function is provided for Windows systems to assist in migrating

applications from other operating system environments. However, the use of

blocking functions such as Wait_For_Conversation in the Windows environment is

Nonblocking Operation

16 IBM Communications Server for AIX CPI-C Programmer’s Guide

strongly discouraged. If you are writing a new application specifically for the

Windows environment, use Specify_Windows_Handle and not

Wait_For_Conversation.

Note:

v Check_For_Completion, described previously for AIX or Linux systems, is

not supported on Windows systems.

v If the application uses one of the calls listed previously in nonblocking

mode while Receive is outstanding, it must use Specify_Windows_Handle.

It must not issue Wait_For_Conversation if another call is outstanding in

addition to Receive; the results of this call are undefined if more than one

call is outstanding on the same conversation.

CPI-C and LU 6.2

CPI-C applications can communicate with non-CPI-C LU 6.2 applications, such as

APPC.

CPI-C does not support the following features that are included in some LU 6.2

implementations:

v Sync Point/Back Out processing

v PIP data

v LOCKS=LONG

v MAP_NAME

v FMH_DATA

These must not be used in LU 6.2 applications if CPI-C is to communicate with

them.

Nonblocking Operation

Chapter 1. Concepts 17

18 IBM Communications Server for AIX CPI-C Programmer’s Guide

Chapter 2. Writing CPI-C Applications

This chapter contains information you will need when writing CPI-C application

programs. The following topics are covered:

v CPI-C call summary

v Initial conversation characteristics

v Side information

v Configuration

v Specifying the TP name and local LU name for a CPI-C program

v How programs get started

AIX, LINUX

v AIX or Linux considerations

v Java CPI-C considerations

WINDOWS

v Windows considerations

v Writing portable applications

CPI-C Call Summary

This section briefly describes each CPI-C call. They are grouped by function. For a

more detailed explanation of a particular call, see Chapter 3, “CPI-C Calls,” on

page 47.

The “names” of the calls are pseudonyms. The actual C function names appear in

parentheses after the pseudonym. For example Initialize_Conversation is the

pseudonym for a call. The actual function name is cminit.

It may also be necessary to set the local TP and LU names that the program will

use. For more information about this, see “Specifying the Local TP Name” on page

33 and “Specifying the Local LU” on page 34.

Starting a Conversation

The following calls are used to start a conversation between two programs. For

more information about this subject, see “How Programs Get Started” on page 36.

You may also need to set the local TP name and LU name that the program will

use. For information about setting these, see “Specifying the Local TP Name” on

page 33 and “Specifying the Local LU” on page 34.

WinCPICStartup

WINDOWS

© Copyright IBM Corp. 2000, 2005 19

This call registers the application as a Windows CPI-C application, and determines

whether the CPI-C software supports the level of function required by the

application. A Windows CPI-C application must use this call before issuing any

other CPI-C calls.

Initialize_Conversation (cminit)

This call is issued by the invoking program to obtain a conversation ID and to set

the initial values for the conversation’s characteristics. The initial values are

derived from side information associated with the symbolic destination name, or

are CPI-C defaults.

Initialize_For_Incoming (cminic)

This call is used by the invoked program to obtain a conversation ID for an

incoming conversation which it will later accept with Accept_Incoming. This

enables the program to issue Accept_Incoming in nonblocking mode, if required,

instead of using Accept_Conversation which always operates in blocking mode.

Set_* Calls to Change Initial Conversation Characteristics

After issuing the Initialize_Conversation call, the invoking program can change the

initial conversation characteristics by issuing any of the calls listed in Table 7.

These calls can only be issued in Initialize state.

 Table 7. Set_* Calls to Change Initial Conversation Characteristics

Call Sets

Set_Conversation_Type (cmsct) Conversation type

Set_Mode_Name (cmsmn) Mode name

Set_Partner_LU_Name (cmspln) Partner LU name

Set_TP_Name (cmstpn) Partner program’s TP name

Set_Return_Control (cmsrc) Return control

Set_Sync_Level (cmssl) Synchronization level

AIX, LINUX

Set_Conversation_Context (cmsctx) Conversation context (groups this

conversation with a previous one)

Set_Conversation_Security_Type (cmscst) Conversation security type

Set_Conversation_Security_User_ID (cmscsu) Security user ID

Set_Conversation_Security_Password

(cmscsp)

Security password

Allocate (cmallc)

This call is issued by the invoking program to allocate a conversation with the

partner program, using the current conversation characteristics. The type of

conversation allocated depends on the conversation type characteristic (mapped or

basic).

Accept_Conversation (cmaccp)

This call is issued by the invoked program to accept the incoming conversation

and set certain conversation characteristics. Upon successful execution of this call,

CPI-C generates and returns a conversation identifier. Accept_Conversation always

operates in blocking mode.

CPI-C Call Summary

20 IBM Communications Server for AIX CPI-C Programmer’s Guide

Accept_Incoming (cmacci)

AIX, LINUX

This call is issued by the invoked program to accept an incoming conversation for

which it previously issued Initialize_For_Incoming. It is similar to

Accept_Conversation, but can operate in nonblocking mode if required

(Accept_Conversation always operates in blocking mode).

Sending data

The following calls are used to send data to the partner program.

Set_Send_Type (cmsst)

This call sets the conversation’s send type. The send type specifies how data will

be sent by the Send_Data call. The Send_Data call can include the function of the

Flush, Confirm, Prepare_To_Receive, or Deallocate call (equivalent to issuing

Send_Data, followed by the other call), or it can simply send data without

performing any other function. The send type value affects all subsequent

Send_Data calls. It can be changed by issuing the Set_Send_Type call again.

Send_Data (cmsend)

This call puts data in the local LU’s send buffer for transmission to the partner

program.

If the send type (specified by the Set_Send_Type call) includes the function of the

Flush, Confirm, Prepare_To_Receive, or Deallocate call, the data is transmitted to

the partner LU (and partner program) immediately. Otherwise, the data

accumulates in the local LU’s send buffer, and is sent when one of the following

occurs:

v The send buffer fills up

v The local program issues one of the following calls, which flush the LU’s send

buffer:

– Flush

– Confirm

– Deallocate

– Prepare_To_Receive

– Receive (with the receive type set to CM_RECEIVE_AND_WAIT)

Flush (cmflus)

This call sends the contents of the local LU’s send buffer to the partner LU (and

program). If the send buffer is empty, no action takes place.

Confirm (cmcfm)

This call sends the contents of the local LU’s send buffer and a confirmation

request to the partner program and waits for confirmation.

Request_To_Send (cmrts)

This call notifies the partner program that the local program wants to send data.

The partner program can respond to this request by changing to Receive state so

that the local program changes to Send state, or can ignore the request.

CPI-C Call Summary

Chapter 2. Writing CPI-C Applications 21

Receiving Data

The following calls enable a program to receive data from its partner program.

Set_Prepare_To_Receive_Type (cmsptr)

This call sets the conversation’s prepare-to-receive type, which specifies whether

subsequent Prepare_To_Receive calls will include Flush or Confirm functionality.

The prepare-to-receive type affects all subsequent Prepare_To_Receive calls. It can

be changed by issuing the Set_Prepare_To_Receive_Type call again.

Prepare_To_Receive (cmptr)

This call changes the state of the conversation for the local program from Send to

Receive, making it possible for the local program to begin receiving data. Before

changing the conversation state, this call performs the equivalent of the Flush or

Confirm call.

Set_Receive_Type (cmsrt)

This call sets the conversation’s receive type, which specifies whether a program

issuing a Receive call will wait for data to arrive if data is not available. The

receive type value affects all subsequent Receive calls. It can be changed by issuing

the Set_Receive_Type call again.

Receive (cmrcv)

Issuing this call while the conversation is in Receive state causes the local program

to receive any data that is currently available from the partner program. If no data

is available and the receive type is set to CM_RECEIVE_AND_WAIT, the local program

waits for data to arrive. If the receive type is set to CM_RECEIVE_IMMEDIATE, the

program does not wait.

Issuing this call while the conversation is in Send or Send-Pending state is allowed

only if the receive type is set to CM_RECEIVE_AND_WAIT. This flushes the LU’s send

buffer and changes the conversation state to Receive. The local program then

begins to receive data.

Set_Fill (cmsf)

This call sets the conversation’s fill type, which specifies whether programs will

receive data in the form of logical records or as a specified length of data. It only

has an effect in basic conversations. The fill value affects all subsequent Receive

calls. It can be changed by issuing the Set_Fill call again.

Converting Data Between ASCII and EBCDIC

The following calls enable a program to translate local data from ASCII to EBCDIC

before sending it to the partner program, or translate data received from the

partner program from EBCDIC to ASCII. The program needs to use these functions

only if the partner program requires data to be in EBCDIC.

Convert_Incoming (cmcnvi)

This call converts an EBCDIC data string into ASCII.

Convert_Outgoing (cmcnvo)

This call converts an ASCII data string into EBCDIC.

WINDOWS

CPI-C Call Summary

22 IBM Communications Server for AIX CPI-C Programmer’s Guide

The program can also use the CSV CONVERT verb to convert data between ASCII

and EBCDIC. Refer to the Communications Server for AIX CSV Programmer’s Guide

for more information.

Confirming Receipt of Data and Reporting Errors

The following calls confirm receipt of data or report an error.

Confirmed (cmcfmd)

This call replies to a confirmation request from the partner program. It informs the

partner program that the local program has not detected an error in the received

data. Because the program issuing the confirmation request waits for a

confirmation, the Confirmed call synchronizes the processing of the two programs.

Set_Error_Direction (cmsed)

This call specifies whether a program detected an error while receiving data or

while preparing to send data. Error direction is relevant only when a program

issues the Send_Error call in Send-Pending state.

Set_Log_Data (cmsld)

This call specifies a log message (log data) and its length to be sent to the partner

LU. This call only has an effect in basic conversations. If present, log data is sent

when the Send_Error call is issued or when the conversation is abnormally

deallocated. After the log data is sent CPI-C resets the log data to null and the log

data length to 0 (zero).

Send_Error (cmserr)

This call notifies the partner program that the local program has encountered an

application-level error. The local program can use the Send_Error call for such

purposes as informing the partner program of an error encountered in received

data, rejecting a confirmation request, or truncating an incomplete logical record it

is sending.

Issuing Calls in Nonblocking Mode

AIX, LINUX

This section does not apply to Java CPI-C. Java CPI-C functions always operate in

blocking mode; that is, the function does not return control to the application until

the requested processing has completed. The functions described in this section are

not available in Java CPI-C.

The following calls enable the program to specify that subsequent CPI-C calls can

operate in nonblocking mode, to check whether a previous nonblocking call has

completed, or to wait for a nonblocking call to complete.

CPI-C Call Summary

Chapter 2. Writing CPI-C Applications 23

For details on using nonblocking mode, see “AIX or Linux Considerations” on

page 37and “Windows Considerations” on page 41. (See also “Cancel_Conversation

(cmcanc)” on page 26; this cancels a previous nonblocking call and also deallocates

the conversation.)

Set_Processing_Mode (cmspm)

This call sets the conversation’s processing mode to blocking (calls do not return

until processing has completed) or nonblocking (calls can return immediately even

though processing is not yet complete).

Check_For_Completion (cmchck)

AIX, LINUX

This call checks whether there is an outstanding nonblocking function on any of

the program’s conversations for which processing has completed. If there is such a

function, it returns the conversation ID of the appropriate conversation; the

program then calls Wait_For_Conversation to get the results of the nonblocking

function. This call enables the program to check for completion of nonblocking

functions without having to suspend (unlike Wait_For_Conversation, which

suspends until a function has completed). Check_For_Completion does not return

the results of the previous call; the program must use Wait_For_Conversation to do

this before it can issue further calls on this conversation.

Wait_For_Conversation (cmwait)

This call waits for processing of a previous nonblocking function to complete. If

the program is involved in multiple concurrent conversations, this call acts across

all conversations, and returns when a function completes on any of them.

WINDOWS

The Wait_For_Conversation call is supported on Windows systems for

compatibility with other Windows CPI-C implementations; however, new Windows

applications should use Specify_Windows_Handle (described below) instead of this

call.

Specify_Windows_Handle (xchwnd)

This call specifies a Windows handle to which CPI-C posts the results of

nonblocking functions. The application receives a message from CPI-C, sent to this

Windows handle, when a nonblocking function completes; it does not need to use

Wait_For_Conversation to obtain the results of verb completion.

Issuing Calls in Blocking Mode

The following calls enable a Windows program to manage how subsequent CPI-C

calls operate in blocking mode. (See also “Set_Processing_Mode (cmspm)”; this

specifies whether subsequent calls operate in blocking mode or nonblocking

mode.) For more information about blocking calls, see “Blocking Calls” on page 42.

WinCPICIsBlocking

Checks whether there is a blocking CPI-C call outstanding for this

application.

CPI-C Call Summary

24 IBM Communications Server for AIX CPI-C Programmer’s Guide

WinCPICSetBlockingHook

Specifies the blocking procedure that CPI-C uses while processing blocking

calls; this replaces CPI-C’s default blocking procedure. The blocking

procedure is called repeatedly until CPI-C has finished processing the call.

WinCPICUnhookBlockingHook

Unregisters the blocking procedure specified by a previous

WinCPICSetBlockingHook call, so that CPI-C reverts to using the default

blocking procedure.

Getting Information

The following calls provide information to programs.

Extract_* Calls

The Extract_* calls, listed in Table 8 retrieve information about the characteristics of

a specified conversation.

 Table 8. Extract_* Calls and Actions

Call Retrieves

Extract_Conversation_Security_Type

(xcecst)(not available in Java CPI-C)

Security type

Extract_Conversation_State (cmecs) Conversation state

Extract_Conversation_Type (cmect) Conversation type

AIX, LINUX

Extract_Conversation_Context (cmectx) Conversation context

Extract_Max_Buffer_Size (cmembs) Maximum size of data buffer used for

Send_Data and Receive calls

Extract_Security_User_ID (cmesui) Security user ID

WINDOWS

Extract_Conversation_Security_User_ID

(cmecsu)

Security user ID

Extract_Mode_Name (cmemn) Mode name

Extract_Partner_LU_Name (cmepln) Partner LU name

Extract_TP_Name (cmetpn) TP name that was specified on the incoming

Allocate request

Extract_Sync_Level (cmesl) Synchronization level

Test_Request_to_Send_Received (cmtrts)

This call determines whether a request-to-send notification has been received from

the partner program.

Ending a Conversation

The following calls end a conversation.

CPI-C Call Summary

Chapter 2. Writing CPI-C Applications 25

Set_Deallocate_Type (cmsdt)

This call specifies how the conversation is to be deallocated. The deallocation

instructions specified by this call take effect when the Deallocate call is issued or

when the send type is set to CM_SEND_AND_DEALLOCATE and the Send_Data call is

issued.

Deallocate (cmdeal)

This call deallocates a conversation between two programs. Before deallocating the

conversation, this call performs the equivalent of the Flush or Confirm call,

depending on the current conversation synchronization level and deallocate type.

Cancel_Conversation (cmcanc)

This call cancels any incomplete call on a conversation, and deallocates the

conversation. (An incomplete call is one that was issued in nonblocking mode and

returned CM_OPERATION_INCOMPLETE.)

In Java CPI-C, nonblocking calls are not supported and so there cannot be an

incomplete call outstanding. Cancel_Conversation is equivalent to Deallocate

except that it does not write log data to the local error log.

WinCPICCleanup

WINDOWS

This call unregisters the application as a Windows CPI-C application, after it has

finished issuing CPI-C calls. A Windows CPI-C application must use this call

before terminating, and must not issue any other CPI-C calls after it has issued this

call.

Administering Side Information

These functions are not available in Java CPI-C.

The calls summarized in Table 9 enable CPI-C applications to add, replace, retrieve,

or delete side information entries.

 Table 9. Calls to Add, Replace, Retrieve, or Delete Side Information

Call Action

Set_CPIC_Side_Information (xcmssi) Add or replace side information entry.

Extract_CPIC_Side_Information (xcmesi) Retrieve side information entry.

Delete_CPIC_Side_Information (xcmdsi) Delete side information entry.

Initial Conversation Characteristics

CPI-C maintains a set of internal values, called characteristics, for each

conversation. Some characteristics affect the overall operation of the conversation,

such as the conversation type. Others affect the operation of specific calls, such as

the receive type.

Many of these characteristics are initially derived from the side information stored

in the CS/AIX configuration file; see “Side Information” on page 30. The

CPI-C Call Summary

26 IBM Communications Server for AIX CPI-C Programmer’s Guide

Initialize_Conversation call specifies the symbolic destination name (the

sym_dest_name parameter) associated with the desired side information table entry.

Table 10 lists the conversation characteristics, how they are set or changed by the

following conversation start-up calls, and which call can change a given value.

v Initialize_Conversation

v Accept_Conversation

v Initialize_For_Incoming

v Accept_Incoming

AIX, LINUX

The calls Initialize_For_Incoming and Accept_Incoming are always used together.

A characteristic is normally set by one of these calls and not changed by the other.

WINDOWS

The Initialize_For_Incoming and Accept_Incoming calls are not supported on

Windows systems. All references to these calls should be ignored for Windows

systems.

For a complete explanation of a characteristic, see the description of the Set_* call

associated with it in Chapter 3, “CPI-C Calls,” on page 47. For example, the

conversation type is described in the section on the Set_Conversation_Type call.

 Table 10. Changing Initial Conversation Characteristics

Conversation State

Initialize_Conversation sets: CM_INITIALIZE_STATE

Accept_Conversation sets: CM_RECEIVE_STATE

Initialize_For_Incoming sets: CM_INITIALIZE_INCOMING_STATE

Accept_Incoming sets: CM_RECEIVE_STATE

Can be changed by: Many CPI-C calls; see the State Change

sections at the end of each CPI-C call

description in Chapter 3, “CPI-C Calls,” on

page 47 for information about state changes

resulting from the call.

Conversation Type

Initialize_Conversation sets: CM_MAPPED_CONVERSATION

Accept_Conversation sets: The value specified by the invoking program.

Initialize_For_Incoming sets: (Not set)

Accept_Incoming sets: The value specified by the invoking program.

Can be changed by: Set_Conversation_Type

Deallocate Type

Initialize_Conversation sets: CM_DEALLOCATE_SYNC_LEVEL

Accept_Conversation sets: CM_DEALLOCATE_SYNC_LEVEL

Initialize_For_Incoming sets: CM_DEALLOCATE_SYNC_LEVEL

Initial Conversation Characteristics

Chapter 2. Writing CPI-C Applications 27

Table 10. Changing Initial Conversation Characteristics (continued)

Accept_Incoming sets: (Not changed)

Can be changed by: Set_Deallocate_Type

Error Direction

Initialize_Conversation sets: CM_RECEIVE_ERROR

Accept_Conversation sets: CM_RECEIVE_ERROR

Initialize_For_Incoming sets: CM_RECEIVE_ERROR

Accept_Incoming sets: (Not changed)

Can be changed by: Set_Error_Direction

Fill

Initialize_Conversation sets: CM_FILL_LL

Accept_Conversation sets: CM_FILL_LL

Initialize_For_Incoming sets: CM_FILL_LL

Accept_Incoming sets: (Not changed)

Can be changed by: Set_Fill

Log Data

Initialize_Conversation sets: Null string

Accept_Conversation sets: Null string

Initialize_For_Incoming sets: Null string

Accept_Incoming sets: (Not changed)

Can be changed by: Set_Log_Data

Local LU Name

Initialize_Conversation sets: The local LU alias from one of a number of

different sources (see “Specifying the Local

LU” on page 34).

Accept_Conversation sets: The LU alias for the session the conversation

start-up request arrived on.

Initialize_For_Incoming sets: (Not set)

Accept_Incoming sets: The LU alias for the session the conversation

start-up request arrived on.

Can be changed by: Set_Local_LU_Name

Mode Name

Initialize_Conversation sets: The mode name from the side information,

or a null string if no sym_dest_name is

specified.

Accept_Conversation sets: The mode name for the session the

conversation start-up request arrived on.

Initialize_For_Incoming sets: (Not set)

Accept_Incoming sets: The mode name for the session the

conversation start-up request arrived on.

Can be changed by: Set_Mode_Name

Partner LU Name

Initialize_Conversation sets: The partner LU name from the side

information, or a single blank if no

sym_dest_name is specified.

Accept_Conversation sets: The partner LU name for the session the

conversation start-up request arrived on.

Initialize_For_Incoming sets: (Not set)

Accept_Incoming sets: The partner LU name for the session the

conversation start-up request arrived on.

Initial Conversation Characteristics

28 IBM Communications Server for AIX CPI-C Programmer’s Guide

Table 10. Changing Initial Conversation Characteristics (continued)

Can be changed by: Set_Partner_LU_Name

Prepare-to-Receive Type

Initialize_Conversation sets: CM_PREP_TO_RECEIVE_SYNC_LEVEL

Accept_Conversation sets: CM_PREP_TO_RECEIVE_SYNC_LEVEL

Initialize_For_Incoming sets: CM_PREP_TO_RECEIVE_SYNC_LEVEL

Accept_Incoming sets: (Not changed)

Can be changed by: Set_Prepare_To_Receive_Type

Processing Mode (Blocking or Nonblocking)

Initialize_Conversation sets: CM_BLOCKING

Accept_Conversation sets: CM_BLOCKING

Initialize_For_Incoming sets: CM_BLOCKING

Accept_Incoming sets: (Not changed)

Can be changed by: Set_Processing_Mode

Receive Type

Initialize_Conversation sets: CM_RECEIVE_AND_WAIT

Accept_Conversation sets: CM_RECEIVE_AND_WAIT

Initialize_For_Incoming sets: CM_RECEIVE_AND_WAIT

Accept_Incoming sets: (Not changed)

Can be changed by: Set_Receive_Type

Return Control

Initialize_Conversation sets: CM_WHEN_SESSION_ALLOCATED

Accept_Conversation sets: (Not applicable)

Initialize_For_Incoming sets: (Not applicable)

Accept_Incoming sets: (Not applicable)

Can be changed by: Set_Return_Control

Security Password

Initialize_Conversation sets: The password contained in the side

information, or a single blank if no

sym_dest_name is specified.

Accept_Conversation sets: (Not applicable)

Initialize_For_Incoming sets: (Not applicable)

Accept_Incoming sets: (Not applicable)

Can be changed by: Set_Conversation_Security_Password

Security Type

Initialize_Conversation sets: The security type contained in the side

information, or CM_SECURITY_SAME if no

sym_dest_name is specified.

Accept_Conversation sets: (Not applicable)

Initialize_For_Incoming sets: (Not applicable)

Accept_Incoming sets: (Not applicable)

Can be changed by: Set_Conversation_Security_Type

Security User ID

Initialize_Conversation sets: The user ID contained in the side

information, or a single blank if no

sym_dest_name is specified.

Accept_Conversation sets: The value specified by the invoking program.

Initialize_For_Incoming sets: (Not set)

Initial Conversation Characteristics

Chapter 2. Writing CPI-C Applications 29

Table 10. Changing Initial Conversation Characteristics (continued)

Accept_Incoming sets: The value specified by the invoking program.

Can be changed by: Set_Conversation_Security_User_ID

Send Type

Initialize_Conversation sets: CM_BUFFER_DATA

Accept_Conversation sets: CM_BUFFER_DATA

Initialize_For_Incoming sets: CM_BUFFER_DATA

Accept_Incoming sets: (Not changed)

Can be changed by: Set_Send_Type

Synchronization Level

Initialize_Conversation sets: CM_NONE

Accept_Conversation sets: The value specified by the invoking program.

Initialize_For_Incoming sets: (Not set)

Accept_Incoming sets: The value specified by the invoking program.

Can be changed by: Set_Sync_Level

TP Name of the Invoked Program (As Seen by the Invoking Program)

Initialize_Conversation sets: The TP name contained in the side

information, or a single blank if no

sym_dest_name is specified.

Accept_Conversation sets: (Not applicable)

Initialize_For_Incoming sets: (Not applicable)

Accept_Incoming sets: (Not applicable)

Can be changed by: Set_TP_Name

TP Name of the Invoked Program (As Seen by the Invoked Program)

Initialize_Conversation sets: (Not applicable)

Accept_Conversation sets: The value specified by the invoking program.

Initialize_For_Incoming sets: (Not set)

Accept_Incoming sets: The value specified by the invoking program.

Can be changed by: Specify_Local_TP_Name (to indicate one or

more names for which to accept incoming

allocates)

Side Information

The information required for two programs to communicate is stored in CPI-C side

information entries in the CS/AIX configuration file. You will need to coordinate

with your System Administrator to ensure that it contains what you need. For

additional information about configuration, refer to the Communications Server for

AIX Administration Guide.

Each side information entry is identified by a Symbolic Destination Name, which is

the sym_dest_name parameter specified by the Initialize_Conversation call. The

parameter sym_dest_name is an 8-byte ASCII character string and can contain any

displayable characters.

If you are developing commercial programs or programs that will be installed on

multiple machines within your organization, you may want to include logic to use

a different sym_dest_name for each copy of the program.

Each side information entry contains the following fields:

Initial Conversation Characteristics

30 IBM Communications Server for AIX CPI-C Programmer’s Guide

v Local LU alias

v Partner LU name

v Partner program type and name

v Mode name

v Conversation security type

v Security user ID and password

v Application-specified side information

Local LU Alias

This is the alias of the local LU to be used to allocate conversations. It consists of

up to eight ASCII characters. For the allowed characters, see “Set_Local_LU_Name

(cmslln)” on page 131.

Partner LU Name

This is the name by which the partner LU is known to the local program. It can be

an alias of up to eight ASCII characters or a fully qualified network name of up to

17 characters. For the allowed characters, see “Set_Partner_LU_Name (cmspln)” on

page 136.

Partner Program Type and Name

These fields indicate whether the partner program is an application program or

SNA service program, and the partner program name. An application program

name can contain up to 64 ASCII characters. A service program can contain up to

four characters. For the allowed characters, see “Set_TP_Name (cmstpn)” on page

147.

Mode Name

This name represents a set of characteristics to be used in an LU-to-LU session.

The mode name can contain up to eight ASCII characters. For the allowed

characters, see “Set_Mode_Name (cmsmn)” on page 134.

Conversation Security Type

This field indicates whether security will be used and if so, what type. The security

type can specify that CPI-C must send a user ID and password when allocating a

conversation with the invoked program. For an invoked program that in turn

invokes another program, the security type can inform the second invoked

program that security has already been verified.

For further information about conversation security, see

“Set_Conversation_Security_Type (cmscst)” on page 116.

Security User ID and Password

If the remote program uses conversation security, and does not accept an “already

verified” indication, a valid combination of user ID and password is required to

access the invoked program. The user ID and password can be up to 10 ASCII

characters. For the allowed characters, see “Set_Conversation_Security_User_ID

(cmscsu)” on page 118 and “Set_Conversation_Security_Password (cmscsp)” on

page 114.

Side Information

Chapter 2. Writing CPI-C Applications 31

Application-Specified Side Information

AIX, LINUX

Note: The functions described in this section are not available in Java CPI-C. A

Java CPI-C application cannot maintain its own CPI-C side information

entries. However, it can override individual parameters in the side

information, or determine their values, by using Set_* or Extract_* functions

for each required parameter.

An application can override the side information stored in the configuration file to

maintain its own side information entries, using the following calls:

v Set_CPIC_Side_Information (to define a side information entry associated with a

specified sym_dest_name; if the sym_dest_name is already defined in the

configuration file, the new information overrides the configuration file)

v Delete_CPIC_Side_Information (to indicate that an entry defined by the

application, or one defined in the configuration file, is no longer available for

use by this application)

v Extract_CPIC_Side_Information (to return the contents of a side information

entry—either an entry defined by the application, or one defined in the

configuration file)

The modified information then applies only to this application; it does not affect

other applications, and does not change the configuration file. The modified

information is discarded when the application ends.

These calls are not part of IBM CPI-C 2.0; they are provided for compatibility with

X/Open CPI-C. In addition, in the side information structure used by these calls,

the user ID and password parameters are defined as eight characters (as in

X/Open CPI-C) instead of 10 (as in IBM CPI-C 2.0). This leads to the following

restrictions:

v If the partner application requires a user ID or password of more than eight

characters, you cannot specify it using Set_CPIC_Side_Information. You must

either use a side information entry defined in the configuration file, or define

one using Set_CPIC_Side_Information and then override the user ID or

password using the Set_Conversation_Security_User_ID or

Set_Conversation_Security_Password call.

v If the side information entry in the configuration file contains a user ID of more

than eight characters, you cannot extract it using

Extract_CPIC_Side_Information. You must use the Extract_Security_User_ID call.

(This does not apply to the password, because CPI-C does not allow the

application to extract it.)

Configuration

The following are considerations when configuring CS/AIX:

v In addition to maintaining the side information (specified by sym_dest_name), the

System Administrator must define the following entities during configuration to

enable CPI-C applications to use CS/AIX’s LU 6.2 services:

– Modes

Side Information

32 IBM Communications Server for AIX CPI-C Programmer’s Guide

– Local LUs

– Partner LUs

– Invokable TPs

– Security user IDs and passwords
For further information, refer to the Communications Server for AIX Administration

Guide.

v If you want to enable autostart sessions, set the auto_act parameter on the mode.

For more information about defining modes, refer to Communications Server for

AIX Administration Guide.

Specifying the Local TP Name

When a program issues the Initialize_Conversation,

Initialize_Conversation_For_Incoming, or Accept_Conversation call, the CPI-C

library generates an instance of a transaction program (TP). You can specify the

name of this TP in a number of different ways, described below.

The methods are listed in order of precedence. This means that, if you specify a

name using the first method, the CPI-C library uses this name and ignores any

name that you specify using the second or later methods. If you do not use the

first method but specify a name using the second method, the CPI-C library uses

this name and ignores any name that you specify using the third or later methods,

and so on.

v For invoking programs, the TP name is only used as an identifier in log and

trace files.

v For operator-started invoked programs, the TP name must be set correctly

because the value is used to route inbound allocation requests to the appropriate

program. The Accept_Conversation, or Accept_Incoming call from the invoked

program completes when an inbound allocation request arrives for this TP name.

v For automatically-started invoked programs, the TP name need not be specified

because it is taken from the inbound allocation request.

Note: The local TP name is distinct from the partner TP name set in the

Set_TP_Name call.

Specify_Local_TP_Name

The program can use this call to specify the TP name.

Context

If there is another TP from which the context is copied, the TP name is taken from

that other TP. For more information about context, see “Multiple Conversations”

on page 12.

APPCTPN Environment Variable

The TP name can be specified using the APPCTPN environment variable.

AIX, LINUX

On AIX or Linux systems the TP name is specified in the APPCTPN environment

variable. This environment variable can be set in the following ways:

v The program can issue a putenv call

Configuration

Chapter 2. Writing CPI-C Applications 33

v You can set it in the AIX or Linux shell. For example, in the Korn shell you

would issue the following command:

export APPCTPN=MYTP

v If you are using automatically started invoked TPs, you can set it using the

environment field of the CS/AIX invokable TP data file.

WINDOWS

On Windows systems the TP name can be specified either using the APPCTPN

environment variable, or in the registry. CPI-C checks the environment variable

first, and uses this name if it is specified; it uses the registry entry only if the

environment variable is not specified. You may need to use environment variables

if you are using Windows Terminal Server and need to run multiple copies of the

same application using different local LUs.

The registry key is

 \\HKEY_LOCAL_MACHINE\SOFTWARE\SNA Client\SxClient\Parameters\MyExeName

where MyExeName is the file name of the program, without the .exe extension.

The APPCTPN value under this registry key specifies the TP name.

Default Value

If the TP name is not set by any of the methods described in the previous sections

then it is set to the default value CPIC_DEFAULT_TPNAME.

Specifying the Local LU

The local LU that an invoking CPI-C TP uses can be specified in a number of ways

which are described below.

Note: The local LU for an invoked TP is not specified like this, but is defined by

the partner LU value specified in the allocate request.

If the LU specified is a dependent LU, multiple concurrent conversations are

not supported (because dependent LUs cannot support multiple sessions).

The different ways that you can set the local LU alias are described in the

following sections. The methods are listed in order of precedence. This means that,

if you specify a local LU alias using the first method, the CPI-C library uses this

name and ignores any alias that you specify using the second or later methods. If

you do not use the first method but specify a local LU alias using the second

method, the CPI-C library uses this alias and ignores any alias that you specify

using the third or later methods, and so on.

Set_Local_LU_Name

The program can issue this call to specify the local LU alias after the

Initialize_Conversation call has completed. This call only affects the TP from which

it is issued. It does not modify the side information stored in the configuration file.

Specifying the Local TP Name

34 IBM Communications Server for AIX CPI-C Programmer’s Guide

Note: This call is not part of the standard CPI-C specification, and may not be

available in other implementations. You may want to avoid using this

function, or to restrict it to a few specific routines which can be modified

easily, if you need to ensure that your application can be used with other

CPI-C implementations.

Context

If there is another TP from which the context is copied, the local LU name is taken

from that other TP. For more information about context, see “Multiple

Conversations” on page 12.

APPCLLU Environment Variable

The local LU alias can be specified using the APPCLLU environment variable.

AIX, LINUX

On AIX or Linux systems this environment variable can be set in the following

ways:

v The program can issue a putenv call

v You can set it in the AIX or Linux shell. For example, in the Korn shell you

would issue the following command:

export APPCLLU=MYLU

WINDOWS

On Windows systems the local LU alias can be specified either using the APPCLLU

environment variable, or in the registry. CPI-C checks the environment variable

first, and uses this alias if it is specified; it uses the registry entry only if the

environment variable is not specified. You may need to use environment variables

if you are using Windows Terminal Server and need to run multiple copies of the

same application using different local LUs.

The registry key is

 \\HKEY_LOCAL_MACHINE\SOFTWARE\SNA Client\SxClient\Parameters\MyExeName

where MyExeName is the file name of the program, less the .exe extension.

The APPCLLU value under this registry key specifies the local LU alias.

Side Information

The local LU alias is part of the side information configured for each symbolic

destination name. TPs select which of these to use in the Initialize_Conversation

call.

Note: Programs can modify the side information. For more information, see

“Administering Side Information” on page 26.

Specifying the Local LU

Chapter 2. Writing CPI-C Applications 35

Default Local LU

Local LUs can be configured to be a part of the default pool of APPC LUs. If no

other local LU alias is specified, any suitable LU from this pool is used.

Control Point LU

CS/AIX normally has one control point (CP) LU defined on each node. If no other

local LU alias is defined then the CP LU is used.

How Programs Get Started

A conversation occurs between an invoking program and an invoked program. The

invoking program is started by a user entering a command or by a batch

command. The invoked program can either be started manually by a user or

automatically by CS/AIX.

Invoked Program: Automatically Started

An invoked program can be configured to start automatically under one of the

following conditions:

v The first time an inbound allocation request is received by the LU that serves the

invoked program. A program started in this manner is called a queued,

automatically started program (or queued auto-started TP).

If the invoked program is not running, the first inbound allocation request starts

it; a response to the allocate request is held until the Accept_Conversation or

Accept_Incoming call in the invoked program is executed.

If the invoked program is already running, the inbound allocation request waits

until the invoked program issues another Accept_Conversation or

Accept_Incoming call, or until it finishes running and can be restarted.

v Each time an inbound allocation request is received by the LU that serves the

invoked program, a new instance of the program is loaded and started. A

program started in this manner is called a nonqueued, automatically started

program.

In general, the inbound allocation request waits until the invoked program is

started and issues an Accept_Conversation or Accept_Incoming call. However, the

definition of the invoked program’s local LU includes a timeout value, so that the

inbound allocation request fails if the timeout is reached before the invoked

program issues an Accept_Conversation or Accept_Incoming call.

The definition of the invoked TP (in the CS/AIX invokable TP data file) includes a

second timeout value, which determines how long an Accept_Conversation or

Accept_Incoming call waits for an inbound allocation request. The call fails if this

timeout is reached before an inbound allocation request is received. This timeout

value does not apply to a nonqueued program, because the program is always

started in response to an inbound allocation request and so there is always one

pending.

Invoked Program: User-Started

If an invoked program is configured to be started by a user, the user can start the

invoked program either before or after the invoking program. A program started in

this manner is called a queued, operator-started program.

If the user starts the invoking program before starting the invoked program, the

inbound allocation request to the invoked program waits until the invoked

Specifying the Local LU

36 IBM Communications Server for AIX CPI-C Programmer’s Guide

program is started and issues an Accept_Conversation or Accept_Incoming call.

However, the definition of the invoked program’s local LU includes a timeout

value, so that the inbound allocation request fails if the timeout is reached before

the invoked program is started and issues an Accept_Conversation or

Accept_Incoming call.

If the user starts the invoked program before the invoking program issues the

Allocate call, the Accept_Conversation or Accept_Incoming call issued by the

invoked program waits for an inbound allocation request. The definition of the

invoked TP (in the CS/AIX invokable TP data file) includes a second timeout

value, which determines how long an Accept_Conversation or Accept_Incoming

call waits for an inbound allocation request. The call fails if this timeout is reached

before an inbound allocation request is received.

AIX or Linux Considerations

AIX, LINUX

This section summarizes the information you need to consider when writing CPI-C

applications for AIX or Linux systems.

If you are writing Java CPI-C applications, see “Java CPI-C Considerations” on

page 38.

CPI-C Header File

The header file to be used with CPI-C applications is cmc.h. This file contains the

definitions of all CPI-C entry points. It also includes the common interface header

file values_c.h; these two files contain all the constants defined for supplied and

returned parameter values at the CPI-C interface. Both files are stored in

/usr/include/sna (AIX) or /opt/ibm/sna/include (Linux).

Multiple Processes

If the process that started the conversation forks to create a child process, the child

process cannot use the conversation_ID that was returned to the parent process. It

can, however, issue its own Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call to obtain its own conversation_ID.

Two or more instances of the same program can run as different processes, but

each instance will be assigned its own conversation_ID.

You can write an application in which one process contains many conversations,

each with its own conversation_ID. However, you need to design the application

carefully to avoid “deadlock” situations, in which a CPI-C call is unable to

complete because of the state of other conversations in the same process. This

might happen if the program is waiting on one conversation for information to be

sent to it before returning some other data, and another conversation from the

same process is waiting for this data before it can send the information originally

required by the first conversation. To some extent this can be avoided by using a

separate process for each conversation.

How Programs Get Started

Chapter 2. Writing CPI-C Applications 37

Compiling and Linking the CPI-C Application

AIX Applications

To compile and link 32–bit applications, use the following options:

-bimport:/usr/lib/sna/cpic_r.exp -I

/usr/include/sna

 To compile and link 64–bit applications, use the following options:

-bimport:/usr/lib/sna/cpic_r64_5.exp -I

/usr/include/sna

Linux Applications

Before compiling and linking a CPI-C application, specify the directory where

shared libraries are stored, so that the application can find them at run time. To do

this, set the environment variable LD_RUN_PATH to /opt/ibm/sna/lib, or to

/opt/ibm/sna/lib64 if you are compiling a 64–bit application.

To compile and link 32–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib -lcpic -lappc -lsna_r -lpthread

 To compile and link 64–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib64 -lcpic -lappc -lsna_r -lpthread

Java CPI-C Considerations

This section summarizes the information you need to consider when writing Java

CPI-C applications.

Using Java CPI-C Classes

The Java CPI-C package is named COM.ibm.eNetwork.cpic. This package consists

of a Java class that contains:

v A method for each of the supported CPI-C calls

v Classes for use as parameters to these calls

When writing a Java program to use the CPIC class, use the following import

statement in the Java source to import the CPIC package:

import COM.ibm.eNetwork.cpic.*;

Constant Values

The Java CPI-C class defines a number of constant values for the maximum length

in bytes of specific CPI-C parameters. These constants are shown in Table 11. You

should use these constants in your program rather than specifying the lengths

explicitly.

 Table 11. Java CPI-C Constants

Parameter Length Java CPI-C Constant

Conversation ID Length CM_CID_SIZE

AIX or Linux Considerations

38 IBM Communications Server for AIX CPI-C Programmer’s Guide

Table 11. Java CPI-C Constants (continued)

Parameter Length Java CPI-C Constant

Context ID Length CM_CTX_SIZE

Log Data Size CM_LD_SIZE

Mode Name Length CM_MN_SIZE

Partner LU Name Length CM_PLN_SIZE

Security Password Length CM_PW_SIZE

Security User ID Length CM_UID_SIZE

Symbolic Destination Name Length CM_SDN_SIZE

Transaction Program (TP) Name length CM_TPN_SIZE

Parameter Type Classes

Many parameters used in CPI-C functions take one of a set of two or more defined

values. In the Java CPI-C package, each of these parameter types is defined as a

class containing the valid values. For example, the CPICSyncLevel class is used in

the functions Set_Sync_Level (cmssl) and Extract_Sync_Level (cmesl), and can take

a value of either CM_NONE or CM_CONFIRM.

The description of each CPI-C function in Chapter 3, “CPI-C Calls,” on page 47

gives the appropriate CPI-C parameter class type and the valid values. For

example, in Set_Sync_Level (cmssl), the sync_level parameter is listed as being of

type CPICSyncLevel, and the description of parameters for this function lists the

valid values as CM_NONE or CM_CONFIRM.

Because the constant values associated with a Java class are defined in the class,

you must access them by referring to the class as well as the specific value. For

example, to specify no confirm synchronization, you must set the sync_level

parameter of the Set_Sync_Level function to CPICSyncLevel.CM_NONE.

Each of these classes has the following methods in addition to the constructor:

int intValue()

Returns the value stored in the object.

int intValue(int_value)

Sets the value stored in the object to the supplied integer value int_value,

and returns the same value.

 You can also set the value stored in an object during construction of the

object, by passing the value in as a parameter to the constructor.

boolean equals(int_value)

Returns true if the value stored in the object is equal to the supplied

integer value int_value.

boolean equals(supplied_object)

Returns true if the value stored in the object is equal to the value stored in

the supplied parameter supplied_object. supplied_object must itself be an

instance of one of the Java CPI-C parameter classes.

 The class CPICReturnCode has the following additional method:

boolean isOK()

The application should call this method to determine whether the value

stored in a CPICReturnCode object is CM_OK. The class generates an exception

if the stored value is not CM_OK.

Java CPI-C Considerations

Chapter 2. Writing CPI-C Applications 39

Usage Example

The following example illustrates how to set up your Java program to use the Java

CPI-C class, and how to make an individual CPI-C call.

To import the Java CPI-C package, include the following at the start of your

program’s source code:

import COM.ibm.eNetwork.cpic.*;

 To use Java CPI-C in your program, create an instance of the Java CPI-C class:

CPIC cpicObject = new CPIC();

 The following steps illustrate how to make the call to each Java CPI-C function,

using the Initialize_Conversation (cminit) function as an example.

1. Create and initialize the parameters for the function:

byte[] bConversationId = new byte[cpicObject.CM_CID_SIZE];

String sSymbolicDestination = ″testprog″;

CPICReturnCode cpicReturn = new CPICReturnCode(0);

Note the use of the constant CM_CID_SIZE to set the size of the byte array for

the conversation ID, and the use of the CPICReturnCode class to set the initial

value of this parameter to zero. The last line of this example could also be split

into two lines as follows:

CPICReturnCode cpicReturn = new CPICReturnCode();

cpicReturn.intValue(0);

2. Issue the function call:

cpicObject.cminit(bConversationId,

 sSymbolicDestination,

 cpicReturn);

3. Test the return code against a specific value:

if (cpicReturn.intValue() != CPICReturnCode.CM_PARAMETER_ERROR)

. . .

Alternatively, check whether the return code is CM_OK:

try

{

 cpicReturn.isOK();

}

catch(CPICReturncode c)

{

. . . // cpicReturn is not set to CM_OK

}

Compiling and Linking the Java CPI-C Application

Before compiling and linking a Java CPI-C application, specify the directory where

Java classes are stored. To do this, set and export the environment variable

CLASSPATH to /usr/lib/sna/java/cpic.jar:. (AIX) or /opt/ibm/sna/java/cpic.jar:. (Linux).

Compile and link the application using the Java compiler javac in the normal way.

Java CPI-C Considerations

40 IBM Communications Server for AIX CPI-C Programmer’s Guide

Running the Java CPI-C Application

Before running a Java CPI-C application, you need to specify the directory where

libraries are stored, so that the application can find them at run time.

To do this, set and export the appropriate environment variable as follows.

export LD_LIBRARY_PATH=/usr/lib/sna

 You may also need to set and export the APPCTPN environment variable to specify

the local TP name for the application, as described in “Specifying the Local TP

Name” on page 33.

Run the application using the Java interpreter java in the normal way.

Windows Considerations

WINDOWS

This section summarizes processing considerations you need to be aware of when

developing programs on a Remote API Client on Windows.

Windows CPI-C Files

The header file to be used with Windows CPI-C applications is wincpic.h, which

contains the definitions of all CPI-C entry points, and the defined constants for

supplied and returned parameter values at the Windows CPI-C interface. This file

is installed in the subdirectory /sdk within the directory where you installed the

Remote API Client on Windows software.

The library used to link Windows CPI-C applications is wcpic32.lib.

Function Prototypes

The function prototypes for CPI-C calls shown in Chapter 3, “CPI-C Calls,” on

page 47 are in the format used for AIX or Linux systems. For Windows systems,

replace “void functionname” with “void WINAPI functionname” for each call.

Multiple Processes and Multiple Conversations

Multiple processes cannot have the same conversation identifier. Only the process

that issues the Initialize_Conversation or Accept_Conversation call can use the

conversation ID returned by the call. Another process wanting to use CPI-C must

issue an Initialize_Conversation or Accept_Conversation call to obtain its own

conversation ID.

One program can engage in up to 64 simultaneous conversations.

Windows Function Calls

In addition to the standard CPI-C function calls, and the Windows-specific CPI-C

function call Specify_Windows_Handle, a Windows application also uses the

following functions:

Java CPI-C Considerations

Chapter 2. Writing CPI-C Applications 41

WinCPICStartup

Registers the application as a Windows CPI-C user, and determines

whether the CPI-C software supports the level of function required by the

application.

WinCPICCleanup

Unregisters the application when it has finished using CPI-C.

WinCPICIsBlocking

Checks whether there is a blocking call outstanding for this application.

For more information about the circumstances in which this call may be

required, see “Blocking Calls.”

WinCPICSetBlockingHook

Specifies the blocking procedure that CPI-C uses while processing blocking

calls; this replaces CPI-C’s default blocking procedure. The blocking

procedure is called repeatedly until processing for the blocking call has

completed. For more information, see “Blocking Calls.”

WinCPICUnhookBlockingHook

Unregisters the blocking procedure specified by a previous

WinCPICSetBlockingHook call, so that CPI-C reverts to using the default

blocking procedure.

WinCPICExtractEvent

Provides a method for an application to determine the Win32 event handle

being used for a CPI-C conversation.

WinCPICSetEvent

Associates a Win32 event handle with verb completion for a CPI-C

conversation.

 The application must call WinCPICStartup before attempting to issue any CPI-C

calls.

“Blocking Calls” provides more information about how blocking calls operate in

the Windows environment, and how the application should use the

WinCPICIsBlocking, WinCPICSetBlockingHook, and WinCPICUnhookBlockingHook calls.

When the application has finished issuing CPI-C calls, it must call WinCPICCleanup

before terminating; it must not attempt to issue any more CPI-C calls after calling

WinCPICCleanup.

The Windows function calls are described at the end of Chapter 3, “CPI-C Calls,”

on page 47.

Blocking Calls

This section describes how blocking CPI-C calls (calls issued with the

conversation’s processing mode set to CM_BLOCKING) operate in the Win32

environment if the calling application is single-threaded. (Typically, a Win32

application would use multiple threads to avoid the problem of a blocking verb

blocking the entire application.)

The section also provides information that you need to be aware of when writing

applications to use blocking calls.

The Remote API Client provides support for blocking calls on Windows systems to

assist in migrating applications from other operating system environments.

Windows Considerations

42 IBM Communications Server for AIX CPI-C Programmer’s Guide

However, the use of blocking calls in the Windows environment is strongly

discouraged. If you are writing a new application specifically for Windows, you

should do the following:

v Use the Specify_Windows_Handle function to specify a Windows handle to

which CPI-C posts the results of call completion

v Issue all CPI-C calls in nonblocking mode

Although a blocking call appears to suspend the application until CPI-C has

finished processing the call, the CPI-C library has to yield control of the system

while waiting for CS/AIX to complete the processing, in order to enable other

processes to run. To do this, it uses a “blocking function”, which is called

repeatedly while the library is waiting; the function enables Windows messages to

be sent to other processes. For more information about this function, see “Default

Blocking Function.”

It is possible for the blocking function to send a message to the application that

issued the original blocking call; in this case, the application can be reentered even

though it has a blocking call outstanding. In these circumstances, the application

can continue with other processing not related to issuing CPI-C calls. However, it

cannot issue another blocking call while the first call is outstanding.

The application can check whether a blocking call is outstanding (that is, whether

it has been reentered as a result of a received message while the call was

outstanding) by using the WinCPICIsBlocking function, described in Chapter 3,

“CPI-C Calls,” on page 47. If this function indicates that a blocking call is

outstanding, the application should not attempt to issue further blocking CPI-C

calls. It can, however, do the following:

v Continue with other processing

v Issue CPI-C calls on other conversations for which the processing mode is

CM_NON_BLOCKING

Default Blocking Function

The standard blocking function used by the Windows CPI-C library is as follows:

 BOOL DefaultBlockingHook (void) {

 MSG msg;

 /* get the next message if any */

 if (PeekMessage (&msg,0,0,PM_NOREMOVE)) {

 if (msg.message == WM_QUIT)

 return FALSE; // let app process WM_QUIT

 PeekMessage (&msg,0,0,PM_REMOVE);

 TranslateMessage (&msg);

 DispatchMessage (&msg);

 }

 /* TRUE if no WM_QUIT received */

 return TRUE;

 }

If the application needs to have other processing performed as part of the blocking

function, it can specify its own blocking function to replace the default one

provided by CPI-C. To do this, it uses the WinCPICSetBlockingHook call, described

in Chapter 3, “CPI-C Calls,” on page 47.

A blocking function must return FALSE if it receives a WM_QUIT message; this

means that CPI-C returns control to the application, which can then process the

message and terminate. Otherwise, the function must return TRUE.

Windows Considerations

Chapter 2. Writing CPI-C Applications 43

Terminating Applications

CPI-C cannot tell when an application terminates under Windows. Therefore if an

application must close (for example, if it receives a WM_CLOSE message), the

application should issue the WinCPICCleanup call. Failure to issue the call leaves the

system in an indeterminate state; however, as much cleanup as possible is done

when CPI-C later detects that the application has terminated.

Compiling and Linking CPI-C Applications

This section provides information about compiling and linking CPI-C applications

on Windows systems.

Compiler Options for Structure Packing

The structures supplied and returned on some CPI-C calls are not packed. Do not

use compiler options that change this packing method. BYTE parameters are on

BYTE boundaries, WORD parameters are on WORD boundaries, and DWORD

parameters are on DWORD boundaries.

Header Files

The header file to be included in Windows CPI-C applications is named wincpic.h.

This file is installed in the subdirectory /sdk within the directory where you

installed the Windows Client software.

Load-time linking

To link the application to CPI-C at load time, link the application to the library

wincpic32.lib.

Run-time linking

To link the application to CPI-C at run time, include the following calls in the

application:

v LoadLibrary to load the CPI-C dynamic link library wincpic32.dll

v GetProcAddress to specify WinCPIC as the entry point to the dynamic link library

v FreeLibrary when the library is no longer required

Writing Portable Applications

The following guidelines are provided for writing CPI-C applications that they are

portable to other operating system environments or other CPI-C implementations:

v Include the CPI-C header file without any pathname prefix. Use include options

on the compiler to locate the file (see the appropriate section for your operating

system, earlier in this chapter). This enables the application to be used in an

environment with a different file system.

v Use the symbolic constant names for parameter values and return codes, not the

numeric values shown in the header file; this ensures that the correct value will

be used regardless of the way these values are stored in memory.

v Include a check for return codes other than those applicable to your current

operating system (for example using a “default” case in a switch statement), and

provide appropriate diagnostics.

v Some of the CPI-C functions provided by CS/AIX are extensions included for

compatibility with X/Open CPI-C, or are not part of the standard CPI-C

specification, and may not be available in other implementations. Each of these

Windows Considerations

44 IBM Communications Server for AIX CPI-C Programmer’s Guide

extension functions is identified by notes in the introduction to the function

description in Chapter 3, “CPI-C Calls,” on page 47.

– The X/Open functions are included to allow you to use existing applications

written for X/Open CPI-C with CS/AIX. You should not use these functions

when writing new applications.

– If you use the extension functions in your application, you may need to

rewrite sections of the application for use in other environments. You may

want to restrict the use of these functions to a few specific routines, to allow

easier modification.

AIX, LINUX

The following guidelines apply to Java CPI-C applications:

v The three functions Extract_Conversation_Context, Set_Conversation_Context,

and Set_Local_LU_Name are not part of the standard CPI-C specification, and

are not supported by IBM’s Java CPI-C for CS/Windows. If you use these

functions in your Java CPI-C application, you may need to rewrite sections of

the application for use in other Java CPI-C environments. You may want to

restrict the use of these functions to a few specific routines, to allow easier

modification.

v The Java CPI-C class includes some CPI-C functions not described in this

manual, which are defined as part of the Java class but not supported. If you use

these unsupported functions in your application, it may compile successfully,

but the functions will return an error return code (CM_CALL_NOT_SUPPORTED) if the

application attempts to use them.

Writing Portable Applications

Chapter 2. Writing CPI-C Applications 45

Writing Portable Applications

46 IBM Communications Server for AIX CPI-C Programmer’s Guide

Chapter 3. CPI-C Calls

This chapter describes the CPI-C function calls and the additional

Windows-specific function calls used by CPI-C applications. The following

information is included:

v An explanation of the information provided for the calls

v The call descriptions

Information Provided for CPI-C Calls

The following information is supplied for each CPI-C call described in this chapter:

v The pseudonym for the call, followed by the actual C function name in

parentheses (this information is in the section heading).

v The function prototype for the call, including the parameters used by the call

and the data type for each parameter. The prototype of each function is declared

in the file cmc.h (AIX or Linux systems) or wincpic.h (Windows systems).

WINDOWS

The function prototypes for CPI-C calls shown in Chapter 3, “CPI-C Calls” are in

the format used for AIX or Linux systems. For Windows systems, replace “void

functionname” with “void WINAPI functionname” for each call.

v The Java method definition for the CPI-C function, if it is supported in Java

CPI-C.

v A description of each supplied and returned parameter. The parameter names

are pseudonyms. The actual variable names for these parameters are declared by

the application program. The description includes the possible values of the

parameter.

v The conversation state or states in which the call can be issued.

v The state or states into which the conversation can change upon return from the

call. Conditions that do not cause a state change, such as parameter checks and

state checks, are not noted.

v Additional information describing the use of the call.

Data Types

For information on data types in Java CPI-C applications, see “Java CPI-C

Considerations” on page 38.

To improve the portability of CPI-C applications, the data types for the parameters

supplied to, and received from, CPI-C are established as symbolic constants by

#define statements in the CPI-C header file. For example, CM_INT32 represents a

32-bit integer type; CM_PTR represents a pointer type.

This chapter uses these symbolic constants to identify the data types for supplied

and returned parameters. When writing applications, you are advised to use these

symbolic constants rather than the actual data types.

© Copyright IBM Corp. 2000, 2005 47

Data Structures

This section does not apply to Java CPI-C applications, because none of the CPI-C

functions supported in Java CPI-C use data structures.

For some CPI-C calls, the application supplies a data structure in which CS/AIX

can fill in parameters to return to the application. These data structures may

contain parameters marked as “reserved”; some of these reserved parameters are

used internally by the CS/AIX software, and others are not used in this version

but may be used in future versions. Your application must not attempt to access

any of these reserved parameters; instead, it must set the entire contents of the

data structure to zero to ensure that all of these parameters are zero, before it sets

other parameters that are used by the verb. This ensures that CS/AIX will not

misinterpret any of its internally-used parameters, and also that your application

will continue to work with future CS/AIX versions in which these parameters may

be used to provide new functions.

To set the data structure contents to zero, use memset:

memset(my_struct, 0, sizeof(my_struct));

Symbolic Constants

For information on symbolic constant values in Java CPI-C applications, see “Java

CPI-C Considerations” on page 38.

Most parameters supplied to and returned by CPI-C are 32-bit integers. To simplify

coding, the values for these parameters are represented by meaningful symbolic

constants, which are established by #define statements in the header file. For

example, the value CM_MAPPED_CONVERSATION represents the integer 1. For the sake

of portability and readability, use only the symbolic constants when writing

programs.

Strings

All strings are in ASCII format when passed across the CPI-C interface.

Validity of Returned Parameters

The parameters returned by CPI-C are valid only if the CPI-C call is executed

successfully, as indicated by a return code of CM_OK.

Information Provided for Windows Function Calls

WINDOWS

The following information is supplied for each of the Windows-specific function

calls described in this chapter:

v The name of the call; unlike the CPI-C function calls, these calls do not have

pseudonyms.

v A description of the call.

v The function prototype for the call, including the parameters used by the call

and the data type for each parameter. The prototype of each function is declared

in the file wincpic.h.

Information Provided for CPI-C Calls

48 IBM Communications Server for AIX CPI-C Programmer’s Guide

v A description of each supplied and returned parameter. The parameter names

are pseudonyms. The actual variable names for these parameters are declared by

the application program. The description includes the possible values of the

parameter.

v Additional information describing the use of the call.

Accept_Conversation (cmaccp)

The Accept_Conversation call is issued by the invoked program to accept the

incoming conversation and set certain conversation characteristics. For a list of

initial conversation characteristics, see Chapter 2, “Writing CPI-C Applications,” on

page 19.

Upon successful execution of this call, CPI-C generates an 8-byte conversation

identifier. This identifier is a required parameter for all other CPI-C calls issued by

the invoked program during this conversation.

Function Call

 void cmaccp (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmaccp (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Supplied Parameters

There are no supplied parameters for this call.

Returned Parameters

After the call executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

conversation_ID

This is the identifier for the conversation. It is used by subsequent CPI-C

calls.

return_code

Possible values are:

CM_OK The call executed successfully.

Information Provided for Windows Function Calls

Chapter 3. CPI-C Calls 49

CM_PROGRAM_STATE_CHECK

This value indicates one of the following conditions:

v No incoming Allocate request was received within the timeout

period specified in the configuration.

v The application has not specified any local TP names (or, for AIX

or Linux systems,has released all specified names). The

application must have at least one local TP name before issuing

this call. For more information about specifying local TP names,

see “Specifying the Local TP Name” on page 33.

v The application was started manually, but is defined in the

invokable TP data file as nonqueued. A nonqueued TP is started

automatically by CS/AIX in response to a conversation request

(an incoming Attach); if you attempt to start it manually, the

Accept_Conversation call will fail because there is no incoming

Attach waiting for the application.

CM_PRODUCT_SPECIFIC_ERROR

See Appendix B, “Common Return Codes,” on page 171.

State When Issued

The conversation must be in Reset state.

State Change

If the call is successful, the conversation changes to Receive state. If the call fails,

the state remains unchanged.

Usage Notes

The TP name can be specified in a number of ways. For more information about

specifying local TP names, see “Specifying the Local TP Name” on page 33. Before

issuing Accept_Conversation, the program can issue Specify_Local_TP_Name to

indicate one or more TP names for which it will accept incoming Allocates (these

names are in addition to names defined in other ways such as the APPCTPN

environment variable). If it specifies more than one TP name in this way, then it

can use the Extract_TP_Name call (after Accept_Conversation returns) to determine

which TP name the invoking program used.

AIX, LINUX

When Accept_Conversation returns CM_OK, a new conversation context is created

for the conversation, and this becomes the program’s current context.

Accept_Conversation always operates in blocking mode; that is, it always suspends

until an incoming Allocate request is received. The following methods can be used

to avoid unnecessary delays:

v Ensure that the invokable TP configuration for this application specifies a small

timeout value, so that the Accept_Conversation call will return quickly (with

return_code CM_PROGRAM_STATE_CHECK) if there is no incoming Allocate request,

and then make the application retry Accept_Conversation later. The timeout

value is specified in the invokable TP data file; refer to the Communications Server

for AIX Administration Guide for more information.

v Instead of using Accept_Conversation, use Accept_Incoming, which can operate

in nonblocking mode. Use the following sequence of calls:

Accept_Conversation (cmaccp)

50 IBM Communications Server for AIX CPI-C Programmer’s Guide

– Initialize_For_Incoming (to obtain a conversation ID for the incoming

conversation)

– Set_Processing_Mode (to set the processing_mode for this conversation ID to

CM_NON_BLOCKING)

– Accept_Incoming
See the descriptions of these calls for more information.

Accept_Incoming (cmacci)

AIX, LINUX

The Accept_Incoming call is issued by the invoked program to accept an incoming

conversation that has previously been initialized with Initialize_For_Incoming, and

to set certain conversation characteristics. For a list of initial conversation

characteristics, see “Initial Conversation Characteristics” on page 26.

Before issuing this call, the program can issue Set_Processing_Mode to set the

processing mode for the conversation to CM_NON_BLOCKING. This ensures that the

Accept_Incoming call and all subsequent CPI-C calls are issued in nonblocking

mode.

Function Call

 void cmacci (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

 public native void cmacci (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation that was returned on the previous

Initialize_For_Incoming call. It is used to identify subsequent CPI-C calls

on this conversation.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

Accept_Conversation (cmaccp)

Chapter 3. CPI-C Calls 51

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

One of the following occurred:

v The conversation specified by conversation_ID is not in

Initialize-Incoming state.

v No incoming Allocate request was received within the timeout

period specified in the configuration.

v The application has released the local TP name specified, for

example, in the APPCTPN environment variable, and has not

specified any additional local TP names. The application must

have at least one local TP name before issuing this call. For more

information about specifying local TP names, see “Specifying the

Local TP Name” on page 33.

v The application was started manually, but is defined in the

invokable TP data file as nonqueued. A nonqueued TP is started

automatically by CS/AIX in response to an incoming Attach; if

you attempt to start it manually, the Accept_Incoming call will

fail because there is no incoming Attach waiting for the

application.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

State When Issued

The conversation must be in Initialize-Incoming state.

State Change

If the call is successful, the conversation changes to Receive state. If the call fails,

the state remains unchanged.

Usage Notes

Issuing Initialize_For_Incoming followed by Accept_Incoming is equivalent to

issuing Accept_Conversation. The difference between the two methods of accepting

a conversation is that Accept_Conversation always operates in blocking mode,

whereas Accept_Incoming can operate in nonblocking mode. To accept a

conversation in nonblocking mode, the program issues the following sequence of

calls:

 Initialize_For_Incoming (to obtain a conversation ID for the incoming

conversation)

 Set_Processing_Mode (to set the processing_mode for this conversation ID to

CM_NON_BLOCKING)

 Accept_Incoming

The TP name specified by the APPCTPN environment variable is normally the name

used to match incoming Allocates with this program. Before issuing

Accept_Incoming, the program can issue Specify_Local_TP_Name to indicate one

or more TP names for which it will accept incoming Allocates (these names replace

the name in APPCTPN). If it specifies more than one TP name in this way, then it can

use the Extract_TP_Name call (after Accept_Incoming returns) to determine which

Accept_Incoming (cmacci)

52 IBM Communications Server for AIX CPI-C Programmer’s Guide

TP name the invoking program used. For more information about specifying local

TP names, see “Specifying the Local TP Name” on page 33.

When Accept_Incoming returns CM_OK, a new conversation context is created for

the conversation, and this becomes the program’s current context. When

Accept_Incoming returns CM_OPERATION_INCOMPLETE and a subsequent

Wait_For_Conversation returns the completion of Accept_Incoming as CM_OK, a new

conversation context is created for the conversation, but the program’s current

context is not changed. To use the new context, the program must issue

Extract_Conversation_Context for this conversation_ID to get the value of the

conversation’s context, and Set_Conversation_Context to set the program’s current

context to this value.

Allocate (cmallc)

The Allocate call is issued by the invoking program to allocate a conversation with

the partner program, using the current conversation characteristics. CPI-C can also

allocate a session between the local LU and partner LU if one does not already

exist.

The type of conversation allocated is based on the conversation type

characteristic—mapped or basic.

Once the conversation has been allocated by this call, the following conversation

characteristics cannot be changed:

v Conversation type

v Mode name

v Partner LU name

v Partner program name

v Return control

v Synchronization level

v Conversation security

v User ID

v Password

Function Call

 void cmallc (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmallc (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Accept_Incoming (cmacci)

Chapter 3. CPI-C Calls 53

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the conversation identifier. The value of this parameter is returned

by the Initialize_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PARAMETER_ERROR

One of the following has occurred:

v The mode name derived from the side information or set by

Set_Mode_Name is not valid.

v The mode name is one of the names reserved for SNA internal

use (such as SNASVCMG); an application cannot use it.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

CM_UNSUCCESSFUL

The conversation’s return-control characteristic is set to

CM_IMMEDIATE, and the local LU does not have an available

contention winner session.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_ALLOCATE_FAILURE_NO_RETRY

 CM_ALLOCATE_FAILURE_RETRY

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

State When Issued

The conversation must be in Initialize state.

State Change

State changes, summarized in Table 12, are based on the value of the return_code

parameter.

 Table 12. State Changes for the Allocate Call

return_code New state

CM_OK Send

Allocate (cmallc)

54 IBM Communications Server for AIX CPI-C Programmer’s Guide

Table 12. State Changes for the Allocate Call (continued)

return_code New state

CM_ALLOCATE_FAILURE_NO_RETRY

CM_ALLOCATE_FAILURE_RETRY

Reset

All others No change

Usage Notes

To send the allocation request immediately, the invoking program can issue the

Flush or Confirm call immediately after the Allocate call. Otherwise, the allocate

request accumulates with other data in the local LU’s send buffer until the buffer is

full.

Because the allocation request is buffered and not sent immediately, the Allocate

call may return CM_OK, but the partner LU may subsequently reject the allocation

request generated by the Allocate call. This error is returned to the invoking

program on a subsequent call.

If the conversation’s synchronization level is set to CM_CONFIRM, the invoking

program can immediately determine whether the allocation was successful by

issuing the Confirm call after the Allocate call.

AIX, LINUX

The program’s current context at the time the Allocate call is issued becomes the

context for the new conversation when Allocate returns CM_OK. If the program is

using multiple contexts (as a result of accepting multiple conversations), it must set

the current context to the appropriate value before issuing the Allocate call.

Cancel_Conversation (cmcanc)

The Cancel_Conversation call ends a specified conversation, canceling any

incomplete operation (a previous call that returned with CM_OPERATION_INCOMPLETE)

on this conversation, and ends the session that the conversation was using. It is

equivalent to the Deallocate call with the deallocate_type parameter set to

CM_DEALLOCATE_ABEND, with the following differences:

v Deallocate cannot be used while an operation is incomplete;

Cancel_Conversation can be used, and will cancel the outstanding call.

v Deallocate writes the log data, if any, to the local error log; Cancel_Conversation

does not.

The results of the outstanding call are undefined, and will not be returned to the

application. For example, if Cancel_Conversation is used to cancel an outstanding

Send_Data call, some or all of the data may have been sent; if it is used to cancel

Send_Error, an error indication may or may not have been sent to the partner

program.

Allocate (cmallc)

Chapter 3. CPI-C Calls 55

In Java CPI-C, nonblocking calls are not supported and so there cannot be an

incomplete call outstanding. Cancel_Conversation is equivalent to Deallocate

except that it does not write log data to the local error log.

Function Call

 void cmcanc (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmcanc (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully. The specified conversation has been

deallocated, and any outstanding call on this conversation has been

canceled.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PRODUCT_SPECIFIC_ERROR

See Appendix B, “Common Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

If the return code is CM_OK, the conversation state changes to Reset.

Cancel_Conversation (cmcanc)

56 IBM Communications Server for AIX CPI-C Programmer’s Guide

Usage Notes

The partner program is notified of the end of the conversation with the return code

CM_DEALLOCATED_ABEND.

Check_For_Completion (cmchck)

AIX, LINUX

This function is not available in Java CPI-C.

The Check_For_Completion call checks whether a previous call that returned with

CM_OPERATION_INCOMPLETE has since completed. This call returns immediately

whether or not the previous call has completed; the application can then continue

with other processing if the previous call has not yet completed, or call

Wait_For_Conversation to obtain the results of the previous call if it has completed.

If the application is involved in multiple conversations, this call acts across all

conversations, and returns a “successful” return code if a previous call has

completed on any of them.

This call is not part of the standard CPI-C specification, and may not be available

in other implementations. The standard method for obtaining the results of an

outstanding call is to issue Wait_For_Conversation, which operates in blocking

mode and waits until a call has completed.

Function Call

 void cmchck (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Supplied Parameters

There are no supplied parameters for this call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

conversation_ID

The identifier for the conversation on which a previous outstanding call

has completed. For more information, see “Usage Notes” on page 58.

 This value is relevant only if the return_code parameter is set to CM_OK.

return_code

Possible values are:

CM_OK The call executed successfully. A previously outstanding call on the

conversation specified by conversation_ID has completed.

CM_PROGRAM_STATE_CHECK

There are no previously incomplete calls outstanding. Either the

application has not issued any calls that returned

Cancel_Conversation (cmcanc)

Chapter 3. CPI-C Calls 57

CM_OPERATION_INCOMPLETE, or it has already issued

Wait_For_Conversation to obtain the results of all such calls.

CM_UNSUCCESSFUL

There is at least one previously incomplete call outstanding, but

none has yet completed. The application should continue with

other processing and retry Check_For_Completion later. (This

return code is different from CM_PROGRAM_STATE_CHECK.)

State When Issued

The call is not associated with a specific conversation, so the conversation state is

not relevant. However, the application must have at least one conversation with an

incomplete operation outstanding.

State Change

There is no state change.

Usage Notes

If the return code from Check_For_Completion is CM_OK, the application should call

Wait_For_Conversation to obtain the results of the outstanding call.

If more than one call has completed since the application last issued

Check_For_Completion or Wait_For_Conversation, issuing Check_For_Completion

more than once does not necessarily return information about additional calls; it

simply indicates that at least one call has completed, and therefore a subsequent

Wait_For_Conversation call will return immediately and not block. Each

Wait_For_Conversation call returns one incomplete operation; if there are multiple

incomplete operations (on different conversations), the application can issue a

further Check_For_Completion after Wait_For_Conversation to check whether

further calls have completed.

The Wait_For_Conversation call does not necessarily return the information for the

same call that was reported by Check_For_Completion.

Confirm (cmcfm)

The Confirm call sends the contents of the local LU’s send buffer and a

confirmation request to the partner program and waits for confirmation.

In response to the Confirm call, the partner program normally issues the

Confirmed call to confirm that it has received the data without error. (If the

partner program encounters an error, it issues the Send_Error call or uses the

Deallocate call to abnormally deallocate the conversation.)

The program can issue the Confirm call only if the conversation’s synchronization

level is CM_CONFIRM.

Check_For_Completion (cmchck)

58 IBM Communications Server for AIX CPI-C Programmer’s Guide

Function Call

 void cmcfm (

 unsigned char CM_PTR conversation_ID,

 CM_Request_to_Send_Received CM_PTR request_to_send_received,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmcfm (

 byte[] conversation_ID,

 CPICControlInformationReceived request_to_send_received,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

request_to_send_received

This is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED

The partner program has issued the Request_To_Send call, which

requests the local program to change the conversation to Receive

state.

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program has not issued the Request_To_Send call.

This value is not relevant if the return_code parameter is set to one of the

following:

v CM_PROGRAM_PARAMETER_CHECK

v CM_PROGRAM_STATE_CHECK

return_code

Possible values are:

CM_OK The call executed successfully. The partner program has issued the

Confirmed call.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid.

Confirm (cmcfm)

Chapter 3. CPI-C Calls 59

v The local program attempted to use the Confirm call in a

conversation with a synchronization level of CM_NONE. The

synchronization level must be CM_CONFIRM.

CM_PROGRAM_STATE_CHECK

One of the following has occurred:

v The conversation was not in Send or Send-Pending state.

v The basic conversation for the local program was in Send state,

and the local program did not finish sending a logical record.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_CONVERSATION_TYPE_MISMATCH

 CM_DEALLOCATED_ABEND

 CM_DEALLOCATED_ABEND_SVC

 CM_DEALLOCATED_ABEND_TIMER

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PIP_NOT_SPECIFIED_CORRECTLY

 CM_PRODUCT_SPECIFIC_ERROR

 CM_PROGRAM_ERROR_PURGING

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

 CM_SECURITY_NOT_VALID

 CM_SVC_ERROR_PURGING

 CM_SYNC_LVL_NOT_SUPPORTED_PGM

 CM_SYNC_LVL_NOT_SUPPORTED_LU

 CM_TP_NOT_AVAILABLE_NO_RETRY

 CM_TP_NOT_AVAILABLE_RETRY

 CM_TPN_NOT_RECOGNIZED

State When Issued

The conversation can be in Send or Send-Pending state.

State Change

State changes, summarized in Table 13, are based on the value of the return_code

parameter.

 Table 13. State Changes for the Confirm Call

return_code New state

CM_OK (Call issued in Send state) No change

CM_OK (Call issued in Send-Pending state) Send

CM_PROGRAM_ERROR_PURGING

CM_SVC_ERROR_PURGING

Receive

Confirm (cmcfm)

60 IBM Communications Server for AIX CPI-C Programmer’s Guide

Table 13. State Changes for the Confirm Call (continued)

return_code New state

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

CM_SYNC_LEVEL_NOT_SUPPORTED_LU

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

Reset

All others No change

Usage Notes

The Confirm call waits for a response from the partner program. A response is

generated by one of the following CPI-C calls in the partner program:

v Confirmed

v Send_Error

v Deallocate with the conversation’s deallocate type set to CM_DEALLOCATE_ABEND

Confirmed (cmcfmd)

The Confirmed call replies to a confirmation request from the partner program. It

informs the partner program that the local program has not detected an error in

the received data.

Because the program issuing the confirmation request waits for a confirmation, the

Confirmed call synchronizes the processing of the two programs.

Function Call

 void cmcfmd (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmcfmd (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

Confirm (cmcfm)

Chapter 3. CPI-C Calls 61

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

When the program issued this call the conversation was not in

Confirm, Confirm-Send, or Confirm-Deallocate state.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

State When Issued

The conversation must be in one of the following states when the program issues

this call:

v Confirm

v Confirm-Send

v Confirm-Deallocate

State Change

The new state is determined by the old state: the state of the conversation when

the local program issued the Confirmed call. The old state is indicated by the value

of the status_received parameter of the preceding Receive call. Table 14 summarizes

the possible state changes when return_code is set to CM_OK.

 Table 14. State Changes for the Confirmed Call

Old state New state

Confirm Receive

Confirm-Send Send

Confirm-Deallocate Reset

Other return codes result in no state change.

Usage Notes

The following sections describe additional usage information for the Confirmed

call.

Confirmed (cmcfmd)

62 IBM Communications Server for AIX CPI-C Programmer’s Guide

Sources of Confirmation Requests

A confirmation request is issued by one of the following calls in the partner

program:

v Confirm

v Prepare_To_Receive if the prepare-to-receive type is set to either

CM_PREP_TO_RECEIVE_CONFIRM or CM_PREP_TO_RECEIVE_SYNC_LEVEL and the

conversation’s synchronization level is set to CM_CONFIRM

v Deallocate if the deallocate type is set to CM_DEALLOCATE_CONFIRM or to

CM_DEALLOCATE_SYNC_LEVEL and the conversation’s synchronization level is set to

CM_CONFIRM

v Send_Data under the following circumstances:

– The send type is set to CM_SEND_AND_CONFIRM

– The send type is set to CM_SEND_AND_PREP_TO_RECEIVE and the

prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM

– The send type is set to CM_SEND_AND_PREP_TO_RECEIVE, the prepare-to-receive

type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the synchronization level is

set to CM_CONFIRM

– The send type is set to CM_SEND_AND_DEALLOCATE and the deallocate type is set

to CM_DEALLOCATE_CONFIRM

– The send type is set to CM_SEND_AND_DEALLOCATE, the deallocate type is set to

CM_DEALLOCATE_SYNC_LEVEL and the synchronization level is set to CM_CONFIRM

Receiving Confirmation Requests

A confirmation request is received by the local program through the status_received

parameter of the Receive call. The local program can issue the Confirmed call only

if the status_received parameter is set to one of the following values:

v CM_CONFIRM_RECEIVED

v CM_CONFIRM_SEND_RECEIVED

v CM_CONFIRM_DEALLOC_RECEIVED

Convert_Incoming (cmcnvi)

The Convert_Incoming call converts a character string from EBCDIC to ASCII. If

the partner application sends data consisting of EBCDIC character strings, the local

application can use Convert_Incoming to convert these strings to ASCII. (CPI-C

parameters other than the data in Send_Data and Receive calls, such as mode_name

and TP_name, are always specified in ASCII and do not require conversion.)

Function Call

 void cmcnvi (

 unsigned char CM_PTR string,

 CM_INT32 CM_PTR string_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

 public native void cmcnvi (

 byte[] string,

 CPICLength string_length,

 CPICReturnCode return_code

);

Confirmed (cmcfmd)

Chapter 3. CPI-C Calls 63

Supplied Parameters

The supplied parameters are:

string This is the EBCDIC string to be converted to ASCII. The CPI-C

specification states that the string can contain any of the following

characters (character set 640):

 Uppercase A-Z, lowercase a-z, 0–9, the period (.) and space characters, and

the special characters < + (& *) ; - / , % _ > ? : ’ = "

 In addition, CS/AIX CPI-C also accepts the following characters (which

may not be supported by other CPI-C implementations):

 ! # $ @ \ { } ~

 ` (backward quotation mark)

 | (solid vertical bar)

 | (broken vertical bar)

 ¬ (NOT character)

 ¢ (cent)

 The contents of this string (up to the number of characters specified in

string_length) will be replaced by the ASCII string resulting from the

conversion.

string_length

This is the number of characters to be converted (1–32,767).

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

string This is the ASCII string resulting from the conversion. This is valid up to

the number of characters specified in string_length.

return_code

Possible values are:

CM_OK The call executed successfully. The string parameter now contains

the converted ASCII string.

CM_PROGRAM_PARAMETER_CHECK

The buffer_length parameter specified a value that was not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

This call is not associated with a conversation.

State Change

There is no state change.

Convert_Incoming (cmcnvi)

64 IBM Communications Server for AIX CPI-C Programmer’s Guide

Usage Note

When data is being received in buffer format in a basic conversation (as specified

by the Set_Fill call), the data buffer can contain multiple logical records, each

consisting of a two-byte or four-byte header (LLID) followed by data. The

application must extract and convert each data string separately (not including the

headers). It must not attempt to convert the whole buffer in one operation because

this will make the header values not valid.

Convert_Outgoing (cmcnvo)

The Convert_Outgoing call converts a character string from ASCII to EBCDIC. If

the partner application requires data consisting of EBCDIC character strings, the

local application can use Convert_Outgoing to convert data from ASCII to EBCDIC

before sending it. (CPI-C parameters other than the data in Send_Data and Receive

calls, such as mode_name and TP_name, are always specified in ASCII and do not

require conversion.)

Function Call

 void cmcnvo (

 unsigned char CM_PTR string,

 CM_INT32 CM_PTR string_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

 public native void cmcnvo (

 byte[] string,

 CPICLength string_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

string This is the ASCII string to be converted to EBCDIC. The CPI-C

specification states that the string can contain any of the following

characters (character set 640):

 Uppercase A-Z, lowercase a-z, 0–9, the period (.) and space characters, and

the special characters < + (& *) ; - / , % _ > ? : ’ = "

 In addition, CS/AIX CPI-C also accepts the following characters (which

may not be supported by other CPI-C implementations):

 ! # $ @ \ { } ~

 ` (backward quotation mark)

 | (solid vertical bar)

 | (broken vertical bar)

 ¬ (NOT character)

 ¢ (cent)

 The contents of this string (up to the number of characters specified in

string_length) will be replaced by the EBCDIC string resulting from the

conversion.

Convert_Incoming (cmcnvi)

Chapter 3. CPI-C Calls 65

string_length

This is the number of characters to be converted (1–32,767).

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

string This is the EBCDIC string resulting from the conversion. This is valid up to

the number of characters specified in string_length.

return_code

Possible values are:

CM_OK The call executed successfully. The string parameter now contains

the converted EBCDIC string.

CM_PROGRAM_PARAMETER_CHECK

The buffer_length parameter specified a value that was not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

This call is not associated with a conversation.

State Change

There is no state change.

Usage Note

When data is being sent in buffer format in a basic conversation (as specified by

the Set_Fill call), the data buffer can contain multiple logical records, each

consisting of a two-byte or four-byte header (LLID) followed by data. The

application must convert each data string separately (not including the headers). It

must not attempt to convert the whole buffer in one operation because this will

make the header values not valid.

Deallocate (cmdeal)

The Deallocate call deallocates a conversation between two programs.

Before deallocating the conversation, this call performs the equivalent of either the

Flush call or the Confirmed call, depending on the current conversation

synchronization level and deallocate type. The deallocate type is set by the

Set_Deallocate_Type call.

The partner program receives the deallocation notification through one of the

following parameters:

v status_received = CM_CONFIRM_DEALLOC_RECEIVED

v return_code = CM_DEALLOCATED_NORMAL

v return_code = CM_DEALLOCATED_ABEND

After this call has successfully executed, the conversation ID is no longer valid.

Convert_Outgoing (cmcnvo)

66 IBM Communications Server for AIX CPI-C Programmer’s Guide

Function Call

 void cmdeal (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmdeal (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully, the conversation is deallocated.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The following state errors can occur when the deallocate type

indicates a normal deallocation (CM_DEALLOCATE_SYNC_LEVEL,

CM_DEALLOCATE_FLUSH, CM_DEALLOCATE_CONFIRM):

v The conversation is not in Send or Send-Pending state

v The conversation is in Send state, but the program did not finish

sending a logical record

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

The following return codes can be returned when the deallocate type is set

to CM_DEALLOCATE_CONFIRM or when it is set to CM_DEALLOCATE_SYNC_LEVEL

and the conversation’s synchronization level is set to CM_CONFIRM. For an

explanation of these return codes, see Appendix B, “Common Return

Codes,” on page 171.

Deallocate (cmdeal)

Chapter 3. CPI-C Calls 67

CM_CONVERSATION_TYPE_MISMATCH

 CM_DEALLOCATED_ABEND

 CM_DEALLOCATED_ABEND_SVC

 CM_DEALLOCATED_ABEND_TIMER

 CM_PIP_NOT_SPECIFIED_CORRECTLY

 CM_SECURITY_NOT_VALID

 CM_SVC_ERROR_PURGING

 CM_SYNC_LVL_NOT_SUPPORTED_PGM

 CM_SYNC_LVL_NOT_SUPPORTED_LU

 CM_TP_NOT_AVAILABLE_NO_RETRY

 CM_TP_NOT_AVAILABLE_RETRY

 CM_TPN_NOT_RECOGNIZED

 CM_PROGRAM_ERROR_PURGING

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

State When Issued

The conversation can be in one of the states shown in Table 15 when the program

issues the Deallocate call. This depends on the value of the conversation’s

deallocate_type parameter, set by the Set_Deallocate_Type call.

 Table 15. Conversation States When Issuing the Deallocate Call

Deallocate type Allowed state

CM_DEALLOCATE_FLUSH CM_DEALLOCATE_CONFIRM

CM_DEALLOCATE_SYNC_LEVEL

Send or Send-Pending

CM_DEALLOCATE_ABEND Any except Reset

State Change

State changes, summarized in Table 16, are based on the value of the return_code

parameter.

 Table 16. State Changes for the Deallocate Call

return_code New state

CM_OK Reset

CM_PROGRAM_ERROR_PURGING

CM_SVC_ERROR_PURGING

Receive

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

CM_SYNC_LEVEL_NOT_SUPPORTED_LU

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

Reset

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

Reset

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

Reset

All others No change

Deallocate (cmdeal)

68 IBM Communications Server for AIX CPI-C Programmer’s Guide

Usage Notes

If the conversation’s deallocate type is set to CM_DEALLOCATE_ABEND and the log data

length is greater than 0 (zero), the local LU writes the log data (specified by the

Set_Log_Data call) to the local error log file and to the partner LU. For information

about log data, see “Set_Log_Data (cmsld)” on page 132.

After the Deallocate call has been executed, the log data length is set to 0 (zero)

and the log data is set to null.

Delete_CPIC_Side_Information (xcmdsi)

This function is not available in Java CPI-C.

The Delete_CPIC_Side_Information call deletes a side information entry that the

application has previously specified using Set_CPIC_Side_Information, or specifies

that an entry in the configuration file is no longer available for use by this

application. This entry is identified through the symbolic destination name.

This call is provided for compatibility with X/Open CPI-C and with the Windows

CPI-C specification; it is not included in IBM CPI-C 2.0.

Function Call

 void xcmdsi (

 unsigned char CM_PTR key,

 unsigned char CM_PTR sym_dest_name,

 CM_RETURN_CODE CM_PTR return_code

);

Supplied Parameters

The supplied parameters are:

key This parameter is ignored.

sym_dest_name

This parameter specifies the symbolic destination name of the entry to be

deleted. It is an 8-byte ASCII character string and can contain any

displayable characters.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The sym_dest_name parameter has specified a nonexistent side

information entry.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

Deallocate (cmdeal)

Chapter 3. CPI-C Calls 69

State When Issued

The call is not associated with a conversation.

State Change

There is no state change.

Usage Notes

This call does not modify the side information held in the configuration file; the

change applies only to this application. CS/AIX stores the modified information in

memory associated with this operating system process; the change is discarded

when the process ends. For more details, see “Side Information” on page 30.

Extract_Conversation_Context (cmectx)

AIX, LINUX

The Extract_Conversation_Context call returns the context for a specified

conversation. This enables the program to set its current context to the required

value (using Set_Conversation_Context) before starting a new conversation, to

ensure that the new conversation uses the same context.

Function Call

 void cmectx (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR context_ID,

 CM_INT32 CM_PTR context_ID_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

 public native void cmectx (

 byte[] conversation_ID,

 byte[] context_ID,

 CPICLength context_ID_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

context_ID

This parameter contains the context of the specified conversation. It is

valid only if the return_code parameter is CM_OK.

Delete_CPIC_Side_Information (xcmdsi)

70 IBM Communications Server for AIX CPI-C Programmer’s Guide

context_ID_length

This parameter contains the length of context_ID (1–32 bytes). It is valid

only if the return_code parameter is CM_OK.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The conversation specified by conversation_ID is in Initialize or

Initialize-Incoming state.

For an explanation of the following return code, see Appendix B,

“Common Return Codes,” on page 171.

 CM_PRODUCT_SPECIFIC_ERROR

State When Issued

The conversation can be in any state except Reset, Initialize, or Initialize-Incoming.

State Change

There is no state change.

Usage Notes

This call does not set the program’s current context to the extracted value. The

program must call Set_Conversation_Context to do this.

An application uses Extract_Conversation_Context, followed by

Set_Conversation_Context, in the following situations:

v When it is involved in multiple conversations, and wants to allocate a new

conversation using the same context as an existing conversation.

v When a CPI-C call that assigns a new context completes in nonblocking mode.

For example, if Accept_Incoming completes immediately with return_code CM_OK,

the program’s current context is set to the context of the new conversation;

however, if Accept_Incoming returns CM_OPERATION_INCOMPLETE, a subsequent

Wait_For_Conversation that returns the result of Accept_Incoming does not

change the program’s current context. The program must use

Extract_Conversation_Context and Set_Conversation_Context to set the current

context to the correct value.

Extract_Conversation_Security_Type (xcecst)

This function is not available in Java CPI-C.

The Extract_Conversation_Security_Type call returns the security type for a

specified conversation.

This call is provided for compatibility with X/Open CPI-C and with the Windows

CPI-C specification; it is not included in IBM CPI-C 2.0.

Extract_Conversation_Context (cmectx)

Chapter 3. CPI-C Calls 71

Function Call

void xcecst (

 unsigned char CM_PTR conversation_ID,

 XC_CONVERSATION_SECURITY_TYPE CM_PTR conversation_security_type,

 CM_RETURN_CODE CM_PTR return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

conversation_security_type

This specifies the information the partner LU requires in order to validate

access to the invoked program. Possible values are:

AIX, LINUX

CM_SECURITY_NONE

The invoked program uses no conversation security.

CM_SECURITY_SAME

This value is used when the invoked program, which has been

invoked with a valid user ID and password, invokes another

program (as illustrated in Chapter 1, “Concepts,” on page 1. If

program A invokes program B with a valid user ID and password,

and program B in turn invokes program C, then if program B

specifies the value CM_SECURITY_SAME, CPI-C will send an

already-verified indicator to the LU for program C. This indicator

tells program C not to require the password (if program C is

configured to accept an already-verified indicator).

CM_SECURITY_PROGRAM

The invoked program uses conversation security and thus requires

a user ID and password.

CM_SECURITY_PROGRAM_STRONG

As for CM_SECURITY_PROGRAM, except that the local node must not

send the password across the network in clear text format. This

value can be used only if the remote system supports password

substitution.

WINDOWS

XC_SECURITY_NONE

Equivalent to CM_SECURITY_NONE

XC_SECURITY_SAME

Equivalent to CM_SECURITY_SAME

XC_SECURITY_PROGRAM

Equivalent to CM_SECURITY_PROGRAM

Extract_Conversation_Security_Type (xcecst)

72 IBM Communications Server for AIX CPI-C Programmer’s Guide

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Extract_Conversation_Security_User_ID (cmecsu)

WINDOWS

This call is the Windows CPI-C equivalent of the AIX or Linux CPI-C call

Extract_Security_User_ID (cmesui). The two calls are used in exactly the same way,

except that the names are different. For more information about

Extract_Conversation_Security_User_ID, see “Extract_Security_User_ID (cmesui or

cmecsu)” on page 83, and replace the AIX or Linux function name and pseudonym

with the Windows function name and pseudonym as indicated.

Extract_Conversation_Security_User_ID (xcecsu)

This function is not available in Java CPI-C.

This call returns the user ID being used in a specified conversation.

The call provides compatibility for applications using the X/Open CPI-C

definition. It has been incorporated into IBM CPI-C 2.0 as the call

Extract_Security_User_ID (cmesui). Use cmesui whenever possible to enable greater

portability of your program to other platforms.

The parameters on this call are identical to those on the cmesui call. For more

information about cmesui, see “Extract_Security_User_ID (cmesui or cmecsu)” on

page 83.

Extract_Conversation_State (cmecs)

The Extract_Conversation_State call returns the state of the specified conversation.

Extract_Conversation_Security_Type (xcecst)

Chapter 3. CPI-C Calls 73

Function Call

 void cmecs (

 unsigned char CM_PTR conversation_ID,

 CM_CONVERSATION_STATE CM_PTR conversation_state,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmecs (

 byte[] conversation_ID,

 CPICConversationState conversation_state,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

conversation_state

This specifies the conversation state. Possible values are:

 CM_INITIALIZE_STATE

 CM_INITIALIZE_INCOMING_STATE

 CM_SEND_STATE

 CM_RECEIVE_STATE

 CM_SEND_PENDING_STATE

 CM_CONFIRM_STATE

 CM_CONFIRM_SEND_STATE

 CM_CONFIRM_DEALLOCATE_STATE

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_INCOMPLETE

 CM_PRODUCT_SPECIFIC_ERROR

Extract_Conversation_State (cmecs)

74 IBM Communications Server for AIX CPI-C Programmer’s Guide

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Extract_Conversation_Type (cmect)

The Extract_Conversation_Type call returns the conversation type (mapped or

basic) of the specified conversation.

Function Call

 void cmect (

 unsigned char CM_PTR conversation_ID,

 CM_CONVERSATION_TYPE CM_PTR conversation_type,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmect (

 byte[] conversation_ID,

 CPICConversationType conversation_type,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

conversation_type

This parameter specifies the conversation type. Possible values are:

 CM_BASIC_CONVERSATION

 CM_MAPPED_CONVERSATION

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

Extract_Conversation_State (cmecs)

Chapter 3. CPI-C Calls 75

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Extract_CPIC_Side_Information (xcmesi)

This function is not available in Java CPI-C.

The Extract_CPIC_Side_Information call returns the side information for an entry

number or symbolic destination name.

This call is provided for compatibility with X/Open CPI-C and with the Windows

CPI-C specification; it is not included in IBM CPI-C 2.0.

Function Call

 void xcmesi (

 CM_INT32 CM_PTR entry_number,

 unsigned char CM_PTR sym_dest_name,

 SIDE_INFO CM_PTR side_info_entry,

 CM_INT32 CM_PTR side_info_entry_length,

 CM_RETURN_CODE CM_PTR return_code

);

typedef struct side_info_entry

{

 unsigned char sym_dest_name[8]; /* symbolic destination name */

 unsigned char partner_LU_name[17]; /* Fully qualified partner LU */

 /* name */

 unsigned char reserved[3]; /* Reserved */

 XC_TP_NAME_TYPE TP_name_type; /* TP name type */

 unsigned char TP_name[64]; /* TP name */

 unsigned char mode_name[8]; /* Mode name */

 XC_CONVERSATION_SECURITY_TYPE

 conversation_security_type; /* Conversation security type */

 unsigned char security_user_ID[8]; /* User ID */

 unsigned char security_password[8]; /* Password */

} SIDE_INFO;

Supplied Parameters

The supplied parameters are:

entry_number

This parameter is ignored.

sym_dest_name

This parameter specifies the symbolic destination name to search for. It is

an 8-byte ASCII character string and can contain any displayable

characters.

side_info_entry_length

AIX, LINUX

Extract_Conversation_Type (cmect)

76 IBM Communications Server for AIX CPI-C Programmer’s Guide

This value must always be set to sizeof(SIDE_INFO).

WINDOWS

This value must always be set to 124.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

side_info_entry

This parameter specifies the contents of a side information entry, as

follows.

side_info_entry.sym_dest_name

Symbolic destination name which identifies the side information entry. The

parameter sym_dest_name is an 8-byte ASCII character string and can

contain any displayable characters.

side_info_entry.partner_LU_name

Fully qualified name of the partner LU. This name is composed of two

character strings each of 1–8 bytes, concatenated by a dot.

side_info_entry.TP_name_type

The type of the target TP (the valid characters for a TP name are

determined by the TP type). Possible values are:

XC_APPLICATION_TP

Application TP. All characters in the TP name must be valid ASCII

characters.

XC_SNA_SERVICE_TP

Service TP. The TP name must be specified as an 8–character ASCII

string representing the hexadecimal digits of a 4-character name.

For example, if the hexadecimal representation of the name is

0x21F0F0F8, set the TP_name parameter to the 8–character string

“21F0F0F8”.

 The first character (represented by two bytes) must be a

hexadecimal value in the range 0x0–0x3F, excluding 0x0E and 0x0F;

the remaining characters (each represented by two bytes) must be

valid EBCDIC characters.

side_info_entry.TP_name

TP name of the target TP.

side_info_entry.mode_name

Name of the mode used to access the target TP.

side_info_entry.conversation_security_type

Specifies whether the target TP uses conversation security. Possible values

are:

XC_SECURITY_NONE

The target TP does not use conversation security.

Extract_CPIC_Side_Information (xcmesi)

Chapter 3. CPI-C Calls 77

XC_SECURITY_PROGRAM

The target TP uses conversation security. The security_user_ID and

security_password parameters specified below will be used to access

the target TP.

XC_SECURITY_SAME

The target TP uses conversation security, and can accept an

“already verified” indicator from the local TP. (This indicates that

the local TP was itself invoked by another TP, and has verified the

security user ID and password supplied by this TP.) The

security_user_ID parameter specified below will be used to access

the target TP; no password is required.

side_info_entry.security_user_ID

User ID used to access the partner TP. This parameter is not required if the

conversation_security_type parameter is set to XC_SECURITY_NONE.

 For compatibility with X/Open CPI-C, this verb only returns eight

characters for the user ID, although security user IDs can be up to 10

characters. To ensure that you obtain the complete user ID, you should

extract it explicitly using the Extract_Security_User_ID call

(Extract_Conversation_Security_User_ID for Windows systems), instead of

relying on the value returned here.

side_info_entry.security_password

This parameter is reserved; password information is never returned to the

application.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The sym_dest_name parameter is not valid

v The side_info_entry_length parameter is not set to

sizeof(SIDE_INFO)

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

This call is not associated with a conversation.

State Change

There is no state change.

Usage Notes

If the security user ID in the side information is not set, the security user ID field

is returned filled with spaces.

Extract_Local_LU_Name (cmelln)

The Extract_Local_LU_Name call returns the alias of the local LU for a specified

conversation.

Extract_CPIC_Side_Information (xcmesi)

78 IBM Communications Server for AIX CPI-C Programmer’s Guide

This call is not part of the standard CPI-C specification, and may not be available

in other implementations. In particular, it is not supported in other Java CPI-C

implementations.

Function Call

void cmelln (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR lu_alias,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmelln (

 byte[] conversation_ID,

 byte[] lu_alias,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

lu_alias

LU alias of the local LU.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Extract_Local_LU_Name (cmelln)

Chapter 3. CPI-C Calls 79

Usage Notes

The LU alias returned by this call does not have to be set by Set_Local_LU_Name,

as described in “Set_Local_LU_Name (cmslln)” on page 131. Any of the methods

described in “Specifying the Local LU” on page 34 can be used.

Extract_Maximum_Buffer_Size (cmembs)

AIX, LINUX

The Extract_Maximum_Buffer_Size call returns the maximum size of a CPI-C data

buffer. This defines the maximum amount of data that can be sent in one

Send_Data call or received in one Receive call.

CS/AIX CPI-C always uses a data buffer size of 32,767 bytes. However, for

compatibility with other CPI-C implementations (or with future versions of

CS/AIX), an application should not rely on this value, and should use this call to

determine the largest buffer size it can use.

Function Call

 void cmembs (

 CM_INT32 CM_PTR maximum_buffer_size,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

 public native void cmembs (

 CPICLength maximum_bufer_size,

 CPICReturnCode return_code

);

Supplied Parameters

There are no supplied parameters for this call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

maximum_buffer_size

This parameter specifies the length of the data buffer.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

This call is not associated with any conversation.

Extract_Local_LU_Name (cmelln)

80 IBM Communications Server for AIX CPI-C Programmer’s Guide

State Change

There is no state change.

Extract_Mode_Name (cmemn)

The Extract_Mode_Name call returns the mode name and mode name length for a

specified conversation.

Function Call

 void cmemn (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR mode_name,

 CM_INT32 CM_PTR mode_name_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmemn (

 byte[] conversation_ID,

 byte[] mode_name,

 CPICLength mode_name_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

mode_name

This parameter specifies the starting address of the mode name.

mode_name_length

This parameter specifies the length of the mode name.

return_code

Possible values are:

CM_OK The call executed successfully.

Extract_Maximum_Buffer_Size (cmembs)

Chapter 3. CPI-C Calls 81

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Extract_Partner_LU_Name (cmepln)

The Extract_Partner_LU_Name call returns the partner LU name and partner LU

name length for a specified conversation. This can be an alias name of up to eight

bytes or a fully qualified network name of up to 17 bytes.

Function Call

 void cmepln (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR partner_LU_name,

 CM_INT32 CM_PTR partner_LU_name_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmepln (

 byte[] conversation_ID,

 byte[] partner_LU_name,

 CPICLength partner_LU_name_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

Extract_Mode_Name (cmemn)

82 IBM Communications Server for AIX CPI-C Programmer’s Guide

partner_LU_name

This parameter specifies the variable containing the partner LU name. (The

program must supply a pointer to a suitable variable.)

partner_LU_name_length

This parameter specifies the length of the partner LU name.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The conversation specified by conversation_ID is in

Initialize-Incoming state.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset or Initialize-Incoming.

State Change

There is no state change.

Extract_Security_User_ID (cmesui or cmecsu)

The Extract_Security_User_ID call returns the user ID being used in a specified

conversation.

WINDOWS

This call is named Extract_Conversation_Security_User_ID, with the pseudonym

cmecsu, for compatibility with the Windows CPI-C interface.

Function Call

 void cmesui (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR security_user_ID,

 CM_INT32 CM_PTR security_user_ID_length,

 CM_RETURN_CODE CM_PTR return_code

);

WINDOWS

For Windows systems, replace cmesui with cmecsu.

Extract_Partner_LU_Name (cmepln)

Chapter 3. CPI-C Calls 83

Function Call for Java CPI-C

AIX, LINUX

 public native void cmesui (

 byte[] conversation_ID,

 byte[] security_user_ID,

 CPICLength security_user_ID_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

security_user_ID

This specifies the user ID used to establish the conversation.

security_user_ID_length

This specifies the length of security_user_ID.

 The range for this value is 1–10 characters (AIX or Linux systems), or 1–8

characters (Windows systems). If the security_user_ID_length is set to 0

(zero), the security_user_ID_length parameter is ignored; this is equivalent to

setting security_user_ID to a null string.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Extract_Security_User_ID (cmesui or cmecsu)

84 IBM Communications Server for AIX CPI-C Programmer’s Guide

Usage Notes

The security_user_ID value is not blank-padded. It is meaningful only up to

security_user_ID_length.

Extract_Sync_Level (cmesl)

The Extract_Sync_Level call returns the synchronization level for a specified

conversation.

Function Call

 void cmesl (

 unsigned char CM_PTR conversation_ID,

 CM_INT32 CM_PTR sync_level,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmesl (

 byte[] conversation_ID,

 CPICSyncLevel sync_level,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

sync_level

This parameter indicates the synchronization level of the conversation.

Possible values are:

CM_NONE

The programs will not perform confirmation processing.

CM_CONFIRM

The programs can perform confirmation processing.

return_code

Possible values are:

CM_OK The call executed successfully.

Extract_Security_User_ID (cmesui or cmecsu)

Chapter 3. CPI-C Calls 85

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The conversation specified by conversation_ID is in

Initialize-Incoming state.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset or Initialize-Incoming.

State Change

There is no state change.

Extract_TP_Name (cmetpn)

The Extract_TP_Name call returns the TP name and TP name length of the

invoked TP for a specified conversation.

An application that has used the Specify_Local_TP_Name call to accept incoming

Allocates for more than one TP name, and has subsequently issued

Accept_Conversation or Accept_Incoming to accept an incoming Allocate, can use

this call to determine which TP name was specified on the incoming Allocate.

Function Call

 void cmetpn (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR TP_name,

 CM_INT32 CM_PTR TP_name_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmetpn (

 byte[] conversation_ID,

 byte[] TP_name,

 CPICLength TP_name_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Extract_Sync_Level (cmesl)

86 IBM Communications Server for AIX CPI-C Programmer’s Guide

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

TP_name

This parameter specifies the starting address of the TP name.

TP_name_length

This parameter specifies the length of the TP name.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The conversation is in Reset or Initialize-Incoming state.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset or Initialize-Incoming.

State Change

There is no state change.

Flush (cmflus)

The Flush call sends the contents of the local LU’s send buffer to the partner LU

(and program). If the send buffer is empty, no action takes place.

Sources of Buffered Data

Data processed by the Send_Data call accumulates in the local LU’s send buffer

until one of the following happens:

v The local program issues the Flush call or other call that flushes the LU’s send

buffer. (Some send types, set by the Set_Send_Type call, include flush

functionality.)

v The buffer is full.

The allocation request generated by the Allocate call and error information

generated by the Send_Error call are also buffered.

Function Call

 void cmflus (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Extract_TP_Name (cmetpn)

Chapter 3. CPI-C Calls 87

Function Call for Java CPI-C

AIX, LINUX

 public native void cmflus (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation.

 The value of this parameter is returned by the Initialize_Conversation,

Initialize_For_Incoming, or Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The conversation was not in Send or Send-Pending state when the

program issued this call.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

State When Issued

The conversation must be in Send or Send-Pending state.

State Change

If the call completes successfully (return_code = CM_OK), the conversation is in Send

state.

Other return codes result in no state change.

Flush (cmflus)

88 IBM Communications Server for AIX CPI-C Programmer’s Guide

Initialize_Conversation (cminit)

The Initialize_Conversation call is issued by the invoking program to obtain an

8-byte conversation ID and to set the initial values for the conversation’s

characteristics.

The initial values are CPI-C defaults or are derived from side information

associated with the symbolic destination name. For more information about initial

values and side information, see Chapter 2, “Writing CPI-C Applications,” on page

19.

Upon successful execution of this call, CPI-C generates a conversation identifier.

This identifier is a required parameter for all other CPI-C calls issued for this

conversation by the invoking program.

Initial values can be changed by the Set_* calls.

Function Call

 void cminit (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR sym_dest_name,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cminit (

 byte[] conversation_ID,

 String sym_dest_name,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

sym_dest_name

This parameter specifies the symbolic destination name—the name

associated with a side information entry loaded from the CS/AIX

configuration file or defined by Set_CPIC_Side_Information calls.

 The parameter is an 8-byte ASCII character string and can contain any

displayable characters. This parameter can also be set to eight spaces. In

this case, the invoking program must issue the following calls before

issuing the Allocate call:

v Set_Mode_Name

v Set_Partner_LU_Name

v Set_TP_Name

For more details about the side information entry, see

“Set_CPIC_Side_Information (xcmssi)” on page 122.

Initialize_Conversation (cminit)

Chapter 3. CPI-C Calls 89

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

conversation_ID

This is the identifier for the conversation. It is used by subsequent CPI-C

calls.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following occurred:

v The value specified by sym_dest_name does not match a symbolic

destination name defined in the configuration file or one

specified by the program using Set_CPIC_Side_Information.

v The conversation_ID parameter is not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation is in Reset state.

State Change

If the return_code is CM_OK, the conversation changes to Initialize state. For other

return codes, the conversation state remains unchanged.

Usage Notes

If the side information contains a value that is not valid for a conversation

characteristic, or if a Set_* call sets it to a value that is not valid, then the error is

returned on the Allocate call.

Initialize_For_Incoming (cminic)

AIX, LINUX

The Initialize_For_Incoming call is issued by the invoked program to obtain an

8-byte conversation ID. The program then accepts the conversation using the

Accept_Incoming call.

Issuing Initialize_For_Incoming followed by Accept_Incoming is equivalent to

issuing Accept_Conversation. The difference is that Set_Processing_Mode can be

issued between Initialize_For_Incoming and Accept_Incoming to ensure that

Accept_Incoming operates in nonblocking mode, whereas Accept_Conversation

always operates in blocking mode.

Initialize_Conversation (cminit)

90 IBM Communications Server for AIX CPI-C Programmer’s Guide

Function Call

 void cminic (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

 public native void cminic (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Supplied Parameters

There are no supplied parameters for this call.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

conversation_ID

This is the identifier for the conversation. It is used by subsequent CPI-C

calls.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation is in Reset state.

State Change

If the return_code is CM_OK, the conversation changes to Initialize state. Otherwise

the conversation state remains unchanged.

Prepare_To_Receive (cmptr)

The Prepare_To_Receive call changes the state of the conversation for the local

program from Send to Receive. Before changing the conversation state, this call

performs the equivalent of one of the following:

v The Flush call, sending the contents of the local LU’s send buffer to the partner

LU (and program), if either of the following conditions is true:

– The conversation’s prepare-to-receive type is set to CM_PREP_TO_RECEIVE_FLUSH

– The prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the

conversation’s synchronization level is set to CM_NONE

v The Confirm call, sending the contents of the local LU’s send buffer and a

confirmation request to the partner program, if either of the following conditions

is true:

Initialize_For_Incoming (cminic)

Chapter 3. CPI-C Calls 91

– The conversation’s prepare-to-receive type is set to

CM_PREP_TO_RECEIVE_CONFIRM

– The prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the

conversation’s synchronization level is set to CM_CONFIRM

The prepare-to-receive type is set by the Set_Prepare_To_Receive_Type call; the

synchronization level is set by the Set_Sync_Level call.

After this call has successfully executed, the local program can receive data.

Function Call

 void cmptr (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmptr (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

One of the following has occurred:

v The conversation state is not Send or Send-Pending

v The basic conversation is in Send state. However, the program

did not finish sending a logical record

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

Prepare_To_Receive (cmptr)

92 IBM Communications Server for AIX CPI-C Programmer’s Guide

CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

The following return codes can occur if the conversation’s

prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM or if the

prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, and the

conversation’s synchronization level is set to CM_CONFIRM. For an

explanation of them, see Appendix B, “Common Return Codes,” on page

171.

 CM_CONVERSATION_TYPE_MISMATCH

 CM_DEALLOCATED_ABEND

 CM_DEALLOCATED_ABEND_SVC

 CM_DEALLOCATED_ABEND_TIMER

 CM_PIP_NOT_SPECIFIED_CORRECTLY

 CM_PROGRAM_ERROR_PURGING

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

 CM_SECURITY_NOT_VALID

 CM_SVC_ERROR_PURGING

 CM_SYNC_LVL_NOT_SUPPORTED_PGM

 CM_SYNC_LVL_NOT_SUPPORTED_LU

 CM_TPN_NOT_RECOGNIZED

 CM_TP_NOT_AVAILABLE_NO_RETRY

 CM_TP_NOT_AVAILABLE_RETRY

State When Issued

The conversation can be in Send or Send-Pending state.

State Change

State changes, summarized in Table 17, are based on the value of the return_code

parameter.

 Table 17. State Changes for the Prepare_To_Receive Call

return_code New state

CM_OK Receive

CM_PROGRAM_ERROR_PURGING

CM_SVC_ERROR_PURGING

Receive

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

CM_SYNC_LEVEL_NOT_SUPPORTED_LU

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

Reset

CM_DEALLOCATED_ABEND

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

Reset

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

Reset

All others No change

Prepare_To_Receive (cmptr)

Chapter 3. CPI-C Calls 93

Usage Notes

The conversation does not change to Send (or Send-Pending) for the partner

program until the partner program receives one of the following values through

the status_received parameter of the Receive call:

v CM_SEND_RECEIVED

v CM_CONFIRM_SEND_RECEIVED and replies with the Confirmed or Send_Error call

Receive (cmrcv)

The Receive call receives any data that is currently available from the partner

program.

If no data is currently available and the receive type (set by the Set_Receive_Type

call) is set to CM_RECEIVE_AND_WAIT, the local program waits for data to arrive. If the

receive type is set to CM_RECEIVE_IMMEDIATE, the local program does not wait.

WINDOWS

If the Receive call is issued in nonblocking mode (specified by a previous

Set_Processing_Mode call), the application can issue the following calls while

Receive is outstanding:

v Request_To_Send

v Send_Error

v Test_Request_to_Send_Received

v Cancel_Conversation

v Deallocate

If the application uses one of these calls in nonblocking mode while the Receive

call is outstanding, it must use Specify_Windows_Handle to enable CPI-C to return

the results of nonblocking calls. It must not issue Wait_For_Conversation if another

call is outstanding in addition to Receive; the results of this call are undefined if

more than one call is outstanding on the same conversation.

How a Program Receives Data

The process for receiving data is as follows:

v The local program issues a Receive call until it finishes receiving a complete unit

of data. The local program may need to issue the Receive call several times in

order to receive a complete unit of data. The data_received parameter indicates

whether the receipt of data is finished.

The data received can be any of the following:

– One data record transmitted in a mapped conversation

– One logical record transmitted in a basic conversation with the conversation’s

fill characteristic set to CM_FILL_LL

– A buffer of data received independent of its logical record format in a basic

conversation with the fill characteristic set to CM_FILL_BUFFER

Once a complete unit of data has been received, the local program can

manipulate it.

Prepare_To_Receive (cmptr)

94 IBM Communications Server for AIX CPI-C Programmer’s Guide

v The local program determines the next action to be taken based on the control

information received through the status_received parameter. The local program

may need to issue the Receive call again to receive the control information.

The conversation type is set by the Set_Conversation_Type call; the fill

characteristic is set by the Set_Fill call.

Function Call

 void cmrcv (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR buffer,

 CM_INT32 CM_PTR requested_length,

 CM_DATA_RECEIVED_TYPE CM_PTR data_received,

 CM_INT32 CM_PTR received_length,

 CM_STATUS_RECEIVED CM_PTR status_received,

 CM_INT32 CM_PTR request_to_send_received,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmrcv (

 byte[] conversation_ID,

 byte[] buffer,

 CPICLength requested_length,

 CPICDataReceivedType data_received,

 CPICLength received_length,

 CPICStatusReceived status_received,

 CPICControlInformationReceived request_to_send_received,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

requested_length

This indicates the maximum number of bytes of data the local program is

to receive.

 The range for this value is 0–32,767.

buffer This is the address of the buffer to contain the data received by the local

program.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

buffer The application’s data buffer contains data if the following conditions are

true:

Receive (cmrcv)

Chapter 3. CPI-C Calls 95

v The data_received parameter is set to a value other than

CM_NO_DATA_RECEIVED

v The return_code parameter is set to CM_OK or to CM_DEALLOCATED_NORMAL

data_received

This parameter indicates whether the program received data. The following

are possible values. These codes are not relevant unless return_code is set to

CM_OK or CM_DEALLOCATED_NORMAL.

 CM_DATA_RECEIVED can be returned if the conversation’s fill characteristic is

set to CM_FILL_BUFFER, indicating that the program is receiving data

independent of its logical format. The local program received data until

requested_length or end of data was reached.

 The end of the data is indicated by either of the following:

v A change to another conversation state, based on the return_code,

status_received, and data_received parameters

v An error condition

If the conversation’s receive type is set to CM_RECEIVE_IMMEDIATE, the data

received can be less than requested_length if a smaller amount of data has

arrived from the partner program.

CM_COMPLETE_DATA_RECEIVED

In a mapped conversation, this parameter indicates that the local

program has received a complete data record or the last part of a

data record.

 In a basic conversation with the fill characteristic set to CM_FILL_LL,

this value indicates that the local program has received a complete

logical record or the end of a logical record.

CM_INCOMPLETE_DATA_RECEIVED

In a mapped conversation, this value indicates that the local

program has received an incomplete data record, the

requested_length parameter specified a value less than the length of

the data record (or less than the remainder of the data record if

this is not the first Receive call to read the record). The amount of

data received is equal to the requested_length parameter.

 In a basic conversation with the fill characteristic set to CM_FILL_LL,

this value indicates that the local program has received an

incomplete logical record. The amount of data received is equal to

the requested_length parameter. (If the received data was truncated,

the length of the data will be less than requested_length.)

 Upon receiving this value, the local program normally reissues the

Receive call to receive the next part of the record.

CM_NO_DATA_RECEIVED

The program did not receive data.

Note: If the return_code parameter is set to CM_OK, status information may

be available through the status_received parameter.

received_length

This indicates the number of bytes of data the local program received on

this Receive call. If the return_code or data_received parameter indicates that

the program received no data, this value is not relevant.

Receive (cmrcv)

96 IBM Communications Server for AIX CPI-C Programmer’s Guide

status_received

This parameter indicates changes in the status of the conversation. These

codes are not relevant unless return_code is set to CM_OK. Possible values are:

CM_NO_STATUS_RECEIVED

No conversation status change was received on this call.

CM_SEND_RECEIVED

For the partner program, the conversation has entered Receive

state. For the local program, the conversation is now in Send state

if no data was received on this call, or Send-Pending state if data

was received on this call.

 Upon receiving this value, the local program normally uses the

Send_Data call to begin sending data.

CM_CONFIRM_DEALLOC_RECEIVED

The partner program has issued the Deallocate call with

confirmation requested. For the local program the conversation is

now in Confirm-Deallocate state.

 Upon receiving this value, the local program normally issues the

Confirmed call.

CM_CONFIRM_RECEIVED

The partner program has issued the Confirm call. For the local

program the conversation is in Confirm state.

 Upon receiving this value, the local program normally issues the

Confirmed call.

CM_CONFIRM_SEND_RECEIVED

For the partner program, the conversation has entered Receive

state and a request for confirmation has been received by the local

program. For the local program, the conversation is now in

Confirm-Send state.

 The program normally responds by issuing the Confirmed call.

Upon successful execution of the Confirmed call, the conversation

changes to Send state for the local program.

request_to_send_received

This is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED

The partner program has issued the Request_To_Send call, which

requests the local program to change the conversation to Receive

state.

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program has not issued the Request_To_Send call.

This value is not relevant if the return_code parameter is set to one of the

following:

v CM_PROGRAM_PARAMETER_CHECK

v CM_PROGRAM_STATE_CHECK

return_code

Possible values are:

CM_OK The call executed successfully.

Receive (cmrcv)

Chapter 3. CPI-C Calls 97

CM_UNSUCCESSFUL

The receive type is set to CM_RECEIVE_IMMEDIATE, and no data or

status information is currently available from the partner program.

CM_DEALLOCATED_NORMAL

The conversation has been deallocated normally. The partner

program issued the Deallocate call with the conversation’s

deallocate type set to one of the following:

v CM_DEALLOCATE_FLUSH

v CM_DEALLOCATE_SYNC_LEVEL with the synchronization level of the

conversation specified as CM_NONE

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid

v The value specified by requested_length is out of range

If the program receives this return code, the other returned

parameters are not valid.

CM_PROGRAM_STATE_CHECK

One of the following has occurred:

v The receive type is set to CM_RECEIVE_AND_WAIT and the

conversation state is not Receive, Send, or Send-Pending

v The receive type is set to CM_RECEIVE_IMMEDIATE and the

conversation state is not Receive

v The basic conversation is in Send state, the receive type is set to

CM_RECEIVE_AND_WAIT, and the program did not finish sending a

logical record

If the program receives this return code, the other returned

parameters are not valid.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_CONVERSATION_TYPE_MISMATCH

 CM_DEALLOCATED_ABEND

 CM_DEALLOCATED_ABEND_SVC (basic conversation only)

 CM_DEALLOCATED_ABEND_TIMER (basic conversation only)

 CM_OPERATION_INCOMPLETE (only if receive_type = CM_RECEIVE_AND_WAIT)

 CM_OPERATION_NOT_ACCEPTED

 CM_PIP_NOT_SPECIFIED_CORRECTLY

 CM_PRODUCT_SPECIFIC_ERROR

 CM_PROGRAM_ERROR_NO_TRUNC

 CM_PROGRAM_ERROR_PURGING

 CM_PROGRAM_ERROR_TRUNC (basic conversation only)

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

 CM_SECURITY_NOT_VALID

 CM_SYNC_LVL_NOT_SUPPORTED_PGM

 CM_SYNC_LVL_NOT_SUPPORTED_LU

 CM_TP_NOT_AVAILABLE_NO_RETRY

 CM_TP_NOT_AVAILABLE_RETRY

 CM_TPN_NOT_RECOGNIZED

 CM_SVC_ERROR_NO_TRUNC (basic conversation only)

 CM_SVC_ERROR_PURGING (basic conversation only)

 CM_SVC_ERROR_TRUNC (basic conversation only)

Receive (cmrcv)

98 IBM Communications Server for AIX CPI-C Programmer’s Guide

State When Issued

The conversation can be in Receive, Send, or Send-Pending state.

If receive_type is set to CM_RECEIVE_IMMEDIATE, the conversation must be in Receive

state.

WINDOWS

If the application successfully issues the Receive call in nonblocking mode, the

conversation changes state twice. On the initial return of the call, the conversation

changes to Pending-Post state. After CPI-C returns the results of the call

processing, the conversation state change is as described below.

Issuing the Call in Send or Send-Pending State

Issuing the Receive call while the conversation is in Send or Send-Pending state

causes the local LU to send the information in its send buffer and a send indicator

to the partner program. Based on data_received and status_received parameters, the

conversation may change to Receive state for the local program. For more

information, see “State Change.”

State Change

The new conversation state is determined by the following factors:

v The state the conversation is in when the program issues the call

v The return_code parameter

v The data_received and status_received parameters

Call Issued in Receive State

The state changes shown in Table 18 can occur when the Receive call is issued with

the conversation in Receive state and the return_code is CM_OK.

 Table 18. State Changes When the Receive Call Is Issued in Receive State

data_received status_received New state

CM_DATA_RECEIVED

CM_COMPLETE_DATA_RECEIVED

CM_INCOMPLETE_DATA_RECEIVED

CM_NO_STATUS_RECEIVED No change

CM_DATA_RECEIVED

CM_COMPLETE_DATA_RECEIVED

CM_SEND_RECEIVED Send-Pending

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED Send

If return_code is set to CM_UNSUCCESSFUL, meaning that the receive_type is set to

CM_RECEIVE_IMMEDIATE and no data is available, there is no state change.

Call Issued in Send State

The state changes shown in Table 19 on page 100 can occur when the Receive call

is issued with the conversation in Send state and the return_code is CM_OK.

Receive (cmrcv)

Chapter 3. CPI-C Calls 99

Table 19. State Changes When the Receive Call Is Issued in Send State

data_received status_received New state

CM_DATA_RECEIVED

CM_COMPLETE_DATA_RECEIVED

CM_INCOMPLETE_DATA_RECEIVED

CM_NO_STATUS_RECEIVED Receive

CM_DATA_RECEIVED

CM_COMPLETE_DATA_RECEIVED

CM_SEND_RECEIVED Send-Pending

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED No change

Call Issued in Send-Pending State

The state changes shown in Table 20 can occur when the Receive call is issued with

the conversation in Send-Pending state and the return_code is CM_OK.

 Table 20. State Changes When the Receive Call Is Issued in Send-Pending State

data_received status_received New state

CM_DATA_RECEIVED

CM_COMPLETE_DATA_RECEIVED

CM_INCOMPLETE_DATA_RECEIVED

CM_NO_STATUS_RECEIVED Receive

CM_DATA_RECEIVED

CM_COMPLETE_DATA_RECEIVED

CM_SEND_RECEIVED No change

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED Send

Call Issued in Any Allowed State

The following sections summarize state changes that can occur when the Receive

call is issued in any allowed state.

Confirmation Processing

The following state changes can occur under the following conditions:

v The return_code is CM_OK.

v The data_received parameter is set to CM_DATA_RECEIVED,

CM_COMPLETE_DATA_RECEIVED, or CM_NO_DATA_RECEIVED.

v The status_received parameter indicates a change to a confirm state, as shown in

Table 21.

 Table 21. State Changes When the Receive Call Is Issued in Any Allowable State

status_received New state

CM_CONFIRM_DEALLOC_RECEIVED Confirm-Deallocate

CM_CONFIRM_SEND_RECEIVED Confirm-Send

CM_CONFIRM_RECEIVED Confirm

Normal Deallocation

If the return_code parameter is set to CM_DEALLOCATED_NORMAL, the conversation

changes to Reset state.

Abends

The following abend conditions, indicated by the return_code parameter, cause the

conversation to change to Reset state:

 CM_CONVERSATION_TYPE_MISMATCH

 CM_PIP_NOT_SPECIFIED_CORRECTLY

 CM_SECURITY_NOT_VALID

 CM_SYNC_LVL_NOT_SUPPORTED_PGM

Receive (cmrcv)

100 IBM Communications Server for AIX CPI-C Programmer’s Guide

CM_SYNC_LVL_NOT_SUPPORTED_LU

 CM_TPN_NOT_RECOGNIZED

 CM_TP_NOT_AVAILABLE_NO_RETRY

 CM_TP_NOT_AVAILABLE_RETRY

 CM_DEALLOCATED_ABEND

 CM_DEALLOCATED_ABEND_SVC

 CM_DEALLOCATED_ABEND_TIMER

 CM_SVC_ERROR_TRUNC

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

Errors

The state changes shown in Table 22 can occur when a data transmission error is

encountered. (This is indicated by one of the following return codes:

CM_PROGRAM_ERROR_PURGING, CM_PROGRAM_ERROR_NO_TRUNC, CM_SVC_ERROR_PURGING, or

CM_SVC_ERROR_NO_TRUNC.)

 Table 22. State Changes Caused by a Data Transmission Error

return_code Old state New state

CM_PROGRAM_ERROR_PURGING Receive No change

CM_PROGRAM_ERROR_NO_TRUNC Receive No change

CM_SVC_ERROR_PURGING Send Receive

CM_SVC_ERROR_NO_TRUNC Send-Pending Receive

Usage Notes

The following sections describe additional usage information for the Receive call.

Truncated Records

If the partner program truncates a logical record, the local program receives

notification of the truncation through the return_code parameter on the next Receive

call.

Setting the Requested_Length Parameter to Zero

If a program issues the Receive call with requested_length set to 0 (zero), the call is

executed as usual.

However, the data_received and status_received parameters are not set on the same

Receive call. (One exception to this situation is the null record sent over a mapped

conversation, described in the next paragraph.)

In a mapped conversation in which data is available from the partner program, the

data_received parameter is set to CM_INCOMPLETE_DATA_RECEIVED. If a null record is

available (send_length in the Send_Data call issued by the partner program is set to

0), the data_received parameter is set to CM_COMPLETE_DATA_RECEIVED with the

received_length parameter set to 0 (zero).

In a basic conversation in which data is available and the fill characteristic is set to

CM_FILL_LL, the data_received parameter is set to CM_INCOMPLETE_DATA_RECEIVED. If

the fill characteristic is set to CM_FILL_BUFFER, the data_received is set to

CM_DATA_RECEIVED.

String Translation

The LU does not automatically perform any conversion between EBCDIC and

ASCII on the received string of data before putting it in buffer.

Receive (cmrcv)

Chapter 3. CPI-C Calls 101

If the remote program sends data in EBCDIC, the local program can use the

Convert_Incoming call to convert the received data to ASCII.

WINDOWS

The local program can also use the CSV CONVERT verb to convert the received

data to ASCII. Refer to the Communications Server for AIX CSV Programmer’s Guide

for more information.

Release_Local_TP_Name (cmrltp)

AIX, LINUX

The Release_Local_TP_Name call is issued by a program to indicate that it will no

longer accept incoming Allocate requests for a TP name. The TP name may have

been specified using any of the methods described in “Specifying the Local TP

Name” on page 33.

Function Call

 void cmrltp (

 unsigned char CM_PTR TP_name,

 CM_INT32 CM_PTR TP_name_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

 public native void cmrltp (

 byte[] TP_name,

 CPICLength TP_name_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

TP_name

This parameter specifies the starting address of the TP name. This must be

a TP name that the program has previously specified on a

Specify_Local_TP_Name call.

TP_name_length

This parameter specifies the length of the name (1–64 characters).

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

Receive (cmrcv)

102 IBM Communications Server for AIX CPI-C Programmer’s Guide

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by TP_name is not a TP name associated

with this program

v The value specified by TP_name_length is out of range

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

This call is not associated with a conversation.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the names associated with the program remain

unchanged.

If an Accept_Incoming call is outstanding at the time this call is issued, it may

accept an incoming Allocate for the name specified on this call. However,

subsequent Accept_Conversation or Accept_Incoming calls will not accept

incoming Allocates for this name.

If a program releases all its TP names, including the name specified by the APPCTPN

environment variable (if any), then it cannot issue any further Accept_Conversation

or Accept_Incoming calls unless it first specifies a new local TP name. For more

information, see “Specifying the Local TP Name” on page 33.

Request_To_Send (cmrts)

The Request_To_Send call notifies the partner program that the local program

wants to send data.

Action of the Partner Program

In response to this request, the partner program can change the conversation to

Receive state by issuing one of the following calls:

v Receive with receive_type set to CM_RECEIVE_AND_WAIT

v Prepare_To_Receive

v Send_Data with send_type set to CM_SEND_AND_PREP_TO_RECEIVE

The partner program can also ignore the request to send.

When the Local Program Can Send Data

The conversation state changes to Send for the local program when the local

program receives one of the following values through the status_received parameter

of a subsequent Receive call:

Release_Local_TP_Name (cmrltp)

Chapter 3. CPI-C Calls 103

v CM_SEND_RECEIVED

v CM_CONFIRM_SEND_RECEIVED and replies with a Confirmed call

Function Call

 void cmrts (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmrts (

 byte[] conversation_ID,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The conversation is not in Receive, Send, Send-Pending, Confirm,

Confirm-Send, or Confirm-Deallocate state.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

State When Issued

The conversation can be in any of the following states: Receive, Send,

Send-Pending, Confirm, Confirm-Send, Confirm-Deallocate, or Pending-Post.

Request_To_Send (cmrts)

104 IBM Communications Server for AIX CPI-C Programmer’s Guide

State Change

There is no state change.

Usage Notes

The request-to-send notification is received by the partner program through the

request_to_send_received parameter of the following calls:

v Confirmed

v Receive

v Send_Data

v Send_Error

v Test_Request_to_Send_Received

Request-to-send notification is sent to the partner program immediately; CPI-C

does not wait until the send buffer fills up or is flushed. Consequently, the

request-to-send notification may arrive out of sequence. For example, if the local

program is in Send state and issues the Prepare_To_Receive call followed by the

Request_To_Send call, the partner program, in Receive state, may receive the

request-to-send notification before it receives the send notification. For this reason,

the request-to-send notification can be reported to a program through the Receive

call.

Upon receiving a request-to-send notification, the partner LU retains the

notification until the partner program issues a call that returns the parameter

request_to_send_received. The LU retains only one request-to-send notification per

conversation, so the partner program may not be notified of every

Request_To_Send issued by the local program.

Send_Data (cmsend)

The Send_Data call puts data in the local LU’s send buffer for transmission to the

partner program.

The data collected in the local LU’s send buffer is transmitted to the partner LU

(and partner program) when one of the following occurs:

v The send buffer fills up.

v The local program issues a Flush, Confirm, or Deallocate call or other call that

flushes the LU’s send buffer. (Some send types, set by the Set_Send_Type call,

include flush functionality.)

The data to be sent can be either of the following:

v A complete data record on a mapped conversation. A complete data record is a

string of the length specified by the send_length parameter.

v A complete logical record, or part of a logical record, on a basic conversation.

The length of a complete logical record is determined by the LL value. (One

logical record can end and a new one begin in the middle of the string of data to

be sent.)

Function Call

 void cmsend (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR buffer,

Request_To_Send (cmrts)

Chapter 3. CPI-C Calls 105

CM_INT32 CM_PTR send_length,

 CM_Request_to_Send_Received CM_PTR request_to_send_received,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmsend (

 byte[] conversation_ID,

 byte[] buffer,

 CPICLength buffer_length,

 CPICControlInformationReceived request_to_send_received,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

buffer This parameter specifies the address of the buffer containing the data to be

put in the local LU’s send buffer.

send_length

This is the number of bytes of data to be put in the local LU’s send buffer.

 The range for this value is 0–32,767.

 For mapped conversations, if send_length is set to 0, a null data record is

sent to the partner program.

 For basic conversations, if send_length is set to 0 (zero), no data is sent. The

buffer parameter is ignored. However, the other parameters are valid.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

request_to_send_received

This is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED

The partner program has issued the Request_To_Send call, which

requests the local program to change the conversation to Receive

state.

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program has not issued the Request_To_Send call.

This value is not relevant if the return_code parameter is set to

CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

return_code

Possible values are:

Send_Data (cmsend)

106 IBM Communications Server for AIX CPI-C Programmer’s Guide

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid

v The value specified by send_length is out of range

v This is a basic conversation, and the first 2 bytes of the buffer

parameter contain a logical record length that is not valid

(0x0000, 0x0001, 0x8000, or 0x8001)

CM_PROGRAM_STATE_CHECK

One of the following has occurred:

v The conversation state is not Send or Send-Pending.

v The basic conversation is in Send state and the send type is set

to CM_SEND_AND_CONFIRM, CM_SEND_AND_DEALLOCATE, or

CM_SEND_AND_PREP_TO_RECEIVE. However, the data does not end

on a logical record boundary. Send_Data can be issued in the

middle of a logical record only when the send type is set to

CM_SEND_AND_DEALLOCATE, and the deallocate type is set to

CM_DEALLOCATE_ABEND.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_CONVERSATION_TYPE_MISMATCH

 CM_DEALLOCATED_ABEND

 CM_DEALLOCATED_ABEND_SVC

 CM_DEALLOCATED_ABEND_TIMER

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PIP_NOT_SPECIFIED_CORRECTLY

 CM_PRODUCT_SPECIFIC_ERROR

 CM_PROGRAM_ERROR_PURGING

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

 CM_SECURITY_NOT_VALID

 CM_SVC_ERROR_PURGING

 CM_SYNC_LVL_NOT_SUPPORTED_PGM

 CM_SYNC_LVL_NOT_SUPPORTED_LU

 CM_TP_NOT_AVAILABLE_NO_RETRY

 CM_TP_NOT_AVAILABLE_RETRY

 CM_TPN_NOT_RECOGNIZED

State When Issued

The conversation must be in Send or Send-Pending state when the program issues

this call.

State Change

When the return_code parameter is set to CM_OK, the new conversation state depends

on the send_type parameter, as shown in Table 23.

 Table 23. State Changes for the Send_Data Call

send_type New state

CM_BUFFER_DATA Send

CM_SEND_AND_FLUSH Send

Send_Data (cmsend)

Chapter 3. CPI-C Calls 107

Table 23. State Changes for the Send_Data Call (continued)

send_type New state

CM_SEND_AND_CONFIRM Send

CM_SEND_AND_PREP_TO_RECEIVE Receive

CM_SEND_AND_DEALLOCATE Reset

For a return_code value of CM_PROGRAM_ERROR_PURGING or CM_SVC_ERROR_PURGING, the

conversation changes to Receive state. For other non-OK values, the conversation

changes to Reset state.

Usage Notes

The LU does not automatically perform any conversion between ASCII and

EBCDIC on the string of data to be sent.

If the remote program requires data to be sent in EBCDIC, the local program can

use the Convert_Outgoing call to convert the data to EBCDIC before sending it.

WINDOWS

The local program can also use the CSV CONVERT verb to convert the data to

EBCDIC before sending it. Refer to the Communications Server for AIX CSV

Programmer’s Guide for more information.

Send_Error (cmserr)

The Send_Error call notifies the partner program that the local program has

encountered an application-level error. The local program can use the Send_Error

for such purposes as informing the partner program of an error encountered in

received data, rejecting a confirmation request, or truncating an incomplete logical

record it is sending.

The Send_Error call flushes the local LU’s send buffer and sends the partner

program the contents of the send buffer followed by the error notification.

The error notification is sent to the partner as one of the following return_code

values:

v CM_PROGRAM_ERROR_TRUNC

v CM_PROGRAM_ERROR_NO_TRUNC

v CM_PROGRAM_ERROR_PURGING

Upon successful execution of this call, the conversation is in Send state for the

local program and in Receive state for the partner program.

Send_Data (cmsend)

108 IBM Communications Server for AIX CPI-C Programmer’s Guide

Function Call

 void cmserr (

 unsigned char CM_PTR conversation_ID,

 CM_Request_to_Send_Received CM_PTR request_to_send_received,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmserr (

 byte[] conversation_ID,

 CPICControlInformationReceived request_to_send_received,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameter is:

conversation_ID

This is the identifier for the conversation. The value of this parameter was

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

request_to_send_received

This is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED

The partner program has issued the Request_To_Send call, which

requests the local program to change the conversation to Receive

state.

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program has not issued the Request_To_Send call.

This value is not relevant if return_code is set to

CM_PROGRAM_PARAMETER_CHECK or CM_STATE_CHECK.

return_code

The possible return codes vary depending on the conversation state when

the call is issued. Send state

 If the program issues the call with the conversation in Send state the

following return codes are possible:

CM_OK The call executed successfully.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_CONVERSATION_TYPE_MISMATCH

Send_Error (cmserr)

Chapter 3. CPI-C Calls 109

CM_DEALLOCATED_ABEND

 CM_DEALLOCATED_ABEND_SVC

 CM_DEALLOCATED_ABEND_TIMER

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PIP_NOT_SPECIFIED_CORRECTLY

 CM_PRODUCT_SPECIFIC_ERROR

 CM_PROGRAM_ERROR_PURGING

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

 CM_SECURITY_NOT_VALID

 CM_SVC_ERROR_PURGING

 CM_SYNC_LVL_NOT_SUPPORTED_PGM

 CM_SYNC_LVL_NOT_SUPPORTED_LU

 CM_TP_NOT_AVAILABLE_NO_RETRY

 CM_TP_NOT_AVAILABLE_RETRY

 CM_TPN_NOT_RECOGNIZED

Receive state or Pending-Post state

 If the call is issued in Receive state or Pending-Post state, the following

return codes are possible:

CM_OK Because incoming information is purged when the Send_Error call

is issued in Receive state or Pending-Post state, CM_OK is generated

instead of the following:

 CM_PROGRAM_ERROR_NO_TRUNC

 CM_PROGRAM_ERROR_PURGING

 CM_SVC_ERROR_NO_TRUNC

 CM_SVC_ERROR_PURGING

 CM_PROGRAM_ERROR_TRUNC

 CM_SVC_ERROR_TRUNC

Common return codes

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_NORMAL

Because incoming information is purged when the Send_Error call

is issued in Receive state or Pending-Post state,

CM_DEALLOCATED_NORMAL is generated instead of the following:

 CM_CONVERSATION_TYPE_MISMATCH

 CM_DEALLOCATED_ABEND

 CM_DEALLOCATED_ABEND_SVC

 CM_DEALLOCATED_ABEND_TIMER

 CM_PIP_NOT_SPECIFIED_CORRECTLY

 CM_SECURITY_NOT_VALID

 CM_SYNC_LVL_NOT_SUPPORTED_PGM

 CM_SYNC_LVL_NOT_SUPPORTED_LU

 CM_TPN_NOT_RECOGNIZED

 CM_TP_NOT_AVAILABLE_NO_RETRY

 CM_TP_NOT_AVAILABLE_RETRY

Send_Error (cmserr)

110 IBM Communications Server for AIX CPI-C Programmer’s Guide

Send-Pending state

 If the call is issued in Send-Pending state, the following return codes are

possible:

CM_OK The call executed successfully.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_DEALLOCATED_ABEND

 CM_DEALLOCATED_ABEND_SVC

 CM_DEALLOCATED_ABEND_TIMER

 CM_PRODUCT_SPECIFIC_ERROR

 CM_PROGRAM_ERROR_PURGING

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

 CM_SVC_ERROR_PURGING

Confirm, Confirm-Send, or Confirm-Deallocate state

 If the call is issued in Confirm, Confirm-Send, or Confirm-Deallocate state,

the following return codes are possible:

CM_OK The call executed successfully.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_INCOMPLETE

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

 CM_RESOURCE_FAILURE_NO_RETRY

 CM_RESOURCE_FAILURE_RETRY

Other states

 Issuing the Send_Error call with the conversation in Reset, Initialize, or

Initialize-Incoming state is illegal. The following return codes are possible:

CM_OPERATION_NOT_ACCEPTED

See Appendix B, “Common Return Codes,” on page 171.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The conversation state is not Send, Receive, Confirm,

Confirm-Send, Confirm-Deallocate, or Send-Pending.

State When Issued

The conversation can be in any state except Initialize, Initialize-Incoming, or Reset.

State Change

The new state is determined by the return_code parameter. Possible state changes

are summarized in Table 24 on page 112.

Send_Error (cmserr)

Chapter 3. CPI-C Calls 111

Table 24. State Changes for the Send_Error Call

return_code New state

CM_OK Send

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

CM_SYNC_LEVEL_NOT_SUPPORTED_LU

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

Reset

CM_RESOURCE_FAILURE_RETRY

CM_RESOURCE_FAILURE_NO_RETRY

Reset

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

Reset

CM_DEALLOCATED_NORMAL Reset

CM_PROGRAM_ERROR_PURGING

CM_SVC_ERROR_PURGING

Receive

All others No change

Usage Notes

The following sections describe additional usage information for the Send_Error

call.

Sending Log Data

In basic conversations, the local program can use the Set_Log_Data call to specify

error log data to be sent to the partner LU. If the basic conversation’s log data

length characteristic is greater than 0 (zero), the LU formats the data and stores it

in the send buffer.

After the Send_Error call is completed, the log data length is set to 0 (zero) and the

log data to null.

Purged Data

If the conversation is in Receive state or Pending-Post state when the program

issues the Send_Error call, incoming data is purged by CPI-C. This data includes

the following:

v Data sent by the Send_Data call

v Confirmation requests

v Deallocation requests if the conversation’s deallocate type is set to

CM_DEALLOCATE_CONFIRM or to CM_DEALLOCATE_SYNC_LEVEL with the

synchronization level set to CM_CONFIRM

CPI-C does not purge an incoming request-to-send indicator.

Send-Pending State

If the conversation is in Send-Pending state, the local program can issue the

Set_Error_Direction call to specify whether the error being reported resulted from

the received data or from the processing of the local program after successfully

receiving the data.

Send_Error (cmserr)

112 IBM Communications Server for AIX CPI-C Programmer’s Guide

Set_Conversation_Context (cmsctx)

AIX, LINUX

The Set_Conversation_Context call sets the program’s current context to a value

that was previously returned on an Extract_Conversation_Context call. This

enables the program to start a new conversation using the same context as a

previous one.

For more information about conversation contexts, see “Multiple Conversations”

on page 12.

Function Call

 void cmsctx (

 unsigned char CM_PTR context_ID,

 CM_INT32 CM_PTR context_ID_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

 public native void cmsctx (

 byte[] context_ID,

 CPICLength context_ID_length,

 CPICReturnCode return_code

);

Note: This call is not part of the standard Java CPI-C specification, and is not

supported in other Java CPI-C implementations.

Supplied Parameters

The supplied parameters are:

context_ID

This parameter specifies the required context.

context_ID_length

This parameter specifies the length of context_ID (1–32 bytes).

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

This return code indicates one of the following cases:

v The value specified by context_ID is not the context of any of the

program’s current conversations, or of its most recent

conversation.

v The value specified by context_ID_length is not valid.

Set_Conversation_Context (cmsctx)

Chapter 3. CPI-C Calls 113

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Usage Notes

An application uses Set_Conversation_Context in the following situations:

v When it is involved in multiple conversations, and wants to allocate a new

conversation using the same context as an existing conversation.

v When a CPI-C call that assigns a new context completes in nonblocking mode.

For example, if Accept_Incoming completes immediately with return_code CM_OK,

the program’s current context is set to the context of the new conversation;

however, if Accept_Incoming returns CM_OPERATION_INCOMPLETE, a subsequent

Wait_For_Conversation that returns the result of Accept_Incoming does not

change the program’s current context. The program must use

Extract_Conversation_Context and Set_Conversation_Context to set the current

context to the correct value.

Set_Conversation_Security_Password (cmscsp)

The Set_Conversation_Security_Password call is issued by the invoking program to

specify the password required to access the invoked program. This call has an

effect on the conversation only if the conversation security type is

CM_SECURITY_PROGRAM or CM_SECURITY_PROGRAM_STRONG (AIX or Linux systems), or

XC_SECURITY_PROGRAM (Windows systems). It overrides the initial password from

the side information specified by the Initialize_Conversation call. This call cannot

be issued after the Allocate call has been issued.

Function Call

 void cmscsp (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR security_password,

 CM_INT32 CM_PTR security_password_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmscsp (

 byte[] conversation_ID,

 byte[] security_password,

 CPICLength security_password_length,

 CPICReturnCode return_code

);

Set_Conversation_Context (cmsctx)

114 IBM Communications Server for AIX CPI-C Programmer’s Guide

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation call.

security_password

This specifies the password required to access the partner program. This

parameter is a character string of 1–10 characters(AIX or Linux systems), or

1–8 characters (Windows systems), and is case-sensitive. It must match the

password for the user ID configured for the partner program.

 The following characters are allowed:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and . (period)

security_password_length

This specifies the length of security_password.

 The range for this value is 1–10 characters (AIX or Linux systems), or 1–8

characters (Windows systems). If the security_password_length is set to 0

(zero), the security_password parameter is ignored; this is equivalent to

setting security_password to a null string.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid

v The value specified by security_password_length is out of range

CM_PROGRAM_STATE_CHECK

One of the following has occurred:

v The conversation is not in Initialize state

v The conversation’s security type is not set to

CM_SECURITY_PROGRAM or CM_SECURITY_PROGRAM_STRONG

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Set_Conversation_Security_Password (cmscsp)

Chapter 3. CPI-C Calls 115

Usage Notes

A user ID is required in addition to the password. This can be obtained from the

side information entry specified on the previous Initialize_Conversation call, or the

program can specify it using Set_Conversation_Security_User_ID.

A password that is not valid is not detected until the allocation request, generated

by the Allocate call, is sent to the partner LU. The error is returned to the invoking

program on a subsequent call.

If the return code is not CM_OK, the security_password and security_password_length

conversation characteristics are unchanged.

Set_Conversation_Security_Password (xcscsp)

This function is not available in Java CPI-C.

This call is issued by the invoking program to specify the password required to

access the invoked program.

The xcscsp call provides compatibility for applications using the X/Open CPI-C

definition. It has been incorporated into IBM CPI-C 2.0 as the call

Set_Conversation_Security_Password (cmscsp). Use cmscsp whenever possible to

enable greater portability of your program to other platforms.

The parameters on this call are identical to those on the cmscsp call. For more

information about cmscsp, see “Set_Conversation_Security_Password (cmscsp)” on

page 114.

Set_Conversation_Security_Type (cmscst)

The Set_Conversation_Security_Type call is issued by the invoking program to

specify the information the partner LU requires in order to validate access to the

invoked program. This call overrides the initial security type from the side

information specified by the Initialize_Conversation call. This call cannot be issued

after the Allocate has been issued.

Function Call

 void cmscst (

 unsigned char CM_PTR conversation_ID,

 XC_CONVERSATION_SECURITY_TYPE CM_PTR conversation_security_type,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmscst (

 byte[] conversation_ID,

 CPICConversationSecurityType conversation_security_type,

 CPICReturnCode return_code

);

Set_Conversation_Security_Password (cmscsp)

116 IBM Communications Server for AIX CPI-C Programmer’s Guide

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation call.

conversation_security_type

This specifies the information the partner LU requires in order to validate

access to the invoked program. Based on the conversation security

established for the invoked program during configuration, use one of the

following values:

AIX, LINUX

CM_SECURITY_NONE

The invoked program uses no conversation security.

CM_SECURITY_SAME

The invoked program uses conversation security, and is configured

to accept an already-verified indicator (as described in “Overview

of Conversation Security” on page 12). The user ID from the local

program’s current context (at the time the Allocate call is issued)

will be sent to the invoked program, together with an

already-verified indicator. This indicator tells the invoked program

not to require the password.

CM_SECURITY_PROGRAM

The invoked program uses conversation security and thus requires

a user ID and password. The security information will be taken

from the current conversation characteristics (at the time the

Allocate call is issued).

CM_SECURITY_PROGRAM_STRONG

As for CM_SECURITY_PROGRAM, except that the local node must not

send the password across the network in clear text format. This

value can be used only if the remote system supports password

substitution.

WINDOWS

XC_SECURITY_NONE

Equivalent to CM_SECURITY_NONE

XC_SECURITY_SAME

Equivalent to CM_SECURITY_SAME

XC_SECURITY_PROGRAM

Equivalent to CM_SECURITY_PROGRAM

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

return_code

Possible values are:

Set_Conversation_Security_Type (cmscst)

Chapter 3. CPI-C Calls 117

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID or conversation_security_type

is not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the conversation_security_type is unchanged.

Set_Conversation_Security_Type (xcscst)

This function is not available in Java CPI-C.

This call is issued by the invoking program to specify the information the partner

LU requires in order to validate access to the invoked program. This call overrides

the initial security type from the side information specified by the

Initialize_Conversation call.

The call provides compatibility for applications using the X/Open CPI-C

definition. It has been incorporated into IBM CPI-C 2.0 as the call

Set_Conversation_Security_Type (cmscst). Use cmscst whenever possible to enable

greater portability of your program to other platforms.

The parameters on this call are identical to those on the cmscst call. For more

information about cmscst, see “Set_Conversation_Security_Type (cmscst)” on page

116.

Set_Conversation_Security_User_ID (cmscsu)

The Set_Conversation_Security_User_ID call is issued by the invoking program to

specify the user ID required to access to the invoked program. It overrides the

initial user ID from the side information specified by the Initialize_Conversation

call.

This call cannot be issued after the Allocate call has been issued. This call is not

valid if the conversation security type is CM_SECURITY_NONE (AIX or Linux

systems)or XC_SECURITY_NONE (Windows systems).

Set_Conversation_Security_Type (cmscst)

118 IBM Communications Server for AIX CPI-C Programmer’s Guide

Function Call

 void cmscsu (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR security_user_ID,

 CM_INT32 CM_PTR security_user_ID_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmscsu (

 byte[] conversation_ID,

 byte[] security_user_ID

 CPICLength security_user_ID_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation call.

security_user_ID

This specifies the user ID required to access the partner program. This

parameter is a character string of 1–10 characters (AIX or Linux systems),

or 1–8 characters (Windows systems), and is case-sensitive.

 The following characters are allowed:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and . (period)

security_user_ID_length

This specifies the length of security_user_ID. This range for this value is

1–10 characters (AIX or Linux systems), or 1–8 characters (Windows

systems). If the length is 0 (zero), the security_user_ID parameter is ignored;

this is equivalent to setting security_user_ID to a null string.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid.

v The value specified by security_user_ID_length is out of range.

Set_Conversation_Security_User_ID (cmscsu)

Chapter 3. CPI-C Calls 119

CM_PROGRAM_STATE_CHECK

One of the following has occurred:

v The conversation is not in Initialize state.

v The conversation’s security type is set to CM_SECURITY_NONE.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Usage Notes

If the return code is not CM_OK, the security_user_ID and security_user_ID_length

conversation characteristics are unchanged.

A user ID that is not valid is not detected until the allocation request, generated by

the Allocate call, is sent to the partner LU. The error is returned to the invoking

program on a subsequent call.

Set_Conversation_Security_User_ID (xcscsu)

This function is not available in Java CPI-C.

This call is issued by the invoking program to specify the user ID required to

access the invoked program.

The xcscsu call provides compatibility for applications using the X/Open CPI-C

definition. It has been incorporated into IBM CPI-C 2.0 as the call

Set_Conversation_Security_User_ID (cmscsu). Use cmscsu whenever possible to

enable greater portability of your program to other platforms.

The parameters on this call are identical to those on the cmscsu call. For more

information about cmscsu, see “Set_Conversation_Security_User_ID (cmscsu)” on

page 118.

Set_Conversation_Type (cmsct)

The Set_Conversation_Type call is issued by the invoking program to define a

conversation as being mapped or basic. This call overrides the default conversation

type established by the Initialize_Conversation call. The default conversation type

is CM_MAPPED_CONVERSATION. This call cannot be issued after the Allocate has been

issued.

Function Call

 void cmsct (

 unsigned char CM_PTR conversation_ID,

 CM_CONVERSATION_TYPE CM_PTR conversation_type,

 CM_RETURN_CODE CM_PTR return_code

);

Set_Conversation_Security_User_ID (cmscsu)

120 IBM Communications Server for AIX CPI-C Programmer’s Guide

Function Call for Java CPI-C

AIX, LINUX

 public native void cmsct (

 byte[] conversation_ID,

 CPICConversationType conversation_type,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation call.

conversation_type

This parameter specifies the type of conversation to be allocated by the

Allocate call. Possible values are:

 CM_BASIC_CONVERSATION

 CM_MAPPED_CONVERSATION

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID or conversation_type is not

valid.

v The conversation_type parameter specifies a mapped conversation,

but the fill characteristic is set to CM_FILL_BUFFER, which is

incompatible with mapped conversations. Before changing the

conversation type to mapped, you must issue the Set_Fill call to

change the fill type to CM_FILL_LL.

v The conversation_type parameter specifies a mapped conversation.

However, a previous Set_Log_Data call, allowed only in basic

conversations, is still in effect.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

Set_Conversation_Type (cmsct)

Chapter 3. CPI-C Calls 121

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Usage Notes

If the return code is not CM_OK, the conversation_type conversation characteristic is

unchanged.

Set_CPIC_Side_Information (xcmssi)

This function is not available in Java CPI-C.

The Set_CPIC_Side_Information call specifies a side information entry for use by

this application. A CPI-C side information entry associates a set of conversation

characteristics with a symbolic destination name.

Side information entries are defined in the CS/AIX configuration file. This call

specifies an additional entry for use by this application, or overrides the definition

in the configuration file (or the application’s local definition) if the specified

symbolic destination name already exists.

This call is provided for compatibility with X/Open CPI-C and with the Windows

CPI-C specification; it is not included in IBM CPI-C 2.0.

Function Call

 void xcmssi (

 unsigned char CM_PTR key,

 SIDE_INFO CM_PTR side_info_entry,

 CM_INT32 CM_PTR side_info_entry_length,

 CM_RETURN_CODE CM_PTR return_code

);

typedef struct side_info_entry

{

 unsigned char sym_dest_name[8]; /* symbolic destination name */

 unsigned char partner_LU_name[17]; /* Fully qualified partner LU name*/

 unsigned char reserved[3]; /* Reserved */

 XC_TP_NAME_TYPE TP_name_type; /* TP name type */

 unsigned char TP_name[64]; /* TP name */

 unsigned char mode_name[8]; /* Mode name */

 XC_CONVERSATION_SECURITY_TYPE

 conversation_security_type; /* Conversation security type*/

 unsigned char security_user_ID[8]; /* User ID */

 unsigned char security_password[8]; /* Password */

} SIDE_INFO;

Supplied Parameters

The supplied parameters are:

key This parameter is ignored.

side_info_entry

This parameter specifies the contents of a side information entry, as

follows. Each field in the structure must be left-justified. Pad fields on the

right with spaces as necessary.

Set_Conversation_Type (cmsct)

122 IBM Communications Server for AIX CPI-C Programmer’s Guide

side_info_entry.sym_dest_name

Symbolic destination name which identifies the side information entry. The

parameter sym_dest_name is an 8-byte ASCII character string and can

contain any displayable characters.

side_info_entry.partner_LU_name

Fully qualified name of the partner LU. This name is composed of two

character strings concatenated by a dot. Each name must can have a

maximum length of eight bytes with no embedded spaces; valid characters

are uppercase A–Z and numerals 0–9.

side_info_entry.TP_name_type

The type of the target TP (the valid characters for a TP name are

determined by the TP type). Allowed values:

XC_APPLICATION_TP

Application TP. All characters in the TP name must be valid ASCII

characters.

XC_SNA_SERVICE_TP

Service TP. The TP name must be specified as an 8–character ASCII

string representing the hexadecimal digits of a 4-character name.

For example, if the hexadecimal representation of the name is

0x21F0F0F8, set the tp_name parameter to the 8–character string

“21F0F0F8”.

 The first character (represented by two bytes) must be a

hexadecimal value in the range 0x0–0x3F, excluding 0x0E and 0x0F;

the remaining characters (each represented by two bytes) must be

valid EBCDIC characters.

side_info_entry.TP_name

TP name of the target TP.

 Set_CPIC_Side_Information is the only CPI-C call that lets you specify an

SNA service TP as the partner program. See the description of the

TP_name_type parameter above for more information on how to specify the

TP name.

side_info_entry.mode_name

Name of the mode used to access the target TP.

 For a mapped conversation, the mode name SNASVCMG is reserved for

SNA internal use; the Allocate call will fail if you use this name. You are

recommended not to use SNASVCMG in a basic conversation, or

CPSVCMG (another SNA reserved name) in either type of conversation.

side_info_entry.conversation_security_type

Specifies whether the target TP uses conversation security. Allowed values:

AIX, LINUX

CM_SECURITY_NONE

The target TP does not use conversation security.

CM_SECURITY_PROGRAM

The target TP uses conversation security. The security_user_ID and

security_password parameters specified below will be used to access

the target TP.

CM_SECURITY_SAME

The target TP uses conversation security, and can accept an

Set_CPIC_Side_Information (xcmssi)

Chapter 3. CPI-C Calls 123

“already verified” indicator from the local TP. (This indicates that

the local TP was itself invoked by another TP, and has verified the

security user ID and password supplied by this TP.) The

security_user_ID parameter specified below will be used to access

the target TP; no password is required.

CM_SECURITY_PROGRAM_STRONG

As for CM_SECURITY_PROGRAM, except that the local node must not

send the password across the network in clear text format. This

value can be used only if the remote system supports password

substitution.

WINDOWS

XC_SECURITY_NONE

Equivalent to CM_SECURITY_NONE

XC_SECURITY_SAME

Equivalent to CM_SECURITY_SAME

XC_SECURITY_PROGRAM

Equivalent to CM_SECURITY_PROGRAM

side_info_entry.security_user_ID

User ID used to access the partner TP. This parameter is not required if the

conversation_security_type parameter is set to CM_SECURITY_NONE.

side_info_entry.security_password

Password used to access the partner TP. This parameter is required only if

the conversation_security_type parameter is set to CM_SECURITY_PROGRAM or

CM_SECURITY_PROGRAM_STRONG.

AIX, LINUX

 For compatibility with X/Open CPI-C, this verb only allows eight

characters for the user ID and password, although security user IDs can be

up to 10 characters. If the partner TP requires a user ID or password of 9

or 10 characters, you must specify it explicitly using the

Set_Conversation_Security_User_ID or

Set_Conversation_Security_Password call.

side_info_entry_length

This value must always be set to sizeof(SIDE_INFO).

WINDOWS

side_info_entry_length

This value must always be set to 124.

Set_CPIC_Side_Information (xcmssi)

124 IBM Communications Server for AIX CPI-C Programmer’s Guide

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v A value specified in the side_info_entry structure is not valid

v The first character of the side_info_entry contains a space

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state.

State Change

There is no state change.

Usage Notes

This call does not modify the side information held in the configuration file; the

change applies only to this application. CS/AIX stores the modified information in

memory associated with this operating system process; the change is discarded

when the process ends (or when the application issues the

Delete_CPIC_Side_Information call to remove the entry). For more details, see

“Side Information” on page 30.

If the return_code is not CM_OK, the side information is unchanged.

String parameters in the side information that are not valid (for example,

specifying a nonexistent partner LU) are not detected until the Allocate call is

issued. The error is returned on a call following Allocate.

Set_Deallocate_Type (cmsdt)

The Set_Deallocate_Type call specifies how the conversation is to be deallocated.

This call overrides the default deallocate type established by the

Initialize_Conversation or Accept_Conversation call. The default deallocate type is

CM_DEALLOCATE_SYNC_LEVEL.

The deallocation instructions specified by this call, take effect when the Deallocate

call is issued or when the send type is set to CM_SEND_AND_DEALLOCATE and the

Send_Data call is issued.

Function Call

 void cmsdt (

 unsigned char CM_PTR conversation_ID,

 CM_DEALLOCATE_TYPE CM_PTR deallocate_type,

 CM_RETURN_CODE CM_PTR return_code

);

Set_CPIC_Side_Information (xcmssi)

Chapter 3. CPI-C Calls 125

Function Call for Java CPI-C

AIX, LINUX

 public native void cmsdt (

 byte[] conversation_ID,

 CPICDeallocateType deallocate_type,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

deallocate_type

This parameter specifies how to perform the deallocation. Possible values

are:

CM_DEALLOCATE_ABEND

The conversation is to be deallocated abnormally, unconditionally.

A program should specify CM_DEALLOCATE_ABEND when it encounters

an error preventing the successful completion of a transaction.

 If the conversation is in Send state, CPI-C sends the contents of the

local LU’s send buffer to the partner program before deallocating

the conversation. If the conversation is in Receive state, incoming

data may be purged. For a basic conversation in Send state, logical

record truncation may occur.

CM_DEALLOCATE_CONFIRM

This value sends the partner program the contents of the local LU’s

send buffer and a request to confirm the deallocation. The

application cannot use this value if the conversation’s

synchronization level is CM_NONE.

 This request for deallocation confirmation is sent by the Deallocate

call or by the Send_Data call with the send type set to

CM_SEND_AND_DEALLOCATE. The conversation is deallocated normally

when the partner program issues the Confirmed call, responding to

the confirmation request.

CM_DEALLOCATE_FLUSH

This value sends the contents of the local LU’s send buffer to the

partner program before deallocating the conversation normally.

CM_DEALLOCATE_SYNC_LEVEL

This value uses the conversation’s synchronization level to

determine how to deallocate the conversation. A default

synchronization level is established by the Initialize_Conversation

call and can be overridden by the Set_Sync_Level call.

Set_Deallocate_Type (cmsdt)

126 IBM Communications Server for AIX CPI-C Programmer’s Guide

If the synchronization level of the conversation is set to the default,

CM_NONE, the contents of the local LU’s send buffer are sent to the

partner program and the conversation is deallocated normally.

 If the synchronization level of the conversation is CM_CONFIRM, the

contents of the local LU’s send buffer and a request to confirm the

deallocation are sent to the partner program. This request for

deallocation confirmation is sent by Deallocate call, or by the

Send_Data call with the send type set to CM_SEND_AND_DEALLOCATE.

The conversation is deallocated normally when the partner

program issues the Confirmed call, responding to the confirmation

request.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID or deallocate_type is not

valid

v The deallocate_type parameter specifies CM_DEALLOCATE_CONFIRM,

but the conversation’s synchronization level is set to CM_NONE

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the deallocate_type conversation characteristic is

unchanged.

You can set deallocate_type to CM_FLUSH if the synchronization level of the

conversation is set to CM_NONE or CM_CONFIRM.

The value CM_DEALLOCATE_FLUSH is equivalent to CM_DEALLOCATE_SYNC_LEVEL with

the conversation’s synchronization level set to CM_NONE.

The value CM_DEALLOCATE_CONFIRM is equivalent to CM_DEALLOCATE_SYNC_LEVEL with

the conversation’s synchronization level set to CM_CONFIRM.

Set_Deallocate_Type (cmsdt)

Chapter 3. CPI-C Calls 127

Set_Error_Direction (cmsed)

The Set_Error_Direction call specifies whether a program detected an error while

receiving data or while preparing to send data. This call overrides the default error

direction established by the Initialize_Conversation or Accept_Conversation call.

The default error direction is CM_RECEIVE_ERROR.

Error direction is relevant only when a program issues the Send_Error call in

Send-Pending state immediately after issuing the Receive call and receiving data

(data_received is a value other than CM_NO_DATA_RECEIVED) and a send indicator

(status_received = CM_SEND_RECEIVED).

Function Call

 void cmsed (

 unsigned char CM_PTR conversation_ID,

 CM_ERROR_DIRECTION CM_PTR error_direction,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmsed (

 byte[] conversation_ID,

 CPICErrorDirection error_direction,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

error_direction

This parameter specifies the direction in which data was flowing when the

program encountered an error. Possible values are:

CM_RECEIVE_ERROR

An error occurred in the data received from the partner program.

CM_SEND_ERROR

An error occurred while the local program prepared to send data

to the partner program.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

Set_Error_Direction (cmsed)

128 IBM Communications Server for AIX CPI-C Programmer’s Guide

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID or error_direction is not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the error_direction conversation characteristic is

unchanged.

When the conversation is in Send-Pending state, the program issues the Send_Error

call if it detects errors in the received data or if an error occurred while the local

program prepared to send data. The program must supply the error direction

information using the Set_Error_Direction call before issuing the Send_Error call

because the LU cannot tell which kind of error occurred (receive or send). The new

error direction remains in effect until a subsequent Set_Error_Direction changes it.

When the Send_Error call is issued, the partner program receives one of the

following return codes:

v CM_PROGRAM_ERROR_PURGING if error_direction is set to CM_RECEIVE_ERROR

v CM_PROGRAM_ERROR_NO_TRUNC if error_direction is set to CM_SEND_ERROR

Set_Fill (cmsf)

The Set_Fill call specifies whether programs will receive data in the form of logical

records or as a specified length of data. This call is allowed only in basic

conversations. It overrides the default fill established by the Initialize_Conversation

or Accept_Conversation call. The default fill is CM_FILL_LL.

The fill value affects all subsequent Receive calls. It can be changed by issuing the

Set_Fill call again.

Function Call

 void cmsf (

 unsigned char CM_PTR conversation_ID,

 CM_FILL CM_PTR fill,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

Set_Error_Direction (cmsed)

Chapter 3. CPI-C Calls 129

public native void cmsf (

 byte[] conversation_ID,

 CPICFill fill,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

fill This parameter specifies the form in which programs will receive data.

Possible values are:

CM_FILL_BUFFER

The local program receives data until the number of bytes specified

by the requested_length parameter of the Receive call is reached, or

until the end of the data. Data is received without regard for the

logical-record format.

CM_FILL_LL

Data is received in logical-record format. The data received can be

any of the following:

v A complete logical record

v A portion of a logical record equal to the requested_length

parameter of the Receive call

v The end of a logical record

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by the conversation_ID or fill parameter is not

valid

v The current conversation is mapped. The fill parameter does not

apply to mapped conversations

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

Set_Fill (cmsf)

130 IBM Communications Server for AIX CPI-C Programmer’s Guide

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the fill conversation characteristic is unchanged.

Set_Local_LU_Name (cmslln)

The Set_Local_LU_Name call is issued by the invoking program to specify the

local LU for a conversation. This call overrides the system-defined Local LU

derived from the side information when Initialize_Conversation was issued, and

any Local LU specified by the APPCLLU environment variable. This call cannot be

issued after the Allocate has been issued. Issuing this call has no effect on the side

information itself.

This call is not part of the standard CPI-C specification, and may not be available

in other implementations. In particular, it is not supported in other Java CPI-C

implementations.

Function Call

void cmslln (

 unsigned char CM_PTR Conversation_ID,

 unsigned char CM_PTR lu_alias,

 CM_INT32 CM_PTR lu_alias_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmslln (

 byte[] conversation_ID,

 byte[] lu_alias,

 CPICLength lu_alias_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

lu_alias

This parameter specifies the starting address of the LU alias. The LU alias

can contain up to eight ASCII characters.

lu_alias_length

This parameter specifies the length of the LU alias. The range for this value

is 0–8 bytes. If lu_alias_length is 0 (zero), the LU alias is set to all zeros.

Set_Fill (cmsf)

Chapter 3. CPI-C Calls 131

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid

v The value specified by lu_alias_length is out of range (greater

than 8 or less than 0).

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the lu_alias conversation characteristic is unchanged.

Specifying a value for lu_alias that is not valid (a name that is not permitted by the

configuration file) is not detected until the Allocate call is issued.

Set_Log_Data (cmsld)

The Set_Log_Data call specifies a log message (log data) and its length to be sent

to the partner LU. This call is allowed only in basic conversations. It overrides the

default log data, which is null, and the default log data length, which is 0 (zero).

Function Call

 void cmsld (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR log_data,

 CM_INT32 CM_PTR log_data_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmsld (

 byte[] conversation_ID,

 byte[] log_data,

 CPICLength log_data_length,

 CPICReturnCode return_code

);

Set_Local_LU_Name (cmslln)

132 IBM Communications Server for AIX CPI-C Programmer’s Guide

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

log_data

Address of data buffer containing error information. This data is sent to

the local error log and to the partner LU.

 This parameter is used by the Send_Error call if log_data_length is greater

than 0 (zero).

 The program must format the error data as a General Data Stream (GDS)

error log variable. For further information, refer to the IBM publication

IBM Systems Network Architecture: LU 6.2 Reference: Peer Protocols.

log_data_length

This parameter specifies the length of the log data.

 The range for this value is 0–512 bytes.

 A length of 0 (zero) indicates that there is no log data. The log_data

parameter is ignored, and the log_data conversation characteristic is set to a

null string.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid.

v The conversation type is set to mapped.

v The value specified by log_data_length is out of range (greater

than 512 or less than 0).

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Set_Log_Data (cmsld)

Chapter 3. CPI-C Calls 133

Usage Notes

If the return_code is not CM_OK, the log_data and log_data_length conversation

characteristics are unchanged.

The log data specified by the Set_Log_Data call is sent to the partner LU when the

local program issues one of the following calls:

v Send_Error

v Deallocate with the conversation’s deallocate_type set to CM_DEALLOCATE_ABEND

v Send_Data with the conversation’s send_type set to CM_SEND_AND_DEALLOCATE and

the deallocate_type set to CM_DEALLOCATE_ABEND

After sending the log data to the partner LU, the local LU resets the log data to

null and the log data length to 0 (zero).

CPI-C automatically converts the log data from ASCII to EBCDIC as required.

Set_Mode_Name (cmsmn)

The Set_Mode_Name call is issued by the invoking program to specify the mode

name for a conversation. This call overrides the system-defined mode name

derived from the side information when the Initialize_Conversation call was

issued. This call cannot be issued after the Allocate has been issued. Issuing this

call has no effect on the side information itself.

Function Call

 void cmsmn (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR mode_name,

 CM_INT32 CM_PTR mode_name_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmsmn (

 byte[] conversation_ID,

 byte[] mode_name,

 CPICLength mode_name_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation call.

mode_name

This parameter specifies the starting address of the mode name (the name

Set_Log_Data (cmsld)

134 IBM Communications Server for AIX CPI-C Programmer’s Guide

of a set of networking characteristics defined during configuration). The

mode name can contain up to eight ASCII characters. The following

characters are allowed:

v Uppercase letters

v Numerals 0–9

The first character of the name must be a letter, or can be # for one of the

SNA-defined modes such as #INTER. For information about SNA-defined

modes, see the Communications Server for AIX Administration Guide.

 The value of mode_name must match the name of a mode associated with

the partner LU during configuration.

 For a mapped conversation, the mode name SNASVCMG is reserved for

SNA internal use; the Allocate call will fail if you use this name. You are

recommended not to use SNASVCMG in a basic conversation, or

CPSVCMG (another SNA reserved name) in either type of conversation.

mode_name_length

This parameter specifies the length of the mode name.

 The range for this value is 0–8 bytes.

 If mode_name_length is set to 0 (zero), the Set_Mode_Name call is ignored.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid

v The value specified by mode_name_length is out of range (greater

than 8 or less than 0).

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the mode_name conversation characteristic is

unchanged.

Specifying a value for mode_name that is not valid (a name that is not permitted by

the configuration file) is not detected until the Allocate call is issued.

Set_Mode_Name (cmsmn)

Chapter 3. CPI-C Calls 135

Set_Partner_LU_Name (cmspln)

The Set_Partner_LU_Name call is issued by the invoking program to specify the

partner LU name. This call overrides the partner LU name derived from the side

information when the Initialize_Conversation call was issued. This call cannot be

issued after the Allocate has been issued. Issuing this call has no effect on the side

information itself.

Function Call

 void cmspln (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR partner_LU_name,

 CM_INT32 CM_PTR partner_LU_name_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmspln (

 byte[] conversation_ID,

 byte[] partner_LU_name,

 CPICLength partner_LU_name_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation call.

partner_LU_name

This parameter specifies the starting address of the partner LU name. The

following characters are allowed:

v Uppercase letters

v Numerals 0–9

The partner LU name can be either of the following:

v An alias consisting of 1–8 ASCII characters.

v A fully qualified network name consisting of 2–17 ASCII characters. A

period (.) separates the network ID (which can be 0–8 characters) from

the network LU name (which can be 1–8 characters). If the network ID is

zero characters long, the period is still required.

If the partner LU is specified by its alias, this must match the alias defined

for a partner LU in the CS/AIX configuration.

partner_LU_name_length

This parameter specifies the length of the partner LU name.

 The range for this value is 1–17.

Set_Partner_LU_Name (cmspln)

136 IBM Communications Server for AIX CPI-C Programmer’s Guide

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid

v The value specified by partner_LU_name_length is out of range

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the partner_LU_name conversation characteristic is

unchanged.

Specifying a value for partner_LU_name that is not valid (a name not permitted by

the configuration) is not detected until the Allocate call is issued.

Set_Prepare_To_Receive_Type (cmsptr)

The Set_Prepare_To_Receive_Type call specifies how the subsequent

Prepare_To_Receive calls will be executed. It overrides the default

prepare-to-receive processing established by the Initialize_Conversation or

Accept_Conversation call. By default, the prepare-to-receive processing is based on

the synchronization level of the conversation.

The prepare to receive type affects all subsequent Prepare_To_Receive calls. It can

be changed by issuing the Set_Prepare_To_Receive_Type call again.

Function Call

 void cmsptr (

 unsigned char CM_PTR conversation_ID,

 CM_PREPARE_TO_RECEIVE_TYPE CM_PTR prepare_to_receive_type,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

Set_Partner_LU_Name (cmspln)

Chapter 3. CPI-C Calls 137

public native void cmsptr (

 byte[] conversation_ID,

 CPICPrepareToReceiveType prepare_to_receive_type,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

prepare_to_receive_type

This parameter specifies how subsequent Prepare_To_Receive calls will be

executed. Possible values are:

CM_PREP_TO_RECEIVE_CONFIRM

This value sends the partner program the contents of the LU’s send

buffer and a confirmation request. Upon receipt of confirmation,

the conversation changes to Receive state.

CM_PREP_TO_RECEIVE_FLUSH

This value sends the partner program the contents of the local LU’s

send buffer and changes the conversation to Receive state.

CM_PREP_TO_RECEIVE_SYNC_LEVEL

This value uses the conversation’s synchronization level to

determine prepare-to-receive processing. A default synchronization

level is established by the Initialize_Conversation call and can be

overridden by the Set_Sync_Level call.

 If the synchronization level of the conversation is set to the default,

CM_NONE, the contents of the local LU’s send buffer are sent to the

partner program and the conversation changes to Receive state.

 If the synchronization level of the conversation is CM_CONFIRM, the

contents of the local LU’s send buffer and a request for

confirmation are sent to the partner program. The conversation

changes to Receive state when the partner program issues the

Confirmed call, responding to the confirmation request.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by the prepare_to_receive_type or

conversation_ID parameter is not valid

Set_Prepare_To_Receive_Type (cmsptr)

138 IBM Communications Server for AIX CPI-C Programmer’s Guide

v The prepare_to_receive_type parameter is set to

CM_PREP_TO_RECEIVE_CONFIRM, but the conversation’s

synchronization level is set to CM_NONE

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the prepare_to_receive_type conversation characteristic

is unchanged.

Set_Processing_Mode (cmspm)

This function is not available in Java CPI-C. Java CPI-C functions always operate

in blocking mode; that is, the function does not return control to the application

until the requested processing has completed.

The Set_Processing_Mode call specifies whether subsequent CPI-C calls will return

when the required operation is complete (blocking mode), or return immediately

even if the operation is not complete (nonblocking mode). The default processing

mode, established by the Initialize_Conversation or Accept_Conversation call, is

CM_BLOCKING (blocking mode).

AIX, LINUX

If the conversation’s processing mode is nonblocking, CPI-C calls issued on this

conversation can return immediately with a return code of

CM_OPERATION_INCOMPLETE to indicate that the requested operation has not been

completed. The application can then perform other processing not related to this

conversation, or can issue any of the following calls:

v Check_For_Completion, to determine whether any outstanding call (on this or

any other conversation) has completed

v Wait_For_Conversation, to wait for this call to complete

v Cancel_Conversation, to cancel the outstanding call and deallocate the

conversation

WINDOWS

A Windows application can use the Wait_For_Conversation call, as described

previously. However, the recommended method for handling nonblocking calls is

to use Specify_Windows_Handle. This function, which must be issued before any

nonblocking calls, specifies a Windows handle to which CPI-C sends a message

when the call processing has completed. The application checks the results of the

Set_Prepare_To_Receive_Type (cmsptr)

Chapter 3. CPI-C Calls 139

call when it receives this message, and does not use Wait_For_Conversation.

Check_For_Completion, described previously for AIX or Linux systems, is not

supported on Windows systems.

If the outstanding call is a Receive call, a Windows application can issue the

Request_To_Send, Send_Error, Test_Request_to_Send_Received, or Deallocate calls

in addition to those listed previously. For more information, see “Receive (cmrcv)”

on page 94.

The processing mode affects all subsequent CPI-C calls. It can be changed by

issuing the Set_Processing_Mode call again.

Function Call

 void cmspm (

 unsigned char CM_PTR conversation_ID,

 CM_INT32 CM_PTR processing_mode,

 CM_RETURN_CODE CM_PTR return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation or Accept_Conversation call.

processing_mode

This parameter specifies whether subsequent CPI-C calls will be executed

in blocking or nonblocking mode. Possible values are:

CM_BLOCKING

Subsequent CPI-C calls will not return until the operation is

complete.

CM_NON_BLOCKING

Subsequent CPI-C calls will return immediately after the operation

is initiated, whether or not it has completed.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by the processing_mode or conversation_ID

parameter is not valid.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

Set_Processing_Mode (cmspm)

140 IBM Communications Server for AIX CPI-C Programmer’s Guide

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the processing_mode conversation characteristic is

unchanged.

Set_Receive_Type (cmsrt)

The Set_Receive_Type call specifies how the program will receive data on

subsequent Receive calls. It overrides the default receive type established by the

Initialize_Conversation or Accept_Conversation call. By default, the program waits

for data to arrive if it is not available when the Receive call is issued.

The receive type value affects all subsequent Receive calls. It can be changed by

issuing the Set_Receive_Type call again.

Function Call

 void cmsrt (

 unsigned char CM_PTR conversation_ID,

 CM_RECEIVE_TYPE CM_PTR receive_type,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmsrt (

 byte[] conversation_ID,

 CPICReceiveType receive_type,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

receive_type

This parameter specifies how data is to be received by the program on the

subsequent Receive calls. Possible values are:

CM_RECEIVE_AND_WAIT

The local program receives any data that is currently available

from the partner program. If no data is currently available, the

local program waits for data to arrive.

Set_Processing_Mode (cmspm)

Chapter 3. CPI-C Calls 141

CM_RECEIVE_IMMEDIATE

The local program receives any data currently available from the

partner program. If no data is available, the local program does not

wait.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID or receive_type is not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the receive_type conversation characteristic is

unchanged.

Set_Return_Control (cmsrc)

The Set_Return_Control call is issued by the invoking program to specify whether

the Allocate call returns immediately if a session is not available, or waits for a

session to be allocated.

This call overrides the default return control established by the

Initialize_Conversation call. By default, CPI-C waits for the session to be allocated.

This call cannot be issued after the Allocate call has been issued.

For further information about sessions, see Chapter 2, “Writing CPI-C

Applications,” on page 19.

Function Call

 void cmsrc (

 unsigned char CM_PTR conversation_ID,

 CM_RETURN_CONTROL CM_PTR return_control,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

Set_Receive_Type (cmsrt)

142 IBM Communications Server for AIX CPI-C Programmer’s Guide

public native void cmsrc (

 byte[] conversation_ID,

 CPICReturnControl return_control,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation call.

return_control

This parameter specifies when the local LU, acting on the Allocate call,

should return control to the local program. The following are allowed

values:

CM_IMMEDIATE

The LU allocates a contention winner session, if one is immediately

available, and returns control to the program.

CM_WHEN_SESSION_ALLOCATED

The LU does not return control to the program until it allocates a

session or encounters certain errors. If a session is not available,

the program waits for one. (If the session limit is 0, the LU returns

control immediately.)

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID or return_control is not valid.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Set_Return_Control (cmsrc)

Chapter 3. CPI-C Calls 143

Usage Notes

If the return_code is not CM_OK, the return_control conversation characteristic is

unchanged.

If the LU is unable to allocate a session, the notification is returned on the Allocate

call.

Set_Send_Type (cmsst)

The Set_Send_Type call specifies how data will be sent by the next Send_Data call.

It overrides the default send type established by the Initialize_Conversation or

Accept_Conversation call. The default send type is CM_BUFFER_DATA, indicating that

data only (and no control information) is to be sent.

The send type value affects all subsequent Send_Data calls. It can be changed by

issuing the Set_Send_Type call again.

Function Call

 void cmsst (

 unsigned char CM_PTR conversation_ID,

 CM_SEND_TYPE CM_PTR send_type,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmsst (

 byte[] conversation_ID,

 CPICSendType send_type,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation, Initialize_For_Incoming, or

Accept_Conversation call.

send_type

This parameter specifies how data is to be sent by subsequent Send_Data

calls. Possible values are:

CM_BUFFER_DATA

The data pointed to by the Send_Data call is stored in a buffer

until the buffer fills up or is flushed.

CM_SEND_AND_FLUSH

The data pointed to by the Send_Data call is to be sent

immediately. This is equivalent to Send_Data, with the send_type

set to CM_BUFFER_DATA, followed by Flush.

Set_Return_Control (cmsrc)

144 IBM Communications Server for AIX CPI-C Programmer’s Guide

CM_SEND_AND_CONFIRM

The data is to be sent immediately with a request for confirmation.

This is equivalent to Send_Data, with the send_type set to

CM_BUFFER_DATA, followed by Confirm.

CM_SEND_AND_PREP_TO_RECEIVE

The data is to be sent immediately along with notification to the

partner program that the conversation state for the sending

program is changing to Receive. This is equivalent to Send_Data,

with the send_type set to CM_BUFFER_DATA, followed by

Prepare_To_Receive.

CM_SEND_AND_DEALLOCATE

The data is to be sent immediately along with deallocation

notification. This is equivalent to Send_Data, with the send_type set

to CM_BUFFER_DATA, followed by Deallocate.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID or send_type is not valid

v The send_type parameter is set to CM_SEND_AND_CONFIRM, but the

conversation’s synchronization level is set to CM_NONE

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation can be in any state except Reset.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the send_type conversation characteristic is

unchanged.

Using send_type values other than CM_BUFFER_DATA enables you to reduce the

number of calls issued, because with these values a Send_Data call can include the

function of another CPI-C call.

Set_Send_Type (cmsst)

Chapter 3. CPI-C Calls 145

Set_Sync_Level (cmssl)

The Set_Sync_Level call is issued by the invoking program to specify the

synchronization level of the conversation. The synchronization level determines

whether the programs synchronize their processing through the Confirm and

Confirmed calls.

This call overrides the synchronization level established by the

Initialize_Conversation call. The default synchronization level is CM_NONE, indicating

no synchronization. This call cannot be issued after the Allocate call has been

issued.

Function Call

 void cmssl (

 unsigned char CM_PTR conversation_ID,

 CM_SYNC_LEVEL CM_PTR sync_level,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmssl (

 byte[] conversation_ID,

 CPICSyncLevel sync_level,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation call.

sync_level

This parameter specifies the synchronization level of the conversation.

Possible values are:

CM_NONE

The programs will not perform confirmation processing.

CM_CONFIRM

The programs can perform confirmation processing.

A third level, sync point, is provided by some CPI-C implementations, but

is not supported by CS/AIX CPI-C.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

Set_Sync_Level (cmssl)

146 IBM Communications Server for AIX CPI-C Programmer’s Guide

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID or sync_level is not valid

v The sync_level parameter specifies CM_NONE but one of the

following has occurred:

– The send_type parameter is set to CM_SEND_AND_CONFIRM

– The prepare_to_receive_type parameter is set to

CM_PREP_TO_RECEIVE_CONFIRM

– The deallocate_type parameter is set to CM_DEALLOCATE_CONFIRM

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the sync_level conversation characteristic is

unchanged.

Set_TP_Name (cmstpn)

The Set_TP_Name call is issued by the invoking program to specify the partner

program name. This call overrides the partner program name derived from the

side information when the Initialize_Conversation call was issued. This call cannot

be issued after the Allocate call has been issued. Issuing this call has no effect on

the side information itself.

This call functions differently from Specify_Local_TP_Name. Set_TP_Name is

issued by the invoking program, to specify the name of the program it wants to

allocate a conversation with; Specify_Local_TP_Name is issued by the invoked

program, to specify a name for which it will accept incoming Allocate requests.

Function Call

 void cmstpn (

 unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR TP_name,

 CM_INT32 CM_PTR TP_name_length,

 CM_RETURN_CODE CM_PTR return_code

);

Set_Sync_Level (cmssl)

Chapter 3. CPI-C Calls 147

Function Call for Java CPI-C

AIX, LINUX

 public native void cmstpn (

 byte[] conversation_ID,

 byte[] TP_name,

 CPICLength TP_name_length,

 CPICReturnCode return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation. The value of this parameter is

returned by the Initialize_Conversation call.

TP_name

This parameter specifies the starting address of the partner program name.

The program name can contain up to 64 characters. The following

characters are allowed:

v Uppercase and lowercase letters

v Numerals 0–9 and . (period)

v The following special characters: < > () + - & *; / , % _ ? : ’ = "

(valid only if the partner program is a CPI-C program) $ # @ (valid only

if the partner program is an APPC program)

You cannot use the Set_TP_Name call to specify the name of an SNA

service TP, which contains characters that are not allowed for this call. You

can, however, use the Set_CPIC_Side_Information call to do this.

 Double-byte character sets, such as Kanji, are not supported.

TP_name_length

This parameter specifies the length of the partner program name.

 The range for this value is 1–64.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by conversation_ID is not valid

v The value specified by TP_name_length is out of range

Set_TP_Name (cmstpn)

148 IBM Communications Server for AIX CPI-C Programmer’s Guide

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

The conversation must be in Initialize state.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the TP_name conversation characteristic is

unchanged.

Specify_Local_TP_Name (cmsltp)

The Specify_Local_TP_Name call is issued by a CPI-C application to specify a local

TP name for which it will accept incoming Allocate requests.

Instead of using this call, you can set the local TP name in other ways such as by

using the APPCTPN environment variable. For more information about setting the

local TP name, see “Specifying the Local TP Name” on page 33. The

Specify_Local_TP_Name call is required only when a single application wishes to

accept incoming Allocates for more than one local TP name; it can use APPCTPN for

one name, but must use this call to specify additional names. (After issuing the

Accept_Conversation or Accept_Incoming call to accept an incoming Allocate

request, it can use Extract_TP_Name to determine which of the names was

specified by the partner application.)

This call functions differently from Set_TP_Name. Set_TP_Name is issued by the

invoking program, to specify the name of the program it wants to allocate a

conversation with; Specify_Local_TP_Name is issued by the invoked program, to

specify a name for which it will accept incoming Allocate requests.

Function Call

 void cmsltp (

 unsigned char CM_PTR TP_name,

 CM_INT32 CM_PTR TP_name_length,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmsltp (

 byte[] TP_name,

 CPICLength TP_name_length,

 CPICReturnCode return_code

);

Set_TP_Name (cmstpn)

Chapter 3. CPI-C Calls 149

Supplied Parameters

The supplied parameters are:

TP_name

This parameter specifies the starting address of the TP name. The name

can contain up to 64 characters. The following characters are allowed:

v Uppercase and lowercase letters

v Numerals 0–9

v The special characters: . < > () + - & *; / , % _ ? : ’ = "

You cannot use the Specify_Local_TP_Name call to specify the name of an

SNA service TP, which contains characters that are not allowed for this call.

 Double-byte character sets, such as Kanji, are not supported.

TP_name_length

This parameter specifies the length of the name.

 The range for this value is 1–64.

Returned Parameters

After the verb executes, CS/AIX returns the following parameters:

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One of the following has occurred:

v The value specified by TP_name is a reserved name, or contains

one or more characters that are not valid.

v The value specified by TP_name_length is out of range.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

This call is not associated with a conversation.

State Change

There is no state change.

Usage Notes

If the return_code is not CM_OK, the TP names for which this program will accept

incoming Allocate requests are unchanged.

If an Accept_Incoming call is outstanding at the time this call is issued, it will not

accept an incoming Allocate for the name specified on this call. However,

subsequent Accept_Conversation or Accept_Incoming calls will accept incoming

Allocates for this name.

Specify_Local_TP_Name (cmsltp)

150 IBM Communications Server for AIX CPI-C Programmer’s Guide

Specify_Windows_Handle (xchwnd)

WINDOWS

The Specify_Windows_Handle call is issued by a CPI-C application to specify a

Windows handle to which CPI-C will send a message each time a nonblocking

CPI-C function completes. This provides an alternative mechanism to using

Wait_For_Conversation (as on AIX or Linux systems) to wait for completion of the

function. If you are writing a new CPI-C application for Windows systems, you

should use this mechanism and not Wait_For_Conversation.

To use nonblocking calls and receive messages to indicate their completion, the

application must issue the following calls before issuing a nonblocking call:

v RegisterWindowMessage, to obtain the message identifier that CPI-C will use for

messages indicating completion of a nonblocking CPI-C function. This is a

standard Windows function call, not specific to CPI-C; refer to your Windows

documentation for more information about the function. The application must

pass the value WIN_CPIC_ASYNC_COMPLETE_MESSAGE to the function; the returned

value is a message identifier, as described below. (There is no need to issue the

call again before subsequent CPI-C calls; the returned value will be the same for

all calls issued by the application.)

v Set_Processing_Mode, to set the conversation’s processing mode to

CM_NON_BLOCKING.

v Specify_Windows_Handle, to specify the handle to which the completion

message is sent.

Each time a nonblocking CPI-C function completes, CPI-C posts a message to the

window handle specified on the Specify_Windows_Handle call. The format of the

message is as follows:

v The message identifier is the value returned from the RegisterWindowMessage

call.

v The lParam argument contains the conversation ID of the CPI-C call that has

completed.

v The wParam argument contains the conversation return_code parameter from the

CPI-C call that has completed. The possible values for this parameter depend on

the individual call.

Function Call

 void xchwnd (

 HWND hwnd,

 CM_RETURN_CODE CM_PTR return_code

);

Supplied Parameters

The supplied parameter is:

hwnd A window handle that CPI-C will use to post a message indicating that a

nonblocking function has completed.

Specify_Windows_Handle (xchwnd)

Chapter 3. CPI-C Calls 151

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The supplied parameter was not a valid Windows handle.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

State When Issued

This call is not associated with a conversation.

State Change

There is no state change associated with this call.

When CPI-C sends a message to indicate that a nonblocking call has completed,

the state change is dependent on the function that completed and its return code.

Test_Request_to_Send_Received (cmtrts)

The Test_Request_to_Send_Received call determines whether a request-to-send

notification has been received from the partner program.

Function Call

 void cmtrts (

 unsigned char CM_PTR conversation_ID,

 CM_Request_to_Send_Received CM_PTR request_to_send_received,

 CM_RETURN_CODE CM_PTR return_code

);

Function Call for Java CPI-C

AIX, LINUX

 public native void cmtrts (

 byte[] conversation_ID,

 CPICControlInformationReceived request_to_send_received,

 CPICReturnCode return_code

);

Specify_Windows_Handle (xchwnd)

152 IBM Communications Server for AIX CPI-C Programmer’s Guide

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation.

 The value of this parameter is returned by the Initialize_Conversation,

Initialize_For_Incoming, or Accept_Conversation call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

request_to_send_received

This is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED

The partner program has issued the Request_To_Send call, which

requests the local program to change the conversation to Receive

state.

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program has not issued the Request_To_Send call.

This value is not relevant if the return_code parameter contains a value

other than CM_OK.

return_code

Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK

The conversation is in a state that is not valid.

For an explanation of the following return codes, see Appendix B,

“Common Return Codes,” on page 171.

 CM_OPERATION_NOT_ACCEPTED

 CM_PRODUCT_SPECIFIC_ERROR

State When Issued

The conversation must be in Receive, Send, Send-Pending, or Pending-Post state.

State Change

There is no state change.

Wait_For_Conversation (cmwait)

This function is not available in Java CPI-C. Java CPI-C functions always operate

in blocking mode; that is, the function does not return control to the application

until the requested processing has completed.

The Wait_For_Conversation call waits for completion of a previous CPI-C call that

returned CM_OPERATION_INCOMPLETE.

Test_Request_to_Send_Received (cmtrts)

Chapter 3. CPI-C Calls 153

If processing for the previous call has already finished when

Wait_For_Conversation is issued, this call returns immediately; otherwise it blocks

until CPI-C has finished processing the incomplete operation. If the application is

involved in multiple conversations, this call waits on all conversations, and returns

as soon as a call completes on any of them.

WINDOWS

New applications written for Windows systems should use

Specify_Windows_Handle to obtain the results of nonblocking calls, instead of

using Wait_For_Conversation. See “Specify_Windows_Handle (xchwnd)” on page

151. The Wait_For_Conversation call is provided for compatibility with other CPI-C

implementations, but is not recommended for use by Windows applications.

In particular, if the application issues the Receive call in nonblocking mode and

then issues other calls in nonblocking mode on the same conversation while

Receive is outstanding, it must use Specify_Windows_Handle. It must not issue

Wait_For_Conversation while more than one call is outstanding on the same

conversation; the results of Wait_For_Conversation in this situation are undefined.

Function Call

 void cmwait (

 unsigned char CM_PTR conversation_ID,

 CM_INT32 CM_PTR conversation_return_code,

 CM_RETURN_CODE CM_PTR return_code

);

Supplied Parameters

There are no supplied parameters for this call.

Returned Parameters

After the verb executes, CS/AIX returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was

unsuccessful.

conversation_ID

This is the identifier for the conversation on which the outstanding call

completed.

conversation_return_code

This is the return code from the completed call (which previously returned

CM_OPERATION_INCOMPLETE). The possible values for this parameter depend

on which call was outstanding. For more information, see the description

of the specific call.

 This value is not relevant if the return_code parameter contains a value

other than CM_OK.

return_code

Possible values are:

CM_OK The Wait_For_Conversation call executed successfully. The

Wait_For_Conversation (cmwait)

154 IBM Communications Server for AIX CPI-C Programmer’s Guide

conversation_return_code parameter indicates whether the previous

incomplete operation completed successfully.

CM_PROGRAM_STATE_CHECK

There was no incomplete operation outstanding.

CM_PRODUCT_SPECIFIC_ERROR

For an explanation of this return code, see Appendix B, “Common

Return Codes,” on page 171.

WINDOWS

CM_SYSTEM_EVENT

The call was terminated by an operating system event, rather than

by the completion of a previous CPI-C call.

State When Issued

The call is not associated with a specific conversation, so the conversation state is

not relevant. However, the application must have at least one conversation with an

incomplete operation outstanding.

State Change

If return_code is set to CM_OK, the state change depends on the outstanding call that

completed, and on the return code from that call (the conversation_return_code

parameter on this call). For more information, see the description of the specific

call. If return_code is not CM_OK, there is no state change.

Usage Notes

This call does not change the program’s current context (even if the outstanding

operation that has completed is one that would normally do this, such as

Accept_Incoming). If necessary, the program can use Extract_Conversation_Context

for the conversation_ID returned on this call, to get the value of the conversation

context, and Set_Conversation_Context to set its current context to this value.

If no previously outstanding call has completed, this call blocks (and the

application’s processing is suspended) until one completes.

AIX, LINUX

To check for completed calls without blocking, the application can use

Check_For_Completion (which always returns immediately) to determine whether

a call has completed, and call Wait_For_Conversation only when

Check_For_Completion indicates that a call has completed (and therefore

Wait_For_Conversation will return immediately).

If there are multiple outstanding calls (on different conversations), each

Wait_For_Conversation call returns one outstanding call. After issuing

Wait_For_Conversation, the application can check whether any other calls have

completed by issuing Check_For_Completion.

Wait_For_Conversation (cmwait)

Chapter 3. CPI-C Calls 155

WINDOWS

A Windows application can use Wait_For_Conversation, as described previously.

However, the recommended method of handling nonblocking calls is to use

Specify_Windows_Handle. This function, which must be issued before any

nonblocking calls, specifies a Windows handle to which CPI-C sends a message

when the call processing has completed. The application checks the results of the

call when it receives this message, and does not use Wait_For_Conversation.

Check_For_Completion, described previously for AIX or Linux systems, is not

supported on Windows systems.

WinCPICCleanup

WINDOWS

The application uses this function to unregister as a Windows CPI-C user, after it

has finished issuing CPI-C calls.

Function Call

 BOOL WINAPI WinCPICCleanup (void);

Supplied Parameters

There are no supplied parameters for this call.

Returned Values

The return value from the function is one of the following:

TRUE The application was unregistered successfully.

FALSE An error occurred during processing of the call, and the application was

not unregistered. Check the log files for messages indicating the cause of

the failure.

WinCPICIsBlocking

WINDOWS

The application uses this function to check whether there is a blocking CPI-C call

outstanding (a call issued with the conversation’s processing mode set to

CM_BLOCKING). For more information about blocking calls, see “Windows

Considerations” on page 41.

Function Call

 BOOL WINAPI WinCPICIsBlocking (void);

Wait_For_Conversation (cmwait)

156 IBM Communications Server for AIX CPI-C Programmer’s Guide

Supplied Parameters

There are no supplied parameters for this function.

Returned Values

The return value from the function is one of the following:

TRUE There is a blocking CPI-C call outstanding. If necessary, the application can

use Cancel_Conversation or Deallocate to cancel the call and end the

conversation.

FALSE There is no blocking CPI-C call outstanding.

WinCPICSetBlockingHook

WINDOWS

The application uses this call to specify its own blocking function, which CPI-C

will use instead of the default blocking function. For more information about how

the blocking function operates, and on the functions it must perform, see “Blocking

Calls” on page 42.

Function Call

 FARPROC WINAPI WinCPICSetBlockingHook (FARPROC lpBlockFunc);

Supplied Parameters

The supplied parameter is:

lpBlockFunc

The procedure instance address of the application’s blocking function. The

application should use the MakeProcInstance call to obtain this address;

refer to your Windows documentation for more information.

Returned Values

The return value is the procedure instance address of the previous blocking

function. If the application is using more than one blocking function, and will need

to restore the previous blocking function later, it should save this address; it can

then issue WinCPICSetBlockingHook again using the saved value, to restore the

previous blocking function. If it is using only one blocking function, or will not

need to restore the previous value, it can ignore the return value from this call.

Usage

The new blocking function remains in effect until the application issues one of the

following calls:

v WinCPICSetBlockingHook (with a different procedure instance address), to specify

a new blocking function or to restore a previous one

v WinCPICUnhookBlockingHook (described below), to stop using the current blocking

function and return to the default blocking function.

WinCPICIsBlocking

Chapter 3. CPI-C Calls 157

WinCPICStartup

WINDOWS

The application uses this function to register as a Windows CPI-C user, and to

determine whether the CPI-C software supports the Windows CPI-C version that it

requires.

Function Call

 int WINAPI WinCPICStartup (

 WORD wVersionRequired;

 LPWCPICDATA lpData;

)

 typedef struct

 {

 WORD wVersion;

 char szDescription[128];

 } WCPICDATA;

Supplied Parameters

The supplied parameter is:

wVersionRequired

The version of Windows CPI-C that the application requires. CS/AIX

supports version 1.0.

 The low-order byte of this parameter specifies the major version number,

and the high-order byte specifies the minor version number. For example:

 Version wVersionRequired

1.0 0x0001

1.1 0x0101

2.0 0x0002

If the application can use more than one version, it should specify the

highest version that it can use.

Returned Values

The return value from the function is one of the following:

0 (zero)

The application was registered successfully, and the Windows CPI-C

software supports either the version number specified by the application or

a lower version. The application should check the version number in the

WCPICDATA structure (see the description that follows) to ensure that it is

high enough.

WCPICVERNOTSUPPORTED

The version number specified by the application was lower than the lowest

version supported by the Windows CPI-C software. The application was

not registered.

WinCPICSetBlockingHook

158 IBM Communications Server for AIX CPI-C Programmer’s Guide

WCPICSYSNOTREADY

The CS/AIX software has not been started, or the local node is not active.

The application was not registered.

 If the return value from WinCPICStartup is 0 (zero), the WCPICDATA structure

contains information about the support provided by the Windows CPI-C software.

If the return value is nonzero, the contents of this structure are undefined and the

application should not check them. The parameters in this structure are as follows:

wVersion

The Windows CPI-C version number that the software supports, in the

same format as the wVersionRequired parameter (see the previous

explanation). CS/AIX supports version 1.0.

 If the software supports the requested version number, this parameter is

set to the same value as the wVersionRequired parameter; otherwise it is set

to the highest version that the software supports, which will be lower than

the version number supplied by the application. The application must

check the returned value and take action as follows:

v If the returned version number is the same as the requested version

number, the application can use this Windows CPI-C implementation.

v If the returned version number is lower than the requested version

number, the application can use this Windows CPI-C implementation

but must not attempt to use features that are not supported by the

returned version number. If it cannot do this because it requires features

not available in the lower version, it should fail its initialization and not

attempt to issue any CPI-C calls.

szDescription

A text string describing the Windows CPI-C software.

WinCPICUnhookBlockingHook

WINDOWS

The application uses this call to remove its own blocking function, which it has

previously specified using WinCPICSetBlockingHook, and revert to using CPI-C’s

default blocking function.

Function Call

 BOOL WINAPI WinCPICUnhookBlockingHook (void);

Supplied Parameters

There are no supplied parameters for this function.

Returned Values

The return value is one of the following:

TRUE The blocking function was removed successfully; any further blocking calls

will use the default blocking function.

FALSE The call did not complete successfully.

WinCPICStartup

Chapter 3. CPI-C Calls 159

WinCPICSetEvent

WINDOWS

The application uses this function to associate an event handle with verb

completion for the specified conversation.

Function Call

VOID WINAPI WinCPICSetEvent (

 unsigned char CM_PTR conversation_ID,

 HANDLE CM_PTR event_handle,

 CM_INT32 CM_PTR return_code

);

Supplied Parameters

The supplied parameters are:

conversation_ID

This is the identifier for the conversation for which this event is used. This

parameter is returned by the initial Accept_Conversation call.

event_handle

This is the handle of the event that is to be cleared when an asynchronous

verb on the conversation completes. This parameter can replace an

already-defined event or remove an already-defined event (by having

NULL as the parameter).

Returned Parameters

return_code

Possible values are:

CM_OK The WinCPICSetEvent function executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One or more of the parameters passed to this function are invalid.

CM_OPERATION_NOT_ACCEPTED

This value indicates that a previous operation on this conversation

is incomplete and the WinCPICSetEvent call was not accepted.

Usage Notes

When a verb is issued on a nonblocking conversation, it returns

CM_OPERATION_INCOMPLETE if it is going to complete asynchronously. If an event has

been registered with the conversation, then the application can call

WaitForSingleObject or WaitForMultipleObjects to be notified of the completion

of the verb. When the verb has completed, the application must call

Wait_for_Conversation to determine the return code for the asynchronous verb.

It is the responsibility of the application to reset the event.

WinCPICUnhookBlockingHook

160 IBM Communications Server for AIX CPI-C Programmer’s Guide

WinCPICExtractEvent

WINDOWS

The application uses this function to determine the event handle being used for a

CPI-C conversation.

Function Call

VOID WINAPI WinCPICExtractEvent (

 unsigned char CM_PTR conversation_ID,

 HANDLE CM_PTR event_handle,

 CM_INT32 CM_PTR return_code

);

Supplied Parameters

The supplied parameter for this function is:

conversation_ID

This is the identifier for the conversation for which this event is used. This

parameter is returned by the initial Accept_Conversation call.

Returned Parameters

event_handle

This is the handle of the event being used by this conversation. If no

handle has been registered, this parameter returns a NULL value.

return_code

Possible values are:

CM_OK The WinCPICExtractEvent function executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One or more of the parameters passed to this function are invalid.

Usage Notes

When a verb is issued on a nonblocking conversation, it returns

CM_OPERATION_INCOMPLETE if it is going to complete asynchronously. If an event has

been registered with the conversation, then the application can call

WaitForSingleObject or WaitForMultipleObjects to be notified of the completion

of the verb. WinCPICExtractEvent enables a CPI-C application to determine this

event handle. When the verb has completed, the application must call

Wait_for_Conversation to determine the return code for the asynchronous verb.

The Cancel_Conversation function can be called to cancel an operation and

conversation.

If no event has been registered, then the asynchronous verb completes by posting a

message to the window that the application has registered with the CPI-C library.

WinCPICExtractEvent

Chapter 3. CPI-C Calls 161

WinCPICExtractEvent

162 IBM Communications Server for AIX CPI-C Programmer’s Guide

Chapter 4. Sample CPI-C Transaction Programs

This chapter describes the CS/AIX sample CPI-C transaction programs, which

illustrate the use of CPI-C calls in AIX or Linux applications. For information on

using CPI-C calls in a Java application, see Chapter 5, “Sample Java CPI-C

Transaction Program,” on page 167.

The following information is provided:

v Processing overview of the two programs

v Pseudocode for each program

v Instructions for compiling, linking, and running the two programs

Processing Overview

The programs presented in this chapter enable you to browse through a file on

another system. The user is presented with a single data block at a time, in

hexadecimal and character format. After each block, a user can request the next

block, request the previous block, or quit.

CSAMPLE1 (the invoking program) sends a file name to CSAMPLE2 (the invoked

program). If CSAMPLE2 locates the file, it returns the first block to CSAMPLE1;

otherwise, it deallocates the conversation and ends.

If CSAMPLE1 receives a block, it displays the block on the screen and waits for the

user to enter F for forward, B for backward, or Q for quit. If the user selects

forward or backward, CSAMPLE1 sends the request to CSAMPLE2 which in turn

sends the appropriate block. This process continues until the user selects the quit

option, at which time CSAMPLE1 deallocates the conversation and both programs

end.

If the user asks for the next block and CSAMPLE2 has sent the last one,

CSAMPLE2 wraps to the beginning of file. Similarly, CSAMPLE2 wraps to send

the last block if the user requests the previous one and the first block is displayed.

Neither program attempts to recover from errors. A bad return code from CPI-C

causes the program to terminate with an explanatory message.

Pseudocode

This section contains the pseudocode for the transaction programs, CSAMPLE1

and CSAMPLE2.

The sample programs are provided as csample1.c and csample2.c, in the directory

/usr/lib/sna/samples (AIX) or /opt/ibm/sna/samples (Linux).

CSAMPLE1 (Invoking Program)

The pseudocode for CSAMPLE1 (the invoking program) is as follows:

 initialize

 allocate

 send data (data = filename)

 do while no error and prompt not Q

 receive

© Copyright IBM Corp. 2000, 2005 163

if data block received

 display data block

 else if permission to send received

 get user prompt (F, B, or Q)

 if prompt = F or B /* Not Q */

 send data (data = prompt)

 endif

 endif

 end do

 deallocate

CSAMPLE2 (Invoked TP)

The pseudocode for CSAMPLE2 (the invoked TP) is as follows:

 initialize

 do while conversing

 receive

 if data received

 if first time (data = filename)

 open file

 if file not found

 deallocate

 set conversing false

 endif

 else (data = prompt)

 read and store prompt

 endif

 if (conversing)

 read file block

 send data (file block)

 endif

 else if deallocate received

 set conversing false

 endif

 end while conversing

 close file

Testing the TPs

After examining the source code for CSAMPLE1 and CSAMPLE2, you may want

to test the programs.

Although CPI-C is normally used for communications between programs on

separate computers, you may find it convenient to run both programs on the same

computer for testing purposes.

To compile and link the programs for an AIX or Linux system, take the following

steps.

1. Copy the two files csample1.c and csample2.c from the directory

/usr/lib/sna/samples (AIX) or /opt/ibm/sna/samples (Linux) to a private

directory.

2. To compile and link the programs for AIX, use the following commands:

 cc -o csample1 -I /usr/include/sna -bimport:/usr/lib/sna/cpic_r.exp csample1.c

cc -o csample2 -I /usr/include/sna -bimport:/usr/lib/sna/cpic_r.exp csample2.c

To compile and link the programs for Linux, use the following commands:
gcc -o csample1 -I /opt/ibm/sna/include -L /opt/ibm/sna/lib -lcpic -lappc -lsna_r -lpLiS -lpthread csample1.c

gcc -o csample2 -I /opt/ibm/sna/include -L /opt/ibm/sna/lib -lcpic -lappc -lsna_r -lpLiS -lpthread csample2.c

Pseudocode

164 IBM Communications Server for AIX CPI-C Programmer’s Guide

To run the programs, perform the following steps. Note that some of these steps

involve updating the CS/AIX configuration, which is usually performed by the

System Administrator.

The programs can run on the same computer, or on separate computers. In the

following steps, the “source computer” is the computer where the invoking

program CSAMPLE1 runs, and the “target computer” is the computer where the

invoked program CSAMPLE2 runs.

 1. If you are running the programs on separate computers, configure the

communications link to support CP-CP sessions between the source and target

computers. See Communications Server for AIX Administration Guide for more

information.

 2. Configure a mode with mode name LOCMODE.

 3. Configure a logical unit (LU) on the source computer for CSAMPLE1 (the

invoking program). Specify TPLU1 as both the LU name and LU alias. Leave

the default values for the other parameters.

 4. Configure a symbolic destination name on the source computer. Do the

following:

v For Name, specify CPICTEST

v For Local LU, select Local LU alias and specify TPLU1 as the LU alias.

v For Partner LU, specify the fully-qualified name netname.TPLU2, where

netname is the SNA network name of the target computer.

v For Mode, specify LOCMODE.

v For Partner TP, specify TPNAME2.

Leave the default values for other parameters.

 5. Configure an LU on the target computer for CSAMPLE2 (the invoked

program). Specify TPLU2 as both the LU name and LU alias. Leave the default

values for the other parameters.

 6. Configure the invoked TP in the CS/AIX invokable TP data file on the target

computer. Refer to the Communications Server for AIX Administration Guide for

more information.

v For the TP name parameter, specify TPNAME2 (the name specified by the

invoking TP).

v For Full path to TP executable, enter the full path name of the executable file

csample2.

v For the User ID parameter, specify your AIX user ID on the target computer.

v Leave the default values for other parameters.
 7. If the invoked TP is to run with a user_id of root, change the permissions on

the executable file to allow it to do so. Use the following command:

chmod +s csample2

 8. Start the CS/AIX software using this configuration file.

 9. Set the following environment variables:

v APPCLLU to TPLU1 (the name of the local LU for csample1)

v APPCTPN to TPNAME1

10. Start the invoking program, csample1. This program requires one parameter,

the full path name (on the target computer) of the file to be displayed. For

example:

 csample1 /usr/jim/myfile

Testing the TPs

Chapter 4. Sample CPI-C Transaction Programs 165

11. Enter F or B to display blocks of the requested file. Use Q to end the invoking

program; the invoked program will end as well.

Testing the TPs

166 IBM Communications Server for AIX CPI-C Programmer’s Guide

Chapter 5. Sample Java CPI-C Transaction Program

AIX, LINUX

This chapter describes the CS/AIX sample Java CPI-C transaction program JPing,

which illustrates the use of CPI-C calls in a Java application. For information on

using CPI-C calls in a standard C program, see Chapter 4, “Sample CPI-C

Transaction Programs,” on page 163.

The following information is provided:

v Overview of the program

v Instructions for compiling, linking, and running the program

Overview

The sample Java CPI-C program, JPing (in the file /usr/lib/sna/samples/JPing.java

(AIX) or /opt/ibm/sna/samples/JPing.java (Linux)) is a simple Java implementation

of the standard APPC function aping, which is used to check connectivity with a

remote node. For more information about aping, refer to the Communications Server

for AIX APPC Application Suite User’s Guide or the Communications Server for AIX

Administration Command Reference.

You can optionally specify a symbolic destination name identifying the partner LU

to be contacted, the number of ping iterations to be attempted, and the size of the

information sent at each iteration.

For more information about the operation of the program, see the comments in the

program source file.

Compiling, Linking, and Running the Sample Program

After examining the source code for JPing, you may want to build and test the

program.

Before compiling and linking the application, specify the directory where Java

classes are stored. To do this, set and export the environment variable CLASSPATH to

/usr/lib/sna/java/cpic.jar:. (AIX) or /opt/ibm/sna/java/cpic.jar:. (Linux).

To compile and link the program, take the following steps.

1. Copy the file JPing.java from the directory /usr/lib/sna/samples (AIX) or

/opt/ibm/sna/samples (Linux)to a private directory.

2. From the private directory, compile and link the application using the Java

compiler javac in the normal way, using the following command:

javac JPing.java

You should see that the file JPing.class has been generated.

Before running a Java CPI-C application, you need to specify the directory where

libraries are stored, so that the application can find them at run time.

© Copyright IBM Corp. 2000, 2005 167

To do this, set and export the appropriate environment variable as follows.

export LD_LIBRARY_PATH=/usr/lib/sna

 You may also need to set and export the APPCTPN environment variable to specify

the local TP name for the application, as described in “Specifying the Local TP

Name” on page 33.

Running the program involves updating the CS/AIX configuration to include a

symbolic destination name identifying the partner LU. This task is usually

performed by the System Administrator. The following steps are required:

v For Symbolic Destination Name, specify JPING.

v For Partner TP Name Type, specify Application Program.

v For Partner TP Name, specify APINGD.

v For Partner LU, specify the fully-qualified name of the partner LU you want to

contact.

v For Mode Name, specify #INTER.

Leave the default values for other parameters.

Run the application using the Java interpreter java in the normal way. Use the

following command:

java JPing [sym_dest_name] [

-i num_iterations] [-s data_len]

 sym_dest_name indicates the symbolic destination name to be used by the program.

If you do not specify this option, the default is JPING.

The -i option indicates the number of ping iterations to be performed. If you do

not specify this option, the default is 2.

The -s option indicates the number of bytes of data to be sent to the partner

program. If you do not specify this option, the default is 100.

For more information about how the number of ping iterations and the data length

are used, refer to the description of aping in the Communications Server for AIX

APPC Application Suite User’s Guide or the Communications Server for AIX

Administration Command Reference.

Compiling, Linking, and Running the Sample Program

168 IBM Communications Server for AIX CPI-C Programmer’s Guide

Appendix A. Return Code Values

This appendix lists all the possible return codes in the CPI-C interface in numerical

order. The values are defined in the header file cmc.h(for AIX or Linux) or

wincpic.h (for Windows).

You can use this appendix as a reference to check the meaning of a return code

received by your application.

CM_OK 0

CM_ALLOCATE_FAILURE_NO_RETRY 1

CM_ALLOCATE_FAILURE_RETRY 2

CM_CONVERSATION_TYPE_MISMATCH 3

CM_PIP_NOT_SPECIFIED_CORRECTLY 5

CM_SECURITY_NOT_VALID 6

CM_SYNC_LVL_NOT_SUPPORTED_LU 7

CM_SYNC_LVL_NOT_SUPPORTED_PGM 8

CM_TPN_NOT_RECOGNIZED 9

CM_TP_NOT_AVAILABLE_NO_RETRY 10

CM_TP_NOT_AVAILABLE_RETRY 11

CM_DEALLOCATED_ABEND 17

CM_DEALLOCATED_NORMAL 18

CM_PARAMETER_ERROR 19

CM_PRODUCT_SPECIFIC_ERROR 20

CM_PROGRAM_ERROR_NO_TRUNC 21

CM_PROGRAM_ERROR_PURGING 22

CM_PROGRAM_ERROR_TRUNC 23

CM_PROGRAM_PARAMETER_CHECK 24

CM_PROGRAM_STATE_CHECK 25

CM_RESOURCE_FAILURE_NO_RETRY 26

CM_RESOURCE_FAILURE_RETRY 27

CM_UNSUCCESSFUL 28

CM_DEALLOCATED_ABEND_SVC 30

CM_DEALLOCATED_ABEND_TIMER 31

CM_SVC_ERROR_NO_TRUNC 32

CM_SVC_ERROR_PURGING 33

CM_SVC_ERROR_TRUNC 34

CM_OPERATION_INCOMPLETE 35

CM_SYSTEM_EVENT 36

CM_OPERATION_NOT_ACCEPTED 37

CM_CONVERSATION_ENDING 38

CM_SEND_RCV_MODE_NOT_SUPPORTED 39

CM_BUFFER_TOO_SMALL 40

CM_EXP_DATA_NOT_SUPPORTED 41

CM_DEALLOC_CONFIRM_REJECT 42

CM_ALLOCATION_ERROR 43

CM_RETRY_LIMIT_EXCEEDED 44

CM_NO_SECONDARY_INFORMATION 45

CM_SECURITY_NOT_SUPPORTED 46

CM_SECURITY_MUTUAL_FAILED 47

CM_CALL_NOT_SUPPORTED 48

CM_PARM_VALUE_NOT_SUPPORTED 49

CM_TAKE_BACKOUT 100

CM_DEALLOCATED_ABEND_BO 130

CM_DEALLOCATED_ABEND_SVC_BO 131

CM_DEALLOCATED_ABEND_TIMER_BO 132

CM_RESOURCE_FAIL_NO_RETRY_BO 133

CM_RESOURCE_FAILURE_RETRY_BO 134

CM_DEALLOCATED_NORMAL_BO 135

CM_CONV_DEALLOC_AFTER_SYNCPT 136

CM_INCLUDE_PARTNER_REJECT_BO 137

© Copyright IBM Corp. 2000, 2005 169

Return Code Values

170 IBM Communications Server for AIX CPI-C Programmer’s Guide

Appendix B. Common Return Codes

This appendix describes the return codes that are common to several CPI-C calls.

The return codes are listed in alphabetical order. Return codes generated when the

partner program is a non-CPI-C LU 6.2 program are listed separately.

Call-specific return codes are described in the documentation for the individual

calls in Chapter 3, “CPI-C Calls,” on page 47.

Return Codes from Any Partner Program

The following return codes can occur with any partner program. (Other return

codes, which can only occur when the partner program is not a CPI-C program,

are listed separately.)

CM_ALLOCATION_FAILURE_NO_RETRY

The conversation cannot be allocated because of a permanent condition,

such as a configuration error or session protocol error. To determine the

error, the System Administrator should examine the error log file. Do not

attempt to retry the allocation until the error has been corrected.

CM_ALLOCATION_FAILURE_RETRY

The conversation could not be allocated because of a temporary condition,

such as a link failure. The reason for the failure is logged in the system

error log. Retry the allocation.

AIX, LINUX

CM_CALL_NOT_SUPPORTED

This return code is used only in Java CPI-C applications.

 The application used a CPI-C function that is defined in the Java CPI-C

class but is not supported.

CM_CONVERSATION_TYPE_MISMATCH

The partner LU or program does not support the conversation type (basic

or mapped) specified in the allocation request.

CM_DEALLOCATED_ABEND

The conversation has been deallocated for one of the following reasons:

v The partner program has issued the Deallocate call with the deallocate

type set to CM_DEALLOCATE_ABEND. If the conversation is in Receive state

for the partner program when this call is issued by the local program,

data sent by the local program and not yet received by the partner

program is purged.

v The partner program has terminated normally but did not deallocate the

conversation before terminating.

v The local program issued the Cancel_Conversation call, which cancels all

outstanding asynchronous CPI-C calls on the conversation.

CM_DEALLOCATED_NORMAL

This return code does not indicate an error.

© Copyright IBM Corp. 2000, 2005 171

The partner program issued the Deallocate call with the deallocate type set

to one of the following:

v CM_DEALLOCATE_FLUSH

v CM_DEALLOCATE_SYNC_LEVEL with the synchronization level of the

conversation specified as CM_NONE

CM_OK The call executed successfully.

CM_OPERATION_INCOMPLETE

The call was issued successfully, and is operating in nonblocking mode;

that is, control has been returned to the program even though processing

for the call has not yet completed.

 The program can continue with any processing not related to this

conversation (including issuing CPI-C calls on other conversations). On this

conversation, it can issue a limited range of CPI-C calls (such as the

Extract_* calls). This is different from the IBM CPI-C 2.0 specification in

which the program cannot issue any calls on this conversation except

Wait_For_Conversation or Cancel_Conversation.

AIX, LINUX

 At a later time, the application can issue Check_For_Completion to

determine whether the outstanding nonblocking call has completed,

Wait_For_Conversation to wait for it to complete, or Cancel_Conversation

to cancel the outstanding call and end the conversation.

WINDOWS

If the application has used Specify_Windows_Handle to receive notification

of asynchronous call completion, it should not issue further calls on this

conversation until it has received this notification. Otherwise, the

application can issue Wait_For_Conversation to wait for the nonblocking

call to complete, or Cancel_Conversation to cancel the outstanding call and

end the conversation.

CM_OPERATION_NOT_ACCEPTED

The call cannot be issued because of one of the following conditions:

v There is a nonblocking call outstanding on this conversation. The

program can continue with any processing not related to this

conversation (including issuing CPI-C calls on other conversations), but

cannot issue most CPI-C calls on this conversation.

AIX, LINUX

At a later time, the application can issue Check_For_Completion to

determine whether an outstanding nonblocking call has completed,

Wait_For_Conversation to wait for it to complete, or

Cancel_Conversation to cancel the outstanding call and end the

conversation.

Return Codes from Any Partner Program

172 IBM Communications Server for AIX CPI-C Programmer’s Guide

v The program is running in a DCE multi-threaded environment, and

there is a call outstanding on this conversation from another thread of

the program. Only one call for each conversation can be outstanding at

any one time.

WINDOWS

If the application has used Specify_Windows_Handle to receive

notification of asynchronous call completion, it should not issue further

calls on this conversation until it has received this notification.

Otherwise, the application can issue Wait_For_Conversation to wait for

the nonblocking call to complete, or Cancel_Conversation to cancel the

outstanding call and end the conversation.

CM_PARAMETER_ERROR

A parameter referred to by CPI-C is not valid. The parameter that is not

valid is one that can be supplied either by the program or by another

component outside the program’s control (such as the configuration file).

For example, the mode_name parameter may have been specified by the

program using Set_Mode_Name, or may have been taken from the side

information entry specified by the sym_dest_name parameter.

CM_PRODUCT_SPECIFIC_ERROR

When CPI-C generates a CM_PRODUCT_SPECIFIC_ERROR return code, it makes

an entry in the log file indicating the cause of the error and any action

required. Refer to the Communications Server for AIX Administration Guide

for more information about interpreting these messages.

CM_PROGRAM_ERROR_NO_TRUNC

The partner program has issued the Send_Error call while in Send state or

in Send-Pending state with the error direction set to CM_SEND_ERROR. Data

was not truncated.

CM_PROGRAM_ERROR_PURGING

One of the following conditions has occurred:

v The partner program issued the Send_Error call while in Receive or

Confirm state. Data sent but not yet received is purged.

v The partner program has issued the Send_Error call while in

Send-Pending state with the error direction set to CM_RECEIVE_ERROR.

Data was not purged.

CM_PROGRAM_ERROR_TRUNC

The partner program in a basic conversation has issued a Send_Error call

while in Send state, before finishing sending a complete logical record. The

local program may have received the first part of the logical record

through a Receive call.

CM_PROGRAM_PARAMETER_CHECK

The program supplied a parameter that is not valid to the call. For details,

see individual calls in Chapter 3, “CPI-C Calls,” on page 47.

CM_PROGRAM_STATE_CHECK

The call issued is not allowed in the current conversation state, or is not

appropriate because of the current setting of a conversation characteristic.

For details, see individual calls in Chapter 3, “CPI-C Calls,” on page 47.

Return Codes from Any Partner Program

Appendix B. Common Return Codes 173

CM_RESOURCE_FAILURE_NO_RETRY

One of the following conditions has occurred:

v The conversation was terminated prematurely because of a permanent

condition. Do not attempt to retry until the error has been corrected.

v The partner program did not deallocate the conversation before

terminating normally.

CM_RESOURCE_FAILURE_RETRY

The conversation was terminated prematurely because of a temporary

condition, such as modem failure. Retry the conversation.

CM_SECURITY_NOT_VALID

The user ID or password specified in the allocation request was not

accepted by the partner LU.

CM_SYNC_LVL_NOT_SUPPORTED_PGM

The partner program does not support the synchronization level specified

in the allocation request.

CM_SYNC_LVL_NOT_SUPPORTED_LU

The partner LU does not support the synchronization level specified in the

allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY

The partner LU cannot start the program specified in the allocation request

because of a permanent condition. The reason for the error may be logged

on the remote node. Do not retry the allocation until the cause of the error

has been corrected.

CM_TP_NOT_AVAILABLE_RETRY

The partner LU cannot start the program specified in the allocation request

because of a temporary condition. The reason for the error may be logged

on the remote node. Retry the allocation.

CM_TPN_NOT_RECOGNIZED

The partner LU does not recognize the program name specified in the

allocation request.

CM_UNSUCCESSFUL

The call was not executed successfully. This return code occurs in the

following cases:

v The program issued Allocate with the return_control parameter set to

CM_IMMEDIATE, and CS/AIX was unable to assign a session for the

conversation immediately.

v The program issued Receive with the receive_type parameter set to

CM_RECEIVE_IMMEDIATE, and no data or control information from the

partner program was currently available.

AIX, LINUX

v The program issued Check_For_Completion, and no outstanding

nonblocking function had completed on any of the program’s

conversations.

Return Codes from Any Partner Program

174 IBM Communications Server for AIX CPI-C Programmer’s Guide

Non-CPI-C LU 6.2 Partner Program

The following return codes can occur when the partner program is a non-CPI-C

LU 6.2 program, for example an APPC TP. The verbs described in these paragraphs

are LU 6.2 verbs.

CM_DEALLOCATED_ABEND_SVC

The conversation has been deallocated for one of the following reasons:

v The partner program has issued the DEALLOCATE verb with TYPE set

to ABEND_SVC.

v The partner program did not deallocate the conversation before

terminating.

If the conversation is in Receive state for the partner program when this

call is issued by the local program, data sent by the local program and not

yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER

The conversation has been deallocated because the partner program has

issued the DEALLOCATE verb with TYPE set to ABEND_TIMER. If the

conversation is in Receive state for the partner program when this call is

issued by the local program, data sent by the local program and not yet

received by the partner program is purged.

CM_PIP_NOT_SPECIFIED_CORRECTLY

The allocation request was rejected by a non-CPI-C LU 6.2 program. The

partner program requires one or more PIP data variables, and CPI-C does

not support PIP data.

CM_SVC_ERROR_NO_TRUNC

The partner program (or partner LU) issued a SEND_ERROR verb with the

TYPE parameter set to SVC during a basic conversation while in Send state.

Data was not truncated.

CM_SVC_ERROR_PURGING

While in Send state, the partner program (or partner LU) issued a

SEND_ERROR verb with the TYPE parameter set to SVC. Data sent to the

partner program may have been purged.

CM_SVC_ERROR_TRUNC

The partner program (or partner LU) in a basic conversation issued a

SEND_ERROR verb with the TYPE parameter set to SVC while in Recieve

or Confirm state, before finishing sending a complete logical record. The

local program may have received the first part of the logical record.

Non-CPI-C LU 6.2 Partner Program

Appendix B. Common Return Codes 175

Non-CPI-C LU 6.2 Partner Program

176 IBM Communications Server for AIX CPI-C Programmer’s Guide

Appendix C. Conversation State Changes

Table 25 on page 178 shows the conversation states in which each CPI-C function

call can be issued, and the state change which occurs on completion of the call.

In some cases, the state change depends on the return code from the call; in most

cases, there is no state change for non-OK return codes. Where no return codes are

shown, a return code of CM_OK causes the state change shown, and any non-OK

return code causes no state change (except as described in the note that follows).

Where there are different state changes according to the return code, the applicable

values are listed in the Return codes column.

The possible conversation states are shown as column headings. Against each call,

the following information is given under each heading to indicate the results of

issuing the call in this state:

X The call cannot be issued in this state.

T, I, II, S, SP, R, C, CS, CD, or PP

Indicates the state of the conversation after the call has completed: Reset

(R), Initialize (I), Initialize-Incoming (II), Send (S), Send-Pending (SP),

Receive (R), Confirm (C), Confirm-Send (CS), Confirm-Deallocate (CD), or

Pending-Post (PP).

(blank)

The return code shown cannot occur in this state.

See function

See the description of this function in Chapter 3, “CPI-C Calls,” on page 47.

The changes in the conversation state depend on the returned parameters

from the call.

Note: The conversation will always enter Reset state if any of the following return

codes are received:

v CM_ALLOCATION_FAILURE_NO_RETRY, CM_ALLOCATION_FAILURE_RETRY

v CM_CONVERSATION_TYPE_MISMATCH

v CM_DEALLOCATED_NORMAL, CM_DEALLOCATED_ABEND

v CM_PIP_NOT_SPECIFIED_CORRECTLY

v CM_RESOURCE_FAILURE_RETRY, CM_RESOURCE_FAILURE_NO_RETRY

v CM_SECURITY_NOT_VALID, CM_SYNC_LVL_NOT_SUPPORTED_PGM,

CM_SYNC_LVL_NOT_SUPPORTED_LU

v CM_TPN_NOT_RECOGNIZED, CM_TP_NOT_AVAILABLE_RETRY,

CM_TP_NOT_AVAILABLE_NO_RETRY

AIX, LINUX

Pending-Post state does not apply to AIX or Linux systems. All references to this

state should be ignored.

WINDOWS

© Copyright IBM Corp. 2000, 2005 177

Initialize-Incoming state does not apply to Windows systems. All references to this

state should be ignored.

The Windows-specific function calls are not associated with a particular

conversation, and have no effect on conversation states. They are not listed in this

appendix.

 Table 25. Conversation State Changes

CPI-C Call and primary_rc

Values

State in Which Issued

Reset

(T)

Init

(I)

Init-

Inc

(II)

Send

(S)

Send

Pend

(SP)

Recv

(R)

Confm

(C)

Confm

Send

(CS)

Confm

Deall

(CD)

Pend

Post

(PP)

Accept_Conversation R X X X X X X X X X

Accept_Incoming X X R X X X X X X X

Allocate X X X X X X X X X

CM_OK S

(Allocate failure) T

Cancel_Conversation X T T T T T T T T T

Check_For_Completion T I II S SP R C CS CD X

Confirm X X X X X X X X

CM_OK S S

(Program error,

SVC error)

R R

Confirmed X X X X X X R S T X

Convert_Incoming,

Convert_Outgoing

T I II S SP R C CS CD X

Deallocate (Abend) X

CM_OK T T T T T T T T T

(Program error,

SVC error)

R R R R R R R R R

Deallocate (other) X X X X X X X X

CM_OK T T

(Program error,

SVC error)

R R

Delete_CPIC_

Side_Information

T I II S SP R C CS CD X

Extract_Conversation_

Context

X X X S SP R C CS CD X

Extract_Conversation_

Security_Type

X I II S SP R C CS CD X

Extract_Conversation_

State

X I II S SP R C CS CD X

Conversation State Changes

178 IBM Communications Server for AIX CPI-C Programmer’s Guide

Table 25. Conversation State Changes (continued)

CPI-C Call and primary_rc

Values

State in Which Issued

Reset

(T)

Init

(I)

Init-

Inc

(II)

Send

(S)

Send

Pend

(SP)

Recv

(R)

Confm

(C)

Confm

Send

(CS)

Confm

Deall

(CD)

Pend

Post

(PP)

Extract_Conversation_

Type

X I II S SP R C CS CD X

Extract_CPIC_

Side_Information

T I II S SP R C CS CD X

Extract_Local_

LU_Name

X I II S SP R C CS CD X

Extract_Maximum_

Buffer_Size

T I II S SP R C CS CD X

Extract_Mode_Name X I II S SP R C CS CD X

Extract_Partner_

LU_Name

X I X S SP R C CS CD X

Extract_Security_

User_ID

X I II S SP R C CS CD X

Extract_Sync_Level X I X S SP R C CS CD X

Extract_TP_Name X I X S SP R C CS CD X

Flush X X X S S X X X X X

Initialize_Conversation I X X X X X X X X X

Initialize_For_Incoming II X X X X X X X X X

Prepare_To_Receive X X X X X X X X

CM_OK, Program error, SVC

error

R R

Receive (receive type

CM_RECEIVE_

IMMEDIATE)

X X X X X See

function

X X X X

Receive (receive type

CM_RECEIVE_

AND_WAIT)

X X X See

function

See

function

See

function

X X X X

Release_Local_

TP_Name

I X X X X X X X X X

Request_To_Send X X X S SP R C CS CD PP

Send_Data X X X See

function

See

function

X X X X X

Send_Error X X X

CM_OK S S S S S S S

Program error, SVC error R R R R R R PP

Set_Conversation_

Context

X I II S SP R C CS CD X

Conversation State Changes

Appendix C. Conversation State Changes 179

Table 25. Conversation State Changes (continued)

CPI-C Call and primary_rc

Values

State in Which Issued

Reset

(T)

Init

(I)

Init-

Inc

(II)

Send

(S)

Send

Pend

(SP)

Recv

(R)

Confm

(C)

Confm

Send

(CS)

Confm

Deall

(CD)

Pend

Post

(PP)

Set_Conversation_

Security_Password

X I X X X X X X X X

Set_Conversation_

Security_Type

X I X X X X X X X X

Set_Conversation_

Security_User_ID

X I X X X X X X X X

Set_Conversation_Type X I X X X X X X X X

Set_CPIC_Side_

Information

T I II S SP R C CS CD X

Set_Deallocate_Type X I II S SP R C CS CD X

Set_Error_Direction X I II S SP R C CS CD X

Set_Fill X I II S SP R C CS CD X

Set_Local_

LU_Name

X I X X X X X X X X

Set_Log_Data X I II S SP R C CS CD X

Set_Mode_Name X I X X X X X X X X

Set_Partner_LU_Name X I X X X X X X X X

Set_Prepare_To_

Receive_Type

X I II S SP R C CS CD X

Set_Processing_Mode X I II S SP R C CS CD X

Set_Receive_Type X I II S SP R C CS CD X

Set_Return_Control X I X X X X X X X X

Set_Send_Type X I II S SP R C CS CD X

Set_Sync_Level X I X X X X X X X X

Set_TP_Name X I X X X X X X X X

Specify_Local_

TP_Name

T I II S SP R C CS CD X

Test_Request_To_

Send_Received

X X X S SP R X X X PP

Wait_For_Conversation Can be issued in any state; new state depends on the outstanding call that completed, and the return

code from that call. See the information for the appropriate call.

Conversation State Changes

180 IBM Communications Server for AIX CPI-C Programmer’s Guide

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2005 181

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation, Site Counsel

 P.O. Box 12195

 3039 Cornwallis Road

 Research Triangle Park, NC 27709-2195

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in

source language, which illustrates programming techniques on various operating

platforms. You may copy, modify, and distribute these sample programs in any

form without payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any

form without payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application programming

interfaces.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows: © (your company name) (year). Portions of

this code are derived from IBM Corp. Sample Programs. © IBM Corp. 2000, 2005.

All rights reserved.

182 IBM Communications Server for AIX CPI-C Programmer’s Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 ACF/VTAM

 Advanced Peer-to-Peer Networking

 AIX

 AIXwindows

 AnyNet

 Application System/400

 APPN

 AS/400

 CICS

 DATABASE 2

 DB2

 Enterprise System/3090

 Enterprise System/4381

 Enterprise System/9000

 ES/3090

 ES/9000

 eServer

 IBM

 IBMLink

 IMS

 MVS

 MVS/ESA

 Operating System/2

 Operating System/400

 OS/2

 OS/400

 PowerPC

 PowerPC Architecture

 pSeries

 S/390

 System/390

 VSE/ESA

 VTAM

 WebSphere

 zSeries

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc., in

the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed

exclusively through The Open Group.

Intel is a trademark of Intel Corporation.

Linux is a trademark of Linus Torvalds.

RedHat and RPM are trademarks of Red Hat, Inc.

SuSE Linux is a trademark of SuSE Linux AG.

UnitedLinux is a trademark of UnitedLinux LLC.

Microsoft, Windows, Windows NT, Windows 2003, and the Windows logo are

trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix D. Notices 183

184 IBM Communications Server for AIX CPI-C Programmer’s Guide

Bibliography

The following IBM publications provide information about the topics discussed in

this library. The publications are divided into the following broad topic areas:

v CS/AIX, Version 6.3

v IBM Communications Server for AIX, Version 4 Release 2

v Redbooks™

v AnyNet/2 and SNA

v Block Multiplexer and S/390 ESCON Channel PCI Adapter

v AIX operating system

v Systems Network Architecture (SNA)

v Host configuration

v z/OS® Communications Server

v Multiprotocol Transport Networking

v Transmission Control Protocol/Internet Protocol (TCP/IP)

v X.25

v Advanced Program-to-Program Communication (APPC)

v Programming

v Other IBM networking topics

For books in the CS/AIX library, brief descriptions are provided. For other books,

only the titles, order numbers, and, in some cases, the abbreviated title used in the

text of this book are shown here.

CS/AIX Version 6.3Publications

The CS/AIX library comprises the following books. In addition, softcopy versions

of these documents are provided on the CD-ROM. See IBM Communications Server

for AIX Quick Beginnings for information about accessing the softcopy files on the

CD-ROM. To install these softcopy books on your system, you require 9–15 MB of

hard disk space (depending on which national language versions you install).

v IBM Communications Server for AIX Migration Guide (SC31-8585)

This book explains how to migrate from Communications Server for AIX Version

4 Release 2 or earlier to CS/AIX Version 6.

v IBM Communications Server for AIX Quick Beginnings (GC31-8583)

This book is a general introduction to CS/AIX, including information about

supported network characteristics, installation, configuration, and operation.

v IBM Communications Server for AIX Administration Guide (SC31-8586)

This book provides an SNA and CS/AIX overview and information about

CS/AIX configuration and operation.

v IBM Communications Server for AIX Administration Command Reference (SC31-8587)

This book provides information about SNA and CS/AIX commands.

v IBM Communications Server for AIX CPI-C Programmer’s Guide (SC31-8591)

This book provides information for experienced “C” or Java programmers about

writing SNA transaction programs using the CS/AIX CPI Communications API.

v IBM Communications Server for AIX APPC Programmer’s Guide (SC31-8590)

© Copyright IBM Corp. 2000, 2005 185

This book contains the information you need to write application programs

using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX LUA Programmer’s Guide (SC31-8592)

This book contains the information you need to write applications using the

Conventional LU Application Programming Interface (LUA).

v IBM Communications Server for AIX CSV Programmer’s Guide (SC31-8593)

This book contains the information you need to write application programs

using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX MS Programmer’s Guide (SC31-8594)

This book contains the information you need to write applications using the

Management Services (MS) API.

v IBM Communications Server for AIX NOF Programmer’s Guide (SC31-8595)

This book contains the information you need to write applications using the

Node Operator Facility (NOF) API.

v IBM Communications Server for AIX Diagnostics Guide (SC31-8588)

This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX AnyNet® Guide to APPC over TCP/IP

(GC31-8598)

This book provides installation, configuration, and usage information for the

AnyNet APPC over TCP/IP function of CS/AIX.

v IBM Communications Server for AIX AnyNet Guide to Sockets over SNA (GC31-8597)

This book provides installation, configuration, and usage information for the

AnyNet Sockets over SNA function of CS/AIX.

v IBM Communications Server for AIX APPC Application Suite User’s Guide

(SC31-8596)

This book provides information about APPC applications used with CS/AIX.

v IBM Communications Server for AIX Glossary (GC31-8589)

This book provides a comprehensive list of terms and definitions used

throughout the IBM Communications Server for AIX library.

IBM Communications Server for AIX Version 4 Release 2 Publications

The following book is from a previous release of Communications Server for AIX,

and does not apply to Version 6. You may find this book useful as a reference for

information that is still supported, but not included in Version 6.

v IBM Communications Server for AIX Transaction Program Reference. (SC31-8212)

This book provides Version 4 Release 2 information about the transaction

programming APIs. Applications written to use the Version 4 Release 2 APIs can

still be used with Version 6.

IBM Redbooks

IBM maintains an International Technical Support Center that produces

publications known as Redbooks. Similar to product documentation, Redbooks

cover theoretical and practical aspects of SNA technology. However, they do not

include the information that is supplied with purchased networking products.

The following books contain information that may be useful for CS/AIX:

v IBM Communications Server for AIX Version 6 (SG24-5947)

186 IBM Communications Server for AIX CPI-C Programmer’s Guide

v IBM CS/AIX Understanding and Migrating to Version 5: Part 2 - Performance

(SG24-2136)

v Load Balancing for Communications Servers (SG24-5305)

On the World Wide Web, users can download Redbook publications by using

http://www.redbooks.ibm.com.

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications

The following books contain information about the Block Multiplexer and the

S/390 ESCON Channel PCI Adapter:

v AIX Version 4.1 Block Multiplexer Channel Adapter: User’s Guide and Service

Information (SC31-8196)

v AIX Version 4.1 Enterprise Systems Connection Adapter: User’s Guide and

Service Information (SC31-8196)

v AIX Version 4.3 S/390 ESCON Channel PCI: User’s Guide and Service

Information (SC23-4232)

v IBM Communications Server for AIX Channel Connectivity User’s Guide

(SC31-8219)

AnyNet/2 Sockets and SNA publications

The following books contain information about AnyNet/2 Sockets and SNA

v AnyNet/2 Version 2.0: Guide to Sockets over SNA (GV40-0376)

v AnyNet/2 Version 2.0: Guide to SNA over TCP/IP (GV40-0375)

v AnyNet/2: Guide to Sockets over SNA Gateway Version 1.1 (GV40-0374)

v z/OS V1R2.0 Communications Server: AnyNet Sockets over SNA (SC31-8831)

v z/OS V1R2.0 Communications Server: AnyNet SNA over TCP/IP (SC31-8832)

AIX Operating System Publications

The following books contain information about the AIX operating system:

v AIX Version 5.3 System Management Guide: Operating System and Devices

(SC23-4910)

v AIX Version 5.3 System Management Concepts: Operating System and Devices

(SC23-4908)

v AIX Version 5.3 System Management Guide: Communications and Networks

(SC23-4909)

v AIX Version 5.3 Performance Management Guide (SC23-4905)

v AIX Version 5.3 Performance Tools Guide and Reference (SC23-4906)

v Performance Toolbox Version 2 and 3 Guide and Reference (SC23-2625)

v AIXlink/X.25 Version 2.1 for AIX: Guide and Reference (SC23-2520)

Systems Network Architecture (SNA) Publications

The following books contain information about SNA networks:

v Systems Network Architecture: Format and Protocol Reference Manual—Architecture

Logic for LU Type 6.2 (SC30-3269)

v Systems Network Architecture: Formats (GA27-3136)

v Systems Network Architecture: Guide to SNA Publications (GC30-3438)

Bibliography 187

v Systems Network Architecture: Network Product Formats (LY43-0081)

v Systems Network Architecture: Technical Overview (GC30-3073)

v Systems Network Architecture: APPN Architecture Reference (SC30-3422)

v Systems Network Architecture: Sessions between Logical Units (GC20-1868)

v Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)

v Systems Network Architecture: Transaction Programmer’s Reference Manual for LU

Type 6.2 (GC30-3084)

v Systems Network Architecture: 3270 Datastream Programmer’s Reference (GA23-0059)

v Networking Blueprint Executive Overview (GC31-7057)

v Systems Network Architecture: Management Services Reference (SC30-3346)

Host Configuration Publications

The following books contain information about host configuration:

v ES/9000, ES/3090 IOCP User’s Guide Volume A04 (GC38-0097)

v 3174 Establishment Controller Installation Guide (GG24-3061)

v 3270 Information Display System 3174 Establishment Controller: Planning Guide

(GA27-3918)

v OS/390 Hardware Configuration Definition (HCD) User’s Guide (SC28-1848)

v ESCON Director Planning (GA23-0364)

z/OS Communications Server Publications

The following books contain information about z/OS Communications Server:

v z/OS V1R7 Communications Server: SNA Network Implementation Guide

(SC31-8777-05)

v z/OS V1R7 Communications Server: SNA Diagnostics (Vol 1: GC31-6850-00, Vol 2:

GC31-6851-00)

v z/OS V1R6 Communications Server: Resource Definition Reference (SC31-8778-04)

Multiprotocol Transport Networking publications

The following books contain information about Multiprotocol Transport

Networking architecture:

v Multiprotocol Transport Networking: Formats (GC31-7074)

v Multiprotocol Transport Networking Architecture: Technical Overview

(GC31-7073)

TCP/IP Publications

The following books contain information about the Transmission Control

Protocol/Internet Protocol (TCP/IP) network protocol:

v z/OS V1R7 Communications Server: IP Configuration Guide (SC31-8775-07)

v z/OS V1R7 Communications Server: IP Configuration Reference (SC31-8776-08)

v z/VM V5R1 TCP/IP Planning and Customization (SC24-6125-00)

188 IBM Communications Server for AIX CPI-C Programmer’s Guide

X.25 Publications

The following books contain information about the X.25 network protocol:

v AIXLink/X.25 for AIX: Guide and Reference (SC23-2520)

v RS/6000® AIXLink/X.25 Cookbook (SG24-4475)

v Communications Server for OS/2 Version 4 X.25 Programming (SC31-8150)

APPC Publications

The following books contain information about Advanced Program-to-Program

Communication (APPC):

v APPC Application Suite V1 User’s Guide (SC31-6532)

v APPC Application Suite V1 Administration (SC31-6533)

v APPC Application Suite V1 Programming (SC31-6534)

v APPC Application Suite V1 Online Product Library (SK2T-2680)

v APPC Application Suite Licensed Program Specifications (GC31-6535)

v z/OS V1R2.0 Communications Server: APPC Application Suite User’s Guide

(SC31-8809)

Programming Publications

The following books contain information about programming:

v Common Programming Interface Communications CPI-C Reference (SC26-4399)

v Communications Server for OS/2 Version 4 Application Programming Guide

(SC31-8152)

Other IBM Networking Publications

The following books contain information about other topics related to CS/AIX:

v SDLC Concepts (GA27-3093-04)

v Local Area Network Concepts and Products: LAN Architecture (SG24-4753-00)

v Local Area Network Concepts and Products: LAN Adapters, Hubs and ATM

(SG24-4754-00)

v Local Area Network Concepts and Products: Routers and Gateways (SG24-4755-00)

v Local Area Network Concepts and Products: LAN Operating Systems and Management

(SG24-4756-00)

v IBM Network Control Program Resource Definition Guide (SC30-3349)

Bibliography 189

190 IBM Communications Server for AIX CPI-C Programmer’s Guide

Index

A
Accept_Conversation 49

Accept_Incoming 51

AIX applications
compiling and linking 38

Allocate call 53

allocating a conversation
confirming the allocation 55

errors 55

using Allocate call 53

application program interface 1

application TP 4

ASCII-EBCDIC data conversion 22

B
basic conversation

characteristics of 11

types 4

blocking calls, Windows 42

blocking mode 14

buffer size 80

C
Cancel_Conversation 55

Check_For_Completion 57

CM_ALLOCATION_FAILURE_NO_RETRY 171

CM_ALLOCATION_FAILURE_RETRY 171

CM_CALL_NOT_SUPPORTED 171

CM_CONVERSATION_TYPE_MISMATCH 171

CM_DEALLOCATED_ABEND 171

CM_DEALLOCATED_ABEND_SVC 175

CM_DEALLOCATED_ABEND_TIMER 175

CM_DEALLOCATED_NORMAL 171

CM_OK 172

CM_OPERATION_INCOMPLETE 172

CM_OPERATION_NOT_ACCEPTED 172

CM_PARAMETER_ERROR 173

CM_PIP_NOT_SPECIFIED_CORRECTLY 175

CM_PRODUCT_SPECIFIC_ERROR 173

CM_PROGRAM_ERROR_NO_TRUNC 173

CM_PROGRAM_ERROR_PURGING 173

CM_PROGRAM_ERROR_TRUNC 173

CM_PROGRAM_PARAMETER_CHECK 173

CM_PROGRAM_STATE_CHECK 173

CM_RESOURCE_FAILURE_NO_RETRY 174

CM_RESOURCE_FAILURE_RETRY 174

CM_SECURITY_NOT_VALID 174

CM_SVC_ERROR_NO_TRUNC 175

CM_SVC_ERROR_PURGING 175

CM_SVC_ERROR_TRUNC 175

CM_SYNC_LVL_NOT_SUPPORTED_LU 174

CM_SYNC_LVL_NOT_SUPPORTED_PGM 174

CM_TP_NOT_AVAILABLE_NO_RETRY 174

CM_TP_NOT_AVAILABLE_RETRY 174

CM_TPN_NOT_RECOGNIZED 174

CM_UNSUCCESSFUL 174

communications between TPs 2

compiling AIX applications 38

compiling and linking 44

compiling Linux applications 38

configuration information 32, 70, 122, 125

Confirm call 58

Confirm state 7

Confirm-Deallocate state 7

Confirm-Send state 7

confirmation processing 5

confirmation request
and Confirm call 58

receiving 6, 63

responding to 6, 61

sending 6

confirmed 61

contention winners and losers 3

context 70, 113

conversation
allocating 3

basic 4

contention 3

deallocating 4, 6, 26, 66

ending 5, 25

mapped 4

security 12

starting 4

state 7

synchronization level 6

TP’s view of the conversation 8

conversation characteristics
associated with symbolic destination name 122

considerations with Allocate 53

initial values 20, 89, 90

setting with Accept_Conversation 49

setting with Accept_Incoming 51

conversation ID 89, 90

conversation identifier 49

conversation security
overview 12

password 114

type 116, 118

user ID 118

conversation state
changes 8, 177

changing 8

description 7

getting 73

initial 9

conversation type
basic 4

mapped 4

setting 120

with Allocate call 53

with Extract_Conversation_Type call 75

conversations, multiple 12

conversion between ASCII and EBCDIC 108

conversion between EBCDIC and ASCII 101

Convert_Incoming call 63

Convert_Outgoing call 65

converting data between ASCII and EBCDIC 22

CPI-C calls
overview 3

© Copyright IBM Corp. 2000, 2005 191

CPI-C calls (continued)
summarized by function 19

D
data

receiving 5

sending 5

data buffer, size 80

data record 5, 129

data types 47

data, receiving 94

Deallocate call 66

deallocate type 68, 125

deallocating a conversation 66

deallocation, receiving notification from the partner

program 66

Delete_CPIC_Side_Information 69

distributed transaction processing 1

E
EBCDIC-ASCII data conversion 22

error direction 128

error log data 12, 69, 112, 132

error messages 173

error return codes 171

errors, reporting 108

Extract_Conversation_Context 70

Extract_Conversation_Security_Type 71

Extract_Conversation_Security_User_ID 73

Extract_Conversation_State 73

Extract_Conversation_Type 75

Extract_CPIC_Side_Information 76

Extract_Local_LU_Name 78

Extract_Maximum_Buffer_Size 80

Extract_Mode_Name 81

Extract_Partner_LU_Name 82

Extract_Security_User_ID 83

Extract_Sync_Level 85

Extract_TP_Name 86

F
fill conversation characteristic 129

Flush 87

flushing the local LU’s send buffer 5, 87

function calls for CPI-C, Windows-specific 41

I
immediate allocation of a conversation 55

Initialize state 7

Initialize_Conversation 89

Initialize_For_Incoming 90

Initialize-Incoming state 7

invoked program
nonqueued, automatically started 36

queued, automatically started 36

queued, operator-started 36

starting 36

invoked TP 3

invoking program, starting 36

invoking TP 3

J
Java CPI-C

classes 38

compiling and linking an application 40

constants 38

parameter types 39

running an application 41

usage example 40

writing programs 38

L
linking AIX applications 38

linking Linux applications 38

Linux applications
compiling and linking 38

local LU 3

local TP 3

log data 69, 112, 132

logical records 11, 129

logical unit (LU)
local LU 3

LU 6.2 2

partner LU 3

remote LU 3

LU name, partner 82

LU-to-LU sessions 3

M
mapped conversation 4, 120

maximum buffer size 80

mode 3

mode name 81, 134

multiple processes 37

multiple sessions 3

N
nonblocking mode 14

nonblocking operation 14

nonqueued, automatically started program 36

P
parallel sessions 3

partner LU 3

partner LU name 82, 136

partner program name 147

partner TP 3

partner TP name 147

password, conversation security 114

Pending-Post state, Windows 7

prepare to receive type 137

Prepare_To_Receive 91

processing mode 139

Q
queued, automatically started program 36

queued, operator-started program 36

192 IBM Communications Server for AIX CPI-C Programmer’s Guide

R
Receive 94

Receive state
changing to 9, 91

definition 7

receive type 141

receiving data
calls enabling 22

waiting for data 141

with Receive call 5, 94

Release_Local_TP_Name 102

remote LU 3

remote TP 3

reporting errors 108

Request_To_Send 103

request-to-send notification
on Request_To_Send call 105

testing for 152

Reset state 7

return codes 169

return codes, common 171

return control 142

S
sample Java CPI-C program 167

sample programs
overview 163

pseudocode 163

security type 71

Send state
changing to 10

definition 7

send type 144

Send_Data 105

Send_Error 108

Send-Pending state 7

sending data 87

calls used for 21

using the Request_To_Send call 103

using the Send_Data call 5, 105

service TP 4

session allocation, waiting for 142

sessions, LU-to-LU 3

Set_Conversation_Context 113

Set_Conversation_Security_Password 114, 116

Set_Conversation_Security_Type 116, 118

Set_Conversation_Security_User_ID 118, 120

Set_Conversation_Type 120

Set_CPIC_Side_Information 122

Set_Deallocate_Type 125

Set_Error_Direction 128

Set_Fill 129

Set_Local_LU_Name 131

Set_Log_Data 132

Set_Mode_Name 134

Set_Partner_LU_Name 136

Set_Prepare_To_Receive_Type 137

Set_Processing_Mode 139

Set_Receive_Type 141

Set_Return_Control 142

Set_Send_Type 144

Set_Sync_Level 146

Set_TP_Name 147

side information 69, 76, 122

Specify_Local_TP_Name 149

Specify_Windows_Handle 151

state changes 177

state of a conversation 73

symbolic constants 47

symbolic destination name 30, 69, 122

synchronization level
and Extract_Sync_Level 85

establishing 6

setting 146

synchronizing with the partner program 61

T
Test_Request_to_Send_Received 152

TP communications 2

TP name 86

transaction programs (TPs)
invoked TP 3

invoking TP 3

local TP 3

partner TP 3

remote TP 3

translation (EBCDIC-ASCII) 101, 108

U
user ID, conversation security 78, 83, 118

W
Wait_For_Conversation 153

waiting for session to be allocated 142

WinCPICCleanup call 156

WinCPICIsBlocking call 156

WinCPICStartup call 158

Windows considerations 41

Index 193

194 IBM Communications Server for AIX CPI-C Programmer’s Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of

the methods listed below to send your comments to IBM. Whichever method you

choose, make sure you send your name, address, and telephone number if you

would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject

matter, or completeness of this document. However, the comments you send

should pertain to only the information in this manual and the way in which the

information is presented. To request additional publications, or to ask questions or

make comments about the functions of IBM products or systems, you should talk

to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate without incurring any

obligation to you.

Please send your comments to us in either of the following ways:

v If you prefer to send comments by FAX, use this number: 1+919-254-4028

v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com.
v If you prefer to send comments by post, use this address:

International Business Machines Corporation

Attn: z/OS Communications Server Information Development

P.O. Box 12195, 3039 Cornwallis Road

Department AKCA, Building 501

Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2000, 2005 195

196 IBM Communications Server for AIX CPI-C Programmer’s Guide

����

Program Number: 5765-E51

Printed in USA

SC31-8591-02

	Contents
	Tables
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions
	Graphic Conventions

	What's New
	Where to Find More Information

	Chapter 1. Concepts
	What Is CPI-C?
	CS/AIX CPI-C Option Set Support
	Communication between Programs
	Logical Unit 6.2
	Sessions
	Conversations
	Contention
	Characteristics
	CPI-C Calls
	The Conversation Process
	Conversation Types

	A Simple Mapped Conversation
	Starting a Conversation
	Sending Data
	Receiving Data
	Ending a Conversation

	Confirmation Processing
	Establishing the Synchronization Level
	Sending a Confirmation Request
	Receiving a Confirmation Request
	Responding to a Confirmation Request
	Deallocating the Conversation

	Conversation States
	The Program's View of the Conversation
	State Changes
	State Checks

	Changing Conversation States
	Initial States
	Changing to Receive State
	Changing to Send State

	Side Information
	Basic Conversations
	Logical Records
	Error Log Data

	Multiple Conversations
	Overview of Conversation Security
	Conversation Security for Multiple Conversations
	Already-Verified Conversation Security

	Nonblocking Operation
	CPI-C and LU 6.2

	Chapter 2. Writing CPI-C Applications
	CPI-C Call Summary
	Starting a Conversation
	WinCPICStartup
	Initialize_Conversation (cminit)
	Initialize_For_Incoming (cminic)
	Set_* Calls to Change Initial Conversation Characteristics
	Allocate (cmallc)
	Accept_Conversation (cmaccp)
	Accept_Incoming (cmacci)

	Sending data
	Set_Send_Type (cmsst)
	Send_Data (cmsend)
	Flush (cmflus)
	Confirm (cmcfm)
	Request_To_Send (cmrts)

	Receiving Data
	Set_Prepare_To_Receive_Type (cmsptr)
	Prepare_To_Receive (cmptr)
	Set_Receive_Type (cmsrt)
	Receive (cmrcv)
	Set_Fill (cmsf)

	Converting Data Between ASCII and EBCDIC
	Convert_Incoming (cmcnvi)
	Convert_Outgoing (cmcnvo)

	Confirming Receipt of Data and Reporting Errors
	Confirmed (cmcfmd)
	Set_Error_Direction (cmsed)
	Set_Log_Data (cmsld)
	Send_Error (cmserr)

	Issuing Calls in Nonblocking Mode
	Set_Processing_Mode (cmspm)
	Check_For_Completion (cmchck)
	Wait_For_Conversation (cmwait)
	Specify_Windows_Handle (xchwnd)

	Issuing Calls in Blocking Mode
	Getting Information
	Extract_* Calls
	Test_Request_to_Send_Received (cmtrts)

	Ending a Conversation
	Set_Deallocate_Type (cmsdt)
	Deallocate (cmdeal)
	Cancel_Conversation (cmcanc)
	WinCPICCleanup

	Administering Side Information

	Initial Conversation Characteristics
	Side Information
	Local LU Alias
	Partner LU Name
	Partner Program Type and Name
	Mode Name
	Conversation Security Type
	Security User ID and Password
	Application-Specified Side Information

	Configuration
	Specifying the Local TP Name
	Specify_Local_TP_Name
	Context
	APPCTPN Environment Variable
	Default Value

	Specifying the Local LU
	Set_Local_LU_Name
	Context
	APPCLLU Environment Variable
	Side Information
	Default Local LU
	Control Point LU

	How Programs Get Started
	Invoked Program: Automatically Started
	Invoked Program: User-Started

	AIX or Linux Considerations
	CPI-C Header File
	Multiple Processes
	Compiling and Linking the CPI-C Application
	AIX Applications
	Linux Applications

	Java CPI-C Considerations
	Using Java CPI-C Classes
	Constant Values
	Parameter Type Classes

	Usage Example
	Compiling and Linking the Java CPI-C Application
	Running the Java CPI-C Application

	Windows Considerations
	Windows CPI-C Files
	Function Prototypes
	Multiple Processes and Multiple Conversations
	Windows Function Calls
	Blocking Calls
	Default Blocking Function

	Terminating Applications
	Compiling and Linking CPI-C Applications
	Compiler Options for Structure Packing
	Header Files
	Load-time linking
	Run-time linking

	Writing Portable Applications

	Chapter 3. CPI-C Calls
	Information Provided for CPI-C Calls
	Data Types
	Data Structures
	Symbolic Constants
	Strings
	Validity of Returned Parameters

	Information Provided for Windows Function Calls
	Accept_Conversation (cmaccp)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Accept_Incoming (cmacci)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Allocate (cmallc)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Cancel_Conversation (cmcanc)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Check_For_Completion (cmchck)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Confirm (cmcfm)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Confirmed (cmcfmd)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes
	Sources of Confirmation Requests
	Receiving Confirmation Requests

	Convert_Incoming (cmcnvi)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Note

	Convert_Outgoing (cmcnvo)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Note

	Deallocate (cmdeal)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Delete_CPIC_Side_Information (xcmdsi)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Conversation_Context (cmectx)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Conversation_Security_Type (xcecst)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Conversation_Security_User_ID (cmecsu)
	Extract_Conversation_Security_User_ID (xcecsu)
	Extract_Conversation_State (cmecs)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Conversation_Type (cmect)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_CPIC_Side_Information (xcmesi)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Local_LU_Name (cmelln)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Maximum_Buffer_Size (cmembs)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Mode_Name (cmemn)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Partner_LU_Name (cmepln)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Security_User_ID (cmesui or cmecsu)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Sync_Level (cmesl)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_TP_Name (cmetpn)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Flush (cmflus)
	Sources of Buffered Data
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Initialize_Conversation (cminit)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Initialize_For_Incoming (cminic)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Prepare_To_Receive (cmptr)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Receive (cmrcv)
	How a Program Receives Data
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	Issuing the Call in Send or Send-Pending State

	State Change
	Call Issued in Receive State
	Call Issued in Send State
	Call Issued in Send-Pending State
	Call Issued in Any Allowed State
	Confirmation Processing
	Normal Deallocation
	Abends
	Errors

	Usage Notes
	Truncated Records
	Setting the Requested_Length Parameter to Zero
	String Translation

	Release_Local_TP_Name (cmrltp)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Request_To_Send (cmrts)
	Action of the Partner Program
	When the Local Program Can Send Data
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Send_Data (cmsend)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Send_Error (cmserr)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes
	Sending Log Data
	Purged Data
	Send-Pending State

	Set_Conversation_Context (cmsctx)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Conversation_Security_Password (cmscsp)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Conversation_Security_Password (xcscsp)
	Set_Conversation_Security_Type (cmscst)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Conversation_Security_Type (xcscst)
	Set_Conversation_Security_User_ID (cmscsu)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Conversation_Security_User_ID (xcscsu)
	Set_Conversation_Type (cmsct)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_CPIC_Side_Information (xcmssi)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Deallocate_Type (cmsdt)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Error_Direction (cmsed)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Fill (cmsf)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Local_LU_Name (cmslln)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Log_Data (cmsld)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Mode_Name (cmsmn)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Partner_LU_Name (cmspln)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Prepare_To_Receive_Type (cmsptr)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Processing_Mode (cmspm)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Receive_Type (cmsrt)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Return_Control (cmsrc)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Send_Type (cmsst)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Sync_Level (cmssl)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_TP_Name (cmstpn)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Specify_Local_TP_Name (cmsltp)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Specify_Windows_Handle (xchwnd)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Test_Request_to_Send_Received (cmtrts)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Wait_For_Conversation (cmwait)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	WinCPICCleanup
	Function Call
	Supplied Parameters
	Returned Values

	WinCPICIsBlocking
	Function Call
	Supplied Parameters
	Returned Values

	WinCPICSetBlockingHook
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinCPICStartup
	Function Call
	Supplied Parameters
	Returned Values

	WinCPICUnhookBlockingHook
	Function Call
	Supplied Parameters
	Returned Values

	WinCPICSetEvent
	Function Call
	Supplied Parameters
	Returned Parameters
	Usage Notes

	WinCPICExtractEvent
	Function Call
	Supplied Parameters
	Returned Parameters
	Usage Notes

	Chapter 4. Sample CPI-C Transaction Programs
	Processing Overview
	Pseudocode
	CSAMPLE1 (Invoking Program)
	CSAMPLE2 (Invoked TP)

	Testing the TPs

	Chapter 5. Sample Java CPI-C Transaction Program
	Overview
	Compiling, Linking, and Running the Sample Program

	Appendix A. Return Code Values
	Appendix B. Common Return Codes
	Return Codes from Any Partner Program
	Non-CPI-C LU 6.2 Partner Program

	Appendix C. Conversation State Changes
	Appendix D. Notices
	Trademarks

	Bibliography
	CS/AIX Version 6.3Publications
	IBM Communications Server for AIX Version 4 Release 2 Publications
	IBM Redbooks
	Block Multiplexer and S/390 ESCON Channel PCI Adapter publications
	AnyNet/2 Sockets and SNA publications
	AIX Operating System Publications
	Systems Network Architecture (SNA) Publications
	Host Configuration Publications
	z/OS Communications Server Publications
	Multiprotocol Transport Networking publications
	TCP/IP Publications
	X.25 Publications
	APPC Publications
	Programming Publications
	Other IBM Networking Publications

	Index
	Communicating Your Comments to IBM

