
IBM Communications Server for AIX

APPC Programmer’s Guide

V6.3

SC31-8590-02

���

IBM Communications Server for AIX

APPC Programmer’s Guide

V6.3

SC31-8590-02

���

Note:

Before using this information and the product it supports, be sure to read the general information under Appendix F,

“Notices,” on page 287.

Third Edition (November 2005)

This edition applies to IBM Communications Server for AIX, Version 6.3, program number 5765-E51, and to all

subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address below.

IBM welcomes your comments. You may send your comments to the following address:

 International Business Machines Corporation

 Attn: z/OS Communications Server Information Development

 Department AKCA, Building 501

 P.O. Box 12195, 3039 Cornwallis Road

 Research Triangle Park, North Carolina

 27709-2195

 U.S.A.

You can send us comments electronically by using one of the following methods:

v Fax (USA and Canada): 1-919-254-4028

v Internet e-mail: comsvrcf@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . xi

Figures . xiii

About This Book . xv

Who Should Use This Book . xv

How to Use This Book . xvi

Organization of This Book . xvi

Typographic Conventions . xvii

Graphic Conventions . xvii

What’s New . xviii

Where to Find More Information . xviii

Chapter 1. Concepts . 1

What Is APPC? . 1

Transaction Programs . 1

Communication between TPs . 2

Logical Unit 6.2 . 2

Sessions . 2

Conversations . 2

APPC Verbs . 2

The Conversation Process . 3

Conversation Types . 3

Multiple Conversations . 3

Half-Duplex and Full-Duplex Conversations . 4

A Simple Mapped Conversation (half-duplex) . 5

Starting a Conversation . 5

Sending Data . 6

Receiving Data . 6

Ending a Conversation . 6

Confirmation Processing (half-duplex) . 6

Establishing the Synchronization Level . 7

Sending a Confirmation Request . 8

Receiving Data and a Confirmation Request . 8

Responding to the Confirmation Request . 8

Deallocating the Conversation . 8

Sending and Receiving Status with Data (half-duplex) . 9

Sending Status Information with Data . 9

Receiving Status Information with Data . 10

Conversation States (half-duplex) . 10

The TP’s View of the Conversation . 11

State Changes . 11

State Checks . 11

Changing Conversation States (half-duplex) . 11

Initial States . 13

Changing to Receive State . 13

Changing to Send State . 13

Full-Duplex Conversations . 14

Starting a Conversation . 14

Sending Data . 15

Receiving Data . 15

Ending a Conversation . 15

Conversation States . 16

Half-Duplex Verbs Not Permitted in Full-Duplex Conversations 16

Sending and Receiving Expedited Data . 17

© Copyright IBM Corp. 2000, 2005 iii

Synchronous and Asynchronous APPC Calls . 17

Receiving Data Asynchronously . 18

Non-Blocking Operation . 20

Syncpoint Support . 22

APPC and CPI-C . 22

TP Server API . 23

Chapter 2. Writing Transaction Programs . 25

Categories of APPC Verbs . 25

Control Verbs . 25

Conversation Verbs . 26

TP Server Verbs . 26

APPC Verb Summary . 27

Starting a Conversation . 27

Sending Data . 28

Receiving Data . 29

Confirming Receipt of Data or Reporting Errors . 29

Getting Information . 29

Ending a Conversation . 30

Starting a Transaction Program (TP) . 30

APPC Entry Points: AIX or Linux Systems . 31

APPC Entry Point . 32

APPC_Async Entry Point . 33

Callback Routine for Asynchronous Verb Completion . 35

APPC Entry Points: Windows Systems . 36

WinAPPCStartup . 37

WinAsyncAPPC . 39

WinAsyncAPPCEx . 40

WinAPPCCancelAsyncRequest . 41

WinAPPCCleanup . 42

Blocking Verbs . 42

APPC . 43

WinAPPCCancelBlockingCall . 44

WinAPPCIsBlocking . 44

WinAPPCSetBlockingHook . 45

WinAPPCUnhookBlockingHook . 45

GetAppcConfig . 46

GetAppcReturnCode . 49

AIX or Linux Considerations . 50

Multiple Processes . 50

Compiling and Linking the APPC Application . 51

Windows Considerations . 51

Compiling and Linking APPC Programs . 51

Terminating Applications . 52

Configuration Information . 52

Invoked TP . 52

Invoking TP . 53

Overview of Conversation Security . 53

Starting TPs . 54

Invoking TPs . 54

Invoked TPs . 54

Invoked TPs: User-Started . 54

Invoked TPs: Automatically Started by the CS/AIX Attach Manager 55

Invoked TPs: Automatically Started by a TP Server Application 55

Timeout Values for Invoked TPs . 56

LU-to-LU Sessions . 57

Contention . 57

Basic Conversations . 57

Logical Records . 57

Reporting Errors and Abends . 59

Error Log . 59

iv IBM Communications Server for AIX APPC Programmer’s Guide

Timeouts Versus Critical Errors . 59

Writing TP Servers . 59

TP Server Responsibilities . 60

Default TP Server . 60

Writing Portable TPs . 60

Chapter 3. APPC Control Verbs . 61

TP_STARTED . 62

VCB Structure: TP_STARTED . 62

VCB Structure: TP_STARTED (Windows) . 63

Supplied Parameters . 63

Returned Parameters . 64

State When Issued . 65

State Change . 65

TP_ENDED . 65

VCB Structure: TP_ENDED . 66

VCB Structure: TP_ENDED (Windows) . 66

Supplied Parameters . 66

Returned Parameters . 67

State When Issued . 68

State Change . 68

RECEIVE_ALLOCATE . 68

VCB Structure: RECEIVE_ALLOCATE . 68

VCB Structure: RECEIVE_ALLOCATE (Windows) . 69

Supplied Parameters . 69

Returned Parameters . 71

State When Issued . 74

State Change . 74

Avoiding Waits . 74

Routing for Incoming Attaches . 75

GET_LU_STATUS . 75

VCB Structure: GET_LU_STATUS . 76

Supplied Parameters . 76

Returned Parameters . 76

State When Issued . 77

State Change . 78

GET_TP_PROPERTIES . 78

VCB Structure: GET_TP_PROPERTIES . 78

VCB Structure: GET_TP_PROPERTIES (Windows) . 78

Supplied Parameters . 79

Returned Parameters . 79

State When Issued . 82

State Change . 82

SET_TP_PROPERTIES . 82

VCB Structure: SET_TP_PROPERTIES . 83

Supplied Parameters . 83

Returned Parameters . 85

State When Issued . 87

State Change . 87

Usage and Restrictions . 87

Chapter 4. APPC Conversation Verbs . 89

GET_TYPE . 90

VCB Structure: GET_TYPE . 91

VCB Structure: GET_TYPE (Windows) . 91

Supplied Parameters . 91

Returned Parameters . 92

State When Issued . 93

State Change . 93

MC_ALLOCATE and ALLOCATE . 93

Contents v

VCB Structure: MC_ALLOCATE . 93

VCB Structure: ALLOCATE . 94

VCB Structure: MC_ALLOCATE (Windows) . 95

VCB Structure: ALLOCATE (Windows) . 95

Supplied Parameters . 96

Returned Parameters . 102

State When Issued . 105

State Change . 105

EBCDIC-ASCII, ASCII-EBCDIC Translation . 105

Immediate Allocation . 105

Confirming the Allocation (half-duplex conversation only) 105

MC_CONFIRM and CONFIRM . 105

VCB Structure: MC_CONFIRM . 105

VCB Structure: CONFIRM . 106

VCB Structure: MC_CONFIRM (Windows) . 106

VCB Structure: CONFIRM (Windows) . 106

Supplied Parameters . 107

Returned Parameters . 107

State When Issued . 110

State Change . 110

Synchronizing with Partner TP . 111

MC_CONFIRMED and CONFIRMED . 111

Sources of Confirmation Requests . 111

Receiving Confirmation Requests . 112

VCB Structure: MC_CONFIRMED . 112

VCB Structure: CONFIRMED . 112

VCB Structure: MC_CONFIRMED (Windows) . 112

VCB Structure: CONFIRMED (Windows) . 113

Supplied Parameters . 113

Returned Parameters . 114

State When Issued . 115

State Change . 115

MC_DEALLOCATE and DEALLOCATE . 115

VCB Structure: MC_DEALLOCATE . 116

VCB Structure: DEALLOCATE . 116

VCB Structure: MC_DEALLOCATE (Windows) . 116

VCB Structure: DEALLOCATE (Windows) . 117

Supplied Parameters . 117

Returned Parameters . 121

State When Issued . 125

State Change . 125

Implied Forget Notification . 125

MC_FLUSH and FLUSH . 127

Sources of Buffered Data . 127

VCB Structure: MC_FLUSH . 127

VCB Structure: FLUSH . 127

VCB Structure: MC_FLUSH (Windows) . 128

VCB Structure: FLUSH (Windows) . 128

Supplied Parameters . 128

Returned Parameters . 129

State When Issued . 130

State Change . 130

MC_GET_ATTRIBUTES and GET_ATTRIBUTES . 130

VCB Structure: MC_GET_ATTRIBUTES . 130

VCB Structure: GET_ATTRIBUTES . 131

VCB Structure: MC_GET_ATTRIBUTES (Windows) . 132

VCB Structure: GET_ATTRIBUTES (Windows) . 132

Supplied Parameters . 133

Returned Parameters . 133

State When Issued . 137

State Change . 137

vi IBM Communications Server for AIX APPC Programmer’s Guide

MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE 137

VCB Structure: MC_PREPARE_TO_RECEIVE . 138

VCB Structure: PREPARE_TO_RECEIVE . 138

VCB Structure: MC_PREPARE_TO_RECEIVE (Windows) 138

VCB Structure: PREPARE_TO_RECEIVE (Windows) . 138

Supplied Parameters . 139

Returned Parameters . 141

State When Issued . 143

State Change . 143

Usage Note . 144

MC_RECEIVE and RECEIVE Verbs . 144

How a TP Receives Data . 144

The what_rcvd Parameter . 145

End of Data . 147

Testing the what_rcvd Parameter . 147

MC_RECEIVE_AND_POST and RECEIVE_AND_POST . 147

VCB Structure: MC_RECEIVE_AND_POST . 147

VCB Structure: RECEIVE_AND_POST . 148

VCB Structure: MC_RECEIVE_AND_POST (Windows) 148

VCB Structure: RECEIVE_AND_POST (Windows) . 149

Supplied Parameters . 149

Returned Parameters . 150

State When Issued . 157

State Change . 157

Usage Notes . 159

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT . 161

VCB Structure: MC_RECEIVE_AND_WAIT . 161

VCB Structure: RECEIVE_AND_WAIT . 162

VCB Structure: MC_RECEIVE_AND_WAIT (Windows) 162

VCB Structure: RECEIVE_AND_WAIT (Windows) . 163

Supplied Parameters . 163

Returned Parameters . 164

State When Issued . 171

State Change . 171

Usage Notes . 173

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE 173

VCB Structure: MC_RECEIVE_IMMEDIATE . 174

VCB Structure: RECEIVE_IMMEDIATE . 174

VCB Structure: MC_RECEIVE_IMMEDIATE (Windows) 174

VCB Structure: RECEIVE_IMMEDIATE (Windows) . 175

Supplied Parameters . 175

Returned Parameters . 177

State When Issued . 183

State Change . 183

PS Header Data . 184

MC_RECEIVE_EXPEDITED_DATA and RECEIVE_EXPEDITED_DATA 185

VCB Structure: MC_RECEIVE_EXPEDITED_DATA . 185

VCB Structure: RECEIVE_EXPEDITED_DATA . 185

Supplied Parameters . 185

Returned Parameters . 186

State When Issued . 190

State Change . 190

MC_REQUEST_TO_SEND and REQUEST_TO_SEND . 190

Action of the Partner TP . 190

When the Local TP Can Send Data . 190

VCB Structure: MC_REQUEST_TO_SEND . 191

VCB Structure: REQUEST_TO_SEND . 191

VCB Structure: MC_REQUEST_TO_SEND (Windows) . 191

VCB Structure: REQUEST_TO_SEND (Windows) . 192

Supplied Parameters . 192

Returned Parameters . 192

Contents vii

State When Issued . 194

State Change . 194

Receiving Request-to-Send Notification . 194

MC_SEND_CONVERSATION and SEND_CONVERSATION 195

VCB Structure: MC_SEND_CONVERSATION . 195

VCB Structure: SEND_CONVERSATION . 195

VCB Structure: MC_SEND_CONVERSATION (Windows) 196

VCB Structure: SEND_CONVERSATION (Windows) . 196

Supplied Parameters . 197

Returned Parameters . 202

State When Issued . 204

State Change . 204

MC_SEND_DATA and SEND_DATA . 204

VCB Structure: MC_SEND_DATA . 205

VCB Structure: SEND_DATA . 205

VCB Structure: MC_SEND_DATA (Windows) . 205

VCB Structure: SEND_DATA (Windows) . 206

Supplied Parameters . 206

Returned Parameters . 209

State When Issued . 213

State Change . 213

Waiting for Partner TP . 214

Logical Records in Basic Conversations . 214

MC_SEND_ERROR and SEND_ERROR . 214

VCB Structure: MC_SEND_ERROR . 214

VCB Structure: SEND_ERROR . 215

VCB Structure: MC_SEND_ERROR (Windows) . 215

VCB Structure: SEND_ERROR (Windows) . 215

Supplied Parameters . 216

Returned Parameters . 218

State When Issued . 221

State Change . 222

Purged Data . 222

MC_SEND_EXPEDITED_DATA and SEND_EXPEDITED_DATA 223

VCB Structure: MC_SEND_EXPEDITED_DATA . 223

VCB Structure: SEND_EXPEDITED_DATA . 224

Supplied Parameters . 224

Returned Parameters . 225

State When Issued . 227

State Change . 227

Waiting for Partner TP . 228

MC_TEST_RTS and TEST_RTS . 228

VCB Structure: MC_TEST_RTS . 228

VCB Structure: TEST_RTS . 229

VCB Structure: MC_TEST_RTS (Windows) . 229

VCB Structure: TEST_RTS (Windows) . 229

Supplied Parameters . 230

Returned Parameters . 230

State When Issued . 231

State Change . 231

MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST . 232

VCB Structure: MC_TEST_RTS_AND_POST . 232

VCB Structure: TEST_RTS_AND_POST . 232

VCB Structure: MC_TEST_RTS_AND_POST (Windows) 232

VCB Structure: TEST_RTS_AND_POST (Windows) . 233

Supplied Parameters . 233

Returned Parameters . 234

State When Issued . 236

State Change . 236

Usage Notes . 236

viii IBM Communications Server for AIX APPC Programmer’s Guide

Chapter 5. TP Server Verbs . 239

REGISTER_TP_SERVER . 240

VCB Structure: REGISTER_TP_SERVER . 240

Supplied Parameters . 240

Returned Parameters . 241

Usage Notes . 241

UNREGISTER_TP_SERVER . 242

VCB Structure: UNREGISTER_TP_SERVER . 242

Supplied Parameters . 243

Returned Parameters . 243

REGISTER_TP . 243

VCB Structure: REGISTER_TP . 243

Supplied Parameters . 244

Returned Parameters . 245

UNREGISTER_TP . 246

VCB Structure: UNREGISTER_TP . 246

Supplied Parameters . 247

Returned Parameters . 247

QUERY_ATTACH . 247

VCB Structure: QUERY_ATTACH . 248

Supplied Parameters . 248

Returned Parameters . 248

ACCEPT_ATTACH . 249

VCB Structure: ACCEPT_ATTACH . 249

Supplied Parameters . 250

Returned Parameters . 250

REJECT_ATTACH . 250

VCB Structure: REJECT_ATTACH . 250

Supplied Parameters . 251

Returned Parameters . 251

ABORT_ATTACH . 253

VCB Structure: ABORT_ATTACH . 253

Supplied Parameters . 253

Returned Parameters . 254

Chapter 6. Sample Transaction Programs . 255

Processing Overview . 255

Pseudocode . 255

asample1 (Invoking TP) . 255

asample2 (Invoked TP) . 256

Testing the TPs . 256

Appendix A. Return Code Values . 259

Primary Return Codes . 259

Secondary Return Codes . 260

Appendix B. Common Return Codes . 267

AP_ALLOCATION_ERROR . 267

AP_BACKED_OUT . 269

AP_CANCELLED . 270

AP_COMM_SUBSYSTEM_ABENDED . 270

AP_COMM_SUBSYSTEM_NOT_LOADED . 270

AP_CONV_FAILURE_NO_RETRY . 271

AP_CONV_FAILURE_RETRY . 271

AP_CONVERSATION_TYPE_MIXED . 271

AP_DEALLOC_ABEND . 272

AP_DEALLOC_ABEND_PROG . 272

AP_DEALLOC_ABEND_SVC . 272

AP_DEALLOC_ABEND_TIMER . 272

AP_DEALLOC_NORMAL . 273

Contents ix

AP_DUPLEX_TYPE_MIXED . 273

AP_INVALID_VERB . 273

AP_INVALID_VERB_SEGMENT . 273

AP_PROG_ERROR_NO_TRUNC . 274

AP_PROG_ERROR_PURGING . 274

AP_PROG_ERROR_TRUNC . 274

AP_SVC_ERROR_NO_TRUNC . 275

AP_SVC_ERROR_PURGING . 275

AP_SVC_ERROR_TRUNC . 275

AP_THREAD_BLOCKING . 275

AP_TP_BUSY . 276

AP_UNEXPECTED_SYSTEM_ERROR . 276

Appendix C. APPC State Changes . 277

Half-duplex conversations . 277

Full-duplex conversations . 280

Appendix D. SNA LU 6.2 Support . 283

LU 6.2 Option Set Support . 283

LU 6.2 Option Sets Supported by APPC Verbs . 283

LU 6.2 Option Sets Supported by the Administration Tools and by the NOF API 284

Control Operator Verb Support . 284

Appendix E. Accessibility . 285

Using assistive technologies . 285

Keyboard navigation of the user interface . 285

z/OS information . 285

Appendix F. Notices . 287

Trademarks . 289

Bibliography . 291

CS/AIX Version 6.3Publications . 291

IBM Communications Server for AIX Version 4 Release 2 Publications 292

IBM Redbooks . 292

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications 293

AnyNet/2 Sockets and SNA publications . 293

AIX Operating System Publications . 293

Systems Network Architecture (SNA) Publications . 293

Host Configuration Publications . 294

z/OS Communications Server Publications . 294

Multiprotocol Transport Networking publications . 294

TCP/IP Publications . 294

X.25 Publications . 295

APPC Publications . 295

Programming Publications . 295

Other IBM Networking Publications . 295

Index . 297

Communicating Your Comments to IBM . 305

x IBM Communications Server for AIX APPC Programmer’s Guide

Tables

 1. Typographic Conventions . xvii

 2. A Simple Mapped Conversation . 5

 3. Confirmation Processing . 7

 4. Receiving Status Information with Data . 9

 5. Using APPC Verbs to Change Conversation States . 11

 6. A Full-Duplex Conversation . 14

 7. Receiving Data Asynchronously . 19

 8. Mapped and Basic Conversation Verbs . 26

 9. LUWID Parameters . 80

10. Common SNA Sense Codes . 252

© Copyright IBM Corp. 2000, 2005 xi

xii IBM Communications Server for AIX APPC Programmer’s Guide

Figures

1. Elements for Writing TPs . 2

2. Invoking TPs Using Multiple Conversations . 4

© Copyright IBM Corp. 2000, 2005 xiii

xiv IBM Communications Server for AIX APPC Programmer’s Guide

About This Book

This book is a guide for developing C programming language application

programs that use Advanced Program-to-Program Communications (APPC) to

exchange data in a Systems Network Architecture (SNA) environment.

IBM®Communications Server for AIX (hereafter referred to as CS/AIX) is an IBM

software product that enables a server running AIX®to exchange information with

other nodes on an SNA network.

The CS/AIX implementation of APPC is based on IBM’s implementation of APPC

in its OS/2®products (such as Communications Server for OS/2), with

modifications for the AIX environment.

Programs written to use the CS/AIX implementation of APPC can exchange data

with programs written to use other implementations of APPC that adhere to the

SNA Logical Unit (LU) 6.2 architecture.

This book applies to V6.3 of CS/AIX running on AIX Version 5.2 and higher base

operating system.

To submit comments and suggestions about Communications Server for AIX APPC

Programmer’s Guide, use the Reader’s Comment Form located at the back of this

book. This form provides instructions for submitting your comments by mail, by

FAX, or by electronic mail.

Who Should Use This Book

This book is intended for experienced C programmers who write Systems Network

Architecture (SNA) transaction programs for systems with CS/AIX. Programmers

may or may not have prior experience with SNA or the communication facilities of

CS/AIX.

System Administrators

System Administrators install CS/AIX, configure the system for network

connection, and maintain the system. They should be familiar with the

hardware on which CS/AIX operates and with the AIX operating system.

They must also be knowledgeable about the network to which the system

is connected and understand SNA concepts in general.

Application Programmers

Application programmers design and code transaction and application

programs that use the CS/AIX programming interfaces to send and receive

data over an SNA network. They should be thoroughly familiar with SNA,

the remote program with which the transaction or application program

communicates, and the AIX or Linux operating system programming and

operating environments.

 More detailed information about writing application programs is provided

in the manual for each API or (for back-level APIs) in Communications

Server for AIX Transaction Program Reference V4R2 (SC31–8212). For

additional information about CS/AIX publications, see the bibliography.

© Copyright IBM Corp. 2000, 2005 xv

How to Use This Book

This section explains how information is organized and presented in this book.

Organization of This Book

This book is organized as follows:

v Chapter 1, “Concepts,” on page 1, introduces the fundamental concepts of APPC.

It is intended for programmers who are not familiar with APPC.

v Chapter 2, “Writing Transaction Programs,” on page 25, contains general

information an APPC programmer needs when writing transaction programs

(TPs).

v Chapter 3, “APPC Control Verbs,” on page 61, describes each APPC control verb

in detail. Each description includes the following: purpose, verb control block

(VCB), supplied and returned parameters, conversation states in which the verb

can be issued, conversation state changes after the verb has executed. Differences

between the implementations of APPC for different operating systems are

indicated where they occur; these are generally minor variations due to

operating system differences.

v Chapter 4, “APPC Conversation Verbs,” on page 89, describes each APPC

conversation verb in detail. Each description includes the following: purpose,

verb control block (VCB), supplied and returned parameters, conversation states

in which the verb can be issued, conversation state changes after the verb has

executed. Differences between the implementations of APPC for different

operating systems are indicated where they occur; these are generally minor

variations due to operating system differences.

v Chapter 5, “TP Server Verbs,” on page 239, describes each APPC TP server verb

in detail. Each description includes the following: purpose, verb control block

(VCB), supplied and returned parameters, conversation states in which the verb

can be issued, conversation state changes after the verb has executed. Differences

between the implementations of APPC for different operating systems are

indicated where they occur; these are generally minor variations due to

operating system differences.

v Chapter 6, “Sample Transaction Programs,” on page 255, describes the sample

APPC transaction programs, which illustrate the use of APPC verbs. This

chapter also includes instructions for compiling, linking, and running the TPs on

each of the supported operating systems.

v Appendix A, “Return Code Values,” on page 259, lists all the possible return

codes in the APPC interface in numerical order and gives their meanings.

v Appendix B, “Common Return Codes,” on page 267, documents certain primary

and secondary return codes that are common to several verbs.

v Appendix C, “APPC State Changes,” on page 277, provides information about

APPC conversation states: which verbs are permitted in each state, and the state

to which the conversation changes on return from each verb.

v Appendix D, “SNA LU 6.2 Support,” on page 283, provides reference

information about how the CS/AIX implementation of APPC relates to the SNA

LU 6.2 architecture, and about the LU 6.2 control operator verbs whose function

is provided in CS/AIX by the command-line administration program snaadmin

and by NOF (node operator facility) verbs.

How to Use This Book

xvi IBM Communications Server for AIX APPC Programmer’s Guide

Typographic Conventions

Table 1 shows the typographic styles used in this document.

 Table 1. Typographic Conventions

Special Element Sample of Typography

Document title Communications Server for AIX Administration

Guide

File or path name sna_tps

Program or application snaadmin

Command or AIX / Linux utility vi; define_mode

General reference to all values of a particular

type

AP_SEC_BAD_* (indicates all of the return

values that begin with AP_SEC_BAD)

Option or flag -I

Parameter or Motif field primary_rc; what_rcvd

Literal value or selection that the user can

enter (including default values)

0; 32,767

Constant or signal AP_DATA_COMPLETE_CONFIRM

Return value AP_OK; AP_SYNC_LEVEL_NOT_SUPPORTED; TRUE

Variable representing a supplied value lParam; ReturnedHandle

Environment variable LD_RUN_PATH

Programming verb RECEIVE_ALLOCATE

User input cc -I

Function, call, or entry point APPC_Async; WinAsyncAPPC

Data structure WAPPCDATA

Hexadecimal value 0x20

Graphic Conventions

AIX, LINUX

This symbol is used to indicate the start of a section of text that applies only to the

AIX or Linux operating system. It applies to AIX servers and to the IBM Remote

API Client running on AIX, Linux, Linux for pSeries or Linux for zSeries.

WINDOWS

This symbol is used to indicate the start of a section of text that applies to the IBM

Remote API Client on Windows.

This symbol indicates the end of a section of operating system specific text. The

information following this symbol applies regardless of the operating system.

How to Use This Book

About This Book xvii

What’s New

Communications Server for AIX V6.3 replaces Communications Server for AIX

V6.1.

Releases of this product that are still supported are:

v Communications Server for AIX V6.1

The following releases of this product are no longer supported:

v Communications Server for AIX Version 6 (V6)

v Communications Server for AIX Version 5 (V5)

v Communications Server for AIX Version 4 Release 2 (V4R2)

v Communications Server for AIX Version 4 Release 1 (V4R1)

v SNA Server for AIX Version 3 Release 1.1 (V3R1.1)

v SNA Server for AIX Version 3 Release 1 (V3R1)

v AIX SNA Server/6000 Version 2 Release 2 (V2R2)

v AIX SNA Server/6000 Version 2 Release 1 (V2R1) on AIX 3.2

v AIX SNA Services/6000 Version 1

A new format flag indicates when applications are compiled using the new version

of the product. If you are building a new APPC application, or recompiling an

existing APPC application with the current APPC header file, you must set this

parameter to 1 for some calls (GET_TYPE, CONFIRM, SEND_DATA, and few

others). Existing applications built with earlier versions of the header file, in which

this parameter was reserved, will still operate unchanged and there is no need to

rebuild them. Refer to the ″Supplied Parameters″ section of the applicable APPC

verb descriptions.

Where to Find More Information

See the bibliography for other books in the CS/AIX library, as well as books that

contain additional information about topics related to SNA and AIX workstations.

The information in the CS/AIX books is also available in HTML format. You can

use this library to search for specific information or to view online versions of each

of the CS/AIX books.

What’s New

xviii IBM Communications Server for AIX APPC Programmer’s Guide

Chapter 1. Concepts

This chapter introduces the fundamental concepts of advanced

program-to-program communication (APPC) in a distributed processing

environment:

v What is APPC?

v A simple mapped conversation

v Confirmation processing

v Sending and receiving status with data

v Conversation states

v Changing conversation states

v Synchronous and asynchronous APPC calls

v Receiving data asynchronously

AIX, LINUX

v Syncpoint support

v APPC and CPI-C (Common Programming Interface for Communications)

v TP Server API

What Is APPC?

APPC stands for Advanced Program-to-Program Communication, an application

program interface (API) that enables peer-to-peer communications among

programs in a Systems Network Architecture (SNA) environment.

Through APPC, application programs distributed across a network can work

together, communicating with each other and exchanging data to accomplish a

single processing task such as the following:

v Querying a remote database

v Copying a remote file

v Sending or receiving electronic mail

A complete sequence of communications between two application programs, which

can accomplish one or more processing tasks, is referred to as a conversation.

Two communicating APPC applications can be on the same computer or on two

separate computers; an application does not need to know where its partner

application is located. An APPC application can run either on a server or on a

client computer.

Transaction Programs

A transaction is a processing task accomplished by programs using APPC.

Consequently, programs that use APPC are called transaction programs (TPs).

These programs communicate as peers, on an equal (rather than a hierarchical)

basis. Application TPs accomplish tasks for end users. Service TPs provide services

to other programs.

© Copyright IBM Corp. 2000, 2005 1

Together, TPs distributed across a local- or wide-area network perform distributed

transaction processing.

Communication between TPs

Many hardware and software elements in the SNA environment are required for

two TPs to communicate with each other. Figure 1 illustrates the elements that

pertain directly to programmers writing TPs.

Logical Unit 6.2

Each TP is associated with a logical unit (LU) on a particular CS/AIX local node

and accesses the network through that LU. Several TPs can be associated with the

same LU. Each LU type uses a specific protocol. APPC is supported by LU 6.2.

Sessions

Before two TPs can communicate, their LUs must be connected through an

LU-to-LU session. An LU-to-LU session is a logical connection between the two

LUs. The session’s mode (set of networking characteristics) determines how data

moves between the two LUs.

Conversations

The communication between the two TPs occurs as a conversation within the

LU-to-LU session. A TP can be involved in several conversations simultaneously.

APPC Verbs

A TP accesses APPC through APPC verbs. The TPs use these verbs to instruct

APPC to start a conversation, send or receive data, and end a conversation. Each

verb supplies parameters to APPC, which performs the desired function and

returns parameters to the TP. Some verbs complete quickly, after some local

processing (for example sending a small amount of data); other verbs may take

some time to complete, depending on the partner TP and the communications path

(for instance, waiting for data or confirmation from the partner TP).

The TP issuing the verb is referred to as the local TP; the other TP is referred to as

the partner TP.

Similarly, the LU serving the local TP is the local LU and the LU serving the

partner TP is the partner LU.

TP A TP B

LU 1 LU 2

Conversation

Session

Figure 1. Elements for Writing TPs

What Is APPC?

2 IBM Communications Server for AIX APPC Programmer’s Guide

TPs and LUs residing on other network nodes are also called remote TPs and

remote LUs.

The Conversation Process

A conversation begins when both of the following happen:

1. One TP (the invoking TP) instructs APPC to start another TP (the invoked TP)

and allocate a conversation between the two TPs.

2. The invoked TP notifies APPC that it is ready to communicate with the

invoking TP.

During the conversation, the two TPs exchange status information and application

data.

A conversation ends when a TP instructs APPC to deallocate the conversation.

Conversation Types

A conversation can be mapped or basic. At allocation time, the invoking TP

specifies whether a conversation is to be basic or mapped. Certain APPC verbs are

used in mapped conversations only; others are used in basic conversations. You

cannot use a basic-conversation verb in a mapped conversation or vice versa.

In general, mapped conversations are used by application TPs. Application TPs are

programs that accomplish tasks for end users. Mapped conversations are less

complex than basic conversations. In a mapped conversation, the sending TP sends

one record at a time: the receiving TP receives one record at a time.

Basic conversations are normally used by service TPs. Service TPs are programs

that provide services to other local programs. Basic conversations provide an

experienced LU 6.2 programmer with a greater degree of control over the

transmission and handling of data. For more information, see “Basic

Conversations” on page 57.

Multiple Conversations

A TP can be involved in several conversations simultaneously. Each conversation

requires an LU-to-LU session.

A common use of multiple conversations is for an invoked TP to invoke another

TP, which, in turn, invokes another TP, and so on. Figure 2 on page 4 shows how

TP A invokes TP B, and TP B then invokes TP C. TPs A and C are not in

conversation with each other, but only with TP B.

What Is APPC?

Chapter 1. Concepts 3

Half-Duplex and Full-Duplex Conversations

Depending on how the two TPs in a conversation need to interact, the

conversation can operate in two ways.

Half-duplex

In a half-duplex conversation, control is passed between the two TPs so

that one TP is always in control of the conversation at any time. The

controlling TP can send data, or can pass control to the other TP. The other

TP can receive data but cannot send it; however, it can send an error

indication to the controlling TP, or can request control of the conversation.

 Half-duplex conversations are normally used in the following situations:

v When the progress of the conversation depends on the data being

transmitted; for example, if the first TP sends a request that the second

TP must process, and the subsequent operation of both TPs depends on

whether the request is accepted or rejected.

v When the first TP simply sends data to the second TP and does not need

to receive a response.

Because control is passed between the two TPs, half-duplex conversations

allow the TPs to confirm each stage of the conversation before continuing.

After sending a quantity of data, the first TP can request confirmation that

the data has been received and processed correctly before it continues. At

this point, the second TP may confirm the data and allow the first TP to

send more, or it may return an error response and then itself take control

of the conversation (for example to provide more details of the error or to

return a corrected version of the data).

Full-duplex

In a full-duplex conversation, both TPs can send data at any time; neither

TP is considered to be in control.

 Full-duplex conversations are normally used when the data being sent in

the two directions is independent, so that the progress of the conversation

does not depend on the data being transmitted. Because neither TP is

considered to be in control of the conversation, confirmation processing is

not supported; a TP can send an error response at any time, but this does

not prevent the other TP from continuing to send data.

TP A TP B

LU 1 LU 2

Conversation

Session

TP C

LU 3

Conversation

Session

Figure 2. Invoking TPs Using Multiple Conversations

What Is APPC?

4 IBM Communications Server for AIX APPC Programmer’s Guide

The TP that allocates the conversation specifies whether the conversation will

operate as a full-duplex or half-duplex conversation. This choice then applies for

the duration of the conversation; you cannot change between full-duplex and

half-duplex operation during the conversation. To issue a verb in a full-duplex

conversation, the TP must set an additional option in the opext parameter of the

verb, as described in Chapter 4, “APPC Conversation Verbs,” on page 89.

Not all APPC implementations support full-duplex operation. If the remote TP is

using an APPC implementation that does not support full-duplex operation, the

TPs can operate only in half-duplex mode.

The following sections describe the operation of half-duplex conversations. Because

full-duplex conversations do not include the verbs used for confirmation

processing and passing control between the TPs, some of the information in these

sections does not apply to full-duplex conversations. See “Full-Duplex

Conversations” on page 14 for a summary of the operation of a full-duplex

conversation.

A Simple Mapped Conversation (half-duplex)

Table 2 shows an example of a simple mapped conversation showing the APPC

verbs used to start a conversation, exchange data, and end the conversation. The

arrow indicates the flow of data. All primary_rc values are AP_OK unless shown

otherwise.

 Table 2. A Simple Mapped Conversation

Invoking TP Flow Invoked TP

TP_STARTED

MC_ALLOCATE

MC_SEND_DATA

MC_DEALLOCATE

—>

TP_ENDED RECEIVE_ALLOCATE

MC_RECEIVE_AND_WAIT (what_rcvd

= AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT (primary_rc

= AP_DEALLOC_NORMAL)

TP_ENDED

The characters MC_ at the beginning of many of the verbs stand for mapped

conversation. Parameters and results of APPC verbs are in parentheses.

Starting a Conversation

To start a conversation, the invoking TP issues the following verbs:

v TP_STARTED, which identifies the application to APPC as an invoking TP

v MC_ALLOCATE, which requests that APPC establish a conversation between

the invoking TP and the invoked TP

The invoked TP issues the RECEIVE_ALLOCATE verb, which informs APPC that

the invoked TP is ready to begin a conversation. CS/AIX associates the

RECEIVE_ALLOCATE verb with the MC_ALLOCATE verb issued by the invoking

TP in order to establish the conversation between the two TPs.

What Is APPC?

Chapter 1. Concepts 5

Sending Data

The MC_SEND_DATA verb supplies application data to be transmitted to the

partner TP. This data is held in the local LU’s send buffer; it is not transmitted to

the partner TP until one of the following events occurs:

v The send buffer fills up.

v The TP issues a verb that forces APPC to flush the buffer (send data to the

partner TP).

In addition to the data, the send buffer also contains the MC_ALLOCATE request

(which precedes the data). In this example, the MC_DEALLOCATE verb flushes

the buffer, transmitting the MC_ALLOCATE request and data to the partner TP.

Other verbs that flush the buffer are MC_CONFIRM and MC_FLUSH.

Receiving Data

The MC_RECEIVE_AND_WAIT verb receives data from the partner TP. If no data

is currently available, the local TP waits for it to arrive.

As well as receiving data, the verb may receive a status indicator from the partner

TP (such as an indication that the conversation is ending, a request to confirm

receipt of data, and so on). For more information about how the TP handles these

indicators, see “Confirmation Processing (half-duplex)” and “Conversation States

(half-duplex)” on page 10.

In the example, the invoked TP issues the first MC_RECEIVE_AND_WAIT verb to

receive data. When it has finished receiving the complete data record (what_rcvd=

AP_DATA_COMPLETE), it issues the MC_RECEIVE_AND_WAIT verb again to receive a

return code. The return code AP_DEALLOC_NORMAL indicates that the conversation

was deallocated.

The MC_RECEIVE_IMMEDIATE verb performs the same function as the

MC_RECEIVE_AND_WAIT verb, except that it does not wait if data is not

currently available from the partner TP. Instead, it returns a no-data-available

response to the calling TP.

Ending a Conversation

To end a conversation, one of the TPs issues the MC_DEALLOCATE verb, which

causes APPC to deallocate the conversation between the two TPs.

After this conversation is deallocated, each TP either issues another

[MC_]ALLOCATE or RECEIVE_ALLOCATE verb to start another conversation

(with this or another partner TP), or issues the TP_ENDED verb.

A TP can participate in multiple conversations simultaneously. In this case, the TP

issues the TP_ENDED verb when all conversations have been deallocated.

Confirmation Processing (half-duplex)

Using confirmation processing, a TP sends a confirmation request with the data;

the receiving TP confirms receipt of the data or indicates that an error occurred.

Each time the two TPs exchange a confirmation request and response, they are

synchronized.

The example of confirmation processing in Table 3 on page 7 shows two ways of

confirming the transfer of data: requesting confirmation after sending the data (by

A Simple Mapped Conversation (half-duplex)

6 IBM Communications Server for AIX APPC Programmer’s Guide

using the CONFIRM verb), and requesting confirmation at the end of a transaction

(by requesting confirmation on the DEALLOCATE verb). Confirmation can also be

requested on the PREPARE_TO_RECEIVE verb; this asks the partner TP to confirm

receipt of data, and then begin to send data itself. For more information, see “State

Changes” on page 11. A pair of TPs may choose to use only one of these

mechanisms; in the following example, the invoked TP uses the

PREPARE_TO_RECEIVE verb without requesting confirmation; this simply tells the

partner TP to send data.

 Table 3. Confirmation Processing

Invoking TP Flow Invoked TP

TP_STARTED

MC_ALLOCATE (sync_level =

AP_CONFIRM_SYNC_LEVEL)

MC_SEND_DATA

MC_CONFIRM

—>

RECEIVE_ALLOCATE

MC_RECEIVE_AND_WAIT (primary_rc =

AP_OK) (what_rcvd = AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT (primary_rc=

AP_OK) (what_rcvd = AP_CONFIRM)

MC_SEND_ERROR

<—

(MC_CONFIRM returns, primary_rc =

AP_PROG_ERROR_PURGING)

MC_PREPARE_TO_RECEIVE (ptr_type =

AP_FLUSH)

<—

MC_RECEIVE_AND_WAIT (primary_rc=

AP_OK) (what_rcvd = AP_SEND)

MC_SEND_DATA

MC_CONFIRM

—>

MC_RECEIVE_AND_WAIT (primary_rc=

AP_OK) (what_rcvd = AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT (primary_rc=

AP_OK) (what_rcvd = AP_CONFIRM)

MC_CONFIRMED

<—

MC_DEALLOCATE (dealloc_type =

AP_SYNC_LEVEL)

—>

MC_RECEIVE_AND_WAIT (primary_rc =

AP_OK) (what_rcvd =

AP_CONFIRM_DEALLOCATE)

MC_CONFIRMED

<—

TP_ENDED TP_ENDED

Establishing the Synchronization Level

The sync_level parameter of the MC_ALLOCATE verb determines the

synchronization level of the conversation. Possible values for synchronization

levels are:

v AP_CONFIRM_SYNC_LEVEL under which the TPs can request confirmation of receipt

of data and respond to such requests

v AP_NONE under which confirmation processing does not occur

Confirmation Processing (half-duplex)

Chapter 1. Concepts 7

AIX, LINUX

A third level, AP_SYNCPT (Syncpoint) can also be used, but requires additional

software. For more information, see “Syncpoint Support” on page 22.

Sending a Confirmation Request

The MC_CONFIRM verb has two effects:

v To flush the local LU’s send buffer, which sends any data contained in the buffer

to the partner TP

v To send a confirmation request, which the partner TP receives through the

what_rcvd parameter of a receive verb

The MC_CONFIRM verb does not complete until confirmation (or an indication

that an error was detected) is received from the partner TP.

Receiving Data and a Confirmation Request

The what_rcvd parameter of the MC_RECEIVE_AND_WAIT verb indicates the

following:

v Status of the data received is complete or incomplete

v Future processing expected of the local TP (for example, a confirmation request

or an indication that it should begin to send data)

When the invoked TP finishes receiving the complete data record (what_rcvd =

AP_DATA_COMPLETE), it issues the MC_RECEIVE_AND_WAIT verb again and

receives a confirmation request (what_rcvd = AP_CONFIRM).

Responding to the Confirmation Request

The invoked TP normally issues the MC_CONFIRMED verb to confirm receipt of

data; this frees the invoking TP to resume processing.

If the invoked TP has detected an error in the received data, it can instead issue

the MC_SEND_ERROR verb to indicate this error condition.

Deallocating the Conversation

The MC_DEALLOCATE verb sends a confirmation request with the data when

both of the following conditions are true:

v The conversation’s synchronization level (established by the sync_level parameter

of the MC_ALLOCATE verb) is AP_CONFIRM_SYNC_LEVEL.

v The dealloc_type parameter of the MC_DEALLOCATE verb is set to

AP_SYNC_LEVEL.

The what_rcvd parameter of the final MC_RECEIVE_AND_WAIT verb issued by

the invoked TP contains AP_CONFIRM_DEALLOCATE, indicating that a confirmation of

receipt of data is required before APPC will deallocate the conversation. The

invoking TP waits for this confirmation until the invoked TP issues the

MC_CONFIRMED verb to indicate that data was received successfully (or it could

instead issue the MC_SEND_ERROR verb to indicate that data was not received

successfully).

Confirmation Processing (half-duplex)

8 IBM Communications Server for AIX APPC Programmer’s Guide

Sending and Receiving Status with Data (half-duplex)

In Table 3 on page 7, the invoking TP used the MC_SEND_DATA verb to send data

and then the MC_CONFIRM verb to request confirmation from the invoked TP. It

is possible to use a parameter on the [MC_]SEND_DATA verb to indicate that

APPC should also perform the function of the [MC_]CONFIRM verb (or

[MC_]DEALLOCATE, [MC_]FLUSH, or [MC_]PREPARE_TO_RECEIVE) after

sending the data, instead of having to issue two separate verbs.

Similarly, the invoked TP in Table 3 on page 7 issued the

MC_RECEIVE_AND_WAIT verb twice, first to receive the data and then to receive

the status information that the invoking TP requested confirmation. It is possible to

use a parameter on any of the [MC_]RECEIVE verbs to indicate that APPC should

return status information about the same receive verb as the data, instead of

having to issue two separate receive verbs.

Table 4 shows the use of the “send type” parameter on MC_SEND_DATA to

perform the function of the MC_CONFIRM verb, and the “return status with data”

parameter on MC_RECEIVE_AND_WAIT to receive status information with data.

All primary_rc values can be assumed to be AP_OK unless shown otherwise.

 Table 4. Receiving Status Information with Data

Invoking TP Flow Invoked TP

TP_STARTED

MC_ALLOCATE

MC_SEND_DATA (type =

AP_SEND_DATA_CONFIRM)

—>

RECEIVE_ALLOCATE

MC_RECEIVE_AND_WAIT (rtn_status =

NO) (what_rcvd= AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT (rtn_status =

NO) (what_rcvd =

AP_CONFIRM_WHAT_RECEIVED)

MC_CONFIRMED

<—

MC_SEND_DATA (type = AP_NONE)

MC_CONFIRM

—>

MC_RECEIVE_AND_WAIT (rtn_status =

YES) (what_rcvd =

AP_DATA_COMPLETE_CONFIRM)

MC_CONFIRMED

<—

MC_DEALLOCATE

TP_ENDED

—>

MC_RECEIVE_AND_WAIT (primary_rc =

AP_DEALLOC_NORMAL)

TP_ENDED

Sending Status Information with Data

In Table 4, the first MC_SEND_DATA verb issued by the invoking TP has a send

type of AP_SEND_DATA_CONFIRM. This indicates that APPC should perform the

function of the MC_CONFIRM verb after sending the data. Instead of CONFIRM,

the [MC_]SEND_DATA verb can also perform the function of [MC_]FLUSH,

Sending and Receiving Status with Data (half-duplex)

Chapter 1. Concepts 9

[MC_]DEALLOCATE, or [MC_]PREPARE_TO_RECEIVE, or can specify (as for the

second MC_SEND_DATA verb in the example) that no additional function is to be

performed.

Receiving Status Information with Data

In Table 4 on page 9, the third MC_RECEIVE_AND_WAIT verb issued by the

invoked TP has a rtn_status parameter of AP_YES. This indicates that, if data

followed by status information is available, APPC can return the status information

about this verb in addition to the data. The verb returns with a what_rcvd

parameter of AP_DATA_COMPLETE_CONFIRM, which indicates that the invoking TP sent

data and then requested confirmation. The first two MC_RECEIVE_AND_WAIT

verbs have the rtn_status parameter set to AP_NO, so APPC does not return status

information with the data; the first verb receives the data, and the second receives

the status information.

Conversation States (half-duplex)

In a half-duplex conversation, APPC operates as a half-duplex process, which

means that only one of the two TPs is permitted to send data at any time. In

general, one TP will send a certain amount of data, and then do one of the

following:

v Ask the other TP to confirm receipt of the data

v Allow the other TP to send

At any one time, the TP regards the conversation as being in a particular

conversation state; the conversation state governs which APPC verbs can be issued

by a TP at a particular time. For example, a TP cannot issue the MC_SEND_DATA

verb if the conversation is not in Send or Send-Pending state. For more information

about the APPC verbs that can be issued in each state, see Appendix C, “APPC

State Changes,” on page 277.

Following is a list of possible conversation states:

Confirm

The TP has received a request for confirmation of receipt of data; it must

respond positively or send error information to the partner TP.

Confirm-Deallocate

The TP has received a request for confirmation and must respond

positively or send error information. If the TP responds positively, the

partner TP deallocates the conversation.

Confirm-Send

The TP has received a request for confirmation; it must respond positively

or send error information. After responding, the TP can begin to send data.

Pending-Post

The TP is receiving data asynchronously. The TP can perform other

processing not related to this conversation. When the TP finishes receiving

data, the state is usually Receive.

Receive

The TP can receive application data and status information from the

partner TP. When the conversation is in Receive state, the TP can also send

error information and request permission to send data.

Reset The conversation has not started or has been terminated.

Sending and Receiving Status with Data (half-duplex)

10 IBM Communications Server for AIX APPC Programmer’s Guide

Send The TP can send data to the partner TP and request confirmation. When

the conversation is in Send state, the TP can also begin to receive data,

which causes the state to change to Receive.

Send-Pending

The TP has received data together with a SEND indication from the

partner TP. This state is similar to Send state, except that the TP can use an

extra parameter on the [MC_]SEND_ERROR verb to indicate the source of

a detected error.

The TP’s View of the Conversation

It is the conversation rather than the TP that is in a particular state. A TP may be

conducting several conversations, each of which is in a different state. If a

conversation is said to be in Send state, this always means that from the viewpoint

of the local TP, the conversation is in Send state. To the partner TP, the

conversation is in another state (such as Receive).

State Changes

A change in the conversation state occurs on the completion of an APPC verb. The

state change can result from any of the following:

v A verb issued by the local TP (for example, issuing RECEIVE_AND_WAIT in

Send state changes the conversation state to Receive)

v A verb issued by the partner TP (for example, if the partner TP issues the

CONFIRM verb, the local TP receives indication of this on one of the RECEIVE

verbs; at this point the conversation changes from Receive to Confirm state)

v An error condition

The new state of the conversation generally depends on the primary return code of

the completed APPC verb. For more information, see the individual verb

descriptions in Chapter 3, “APPC Control Verbs,” on page 61 and Chapter 4,

“APPC Conversation Verbs,” on page 89, or see Appendix C, “APPC State

Changes,” on page 277.

State Checks

A state check (state error) occurs when a TP issues an APPC verb, and the

conversation is not in the appropriate state. For instance, a state check would occur

if a TP issued the MC_SEND_DATA verb while the conversation was in Receive

state. When a state check occurs, APPC does not execute the verb; it returns

state-check information through primary and secondary return codes. For more

information about the state check error codes that can be returned for each verb,

see the individual verb descriptions in Chapter 3, “APPC Control Verbs,” on page

61 and Chapter 4, “APPC Conversation Verbs,” on page 89.

Changing Conversation States (half-duplex)

In Table 5, the conversation states appear in the left and right margins. This table

shows how APPC verbs can change the state of the conversation from Send to

Receive and from Receive to Send.

 Table 5. Using APPC Verbs to Change Conversation States

State Invoking TP Flow Invoked TP State

TP_STARTED

Reset

Conversation States (half-duplex)

Chapter 1. Concepts 11

Table 5. Using APPC Verbs to Change Conversation States (continued)

State Invoking TP Flow Invoked TP State

MC_ALLOCATE(sync_level =

AP_CONFIRM_SYNC_LEVEL)

Send

MC_SEND_DATA

MC_PREPARE_TO_RECEIVE

(ptr_type = AP_SYNC_LEVEL)

—>

Reset

RECEIVE_ALLOCATE

Receive

MC_RECEIVE_AND_WAIT

(primary_rc = AP_OK)

(what_rcvd =

AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT

(primary_rc = AP_OK)

(what_rcvd= AP_CONFIRM_SEND)

Confirm-
Send

MC_CONFIRMED

Send

<—

(MC_PREPARE_TO_RECEIVE

returns, primary_rc = AP_OK)

Receive

MC_SEND_DATA

MC_CONFIRM

<—

MC_RECEIVE_AND_WAIT

(primary_rc = AP_OK)

(what_rcvd=

AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT

(primary_rc = AP_OK)

(what_rcvd= AP_CONFIRM)

Confirm

MC_REQUEST_TO_SEND

MC_CONFIRMED

Receive

—>

(MC_CONFIRM returns,

primary_rc = AP_OK, rts_rcvd =

AP_YES)

Send

MC_PREPARE_TO_RECEIVE

(ptr_type = AP_SYNC_LEVEL)

<—

MC_RECEIVE_AND_WAIT

(primary_rc= AP_OK) (what_rcvd

= AP_CONFIRM_SEND)

Confirm-
Send

MC_CONFIRMED

—>

(MC_PREPARE_TO_RECEIVE

returns, primary_rc = AP_OK)

Receive

Send

MC_SEND_DATA

Changing Conversation States (half-duplex)

12 IBM Communications Server for AIX APPC Programmer’s Guide

Table 5. Using APPC Verbs to Change Conversation States (continued)

State Invoking TP Flow Invoked TP State

MC_DEALLOCATE

(dealloc_type = AP_SYNC_LEVEL)

—>

MC_RECEIVE_AND_WAIT

(primary_rc = AP_OK)

(what_rcvd=

AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT

(primary_rc= AP_OK) (what_rcvd

=AP_CONFIRM_DEALLOCATE)

Confirm-
Deallocate

MC_CONFIRMED

<—

(MC_DEALLOCATE returns,

primary_rc= AP_OK)

Reset Reset

TP_ENDED TP_ENDED

Initial States

Before the conversation is allocated, the state is Reset for both TPs. After the

conversation is allocated, the initial state is Send for the invoking TP and Receive

for the invoked TP.

Changing to Receive State

The MC_PREPARE_TO_RECEIVE verb enables a TP to change the conversation

from Send to Receive state. This verb does the following:

v Flushes the local LU’s send buffer.

v Sends the AP_CONFIRM_SEND indicator to the partner TP through the what_rcvd

parameter of a receive verb. This indicator tells the partner TP that an

MC_CONFIRMED response is expected before the partner TP can begin to send

data.

v Performs confirmation processing because the following conditions are true:

– The synchronization level of the conversation is set to AP_CONFIRM_SYNC_LEVEL.

– The parameter ptr_type is set to AP_SYNC_LEVEL.

Issuing the MC_RECEIVE_AND_WAIT verb while the conversation is in Send state

also flushes the LU’s send buffer and changes the conversation state to Receive.

Changing the conversation state in this manner does not support confirmation

processing.

Changing to Send State

The MC_REQUEST_TO_SEND verb informs the partner TP (for which the

conversation is in Send state) that the local TP (for which the conversation is in

Receive state) wants to send data.

This request is communicated to the partner TP through the rts_rcvd parameter of

the MC_CONFIRM verb. (The rts_rcvd parameter is also returned to

MC_SEND_DATA and other verbs.)

Changing Conversation States (half-duplex)

Chapter 1. Concepts 13

When the partner TP issues the MC_PREPARE_TO_RECEIVE verb, the

conversation state changes to Receive for the partner TP, making it possible for the

local TP to send data.

Issuing the MC_REQUEST_TO_SEND verb does not change the state of the

conversation. Upon receiving a request to send, the partner TP is not required to

change the conversation state; it can ignore the request.

Full-Duplex Conversations

Table 6 shows an example of a full-duplex conversation, showing the APPC verbs

used to start a conversation, exchange data, and end the conversation. The arrow

indicates the flow of data. All primary_rc values are AP_OK unless shown otherwise.

 Table 6. A Full-Duplex Conversation

Invoking TP Flow Invoked TP

TP_STARTED

MC_ALLOCATE

MC_SEND_DATA

RECEIVE_ALLOCATE

MC_SEND_DATA —>

<— MC_SEND_DATA

MC_RECEIVE_AND_WAIT

(what_rcvd = AP_DATA_COMPLETE)

MC_DEALLOCATE

MC_RECEIVE_AND_WAIT (what_rcvd

= AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT (primary_rc

= AP_DEALLOC_NORMAL)

<— MC_SEND_DATA

MC_DEALLOCATE

TP_ENDED

MC_RECEIVE_AND_WAIT

(what_rcvd = AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT

(what_rcvd = AP_DEALLOC_NORMAL)

TP_ENDED

The characters MC_ at the beginning of many of the verbs stand for mapped

conversation. Parameters and results of APPC verbs are in parentheses.

Starting a Conversation

To start a conversation, the invoking TP issues the following verbs:

v TP_STARTED, which identifies the application to APPC as an invoking TP

v MC_ALLOCATE, which requests that APPC establish a conversation between

the invoking TP and the invoked TP. The parameters on the MC_ALLOCATE

verb specify that the conversation will be full-duplex.

The invoked TP issues the RECEIVE_ALLOCATE verb, which informs APPC that

the invoked TP is ready to begin a conversation. CS/AIX associates the

RECEIVE_ALLOCATE verb with the MC_ALLOCATE verb issued by the invoking

TP in order to establish the conversation between the two TPs. The returned

parameters on the RECEIVE_ALLOCATE verb specify that the conversation will be

full-duplex.

Changing Conversation States (half-duplex)

14 IBM Communications Server for AIX APPC Programmer’s Guide

Note: After a full-duplex conversation has been started, the TP must set an

additional option in the opext parameter of all verbs issued in this

conversation to operate in full-duplex mode. See the individual verb

descriptions in Chapter 4, “APPC Conversation Verbs,” on page 89 for

details.

Sending Data

The MC_SEND_DATA verb supplies application data to be transmitted to the

partner TP. This data is held in the local LU’s send buffer; it is not transmitted to

the partner TP until one of the following events occurs:

v The send buffer fills up.

v The TP issues a verb that forces APPC to flush the buffer (send data to the

partner TP).

In addition to the data, the send buffer also contains the MC_ALLOCATE request

(which precedes the data). In this example, the invoking TP’s second

MC_SEND_DATA verb fills the buffer, forcing the MC_ALLOCATE request and the

data to be transmitted to the partner TP. Other verbs that flush the buffer are

MC_DEALLOCATE and MC_FLUSH.

Because this is a full-duplex conversation, both TPs can send data at the same

time. In the example, the invoked TP sends data before it has received any data

sent by the invoking TP.

Receiving Data

The MC_RECEIVE_AND_WAIT verb receives data from the partner TP. If no data

is currently available, the local TP waits for it to arrive.

As well as receiving data, the verb may receive a status indicator from the partner

TP (such as an indication that the conversation is ending). For more information

about how the TP handles these indicators, see “Ending a Conversation.”

In the example, the invoked TP issues the first MC_RECEIVE_AND_WAIT verb to

receive data, and receives the complete data record (what_rcvd= AP_DATA_COMPLETE).

The MC_RECEIVE_IMMEDIATE verb performs the same function as the

MC_RECEIVE_AND_WAIT verb, except that it does not wait if data is not

currently available from the partner TP. Instead, it returns a no-data-available

response to the calling TP.

Ending a Conversation

To end a conversation, one of the TPs issues the MC_DEALLOCATE verb,

indicating that it has no more data to send. The other TP receives the return code

AP_DEALLOC_NORMAL on a subsequent receive verb, indicating that the conversation

was deallocated.

In a half-duplex conversation, the MC_DEALLOCATE verb causes APPC to

deallocate the conversation between the two TPs, so that the other TP cannot

continue the conversation after it has received the AP_DEALLOC_NORMAL return code.

However, in a full-duplex conversation, the other TP may still have data to send,

or may already have sent data that the first TP has not yet received. For this

reason, the conversation does not end at this point; instead, the first TP operates in

receive-only mode, so that it continues to issue receive verbs (but cannot send any

further data).

Full-Duplex Conversations

Chapter 1. Concepts 15

When the second TP receives the AP_DEALLOC_NORMAL return code, it now operates

in send-only mode. It cannot issue any more receive verbs (because there will be

no more data to receive), but it can continue to send data. In the example, the

invoked TP issues another MC_SEND_DATA verb before deallocating the

conversation.

After both TPs have deallocated this conversation, each TP either issues another

[MC_]ALLOCATE or RECEIVE_ALLOCATE verb to start another conversation

(with this or another partner TP), or issues the TP_ENDED verb.

A TP can participate in multiple conversations simultaneously. In this case, the TP

issues the TP_ENDED verb when all conversations have been deallocated.

Conversation States

A TP regards a full-duplex conversation as being in a particular conversation state,

in the same way as for a half-duplex conversation. However, the possible

conversation states in a full-duplex conversation are different from those in a

half-duplex conversation, as follows. For more information about the APPC verbs

that can be issued in each state, see Appendix C, “APPC State Changes,” on page

277.

Following is a list of possible conversation states:

Send-Receive

The TP can send data or error information, and can receive application

data and status information from the partner TP.

Receive-Only

The local TP has deallocated the conversation. It can continue to receive

data and status information from the partner TP, but cannot send any

further data.

Send-Only

The remote TP has deallocated the conversation. The local TP can continue

to send data to the partner TP, but will not receive any further data and so

is not permitted to issue any further receive verbs.

Reset The conversation has not started or has been terminated.

Half-Duplex Verbs Not Permitted in Full-Duplex Conversations

The following verbs apply only in half-duplex conversations, and are not required

in full-duplex conversations. Any of these verbs issued in a full-duplex

conversation will receive an error return code.

v [MC_]CONFIRM

v [MC_]CONFIRMED

v [MC_]PREPARE_TO_RECEIVE

v [MC_]RECEIVE_AND_POST

v [MC_]REQUEST_TO_SEND

v [MC_]TEST_RTS

v [MC_]TEST_RTS_AND_POST

Full-Duplex Conversations

16 IBM Communications Server for AIX APPC Programmer’s Guide

Sending and Receiving Expedited Data

In addition to the normal data sent using [MC_]SEND_DATA and received using

receive verbs, APPC TPs may also send and receive SNA expedited data. This data

is handled separately by the SNA network, and may arrive at the destination

before normal data. A TP sends expedited data using the

[MC_]SEND_EXPEDITED_DATA verb, and receives it using the

[MC_]RECEIVE_EXPEDITED_DATA verb; expedited data will never be returned

on the standard receive verbs.

Not all APPC implementations support expedited data. If the remote TP is using

an APPC implementation that does not support expedited data, the local TP cannot

send or receive it.

Because expedited data flows separately from normal data, a TP can issue

[MC_]SEND_EXPEDITED_DATA or [MC_]RECEIVE_EXPEDITED_DATA in any

conversation state except Reset state. These verbs do not cause any state change.

Synchronous and Asynchronous APPC Calls

AIX, LINUX

On AIX or Linux systems, CS/AIX provides two alternative entry points to the

APPC library:

v Synchronous entry point, APPC. If the application uses this entry point, CS/AIX

does not return control to the application until verb processing has finished.

v Asynchronous entry point, APPC_Async. If the application uses this entry point,

CS/AIX returns control to the application immediately. When verb processing

has finished, CS/AIX uses an application-supplied callback routine to return the

results of the verb processing to the application.

WINDOWS

On Windows systems, the Remote API provides three alternative entry points to

the APPC library:

v Synchronous entry point, APPC. If the application uses this entry point, the

Remote API does not return control to the application until verb processing has

finished.

v Asynchronous entry point, WinAsyncAPPC. If the application uses this entry point,

the Remote API returns control to the application immediately. When verb

processing has finished, the Remote API indicates this by posting a message to

the application’s window procedure.

v Asynchronous entry point, WinAsyncAPPCEx. When verb processing has finished,

the Remote API indicates this by signaling an event handle provided by the

application.

For more information about these entry points, see Chapter 2, “Writing Transaction

Programs,” on page 25.

Sending and Receiving Expedited Data

Chapter 1. Concepts 17

Using the asynchronous entry point enables an application to continue with other

processing while waiting for a verb to complete. The application may issue verbs

on other APPC conversations, or issue verbs to start new conversations, or it may

perform other processing not related to APPC. However, other verbs issued on the

same conversation may be queued and not processed until the outstanding verb

has completed; for more information, see “Non-Blocking Operation” on page 20

below.

The only exception to this is when the [MC_]RECEIVE_AND_POST verb is

outstanding. In these cases, the application can issue a limited range of verbs on

the same conversation. For more information, see the following section.

Receiving Data Asynchronously

The APPC verbs MC_RECEIVE_AND_POST and RECEIVE_AND_POST enable a

TP to receive data asynchronously, without regard for other events occurring

within the program. Therefore, the program can perform other tasks while

receiving data.

AIX, LINUX

For AIX or Linux systems, the parameters for [MC_]RECEIVE_AND_POST include

the address of a callback routine, which APPC uses to inform the TP when data

has been received. This callback routine is independent of the callback routine

supplied on the asynchronous APPC entry point. [MC_]RECEIVE_AND_POST may

be issued using either the synchronous or the asynchronous entry point; APPC

uses the callback routine supplied in the verb parameters to return received data to

the TP and uses the callback routine supplied to the asynchronous entry point only

if a null address is supplied in the VCB.

WINDOWS

On Win32 systems, verb completion is by signaling an event handle provided by

the application. The sema parameter contains the event handle (obtained by calling

either the Windows CreateEvent or OpenEvent functions), which APPC uses to

inform the TP when data has been received.

The operation of [MC_]RECEIVE_AND_POST is similar to the operation of

[MC_]RECEIVE_AND_WAIT issued using the asynchronous entry point; control

returns to the application immediately, and the requested data is subsequently

returned on the callback routine. The main difference is that issuing

[MC_]RECEIVE_AND_POST puts the conversation into a defined state,

Pending-Post state, in which the TP can issue a limited range of APPC verbs on

this conversation while waiting for the callback routine to be called. The verbs that

can be issued in Pending-Post state are:

v GET_TYPE

v [MC_]DEALLOCATE with a deallocate type of AP_ABEND, AP_ABEND_PROG,

AP_ABEND_SVC, or AP_ABEND_TIMER

v [MC_]GET_ATTRIBUTES

Synchronous and Asynchronous APPC Calls

18 IBM Communications Server for AIX APPC Programmer’s Guide

v [MC_]RECEIVE_EXPEDITED_DATA

v [MC_]REQUEST_TO_SEND

v [MC_]SEND_ERROR

v [MC_]SEND_EXPEDITED_DATA

v [MC_]TEST_RTS

v TP_ENDED

If the application issues [MC_]RECEIVE_AND_WAIT (or any other APPC verb)

using the asynchronous entry point, it must not issue any other APPC verbs on

this conversation until the callback routine has been called.

In Table 7, the invoked TP receives data asynchronously.

 Table 7. Receiving Data Asynchronously

State Invoking TP Flow Invoked TP State

TP_STARTED

Reset

MC_ALLOCATE

Send

MC_FLUSH

—>

Reset

RECEIVE_ALLOCATE

Receive

MC_RECEIVE_AND_POST

(primary_rc=AP_OK)

Pending-
Post

(TP performs other tasks or issues

verbs such as Request to Send or Get

Attributes. Most other APPC verbs

cannot be used in this conversation

state (see Appendix C, “APPC State

Changes,” on page 277 for information

about permitted verbs).

MC_SEND_DATA

MC_DEALLOCATE

Reset

TP_ENDED

—>

Data is received. APPC calls the

supplied callback routine.

MC_RECEIVE_AND_POST returns

primary_rc=AP_OK,

what_rcvd=AP_DATA_COMPLETE

Receive

(TP checks that the callback routine

has been called.)

MC_RECEIVE_AND_WAIT

(primary_rc=AP_DEALLOC_NORMAL)

Reset

TP_ENDED

In Table 7, the invoked TP follows these steps to receive data asynchronously:

1. Issues the MC_RECEIVE_AND_POST verb. One of the parameters is the

address of the callback routine which APPC calls (on AIX or Linux)or event

handle which APPC signals (on Windows) when the data is received.

Receiving Data Asynchronously

Chapter 1. Concepts 19

2. Verifies that the primary_rc (primary return code) is AP_OK, which indicates that

the TP has begun to receive data asynchronously.

3. Performs tasks not related to this conversation while receiving data

asynchronously. Most APPC verbs are not valid in this conversation state.

4. Waits for the callback routine to be called (on AIX or Linux), or event handle to

be signaled (on Windows), which indicates that the TP has finished receiving

data asynchronously.

5. Verifies the primary_rc of the MC_RECEIVE_AND_POST verb again. The

second primary_rc indicates whether the data was received without error.

6. Verifies that the what_rcvd parameter of the MC_RECEIVE_AND_POST verb is

AP_DATA_COMPLETE.

7. Issues the MC_RECEIVE_AND_WAIT verb to receive the deallocation indicator.

Note: The [MC_]RECEIVE_AND_POST verb returns the primary_rc and

secondary_rc parameters twice; first after issuing the verb, to indicate

whether or not the verb has successfully begun to wait for data, and second

after the data has been received.

After the invoked TP issues the MC_RECEIVE_AND_POST verb and gets a

primary_rc of AP_OK, the conversation changes to Pending-Post state.

When the TP has finished receiving data asynchronously and APPC calls the

supplied callback routine (on AIX or Linux) or signals the supplied event handle

(on Windows), the conversation changes to Receive state because the what_rcvd

parameter contains AP_DATA_COMPLETE.

Non-Blocking Operation

CS/AIX supports queue-level non-blocking operation for APPC conversation verbs,

so that a TP can issue multiple verbs on the same conversation without having to

wait for each verb to complete. This is normally used in conjunction with the

asynchronous APPC entry point, which allows the TP to continue operation even

though processing for a previous verb has not yet completed, but it may also be

used with the synchronous entry point in a multi-threaded TP that issues APPC

verbs from more than one thread. To issue a verb in non-blocking mode, the TP

sets an option in the opext parameter of the verb, as described in Chapter 4, “APPC

Conversation Verbs,” on page 89.

For each TP and conversation, APPC provides a number of queues on which verbs

can be held while waiting to be processed. Each queue handles a different subset

of the valid APPC verbs, so that each verb is associated with a different queue.

v If the TP issues a verb and there are no verbs already being processed for the

appropriate queue, the verb is processed immediately.

v If the TP issues a non-blocking verb and another verb is already being processed

for the appropriate queue, the verb is added to the queue (behind any other

verbs already waiting on the appropriate queue). It will be processed after the

verbs already queued have completed (except for the Allocate queue, as

described below).

v If the TP issues a blocking verb and another verb is already being processed for

the appropriate queue, the verb is rejected with an error return code.

The queues available to the TP, and the verbs that each queue handles, are as

follows.

Receiving Data Asynchronously

20 IBM Communications Server for AIX APPC Programmer’s Guide

Allocate queue

For each active TP, there is a single queue that handles the following verbs:

v [MC_]ALLOCATE

v [MC_]SEND_CONVERSATION

Two or more verbs on this queue can be processed at the same time, so

they are not guaranteed to complete in the same order in which they were

issued.

Send-Receive queue (half-duplex conversations only)

For each active half-duplex conversation, there is a single queue that

handles the following verbs:

v [MC_]CONFIRM

v [MC_]CONFIRMED

v [MC_]DEALLOCATE

v [MC_]FLUSH

v [MC_]PREPARE_TO_RECEIVE

v [MC_]RECEIVE_AND_WAIT

v [MC_]RECEIVE_IMMEDIATE

v [MC_]SEND_DATA

v [MC_]SEND_ERROR

The [MC_]RECEIVE_AND_POST verb is not held on this queue. This verb

cannot be issued, in either blocking or non-blocking mode, if any of the

Receive verbs is already being processed for the conversation.

Send queue (full-duplex conversations only)

For each active full-duplex conversation, there is a single queue that

handles the following verbs:

v [MC_]DEALLOCATE

v [MC_]FLUSH

v [MC_]SEND_DATA

v [MC_]SEND_ERROR

Receive queue (full-duplex conversations only)

For each active full-duplex conversation, there is a single queue that

handles the following verbs:

v [MC_]RECEIVE_AND_WAIT

v [MC_]RECEIVE_IMMEDIATE

Send-Expedited queue

For each active conversation (either full-duplex or half-duplex), there is a

single queue that handles the following verbs:

v [MC_]REQUEST_TO_SEND (half-duplex conversations only)

v [MC_]SEND_EXPEDITED_DATA

Receive-Expedited queue

For each active conversation (either full-duplex or half-duplex), there is a

single queue that handles the following verbs:

v [MC_]RECEIVE_EXPEDITED_DATA

 The following conversation verbs are not associated with any queue and so can be

issued at any time regardless of the verbs already queued. The non-blocking mode

option in the opext parameter of the verb is ignored.

Non-Blocking Operation

Chapter 1. Concepts 21

v GET_TYPE

v [MC_]GET_ATTRIBUTES

v [MC_]TEST_RTS

v [MC_]TEST_RTS_AND_POST

APPC control verbs are always issued in blocking mode.

Syncpoint Support

AIX, LINUX

The CS/AIX APPC API provides support for sessions and conversations that use

LU 6.2 Syncpoint protocols. This means that it can be used in conjunction with

transaction monitors that require Syncpoint Level 2 support. It does not itself

provide the components necessary for a full Syncpoint implementation, but

provides the underlying support for a vendor-supplied implementation. The

vendor must provide the following components:

v Syncpoint Manager (SPM)

v Conversation-Protected Resource Manager (C-PRM)

v Resynchronization TP

This manual does not attempt to explain Syncpoint functions; it describes only the

support that CS/AIX provides to enable them to be implemented. If you are

developing a Syncpoint Manager for use with CS/AIX APPC, you should already

be familiar with Syncpoint concepts; refer to the IBM LU 6.2 manuals for more

information if necessary.

Some parameter and return code values in this manual are marked “only used by

TPs that support Syncpoint processing” or “only used if the conversation’s

sync_level is AP_SYNCPT”. If you are writing APPC applications that do not use

Syncpoint functions, do not attempt to use these parameters. In most cases, the

Syncpoint Manager is responsible for converting between these values and the

appropriate Syncpoint functions, as noted in the parameter descriptions.

If you are writing applications to work with a Syncpoint implementation provided

by your CS/AIX supplier or by another vendor, the vendor should provide you

with the additional information necessary to use this implementation.

APPC and CPI-C

The Common Programming Interface for Communications (CPI-C) application

programming interface, another CS/AIX API, provides many of the functions of

APPC but with a different style of interface.

Where an APPC application sets parameters in a verb control block and then calls

a single entry point to APPC with the address of the block, a CPI-C program calls

a different entry point for each verb and passes the required information as

parameters on the call.

Non-Blocking Operation

22 IBM Communications Server for AIX APPC Programmer’s Guide

Although the programming interfaces for APPC and CPI-C are different, the actual

data transmitted between programs is the same. This means that a CPI-C

application can communicate with an APPC TP, just as two APPC TPs or two

CPI-C applications can communicate with each other. The APPC TP does not need

to know whether its partner is an APPC TP or a CPI-C application.

The only restriction on an APPC TP for communications with a CPI-C application

is that it must not send Program Initialization Parameters (PIP data) when

allocating the conversation, because CPI-C does not support receiving PIP data. For

more information about PIP data, see the description of the [MC]ALLOCATE verb

in Chapter 4, “APPC Conversation Verbs,” on page 89.

TP Server API

AIX, LINUX

The TP server verbs are an extension to the APPC API to allow applications to

participate in starting TPs in response to allocation requests (Attaches).

CS/AIX provides a default mechanism to start TPs automatically. TPs that can be

automatically started are configured in the sna_tps file, as described in the

Communications Server for AIX Administration Guide.

Some applications, such as transaction monitors, need more control over starting

TPs than this default mechanism supplies (such as access to the allocation request).

The TP server extensions provide the level of support needed by such applications.

For more information about TP servers, see “Writing TP Servers” on page 59.

APPC and CPI-C

Chapter 1. Concepts 23

TP Server API

24 IBM Communications Server for AIX APPC Programmer’s Guide

Chapter 2. Writing Transaction Programs

This chapter contains information about the following topics and will help you

write transaction programs (TPs):

v Categories of APPC verbs

v APPC verb summary

v APPC entry points

AIX, LINUX

v AIX or Linux considerations

WINDOWS

v Windows considerations

v Configuration information

v Conversation security

v Starting TPs

v LU-to-LU sessions

v Basic conversations

AIX, LINUX

v Writing TP servers

v Writing portable TPs

Categories of APPC Verbs

APPC verbs fall into the following categories:

v Control verbs, described in Chapter 3, “APPC Control Verbs,” on page 61

v Conversation verbs, described in Chapter 4, “APPC Conversation Verbs,” on

page 89

Control Verbs

Control verbs start and end TPs and obtain information about the properties of

TPs:

v TP_STARTED

v TP_ENDED

v RECEIVE_ALLOCATE

v GET_TP_PROPERTIES

AIX, LINUX

v SET_TP_PROPERTIES

© Copyright IBM Corp. 2000, 2005 25

v GET_LU_STATUS

Conversation Verbs

Conversation verbs enable TPs to allocate a conversation, send and receive data,

change conversation states, and deallocate a conversation.

The following verb can be issued in either a basic or mapped conversation:

v GET_TYPE

Most conversation verbs fall into two groups:

v Mapped-conversation verbs, which a TP can issue only in a mapped

conversation

v Basic-conversation verbs, which a TP can issue only in a basic conversation

Conversation verbs are grouped by type, mapped or basic, as shown in Table 8:

 Table 8. Mapped and Basic Conversation Verbs

Mapped-Conversation Verbs Basic-Conversation Verbs

MC_ALLOCATE ALLOCATE

MC_CONFIRM CONFIRM

MC_CONFIRMED CONFIRMED

MC_DEALLOCATE DEALLOCATE

MC_FLUSH FLUSH

MC_GET_ATTRIBUTES GET_ATTRIBUTES

MC_PREPARE_TO_RECEIVE PREPARE_TO_RECEIVE

MC_RECEIVE_AND_POST RECEIVE_AND_POST

MC_RECEIVE_AND_WAIT RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE RECEIVE_IMMEDIATE

MC_RECEIVE_EXPEDITED_DATA RECEIVE_EXPEDITED_DATA

MC_REQUEST_TO_SEND REQUEST_TO_SEND

MC_SEND_CONVERSATION SEND_CONVERSATION

MC_SEND_DATA SEND_DATA

MC_SEND_ERROR SEND_ERROR

MC_SEND_EXPEDITED_DATA SEND_EXPEDITED_DATA

MC_TEST_RTS TEST_RTS

MC_TEST_RTS_AND_POST TEST_RTS_AND_POST

Mapped and basic verbs have the same functions in their respective types of

conversation, but may have slightly different parameters and return codes.

TP Server Verbs

AIX, LINUX

TP server verbs allow applications to start TPs in response to requests from

CS/AIX:

 REGISTER_TP_SERVER

 UNREGISTER_TP_SERVER

 REGISTER_TP

 UNREGISTER_TP

Categories of APPC Verbs

26 IBM Communications Server for AIX APPC Programmer’s Guide

QUERY_ATTACH

 ACCEPT_ATTACH

 REJECT_ATTACH

 ABORT_ATTACH

Note: TP server verbs, as described in Chapter 5, “TP Server Verbs,” on page 239,

must be issued using the asynchronous entry point APPC_Async, and not the

synchronous entry point APPC.

APPC Verb Summary

This section briefly describes each APPC verb. The APPC verbs are grouped by

function. (The total functionality of a verb may be broader than this summary

indicates. For a detailed explanation of a particular verb, see Chapter 3, “APPC

Control Verbs,” on page 61, or Chapter 4, “APPC Conversation Verbs,” on page

89.)

Starting a Conversation

The following verbs are used to start a conversation between two TPs. For more

information, see “Starting TPs” on page 54.

TP_STARTED

This verb is issued by the invoking TP. It notifies APPC that the invoking

TP is starting. Upon successful execution, this verb returns a TP identifier

(tp_id) for the invoking TP.

AIX, LINUX

SET_TP_PROPERTIES

This verb is used by a TP to set properties relating to the local TP, which

are then used when allocating new conversations. This enables the TP to

specify the following:

v Logical Unit of Work (a transaction between APPC TPs to accomplish a

particular task) with which a conversation is associated

v User ID for use when allocating a new conversation and indicating that

the conversation security has already been verified

MC_ALLOCATE or ALLOCATE

This verb is issued by the invoking TP. It allocates a session between the

local LU and a remote LU and establishes a conversation between the

invoking TP and the invoked TP.

 The ALLOCATE verb can establish either a basic or mapped conversation.

The MC_ALLOCATE verb can start only a mapped conversation. Either

verb can start either a full-duplex or a half-duplex conversation.

 Once the conversation is allocated, APPC returns a conversation identifier

(conv_id) through this verb.

Categories of APPC Verbs

Chapter 2. Writing Transaction Programs 27

MC_SEND_CONVERSATION or SEND_CONVERSATION

This verb is issued by the invoking TP. It allocates a session between the

local LU and a remote LU, establishes a conversation between the invoking

TP and the invoked TP, sends a single data record on this conversation,

and deallocates the conversation.

RECEIVE_ALLOCATE

This verb is issued by the invoked TP. It confirms that the invoked TP is

ready to begin a conversation with the invoking TP, which issued the

[MC_]ALLOCATE verb. Upon successful execution, RECEIVE_ALLOCATE

returns a TP identifier (tp_id) for the invoked TP and the conversation

identifier (conv_id).

Sending Data

The following verbs send data to the partner TP:

MC_SEND_DATA or SEND_DATA

This verb puts data in the local LU’s send buffer for transmission to the

partner TP.

 The data collected in the local LU’s send buffer is transmitted to the

partner LU (and partner TP) when one of the following occurs:

v The send buffer fills up.

v The local TP issues a verb that flushes the local LU’s send buffer, such as

[MC_]FLUSH or [MC_]CONFIRM. ([MC_]CONFIRM applies to

half-duplex conversations only.)

The [MC_]SEND_DATA verb can also perform the function of the

[MC_]CONFIRM, [MC_]DEALLOCATE, [MC_]FLUSH, or

[MC_]PREPARE_TO_RECEIVE verbs. ([MC_]CONFIRM and

[MC_]PREPARE_TO_RECEIVE apply to half-duplex conversations only.)

MC_SEND_EXPEDITED_DATA or SEND_EXPEDITED_DATA

This verb puts data in the local LU’s expedited send buffer for

transmission to the partner TP.

 The data collected in the local LU’s send buffer is transmitted to the

partner LU (and partner TP) in the same way as for the

[MC_]SEND_DATA verb. However, because the data is sent over the

network as expedited data, it may arrive before data that was sent earlier

using [MC_]SEND_DATA.

MC_FLUSH or FLUSH

This verb flushes the local LU’s send buffer, sending the contents of the

buffer to the partner LU (and TP). If the send buffer is empty, no action

occurs.

MC_CONFIRM or CONFIRM (half-duplex conversation only)

This verb sends both the contents of the local LU’s send buffer and a

confirmation request to the partner TP.

MC_PREPARE_TO_RECEIVE or PREPARE_TO_RECEIVE (half-duplex

conversation only)

This verb changes the state of the conversation from Send to Receive.

Before changing the conversation state, this verb performs the equivalent

of the [MC_]FLUSH or [MC_]CONFIRM verb. After this verb has

successfully executed, the TP can receive data.

MC_REQUEST_TO_SEND or REQUEST_TO_SEND (half-duplex conversation

only) This verb informs the partner TP that the local TP wants to send data. If

APPC Verb Summary

28 IBM Communications Server for AIX APPC Programmer’s Guide

the partner TP issues the [MC_]PREPARE_TO_RECEIVE or

[MC_]RECEIVE_AND_WAIT verb, the conversation state changes to

Receive for the partner TP, which makes it possible for the local TP to

begin to send data.

Receiving Data

The following verbs enable a TP to receive data from its partner TP:

MC_RECEIVE_AND_WAIT or RECEIVE_AND_WAIT

Issuing this verb while the conversation is in Receive state causes the local

TP to receive any data that is currently available from the partner TP. If no

data is available, the local TP waits for data to arrive.

 Issuing this verb while the conversation is in Send state flushes the LU’s

send buffer and changes the conversation state to Receive. The local TP

then begins to receive data.

MC_RECEIVE_AND_POST or RECEIVE_AND_POST

Issuing this verb while the conversation is in Receive state changes the

conversation state to Pending_Post and causes the local TP to receive data

asynchronously. This enables the local TP to proceed with processing while

data is still arriving at the local LU.

 Issuing this verb while the conversation is in Send state flushes the LU’s

send buffer and changes the conversation state to Pending_Post. The local

TP then begins to receive data asynchronously.

MC_RECEIVE_IMMEDIATE or RECEIVE_IMMEDIATE

This verb receives any data that is currently available from the partner TP.

If no data is available, the local TP does not wait. Unlike the other

RECEIVE verbs, this verb can be issued only in Receive state and not in

Send state.

MC_RECEIVE_EXPEDITED_DATA or RECEIVE_EXPEDITED_DATA

This verb receives any expedited data that is currently available from the

partner TP. If no data is available, the verb can either return immediately

or wait until data arrives.

Confirming Receipt of Data or Reporting Errors

The following verbs confirm receipt of data or report an error:

MC_CONFIRMED or CONFIRMED

This verb replies to a confirmation request from the partner TP. It informs

the partner TP that the local TP has received and processed the data

without error.

MC_SEND_ERROR or SEND_ERROR

This verb notifies the partner TP that the local TP has encountered an

application-level error.

Getting Information

The following verbs provide information to TPs:

MC_GET_ATTRIBUTES or GET_ATTRIBUTES

This verb is used by a TP to obtain the attributes of the conversation.

GET_TYPE

This verb is used by a TP to determine the conversation type (basic or

mapped) of a particular conversation, and whether the conversation

APPC Verb Summary

Chapter 2. Writing Transaction Programs 29

operates in full-duplex or half-duplex mode. With this information, the TP

can determine the correct verbs to issue on this conversation.

AIX, LINUX

GET_LU_STATUS

This verb is used by a TP to obtain information about the number of

sessions between its local LU and a specified partner LU, and whether the

number of sessions has dropped to 0 (zero) at any time since the verb was

last issued. This enables the TP to check whether it has lost connectivity to

its partner TP (in which case it may need to resynchronize).

GET_TP_PROPERTIES

This verb is used by a TP to obtain information about the attributes of the

local TP and of the Logical Unit of Work (a transaction between APPC TPs

to accomplish a particular task) in which the TP is participating.

MC_TEST_RTS or TEST_RTS

This verb determines whether a REQUEST_TO_SEND notification has been

received from the partner TP.

MC_TEST_RTS_AND_POST or TEST_RTS_AND_POST

This verb notifies the application asynchronously when a

REQUEST_TO_SEND notification is received from the partner TP.

Ending a Conversation

Either the invoked or invoking TP can end the conversation. The following verbs

end a conversation:

MC_DEALLOCATE or DEALLOCATE

This verb deallocates a conversation between two TPs. Before deallocating

the conversation, this verb performs the equivalent of the [MC_]FLUSH or

[MC_]CONFIRM verb.

TP_ENDED

This verb is issued by both the invoking and invoked TPs. It notifies APPC

that the TP is ending. Issuing this verb also terminates any other

conversations that may be active.

Starting a Transaction Program (TP)

AIX, LINUX

The following verbs are used to enable an application to participate in the CS/AIX

TP loading process.

REGISTER_TP_SERVER

This verb is used by a TP to notify CS/AIX that the application is capable

of automatically starting transaction programs (TPs).

REGISTER_TP

This verb is used to register with CS/AIX the name of a TP, whose TP start

requests (Attaches) are to be handled by the application.

APPC Verb Summary

30 IBM Communications Server for AIX APPC Programmer’s Guide

QUERY_ATTACH

This verb is used by the application to determine the parameters on the

request to start a TP, so the application can determine whether to start the

TP.

ACCEPT_ATTACH

This verb is used to notify CS/AIX that the application intends to start the

TP that corresponds to this Attach.

REJECT_ATTACH

This verb is used to notify CS/AIX that the application does not intend to

start the TP that corresponds to this Attach.

ABORT_ATTACH

This verb is used to end the processing of the Attach by this TP server

after the Attach has been accepted using an ACCEPT_ATTACH verb

because the TP server or TP has encountered an error during further

processing.

UNREGISTER_TP

This verb is used to notify CS/AIX that the application no longer wishes to

process Attaches for this previously registered TP.

UNREGISTER_TP_SERVER

This verb is used to notify CS/AIX that the application does not want to

receive Attach notifications for the specified TP.

APPC Entry Points: AIX or Linux Systems

AIX, LINUX

An application accesses APPC using the following entry points:

APPC Issues an APPC verb synchronously. CS/AIX does not return control to the

application until verb processing has finished.

APPC_Async

Issues an APPC verb asynchronously. CS/AIX returns control to the

application immediately, with a returned value indicating whether verb

processing is still in progress or has completed. In most cases, verb

processing is still in progress when control returns to the application;

CS/AIX then uses an application-supplied callback routine to return the

results of the verb processing. In some cases, verb processing is complete

when CS/AIX returns control to the application; CS/AIX does not use the

application’s callback routine.

Note: TP server verbs, as described in Chapter 5, “TP Server Verbs,” on page 239,

must be issued using the asynchronous entry point APPC_Async, and not the

synchronous entry point APPC.

The entry points APPC and APPC_Async are defined in the APPC header file

/usr/include/sna/appc_c.h (for AIX) or /opt/ibm/sna/include/appc_c.h (for Linux).

APPC Verb Summary

Chapter 2. Writing Transaction Programs 31

An application that performs a single task, and can suspend while waiting for

information either from CS/AIX or from the remote system, need only use the

APPC (synchronous) entry point.

If the application performs multiple tasks (such as communicating with more than

one remote program at a time, or performing other processing in addition to APPC

verbs), you may need to ensure that it does not suspend while waiting for

information. In this case, the application should use the APPC_Async (asynchronous)

entry point, supplying a callback routine that CS/AIX can use to return

information when it is available.

The following sections describe these entry points, and also describe some

additional application-defined functions which the application must supply to

them.

APPC Entry Point

An application uses APPC to issue an APPC verb synchronously. CS/AIX does not

return control to the application until verb processing has finished.

Function Call

 void APPC (

 void * vcb

);

For compatibility with earlier APPC implementations, CS/AIX also provides the

entry points APPC_C and APPC_P, which can be used in the same way as APPC.

Supplied Parameters

When the application uses the APPC entry point to issue a verb, it supplies the

following parameter:

vcb Pointer to a Verb Control Block (VCB) that contains the parameters for the

verb being issued. The VCB structure for each verb is described in

Chapter 3, “APPC Control Verbs,” on page 61 and Chapter 4, “APPC

Conversation Verbs,” on page 89. These structures are defined in the APPC

header file /usr/include/sna/appc_c.h (for AIX) or

/opt/ibm/sna/include/appc_c.h (for Linux).

Note: The APPC VCBs contain many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

APPC Entry Points: AIX or Linux Systems

32 IBM Communications Server for AIX APPC Programmer’s Guide

Returned Values

The function does not return a value. When the call returns, the application can

examine the parameters in the VCB to determine whether the verb completed

successfully.

APPC_Async Entry Point

An application uses APPC_Async to issue an APPC verb asynchronously. CS/AIX

returns control to the application immediately, with a returned value indicating

whether verb processing is still in progress or has completed. In most cases, verb

processing is still in progress when control returns to the application. Later,

CS/AIX uses an application-supplied callback routine to return the results of the

verb processing. In some cases, verb processing is complete when CS/AIX returns

control to the application, so CS/AIX does not use the application’s callback

routine.

Function Call

 unsigned short APPC_Async (

 void * vcb,

 AP_CALLBACK (*comp_proc),

 AP_CORR corr

);

 typedef void (*AP_CALLBACK) (

 void * vcb,

 unsigned char tp_id[8],

 AP_UINT32 conv_id,

 AP_CORR corr

);

 typedef union ap_corr {

 void * corr_p;

 AP_UINT32 corr_l;

 AP_INT32 corr_i;

 } AP_CORR;

Parameter types such as AP_UINT32, used in these entry points and in the APPC

VCBs, are defined in the common header file /usr/include/sna/values_c.h (for AIX)

or /opt/ibm/sna/include/values_c.h (for Linux), which is included by the APPC

header file /usr/include/sna/appc_c.h (for AIX) or /opt/ibm/sna/include/appc_c.h

(for Linux).

Supplied Parameters

When the application uses the APPC_Async entry point to issue a verb, it supplies

the following parameters:

vcb Pointer to a Verb Control Block (VCB) that contains the parameters for the

verb being issued. The VCB structure for each verb is described in

Chapter 3, “APPC Control Verbs,” on page 61 and Chapter 4, “APPC

Conversation Verbs,” on page 89. These structures are defined in the APPC

header file appc_c.h.

Note: The APPC VCBs contain many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

APPC Entry Points: AIX or Linux Systems

Chapter 2. Writing Transaction Programs 33

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

comp_proc

The callback routine that CS/AIX will call when the verb completes. For

more information about the requirements for a callback routine, see

“Callback Routine for Asynchronous Verb Completion” on page 35.

corr An optional correlator for use by the application. This parameter is defined

as a C union so that the application can specify any of three different

parameter types (pointer, unsigned long, or integer).

 CS/AIX does not use this value, but passes it as a parameter to the

callback routine when the verb completes. This value enables the

application to correlate the returned information with its other processing.

Returned Values

The asynchronous entry point returns one of the following values:

AP_COMPLETED

The verb has already completed. The application can examine the

parameters in the VCB to determine whether the verb completed

successfully. CS/AIX does not call the supplied callback routine for this

verb.

AP_IN_PROGRESS

The verb has not yet completed. The application can continue with other

processing, including issuing other APPC verbs, provided that they do not

depend on the completion of the current verb. However, the application

should not attempt to examine or modify the parameters in the VCB

supplied to this verb.

 CS/AIX calls the supplied callback routine to indicate when the verb

processing completes. The application can then examine the VCB

parameters.

Using the Asynchronous Entry Point

When using the asynchronous entry point, note the following:

v If an application specifies a null pointer in the comp_proc parameter, the verb

will complete synchronously (as though the application issued the verb using

the synchronous entry point).

v If the call to APPC_Async is made from within an application callback, specifying

a null pointer in the comp_proc parameter is not permitted. In such cases,

CS/AIX rejects the verb with primary return code value AP_PARAMETER_CHECK and

secondary return code value AP_SYNC_NOT_ALLOWED.

v The application must not attempt to use or modify any parameters in the VCB

until the callback routine has been called.

v Multiple verbs do not necessarily complete in the order in which they were

issued. In particular, if an application issues an asynchronous verb followed by a

synchronous verb, the completion of the synchronous verb does not guarantee

that the asynchronous verb has already completed.
v The [MC_]RECEIVE_AND_POST verb includes a pointer to a callback routine as

one of the VCB parameters. This verb can be issued using either the

APPC Entry Points: AIX or Linux Systems

34 IBM Communications Server for AIX APPC Programmer’s Guide

synchronous or the asynchronous entry point. CS/AIX uses the callback routine

specified in the VCB to return the results of this verb. The callback routine

specified on the asynchronous entry point is used only if the application

supplies a null pointer for the callback routine in the VCB.

Callback Routine for Asynchronous Verb Completion

When using the asynchronous entry point, the application must supply a pointer

to a callback routine. This section describes how CS/AIX uses this routine, and the

functions that it must perform.

Function Call

 AP_CALLBACK (*comp_proc);

 typedef void (*AP_CALLBACK) (

 void * vcb,

 unsigned char tp_id[8],

 AP_UINT32 conv_id,

 AP_CORR corr

);

typedef union ap_corr {

 void * corr_p;

 AP_UINT32 corr_l;

 AP_INT32 corr_i;

 } AP_CORR;

Supplied Parameters

CS/AIX calls the callback routine with the following parameters:

vcb Pointer to the VCB supplied by the application. The VCB now includes the

returned parameters set by CS/AIX.

tp_id The 8-byte TP identifier of the TP in which the verb was issued.

conv_id

The conversation identifier of the conversation in which the verb was

issued.

corr The correlator value supplied by the application. This value enables the

application to correlate the returned information with its other processing.

 The callback routine need not use all of these parameters. The callback

routine can perform all the necessary processing on the returned VCB, or it

can simply set a variable to inform the main program that the verb has

completed.

Returned Values

The function does not return a value.

Using the Callback Routine for Asynchronous Verb Completion

When using the callback routine for asynchronous verb completion, the application

can issue additional asynchronous APPC verbs from within the callback routine, if

required. CS/AIX rejects any synchronous verbs issued from within a callback

routine with the primary and secondary return codes AP_PARAMETER_CHECK and

AP_SYNC_NOT_ALLOWED.

APPC Entry Points: AIX or Linux Systems

Chapter 2. Writing Transaction Programs 35

APPC Entry Points: Windows Systems

WINDOWS

A Windows application accesses APPC using the following entry points:

WinAPPCStartup

Registers the application as a Windows APPC user, and determines

whether the APPC software supports the level of function required by the

application.

WinAsyncAPPC

Issues an APPC verb. The verb normally completes asynchronously and

does not block; APPC indicates the completion by posting a message to the

application window.

WinAsyncAPPCEx

Issues an APPC verb. If the verb completes asynchronously, APPC

indicates the completion by signaling an event handle. Use this function

instead of the blocking versions of the verbs to allow multiple sessions to

be handled on the same thread.

WinAPPCCancelAsyncRequest

Cancels an outstanding asynchronous verb (one issued using the

WinAsyncAPPC entry point). Depending on which verb is outstanding, this

may also end the conversation or the TP or deactivate the session being

used by a conversation.

WinAPPCCleanup

Unregisters the application when it has finished using APPC.

APPC Issues an APPC verb. The verb blocks; that is, the application’s processing

is suspended until APPC has finished processing the verb and returned the

results.

WinAPPCCancelBlockingCall

Cancels an outstanding blocking verb (one issued using the APPC entry

point). Depending on which verb is outstanding, this may also end the

conversation or the TP, or deactivate the session being used by a

conversation. For more information about the circumstances in which this

call may be required, see “Blocking Verbs” on page 42.

WinAPPCIsBlocking

Checks whether there is a blocking verb outstanding for this application.

For more information about the circumstances in which this call may be

required, see “Blocking Verbs” on page 42.

WinAPPCSetBlockingHook

Specifies the blocking procedure that APPC uses while processing blocking

verbs; this replaces APPC’s default blocking procedure. The blocking

procedure is called repeatedly until the verb processing has completed. For

more information, see “Blocking Verbs” on page 42.

WinAPPCUnhookBlockingHook

Unregisters the blocking procedure specified by a previous

WinAPPCSetBlockingHook call, so that APPC reverts to using the default

blocking procedure.

GetAppcConfig

Returns information about remote LUs configured for use by a specified

APPC Entry Points: Windows Systems

36 IBM Communications Server for AIX APPC Programmer’s Guide

local LU and mode. This function is provided for use by 5250 emulation

programs; the information returned is taken from the 5250 user records in

the CS/AIX configuration.

GetAppcReturnCode

Generates a printable character string for the primary and secondary return

codes obtained on an APPC verb.

 These entry points are defined in the Windows APPC header file winappc.h. This

file is installed in the subdirectory /sdk within the directory where you installed

the Windows Client software.

The application must call WinAPPCStartup before attempting to issue any APPC

verbs.

It then issues APPC verbs using one of the following entry points:

v WinAsyncAPPC or WinAsyncAPPCEx (asynchronous). If you are developing new

applications for Windows, use one of these entry points.

v APPC (blocking). This entry point is provided for compatibility with the AIX and

Linux APPC implementation. “Blocking Verbs” on page 42 provides more

information about how blocking verbs operate in the Windows environment.

An application that provides 5250 emulation can use GetAppcConfig to obtain

information about remote APPC LUs that can be accessed using a given local LU.

If a verb returns with return codes other than AP_OK, the application can use

GetAppcReturnCode to obtain a text string representation of these return codes,

which can be used to generate standard error messages.

When the application has finished issuing APPC verbs, it must call WinAPPCCleanup

before terminating. After calling WinAPPCCleanup, the application must not attempt

to issue any more APPC verbs (unless it first calls WinAPPCStartup to reinitialize).

The following sections describe these Windows entry points.

WinAPPCStartup

The application uses WinAPPCStartup to register as a Windows APPC user and to

determine whether the APPC software supports the Windows APPC version that

the application requires.

Function Call

int WINAPI WinAPPCStartup (

 WORD wVersionRequired;

 WAPPCDATA far * lpData;

)

typedef struct

 {

 WORD wVersion;

 char szDescription[128];

 } WAPPCDATA;

Supplied Parameters

When the application uses the WinAPPCStartup entry point to issue a verb, it

supplies the following parameters:

wVersionRequired

The version of Windows APPC that the application requires. The low-order

APPC Entry Points: Windows Systems

Chapter 2. Writing Transaction Programs 37

byte specifies the major version number, and the high-order byte specifies

the minor version number. For example:

 Version wVersionRequired

1.0 0x0001

1.1 0x0101

2.0 0x0002

If the application can use more than one version, it specifies the highest

version that it can use.

Returned Values

WinAPPCStartup returns one of the following values:

0 (zero)

The application was registered successfully and the Windows APPC

software supports either the version number specified by the application or

a lower version. The application should check the version number in the

WAPPCDATA structure to ensure that it is high enough.

WAPPCVERNOTSUPPORTED

The version number specified by the application was lower than the lowest

version supported by the Windows APPC software. The application was

not registered.

WAPPCSYSNOTREADY

The application was not registered. This may be because the Remote API

Client on Windows software has not been started, or the local node is not

active, or because of another system failure such as a resource shortage.

 If the return value from WinAPPCStartup is 0 (zero), the WAPPCDATA structure

contains information about the support provided by the Windows APPC software.

If the return value is nonzero, the contents of this structure are undefined and the

application should not check them. The parameters in this structure are as follows:

wVersion

The Windows APPC version number that the software supports, in the

same format as the wVersionRequired parameter. If the software supports

the requested version number, this parameter is set to the same value as

the wVersionRequired parameter; otherwise it is set to the highest version

that the software supports, which is lower than the version number

supplied by the application. The application must check the returned value

and take action as follows:

v If the returned version number is the same as the requested version

number, the application can use this Windows APPC implementation.

v If the returned version number is lower than the requested version

number, the application can use this Windows APPC implementation but

must not attempt to use features that are not supported by the returned

version number. If it cannot do this because it requires features not

available in the lower version, it should fail its initialization and not

attempt to issue any APPC verbs.

szDescription

A text string describing the Windows APPC software.

APPC Entry Points: Windows Systems

38 IBM Communications Server for AIX APPC Programmer’s Guide

WinAsyncAPPC

The application uses this function to issue an APPC verb. If the verb completes

asynchronously, APPC indicates the completion by posting a message to the

application’s Windows handle.

Before using the WinAsyncAPPC call for the first time, the application must use the

RegisterWindowMessage call to obtain the message identifier that APPC will use for

messages indicating asynchronous verb completion. For more information, see

“Usage” on page 40.

Function Call

HANDLE WINAPI WinAsyncAPPC (

 HWND hWnd,

 long vcbptr

);

Supplied Parameters

The supplied parameters are:

hWnd A Windows handle that APPC will use to post a message indicating

asynchronous verb completion.

vcbptr A pointer to the VCB structure for the verb. This parameter is defined as a

long integer, and so needs to be cast from a pointer to a long integer. For

more information about the VCB structure and on its usage for individual

verbs, see Chapter 3, “APPC Control Verbs,” on page 61 and Chapter 4,

“APPC Conversation Verbs,” on page 89.

Note: The APPC VCBs contain many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values

The return value from the function is one of the following:

Handle The function call was successful (accepted). When the verb later completes,

APPC uses this handle as an identifier in the message passed to the

application’s window procedure (for more information, see “Usage” on

page 40). The application also uses this handle as a parameter to the

WinAPPCCancelAsyncRequest call if it needs to cancel the outstanding verb.

0 (zero)

The function call was not successful (not accepted).

APPC Entry Points: Windows Systems

Chapter 2. Writing Transaction Programs 39

Usage

Before using WinAsyncAPPC for the first time, the application must use the

RegisterWindowMessage call to obtain the message identifier that APPC will use for

messages indicating asynchronous verb completion. RegisterWindowMessage is a

standard Windows function call, not specific to APPC; refer to your Windows

documentation for more information about the function. (You do not need to issue

the call again before subsequent APPC verbs; the returned value will be the same

for all calls issued by the application.)

The application must pass the string “WinAsyncAPPC” to the function; the

returned value is a message identifier.

Each time an APPC verb that was issued using the WinAsyncAPPC entry point

completes asynchronously, APPC posts a message to the Windows handle specified

on the WinAsyncAPPC call. The format of the message is as follows:

v The message identifier is the value returned from the RegisterWindowMessage

call.

v The lParam argument contains the address of the VCB that was supplied to the

original WinAsyncAPPC call; the application can use this address to access the

returned parameters in the VCB structure.

v The wParam argument contains the handle that was returned to the original

WinAsyncAPPC call.

WinAsyncAPPCEx

The application uses this function to issue an APPC verb. If the verb completes

asynchronously, APPC indicates the completion by signaling an event handle. Use

this function instead of the blocking versions of the verbs to allow multiple

sessions to be handled on the same thread.

Function Call

 HANDLE WINAPI WinAsyncAPPCEx (

 HANDLE eventhandle,

 long vcbptr

);

Supplied Parameters

The supplied parameters are:

eventhandle

An event handle that APPC will signal to indicate asynchronous verb

completion.

vcbptr A pointer to the VCB structure for the verb. This parameter is defined as a

long integer, and so needs to be cast from a pointer to a long integer. For

more information about the VCB structure and on its usage for individual

verbs, see Chapter 3, “APPC Control Verbs,” on page 61 and Chapter 4,

“APPC Conversation Verbs,” on page 89.

Note: The APPC VCBs contain many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

CS/AIX will not misinterpret any of its internally-used parameters,

APPC Entry Points: Windows Systems

40 IBM Communications Server for AIX APPC Programmer’s Guide

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values

The return value from the function is one of the following:

Handle The function call was successful (accepted) and the return value is an

asynchronous task handle. When the verb later completes, APPC uses this

handle for event notification to the application (for more information, see

“Usage”). The application also uses this handle as a parameter to the

WinAPPCCancelAsyncRequest call if it needs to cancel the outstanding verb.

0 (zero)

The function call was not successful (not accepted).

Usage

This function is intended for use with WaitForSingleObject or

WaitForMultipleObjects in the Win32 API. When the asynchronous operation is

complete, the application is notified through the signaling of the event. Upon

signaling of the event, examine the primary return code and secondary return code

for any error conditions.

WinAPPCCancelAsyncRequest

The application uses this function to cancel an oustanding APPC verb (issued

using the WinAsyncAPPC entry point).

Function Call

 int WINAPI WinAPPCCancelAsyncRequest (HANDLE Handle);

Supplied Parameters

The supplied parameter is:

Handle The handle that was returned on the original WinAsyncAPPC call for the

verb.

Returned Values

The return value from the function is one of the following:

0 (zero)

The outstanding verb was canceled successfully.

WAPPCINVALID

The supplied parameter did not match the handle of any outstanding

APPC verb.

WAPPCALREADY

The APPC verb identified by the supplied handle has already completed.

(The application may already have processed the message resulting from

the verb completion, or the message may still be waiting in the

application’s message queue.)

APPC Entry Points: Windows Systems

Chapter 2. Writing Transaction Programs 41

Usage

In addition to canceling the outstanding verb, APPC may also end the conversation

or TP on which the verb was issued, bring down the session, or both. The action

taken depends on the verb that was canceled. APPC also posts a message to the

application indicating completion of the canceled verb; the primary return code for

the verb is AP_CANCELLED.

WinAPPCCleanup

The application uses the WinAPPCCleanup function to unregister as a Windows

APPC user, after it has finished issuing APPC verbs.

Function Call

BOOL WINAPI WinAPPCCleanup (void);

Supplied Parameters

No parameters are supplied with the WinAPPCCleanup function.

Returned Values

The return value from the function is one of the following:

TRUE The application was unregistered successfully.

FALSE An error occurred during processing of the call, and the application was

not unregistered. Check the log files for messages indicating the cause of

the failure.

Blocking Verbs

This section describes how blocking verbs operate in the Win32 environment if the

calling application is single-threaded, and provides information that you need to

be aware of when writing applications to use blocking verbs. (Typically a Win32

application would use multiple threads to avoid the problem of a blocking verb

blocking the entire application.)

Although a verb issued to the APPC entry point appears to suspend the application

until verb processing is completed, the APPC library has to yield control of the

system while waiting for the Remote API Client to complete the processing, in

order to allow other processes to run. To do this, the application uses a blocking

function, which is called repeatedly while the library is waiting; the function

enables Windows messages to be sent to other processes. For more information

about this function, see “Default Blocking Function” on page 43.

It is possible for the blocking function to dispatch a message to the application that

issued the original blocking verb; in this case, the application can be re-entered

even though it has a blocking call outstanding. In these circumstances, the

application can continue with other processing not related to issuing APPC verbs.

However, it cannot issue another verb to the APPC entry point (or to any other

Remote API Client API) while the first verb is outstanding; the verb will be

rejected with the primary return code AP_THREAD_BLOCKING.

The application can check whether a blocking verb is outstanding (that is, whether

it has been re-entered as a result of a received message while the verb was

outstanding) by using the WinAPPCIsBlocking function (for more information, see

“WinAPPCIsBlocking” on page 44). If this function indicates that a blocking call is

outstanding, the application should not attempt to issue further APPC verbs using

the blocking entry point. The application can, however, do the following:

v Continue with other processing.

APPC Entry Points: Windows Systems

42 IBM Communications Server for AIX APPC Programmer’s Guide

v Issue APPC verbs using the asynchronous entry point.

v Issue WinAPPCCancelBlockingCall to cancel the outstanding blocking verb.

Default Blocking Function

The standard blocking function used by the Windows APPC library is as follows:

BOOL far pascal DefaultBlockingHook (void) {

 MSG msg;

 /* get the next message if any */

 if (PeekMessage (&msg,NULL,0,0,PM_NOREMOVE)) {

 if (msg.message = = WM_QUIT)

 return FALSE; // let app process WM_QUIT

 PeekMessage (&msg,NULL,0,0,PM_REMOVE);

 TranslateMessage (&msg);

 DispatchMessage (&msg);

 }

 /* TRUE if no WM_QUIT received */

 return TRUE;

}

If the application needs to have other processing performed as part of the blocking

function, it can specify its own blocking function to replace the default one

provided by APPC. To do this, it uses the WinAPPCSetBlockingHook call (see

“WinAPPCSetBlockingHook” on page 45).

A blocking function must return FALSE if it receives a WM_QUIT message; this

means that Windows APPC returns control to the application, which can then

process the message and terminate. Otherwise, the function must return TRUE.

APPC

The application uses this function to issue an APPC verb, which blocks until verb

processing is completed. For compatibility with earlier APPC implementations, the

Remote API Client also provides the entry points APPC_C and APPC_P, which can be

used in the same way as APPC.

This entry point provides support for synchronous APPC verbs on Windows,

which may assist in migrating from other operating system environments.

Function Call

void WINAPI APPC (

 long vcbptr

)

Supplied Parameters

The supplied parameter is:

vcbptr A pointer to the VCB structure for the verb. This parameter is defined as a

long integer, and so needs to be cast from a pointer to a long integer. For

the definition of the VCB structure for each APPC verb, see Chapter 3,

“APPC Control Verbs,” on page 61 and Chapter 4, “APPC Conversation

Verbs,” on page 89.

Note: The APPC VCBs contain many parameters marked as “reserved”;

some of these are used internally by the CS/AIX software, and

others are not used in this version but may be used in future

versions. Your application must not attempt to access any of these

reserved parameters; instead, it must set the entire contents of the

VCB to zero to ensure that all of these parameters are zero, before it

sets other parameters that are used by the verb. This ensures that

APPC Entry Points: Windows Systems

Chapter 2. Writing Transaction Programs 43

CS/AIX will not misinterpret any of its internally-used parameters,

and also that your application will continue to work with future

CS/AIX versions in which these parameters may be used to provide

new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values

The function does not return a value. When the call returns, the application should

check the primary_rc and secondary_rc parameters in the VCB structure to determine

whether the verb completed successfully. For information about the parameters

returned in the VCB structure, see the descriptions of individual verbs in

Chapter 3, “APPC Control Verbs,” on page 61 and Chapter 4, “APPC Conversation

Verbs,” on page 89.

WinAPPCCancelBlockingCall

The application uses the WinAPPCCancelBlockingCall function to cancel an

outstanding blocking APPC verb (issued using the APPC entry point).

Function Call

BOOL WINAPI WinAPPCCancelBlockingCall (void);

Supplied Parameters

No parameters are supplied for this entry point. (There can be only one blocking

verb outstanding at any time, so there is no need to identify the particular verb to

be canceled.)

Returned Values

The return value from the function is one of the following:

TRUE The outstanding verb was canceled successfully.

FALSE Either no blocking APPC verb was outstanding, or an error occurred

during processing of the call and the verb was not canceled.

Usage

In addition to canceling the outstanding verb, APPC also ends the conversation on

which the verb was issued and brings down the session. If the verb is one that

relates to a TP rather than to a conversation (such as RECEIVE_ALLOCATE or

TP_STARTED), APPC ends the TP.

WinAPPCIsBlocking

The application uses the WinAPPCIsBlocking function to check whether there is a

blocking APPC verb outstanding (a verb issued using the APPC entry point).

Function Call

BOOL WINAPI WinAPPCIsBlocking (void);

Supplied Parameters

No parameters are supplied with this function.

Returned Values

The return value from the function is one of the following:

APPC Entry Points: Windows Systems

44 IBM Communications Server for AIX APPC Programmer’s Guide

TRUE A blocking APPC verb is outstanding. If necessary, the application can use

the WinAPPCCancelBlockingCall function to cancel it.

FALSE A blocking APPC verb is not outstanding.

WinAPPCSetBlockingHook

The application uses this call to specify its own blocking function, which APPC

will use instead of the default blocking function. For more information about how

the blocking function operates and on the functions it must perform, see “Blocking

Verbs” on page 42.

Function Call

FARPROC WINAPI WinAPPCSetBlockingHook (FARPROC lpBlockFunc);

Supplied Parameters

The supplied parameter is:

lpBlockFunc

The procedure instance address of the application’s blocking function. The

application should use the MakeProcInstance call to obtain this address;

refer to your Windows documentation for more information.

Returned Values

The return value is the procedure instance address of the previous blocking

function. If the application is using more than one blocking function, and will need

to restore the previous blocking function later, it should save this address; it can

then issue WinAPPCSetBlockingHook again using the saved value, to restore the

previous blocking function. If it is using only one blocking function, or will not

need to restore the previous value, it can ignore the return value from this call.

Usage

The new blocking function remains in effect until the application issues one of the

following calls:

v WinAPPCSetBlockingHook (with a different procedure instance address) to specify

a new blocking function or to restore a previous one

v WinAPPCUnhookBlockingHook (see “WinAPPCUnhookBlockingHook”), to stop

using the current blocking function and return to the default blocking function

WinAPPCUnhookBlockingHook

The application uses this call to remove its own blocking function, which it has

previously specified using WinAPPCSetBlockingHook, and revert to using APPC’s

default blocking function.

Function Call

BOOL WINAPI WinAPPCUnhookBlockingHook (void);

Supplied Parameters

No parameters are supplied for this function.

Returned Values

The return value from the function is one of the following:

TRUE The blocking function was removed successfully; any further blocking calls

will use the default blocking function.

FALSE The call did not complete successfully.

APPC Entry Points: Windows Systems

Chapter 2. Writing Transaction Programs 45

GetAppcConfig

The GetAppcConfig function is provided for use by 5250 emulation programs. The

function returns information about the remote LUs that a specified local LU can

access, as defined in the 5250 emulation user records in the CS/AIX configuration.

To determine the information required by this call, CS/AIX checks the user name

configured for the Windows client against the 5250 user records defined in the

configuration (or, if the user name is not explicitly defined, checks for a

<DEFAULT> record). In the appropriate user record, it matches the local LU alias

and mode name supplied on this call against the session definitions, and returns

the remote LU alias for each matching session.

The application supplies a Windows handle to which APPC can post a message

when the verb completes asynchronously. Before using GetAppcConfig for the first

time, the application must use RegisterWindowMessage to obtain the message

identifier that APPC will use for the message indicating asynchronous completion

of the call, and WinAPPCStartup to register as a Windows APPC application. For

more information, see the description of WinAPPCStartup in “WinAPPCStartup” on

page 37 and “Usage” on page 48.

An alternative method of indicating completion of the call is to supply a pointer to

an integer value (the AsyncRetCode parameter) in which APPC can return values to

indicate that the call has failed, is in progress, or has completed. Windows

applications are recommended to use the first method, supplying a Windows

handle.

Function Call

HANDLE WINAPI GetAppcConfig (

 HWND hWnd,

 char far *LocalLU,

 char far *Mode,

 int far *NumRemLU,

 int MaxRemLU,

 char far *RemLU,

 int far *AsyncRetCode

);

Supplied Parameters

The supplied parameters are:

hWnd A Windows handle that APPC will use to post a message indicating

asynchronous completion of this call. If this parameter is used, the pointer

to the AsyncRetCode parameter must be a null pointer.

LocalLU

A pointer to the alias of the local LU for which configuration information

is required. This is an ASCII string of up to eight characters, terminated

with a null character (binary zero); if the LU alias is shorter than eight

characters, it must be followed immediately by the null character and not

space-padded.

 To indicate the default local LU, set this parameter to point to a string

consisting of eight ASCII spaces followed by a null character.

Mode A pointer to the name of the mode (used by the local LU) for which

configuration information is required. This is an ASCII string of up to eight

characters, terminated with a null character (binary zero); if the mode

APPC Entry Points: Windows Systems

46 IBM Communications Server for AIX APPC Programmer’s Guide

name is shorter than eight characters, it must be followed immediately by

the null character and not space-padded. For 5250 emulation programs, the

mode name is normally QPCSUPP.

NumRemLU

A pointer to an integer that APPC can use to return the number of remote

LUs configured.

MaxRemLU

The maximum number of remote LU aliases that can be accommodated in

the supplied data buffer (see the following parameter). Each LU alias

requires 9 bytes, so the length of the supplied buffer must be at least nine

times the supplied value of MaxRemLU.

RemLU

A buffer to contain the returned remote LU aliases.

AsyncRetCode

If the application is using the recommended method of indicating

completion, this parameter is reserved; the application must supply a null

pointer.

 If the application is using the alternative method, this parameter is a

pointer to the integer that APPC uses for the asynchronous return code

from the function. In this case, the hWnd parameter must be a null handle.

Returned Values

When the call returns, the application can test the value of the expression

“ReturnedHandle & APPC_CFG_SUCCESS ” to determine whether the function was

successful.

If the value of the expression “ReturnedHandle & APPC_CFG_SUCCESS” is TRUE,

and the application is using the recommended method to indicate completion, the

return value is a handle. When the function later completes, APPC uses this handle

as an identifier in the message passed to the application’s window procedure (for

more information, see “Usage” on page 48).

If the value of the expression “ReturnedHandle & APPC_CFG_SUCCESS” is TRUE,

and the application is using the alternative method to indicate completion, the

AsyncRetCode parameter is set to APPC_CFG_PENDING. The application should test this

value periodically to check for completion. When the function later completes,

APPC sets this parameter to one of the asynchronous return codes listed in

“Usage” on page 48.

If the value of the expression is FALSE, the function call was not accepted. The

value of ReturnedHandle is one of the following:

APPC_CFG_ERROR_NO_APPC_INIT

The application has not issued the WinAPPCStartup call. This call must be

issued before GetAppcConfig is used.

APPC_CFG_ERROR_INVALID_HWND

The application supplied a Windows handle that was not valid.

APPC_CFG_ERROR_BAD_POINTER

The application supplied a null pointer to a Windows handle, to use the

alternative method for indicating completion, but supplied a pointer for

the AsyncRetCode parameter that was not valid.

APPC_CFG_ERROR_UNCLEAR_COMPLETION_MODE

The application supplied both a Windows handle (in the hWnd parameter)

APPC Entry Points: Windows Systems

Chapter 2. Writing Transaction Programs 47

and a non-null pointer to the AsyncRetCode parameter, so APPC could not

determine how to indicate asynchronous completion.

APPC_CFG_ERROR_TOO_MANY_REQUESTS

Too many GetAppcConfig requests are already outstanding. The application

should yield, to allow other processes to run, and retry the call later.

APPC_CFG_ERROR_GENERAL_FAILURE

A system error occurred.

Usage

Before using GetAppcConfig for the first time, the application must use the

RegisterWindowMessage call to obtain the message identifier that APPC will use for

messages indicating asynchronous completion. RegisterWindowMessage is a

standard Windows function call, not specific to APPC; refer to your Windows

documentation for more information about the function. (The application does not

need to issue the call again before subsequent GetAppcConfig calls; the returned

value will be the same for all calls issued by the application.)

The application must pass the value WIN_APPC_CFG_COMPLETION_MSG to the function;

the returned value is a message identifier.

An application can indicate completion by using a Windows handle or by using an

alternative method, as follows:

v If the application is using a Windows handle to indicate completion, APPC posts

a message to this Windows handle when the call completes asynchronously. The

format of the message is as follows:

– The message identifier is the value returned from the RegisterWindowMessage

call.

– The wParam argument contains the handle that was returned to the original

GetAppcConfig call.

– The lParam argument contains one of the following asynchronous return

codes:

APPC_CFG_SUCCESS_NO_DEFAULT_REMOTE

The configuration was retrieved successfully. No default remote LU is

configured for the specified local LU and mode.

APPC_CFG_SUCCESS_DEFAULT_REMOTE

The configuration was retrieved successfully. A default remote LU is

configured for the specified local LU and mode. (CS/AIX does not

return this value, because it does not have a concept of configuring

default remote LUs; however, the application should allow for this

return code to ensure compatibility with other APPC

implementations.)

APPC_CFG_ERROR_NO_DEFAULT_LOCAL_LU

The application supplied a blank local LU alias, indicating the default

local LU, but no default local LU is configured.

APPC_CFG_ERROR_BAD_LOCAL_LU

The supplied local LU alias did not match any configured local LU

alias used for 5250 emulation.

APPC_CFG_ERROR_GENERAL_FAILURE

A system error occurred.

APPC Entry Points: Windows Systems

48 IBM Communications Server for AIX APPC Programmer’s Guide

v If the application is using the alternative method to indicate completion, APPC

sets the asynchronous return code to one of the return codes in the list for the

lParam argument (in the Windows message) when the call completes.

The application can test for success or failure by testing the expressions “RetCode &

APPC_CFG_SUCCESS” or “RetCode & APPC_CFG_FAILURE”, where RetCode is

the lParam argument in the Windows message or the AsyncRetCode parameter

returned to the application. If “RetCode & APPC_CFG_SUCCESS” is TRUE, the call

was successful; if “RetCode & APPC_CFG_FAILURE” is TRUE, the call failed.

If the call was successful, the application can then check the values of the

NumRemLU and RemLU parameters:

v NumRemLU contains the total number of remote LUs configured. If this number

is greater than the supplied MaxRemLU parameter, the supplied buffer was not

large enough to contain all the remote LU aliases. The application can use the

returned aliases, or can reissue GetAppcConfig with a large enough buffer to

contain all the aliases.

v RemLU contains the aliases of the remote LUs. Each alias is a string of up to

eight characters followed by a null character, and occupies 9 bytes of the buffer.

The number of LU aliases returned is the smaller of the supplied parameter

MaxRemLU and the returned parameter NumRemLU.

To determine the information required by this call, CS/AIX checks the user name

configured for the Windows client against the 5250 user records defined in the

configuration (or, if the user name is not explicitly defined, checks for a

<DEFAULT> record). In the appropriate user record, it matches the local LU alias

and mode name supplied on this call against the session definitions, and returns

the remote LU alias for each matching session.

GetAppcReturnCode

This call returns a printable character string interpreting the return codes from a

supplied VCB. The string can be used to generate application error messages for

return codes other than AP_OK.

This call provides strings for display to the end user of an APPC application. For

return codes indicating configuration problems or user errors (for example if a

required component is not configured or not started), the string should provide

sufficient information to help the user correct the problem. For return codes

indicating application errors (for example if the application has issued a verb that

is not valid or failed to supply a required parameter), the user is not generally able

to correct the problem; in these cases, the string is meaningful only to an

application developer.

Function Call

int WINAPI GetAppcReturnCode (

 long vcbptr,

 unsigned int buffer_length,

 unsigned char far * buffer_addr

);

Supplied Parameters

The supplied parameters are:

vcbptr A pointer to the VCB structure for the verb. This parameter is defined as a

long integer, and so needs to be cast from a pointer to a long integer. For

more information about the VCB structure and on its usage for individual

APPC Entry Points: Windows Systems

Chapter 2. Writing Transaction Programs 49

verbs, see Chapter 3, “APPC Control Verbs,” on page 61 or Chapter 4,

“APPC Conversation Verbs,” on page 89.

buffer_length

The length (in bytes) of the buffer supplied by the application to hold the

returned data string. The recommended length is 256 bytes.

buffer_addr

The address of the buffer supplied by the application to hold the returned

data string.

Returned Values

The return value from the function is one of the following:

0 (zero)

The function completed successfully. The returned character string is in the

buffer identified by the buffer_addr parameter. This string is terminated by

a null character (binary zero), but does not include a trailing new-line (\n)

character.

0x20000001

APPC could not read from the supplied VCB, or could not write to the

supplied data buffer.

0x20000002

The supplied data buffer is too small to hold the returned character string.

0x20000003

The dynamic link library APPCST32.DLL, which generates the returned

character strings for this function, could not be loaded.

AIX or Linux Considerations

AIX, LINUX

This section summarizes the information you need to consider when developing

TPs for use in the AIX or Linux environment.

Multiple Processes

If the process that issued TP_STARTED or RECEIVE_ALLOCATE then forks to

create a child process, the child process cannot use the tp_id that was returned to

the parent process. It can, however, issue its own TP_STARTED or

RECEIVE_ALLOCATE to obtain its own tp_id.

Two or more instances of the same TP can run as different processes, but each

instance is assigned its own tp_id.

You can write an application in which one process contains many TPs, each with

its own tp_id. However, you need to design the application carefully to avoid

“deadlock” situations, in which an APPC verb cannot complete because of the state

of other conversations and TPs in the same process. This might happen if the

program is waiting on one conversation for information to be sent to it before

returning some other data, and another conversation from the same process is

APPC Entry Points: Windows Systems

50 IBM Communications Server for AIX APPC Programmer’s Guide

waiting for this data before it can send the information originally required by the

first conversation. To some extent this can be avoided by using a separate process

for each TP.

Compiling and Linking the APPC Application

AIX Applications

To compile and link 32–bit applications, use the following options:

-bimport:/usr/lib/sna/appc_r.exp -I

/usr/include/sna

 To compile and link 64–bit applications, use the following options:

-bimport:/usr/lib/sna/appc_r64_5.exp -I

/usr/include/sna

Linux Applications

Before compiling and linking an APPC application, specify the directory where

shared libraries are stored, so that the application can find them at run time. To do

this, set the environment variable LD_RUN_PATH to /opt/ibm/sna/lib, or to

/opt/ibm/sna/lib64 if you are compiling a 64–bit application.

To compile and link 32–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib -lappc -lsna_r -lpthread

 To compile and link 64–bit applications, use the following options:

-I /opt/ibm/sna/include -L

/opt/ibm/sna/lib64 -lappc -lsna_r -lpthread

Windows Considerations

WINDOWS

This section summarizes the processing considerations that you need to be aware

of when developing applications on a Remote API Client for Windows. Windows

processing considerations are:

v Compiling and linking APPC programs

v Terminating applications

Compiling and Linking APPC Programs

The following processing considerations are important when you compile and link

APPC programs on Windows:

Compiler options for structure packing

The VCB structures for APPC verbs are not packed. Do not use compiler

options that change this packing method. BYTE parameters are on BYTE

boundaries, WORD parameters are on WORD boundaries, and DWORD

parameters are on DWORD boundaries

AIX or Linux Considerations

Chapter 2. Writing Transaction Programs 51

Header files

The main APPC header file to be included in Windows APPC applications

is named winappc.h. If your application uses the GetAppcConfig call, you

also need to include the appccfg.h header file. These files are installed in

the subdirectory /sdk within the directory where you installed the

Windows Client software.

Load-time linking

To link the TP to APPC at load time, link the TP to the library

wappc32.lib.

Run-time linking

To link the TP to APPC at run time, include the following calls in the TP:

v LoadLibrary to load the APPC dynamic link library wappc32.dll.

v GetProcAddress to specify APPC on each of the APPC entry points

required (such as WinAsyncAPPC, WinAPPCStartup, and WinAPPCCleanup)

v FreeLibrary when the library is no longer required

Terminating Applications

APPC cannot tell when an application terminates under Windows. Therefore if an

application must close (for example, if it receives a WM_CLOSE message), the

application should issue the WinAPPCCleanup call. Failure to issue the call leaves the

system in an indeterminate state; however, as much cleanup as possible is done

when APPC later detects that the application has terminated.

Configuration Information

The CS/AIX configuration file, which is set up and maintained by the System

Administrator, contains information that is required for TPs to communicate. For

additional information about configuration, refer to the Communications Server for

AIX Administration Guide.

Invoked TP

Before writing an invoked TP, you must coordinate the local TP name with the

System Administrator. The name can contain up to 64 characters.

AIX, LINUX

If you intend to use the extended form of the RECEIVE_ALLOCATE verb, in

which the application can specify a local LU from which to accept incoming

conversation requests, you must also coordinate the local LU alias (the name by

which the local LU is known to the local TP) with the System Administrator. This

alias can contain up to eight characters.

For more information, see the RECEIVE_ALLOCATE verb in Chapter 3, “APPC

Control Verbs,” on page 61.

Windows Considerations

52 IBM Communications Server for AIX APPC Programmer’s Guide

Invoking TP

The following list summarizes the information you need to obtain from (or

coordinate with) your System Administrator before writing an invoking TP:

Local LU Alias

Name by which the local LU is known to the local TP. This name can

contain up to eight characters. For more information, see the description of

the TP_STARTED verb in Chapter 3, “APPC Control Verbs,” on page 61.

Partner TP Name

This name can contain up to 64 characters. For more information, see the

description of the [MC_]ALLOCATE verb in Chapter 4, “APPC

Conversation Verbs,” on page 89.

Partner LU Alias

Name by which the partner LU is known to the local TP. This name can

contain up to eight characters. For more information, see the description of

the [MC_]ALLOCATE verb in Chapter 4, “APPC Conversation Verbs,” on

page 89.

Mode Name

Set of characteristics to be used in an LU-to-LU session. This name can

contain up to eight characters. For more information, see the description of

the [MC_]ALLOCATE verb in Chapter 4, “APPC Conversation Verbs,” on

page 89.

Conversation Security

If conversation security is to be used, a valid combination of user ID and

password is required to access the invoked TP. The user ID and password

can contain up to 10 characters. Both parameters are case-sensitive; the

system distinguishes between uppercase and lowercase letters. Security

information is stored in a security file. For more information, see

“Overview of Conversation Security.”

Overview of Conversation Security

You can use conversation security to require that the invoking TP provide a user

ID and password before APPC allocates a conversation with the invoked TP.

In configuring the invoked TP, the System Administrator indicates whether to use

conversation security. If so, the invoking TP must supply a combination of user_id

and password as parameters of the [MC_]ALLOCATE verb. These parameters must

match one of the combinations of user_id and password parameters established

during configuration.

An invoked TP that in turn invokes another TP is a special case (see Chapter 1,

“Concepts,” on page 1). Assume that TP A invokes TP B, which requires security

information, and TP B in turn invokes TP C, which also requires security

information. Through the [MC_]ALLOCATE verb, TP B can specify that

conversation security has already been verified. In this case, APPC takes the user

ID that was supplied by TP A to TP B, and sends this user ID to TP C with an

“already verified” indication; TP C does not need to check the password.

AIX, LINUX

Configuration Information

Chapter 2. Writing Transaction Programs 53

In some cases, a TP may need to indicate “already verified” security when it has

not itself been invoked by another TP, but has obtained and verified the

appropriate security information by another means (for example, by a user

entering a user ID and password during a logon sequence). CS/AIX supports this

as follows:

v If the TP specifying “already verified” was itself invoked by another TP that

specified a user ID and password, APPC sends this user ID.

v Otherwise, APPC takes the AIX or Linux user name with which the TP is

running, truncated to 10 characters if necessary, and uses this as the

conversation security user ID. Ensure that this name consists of valid AE-string

characters and is a valid user name for the TP being invoked.

v If the application uses a different method of obtaining the security information

(for example, if it requires the user to specify a user ID and password explicitly,

rather than relying on the AIX or Linux system security), then it can use the

SET_TP_PROPERTIES verb to specify this user_id to APPC before issuing the

[MC_]ALLOCATE verb.

CS/AIX also supports LU-LU session security, which provides security checking

when starting the session between the local and remote APPC LUs. LU-LU session

security is specified during configuration, and does not require any action in APPC

programs. For more information, refer to the Communications Server for AIX

Administration Guide.

Starting TPs

A conversation occurs between an invoking TP and an invoked TP. This section

describes how the invoking and invoked TPs are started.

Invoking TPs

The invoking TP is started by a user entering a command, by a shell script, or by

batch file command.

Invoked TPs

The invoked TP can be started by a user, automatically by CS/AIX, or

automatically by a TP server application. When the System Administrator

configures each invoked TP, the System Administrator must specify whether the TP

is started automatically or by the user.

Invoked TPs: User-Started

If an invoked TP is configured to be started by a user, the user can start the

invoked TP either before or after the invoking TP. A TP started in this manner is

called a queued, operator-started TP:

v If the user starts the invoking TP first, and does not start the invoked TP before

the timeout value for starting the TP (see “Timeout Values for Invoked TPs” on

page 56) is reached, the incoming Allocate fails.

v If the user starts the invoked TP before the invoking TP issues the

[MC_]ALLOCATE verb, the invoked TP waits until the Attach from the invoking

TP arrives, or until the RECEIVE_ALLOCATE timeout value (see “Timeout

Values for Invoked TPs” on page 56) is reached.

Overview of Conversation Security

54 IBM Communications Server for AIX APPC Programmer’s Guide

Invoked TPs: Automatically Started by the CS/AIX Attach

Manager

An invoked TP can be configured to start automatically under one of the following

conditions:

v The first time an Attach (the SNA message from the remote LU containing the

allocation request) is received by the LU that serves the invoked TP. A TP started

in this manner is called a queued, automatically started TP.

If the invoked TP is not running, the first incoming Allocate starts it; a response

to the incoming Allocate is held until the RECEIVE_ALLOCATE verb in the

invoked TP is executed (or until a timeout occurs; see “Timeout Values for

Invoked TPs” on page 56). At that time, APPC assigns a conversation ID, which

is returned to both TPs as an identifier for the conversation.

If the invoked TP is already running, the Attach is queued until the invoked TP

issues another RECEIVE_ALLOCATE verb, or until it finishes running and can

be restarted (or until a timeout occurs; see “Timeout Values for Invoked TPs” on

page 56).

v Each time an Attach is received by the LU that serves the invoked TP. A new

instance of the program is loaded and started with each incoming Attach. A TP

started in this manner is called a nonqueued, automatically started TP.

The Attach is queued until the RECEIVE_ALLOCATE verb in the invoked TP is

executed (or until a timeout occurs; see “Timeout Values for Invoked TPs” on

page 56). When RECEIVE_ALLOCATE is executed, APPC assigns a conversation

ID, which is returned to both TPs as an identifier for the conversation.

After it has ended a conversation, the invoked TP may terminate, or it may issue

another RECEIVE_ALLOCATE. For frequently-used programs, this provides a

way of avoiding the performance overhead of starting a new instance of the

program for each conversation. Each time an Attach is received for a nonqueued,

automatically started TP, CS/AIX checks whether there is already a

RECEIVE_ALLOCATE outstanding from an instance of this TP. If so, this TP is

used for the incoming conversation; otherwise, CS/AIX starts a new instance of

the program.

Invoked TPs: Automatically Started by a TP Server Application

AIX, LINUX

When an Attach arrives at the CS/AIX node, CS/AIX distributes Attaches to TP

server applications that have registered to receive the Attaches. The process

CS/AIX uses to route Attaches to an appropriate TP server consists of the

following stages:

1. One or more applications register to receive Attaches for LU and TP names. A

TP server application can use a wildcard to specify the scope of Attaches that

the TP server is registered to receive. A TP server application can use a

wildcard for any of the following:

v Local LU alias

v TP name

v Fully qualified partner LU name, which can use a wildcard for any of the

following:

– Partial network name

– Whole network name

– Partial network name followed by CP name

Starting TPs

Chapter 2. Writing Transaction Programs 55

– Fully qualified partner LU name
Only a single TP server application can register for a given TP and LU

combination, including wildcards. For example, one TP server application can

register TPNAME1 and *, while the same TP or another TP server application

registers TPNAME1 and LUNAME1. Registration of this type is legal, but two

TP server applications cannot both register TPNAME1 and LUNAME1. The

second registration attempt will fail.

2. When an Attach arrives at CS/AIX, CS/AIX attempts to find the TP server

application whose registration most closely matches the TP name, LU alias and

fully qualified LU name received on the Attach. The matches are examined for

greatest closeness in the following order:

a. TP name match

b. LU alias match

c. Exact fully qualified partner LU name match

d. Wildcard fully qualified partner LU name match
When CS/AIX finds a match, it delivers the Attach to the TP server application.

The TP server has the following options:

v Reject the Attach, in which case CS/AIX returns the Attach to the invoking

TP and includes an error code provided by the TP server application

v Accept the Attach, in which case CS/AIX informs the invoking TP that the

Attach has been accepted
3. If no matches are found after trying all combinations above search criteria,

CS/AIX rejects the Attach and returns the Attach to the invoking TP with the

appropriate error code.

Timeout Values for Invoked TPs

The CS/AIX configuration specifies two timeout values that define how long

APPC waits to establish a conversation between two TPs, as follows:

Timeout for Starting TP

This value defines how long an Attach is queued waiting for the invoked

TP to be started and to issue the RECEIVE_ALLOCATE verb. If

RECEIVE_ALLOCATE is not issued within this time, the

[MC_]ALLOCATE verb in the invoking TP fails. This timeout is defined in

the configuration of the local LU that the TP uses.

Timeout for Servicing TP

This value defines how long a RECEIVE_ALLOCATE verb issued by the

invoked TP waits for an Attach from the invoking TP. If an Attach is not

received within this time, the RECEIVE_ALLOCATE verb in the invoked

TP fails. The configuration can specify one of the following:

Infinite timeout

RECEIVE_ALLOCATE waits indefinitely

Zero timeout

RECEIVE_ALLOCATE fails unless the Attach has already been

received

Finite timeout

A specific timeout value is provided

Starting TPs

56 IBM Communications Server for AIX APPC Programmer’s Guide

This timeout is defined for the invoked TP in the CS/AIX invokable TP

data file.

 For more information about the configuration of invoked TPs, refer to the

Communications Server for AIX Administration Guide.

LU-to-LU Sessions

An LU-to-LU session is a logical connection between two LUs. Conversations

between TPs occur within sessions. One conversation can use a session at a time;

many conversations can reuse the same session serially.

CS/AIX enables an LU type 6.2 to have multiple sessions (two or more concurrent

sessions with different partner LUs) and parallel sessions (two or more concurrent

sessions with the same partner LU).

During configuration, the System Administrator determines how many sessions a

particular LU supports and whether the LU supports parallel sessions.

Contention

When both LUs attempt to allocate a conversation on the same session at the same

time, one must win (the contention winner) and one must lose (the contention

loser). The contention-winner LU and the contention-loser LU are determined

when the session is established.

In a session, the contention-loser LU must ask permission of the contention-winner

LU before allocating a conversation. The contention winner may or may not grant

permission. The contention-winner LU, on the other hand, simply allocates a

conversation when desired.

During configuration, the System Administrator can define modes. A mode is a set

of networking characteristics. Among the characteristics the System Administrator

can specify within a mode definition is the number of contention-winner and

contention-loser sessions for the local LU and partner LU that use the mode. (The

TP issuing the [MC_]ALLOCATE verb specifies a mode, local LU, and partner LU.)

Basic Conversations

Basic conversations are generally used by service TPs. Service TPs are programs

that provide services to other local programs. They are more complex than mapped

conversations but provide an experienced LU 6.2 programmer with a greater

degree of control over the transmission and handling of data. This section

summarizes the characteristics of basic conversations where they differ from

mapped conversations.

Logical Records

In a basic conversation, data is sent in the form of logical records. A logical record

is a record that has the general data stream (GDS) syntax described in this section.

For more information about GDS syntax, refer to the IBM publication SNA Formats.

The sending TP must format the data into logical records, and the receiving TP

must decode the logical records into usable data. A TP can send multiple logical

records with a single SEND_DATA verb, or it can send a single logical record in

multiple parts (called segments) with multiple SEND_DATA verbs. A TP can

receive multiple logical records with a single receive verb (RECEIVE_AND_WAIT,

Starting TPs

Chapter 2. Writing Transaction Programs 57

RECEIVE_IMMEDIATE, or RECEIVE_AND_POST), or it can receive a single

logical record in multiple parts with multiple receive verbs.

If a logical record is a single record, it consists of the following fields:

v A 2-byte record length (LL) field

v A 2-byte GDS identifier (ID) field (for example, 0x12FF identifies the data as

application data)

v A data field that can range in length from 0–32,763 bytes

The first four bytes are called the LLID.

If a logical record has multiple parts, the first part has the same format as a single

record, and all subsequent parts consist of the following fields:

v A 2-byte record length (LL) field

v A data field that can range in length from 0–32,765 bytes

The hexadecimal value for the LL field includes the two bytes for the LL field (and

the two bytes for the ID field, if it is present). For example, a single part GDS with

no zero bytes of data has a value of 0x0004 for its LL field. The LL field must be in

high-low format, rather than byte-swapped format. For example, a length of 230

bytes is represented as 0x00E6, rather than 0xE600.

Bit 0 of byte 0 of the LL (the most significant bit) is used to indicate length

continuation (segmentation). The following example shows ten bytes of data (each

data byte has the value DD) split into three GDS segments. The first and second

segments each contain four bytes of data, and the last segment contains two bytes

of data.

 The following values for the LL field are not valid (except when sending a PS

header as described in “Sending PS Headers in Logical Records”):

v 0x0000

v 0x0001

v 0x8000

v 0x8001

In a mapped conversation, the sending TP sends one data record at a time, and the

receiving TP receives one data record at a time. No record conversion is required

of the TPs.

Sending PS Headers in Logical Records

If the conversation’s synchronization level is AP_SYNCPT, the application may need

to send and receive data in the form of PS Headers. The Syncpoint Manager is

responsible for setting up the appropriate PS Headers to send to the partner

application, based on Syncpoint functions required by the application, and for

performing the required Syncpoint processing based on the PS Headers it receives

from the partner application.

An LL field of 0x0001 indicates that the data is a PS Header; the sending

application must specify an LL field of 0x0001 instead of specifying the length of

the data field, and the receiving application must interpret the data as a PS Header

8008 12FF DDDD DDDD

8006 DDDD DDDD

0004 DDDD

Basic Conversations

58 IBM Communications Server for AIX APPC Programmer’s Guide

if it receives an LL field of 0x0001. If the conversation’s synchronization level is not

AP_SYNCPT, the value 0x0001 is not a valid LL field, and will be rejected.

Reporting Errors and Abends

In a basic conversation, a TP can indicate whether an error or abend (abnormal

program termination) was caused by a service TP or by a program using the

service TP. This enables two communicating service TPs to distinguish between

errors they may have caused and errors that may have been caused by the

programs they serve.

Error Log

In case of an error or abend in a basic conversation, a TP can send an error

message, in the form of a general data stream (GDS) error log variable, to the local

log and to the partner LU.

Timeouts Versus Critical Errors

In a basic conversation, a TP can indicate whether an abend was caused by a

timeout or by a critical error.

Writing TP Servers

AIX, LINUX

Use the following operational guidelines for writing TP servers:

1. Use REGISTER_TP_SERVER to register the application as a TP server. The

REGISTER_TP_SERVER verb provides the address of a callback function used

in later Attach notifications.

2. Use REGISTER_TP to register the TP names and local and remote LUs for

which the TP server wishes to process Attaches. The TP server can use

wildcards for both TP names and LU names so that it can choose to process

Attaches from a TP over a particular pair of LUs or to Attaches for all TPs over

all LUs, or any combination of those conditions.

3. Use QUERY_ATTACH (with the unique identifier received when the

notification callback is made after an Attach is received for the registered TP or

LU) to query the Attach parameters to determine whether and how to process

the Attach. The TP server can reject the Attach using REJECT_ATTACH or

accept the Attach using ACCEPT_ATTACH and start a suitable application to

process the Attach.

4. Issue the standard RECEIVE_ALLOCATE call to retrieve the Attach. The

previously reserved dload_id parameter is used to specify the unique identifier

of the Attach.

5. Use ABORT_ATTACH to cancel any further processing if, after issuing

ACCEPT_ATTACH, an error is encountered.

6. Deregister the TP server for any of the previously registered TPs and LUs using

UNREGISTER_TP.

7. Deregister the application as a TP server using the UNREGISTER_TP_SERVER

verb.

Basic Conversations

Chapter 2. Writing Transaction Programs 59

TP Server Responsibilities

When a TP server handles an Attach, the TP server inherits a number of

responsibilities normally performed by the CS/AIX Attach Manager. These

responsibilities include the following:

v Starting TPs to handle the conversations if a TP is configured to be automatically

started

v Handling conversation security including parsing the Attach data returned on

QUERY_ATTACH

v Conveying information from the Attach to the TP that the TP server starts to

process the ensuing conversation

Default TP Server

CS/AIX provides a default TP server, snatpsrvd, that is installed on all systems.

This TP server uses the sna_tps file as the source for the configuration of the TPs

that it can load. Other TP servers can modify and use this file by using

DEFINE_TP_LOAD_INFO verbs. For more information about the

DEFINE_TP_LOAD_INFO verb, refer to the Communications Server for AIX NOF

Programmer’s Guide. APPC provides the tp_file_updates parameter on a

REGISTER_TP verb so that a TP server is notified when a change has been made

to the sna_tps file and can take the required action.

Writing Portable TPs

The following guidelines are provided for writing TPs that they will are portable

to other operating system environments:

v Include the APPC header file without any pathname prefix. Use include options

on the compiler to locate the file (see the appropriate section for your operating

system, earlier in this chapter). This enables the TP to be used in an environment

with a different file system.

v Use the symbolic constant names for parameter values and return codes, not the

numeric values shown in the header file; this ensures that the correct value will

be used regardless of the way these values are stored in memory.

v Include a check for return codes other than those applicable to your current

operating system (for example using a “default” case in a switch statement), and

provide appropriate diagnostics.

v Use the asynchronous entry point.

v The [MC_]RECEIVE_AND_POST verb cannot be used if the TP is to be

completely portable. If you use this verb, you will need to rewrite sections of the

TP for use in other environments. You may want to restrict the use of this verb

to a few specific routines, to allow easier modification.

v The extended form of the RECEIVE_ALLOCATE verb is specific to the CS/AIX

APPC implementation, and is not provided by other APPC implementations. If

you use this form of the verb, you will need to rewrite sections of the TP for use

in other environments. You may want to restrict the use of this feature to a few

specific routines, to allow easier modification.

Writing TP Servers

60 IBM Communications Server for AIX APPC Programmer’s Guide

Chapter 3. APPC Control Verbs

This chapter contains a description of each APPC control verb. The following

information is provided for each verb:

v Definition of the verb.

v Structure defining the verb control block (VCB) used by the verb. The structure

is defined in the APPC header file /usr/include/sna/appc_c.h (AIX),

/opt/ibm/sna/include/appc_c.h (Linux), or sdk/winappc.h (Windows).

Parameters beginning with reserv are reserved.

v Parameters (VCB fields) supplied to and returned by APPC. For each parameter,

the following information is provided:

– Description

– Possible values

– Additional information
v Conversation state or states in which the verb can be issued.

v State or states to which the conversation can change upon return from the verb.

Conditions that do not cause a state change are not noted. For example,

parameter checks and state checks do not cause a state change.

v Additional information describing the use of the verb.

Most parameters supplied to and returned by APPC are hexadecimal values. To

simplify coding, these values are represented by meaningful symbolic constants

defined in the header file values_c.h, which is included by the APPC header file

appc_c.h. For example, the opcode parameter of the TP_STARTED verb is the

hexadecimal value represented by the symbolic constant AP_TP_STARTED. The file

values_c.h also includes definitions of parameter types such as AP_UINT16 that are

used in the APPC VCBs.

It is important that you use the symbolic constant and not the hexadecimal value

when setting values for supplied parameters, or when testing values of returned

parameters. This is because different operating systems store these values

differently in memory, so the value shown may not be in the format recognized by

your system.

WINDOWS

For Windows, the constants for supplied and returned parameter values are

defined in the Windows APPC header file winappc.h.

The notation “[MC_]verb” refers to both the mapped and basic form of an APPC

verb. For example, [MC_]SEND_DATA refers to the MC_SEND_DATA and

SEND_DATA verbs.

Note: The APPC VCBs contain many parameters marked as “reserved”; some of

these are used internally by the CS/AIX software, and others are not used in

this version but may be used in future versions. Your application must not

© Copyright IBM Corp. 2000, 2005 61

attempt to access any of these reserved parameters; instead, it must set the

entire contents of the VCB to zero to ensure that all of these parameters are

zero, before it sets other parameters that are used by the verb. This ensures

that CS/AIX will not misinterpret any of its internally-used parameters, and

also that your application will continue to work with future CS/AIX

versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

The control verbs are described in the following order:

 TP_STARTED

 TP_ENDED

 RECEIVE_ALLOCATE

AIX, LINUX

 GET_LU_STATUS

 GET_TP_PROPERTIES

AIX, LINUX

 SET_TP_PROPERTIES

TP_STARTED

The TP_STARTED verb is issued by the invoking TP. It notifies APPC that the TP

is starting, and specifies the local LU that it will use.

If the TP is using dependent LUs for multiple concurrent conversations, it must

issue a separate TP_STARTED verb (followed by [MC_]ALLOCATE) for each

conversation, to obtain a different LU for each conversation; this is because each

dependent LU can support only one conversation at a time.

In response to this verb, APPC generates a TP identifier for the invoking TP. This

identifier is a required parameter for subsequent APPC verbs issued by the

invoking TP.

VCB Structure: TP_STARTED

AIX, LINUX

The definition of the VCB structure for the TP_STARTED verb is as follows:

typedef struct tp_started

{

 AP_UINT16 opcode;

 unsigned char opext; /* Reserved */

APPC Control Verbs

62 IBM Communications Server for AIX APPC Programmer’s Guide

unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char lu_alias[8];

 unsigned char tp_id[8];

 unsigned char tp_name[64];

 unsigned char delay_start; /* Reserved */

 unsigned char enable_pool; /* Reserved */

 unsigned char pip_dlen; /* Reserved */

} TP_STARTED;

VCB Structure: TP_STARTED (Windows)

WINDOWS

The definition of the VCB structure for the TP_STARTED verb is as follows:

typedef struct tp_started

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char lu_alias[8];

 unsigned char tp_id[8];

 unsigned char tp_name[64];

} TP_STARTED;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_TP_STARTED

lu_alias

Alias by which the local LU is known to the local TP. This name must

match an LU alias established during configuration.

 This parameter is an 8-byte ASCII character string. It can consist of any of

the following characters:

v Uppercase letters

v Numerals 0–9

v Blanks

v Special characters $, #, %, and @

The first character of this string cannot be a blank (unless the whole string

consists of blanks).

 If the LU alias is shorter than eight characters, pad it on the right with

ASCII blanks (0x20).

 Depending on the configuration, you may be able to specify that the

application uses a default local LU (check with your System

Administrator); to do this, set lu_alias to a string of eight binary zeros. For

compatibility with other APPC implementations, CS/AIX also accepts a

string of eight ASCII blanks to indicate the default LU; however, new

applications should use binary zeros.

TP_STARTED

Chapter 3. APPC Control Verbs 63

tp_name

Name of the local TP. The first eight characters of this name are translated

into ASCII, and used by CS/AIX administration programs to identify the

TP in a list of running APPC TPs.

 This parameter is a 64-byte case-sensitive EBCDIC character string. The

tp_name parameter normally consists of characters from the type-AE

EBCDIC character set (unless it is the name of a service TP). These

characters are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes, use EBCDIC blanks (0x40) to pad it

on the right.

 The SNA convention for naming a service TP is an exception to the normal

tp_name parameter; the name consists of up to four characters, of which the

first character is a hexadecimal byte between 0x00 and 0x3F. The other

characters are from the EBCDIC AE character set.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

tp_id Identifier for the local TP.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_LU_ALIAS

The value of the lu_alias parameter was not valid.

AIX, LINUX

AP_INVALID_FORMAT

The reserved parameter format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

Using the synchronous APPC entry point, the application issued this

TP_STARTED

64 IBM Communications Server for AIX APPC Programmer’s Guide

verb within a callback routine. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: No state check errors occur for this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

TP_STARTED must be the first APPC verb issued by the invoking TP.

Consequently, no conversations are active and no conversation state exists.

A single APPC program can issue more than one TP_STARTED verb. Each verb

creates a logically different APPC TP, although they are all executing in the same

process.

State Change

Not applicable (no conversations have been started, so there is no conversation

state).

TP_ENDED

The TP_ENDED verb is issued by both the invoking and the invoked TPs. It

notifies APPC that the TP is ending. In response to this verb, APPC frees the

resources used by the TP.

If an APPC conversation is still in progress, TP_ENDED performs the function of

the [MC_]DEALLOCATE verb with dealloc_type set to AP_ABEND (for a mapped

conversation) or AP_ABEND_PROG (for a basic conversation). After this verb executes,

the TP identifier and conversation identifier are no longer valid; the TP cannot

issue any more APPC verbs for the conversation.

TP_STARTED

Chapter 3. APPC Control Verbs 65

VCB Structure: TP_ENDED

AIX, LINUX

The definition of the VCB structure for the TP_ENDED verb is as follows:

typedef struct tp_ended

{

 AP_UINT16 opcode;

 unsigned char opext; /* Reserved */

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 unsigned char type;

} TP_ENDED;

VCB Structure: TP_ENDED (Windows)

WINDOWS

The definition of the VCB structure for the TP_ENDED verb is as follows:

typedef struct tp_ended

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned char type;

} TP_ENDED;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_TP_ENDED

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb for the

invoking TP or by the RECEIVE_ALLOCATE verb for the invoked TP.

type Specifies how to end the TP. Possible values are:

AP_SOFT

If any APPC conversations are active, APPC performs the function

of the [MC_]DEALLOCATE verb for each conversation, in order to

inform the partner TP that the conversation has ended. The

TP_ENDED verb does not return until [MC_]DEALLOCATE has

completed.

AP_HARD

APPC closes all sessions used by the TP, and TP_ENDED returns

immediately.

TP_ENDED

66 IBM Communications Server for AIX APPC Programmer’s Guide

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

 APPC does not return a secondary_rc when the verb executes successfully.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_TP_ID

APPC did not recognize the tp_id as an assigned TP identifier.

AP_BAD_TYPE

The value of the type parameter was not valid.

AIX, LINUX

AP_INVALID_FORMAT

The reserved parameter format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: No state check errors occur for this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_INVALID_VERB

TP_ENDED

Chapter 3. APPC Control Verbs 67

AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation (or conversations, if the TP is involved in more than one) can be

in any state when the TP issues this verb.

State Change

After successful execution (primary_rc is AP_OK), there is no APPC state.

RECEIVE_ALLOCATE

The RECEIVE_ALLOCATE verb is issued by the invoked TP. It confirms that the

invoked TP is ready to begin a conversation with the invoking TP, which issued

the [MC_]ALLOCATE verb.

In response to this verb, APPC establishes a conversation between the two TPs,

generates a TP identifier for the invoked TP, and generates a conversation

identifier. These identifiers are required parameters for subsequent APPC verbs.

AIX, LINUX

The CS/AIX APPC implementation provides both the standard form of the

RECEIVE_ALLOCATE verb, as provided by other APPC implementations, and an

extended form that enables the application to receive incoming Attaches from a

particular local LU. The two forms are described together in this section, with

references to “standard form” and “extended form” where appropriate.

WINDOWS

The extended form of RECEIVE_ALLOCATE is not provided on Windows.

VCB Structure: RECEIVE_ALLOCATE

AIX, LINUX

The definition of the VCB structure for the RECEIVE_ALLOCATE verb is as

follows:

TP_ENDED

68 IBM Communications Server for AIX APPC Programmer’s Guide

typedef struct receive_allocate

{

 AP_UINT16 opcode;

 unsigned char opext; /* Reserved */

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_name[64];

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char sync_level;

 unsigned char conv_type;

 unsigned char user_id[10];

 unsigned char lu_alias[8];

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char reserv3[2];

 AP_UINT32 conv_group_id;

 unsigned char fqplu_name[17];

 unsigned char pip_incoming;

 unsigned char duplex_type;

 unsigned char reserv4[3];

 unsigned char password[10];

 unsigned char reserv5[2];

 unsigned char dload_id[8];

} RECEIVE_ALLOCATE;

VCB Structure: RECEIVE_ALLOCATE (Windows)

WINDOWS

The definition of the VCB structure for the RECEIVE_ALLOCATE verb is as

follows:

typedef struct receive_allocate

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_name[64];

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char sync_level;

 unsigned char conv_type;

 unsigned char user_id[10];

 unsigned char lu_alias[8];

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char reserv3[2];

 unsigned long conv_group_id;

 unsigned char fqplu_name[17];

 unsigned char reserv4[5];

} RECEIVE_ALLOCATE;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_RECEIVE_ALLOCATE (standard form)

RECEIVE_ALLOCATE

Chapter 3. APPC Control Verbs 69

AIX, LINUX

AP_RECEIVE_ALLOCATE_EX (extended form)

tp_name

Name of the local TP. APPC matches this name with the TP name specified

in the incoming Attach, which is generated by the [MC_]ALLOCATE verb

in the invoking TP. If the TP is to be automatically started by CS/AIX, this

TP name must match a TP name specified in the invokable TP data file.

 This parameter is a 64-byte case-sensitive EBCDIC character string. The

tp_name parameter normally consists of characters from the type-AE

EBCDIC character set. These characters are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes, use EBCDIC blanks (0x40) to pad it

on the right.

 The SNA convention for naming a service TP is an exception to the above;

the name consists of up to 4 characters, of which the first character is a

hexadecimal byte between 0x00 and 0x3F. The other characters are from the

EBCDIC AE character set.

AIX, LINUX

 The TP can specify that it will accept incoming Attaches for any TP name,

by setting this parameter to 64 EBCDIC spaces. For more information

about how CS/AIX routes incoming Attaches to TPs, see “Routing for

Incoming Attaches” on page 75.

lu_alias

For the standard form of RECEIVE_ALLOCATE, this parameter is

reserved; set it to a null string. If the TP is automatically started by

CS/AIX, the entry for this TP in the invokable TP data file must not

specify an LU alias.

 For the extended form of RECEIVE_ALLOCATE, specify the alias of the

local LU from which the TP will accept incoming Attaches. This is an

ASCII character string. If the TP is automatically started by CS/AIX, this

LU alias must match the LU alias specified for the TP in the invokable TP

data file.

 To indicate that the TP will accept incoming Attaches from any local LU,

set this parameter to eight ASCII spaces. If the TP is automatically started

by CS/AIX, the entry for this TP in the invokable TP data file must not

specify an LU alias.

 For more information about how CS/AIX routes incoming Attaches to TPs,

see “Routing for Incoming Attaches” on page 75.

RECEIVE_ALLOCATE

70 IBM Communications Server for AIX APPC Programmer’s Guide

dload_id

The identifier for the Attach provided by a TP server application. If the TP

does not cooperate with a TP server, set this field to all zeros.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

AIX, LINUX

tp_name

If the application specified a TP name consisting of all spaces, CS/AIX

returns the TP name that was supplied by the invoking TP on the

[MC_]ALLOCATE verb.

tp_id Identifier for the local TP.

conv_id

Conversation identifier.

 This value identifies the conversation APPC has established between the

two partner TPs.

sync_level

Synchronization level of the conversation.

 This parameter determines whether the TPs can request confirmation of

receipt of data and confirm receipt of data. Possible values are:

AP_CONFIRM_SYNC_LEVEL

The partner TPs can use confirmation processing in this

conversation.

AP_SYNCPT

The TPs can use LU 6.2 Syncpoint functions in this conversation.

For more information, see “Syncpoint Support” on page 22.

AP_NONE

Confirmation processing is not used in this conversation.

conv_type

Type of conversation chosen by the partner TP, using the

[MC_]ALLOCATE verb. Possible values are:

 AP_BASIC_CONVERSATION

 AP_MAPPED_CONVERSATION

user_id If the partner TP set [MC_]ALLOCATE’s security parameter to AP_PGM or

AP_SAME, this parameter contains the user ID sent from the partner TP. The

user ID is a type-AE EBCDIC character string, padded on the right with

RECEIVE_ALLOCATE

Chapter 3. APPC Control Verbs 71

EBCDIC spaces to 10 characters if necessary. If the partner TP set

[MC_]ALLOCATE’s security parameter to AP_NONE, this parameter is set to

10 EBCDIC blanks.

lu_alias

Alias by which the local LU is known to the local TP. This is an ASCII

character string.

plu_alias

Alias by which the partner LU (from which the incoming Allocate was

received) is known to the local TP. This is an ASCII character string.

mode_name

Mode name specified by the [MC_]ALLOCATE verb in partner TP. This is

the name of a set of networking characteristics defined during

configuration. This name is a type-A EBCDIC character string.

conv_group_id

The conversation group identifier of the session that the new conversation

uses.

fqplu_name

Fully qualified name of the partner LU.

 This parameter contains the network name, an EBCDIC period, and the

partner LU name. Each of the two names is an 8-byte EBCDIC character

string, which can consist of characters from the type-A EBCDIC character

set as follows:

v Uppercase letters

v Numerals 0–9

v Special characters $, #, and @

AIX, LINUX

pip_incoming

Specifies whether the partner TP supplied program initialization parameter

(PIP) data on the [MC_]ALLOCATE request. Possible values are:

AP_YES The partner TP supplied PIP data. The local TP should issue one of

the [MC_]RECEIVE verbs to receive the data; the first data record

received will be the PIP data.

AP_NO The partner TP did not supply PIP data.

duplex_type

Duplex type of the new conversation. Possible values are:

 AP_HALF_DUPLEX

 AP_FULL_DUPLEX

password

If the partner TP set [MC_]ALLOCATE’s security parameter to AP_PGM, this

parameter contains the password specified by the partner TP on the

[MC_]ALLOCATE verb. The password is a type-AE EBCDIC character

string, padded on the right with EBCDIC spaces to 10 characters if

necessary. If the partner TP set [MC_]ALLOCATE’s security parameter to

AP_NONE or AP_SAME, this parameter is set to 10 EBCDIC blanks.

 For security reasons, CS/AIX does not store the password after returning it

on the RECEIVE_ALLOCATE verb. If the application needs to check this

parameter, it must use the value returned on RECEIVE_ALLOCATE; the

RECEIVE_ALLOCATE

72 IBM Communications Server for AIX APPC Programmer’s Guide

password is not returned on any subsequent verbs. The application can

retrieve the user ID at any point during the conversation by issuing the

GET_TP_PROPERTIES verb.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AIX, LINUX

AP_BAD_DLOAD_ID

The value specified for the dload_id parameter was not recognized.

AP_INVALID_FORMAT

The format parameter was set to a value that was not valid.

AP_INVALID_LU_ALIAS

The lu_alias parameter contained a character that was not valid.

(This value is returned for the extended form of

RECEIVE_ALLOCATE, not for the standard form.)

AIX, LINUX

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_ALLOCATE_NOT_PENDING

APPC did not find an incoming Allocate (from the invoking TP) to

match the combination of TP name, LU alias, or both supplied by

the RECEIVE_ALLOCATE verb. The RECEIVE_ALLOCATE verb

RECEIVE_ALLOCATE

Chapter 3. APPC Control Verbs 73

waited for the incoming Allocate and eventually timed out. For

more information, see “Avoiding Waits” and “Routing for

Incoming Attaches” on page 75.

 This return code also occurs if you attempt to start a TP that is

defined in the invokable TP data file as nonqueued. A nonqueued

TP is started automatically by CS/AIX in response to an incoming

Attach; if you attempt to start it manually, the

RECEIVE_ALLOCATE verb fails because no incoming Attach is

waiting for the TP.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

This must be the first APPC verb issued by the invoked TP. The initial state is

Reset.

A single invoked TP can issue multiple RECEIVE_ALLOCATE verbs; each starts a

logically different APPC TP, although all of them are executing in the same

process.

State Change

If the verb executes successfully (primary_rc is AP_OK), the state changes to Receive

(for a half-duplex conversation) or Send_Receive (for a full-duplex conversation).

Avoiding Waits

If the invoked TP issues a RECEIVE_ALLOCATE verb and a corresponding

incoming Allocate (resulting from the [MC_]ALLOCATE verb issued by the

invoking TP) is not present, the invoked TP waits until the incoming Allocate

arrives or until the verb times out. The default is to wait indefinitely for an

incoming Allocate; this can be overridden by configuring the TP with a timeout of

0 (zero) (RECEIVE_ALLOCATE fails unless an incoming Allocate is already

waiting), or a finite value (RECEIVE_ALLOCATE fails unless an incoming Allocate

arrives within the specified time). For more information, refer to the

Communications Server for AIX Administration Guide.

RECEIVE_ALLOCATE

74 IBM Communications Server for AIX APPC Programmer’s Guide

Routing for Incoming Attaches

AIX, LINUX

If the application does not specify a dload_id on the RECEIVE_ALLOCATE, it can

use the tp_name and lu_alias parameters of RECEIVE_ALLOCATE to specify the

range of incoming Attaches that it will accept. By specifying a TP name, it

indicates that it will accept incoming Attaches from a partner TP only if the

partner TP specified this TP name on the [MC_]ALLOCATE verb; by using the

extended form of RECEIVE_ALLOCATE and specifying an LU alias, it indicates

that it will accept incoming Attaches only if they arrived at a particular CS/AIX

local LU. In either case, the TP can specify a blank name to indicate that it accepts

incoming Attaches for any TP name or from any local LU.

CS/AIX matches an incoming Attach to the RECEIVE_ALLOCATE verb in the

appropriate TP in the following order of precedence:

1. A TP that specifies a TP name and an LU alias, both of which match the

incoming Attach.

2. A TP that specifies a TP name matching the incoming Attach but does not

specify an LU alias.

3. A TP that specifies an LU alias matching the LU that received the incoming

Attach but does not specify a TP name.

4. A TP that does not specify a TP name or an LU alias. Only one TP on each

CS/AIX computer should use this feature; if two TPs both issue

RECEIVE_ALLOCATE verb with no TP name or LU alias, it is not possible to

determine which TP will receive the incoming Attach.

If the TP used a blank TP name, LU alias, or both to accept a range of incoming

Attaches, it can check the returned parameters on this verb to determine the TP

name specified on the incoming Attach, the LU alias of the LU that received it, or

both. This means that you can have a single TP to handle all incoming Attaches,

which performs the appropriate processing for each of several TP names, LUs or

both. If this TP receives an incoming Attach from an unrecognized or unauthorized

partner TP, it can reject the new conversation if necessary by issuing the

[MC_]DEALLOCATE verb with an appropriate dealloc_type parameter.

The TP accepting the incoming Attach may be an operator-started TP that has

already issued RECEIVE_ALLOCATE, or an automatically started TP listed in the

CS/AIX invokable TP data file. CS/AIX uses the TP name, LU alias, or both

specified in this file to determine whether to start the TP in order to match the

incoming Attach. For more information about the format of this file, refer to the

Communications Server for AIX Administration Guide. The TP name, LU alias, or both

specified by an automatically started TP on the RECEIVE_ALLOCATE verb must

match those specified in the file to ensure that CS/AIX can route the incoming

Attach correctly.

GET_LU_STATUS

AIX, LINUX

RECEIVE_ALLOCATE

Chapter 3. APPC Control Verbs 75

This verb is provided for Syncpoint TPs, which need to check whether they have

lost communications with their partner TPs so that they can resynchronize if

necessary.

Note: If two or more TPs are using the same combination of local LU and partner

LU, it is important that only one of them issues this verb. CS/AIX maintains

the zero sessions indicator for each pair of LUs independently of the TPs

using them, and resets it each time this verb is issued. This means that, if

the session count drops to 0 (zero) and then sessions are reactivated, and

two TPs subsequently issue GET_LU_STATUS, only the first TP will be

notified of the zero session count. If multiple TPs using the same LUs need

to check LU and session status, they should do so using NOF verbs; refer to

the Communications Server for AIX NOF Programmer’s Guide for more

information.

VCB Structure: GET_LU_STATUS

The definition of the VCB structure for the GET_LU_STATUS verb is as follows:

typedef struct get_lu_status

{

 AP_UINT16 opcode;

 unsigned char opext; /* Reserved */

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 unsigned char plu_alias[8];

 AP_UINT16 active_sess;

 unsigned char zero_sess;

 unsigned char reserv3[7];

} GET_LU_STATUS;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_GET_LU_STATUS

tp_id Identifier for the local TP.

 The value of this parameter is returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

plu_alias

Alias by which the partner LU is known to the local TP. This is an 8-byte

ASCII character string.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters.

primary_rc

AP_OK

active_sess

Specifies the number of sessions currently active between the local LU and

the specified partner LU.

GET_LU_STATUS

76 IBM Communications Server for AIX APPC Programmer’s Guide

zero_sess

Specifies whether the number of active sessions between the two LUs has

dropped to 0 (zero) at any time since the last GET_LU_STATUS verb was

issued. Possible values are:

AP_YES The session count has dropped to 0 (zero).

AP_NO At least one session has been active at all times since the verb was

last issued.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_FORMAT

The reserved parameter format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine using the

synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: No state check errors occur for this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible values are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation can be in any state except Reset when the TP issues this verb.

GET_LU_STATUS

Chapter 3. APPC Control Verbs 77

State Change

The conversation state does not change for this verb.

GET_TP_PROPERTIES

The GET_TP_PROPERTIES verb returns information about the attributes of the

local TP and of the Logical Unit of Work (LUW) in which the TP is participating. A

Logical Unit of Work is a transaction between APPC TPs to accomplish a particular

task; it may involve two communicating TPs or a sequence of conversations

between several TPs.

VCB Structure: GET_TP_PROPERTIES

AIX, LINUX

The definition of the VCB structure for the GET_TP_PROPERTIES verb is as

follows:

typedef struct get_tp_properties

{

 AP_UINT16 opcode;

 unsigned char opext; /* Reserved */

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 unsigned char tp_name[64];

 unsigned char lu_alias[8];

 LUWID_OVERLAY luw_id;

 unsigned char fqlu_name[17];

 unsigned char reserv3[9];

 unsigned char verified;

 unsigned char user_id[10];

 LUWID_OVERLAY prot_luw_id;

} GET_TP_PROPERTIES;

typedef struct luwid_overlay

{

 unsigned char fq_length;

 unsigned char fq_luw_name[17];

 unsigned char instance[6];

 unsigned char sequence[2];

} LUWID_OVERLAY;

VCB Structure: GET_TP_PROPERTIES (Windows)

WINDOWS

The definition of the VCB structure for the GET_TP_PROPERTIES verb is as

follows:

typedef struct get_tp_properties

{

 unsigned short opcode;

 unsigned char reserv2[2];

 unsigned short primary_rc;

 unsigned long secondary_rc;

GET_LU_STATUS

78 IBM Communications Server for AIX APPC Programmer’s Guide

unsigned char tp_id[8];

 unsigned char tp_name[64];

 unsigned char lu_alias[8];

 unsigned char luw_id[26];

 unsigned char fqlu_name[17];

 unsigned char reserv3[10];

 unsigned char user_id[10];

} GET_TP_PROPERTIES;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_GET_TP_PROPERTIES

tp_id Identifier for the local TP.

 The value of this parameter is returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

tp_name

TP name of the local TP, as specified on the TP_STARTED or

RECEIVE_ALLOCATE verb. This is a 64-byte EBCDIC character string.

lu_alias

Alias by which the local LU is known to the local TP, as specified on the

TP_STARTED or RECEIVE_ALLOCATE verb. This is an 8-byte ASCII

character string.

AIX, LINUX

luw_id The unprotected Logical Unit of Work Identifier (LUWID) for the

transaction in which the TP is participating. The LUWID is assigned on

behalf of the TP that initiates the transaction, and enables you to correlate

the different conversations that make up the transaction. The unprotected

LUWID is used to correlate unprotected conversations (those with a

sync_level of AP_NONE or AP_CONFIRM_SYNC_LEVEL); for TPs that use Syncpoint

processing, there is an additional protected LUWID for conversations with

a sync_level of AP_SYNCPT.

 The LUWID consists of the following parameters:

luw_id.fq_length

The length (1–17 bytes) of the fully qualified LU name associated with the

Logical Unit of Work (the LU name itself is specified by the

luw_id.fq_luw_name parameter).

GET_TP_PROPERTIES

Chapter 3. APPC Control Verbs 79

luw_id.fq_luw_name

The fully qualified LU name associated with the Logical Unit of Work. This

name is a 17-byte EBCDIC string, padded on the right with EBCDIC

spaces. It consists of a network ID of 1–8 A-string characters, an EBCDIC

dot (period) character, and an LU name of 1–8 A-string characters.

luw_id.instance

The instance number associated with the Logical Unit of Work (a 6-byte

binary number).

luw_id.sequence

The sequence number of the current segment of the Logical Unit of Work

(a 2-byte binary number).

WINDOWS

luw_id The Logical Unit of Work Identifier (LUWID) for the transaction in which

the TP is participating. This is assigned on behalf of the TP that initiates

the transaction, and enables you to correlate the different conversations

that make up the transaction.

 The LUWID is a 26-byte string consisting of the parameters shown in

Table 9:

 Table 9. LUWID Parameters

Parameter Length Description

fq_length 1 The length (1–17 bytes) of the fully-qualified LU name

associated with the Logical Unit of Work (the LU name

itself is specified by the fq_luw_name parameter)

fq_luw_name 1–17 The fully-qualified LU name associated with the Logical

Unit of Work. This name is an EBCDIC string, consisting

of a network ID of 1–8 A-string characters, an EBCDIC

dot (period) character, and an LU name of 1–8 A-string

characters. This name is not space-padded; the fq_length

parameter specifies the number of bytes in the name, and

the instance parameter follows immediately after this

number of bytes.

instance 6 The instance number associated with the Logical Unit of

Work (a 6-byte binary number).

sequence 2 The sequence number of the current segment of the

Logical Unit of Work (a 2-byte binary number); this is

always set to 1.

If the fq_length parameter indicates that the LU name is shorter than 17

bytes, the total length of the preceding parameters will be shorter than 26

bytes; the remaining bytes are filled with EBCDIC spaces.

fqlu_name

The fully qualified LU name of the local LU associated with the TP. This

name is a 17-byte EBCDIC string, padded on the right with EBCDIC

spaces. It consists of a network ID of 1–8 A-string characters, an EBCDIC

dot (period) character, and an LU name of 1–8 A-string characters.

AIX, LINUX

GET_TP_PROPERTIES

80 IBM Communications Server for AIX APPC Programmer’s Guide

verified Specifies whether conversation security has been verified for this

conversation. Possible values are:

AP_YES Conversation security has been verified. The invoking TP supplied

a user ID (returned as the user_id parameter on this verb), and

either supplied a valid password or indicated that conversation

security had already been verified.

AP_NO Conversation security has not been verified. The invoked TP does

not require a user ID and password.

user_id The user ID associated with the TP. This is a 10-byte type-AE EBCDIC

string, padded on the right with EBCDIC spaces if the ID is shorter than 10

bytes. The password is not returned on this verb; it is returned on the

RECEIVE_ALLOCATE verb.

AIX, LINUX

prot_luw_id

The protected Logical Unit of Work Identifier (LUWID) for the transaction

in which the TP is participating.

 The protected LUWID is used to correlate protected conversations (those

with a sync_level of AP_SYNCPT). It consists of the following parameters:

prot_luw_id.fq_length

The length (1–17 bytes) of the fully qualified LU name associated with the

Logical Unit of Work (the LU name itself is specified by the

prot_luw_id.fq_luw_name parameter)

prot_luw_id.fq_luw_name

The fully qualified LU name associated with the Logical Unit of Work. This

name is a 17-byte EBCDIC string, padded on the right with EBCDIC

spaces. It consists of a network ID of 1–8 A-string characters, an EBCDIC

dot (period) character, and an LU name of 1–8 A-string characters.

prot_luw_id.instance

The instance number associated with the Logical Unit of Work (a 6-byte

binary number).

prot_luw_id.sequence

The sequence number of the current segment of the Logical Unit of Work

(a 2-byte binary number).

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

GET_TP_PROPERTIES

Chapter 3. APPC Control Verbs 81

secondary_rc

Possible values are:

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AIX, LINUX

AP_INVALID_FORMAT

The format parameter was set to a value that was not valid.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: No state check errors occur for this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible values are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation can be in any state except Reset when the TP issues this verb.

State Change

The conversation state does not change for this verb.

SET_TP_PROPERTIES

AIX, LINUX

GET_TP_PROPERTIES

82 IBM Communications Server for AIX APPC Programmer’s Guide

The SET_TP_PROPERTIES verb enables the application to set properties of the

local TP, which are used when allocating new conversations for the TP. It provides

access to the following properties:

v The user ID to be used when allocating a new conversation specifying “already

verified” security. In general, a TP uses “already verified” security when it has

been invoked by another TP specifying a valid user ID and password, and is

now invoking a third TP as part of the same transaction; in this case, APPC

sends the user ID from the original TP without requiring a password.

Alternatively, if the TP was not invoked by another TP, APPC uses the AIX or

Linux user name with which the application is running as the user ID for

conversation security.

However, if the TP obtained and verified the user ID and password by another

means (for example, if it requires the user to type in a user ID and password

explicitly before allocating the conversation), it needs to provide the user ID to

APPC using SET_TP_PROPERTIES before invoking another TP using “already

verified” security.

v Identifiers for the Logical Unit of Work in which the TP is participating. A

Logical Unit of Work is a transaction between APPC TPs to accomplish a

particular task; it may involve two communicating TPs, or a sequence of

conversations between several TPs. There are two Logical Unit of Work

Identifiers (LUWIDs) associated with the TP: the unprotected LUWID, which is

used for conversations with a sync_level of AP_NONE or AP_CONFIRM_SYNC_LEVEL,

and the protected LUWID, which is used for conversations with a sync_level of

AP_SYNCPT.

VCB Structure: SET_TP_PROPERTIES

The definition of the VCB structure for the SET_TP_PROPERTIES verb is as

follows:

typedef struct set_tp_properties

{

 AP_UINT16 opcode;

 unsigned char opext; /* Reserved */

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 unsigned char set_prot_id;

 unsigned char new_prot_id;

 LUWID_OVERLAY prot_id;

 unsigned char set_unprot_id;

 unsigned char new_unprot_id;

 LUWID_OVERLAY unprot_id;

 unsigned char set_user_id;

 unsigned char set_password;

 unsigned char user_id[10];

 unsigned char new_password[10];

} SET_TP_PROPERTIES;

typedef struct luwid_overlay

{

 unsigned char fq_length;

 unsigned char fq_luw_name[17];

 unsigned char instance[6];

 unsigned char sequence[2];

} LUWID_OVERLAY;

Supplied Parameters

The TP supplies the following parameters to APPC:

SET_TP_PROPERTIES

Chapter 3. APPC Control Verbs 83

opcode AP_SET_TP_PROPERTIES

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

set_prot_id

Specifies whether APPC is to modify the protected Logical Unit of Work

identifier. Possible values are:

AP_YES Modify the protected LUWID for this TP.

AP_NO Leave the protected LUWID unchanged.

new_prot_id

Specifies whether APPC should generate a new protected Logical Unit of

Work identifier, or to use the one specified on this verb. This parameter is

reserved if set_prod_id is set to AP_NO. Possible values are:

AP_YES Generate a new protected LUWID.

AP_NO Set the TP’s protected LUWID to the one supplied on this verb.

prot_id If set_prot_id is set to AP_YES and new_prot_id is set to AP_NO, this structure

specifies the new protected LUWID for the TP; otherwise this structure is

reserved. The structure contains the following parameters:

prot_id.fq_length

The length (1–17 bytes) of the fully qualified LU name associated

with the Logical Unit of Work (the LU name itself is specified by

the following parameter)

prot_id.fq_luw_name

The fully qualified LU name associated with the Logical Unit of

Work. This name is a 17-byte EBCDIC string, padded on the right

with EBCDIC spaces. It consists of a network ID of 1–8 A-string

characters, an EBCDIC dot (period) character, and an LU name of

1–8 A-string characters.

prot_id.instance

The instance number associated with the Logical Unit of Work (a

6-byte binary number).

prot_id.sequence

The sequence number of the current segment of the Logical Unit of

Work (a 2-byte binary number).

set_unprot_id

Specifies whether APPC is to modify the unprotected Logical Unit of Work

identifier. Possible values are:

AP_YES Modify the unprotected LUWID for this TP.

AP_NO Leave the unprotected LUWID unchanged.

new_unprot_id

Specifies whether APPC should generate a new unprotected Logical Unit

of Work identifier, or to use the one specified on this verb. This parameter

is reserved if set_unprot_id is set to AP_NO. Possible values are:

AP_YES Generate a new unprotected LUWID.

AP_NO Set the TP’s unprotected LUWID to the one supplied on this verb.

SET_TP_PROPERTIES

84 IBM Communications Server for AIX APPC Programmer’s Guide

unprot_id

If set_unprot_id is set to AP_YES and new_unprot_id is set to AP_NO, this

structure specifies the new unprotected LUWID for the TP; otherwise this

structure is reserved. The structure contains the following parameters:

unprot_id.fq_length

The length (1–17 bytes) of the fully qualified LU name associated

with the Logical Unit of Work (the LU name itself is specified by

the following parameter)

unprot_id.fq_luw_name

The fully qualified LU name associated with the Logical Unit of

Work. This name is a 17-byte EBCDIC string, padded on the right

with EBCDIC spaces. It consists of a network ID of 1–8 A-string

characters, an EBCDIC dot (period) character, and an LU name of

1–8 A-string characters.

unprot_id.instance

The instance number associated with the Logical Unit of Work (a

6-byte binary number).

unprot_id.sequence

The sequence number of the current segment of the Logical Unit of

Work (a 2-byte binary number).

set_user_id

Specifies whether APPC is to modify the user ID. Possible values are:

AP_YES Modify the user ID for this TP.

AP_NO Leave the user ID unchanged.

set_password

Specifies whether APPC should modify the password associated with the

new_password parameter. Possible values are:

AP_YES APPC should modify the password.

AP_NO APPC should not modify the password.

user_id If set_user_id is set to AP_YES, this parameter specifies the new user ID;

otherwise it is reserved.

new_password

If set_password is set to AP_YES, this parameter specifies the new password;

otherwise it is reserved.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

prot_id If set_prot_id and new_prot_id are both set to AP_YES, this structure specifies

the new protected LUWID for the TP, as generated by APPC. The structure

contains the following parameters:

SET_TP_PROPERTIES

Chapter 3. APPC Control Verbs 85

prot_id.fq_length

The length (1–17 bytes) of the fully qualified LU name associated with the

Logical Unit of Work (the LU name itself is specified by the

prot_id.fq_luw_name parameter)

prot_id.fq_luw_name

The fully qualified LU name associated with the Logical Unit of Work. This

name is a 17-byte EBCDIC string, padded on the right with EBCDIC

spaces. It consists of a network ID of 1–8 A-string characters, an EBCDIC

dot (period) character, and an LU name of 1–8 A-string characters.

prot_id.instance

The instance number associated with the Logical Unit of Work (a 6-byte

binary number).

prot_id.sequence

The sequence number of the current segment of the Logical Unit of Work

(a 2-byte binary number).

unprot_id

If set_unprot_id and new_unprot_id are both set to AP_YES, this structure

specifies the new unprotected LUWID for the TP, as generated by APPC.

The structure contains the following parameters:

unprot_id.fq_length

The length (1–17 bytes) of the fully qualified LU name associated with the

Logical Unit of Work (the LU name itself is specified by the

unprot_id.fq_luw_name parameter)

unprot_id.fq_luw_name

The fully qualified LU name associated with the Logical Unit of Work. This

name is a 17-byte EBCDIC string, padded on the right with EBCDIC

spaces. It consists of a network ID of 1–8 A-string characters, an EBCDIC

dot (period) character, and an LU name of 1–8 A-string characters.

unprot_id.instance

The instance number associated with the Logical Unit of Work (a 6-byte

binary number).

unprot_id.sequence

The sequence number of the current segment of the Logical Unit of Work

(a 2-byte binary number).

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_FORMAT

The reserved parameter format was set to a nonzero value.

SET_TP_PROPERTIES

86 IBM Communications Server for AIX APPC Programmer’s Guide

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: No state check errors occur for this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible values are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation can be in any state when the TP issues this verb.

State Change

The conversation state does not change for this verb.

Usage and Restrictions

For TPs that use Syncpoint functions, when the local application changes the

protected LUWID, the Syncpoint Manager is responsible for sending the

appropriate PS header to the partner application to inform it of the new protected

LUWID. Similarly, when the Syncpoint Manager receives a PS header containing a

new protected LUWID, it must issue SET_TP_PROPERTIES to inform the local LU

of the new LUWID.

SET_TP_PROPERTIES

Chapter 3. APPC Control Verbs 87

SET_TP_PROPERTIES

88 IBM Communications Server for AIX APPC Programmer’s Guide

Chapter 4. APPC Conversation Verbs

This chapter contains a description of each APPC conversation verb. The following

information is provided for each verb:

v Definition of the verb.

v Structure defining the verb control block (VCB) used by the verb. The structure

is defined in the APPC header file /usr/include/sna/appc_c.h(AIX),

/opt/ibm/sna/include/appc_c.h(Linux), or sdk/winappc.h (Windows). Parameters

beginning with reserv are reserved.

v Parameters (VCB fields) supplied to and returned by APPC. For each parameter,

the following information is provided:

– Description

– Possible values

– Additional information
v Conversation state or states in which the verb can be issued.

v State or states to which the conversation can change upon return from the verb.

Conditions that do not cause a state change are not noted. For example,

parameter checks and state checks do not cause a state change.

v Additional information describing the use of the verb.

Most parameters supplied to and returned by APPC are hexadecimal values. To

simplify coding, these values are represented by meaningful symbolic constants

defined in the header file values_c.h, which is included by the APPC header file

appc_c.h. For example, the opcode parameter of the MC_SEND_DATA verb is the

hexadecimal value represented by the symbolic constant AP_M_SEND_DATA.

It is important that you use the symbolic constant and not the hexadecimal value

when setting values for supplied parameters, or when testing values of returned

parameters. This is because different AIX systems store these values differently in

memory, so the value shown may not be in the format recognized by your system.

WINDOWS

For Windows, the constants for supplied and returned parameter values are

defined in the Windows APPC header file winappc.h.

The notation “[MC_]verb” refers to both the mapped and basic form of an APPC

verb. For example, [MC_]SEND_DATA refers to the MC_SEND_DATA and

SEND_DATA verbs.

Note: The APPC VCBs contain many parameters marked as “reserved”; some of

these are used internally by the CS/AIX software, and others are not used in

this version but may be used in future versions. Your application must not

attempt to access any of these reserved parameters; instead, it must set the

entire contents of the VCB to zero to ensure that all of these parameters are

zero, before it sets other parameters that are used by the verb. This ensures

© Copyright IBM Corp. 2000, 2005 89

that CS/AIX will not misinterpret any of its internally-used parameters, and

also that your application will continue to work with future CS/AIX

versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

The conversation verbs are described in the following order:

GET_TYPE

[MC_]ALLOCATE

[MC_]CONFIRM

[MC_]CONFIRMED

[MC_]DEALLOCATE

[MC_]FLUSH

[MC_]GET_ATTRIBUTES

[MC_]PREPARE_TO_RECEIVE

[MC_]RECEIVE_AND_POST

[MC_]RECEIVE_AND_WAIT

[MC_]RECEIVE_IMMEDIATE

[MC_]RECEIVE_EXPEDITED_DATA

[MC_]REQUEST_TO_SEND

[MC_]SEND_CONVERSATION

[MC_]SEND_DATA

[MC_]SEND_ERROR

[MC_]SEND_EXPEDITED_DATA

[MC_]TEST_RTS

[MC_]TEST_RTS_AND_POST

GET_TYPE

The GET_TYPE verb returns the conversation type (basic or mapped) of a

particular conversation, and whether the conversation operates in full-duplex or

half-duplex mode.

With this information, the TP can determine the correct verbs to issue on this

conversation.

APPC Conversation Verbs

90 IBM Communications Server for AIX APPC Programmer’s Guide

VCB Structure: GET_TYPE

AIX, LINUX

The definition of the VCB structure for the GET_TYPE verb is as follows:

typedef struct get_type

{

 AP_UINT16 opcode;

 unsigned char opext; /* Reserved */

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char conv_type;

 unsigned char duplex_type;

} GET_TYPE;

VCB Structure: GET_TYPE (Windows)

WINDOWS

The definition of the VCB structure for the GET_TYPE verb is as follows:

typedef struct get_type

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char conv_type;

} GET_TYPE;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_GET_TYPE

format If you are building a new APPC application, or recompiling an existing

APPC application with the current APPC header file, you must set this

parameter to 1. (Existing applications built with earlier versions of the

header file, in which this parameter was reserved, will still operate

unchanged and there is no need to rebuild them.)

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Identifier for the conversation this TP is inquiring about.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

GET_TYPE

Chapter 4. APPC Conversation Verbs 91

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

conv_type

Conversation type of the conversation identified by conv_id.

 Possible values are:

 AP_BASIC_CONVERSATION

 AP_MAPPED_CONVERSATION

duplex_type

Duplex type of the conversation identified by conv_id.

 Possible values are:

 AP_HALF_DUPLEX

 AP_FULL_DUPLEX

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AIX, LINUX

AP_INVALID_FORMAT

The format parameter was set to a value that was not valid.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: No state check errors occur for this verb.

GET_TYPE

92 IBM Communications Server for AIX APPC Programmer’s Guide

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation can be in any state except Reset when the TP issues this verb.

State Change

The conversation state does not change for this verb.

MC_ALLOCATE and ALLOCATE

The MC_ALLOCATE or ALLOCATE verb is issued by the invoking TP. This verb

allocates a session between the local LU and partner LU and (in conjunction with

the RECEIVE_ALLOCATE verb) establishes a conversation between the invoking

TP and the invoked TP.

The MC_ALLOCATE verb establishes a mapped conversation. The ALLOCATE

verb can establish either a basic or mapped conversation. The use of the

ALLOCATE verb to establish a mapped conversation enables the TP to use basic

conversation verbs to communicate with a mapped-conversation partner TP.

Upon successful execution of this verb, APPC generates a conversation identifier

(conv_id). This identifier is a required parameter for all other APPC conversation

verbs.

The [MC_]ALLOCATE request will not usually be sent to the partner LU

immediately; it will be queued at the local LU until a full buffer can be sent. This

means that errors in allocating a conversation are usually not reported on the

[MC_]ALLOCATE verb but on a subsequent verb.

VCB Structure: MC_ALLOCATE

AIX, LINUX

GET_TYPE

Chapter 4. APPC Conversation Verbs 93

The definition of the VCB structure for the MC_ALLOCATE verb is as follows:

typedef struct mc_allocate

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char reserv3;

 unsigned char sync_level;

 unsigned char reserv4[2];

 unsigned char rtn_ctl;

 unsigned char duplex_type;

 AP_UINT32 conv_group_id;

 AP_UINT32 sense_data;

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char tp_name[64];

 unsigned char security;

 unsigned char reserv6[11];

 unsigned char pwd[10];

 unsigned char user_id[10];

 AP_UINT16 pip_dlen;

 unsigned char *pip_dptr;

 unsigned char reserv6a;

 unsigned char fqplu_name[17];

 unsigned char reserv7[8];

} MC_ALLOCATE;

VCB Structure: ALLOCATE

The definition of the VCB structure for the ALLOCATE verb is as follows:

typedef struct allocate

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char conv_type;

 unsigned char sync_level;

 unsigned char reserv3[2];

 unsigned char rtn_ctl;

 unsigned char duplex_type;

 AP_UINT32 conv_group_id;

 AP_UINT32 sense_data;

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char tp_name[64];

 unsigned char security;

 unsigned char reserv5[11];

 unsigned char pwd[10];

 unsigned char user_id[10];

 AP_UINT16 pip_dlen;

 unsigned char *pip_dptr;

 unsigned char reserv5a;

 unsigned char fqplu_name[17];

 unsigned char reserv6[8];

} ALLOCATE;

MC_ALLOCATE and ALLOCATE

94 IBM Communications Server for AIX APPC Programmer’s Guide

VCB Structure: MC_ALLOCATE (Windows)

WINDOWS

The definition of the VCB structure for the MC_ALLOCATE verb is as follows:

typedef struct mc_allocate

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char reserv3;

 unsigned char sync_level;

 unsigned char reserv4[2];

 unsigned char rtn_ctl;

 unsigned char reserv5;

 unsigned long conv_group_id;

 unsigned long sense_data;

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char tp_name[64];

 unsigned char security;

 unsigned char reserv6[11];

 unsigned char pwd[10];

 unsigned char user_id[10];

 unsigned short pip_dlen;

 unsigned char far *pip_dptr;

 unsigned char reserv7;

 unsigned char fqplu_name[17];

 unsigned char reserv8[8];

} MC_ALLOCATE;

VCB Structure: ALLOCATE (Windows)

The definition of the VCB structure for the ALLOCATE verb is as follows:

typedef struct allocate

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char conv_type;

 unsigned char sync_level;

 unsigned char reserv3[2];

 unsigned char rtn_ctl;

 unsigned char reserv4;

 unsigned long conv_group_id;

 unsigned long sense_data;

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char tp_name[64];

 unsigned char security;

 unsigned char reserv5[11];

 unsigned char pwd[10];

 unsigned char user_id[10];

 unsigned short pip_dlen;

 unsigned char far *pip_dptr;

MC_ALLOCATE and ALLOCATE

Chapter 4. APPC Conversation Verbs 95

unsigned char reserv7;

 unsigned char fqplu_name[17];

 unsigned char reserv8[8];

} ALLOCATE;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_ALLOCATE

For the MC_ALLOCATE verb.

AP_B_ALLOCATE

For the ALLOCATE verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_ALLOCATE verb.

AP_BASIC_CONVERSATION

For the ALLOCATE verb.

If the verb is being issued as a non-blocking verb, combine the value above

(using a logical OR) with the value AP_NON_BLOCKING.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb for an

invoking TP, or by the RECEIVE_ALLOCATE verb for an invoked TP.

conv_type

Type of conversation to allocate. This parameter is used only by the

ALLOCATE verb.

 Possible values are:

 AP_BASIC_CONVERSATION

 AP_MAPPED_CONVERSATION

If the ALLOCATE verb establishes a mapped conversation, the local TP

must issue basic-conversation verbs and provide its own mapping layer to

convert data records to logical records and logical records to data records.

The partner TP can issue basic-conversation verbs and provide the

mapping layer, or it can use mapped-conversation verbs (if the

implementation of APPC the partner TP is using supports

mapped-conversation verbs). For further information, refer to the IBM

publication Systems Network Architecture Format and Protocol Reference

Manual: Architecture Logic for LU Type 6.2.

sync_level

Synchronization level of the conversation.

 This parameter determines whether the TPs can request confirmation of

receipt of data and confirm receipt of data. Possible values are:

AP_NONE

Confirmation processing will not be used in this conversation.

AP_CONFIRM_SYNC_LEVEL

The TPs can use confirmation processing in this conversation. This

MC_ALLOCATE and ALLOCATE

96 IBM Communications Server for AIX APPC Programmer’s Guide

value can be used only in a half-duplex conversation; confirmation

processing is not supported in a full-duplex conversation.

AIX, LINUX

AP_SYNCPT

The TPs can use LU 6.2 Syncpoint functions in this conversation.

Set this value only if you have a Syncpoint Manager (SPM) and

Conversation Protected Resource Manager (C-PRM) in addition to

the standard CS/AIX product. For more information see

“Syncpoint Support” on page 22.

rtn_ctl Specifies when the local LU acting on a session request from the local TP is

to return control to the local TP. For information about sessions, see

“LU-to-LU Sessions” on page 57. Whatever the value of this parameter, the

LU returns control to the TP immediately if it encounters certain errors

such as a zero session limit (which mean that a session will never be

allocated).

 Possible values are:

AP_IMMEDIATE

v If the auto_act parameter of the DEFINE_MODE verb or the

define_mode command is set to 0 (zero), CS/AIX does not

attempt to activate a session or sessions. If a contention-winner

session is immediately available (active and not being used by

another conversation), the LU allocates this conversation to it

and returns control to the TP immediately. If a

contention-winner session is not immediately available, control is

returned to the TP immediately with a primary_rc of

AP_UNSUCCESSFUL.

v If the auto_act parameter of the DEFINE_MODE verb or the

define_mode command is set to any other value, CS/AIX will

attempt to activate a session or sessions.

For more information, refer to the description of the

DEFINE_MODE verb in the Communications Server for AIX NOF

Programmer’s Guide or define_mode command in the

Communications Server for AIX Administration Command Reference.

AP_WHEN_SESSION_ALLOCATED

If a session is immediately available (active and not being used by

another conversation), the LU allocates this conversation to it. If a

session is not immediately available but one can be activated, the

LU activates it and allocates the conversation to it; if it cannot

activate a session, it waits for one to become free.

AP_WHEN_SESSION_FREE

If a session is immediately available (active and not being used by

another conversation), the LU allocates this conversation to it. If a

session is not immediately available but one can be activated, the

LU activates it and allocates the conversation to it. If no active

session is free and another session cannot be activated, control is

returned to the TP with the primary return code

AP_ALLOCATION_ERROR and secondary return code

MC_ALLOCATE and ALLOCATE

Chapter 4. APPC Conversation Verbs 97

AP_ALLOCATION_FAILURE_RETRY. This is similar to

AP_WHEN_SESSION_ALLOCATED except that the LU will not wait for a

session to become free.

AP_WHEN_CONWINNER_ALLOC

As for AP_WHEN_SESSION_ALLOCATED, except that the LU always

allocates the conversation to a contention-winner session; it will

not use a contention-loser session.

AP_WHEN_CONLOSER_ALLOC

As for AP_WHEN_SESSION_ALLOCATED, except that the LU always

allocates the conversation to a contention-loser session; it will not

use a contention-winner session.

AP_WHEN_CONV_GROUP_ALLOC

Use this value if you want the new conversation to use the same

session as a previous conversation; set the conv_group_id parameter

to the conversation group ID of the previous conversation, which

was returned on the [MC_]ALLOCATE or RECEIVE_ALLOCATE

verb.

 If the session identified by the conv_group_id parameter is

immediately available (active and not being used by another

conversation), the LU allocates this conversation to it and returns

control to the TP immediately. If the session is being used by

another conversation, the LU waits for it to become free. If the

session is no longer active, control is returned to the TP with the

primary return code AP_ALLOCATION_ERROR and secondary return

code AP_ALLOCATION_FAILURE_NO_RETRY.

duplex_type

Duplex type of the new conversation. See “Half-Duplex and Full-Duplex

Conversations” on page 4 for more details of the differences between

full-duplex and half-duplex conversations.

 Possible values are:

AP_HALF_DUPLEX

Half-duplex conversation.

AP_FULL_DUPLEX

Full-duplex conversation.

conv_group_id

Conversation group ID of the requested session for the conversation. This

parameter is used only if rtn_ctl is set to AP_WHEN_CONV_GROUP_ALLOC; set it

to binary zeros for any other value of rtn_ctl.

plu_alias

Alias by which the partner LU is known to the local TP.

 This parameter is an 8-byte ASCII character string, padded on the right

with ASCII blanks (0x20) if the alias is shorter than eight characters. It can

consist of any of the following characters:

v Uppercase letters

v Numerals 0–9

v Blanks

v Special characters $, #, %, and @

The first character of this string cannot be a blank.

MC_ALLOCATE and ALLOCATE

98 IBM Communications Server for AIX APPC Programmer’s Guide

To identify the LU by its LU name instead of its LU alias, set this

parameter to eight binary zeros, and specify the LU name in the fqplu_name

parameter.

mode_name

Name of a set of networking characteristics defined during configuration.

 This parameter is an 8-byte EBCDIC character string. It can consist of

characters from the type-A EBCDIC character set. These characters are as

follows:

v Uppercase letters

v Numerals 0–9

v Special characters $, #, and @

The first character in the string must be an uppercase letter, or can be # for

one of the SNA-defined modes such as #INTER. For information about

SNA-defined modes, see the Communications Server for AIX Administration

Guide. If the mode name is fewer than eight characters long, pad it on the

right with EBCDIC blanks (0x40).

 A mode name can also be all EBCDIC blanks (0x40).

 In a mapped conversation, the name cannot be SNASVCMG (a reserved

mode name used internally by APPC). Using this name in a basic

conversation is not recommended.

 If the specified mode name does not match either an SNA-defined mode or

a mode defined in the CS/AIX configuration, CS/AIX creates a new mode

based on the default specified in the configuration (or on the SNA-defined

mode with a blank mode name, if no default mode is defined).

tp_name

Name of the invoked TP.

 The value of tp_name specified by the [MC_]ALLOCATE verb in the

invoking TP must match the value of tp_name specified by the

RECEIVE_ALLOCATE verb in the invoked TP.

 This parameter is a 64-byte EBCDIC character string; it is case-sensitive.

The tp_name parameter normally consists of characters from the type-AE

EBCDIC character set (except when naming a service TP). These characters

are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes, use EBCDIC blanks (0x40) to pad it

on the right.

 The SNA convention for naming a service TP is an exception to the above;

the name consists of up to four characters, of which the first character is a

hexadecimal byte between 0x00 and 0x3F. The other characters are from the

EBCDIC AE character set.

security

Specifies the information the partner LU requires in order to validate

access to the invoked TP.

 Based on the conversation security established for the invoked TP during

configuration, use one of the following values:

MC_ALLOCATE and ALLOCATE

Chapter 4. APPC Conversation Verbs 99

AP_NONE

The invoked TP does not use conversation security. (If you use this

value, the invoked TP must be configured not to use conversation

security.)

AP_PGM The invoked TP uses conversation security and thus requires a user

ID and password. Supply this information through the user_id and

pwd parameters.

AP_PGM_STRONG

The invoked TP uses conversation security and thus requires a user

ID and password. In addition, setting AP_PGM_STRONG stipulates that

CS/AIX encrypts the password when sending it across the

network. Supply the user ID and password through the user_id and

pwd parameters.

AP_SAME

Use this value when your TP was invoked by another TP, using a

valid user ID and password, and is now invoking a third TP that

also requires conversation security. (The situation in which one TP

invokes a second TP which then invokes a third TP is illustrated in

“Multiple Conversations” on page 3.) This value tells the third TP

(the invoked TP) that conversation security has already been

verified for the first invoking TP.

If you use this value, the tp_id supplied on this [MC_]ALLOCATE verb

must be the same as the one that was returned on the

RECEIVE_ALLOCATE verb when this TP was invoked.

AIX, LINUX

 This value can also be used if your TP was not invoked by another TP, but

has obtained and verified the appropriate security information by another

means (for example from the AIX or Linux user name and password

supplied during logon). In this case, APPC uses the AIX or Linux user

name with which the application is running, truncated to 10 characters if

necessary, as the user ID for conversation security; ensure that this name

consists of valid AE-string characters (see the description of the user_id

parameter for more information) and is a valid user name for the TP being

invoked.

 If the TP has obtained the security information by another means (for

example by requesting the user to type in a valid user ID and password

before allocating the conversation), it should use SET_TP_PROPERTIES to

specify this user ID to APPC before issuing [MC_]ALLOCATE.

pwd Password associated with user_id.

 This parameter is required only if the security parameter is set to AP_PGM or

AP_PGM_STRONG; otherwise it is reserved.

 The pwd and user_id parameters must match a user ID/password pair

configured on the computer where the invoked TP is located.

MC_ALLOCATE and ALLOCATE

100 IBM Communications Server for AIX APPC Programmer’s Guide

This parameter is a 10-byte EBCDIC character string; it is case-sensitive.

The pwd parameter can consist of characters from the type-AE EBCDIC

character set. These characters are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC blanks (0x40) to pad it

on the right.

user_id User ID required to access the partner TP.

 This parameter is required only if the security parameter is set to AP_PGM or

AP_PGM_STRONG; otherwise it is reserved.

 The pwd and user_id parameters must match a user ID/password pair

configured on the computer where the invoked TP is located.

 This parameter is a 10-byte EBCDIC character string; it is case-sensitive.

The user_id parameter can consist of characters from the type-AE EBCDIC

character set. These characters are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and period (.)

If the user ID is fewer than 10 bytes, use EBCDIC blanks (0x40) to pad it

on the right.

pip_dlen

Length of the program initialization parameters (PIP) to be passed to the

partner TP. The range for this value is 0–32,767.

 Not all APPC implementations support PIP data. Set pip_dlen to 0 (zero) if

the partner TP is using an implementation of APPC that does not support

PIP data, or if the partner is a CPI-C application.

pip_dptr

Address of buffer containing PIP data.

 Use this parameter only if pip_dlen is greater than 0 (zero).

 PIP data can consist of initialization parameters or environment setup

information required by a partner TP or remote operating system. The PIP

data must follow the General Data Stream format. For further information,

refer to the IBM publication Systems Network Architecture Format and

Protocol Reference Manual: Architecture Logic for LU Type 6.2.

WINDOWS

The PIP data buffer can reside in a static data area or in a globally

allocated area. The data buffer must fit entirely within this area.

fqplu_name

Fully qualified LU name of the partner LU. This parameter is used only if

plu_alias is set to zeros.

 This name is a 17-byte EBCDIC string, padded on the right with EBCDIC

spaces, containing one of the following:

MC_ALLOCATE and ALLOCATE

Chapter 4. APPC Conversation Verbs 101

v A network ID of 1–8 A-string characters, an EBCDIC dot (period)

character, and an LU name of 1–8 A-string characters

v An LU name of 1–8 A-string characters (without the network ID or the

EBCDIC dot)

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

conv_id

Conversation identifier. This value identifies the conversation established

between the two TPs.

conv_group_id

Conversation group ID of the session used by the conversation.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_TYPE

(Returned for basic-conversation ALLOCATE only) The value

specified for conv_type was not valid.

AP_BAD_DUPLEX_TYPE

The value specified for duplex_type was not valid.

AP_BAD_PARTNER_LU_ALIAS

One of the following has occurred:

v The plu_alias parameter did not match any defined partner LU

alias.

v The value specified for fqplu_name was not valid.

AP_BAD_RETURN_CONTROL

The value specified for rtn_ctl was not valid.

AP_BAD_SECURITY

The value specified for security was not valid.

AP_BAD_SYNC_LEVEL

The value specified for sync_level was not valid.

AP_BAD_TP_ID

The value specified for tp_id was not valid.

MC_ALLOCATE and ALLOCATE

102 IBM Communications Server for AIX APPC Programmer’s Guide

WINDOWS

AP_INVALID_DATA_SEGMENT

The PIP data was longer than the allocated data segment, or the

address of the PIP data buffer was incorrect.

AP_CONFIRM_INVALID_FOR_FDX

The sync_level parameter was set to AP_CONFIRM_SYNC_LEVEL in a

full-duplex conversation. This value can be used only in a

half-duplex conversation.

AP_NO_USE_OF_SNASVCMG

(Returned for MC_ALLOCATE only) SNASVCMG is not a valid

value for mode_name.

AP_PIP_LEN_INCORRECT

The value of pip_dlen was greater than 32,767.

AP_UNKNOWN_PARTNER_MODE

The value specified for mode_name was not valid.

AIX, LINUX

AP_INVALID_FORMAT

The format parameter was set to a value that was not valid.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: No state check errors occur for this verb.

Session Not Available: Depending on the value specified for rtn_ctl, APPC may

return the following parameter:

primary_rc

AP_UNSUCCESSFUL

The supplied parameter rtn_ctl specified immediate (AP_IMMEDIATE)

return of control to the TP, and the local LU did not have an

available contention-winner session.

Allocation Error: If CS/AIX cannot allocate the conversation, APPC returns the

following parameters:

primary_rc

AP_ALLOCATION_ERROR

secondary_rc

Possible values are:

AP_ALLOCATION_FAILURE_NO_RETRY

The conversation cannot be allocated because of a permanent

MC_ALLOCATE and ALLOCATE

Chapter 4. APPC Conversation Verbs 103

condition, such as a configuration error or session protocol error.

To determine the error, the System Administrator should examine

the error log file. Do not attempt to retry the allocation until the

error has been corrected.

 This value is also returned if the session corresponding to the

requested conversation group ID is no longer active.

AP_ALLOCATION_FAILURE_RETRY

The conversation could not be allocated because of a temporary

condition, such as a link failure. The reason for the failure is

logged in the system error log. Retry the allocation, preferably after

a timeout to allow the condition to clear.

AP_FDX_NOT_SUPPORTED_BY_LU

The duplex_type parameter was set to AP_FULL_DUPLEX, but the LU

used by this TP does not support full-duplex operation.

For information about these secondary return codes, see Appendix B,

“Common Return Codes,” on page 267.

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

 AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

sense_data

SNA sense data giving more information about the cause of the allocation

failure.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

MC_ALLOCATE and ALLOCATE

104 IBM Communications Server for AIX APPC Programmer’s Guide

APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation state is Reset when the TP issues this verb. It can be issued

during an existing conversation which is in any state, since it always implies the

start of a new conversation which is in Reset state.

State Change

Upon successful execution of this verb (primary_rc is AP_OK), the state of the new

conversation is Send (for a half-duplex conversation) or Send_Receive (for a

full-duplex conversation). If the verb fails, the state remains unchanged.

EBCDIC-ASCII, ASCII-EBCDIC Translation

Several parameters of the [MC_]ALLOCATE verb are EBCDIC or ASCII strings. A

TP can use the Common Service Verb CONVERT to translate a string from one

character set to the other. For further information, refer to the Communications

Server for AIX CSV Programmer’s Guide.

Immediate Allocation

To ensure that the conversation with the partner is started immediately, the

invoking TP can issue the [MC_]FLUSH or [MC_]CONFIRM verb immediately

after the [MC_]ALLOCATE verb. ([MC_]CONFIRM applies to half-duplex

conversations only.) Otherwise, the [MC_]ALLOCATE request accumulates with

other data in the local LU’s send buffer until the buffer is full.

Confirming the Allocation (half-duplex conversation only)

By issuing the [MC_]CONFIRM verb after [MC_]ALLOCATE, the invoking TP can

immediately determine whether the allocation was successful (if sync_level is set to

AP_CONFIRM_SYNC_LEVEL).

MC_CONFIRM and CONFIRM

The MC_CONFIRM or CONFIRM verb sends the contents of the local LU’s send

buffer and a confirmation request to the partner TP.

Note: This verb can be used only in a half-duplex conversation; it is not valid in a

full-duplex conversation.

In response to the [MC_]CONFIRM verb, the partner TP normally issues the

[MC_]CONFIRMED verb to confirm that it has received the data without error. (If

the partner TP encounters an error, it issues the [MC_]SEND_ERROR verb or

abnormally deallocates the conversation.)

The TP can issue the [MC_]CONFIRM verb only if the conversation’s

synchronization level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

VCB Structure: MC_CONFIRM

AIX, LINUX

The definition of the VCB structure for the MC_CONFIRM verb is as follows:

MC_ALLOCATE and ALLOCATE

Chapter 4. APPC Conversation Verbs 105

typedef struct mc_confirm

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

} MC_CONFIRM;

VCB Structure: CONFIRM

The definition of the VCB structure for the CONFIRM verb is as follows:

typedef struct confirm

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

} CONFIRM;

VCB Structure: MC_CONFIRM (Windows)

WINDOWS

The definition of the VCB structure for the MC_CONFIRM verb is as follows:

typedef struct mc_confirm

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char rts_rcvd;

} MC_CONFIRM;

VCB Structure: CONFIRM (Windows)

The definition of the VCB structure for the CONFIRM verb is as follows:

typedef struct confirm

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char rts_rcvd;

} CONFIRM;

MC_CONFIRM and CONFIRM

106 IBM Communications Server for AIX APPC Programmer’s Guide

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_CONFIRM

For the MC_CONFIRM verb.

AP_B_CONFIRM

For the CONFIRM verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_CONFIRM verb.

AP_BASIC_CONVERSATION

For the CONFIRM verb.

If the verb is being issued as a non-blocking verb, combine the value above

(using a logical OR) with the value AP_NON_BLOCKING.

format If you are building a new APPC application, or recompiling an existing

APPC application with the current APPC header file, you must set this

parameter to 1. (Existing applications built with earlier versions of the

header file, in which this parameter was reserved, will still operate

unchanged and there is no need to rebuild them.)

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

rts_rcvd

Request-to-send-received indicator. This parameter applies only in a

half-duplex conversation; it is not used in a full-duplex conversation.

 Possible values are:

AP_YES The partner TP has issued the [MC_]REQUEST_TO_SEND verb,

which requests that the local TP change the conversation to

Receive state. To change to Receive state, the local TP can use the

MC_CONFIRM and CONFIRM

Chapter 4. APPC Conversation Verbs 107

[MC_]PREPARE_TO_RECEIVE, [MC_]RECEIVE_AND_WAIT, or

[MC_]RECEIVE_AND_POST verb.

AP_NO The partner TP has not issued the [MC_]REQUEST_TO_SEND

verb.

expd_rcvd

Expedited data indicator.

 Possible values are:

AP_YES The partner TP has sent expedited data that the local TP has not

yet received. To receive this data, the local TP can use the

[MC_]RECEIVE_EXPEDITED_DATA verb.

 This indicator can be set on a number of APPC verbs. It continues

to be set on subsequent verbs until the local TP issues the

[MC_]RECEIVE_EXPEDITED_DATA verb to receive the data.

AP_NO There is no expedited data waiting to be received.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_CONFIRM_INVALID_FOR_FDX

The local TP attempted to use the [MC_]CONFIRM verb in a

full-duplex conversation. This verb can be used only in a

half-duplex conversation.

AP_CONFIRM_ON_SYNC_LEVEL_NONE

The local TP attempted to use the [MC_]CONFIRM verb in a

conversation with a synchronization level of AP_NONE. The

synchronization level, established by the [MC_]ALLOCATE verb,

must be AP_CONFIRM_SYNC_LEVEL.

AIX, LINUX

AP_INVALID_FORMAT

The format parameter was set to a value that was not valid.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

MC_CONFIRM and CONFIRM

108 IBM Communications Server for AIX APPC Programmer’s Guide

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

Possible values are:

AP_CONFIRM_BAD_STATE

The conversation was not in Send or Send_Pending state.

AP_CONFIRM_NOT_LL_BDY

(Returned for basic-conversation CONFIRM only) The conversation

for the local TP was in Send state, and the local TP did not finish

sending a logical record.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

 AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

AIX, LINUX

primary_rc

MC_CONFIRM and CONFIRM

Chapter 4. APPC Conversation Verbs 109

AP_BACKED_OUT

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_PROG_ERROR_PURGING

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

The following primary return code is returned by the MC_CONFIRM verb:

primary_rc

 AP_DEALLOC_ABEND

 APPC does not return a secondary return code with this primary return code.

The following primary return codes are returned by the CONFIRM verb:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_PURGING

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation must be in Send or Send_Pending state when the TP issues this

verb.

State Change

State changes, summarized in the following table, are based on the value of the

primary_rc parameter.

MC_CONFIRM and CONFIRM

110 IBM Communications Server for AIX APPC Programmer’s Guide

primary_rc New state

AP_OK Send

AP_PARAMETER_CHECK

AP_STATE_CHECK

AP_CONVERSATION_TYPE_MIXED

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_PROG_ERROR-PURGING

AP_SVC_ERROR_PURGING

Receive

AP_ALLOCATION_ERROR

AP_COMM_SUBSYSTEM_ABENDED

AP_COMM_SUBSYSTEM_NOT_LOADED

Reset

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

Reset

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

Reset

Synchronizing with Partner TP

The [MC_]CONFIRM verb waits for a response from the partner TP. A response is

generated by one of the following verbs in the partner TP:

v [MC_]CONFIRMED

v [MC_]SEND_ERROR

v MC_DEALLOCATE with dealloc_type set to AP_ABEND

v DEALLOCATE with dealloc_type set to AP_ABEND_PROG, AP_ABEND_SVC, or

AP_ABEND_TIMER

v TP_ENDED

MC_CONFIRMED and CONFIRMED

The MC_CONFIRMED or CONFIRMED verb replies to a confirmation request

from the partner TP. It informs the partner TP that the local TP has not detected an

error in the received data.

Note: This verb can be used only in a half-duplex conversation; it is not valid in a

full-duplex conversation.

Because the TP issuing the confirmation request waits for a confirmation, the

[MC_]CONFIRMED verb synchronizes the processing of the two TPs.

Sources of Confirmation Requests

A confirmation request is issued by one of the following verbs in the partner TP:

v [MC_]CONFIRM

v [MC_]PREPARE_TO_RECEIVE if ptr_type is set to AP_SYNC_LEVEL and the

conversation’s synchronization level (established by the [MC_]ALLOCATE verb)

is AP_CONFIRM_SYNC_LEVEL

MC_CONFIRM and CONFIRM

Chapter 4. APPC Conversation Verbs 111

v [MC_]DEALLOCATE if dealloc_type is set to AP_SYNC_LEVEL and the

conversation’s synchronization level (established by the [MC_]ALLOCATE verb)

is AP_CONFIRM_SYNC_LEVEL

v [MC_]SEND_DATA if type is set to AP_SEND_DATA_CONFIRM and the conversation’s

synchronization level (established by the [MC_]ALLOCATE verb) is

AP_CONFIRM_SYNC_LEVEL

Receiving Confirmation Requests

A confirmation request is received by the local TP through the what_rcvd parameter

of one of the following verbs:

v [MC_]RECEIVE_IMMEDIATE

v [MC_]RECEIVE_AND_WAIT

v [MC_]RECEIVE_AND_POST

The local TP can issue the MC_CONFIRMED or CONFIRMED verb only if the

what_rcvd field contains one of the following values:

v AP_CONFIRM_WHAT_RECEIVED, AP_DATA_CONFIRM, or AP_DATA_COMPLETE_CONFIRM

v AP_CONFIRM_SEND, AP_DATA_CONFIRM_SEND, or AP_DATA_COMPLETE_CONFIRM_SEND

v AP_CONFIRM_DEALLOCATE, AP_DATA_CONFIRM_DEALLOCATE, or

AP_DATA_COMPLETE_CONFIRM_DEALL

VCB Structure: MC_CONFIRMED

AIX, LINUX

The definition of the VCB structure for the MC_CONFIRMED verb is as follows:

typedef struct mc_confirmed

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

} MC_CONFIRMED;

VCB Structure: CONFIRMED

The definition of the VCB structure for the CONFIRMED verb is as follows:

typedef struct confirmed

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char reserv2;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

} CONFIRMED;

VCB Structure: MC_CONFIRMED (Windows)

WINDOWS

MC_CONFIRMED and CONFIRMED

112 IBM Communications Server for AIX APPC Programmer’s Guide

The definition of the VCB structure for the MC_CONFIRMED verb is as follows:

typedef struct mc_confirmed

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

} MC_CONFIRMED;

VCB Structure: CONFIRMED (Windows)

The definition of the VCB structure for the CONFIRMED verb is as follows:

typedef struct confirmed

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

} CONFIRMED;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_CONFIRMED

For the MC_CONFIRMED verb.

AP_B_CONFIRMED

For the CONFIRMED verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_CONFIRMED verb.

AP_BASIC_CONVERSATION

For the CONFIRMED verb.

If the verb is being issued as a non-blocking verb, combine the value above

(using a logical OR) with the value AP_NON_BLOCKING.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

MC_CONFIRMED and CONFIRMED

Chapter 4. APPC Conversation Verbs 113

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AIX, LINUX

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

AP_CONFIRMED_INVALID_FOR_FDX

The local TP attempted to use the [MC_]CONFIRMED verb in a

full-duplex conversation. This verb can be used only in a

half-duplex conversation.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

AP_CONFIRMED_BAD_STATE

The conversation was not in Confirm, Confirm_Send, or

Confirm_Deallocate state.

MC_CONFIRMED and CONFIRMED

114 IBM Communications Server for AIX APPC Programmer’s Guide

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONVERSATION_TYPE_MIXED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation must be in one of the following states when the TP issues this

verb:

v Confirm

v Confirm_Send

v Confirm_Deallocate

State Change

The new state is determined by the old state—the state of the conversation when

the local TP issued the [MC_]CONFIRMED verb. The old state is indicated by the

value of the what_rcvd parameter of the preceding receive verb. The possible state

changes are summarized in the following table.

 Old State New State

Confirm Receive

Confirm_Send Send

Confirm_Deallocate Reset

MC_DEALLOCATE and DEALLOCATE

The MC_DEALLOCATE or DEALLOCATE verb deallocates a conversation

between two TPs.

Before deallocating the conversation, this verb performs the equivalent of one of

the following:

v The [MC_]FLUSH verb, sending the contents of the local LU’s send buffer to the

partner LU (and TP).

MC_CONFIRMED and CONFIRMED

Chapter 4. APPC Conversation Verbs 115

v The [MC_]CONFIRM verb, sending the contents of the local LU’s send buffer

and a confirmation request to the partner TP. ([MC_]CONFIRM applies to

half-duplex conversations only.)

After this verb has successfully executed, the conversation ID is no longer valid.

VCB Structure: MC_DEALLOCATE

AIX, LINUX

The definition of the VCB structure for the MC_DEALLOCATE verb is as follows:

typedef struct mc_deallocate

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char expd_rcvd;

 unsigned char dealloc_type;

 unsigned char reserv4[2];

 unsigned char reserv5[4];

 void (*callback)();

 void * correlator;

 unsigned char reserv6[4];

} MC_DEALLOCATE;

VCB Structure: DEALLOCATE

The definition of the VCB structure for the DEALLOCATE verb is as follows:

typedef struct deallocate

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char expd_rcvd;

 unsigned char dealloc_type;

 AP_UINT16 log_dlen;

 unsigned char *log_dptr;

 void (*callback)();

 void * correlator;

 unsigned char reserv6[4];

} DEALLOCATE;

VCB Structure: MC_DEALLOCATE (Windows)

WINDOWS

The definition of the VCB structure for the MC_DEALLOCATE verb is as follows:

typedef struct mc_deallocate

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

MC_DEALLOCATE and DEALLOCATE

116 IBM Communications Server for AIX APPC Programmer’s Guide

unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char reserv3;

 unsigned char dealloc_type;

 unsigned char reserv4[2];

 unsigned char reserv5[4];

} MC_DEALLOCATE;

VCB Structure: DEALLOCATE (Windows)

The definition of the VCB structure for the DEALLOCATE verb is as follows:

typedef struct deallocate

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char reserv3;

 unsigned char dealloc_type;

 unsigned short log_dlen;

 unsigned char far *log_dptr;

} DEALLOCATE;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_DEALLOCATE

For the MC_DEALLOCATE verb.

AP_B_DEALLOCATE

For the DEALLOCATE verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_DEALLOCATE verb.

AP_BASIC_CONVERSATION

For the DEALLOCATE verb.

If the verb is being issued on a full-duplex conversation or is being issued

as a non-blocking verb, combine the value above (using a logical OR) with

one or both of the following values:

AP_FULL_DUPLEX_CONVERSATION

The verb is being issued on a full-duplex conversation.

AP_NON_BLOCKING

The verb is being issued as a non-blocking verb.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

MC_DEALLOCATE and DEALLOCATE

Chapter 4. APPC Conversation Verbs 117

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

dealloc_type

Specifies how to perform the deallocation. The possible values are listed

below.

 Using AP_ABEND or any of the AP_ABEND_* values deallocates the

conversation abnormally. If the conversation is in Send state when the local

TP issues the [MC_]DEALLOCATE verb, APPC sends the contents of the

local LU’s send buffer to the partner TP before deallocating the

conversation. If the conversation is in Receive or Pending-Post state, APPC

purges any incoming data before deallocating the conversation.

AP_ABEND

This value is valid only for the MC_DEALLOCATE verb. A TP

should specify AP_ABEND when it encounters an error preventing

the successful completion of a transaction.

AP_ABEND_PROG

This value is valid only for the DEALLOCATE verb. An

application or service TP should specify AP_ABEND_PROG when it

encounters an error preventing the successful completion of a

transaction.

AP_ABEND_SVC

A service TP should specify AP_ABEND_SVC when it encounters an

error caused by its partner service TP (for example, a format error

in control information sent by the partner service TP).

AP_ABEND_TIMER

A service TP should specify AP_ABEND_TIMER when it encounters an

error requiring immediate deallocation (for example an operator

ending the program prematurely).

AP_FLUSH

Sends the contents of the local LU’s send buffer to the partner TP

before deallocating the conversation. This value is allowed only if

the conversation is in Send or Send_Pending state.

AP_CONFIRM_TYPE

Use this value only if the conversation’s synchronization level is

AP_SYNCPT. It indicates that confirmation from the partner TP (but

not syncpoint processing) is required before deallocating the

conversation.

 APPC sends the contents of the local LU’s send buffer and a

confirmation request to the partner TP. Upon receiving

confirmation from the partner TP, APPC deallocates the

conversation. If, however, the partner TP reports an error, the

conversation remains allocated.

AP_SYNC_LEVEL

Uses the conversation’s synchronization level (established by the

[MC_]ALLOCATE verb) to determine how to deallocate the

conversation. This value is allowed only if the conversation is in

Send or Send_Pending state.

MC_DEALLOCATE and DEALLOCATE

118 IBM Communications Server for AIX APPC Programmer’s Guide

If the synchronization level of the conversation is AP_NONE, APPC

sends the contents of the local LU’s send buffer to the partner TP

before deallocating the conversation.

 If the synchronization level is AP_CONFIRM_SYNC_LEVEL, APPC sends

the contents of the local LU’s send buffer and a confirmation

request to the partner TP. Upon receiving confirmation from the

partner TP, APPC deallocates the conversation. If, however, the

partner TP reports an error, the conversation remains allocated.

AIX, LINUX

 If the synchronization level of the conversation is AP_SYNCPT, APPC

sends the contents of the local LU’s send buffer to the partner TP

before deallocating the conversation. The Syncpoint Manager is

responsible for the following:

v Intercepting the [MC_]DEALLOCATE verb when a dealloc_type

of AP_SYNC_LEVEL is specified

v Performing the required syncpoint processing

v Passing the original [MC_]DEALLOCATE verb through to

CS/AIX when syncpoint processing has completed

When CS/AIX receives the [MC_]DEALLOCATE verb with a

dealloc_type of AP_SYNC_LEVEL on a conversation with sync_level of

AP_SYNCPT, it assumes that the Syncpoint Manager has already

performed all the necessary syncpoint processing, and processes

the verb as for a sync_level of AP_NONE.

AP_TP_NOT_AVAIL_RETRY

This value should be used only by a TP that issued

RECEIVE_ALLOCATE with a blank TP name (to accept incoming

conversations for any TP name). It indicates that the TP identified

by the TP name specified on the incoming Attach is unavailable

because of a temporary condition. The error will be reported to the

partner TP with the return codes AP_ALLOCATION_FAILURE and

AP_TRANS_PGM_NOT_AVAIL_RETRY; the partner TP can retry the

allocation request.

AP_TP_NOT_AVAIL_NO_RETRY

This value should be used only by a TP that issued

RECEIVE_ALLOCATE with a blank TP name (to accept incoming

conversations for any TP name). It indicates that the TP identified

by the TP name specified on the incoming Attach is unavailable

because of a condition that requires correction (such as a

configuration problem). The error will be reported to the partner

TP with the return codes AP_ALLOCATION_FAILURE and

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY; the partner TP should not retry

the allocation request until the condition that caused this

deallocation has been corrected.

AP_TPN_NOT_RECOGNIZED

This value should be used only by a TP that issued

RECEIVE_ALLOCATE with a blank TP name (to accept incoming

conversations for any TP name). It indicates that the TP name

specified on the incoming Attach was not recognized as a valid TP

name. The error will be reported to the partner TP with the return

codes AP_ALLOCATION_FAILURE and AP_TP_NAME_NOT_RECOGNIZED.

MC_DEALLOCATE and DEALLOCATE

Chapter 4. APPC Conversation Verbs 119

AP_PIP_DATA_NOT_ALLOWED

This value indicates that the local TP is deallocating the

conversation because the partner TP supplied PIP data on the

[MC_]ALLOCATE verb but the local TP did not expect to receive

it. The error will be reported to the partner TP with the return

codes AP_ALLOCATION_FAILURE and AP_PIP_NOT_ALLOWED.

AP_PIP_DATA_INCORRECT

This value indicates that the local TP is deallocating the

conversation because it expected to receive PIP data from the

partner TP, but the partner TP supplied incorrect PIP data or no

PIP data. The error will be reported to the partner TP with the

return codes AP_ALLOCATION_FAILURE and

AP_PIP_NOT_SPECIFIED_CORRECTLY.

AP_RESOURCE_FAILURE_NO_RETRY

This value indicates that the local TP is deallocating the

conversation because a resource required for the TP to operate has

failed.

AP_CONV_TYPE_MISMATCH

This value indicates that the local TP is deallocating the

conversation because it does not support the conversation type

(mapped or basic) specified by the partner TP on

[MC_]ALLOCATE. The error will be reported to the partner TP

with the return codes AP_ALLOCATION_FAILURE and

AP_CONVERSATION_TYPE_MISMATCH.

AP_SYNC_LVL_NOT_SUPPORTED

This value indicates that the local TP is deallocating the

conversation because it does not support the synchronization level

specified by the partner TP on [MC_]ALLOCATE. The error will be

reported to the partner TP with the return codes

AP_ALLOCATION_FAILURE and AP_SYNC_LEVEL_NOT_SUPPORTED.

AP_SECURITY_PARAMS_INVALID

This value indicates that the local TP is deallocating the

conversation because it did not accept the security parameters

specified by the partner TP on [MC_]ALLOCATE. The error will be

reported to the partner TP with the return codes

AP_ALLOCATION_FAILURE and AP_SECURITY_NOT_VALID.

log_dlen

Number of bytes of data to be sent to the error log file. The range for this

value is 0–32,767.

 This parameter is used only by the DEALLOCATE verb, with the

dealloc_type parameter set to AP_ABEND_PGM, AP_ABEND_SVC, or

AP_ABEND_TIMER. For MC_DEALLOCATE, or for other values of dealloc_type,

this parameter must be 0 (zero).

log_dptr

Address of data buffer containing error information. This data is sent to

the local error log and to the partner LU.

 This parameter is used by the DEALLOCATE verb if log_dlen is greater

than 0 (zero); otherwise it is reserved.

MC_DEALLOCATE and DEALLOCATE

120 IBM Communications Server for AIX APPC Programmer’s Guide

The TP must format the error data as a General Data Stream (GDS) error

log variable. For further information, refer to the IBM publication Systems

Network Architecture Format and Protocol Reference Manual: Architecture Logic

for LU Type 6.2.

WINDOWS

The log data buffer can reside in a static data area or in a globally

allocated area. The data buffer must fit entirely within this area.

AIX, LINUX

The following parameters are used if the conversation’s synchronization level is

AP_SYNCPT; they are reserved otherwise.

callback

If the TP requires “implied forget” notification, this parameter specifies a

pointer to a callback routine that CS/AIX will call to provide this

notification. If the TP does not require this notification, it does not use this

parameter. For more information, see “Implied Forget Notification” on

page 125.

correlator

An optional correlator for use by the application. This parameter is used

only if the callback parameter is specified; it is reserved otherwise.

 CS/AIX does not use this value, but passes it as a parameter to the

callback routine with the “implied forget” notification. This value enables

the application to correlate the returned information with its other

processing.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

expd_rcvd

Expedited data indicator. This parameter is used only in full-duplex

conversations, where the TP can continue to receive expedited data after

successfully issuing [MC_]DEALLOCATE.

 Possible values are:

AP_YES The partner TP has sent expedited data that the local TP has not

MC_DEALLOCATE and DEALLOCATE

Chapter 4. APPC Conversation Verbs 121

yet received. To receive this data, the local TP can use the

[MC_]RECEIVE_EXPEDITED_DATA verb.

 This indicator can be set on a number of APPC verbs. It continues

to be set on subsequent verbs until the local TP issues the

[MC_]RECEIVE_EXPEDITED_DATA verb to receive the data.

AP_NO There is no expedited data waiting to be received.

In a half-duplex conversation, this parameter is always set to AP_NO,

because the conversation ends when the [MC_]DEALLOCATE verb

completes successfully and so the local TP cannot receive any further

expedited data.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_DEALLOC_BAD_TYPE

The dealloc_type parameter was not set to a valid value.

AP_DEALLOC_LOG_LL_WRONG

(Returned for basic-conversation DEALLOCATE only) The LL field

of the GDS error log variable did not match the actual length of

the log data, or the value of the log_dlen parameter was incorrect.

AIX, LINUX

AP_INVALID_FORMAT

The format parameter was set to a value that was not valid.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

WINDOWS

AP_INVALID_DATA_SEGMENT

(Returned for basic-conversation DEALLOCATE only) The log data

was longer than the allocated data segment, or the address of the

log data buffer was incorrect.

MC_DEALLOCATE and DEALLOCATE

122 IBM Communications Server for AIX APPC Programmer’s Guide

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

Possible values are:

AP_DEALLOC_CONFIRM_BAD_STATE

The conversation was not in Send or Send_Pending state, and the

TP attempted to flush the send buffer and send a confirmation

request. This attempt occurred because the value of the dealloc_type

parameter was AP_SYNC_LEVEL and the synchronization level of the

conversation was AP_CONFIRM_SYNC_LEVEL.

AP_DEALLOC_FLUSH_BAD_STATE

The conversation was not in Send or Send_Pending state, and the

TP attempted to flush the send buffer. This attempt occurred

because the value of the dealloc_type parameter was AP_FLUSH or

because the value of the dealloc_type parameter was AP_SYNC_LEVEL

and the synchronization level of the conversation was AP_NONE.

AP_DEALLOC_NOT_LL_BDY

(Returned for basic-conversation DEALLOCATE only) The

conversation was in Send state, and the TP did not finish sending a

logical record. The dealloc_type parameter was set to AP_SYNC_LEVEL

or AP_FLUSH.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

MC_DEALLOCATE and DEALLOCATE

Chapter 4. APPC Conversation Verbs 123

AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

AIX, LINUX

primary_rc

 AP_BACKED_OUT

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_DUPLEX_TYPE_MIXED

 AP_PROG_ERROR_PURGING

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

The following primary return code is returned by the MC_DEALLOCATE verb:

primary_rc

 AP_DEALLOC_ABEND

 APPC does not return a secondary return code with this primary return code.

The following primary return codes are returned by the DEALLOCATE verb:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_PURGING

MC_DEALLOCATE and DEALLOCATE

124 IBM Communications Server for AIX APPC Programmer’s Guide

APPC does not return secondary return codes with these primary return codes.

State When Issued

Depending on the value of the dealloc_type parameter, the conversation can be in

one of the states indicated in the following table when the TP issues the

[MC_]DEALLOCATE verb.

 dealloc_type Allowed state

AP_FLUSH Send_Receive (full-duplex conversation only),

Send or Send_Pending

AP_SYNC_LEVEL Send_Receive (full-duplex conversation only),

Send or Send_Pending

AP_ABEND

AP_ABEND_PROG

AP_ABEND_SVC

AP_ABEND_TIMER

Any except Reset

State Change

State changes, summarized in the following table, are based on the value of the

primary_rc parameter.

 primary_rc New state

AP_OK Receive_Only (full-duplex conversation with

dealloc_type set to AP_FLUSH or AP_SYNC_LEVEL),

or Reset (all other cases)

AP_PARAMETER_CHECK

AP_STATE_CHECK

AP_CONVERSATION_TYPE_MIXED

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_ALLOCATION_ERROR

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

Reset

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

Reset

AP_PROG_ERROR_PURGING

AP_SVC_ERROR_PURGING

Receive

Implied Forget Notification

AIX, LINUX

The Syncpoint protocols include a feature known as “implied forget”, which means

that the FORGET PS Header (the last message in a Syncpoint exchange) is not

always required. When the protocol requires a FORGET as the next message to be

received on a session, the next data flow received on that session implies that the

FORGET has been received.

MC_DEALLOCATE and DEALLOCATE

Chapter 4. APPC Conversation Verbs 125

However, if the message that precedes the FORGET indicates that the conversation

is being deallocated, the application no longer has access to the session, and so

cannot tell when the next data flow occurs. To provide this information, CS/AIX

enables the application to specify a callback routine on the [MC_]DEALLOCATE

verb; CS/AIX then calls this routine when the next data flow occurs on the session,

or when the session ends (either normally or abnormally).

If an application uses this feature, it should wait for the callback routine to be

called before issuing the TP_ENDED verb for this TP. CS/AIX will not call the

callback routine after TP_ENDED has been issued.

The callback routine is defined as follows:

 void (*AP_CALLBACK) (

 void * vcb,

 unsigned char tp_id[8],

 AP_UINT32 conv_id,

 AP_UINT16 type,

 AP_CORR corr

);

 typedef union ap_corr {

 void * corr_p;

 AP_UINT32 corr_l;

 AP_INT32 corr_i;

 } AP_CORR;

CS/AIX calls the routine with the following parameters:

vcb Pointer to the original [MC_]DEALLOCATE VCB supplied by the

application. If the application needs to use the VCB parameters in the

callback routine, it should not free or reuse the memory associated with

the VCB until the callback routine has been called.

tp_id The 8-byte TP identifier of the TP in which the verb was issued.

conv_id

The conversation identifier of the conversation in which the verb was

issued. The application cannot issue further verbs using this conversation

identifier, because it is no longer valid after the [MC_]DEALLOCATE verb

has completed.

type The type of message flow that CS/AIX is reporting. Possible values are:

AP_DATA_FLOW

Normal data flow on the session.

AP_UNBIND

The session ended normally.

AP_FAILURE

The session ended abnormally. The Syncpoint manager may need

to perform resynchronization.

corr The correlator value supplied by the application. This value enables the

application to correlate the returned information with its other processing.

 The callback routine need not use all of these parameters. It can perform all the

necessary processing on the returned VCB, or it can simply set a variable to inform

the main program that the notification has been received.

MC_DEALLOCATE and DEALLOCATE

126 IBM Communications Server for AIX APPC Programmer’s Guide

If the application is using scheduling by signals, the callback routine runs in the

context of a signal-catcher. This means that there are limitations on the operating

system calls you can use within the routine; refer to your operating system

documentation for more information.

The application can issue further APPC verbs from within the callback routine, if

required. However, these must be asynchronous verbs. Any synchronous verbs

issued from within a callback routine will be rejected with the return codes

AP_PARAMETER_CHECK and AP_SYNC_NOT_ALLOWED.

MC_FLUSH and FLUSH

The MC_FLUSH or FLUSH verb sends the contents of the local LU’s send buffer to

the partner LU (and TP). If the send buffer is empty, no action takes place.

Sources of Buffered Data

Data processed by the [MC_]SEND_DATA verb and allocation requests generated

by the [MC_]ALLOCATE verb accumulate in the local LU’s send buffer until one

of the following happens:

v The local TP issues the [MC_]FLUSH verb (or other verb that flushes the LU’s

send buffer)

v The buffer is full

VCB Structure: MC_FLUSH

AIX, LINUX

The definition of the VCB structure for the MC_FLUSH verb is as follows:

typedef struct mc_flush

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

} MC_FLUSH;

VCB Structure: FLUSH

The definition of the VCB structure for the FLUSH verb is as follows:

typedef struct flush

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

} FLUSH;

MC_DEALLOCATE and DEALLOCATE

Chapter 4. APPC Conversation Verbs 127

VCB Structure: MC_FLUSH (Windows)

WINDOWS

The definition of the VCB structure for the MC_FLUSH verb is as follows:

typedef struct mc_flush

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

} MC_FLUSH;

VCB Structure: FLUSH (Windows)

The definition of the VCB structure for the FLUSH verb is as follows:

typedef struct flush

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

} FLUSH;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_FLUSH

For the MC_FLUSH verb.

AP_B_FLUSH

For the FLUSH verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_FLUSH verb.

AP_BASIC_CONVERSATION

For the FLUSH verb.

If the verb is being issued on a full-duplex conversation or is being issued

as a non-blocking verb, combine the value above (using a logical OR) with

one or both of the following values:

AP_FULL_DUPLEX_CONVERSATION

The verb is being issued on a full-duplex conversation.

AP_NON_BLOCKING

The verb is being issued as a non-blocking verb.

MC_FLUSH and FLUSH

128 IBM Communications Server for AIX APPC Programmer’s Guide

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AIX, LINUX

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

MC_FLUSH and FLUSH

Chapter 4. APPC Conversation Verbs 129

secondary_rc

AP_FLUSH_NOT_SEND_STATE

The conversation was not in Send or Send_Pending state.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONVERSATION_TYPE_MIXED

 AP_DUPLEX_TYPE_MIXED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation must be in Send_Receive (full-duplex conversation only), Send or

Send_Pending state when the TP issues this verb.

State Change

After successful execution, there is no state change.

MC_GET_ATTRIBUTES and GET_ATTRIBUTES

The MC_GET_ATTRIBUTES or GET_ATTRIBUTES verb returns the attributes of

the conversation. For more details on these attributes, see Chapter 1, “Concepts,”

on page 1 of this manual, or the Communications Server for AIX Administration

Guide.

VCB Structure: MC_GET_ATTRIBUTES

AIX, LINUX

The definition of the VCB structure for the MC_GET_ATTRIBUTES verb is as

follows:

typedef struct mc_get_attributes

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

MC_FLUSH and FLUSH

130 IBM Communications Server for AIX APPC Programmer’s Guide

AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char reserv3;

 unsigned char sync_level;

 unsigned char mode_name[8];

 unsigned char net_name[8];

 unsigned char lu_name[8];

 unsigned char lu_alias[8];

 unsigned char plu_alias[8];

 unsigned char plu_un_name[8];

 unsigned char reserv4[2];

 unsigned char fqplu_name[17];

 unsigned char reserv5;

 unsigned char user_id[10];

 AP_UINT32 conv_group_id;

 unsigned char conv_corr_len;

 unsigned char conv_corr[8];

 unsigned char reserv6[13];

 LUWID_OVERLAY luw_id;

 unsigned char sess_id[8];

} MC_GET_ATTRIBUTES;

typedef struct luwid_overlay

{

 unsigned char fq_length;

 unsigned char fq_luw_name[17];

 unsigned char instance[6];

 unsigned char sequence[2];

} LUWID_OVERLAY;

VCB Structure: GET_ATTRIBUTES

The definition of the VCB structure for the GET_ATTRIBUTES verb is as follows:

typedef struct get_attributes

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char reserv3;

 unsigned char sync_level;

 unsigned char mode_name[8];

 unsigned char net_name[8];

 unsigned char lu_name[8];

 unsigned char lu_alias[8];

 unsigned char plu_alias[8];

 unsigned char plu_un_name[8];

 unsigned char reserv4[2];

 unsigned char fqplu_name[17];

 unsigned char reserv5;

 unsigned char user_id[10];

 AP_UINT32 conv_group_id;

 unsigned char conv_corr_len;

 unsigned char conv_corr[8];

 unsigned char reserv6[13];

 LUWID_OVERLAY luw_id;

 unsigned char sess_id[8];

} GET_ATTRIBUTES;

typedef struct luwid_overlay

{

 unsigned char fq_length;

MC_GET_ATTRIBUTES and GET_ATTRIBUTES

Chapter 4. APPC Conversation Verbs 131

unsigned char fq_luw_name[17];

 unsigned char instance[6];

 unsigned char sequence[2];

} LUWID_OVERLAY;

VCB Structure: MC_GET_ATTRIBUTES (Windows)

WINDOWS

The definition of the VCB structure for the MC_GET_ATTRIBUTES verb is as

follows:

typedef struct mc_get_attributes

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char reserv3;

 unsigned char sync_level;

 unsigned char mode_name[8];

 unsigned char net_name[8];

 unsigned char lu_name[8];

 unsigned char lu_alias[8];

 unsigned char plu_alias[8];

 unsigned char plu_un_name[8];

 unsigned char reserv4[2];

 unsigned char fqplu_name[17];

 unsigned char reserv5;

 unsigned char user_id[10];

 unsigned long conv_group_id;

 unsigned char conv_corr_len;

 unsigned char conv_corr[8];

 unsigned char reserv6[13];

} MC_GET_ATTRIBUTES;

VCB Structure: GET_ATTRIBUTES (Windows)

The definition of the VCB structure for the GET_ATTRIBUTES verb is as follows:

typedef struct get_attributes

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char reserv3;

 unsigned char sync_level;

 unsigned char mode_name[8];

 unsigned char net_name[8];

 unsigned char lu_name[8];

 unsigned char lu_alias[8];

 unsigned char plu_alias[8];

 unsigned char plu_un_name[8];

 unsigned char reserv4[2];

 unsigned char fqplu_name[17];

 unsigned char reserv5;

 unsigned char user_id[10];

 unsigned long conv_group_id;

MC_GET_ATTRIBUTES and GET_ATTRIBUTES

132 IBM Communications Server for AIX APPC Programmer’s Guide

unsigned char conv_corr_len;

 unsigned char conv_corr[8];

 unsigned char reserv6[13];

} GET_ATTRIBUTES;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_GET_ATTRIBUTES

For the MC_GET_ATTRIBUTES verb.

AP_B_GET_ATTRIBUTES

For the GET_ATTRIBUTES verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_GET_ATTRIBUTES verb.

AP_BASIC_CONVERSATION

For the GET_ATTRIBUTES verb.

If the verb is being issued on a full-duplex conversation, combine the value

above (using a logical OR) with the value AP_FULL_DUPLEX_CONVERSATION.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters. For more

information about the meaning and usage of these parameters, refer to the

Communications Server for AIX Administration Guide.

primary_rc

AP_OK

sync_level

Synchronization level of the conversation. This parameter determines

whether the TPs can request confirmation of receipt of data and confirm

receipt of data.

 Possible values are:

AP_CONFIRM_SYNC_LEVEL

The TPs can use confirmation processing in this conversation.

MC_GET_ATTRIBUTES and GET_ATTRIBUTES

Chapter 4. APPC Conversation Verbs 133

AP_SYNCPT

The TPs can use LU 6.2 Syncpoint functions in this conversation.

For more information, see “Syncpoint Support” on page 22.

AP_NONE

Confirmation processing will not be used in this conversation.

mode_name

Name of a set of networking characteristics.

 This parameter is an 8-byte EBCDIC character string. It can consist of

characters from the type-A EBCDIC character set. These characters are as

follows:

v Uppercase letters

v Numerals 0–9

v Special characters $, #, and @

net_name

Name of the network containing the local LU.

 This parameter is an 8-byte EBCDIC character string. It can consist of

characters from the type-A EBCDIC character set. These characters are as

follows:

v Uppercase letters

v Numerals 0–9

v Special characters $, #, and @

lu_name

Name of the local LU.

 This parameter is an 8-byte EBCDIC character string. It can consist of

characters from the type-A EBCDIC character set. These characters are as

follows:

v Uppercase letters

v Numerals 0–9

v Special characters $, #, and @

lu_alias

Alias by which the local LU is known to the local TP. This is an 8-byte

ASCII character string.

plu_alias

Alias by which the partner LU is known to the local TP. This is an 8-byte

ASCII character string.

plu_un_name

Uninterpreted name of partner LU—the name of the partner LU as defined

at the System Services Control Point (SSCP). This is taken from the

configuration of the remote LU in the CS/AIX configuration file. This

parameter is required in the configuration only if the local LU is

dependent, so the name returned for an independent LU may be blank or

null.

 This parameter is an 8-byte EBCDIC character string; it is case-sensitive. It

can consist of characters from the type-AE EBCDIC character set. These

characters are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

MC_GET_ATTRIBUTES and GET_ATTRIBUTES

134 IBM Communications Server for AIX APPC Programmer’s Guide

v Special characters $, #, @, and period (.)

fqplu_name

Fully qualified name of the partner LU.

 This field contains the network name, an EBCDIC period, and the partner

LU name. Each of the two names is an 8-byte EBCDIC character string,

which can consist of characters from the type-A EBCDIC character set.

These characters are as follows:

v Uppercase letters

v Numerals 0–9

v Special characters $, #, and @

user_id User ID sent by the invoking TP through the [MC_]ALLOCATE verb to

access the invoked TP (if applicable).

 This parameter is a 10-byte EBCDIC character string; it is case-sensitive. It

can consist of characters from the type-AE EBCDIC character set. These

characters are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and period (.)

This field contains the user ID if the following conditions are true:

v The invoked TP requires conversation security.

v This verb was issued by the invoked TP.

Otherwise, this field contains blanks.

conv_group_id

The conversation group identifier of the session that this conversation uses.

conv_corr_len

The length (0–8 bytes) of the conversation correlator (see the description of

the conv_corr parameter for more information).

conv_corr

The conversation correlator assigned by the invoking TP’s node when the

conversation was allocated.

AIX, LINUX

 For TPs that use Syncpoint processing, the Syncpoint Manager uses this

parameter to identify the conversation during resynchronization

processing.

luw_id The Logical Unit of Work Identifier (LUWID) for the transaction in which

this conversation is participating. This is assigned on behalf of the TP that

initiates the transaction, and enables you to correlate the different

conversations that make up the transaction.

 A TP that uses Syncpoint processing has two LUWIDs associated with it;

the unprotected LUWID is used for conversations with a sync_level of

AP_NONE or AP_CONFIRM_SYNC_LEVEL, and the protected LUWID is used for

conversations with a sync_level of AP_SYNCPT. A TP that does not use

Syncpoint processing has only one, the unprotected LUWID. This verb

returns the LUWID that is associated with this conversation; this is the

protected LUWID if the conversation has a sync_level of AP_SYNCPT, and the

MC_GET_ATTRIBUTES and GET_ATTRIBUTES

Chapter 4. APPC Conversation Verbs 135

unprotected LUWID otherwise. The application can use the

GET_TP_PROPERTIES verb to get both LUWIDs for the TP.

 The LUWID consists of the following parameters:

luw_id.fq_length

The length (1–17 bytes) of the fully qualified LU name associated with the

Logical Unit of Work (the LU name itself is specified by the following

parameter).

luw_id.fq_luw_name

The fully qualified LU name associated with the Logical Unit of Work. This

name is a 17-byte EBCDIC string, padded on the right with EBCDIC

spaces. It consists of a network ID of 1–8 A-string characters, an EBCDIC

dot (period) character, and an LU name of 1–8 A-string characters.

luw_id.instance

The instance number associated with the Logical Unit of Work (a 6-byte

binary number).

luw_id.sequence

The sequence number of the current segment of the Logical Unit of Work

(a 2-byte binary number).

sess_id The session ID of the session used by this conversation.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AIX, LINUX

AP_INVALID_FORMAT

The format parameter was set to a value that was not valid.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

MC_GET_ATTRIBUTES and GET_ATTRIBUTES

136 IBM Communications Server for AIX APPC Programmer’s Guide

State Check: No state check errors occur for this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONVERSATION_TYPE_MIXED

 AP_DUPLEX_TYPE_MIXED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation can be in any state except Reset when the TP issues this verb.

State Change

The conversation state does not change for this verb.

MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE

The MC_PREPARE_TO_RECEIVE or PREPARE_TO_RECEIVE verb changes the

state of the conversation for the local TP from Send or Send_Pending to Receive.

Note: This verb can be used only in a half-duplex conversation; it is not valid in a

full-duplex conversation.

Before changing the conversation state, this verb performs the equivalent of one of

the following, depending on the ptr_type (prepare-to-receive type) parameter as

described below:

v The [MC_]FLUSH verb, sending the contents of the local LU’s send buffer to the

partner LU (and TP)

v The [MC_]CONFIRM verb, sending the contents of the local LU’s send buffer

and a confirmation request to the partner TP

After this verb has successfully executed, the local TP can receive data.

MC_GET_ATTRIBUTES and GET_ATTRIBUTES

Chapter 4. APPC Conversation Verbs 137

VCB Structure: MC_PREPARE_TO_RECEIVE

AIX, LINUX

The definition of the VCB structure for the MC_PREPARE_TO_RECEIVE verb is as

follows:

typedef struct mc_prepare_to_receive

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char ptr_type;

 unsigned char locks;

} MC_PREPARE_TO_RECEIVE;

VCB Structure: PREPARE_TO_RECEIVE

The definition of the VCB structure for the PREPARE_TO_RECEIVE verb is as

follows:

typedef struct prepare_to_receive

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char ptr_type;

 unsigned char locks;

} PREPARE_TO_RECEIVE;

VCB Structure: MC_PREPARE_TO_RECEIVE (Windows)

WINDOWS

The definition of the VCB structure for the MC_PREPARE_TO_RECEIVE verb is as

follows:

typedef struct mc_prepare_to_receive

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char ptr_type;

 unsigned char locks;

} MC_PREPARE_TO_RECEIVE;

VCB Structure: PREPARE_TO_RECEIVE (Windows)

The definition of the VCB structure for the PREPARE_TO_RECEIVE verb is as

follows:

MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE

138 IBM Communications Server for AIX APPC Programmer’s Guide

typedef struct prepare_to_receive

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char ptr_type;

 unsigned char locks;

} PREPARE_TO_RECEIVE;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_PREPARE_TO_RECEIVE

For the MC_PREPARE_TO_RECEIVE verb.

AP_B_PREPARE_TO_RECEIVE

For the PREPARE_TO_RECEIVE verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_PREPARE_TO_RECEIVE verb.

AP_BASIC_CONVERSATION

For the PREPARE_TO_RECEIVE verb.

If the verb is being issued as a non-blocking verb, combine the value above

(using a logical OR) with the value AP_NON_BLOCKING.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

ptr_type

Specifies how to perform the state change.

 Possible values are:

AP_FLUSH

Sends the contents of the local LU’s send buffer to the partner LU

(and TP) before changing the conversation’s state to Receive.

AIX, LINUX

AP_CONFIRM_TYPE

Use this value only if the conversation’s synchronization level is

MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE

Chapter 4. APPC Conversation Verbs 139

AP_SYNCPT. It indicates that confirmation from the partner TP (but

not syncpoint processing) is required before changing the

conversation’s state to Receive.

 APPC sends the contents of the local LU’s send buffer and a

confirmation request to the partner TP. The conversation state does

not change to Receive until the partner TP sends the requested

confirmation (or reports an error).

AP_SYNC_LEVEL

Uses the conversation’s synchronization level (established by the

[MC_]ALLOCATE verb) to determine how to perform the state

change.

 If the synchronization level of the conversation is AP_NONE, APPC

sends the contents of the local LU’s send buffer to the partner TP

before changing the conversation’s state to Receive.

 If the synchronization level is AP_CONFIRM_SYNC_LEVEL, APPC sends

the contents of the local LU’s send buffer and a confirmation

request to the partner TP. Upon receiving confirmation from the

partner TP, APPC changes the conversation’s state to Receive. If,

however, the partner TP reports an error, the state changes to

Receive or Reset; see “State Change” on page 143.

AIX, LINUX

 If the synchronization level of the conversation is AP_SYNCPT, APPC

sends the contents of the local LU’s send buffer to the partner TP

before changing the conversation state. The Syncpoint Manager is

responsible for the following:

v Intercepting the [MC_]PREPARE_TO_RECEIVE verb when a

ptr_type of AP_SYNC_LEVEL is specified

v Performing the required syncpoint processing

v Passing the original [MC_]PREPARE_TO_RECEIVE verb through

to CS/AIX when syncpoint processing has completed

When CS/AIX receives the [MC_]PREPARE_TO_RECEIVE verb

with a ptr_type of AP_SYNC_LEVEL on a conversation with sync_level

of AP_SYNCPT, it assumes that the Syncpoint Manager has already

performed all the necessary syncpoint processing, and processes

the verb as for a sync_level of AP_NONE.

locks Specifies when APPC is to return control to the local TP.

 Use this parameter only if ptr_type is set to AP_SYNC_LEVEL and the

synchronization level of the conversation, established by the

[MC_]ALLOCATE verb is AP_CONFIRM_SYNC_LEVEL. (Otherwise, the

parameter is ignored.)

 Possible values are:

MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE

140 IBM Communications Server for AIX APPC Programmer’s Guide

AP_LONG

APPC returns control to the local TP when the confirmation and

subsequent data from the partner TP arrive at the local LU. (This

method results in more efficient use of the network but requires

longer to return control to the local TP.)

AP_SHORT

APPC returns control to the local TP when the confirmation from

the partner TP arrives at the local LU.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_P_TO_R_INVALID_FOR_FDX

The local TP attempted to use the [MC_]PREPARE_TO_RECEIVE

verb in a full-duplex conversation. This verb can be used only in a

half-duplex conversation.

AP_P_TO_R_INVALID_TYPE

The ptr_type parameter was not set to a valid value.

AIX, LINUX

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE

Chapter 4. APPC Conversation Verbs 141

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

Possible values are:

AP_P_TO_R_NOT_LL_BDY

(Returned for basic-conversation PREPARE_TO_RECEIVE only)

The local TP did not finish sending a logical record.

AP_P_TO_R_NOT_SEND_STATE

The conversation was not in Send or Send_Pending state.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

 AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

AIX, LINUX

primary_rc

 AP_BACKED_OUT

MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE

142 IBM Communications Server for AIX APPC Programmer’s Guide

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_PROG_ERROR_PURGING

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

The following primary return code is returned by the MC_PREPARE_TO_RECEIVE

verb:

primary_rc

AP_DEALLOC_ABEND

 The following primary return codes are returned by the PREPARE_TO_RECEIVE

verb:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_PURGING

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation must be in Send or Send_Pending state when the TP issues this

verb.

State Change

State changes, summarized in the following table, are based on the value of the

primary_rc parameter.

 primary_rc New state

AP_OK Receive

MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE

Chapter 4. APPC Conversation Verbs 143

primary_rc New state

AP_PARAMETER_CHECK

AP_STATE_CHECK

AP_CONVERSATION_TYPE_MIXED

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_ALLOCATION_ERROR Reset

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

Reset

AP_DEALLOC_ABEND_RESET

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

Reset

AP_PROG_ERROR_PURGING_RECEIVE

AP_SVC_ERROR_PURGING

Receive

Usage Note

The conversation does not change to Send or Send_Pending state for the partner

TP until the partner TP receives one of the following values through the what_rcvd

parameter of a subsequent receive verb:

v AP_SEND, AP_DATA_SEND, AP_DATA_COMPLETE_SEND

v AP_CONFIRM_SEND, AP_DATA_CONFIRM_SEND, or AP_DATA_COMPLETE_CONFIRM_SEND

(and replies with [MC_]CONFIRMED)

The RECEIVE verbs are [MC_]RECEIVE_AND_WAIT,

[MC_]RECEIVE_IMMEDIATE, and [MC_]RECEIVE_AND_POST.

MC_RECEIVE and RECEIVE Verbs

APPC provides three different verbs which are used to receive data from the

partner TP. Most of the parameters and return codes are the same for all three

verbs, but each operates in a different way and provides a different function.

Common information which applies to all three verbs are explained together in

this section; each verb is then explained in detail.

The three RECEIVE verbs are:

v [MC_]RECEIVE_IMMEDIATE

v [MC_]RECEIVE_AND_WAIT

v [MC_]RECEIVE_AND_POST

Note: The [MC_]RECEIVE_EXPEDITED_DATA verb also receives data from the

partner TP, but it receives data that was sent as expedited flow data rather

than normal flow data. This verb is described separately after the other

RECEIVE verbs.

How a TP Receives Data

The process through which the local TP receives data is as follows:

1. The local TP issues a receive verb until it finishes receiving a complete unit of

data. The data received can be any of the following:

MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE

144 IBM Communications Server for AIX APPC Programmer’s Guide

v One data record transmitted in a mapped conversation

v One logical record transmitted in a basic conversation

v A buffer of data received independent of its logical-record format in a basic

conversation
The local TP may need to issue several RECEIVE verbs in order to receive a

complete unit of data. Once a complete unit of data has been received, the local

TP can manipulate it.

2. The local TP issues another receive verb. This has one of the following effects:

v If the partner TP has sent more data, the local TP begins to receive a new

unit of data.

v If the partner TP has finished sending data or is waiting for confirmation,

status information (available through the what_rcvd parameter) indicates the

next action the local TP normally takes. For more information, see “The

what_rcvd Parameter.”

Alternatively, the local TP can set a parameter rtn_status when issuing the receive

verb; this indicates that any status information available is to be returned with the

data. In this case, the receive verb that returns the last part of the data also returns

the status information, and the local TP does not need to issue a separate receive

verb for it. For more information, see “The what_rcvd Parameter.”

The what_rcvd Parameter

After issuing one of the [MC_]RECEIVE verbs, a TP will normally use the

what_rcvd parameter to determine its next action. The values referring to a data

type of “User Control” will be returned on a mapped conversation on the AIX or

Linux system, and the values referring to a data type of “PS Header” will be

returned on a mapped conversation on the AIX or Linux system with a

synchronization level of AP_SYNCPT.

The following list describes the possible values of the what_rcvd parameter, with

the action normally taken by the TP for each of them:

AP_DATA AP_DATA_COMPLETE AP_DATA_INCOMPLETE

AP_USER_CONTROL_DATA_COMPLETE

AP_USER_CONTROL_DATA_INCMP AP_PS_HEADER_COMPLETE

AP_PS_HEADER_INCOMPLETE

The local TP received data from the partner TP. It will normally continue

to issue RECEIVE verbs until it receives one of the other what_rcvd

parameters in this list.

AP_SEND (half-duplex conversation only)

The partner TP issued the [MC_]PREPARE_TO_RECEIVE verb without

requesting confirmation, or issued the [MC_]SEND_DATA verb with a

send type of PREPARE_TO_RECEIVE. The local TP is now in Send state,

so it will normally begin to send data.

AP_CONFIRM_DEALLOCATE (half-duplex conversation only)

The partner TP issued the [MC_]DEALLOCATE verb with a dealloc_type

parameter indicating that confirmation was required, or issued the

[MC_]SEND_DATA verb with a send type of DEALLOCATE. The local TP

is now in Confirm_Deallocate state, so it will normally issue the

[MC_]CONFIRMED verb to confirm deallocation of the conversation.

AP_CONFIRM_SEND (half-duplex conversation only)

The partner TP issued the [MC_]PREPARE_TO_RECEIVE verb with

ptr_type and dealloc_type parameters indicating that confirmation was

MC_RECEIVE and RECEIVE Verbs

Chapter 4. APPC Conversation Verbs 145

required, or issued the [MC_]SEND_DATA verb with a send type of

PREPARE_TO_RECEIVE_CONFIRM. The local TP is now in Confirm_Send

state, so it will normally issue the [MC_]CONFIRMED verb to confirm the

state change and then begin to send data.

AP_CONFIRM_WHAT_RECEIVED (half-duplex conversation only)

The partner TP issued the [MC_]CONFIRM verb, or issued the

[MC_]SEND_DATA verb with a send type of CONFIRM. The local TP is

now in Confirm state, so it will normally issue the [MC_]CONFIRMED

verb.

 The following values will only be returned if the local TP specified AP_YES for the

rtn_status (return status with data) parameter:

AP_DATA_SEND AP_DATA_COMPLETE_SEND

AP_UC_DATA_COMPLETE_SEND AP_PS_HDR_COMPLETE_SEND

The partner TP sent data and then issued the

[MC_]PREPARE_TO_RECEIVE verb without requesting confirmation, or

issued the [MC_]SEND_DATA verb with a send type of

PREPARE_TO_RECEIVE. The local TP is now in Send_Pending state, so it

will normally begin to send data.

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL

AP_UC_DATA_COMPLETE_CNFM_DEALL

AP_PS_HDR_COMLETE_CNFM_DEALL

All of these values apply only to half-duplex conversations.

 The partner TP sent data and then issued the [MC_]DEALLOCATE verb

with a dealloc_type parameter indicating that confirmation was required, or

issued the [MC_]SEND_DATA verb with a send type of DEALLOCATE.

The local TP is now in Confirm_Deallocate state, so it will normally issue

the [MC_]CONFIRMED verb to confirm deallocation of the conversation.

AP_DATA_CONFIRM_SEND, AP_DATA_COMPLETE_CONFIRM_SEND,

AP_UC_DATA_COMPLETE_CNFM_SEND,

AP_PS_HDR_COMPLETE_CNFM_SEND

All of these values apply only to half-duplex conversations.

 The partner TP sent data and then issued the

[MC_]PREPARE_TO_RECEIVE verb with ptr_type and dealloc_type

parameters indicating that confirmation was required, or issued the

[MC_]SEND_DATA verb with a send type of

PREPARE_TO_RECEIVE_CONFIRM. The local TP is now in Confirm_Send

state, so it will normally issue the [MC_]CONFIRMED verb to confirm the

state change and then begin to send data.

AP_DATA_CONFIRM, AP_DATA_COMPLETE_CONFIRM,

AP_UC_DATA_COMPLETE_CONFIRM, AP_PS_HDR_COMPLETE_CONFIRM

All of these values apply only to half-duplex conversations.

 The partner TP sent data and then issued the [MC_]CONFIRM verb, or

issued the [MC_]SEND_DATA verb with a send type of CONFIRM. The

local TP is now in Confirm state, so it will normally issue the

[MC_]CONFIRMED verb.

 In all CONFIRM cases above, the TP may issue the [MC_]SEND_ERROR

verb instead of the [MC_]CONFIRMED verb, to indicate that an error was

detected in the supplied data or in processing. If it issues

[MC_]SEND_ERROR in Send_Pending state (after receiving AP_DATA_SEND,

MC_RECEIVE and RECEIVE Verbs

146 IBM Communications Server for AIX APPC Programmer’s Guide

AP_DATA_COMPLETE_SEND, AP_UC_DATA_COMPLETE_SEND, or

AP_PS_HDR_COMPLETE_SEND), it can specify whether the error was detected in

the supplied data, or in its own data or processing. For more information,

see the description of the [MC_]SEND_ERROR verb in

“MC_SEND_ERROR and SEND_ERROR” on page 214.

End of Data

If the local TP issues one of the basic-conversation RECEIVE verbs and sets the fill

parameter to AP_BUFFER, the receipt of data ends when max_len or end of data is

reached. End of data is indicated by either of the following:

v A primary_rc parameter with a value other than AP_OK (for example,

AP_DEALLOC_NORMAL)

v A what_rcvd parameter that includes SEND, CONFIRM, CONFIRM_SEND, or

CONFIRM_DEALLOCATE

To determine if end of data has been reached, the local TP reissues one of the

RECEIVE verbs. If the new primary_rc parameter contains AP_OK and what_rcvd

contains AP_DATA or AP_DATA_INCOMPLETE, end of data has not been reached. If,

however, end of data has been reached, the primary_rc or what_rcvd parameter will

indicate the cause of the end of data.

Testing the what_rcvd Parameter

The local TP can use any of the [MC_]RECEIVE verbs to determine whether the

partner TP has data to send, seeks confirmation, or has changed the conversation

state, without receiving any data. To do this, it issues the [MC_]RECEIVE verb

with the max_len parameter set to 0 (zero), and then (if the verb returns with a

primary_rc of AP_OK) tests the what_rcvd parameter.

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

The MC_RECEIVE_AND_POST or RECEIVE_AND_POST verb receives application

data and status information asynchronously. This enables the TP to proceed with

processing while data is still arriving at the local LU.

Note: This verb can be used only in a half-duplex conversation; it is not valid in a

full-duplex conversation.

VCB Structure: MC_RECEIVE_AND_POST

AIX, LINUX

The definition of the VCB structure for the MC_RECEIVE_AND_POST verb is as

follows:

typedef struct mc_receive_and_post

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 AP_UINT16 what_rcvd;

 unsigned char rtn_status;

 unsigned char reserv4;

MC_RECEIVE and RECEIVE Verbs

Chapter 4. APPC Conversation Verbs 147

unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 max_len;

 AP_UINT16 dlen;

 unsigned char *dptr;

 void (*callback)();

 unsigned char reserv6;

} MC_RECEIVE_AND_POST;

VCB Structure: RECEIVE_AND_POST

The definition of the VCB structure for the RECEIVE_AND_POST verb is as

follows:

typedef struct receive_and_post

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 AP_UINT16 what_rcvd;

 unsigned char rtn_status;

 unsigned char fill;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 max_len;

 AP_UINT16 dlen;

 unsigned char *dptr;

 void (*callback)();

 unsigned char reserv5;

} RECEIVE_AND_POST;

VCB Structure: MC_RECEIVE_AND_POST (Windows)

WINDOWS

The definition of the VCB structure for the MC_RECEIVE_AND_POST verb is as

follows:

typedef struct mc_receive_and_post

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned short what_rcvd;

 unsigned char rtn_status;

 unsigned char reserv4;

 unsigned char rts_rcvd;

 unsigned char reserv5;

 unsigned short max_len;

 unsigned short dlen;

 unsigned char far *dptr;

 unsigned char far *sema;

 unsigned char reserv6;

} MC_RECEIVE_AND_POST;

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

148 IBM Communications Server for AIX APPC Programmer’s Guide

VCB Structure: RECEIVE_AND_POST (Windows)

The definition of the VCB structure for the RECEIVE_AND_POST verb is as

follows:

typedef struct receive_and_post

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned short what_rcvd;

 unsigned char rtn_status;

 unsigned char fill;

 unsigned char rts_rcvd;

 unsigned char reserv4;

 unsigned short max_len;

 unsigned short dlen;

 unsigned char far *dptr;

 unsigned char far *sema;

 unsigned char reserv5;

} RECEIVE_AND_POST;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_RECEIVE_AND_POST

For the MC_RECEIVE_AND_POST verb.

AP_B_RECEIVE_AND_POST

For the RECEIVE_AND_POST verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_RECEIVE_AND_POST verb.

AP_BASIC_CONVERSATION

For the RECEIVE_AND_POST verb.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rtn_status

Indicates whether status information and data can be returned on the same

verb.

 Possible values are:

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

Chapter 4. APPC Conversation Verbs 149

AP_YES Status information, if available, is returned with the last part of a

data record.

AP_NO Status information is not returned with data. After receiving the

end of a data record, the local TP must issue another

[MC_]RECEIVE verb to obtain the status information.

fill Indicates the manner in which the local TP receives data.

 This parameter is used only by the basic-conversation

RECEIVE_AND_POST verb.

 Possible values are:

AP_BUFFER

The local TP receives data until the number of bytes specified by

the max_len parameter is reached or until end of data. Data is

received without regard for the logical-record format.

AP_LL Data is received in logical-record format. The data received can be

any of the following:

v A complete logical record

v A max_len-byte portion of a logical record

v The end of a logical record

max_len

Maximum number of bytes of data the local TP can receive.

 The range for this value is 0–65,535.

 This value must not exceed the length of the buffer to contain the received

data.

dptr Address of the buffer to contain the data received by the local LU.

AIX, LINUX

callback

Address of the callback routine which APPC is to call when the

asynchronous receiving operation is finished. For more information, see

“Usage Notes” on page 159.

WINDOWS

sema A Windows event handle, obtained by calling one of the two Win32

functions CreateEvent or OpenEvent. APPC signals this event handle to

inform the TP when the asynchronous receiving operation is finished.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

When this verb is issued, it returns immediately with a primary_rc which indicates

whether or not the verb was issued successfully. The only returned parameters

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

150 IBM Communications Server for AIX APPC Programmer’s Guide

which are valid at this stage are primary_rc, secondary_rc (if the primary_rc is not

AP_OK), and rts_rcvd. The possible primary_rc and secondary_rc values are as

described later in this section.

If this primary_rc is AP_OK, the verb has successfully begun to receive data

asynchronously. When the verb has completed (either because it has successfully

received data or because it was terminated by a conversation error), APPC calls the

supplied callback routine. At this point, the returned parameters are as shown

below. The primary_rc and secondary_rc parameters will now have new values

indicating whether or not data was received successfully, and should be examined

again.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

what_rcvd

Status information received with the incoming data.

 The next action taken by the TP will usually depend on the value of this

parameter. For more information, see “The what_rcvd Parameter” on page

145.

 Possible values are:

AP_CONFIRM_DEALLOCATE

The partner TP has issued the [MC_]DEALLOCATE verb with

dealloc_type set to AP_SYNC_LEVEL, and the conversation’s

synchronization level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_CONFIRM_SEND

The partner TP has issued the [MC_]PREPARE_TO_RECEIVE verb

with ptr_type set to AP_SYNC_LEVEL, and the conversation’s

synchronization level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_CONFIRM_WHAT_RECEIVED

The partner TP has issued the [MC_]CONFIRM verb.

AP_DATA

This value can be returned by the basic-conversation

RECEIVE_AND_POST if the fill parameter is set to AP_BUFFER; it is

not applicable to MC_RECEIVE_AND_POST.

 The local TP received data until max_len or end of data was

reached.

AP_DATA_COMPLETE

For MC_RECEIVE_AND_POST, this value indicates that the local

TP has received a complete data record or the last part of a data

record. For RECEIVE_AND_POST with the fill parameter set to

AP_LL, this value indicates that the local TP has received a complete

logical record or the end of a logical record.

AP_DATA_INCOMPLETE

For MC_RECEIVE_AND_POST, this value indicates that the local

TP has received an incomplete data record. The max_len parameter

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

Chapter 4. APPC Conversation Verbs 151

specified a value less than the length of the data record (or less

than the remainder of the data record if this is not the first receive

verb to read the record).

 For RECEIVE_AND_POST with the fill parameter set to AP_LL, this

value indicates that the local TP has received an incomplete logical

record.

AP_SEND

For the partner TP, the conversation has entered Receive state. For

the local TP, the conversation is now in Send state.

The following values will only be returned if rtn_status was set to AP_YES:

AP_DATA_CONFIRM

This is a combination of AP_DATA and AP_CONFIRM_WHAT_RECEIVED.

The partner TP sent data and then issued the [MC_]CONFIRM

verb, or issued the [MC_]SEND_DATA verb with a send type of

CONFIRM.

AP_DATA_COMPLETE_CONFIRM

This is a combination of AP_DATA_COMPLETE and

AP_CONFIRM_WHAT_RECEIVED. The partner TP sent a complete data

record (or the end of a data record) and then issued the

[MC_]CONFIRM verb, or issued the [MC_]SEND_DATA verb with

a send type of CONFIRM.

AP_DATA_CONFIRM_DEALLOCATE

This is a combination of AP_DATA and AP_CONFIRM_DEALLOCATE. The

partner TP sent data and then issued the [MC_]DEALLOCATE

verb with dealloc_type set to AP_SYNC_LEVEL, or issued the

[MC_]SEND_DATA verb with a send type of

DEALLOC_SYNC_LEVEL. The conversation’s synchronization

level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_COMPLETE_CONFIRM_DEALL

This is a combination of AP_DATA_COMPLETE and

AP_CONFIRM_DEALLOCATE. The partner TP sent a complete data

record (or the end of a data record) and then issued the

[MC_]DEALLOCATE verb with dealloc_type set to AP_SYNC_LEVEL,

or issued the [MC_]SEND_DATA verb with a send type of

DEALLOC_SYNC_LEVEL. The conversation’s synchronization

level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_CONFIRM_SEND

This is a combination of AP_DATA and AP_CONFIRM_SEND. The partner

TP sent data and then issued the [MC_]PREPARE_TO_RECEIVE

verb with ptr_type set to AP_SYNC_LEVEL, or issued the

[MC_]SEND_DATA verb with a send type of

P_TO_R_SYNC_LEVEL. The conversation’s synchronization level,

established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_COMPLETE_CONFIRM_SEND

This is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

The partner TP sent a complete data record (or the end of a data

record) and then issued the [MC_]PREPARE_TO_RECEIVE verb

with ptr_type set to AP_SYNC_LEVEL, or issued the

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

152 IBM Communications Server for AIX APPC Programmer’s Guide

[MC_]SEND_DATA verb with a send type of

P_TO_R_SYNC_LEVEL. The conversation’s synchronization level,

established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_SEND

The partner TP sent data and then entered Receive state. For the

local TP, the conversation is now in Send_Pending state.

AP_DATA_COMPLETE_SEND

The partner TP sent a complete data record (or the end of a data

record) and then entered Receive state. For the local TP, the

conversation is now in Send_Pending state.

The following values will be returned on the MC_RECEIVE_AND_POST

verb:

AP_USER_CONTROL_DATA_INCMP

As for AP_DATA_INCOMPLETE, except that the received data was in

User Control Data format.

AP_USER_CONTROL_DATA_COMPLETE

As for AP_DATA_COMPLETE, except that the received data was in User

Control Data format.

AP_UC_DATA_COMPLETE_SEND

As for AP_DATA_COMPLETE_SEND, except that the received data was in

User Control Data format.

AP_UC_DATA_COMPLETE_CONFIRM

As for AP_DATA_COMPLETE_CONFIRM, except that the received data

was in User Control Data format.

AP_UC_DATA_COMPLETE_CNFM_DEALL

As for AP_DATA_COMPLETE_CONFIRM_DEALL, except that the received

data was in User Control Data format.

AP_UC_DATA_COMPLETE_CNFM_SEND

As for AP_DATA_COMPLETE_CONFIRM_SEND, except that the received

data was in User Control Data format.

The following values will be returned on the MC_RECEIVE_AND_POST

verb with sync_level set to AP_SYNCPT:

AP_PS_HEADER_INCOMPLETE

As for AP_DATA_INCOMPLETE, except that the received data was in PS

Header format.

AP_PS_HEADER_COMPLETE

As for AP_DATA_COMPLETE, except that the received data was in PS

Header format.

AP_PS_HDR_COMPLETE_SEND

As for AP_DATA_COMPLETE_SEND, except that the received data was in

PS Header format.

AP_PS_HDR_COMPLETE_CONFIRM

As for AP_DATA_COMPLETE_CONFIRM, except that the received data

was in PS Header format.

AP_PS_HDR_COMPLETE_CNFM_DEALL

As for AP_DATA_COMPLETE_CONFIRM_DEALL, except that the received

data was in PS Header format.

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

Chapter 4. APPC Conversation Verbs 153

AP_PS_HDR_COMPLETE_CNFM_SEND

As for AP_DATA_COMPLETE_CONFIRM_SEND, except that the received

data was in PS Header format.

rts_rcvd

Request-to-send-received indicator. This parameter applies only in a

half-duplex conversation; it is not used in a full-duplex conversation.

 Possible values are:

AP_YES The partner TP has issued the [MC_]REQUEST_TO_SEND verb,

which requests that the local TP change the conversation to

Receive state.

AP_NO The partner TP has not issued the [MC_]REQUEST_TO_SEND

verb.

 For an explanation of why this indicator can be received by receive

verbs, see “MC_REQUEST_TO_SEND and REQUEST_TO_SEND”

on page 190.

expd_rcvd

Expedited data indicator.

 Possible values are:

AP_YES The partner TP has sent expedited data that the local TP has not

yet received. To receive this data, the local TP can use the

[MC_]RECEIVE_EXPEDITED_DATA verb.

 This indicator can be set on a number of APPC verbs. It continues

to be set on subsequent verbs until the local TP issues the

[MC_]RECEIVE_EXPEDITED_DATA verb to receive the data.

AP_NO There is no expedited data waiting to be received.

dlen Number of bytes of data received (the data is stored in the buffer specified

by the dptr parameter). A length of 0 (zero) indicates that no data was

received. This parameter is only used if the what_rcvd parameter indicates

that data was received.

Conversation Deallocated: If the partner TP has deallocated the conversation

without requesting confirmation, APPC returns the following parameters:

primary_rc

AP_DEALLOC_NORMAL

The partner TP issued the [MC_]DEALLOCATE verb with

dealloc_type set to one of the following:

v AP_FLUSH

v AP_SYNC_LEVEL with the synchronization level of the conversation

specified as AP_NONE

dlen Number of bytes of data received (the data is stored in the buffer specified

by the dptr parameter). A length of 0 (zero) indicates that no data was

received. This parameter is only used if rtn_status was set to AP_YES.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

154 IBM Communications Server for AIX APPC Programmer’s Guide

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

The rtn_status parameter was set to a value that was not valid.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

AP_INVALID_CALLBACK_HANDLE

The callback parameter was set to a null pointer, and the verb was

issued using the synchronous entry point (or using the

asynchronous entry point with a null pointer to a callback routine).

For more information, see “Usage Notes” on page 159.

AP_RCV_AND_POST_BAD_FILL

This return code applies only to the basic-conversation

RECEIVE_AND_POST verb. The fill parameter was set to a value

that was not valid.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

Possible values are:

AP_RCV_AND_POST_BAD_STATE

The conversation was not in Receive, Send, or Send_Pending state

when the TP issued this verb.

AP_RCV_AND_POST_NOT_LL_BDY

This return code applies only to the basic-conversation

RECEIVE_AND_POST verb. The conversation was in Send state;

the TP began but did not finish sending a logical record.

Verb Canceled: This return code cannot be returned as the initial return code, but

only as the subsequent return code if the initial return code is AP_OK.

If the verb did not execute because it was canceled by another verb issued by the

TP, APPC returns the following parameter:

primary_rc

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

Chapter 4. APPC Conversation Verbs 155

AP_CANCELLED

The local TP issued one of the following verbs while in

Pending_Post state:

v DEALLOCATE with dealloc_type set to AP_ABEND_PROG,

AP_ABEND_SVC, or AP_ABEND_TIMER

v MC_DEALLOCATE with dealloc_type set to AP_ABEND

v [MC_]SEND_ERROR

v TP_ENDED

Issuing one of these verbs while in Pending_Post state causes the

[MC_]RECEIVE_AND_POST verb to be canceled. The callback

routine is not called. The local TP is no longer receiving data

asynchronously from the partner TP.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

 AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

primary_rc

AP_BACKED_OUT

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

156 IBM Communications Server for AIX APPC Programmer’s Guide

AP_UNEXPECTED_SYSTEM_ERROR

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

 AP_PROG_ERROR_TRUNC

 AP_INVALID_VERB

 AP_TP_BUSY

 APPC does not return secondary return codes with these primary return codes.

The following primary return code is returned by MC_RECEIVE_AND_POST:

primary_rc

 AP_DEALLOC_ABEND

 APPC does not return a secondary return code with this primary return code.

The following primary return codes are returned by RECEIVE_AND_POST:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_NO_TRUNC

 AP_SVC_ERROR_PURGING

 AP_SVC_ERROR_TRUNC

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The TP can issue [MC_]RECEIVE_AND_POST when the conversation is in Receive,

Send, or Send_Pending state.

Issuing the Verb in Send State

Issuing the [MC_]RECEIVE_AND_POST verb while the conversation is in Send

state has the following effects:

v The local LU sends the information in its send buffer and a SEND indicator to

the partner TP.

v The conversation changes to Pending_Post state; the local TP is ready to receive

information from the partner TP asynchronously.

State Change

The conversation changes state twice. On the initial return of the verb, if the

primary_rc is AP_OK, the conversation changes to Pending_Post state. After APPC

calls the callback routine or clears the semaphore to indicate completion of the

verb, the state changes as described in this section.

The state change on completion of [MC_]RECEIVE_AND_POST depends on the

value of the following:

v The primary_rc parameter

v The what_rcvd parameter if primary_rc is AP_OK

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

Chapter 4. APPC Conversation Verbs 157

The table that follows summarizes the possible state changes that can occur when

primary_rc is AP_OK:

 what_rcvd parameter New state

AP_CONFIRM_WHAT_RECEIVED

AP_DATA_CONFIRM

AP_DATA_COMPLETE_CONFIRM

Confirm

AP_CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL

Confirm_Deallocate

AP_CONFIRM_SEND

AP_DATA_CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND

Confirm_Send

AP_DATA

AP_DATA_COMPLETE

AP_DATA_INCOMPLETE

Receive

AP_SEND Send

AP_DATA_SEND

AP_DATA_COMPLETE_SEND

Send_ Pending

The table that follows summarizes the possible state changes that can occur when

primary_rc is not AP_OK:

 primary_rc New state

AP_PARAMETER_CHECK

AP_STATE_CHECK

AP_CONVERSATION_TYPE_MIXED

No change (these return codes can only

occur as the first return code, not as the

second return code)

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

No change

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_DEALLOC_NORMAL

Reset

AP_PROG_ERROR_PURGING

AP_PROG_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_NO_TRUNC

AP_PROG_ERROR_TRUNC

AP_SVC_ERROR_TRUNC

Receive

AP_CANCELLED The conversation returns to the state

(Send or Receive) in which the

[MC_]RECEIVE_AND_POST verb was

issued. Since the AP_CANCELLED return code

is caused by another verb issued by the

same TP, the conversation state will then

change again when this later verb

completes.

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

158 IBM Communications Server for AIX APPC Programmer’s Guide

Usage Notes

This section provides additional usage information about the following topics:

v PS Header data

v Callback routine

v Processing while the verb is pending

v Compatibility with other APPC implementations

v How the TP uses the verb

v Avoiding indefinite waits

PS Header Data

In a conversation with a synchronization level of AP_SYNCPT, the received data may

be in PS Header format. In a mapped conversation, this is indicated by the value

of the what_rcvd parameter; in a basic conversation, this is indicated by an LL field

of 0x0001 (see “Logical Records” on page 57 for more information). The Syncpoint

Manager is responsible for converting the data into the appropriate Syncpoint

commands.

Callback Routine

AIX, LINUX

The application supplies a pointer to a callback routine as one of the parameters to

the VCB. This section describes how CS/AIX uses this routine, and the functions

that it must perform.

The callback routine is defined as follows:

 void (*callback) (

 void * vcb,

 unsigned char tp_id[8],

 AP_UINT32 conv_id

);

CS/AIX calls the routine with the following parameters:

vcb Pointer to the VCB supplied by the application, including the returned

parameters set by CS/AIX.

tp_id The 8-byte TP identifier of the TP in which the verb was issued.

conv_id

The conversation identifier of the conversation in which the verb was

issued.

 The callback routine need not use all of these parameters. It may perform all the

necessary processing on the returned VCB, or may simply set a variable to inform

the main program that the verb has completed.

The application can issue further APPC verbs from within the callback routine, if

required. However, these must be asynchronous verbs. Any synchronous verbs

issued from within a callback routine will be rejected with the return codes

AP_PARAMETER_CHECK and AP_SYNC_NOT_ALLOWED.

If the application issues the [MC_]RECEIVE_AND_POST verb using the

asynchronous APPC entry point, there are two callback routines specified: one in

the VCB, the other supplied as a parameter to the entry point. In general, APPC

uses the callback routine specified in the VCB and ignores the one on the entry

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

Chapter 4. APPC Conversation Verbs 159

point; however, if the application supplies a null pointer for the callback routine in

the VCB, APPC uses the callback routine on the entry point.

Continuing with Other Processing While the Verb Is Pending

Because the [MC_]RECEIVE_AND_POST verb returns immediately without

waiting for data to arrive, the TP can continue other processing while waiting for it

to complete. However, the following points should be noted:

v The VCB supplied to the [MC_]RECEIVE_AND_POST verb continues to be used

until the callback routine returns. The TP must not change any fields in the VCB

during this time. If it issues any other APPC verb while in Pending_Post state, it

must use another VCB for it.

v Only one [MC_]RECEIVE_AND_POST verb per conversation can be active at

any time.

Compatibility with Other APPC Implementations

AIX, LINUX

The AIX or Linux implementation of the [MC_]RECEIVE_AND_POST verb is

different from Windows APPC implementations. In addition, this verb is not

available in any DOS implementations of APPC. Because of this, TPs using

[MC_]RECEIVE_AND_POST are not totally portable to other operating systems; if

your TP uses this verb, you will need to rewrite the sections of the TP that use it if

you want the TP to run on other operating systems.

How the TP Uses the Verb

To use the [MC_]RECEIVE_AND_POST verb, the local TP performs the following

steps:

1. Issues the [MC_]RECEIVE_AND_POST verb.

2. Checks the value of the primary return code primary_rc.

If the primary return code is AP_OK, the receive buffer (pointed to by the dptr

parameter) is asynchronously receiving data from the partner TP. While

receiving data asynchronously, the local TP can do the following:

v Perform tasks not related to this conversation

v Issue the [MC_]REQUEST_TO_SEND verb

v Gather information about this conversation by issuing the following verbs:

– GET_TYPE

– [MC_]GET_ATTRIBUTES

– [MC_]TEST_RTS
v Prematurely cancel the [MC_]RECEIVE_AND_POST verb by issuing one of

the following verbs:

– DEALLOCATE with dealloc_type set to AP_ABEND_PROG, AP_ABEND_SVC, or

AP_ABEND_TIMER

– MC_DEALLOCATE with dealloc_type set to AP_ABEND

– SEND_ERROR

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

160 IBM Communications Server for AIX APPC Programmer’s Guide

– TP_ENDED
3. Checks that the callback routine (supplied as a parameter on this verb) has

been called by APPC. When the TP finishes receiving data asynchronously,

APPC calls this routine.

4. Checks the new value of the primary return code primary_rc.

If the primary return code is AP_OK, the local TP can examine the other returned

parameters and manipulate the asynchronously received data.

If the primary return code is not AP_OK, only the secondary_rc and rts_rcvd

(request-to-send received) parameters are meaningful.

Avoiding Indefinite Waits

AIX, LINUX

If the local TP issues the [MC_]RECEIVE_AND_POST verb and subsequently waits

for the callback routine to be called, it will be suspended until information is

received from the partner TP. It could wait indefinitely if the partner TP does not

send any information, or does not issue a verb causing the partner LU to flush its

send buffer. If you need to have the TP operating continuously, avoid waiting on

the callback routine, or use the [MC_]RECEIVE_IMMEDIATE verb.

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

The MC_RECEIVE_AND_WAIT or RECEIVE_AND_WAIT verb receives any data

that is currently available from the partner TP. If no data is currently available, the

local TP waits for data to arrive.

While an asynchronous [MC_]RECEIVE_AND_WAIT is outstanding, the

application can issue the following verbs on the same conversation:

v GET_TYPE

v [MC_]DEALLOCATE with a deallocate type of AP_ABEND, AP_ABEND_PROG,

AP_ABEND_SVC, or AP_ABEND_TIMER

v [MC_]GET_ATTRIBUTES

v Additional [MC_]RECEIVE verbs, provided that they are issued in non-blocking

mode

v [MC_]RECEIVE_EXPEDITED_DATA

v [MC_]REQUEST_TO_SEND

v [MC_]SEND_DATA (full-duplex conversations only)

v [MC_]SEND_EXPEDITED_DATA

v [MC_]SEND_ERROR

v [MC_]TEST_RTS

v TP_ENDED

VCB Structure: MC_RECEIVE_AND_WAIT

AIX, LINUX

MC_RECEIVE_AND_POST and RECEIVE_AND_POST

Chapter 4. APPC Conversation Verbs 161

The definition of the VCB structure for the MC_RECEIVE_AND_WAIT verb is as

follows:

typedef struct mc_receive_and_wait

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 AP_UINT16 what_rcvd;

 unsigned char rtn_status;

 unsigned char reserv4;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 max_len;

 AP_UINT16 dlen;

 unsigned char *dptr;

 unsigned char reserv6[5];

} MC_RECEIVE_AND_WAIT;

VCB Structure: RECEIVE_AND_WAIT

The definition of the VCB structure for the RECEIVE_AND_WAIT verb is as

follows:

typedef struct receive_and_wait

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 AP_UINT16 what_rcvd;

 unsigned char rtn_status;

 unsigned char fill;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 max_len;

 AP_UINT16 dlen;

 unsigned char *dptr;

 unsigned char reserv5[5];

} RECEIVE_AND_WAIT;

VCB Structure: MC_RECEIVE_AND_WAIT (Windows)

WINDOWS

The definition of the VCB structure for the MC_RECEIVE_AND_WAIT verb is as

follows:

typedef struct mc_receive_and_wait

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned short what_rcvd;

 unsigned char rtn_status;

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

162 IBM Communications Server for AIX APPC Programmer’s Guide

unsigned char reserv4;

 unsigned char rts_rcvd;

 unsigned char reserv5;

 unsigned short max_len;

 unsigned short dlen;

 unsigned char far *dptr;

 unsigned char reserv6[5];

} MC_RECEIVE_AND_WAIT;

VCB Structure: RECEIVE_AND_WAIT (Windows)

The definition of the VCB structure for the RECEIVE_AND_WAIT verb is as

follows:

typedef struct receive_and_wait

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned short what_rcvd;

 unsigned char rtn_status;

 unsigned char fill;

 unsigned char rts_rcvd;

 unsigned char reserv4;

 unsigned short max_len;

 unsigned short dlen;

 unsigned char far *dptr;

 unsigned char reserv5[5];

} RECEIVE_AND_WAIT;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_RECEIVE_AND_WAIT

For the MC_RECEIVE_AND_WAIT verb.

AP_B_RECEIVE_AND_WAIT

For the RECEIVE_AND_WAIT verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_RECEIVE_AND_WAIT verb.

AP_BASIC_CONVERSATION

For the RECEIVE_AND_WAIT verb.

If the verb is being issued on a full-duplex conversation or is being issued

as a non-blocking verb, combine the value above (using a logical OR) with

one or both of the following values:

AP_FULL_DUPLEX_CONVERSATION

The verb is being issued on a full-duplex conversation.

AP_NON_BLOCKING

The verb is being issued as a non-blocking verb.

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

Chapter 4. APPC Conversation Verbs 163

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rtn_status

Indicates whether status information and data can be returned on the same

verb. Possible values are:

AP_YES Status information, if available, is returned with the last part of a

data record.

AP_NO Status information is not returned with data. After receiving the

end of a data record, the local TP must issue another

[MC_]RECEIVE verb to obtain the status information.

fill Indicates the manner in which the local TP receives data.

 This parameter is used only by the basic-conversation

RECEIVE_AND_WAIT verb. Possible values are:

AP_BUFFER

The local TP receives data until the number of bytes specified by

the max_len parameter is reached or until end of data. Data is

received without regard for the logical-record format.

AP_LL Data is received in logical-record format. The data received can be

any of the following:

v A complete logical record

v A max_len-byte portion of a logical record

v The end of a logical record

max_len

Maximum number of bytes of data the local TP can receive.

 The range for this value is 0–65,535.

 This value must not exceed the length of the buffer to contain the received

data.

dptr Address of the buffer to contain the data received by the local LU.

WINDOWS

The data buffer can reside in a static data area or in a globally allocated

area. The data buffer must fit entirely within this area.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

164 IBM Communications Server for AIX APPC Programmer’s Guide

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

what_rcvd

Status information received with the incoming data.

 The next action taken by the TP will usually depend on the value of this

parameter. For more information, see “The what_rcvd Parameter” on page

145.

 Possible values are:

AP_CONFIRM_DEALLOCATE

This value can be returned only in a half-duplex conversation.

 The partner TP has issued the [MC_]DEALLOCATE verb with

dealloc_type set to AP_SYNC_LEVEL, and the conversation’s

synchronization level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_CONFIRM_SEND

This value can be returned only in a half-duplex conversation.

 The partner TP has issued the [MC_]PREPARE_TO_RECEIVE verb

with ptr_type set to AP_SYNC_LEVEL, and the conversation’s

synchronization level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_CONFIRM_WHAT_RECEIVED

This value can be returned only in a half-duplex conversation.

 The partner TP has issued the [MC_]CONFIRM verb.

AP_DATA

This value can be returned by the basic-conversation

RECEIVE_AND_WAIT verb if the fill parameter is set to AP_BUFFER;

it is not applicable to MC_RECEIVE_AND_WAIT.

 The local TP received data until max_len or end of data was

reached.

AP_DATA_COMPLETE

For the mapped-conversation MC_RECEIVE_AND_WAIT verb, this

value indicates that the local TP has received a complete data

record or the last part of a data record.

 For the basic-conversation RECEIVE_AND_WAIT verb with the fill

parameter set to AP_LL, this value indicates that the local TP has

received a complete logical record or the end of a logical record.

AP_DATA_INCOMPLETE

For the mapped-conversation MC_RECEIVE_AND_WAIT verb, this

value indicates that the local TP has received an incomplete data

record. The max_len parameter specified a value less than the

length of the data record (or less than the remainder of the data

record if this is not the first receive verb to read the record).

 For the basic-conversation RECEIVE_AND_WAIT verb with the fill

parameter set to AP_LL, this value indicates that the local TP has

received an incomplete logical record.

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

Chapter 4. APPC Conversation Verbs 165

AP_SEND

This value can be returned only in a half-duplex conversation.

 For the partner TP, the conversation has entered Receive state. For

the local TP, the conversation is now in Send state.

The following values will be returned only in a half-duplex conversation,

and only if rtn_status was set to AP_YES:

AP_DATA_CONFIRM

This is a combination of AP_DATA and AP_CONFIRM_WHAT_RECEIVED.

The partner TP sent data and then issued the [MC_]CONFIRM

verb, or issued the [MC_]SEND_DATA verb with a send type of

CONFIRM.

AP_DATA_COMPLETE_CONFIRM

This is a combination of AP_DATA_COMPLETE and

AP_CONFIRM_WHAT_RECEIVED. The partner TP sent a complete data

record (or the end of a data record) and then issued the

[MC_]CONFIRM verb, or issued the [MC_]SEND_DATA verb with

a send type of CONFIRM.

AP_DATA_CONFIRM_DEALLOCATE

This is a combination of AP_DATA and AP_CONFIRM_DEALLOCATE. The

partner TP sent data and then issued the [MC_]DEALLOCATE

verb with dealloc_type set to AP_SYNC_LEVEL or issued the

[MC_]SEND_DATA verb with a send type of

DEALLOC_SYNC_LEVEL. The conversation’s synchronization

level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_COMPLETE_CONFIRM_DEALL

This is a combination of AP_DATA_COMPLETE and

AP_CONFIRM_DEALLOCATE. The partner TP sent a complete data

record (or the end of a data record) and then issued the

[MC_]DEALLOCATE verb with dealloc_type set to AP_SYNC_LEVEL,

or issued the [MC_]SEND_DATA verb with a send type of

DEALLOC_SYNC_LEVEL. The conversation’s synchronization

level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_CONFIRM_SEND

This is a combination of AP_DATA and AP_CONFIRM_SEND. The partner

TP sent data and then issued the [MC_]PREPARE_TO_RECEIVE

verb with ptr_type set to AP_SYNC_LEVEL, or issued the

[MC_]SEND_DATA verb with a send type of

P_TO_R_SYNC_LEVEL. The conversation’s synchronization level,

established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_COMPLETE_CONFIRM_SEND

This is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

The partner TP sent a complete data record (or the end of a data

record) and then issued the [MC_]PREPARE_TO_RECEIVE verb

with ptr_type set to AP_SYNC_LEVEL, or issued the

[MC_]SEND_DATA verb with a send type of

P_TO_R_SYNC_LEVEL. The conversation’s synchronization level,

established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

166 IBM Communications Server for AIX APPC Programmer’s Guide

AP_DATA_SEND

The partner TP sent data and then entered Receive state. For the

local TP, the conversation is now in Send_Pending state.

AP_DATA_COMPLETE_SEND

The partner TP sent a complete data record (or the end of a data

record) and then entered Receive state. For the local TP, the

conversation is now in Send_Pending state.

AIX, LINUX

 The following values will be returned on the MC_RECEIVE_AND_WAIT

verb:

AP_USER_CONTROL_DATA_INCMP

As for AP_DATA_INCOMPLETE, except that the received data was in

User Control Data format.

AP_USER_CONTROL_DATA_COMPLETE

As for AP_DATA_COMPLETE, except that the received data was in User

Control Data format.

AP_UC_DATA_COMPLETE_SEND

As for AP_DATA_COMPLETE_SEND, except that the received data was in

User Control Data format.

AP_UC_DATA_COMPLETE_CONFIRM

As for AP_DATA_COMPLETE_CONFIRM, except that the received data

was in User Control Data format.

AP_UC_DATA_COMPLETE_CNFM_DEALL

As for AP_DATA_COMPLETE_CONFIRM_DEALL, except that the received

data was in User Control Data format.

AP_UC_DATA_COMPLETE_CNFM_SEND

As for AP_DATA_COMPLETE_CONFIRM_SEND, except that the received

data was in User Control Data format.

The following values will be returned on the MC_RECEIVE_AND_WAIT

verb with sync_level set to AP_SYNCPT:

AP_PS_HEADER_INCOMPLETE

As for AP_DATA_INCOMPLETE, except that the received data was in PS

Header format.

AP_PS_HEADER_COMPLETE

As for AP_DATA_COMPLETE, except that the received data was in PS

Header format.

AP_PS_HDR_COMPLETE_SEND

As for AP_DATA_COMPLETE_SEND, except that the received data was in

PS Header format.

AP_PS_HDR_COMPLETE_CONFIRM

As for AP_DATA_COMPLETE_CONFIRM, except that the received data

was in PS Header format.

AP_PS_HDR_COMPLETE_CNFM_DEALL

As for AP_DATA_COMPLETE_CONFIRM_DEALL, except that the received

data was in PS Header format.

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

Chapter 4. APPC Conversation Verbs 167

AP_PS_HDR_COMPLETE_CNFM_SEND

As for AP_DATA_COMPLETE_CONFIRM_SEND, except that the received

data was in PS Header format.

rts_rcvd

Request-to-send-received indicator. This parameter applies only in a

half-duplex conversation; it is not used in a full-duplex conversation.

 Possible values are:

AP_YES The partner TP has issued the [MC_]REQUEST_TO_SEND verb,

which requests that the local TP change the conversation to

Receive state.

AP_NO The partner TP has not issued the [MC_]REQUEST_TO_SEND

verb.

For an explanation of why this indicator can be received by RECEIVE

verbs, see “MC_REQUEST_TO_SEND and REQUEST_TO_SEND” on page

190.

expd_rcvd

Expedited data indicator.

 Possible values are:

AP_YES The partner TP has sent expedited data that the local TP has not

yet received. To receive this data, the local TP can use the

[MC_]RECEIVE_EXPEDITED_DATA verb.

 This indicator can be set on a number of APPC verbs. It continues

to be set on subsequent verbs until the local TP issues the

[MC_]RECEIVE_EXPEDITED_DATA verb to receive the data.

AP_NO There is no expedited data waiting to be received.

dlen This parameter is only used if the what_rcvd parameter indicates that data

was received.

 Number of bytes of data received (the data is stored in the buffer specified

by the dptr parameter). A length of 0 (zero) indicates that no data was

received.

Conversation Deallocated: If the partner TP has deallocated the conversation

without requesting confirmation, APPC returns the following parameters:

primary_rc

AP_DEALLOC_NORMAL

The partner TP issued the [MC_]DEALLOCATE verb with

dealloc_type set to one of the following:

v AP_FLUSH

v AP_SYNC_LEVEL with the synchronization level of the conversation

specified as AP_NONE

dlen Number of bytes of data received (the data is stored in the buffer specified

by the dptr parameter). A length of 0 (zero) indicates that no data was

received. This parameter is only used if rtn_status was set to AP_YES.

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

168 IBM Communications Server for AIX APPC Programmer’s Guide

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

The rtn_status parameter was set to a value that was not valid.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AIX, LINUX

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

WINDOWS

AP_INVALID_DATA_SEGMENT

The data was longer than the allocated data segment, or the

address of the data buffer was incorrect.

AP_RCV_AND_WAIT_BAD_FILL

This return code applies only to the basic-conversation

RECEIVE_AND_WAIT verb. The fill parameter was set to a value

that was not valid.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

Possible values are:

AP_RCV_AND_WAIT_BAD_STATE

The conversation was not in Receive, Send, or Send_Pending state

when the TP issued this verb.

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

Chapter 4. APPC Conversation Verbs 169

AP_RCV_AND_WAIT_NOT_LL_BDY

This return code applies only to the basic-conversation

RECEIVE_AND_WAIT verb. The conversation was in Send state;

the TP began but did not finish sending a logical record.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

 AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

AIX, LINUX

primary_rc

 AP_BACKED_OUT

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_UNEXPECTED_SYSTEM_ERROR

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

170 IBM Communications Server for AIX APPC Programmer’s Guide

WINDOWS

AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

 AP_PROG_ERROR_TRUNC

 AP_INVALID_VERB

 AP_TP_BUSY

 APPC does not return secondary return codes with these primary return codes.

The following primary return code is returned by the MC_RECEIVE_AND_WAIT

verb:

primary_rc

AP_DEALLOC_ABEND

 APPC does not return a secondary return code with this primary return code.

The following primary return codes are returned by the RECEIVE_AND_WAIT

verb:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_NO_TRUNC

 AP_SVC_ERROR_PURGING

 AP_SVC_ERROR_TRUNC

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The TP can issue the [MC_]RECEIVE_AND_WAIT verb when the conversation is

in Receive, Send, or Send_Pending state.

Issuing the Verb in Send State (half-duplex conversation only)

Issuing the [MC_]RECEIVE_AND_WAIT verb while the conversation is in Send

state has the following effects:

v The local LU sends the information in its send buffer and a SEND indicator to

the partner TP.

v The conversation changes to Receive state; the local TP waits to receive

information from the partner TP.

State Change

WINDOWS

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

Chapter 4. APPC Conversation Verbs 171

When the verb is issued to the asynchronous entry point, the conversation changes

state twice. On the initial return of the verb, if the primary_rc is AP_OK, the

conversation changes to Pending_Post state. After APPC indicates completion of

the verb, the state changes as described below. For more information about the

actions that the application can take in Pending_Post state, see

“MC_RECEIVE_AND_POST and RECEIVE_AND_POST” on page 147.

The state change after the [MC_]RECEIVE_AND_WAIT verb depends on the value

of the following:

v The primary_rc parameter

v The what_rcvd parameter

The possible state changes are summarized in the following tables.

 what_rcvd parameter New state

AP_CONFIRM_WHAT_RECEIVED

AP_DATA_CONFIRM

AP_DATA_COMPLETE_CONFIRM

Confirm

AP_CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL

Confirm_Deallocate

AP_CONFIRM_SEND

AP_DATA_CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND

Confirm_Send

AP_DATA

AP_DATA_COMPLETE

AP_DATA_INCOMPLETE

Receive (half-duplex conversation) or no change

(full-duplex conversation)

AP_SEND Send

AP_DATA_SEND

AP_DATA_COMPLETE_SEND

Send_Pending

 primary_rc New state

AP_PARAMETER_CHECK

AP_STATE_CHECK

AP_CONVERSATION_TYPE_MIXED

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

Reset

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

Reset

AP_DEALLOC_NORMAL Reset

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

172 IBM Communications Server for AIX APPC Programmer’s Guide

primary_rc New state

AP_PROG_ERROR_PURGING

AP_PROG_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_NO_TRUNC

AP_PROG_ERROR_TRUNC

AP_SVC_ERROR_TRUNC

Receive (half-duplex conversation) or no change

(full-duplex conversation)

Usage Notes

This section provides additional usage information about the following topics:

v PS header data

v Avoiding indefinite waits

PS Header Data

AIX, LINUX

In a conversation with a synchronization level of AP_SYNCPT, the received data may

be in PS Header format. In a mapped conversation, this is indicated by the value

of the what_rcvd parameter; in a basic conversation, this is indicated by an LL field

of 0x0001 (for more information, see “Logical Records” on page 57). The Syncpoint

Manager is responsible for converting the data into the appropriate Syncpoint

commands.

Avoiding Indefinite Waits

If the local TP issues the [MC_]RECEIVE_AND_WAIT verb, it will be suspended

until information is received from the partner TP. It could wait indefinitely if the

partner TP does not send any information, or does not issue a verb causing the

partner LU to flush its send buffer. If you need to have the TP operating

continuously, use the [MC_]RECEIVE_AND_POST verb but avoid waiting on the

callback routine, or use the [MC_]RECEIVE_IMMEDIATE verb.

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

The MC_RECEIVE_IMMEDIATE or RECEIVE_IMMEDIATE verb receives any data

and/or status information which is currently available from the partner TP. If none

is currently available, the local TP returns immediately and does not wait.

WINDOWS

Although this verb does not wait to receive information, it is still possible that the

Windows APPC library will yield to allow other processing to continue. Do not

assume that the verb will return without yielding.

MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT

Chapter 4. APPC Conversation Verbs 173

VCB Structure: MC_RECEIVE_IMMEDIATE

AIX, LINUX

The definition of the VCB structure for the MC_RECEIVE_IMMEDIATE verb is as

follows:

typedef struct mc_receive_immediate

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 AP_UINT16 what_rcvd;

 unsigned char rtn_status;

 unsigned char reserv4;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 max_len;

 AP_UINT16 dlen;

 unsigned char *dptr;

 unsigned char reserv6[5];

} MC_RECEIVE_IMMEDIATE;

VCB Structure: RECEIVE_IMMEDIATE

The definition of the VCB structure for the RECEIVE_IMMEDIATE verb is as

follows:

typedef struct receive_immediate

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 AP_UINT16 what_rcvd;

 unsigned char rtn_status;

 unsigned char fill;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 max_len;

 AP_UINT16 dlen;

 unsigned char *dptr;

 unsigned char reserv5[5];

} RECEIVE_IMMEDIATE;

VCB Structure: MC_RECEIVE_IMMEDIATE (Windows)

WINDOWS

The definition of the VCB structure for the MC_RECEIVE_IMMEDIATE verb is as

follows:

typedef struct mc_receive_immediate

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

174 IBM Communications Server for AIX APPC Programmer’s Guide

unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned short what_rcvd;

 unsigned char rtn_status;

 unsigned char reserv4;

 unsigned char rts_rcvd;

 unsigned char reserv5;

 unsigned short max_len;

 unsigned short dlen;

 unsigned char far *dptr;

 unsigned char reserv6[5];

} MC_RECEIVE_IMMEDIATE;

VCB Structure: RECEIVE_IMMEDIATE (Windows)

The definition of the VCB structure for the RECEIVE_IMMEDIATE verb is as

follows:

typedef struct receive_immediate

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned short what_rcvd;

 unsigned char rtn_status;

 unsigned char fill;

 unsigned char rts_rcvd;

 unsigned char reserv4;

 unsigned short max_len;

 unsigned short dlen;

 unsigned char far *dptr;

 unsigned char reserv5[5];

} RECEIVE_IMMEDIATE;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_RECEIVE_IMMEDIATE

For the MC_RECEIVE_IMMEDIATE verb.

AP_B_RECEIVE_IMMEDIATE

For the RECEIVE_IMMEDIATE verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_RECEIVE_IMMEDIATE verb.

AP_BASIC_CONVERSATION

For the RECEIVE_IMMEDIATE verb.

If the verb is being issued on a full-duplex conversation or is being issued

as a non-blocking verb, combine the value above (using a logical OR) with

one or both of the following values:

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

Chapter 4. APPC Conversation Verbs 175

AP_FULL_DUPLEX_CONVERSATION

The verb is being issued on a full-duplex conversation.

AP_NON_BLOCKING

The verb is being issued as a non-blocking verb.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rtn_status

Indicates whether status information and data can be returned on the same

verb. Possible values are:

AP_YES Status information, if available, is returned with the last part of a

data record.

AP_NO Status information is not returned with data. After receiving the

end of a data record, the local TP must issue another

[MC_]RECEIVE verb to obtain the status information.

fill Indicates the manner in which the local TP receives data.

 This parameter is used only by the basic-conversation

RECEIVE_IMMEDIATE verb. Possible values are:

AP_BUFFER

The local TP receives data until the number of bytes specified by

the max_len parameter is reached or until end of data. Data is

received without regard for the logical-record format.

AP_LL Data is received in logical-record format. The data received can be

any of the following:

v A complete logical record

v A max_len-byte portion of a logical record

v The end of a logical record

max_len

Maximum number of bytes of data the local TP can receive.

 The range for this value is 0–65,535.

 This value must not exceed the length of the buffer to contain the received

data.

dptr Address of the buffer to contain the data received by the local LU.

WINDOWS

The data buffer can reside in a static data area or in a globally allocated

area. The data buffer must fit entirely within this area.

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

176 IBM Communications Server for AIX APPC Programmer’s Guide

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

what_rcvd

Status information received with the incoming data.

 The next action taken by the TP will usually depend on the value of this

parameter. For more information, see “The what_rcvd Parameter” on page

145.

 Possible values are:

AP_CONFIRM_DEALLOCATE

The partner TP has issued the [MC_]DEALLOCATE verb with

dealloc_type set to AP_SYNC_LEVEL, and the conversation’s

synchronization level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_CONFIRM_SEND

The partner TP has issued the [MC_]PREPARE_TO_RECEIVE verb

with ptr_type set to AP_SYNC_LEVEL, and the conversation’s

synchronization level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_CONFIRM_WHAT_RECEIVED

The partner TP has issued the [MC_]CONFIRM verb.

AP_DATA

This value can be returned by the basic-conversation

RECEIVE_IMMEDIATE verb if the fill parameter is set to

AP_BUFFER; it is not applicable to MC_RECEIVE_IMMEDIATE.

 The local TP received data until max_len or end of data was

reached.

AP_DATA_COMPLETE

For the mapped-conversation MC_RECEIVE_IMMEDIATE verb,

this value indicates that the local TP has received a complete data

record or the last part of a data record.

 For the basic-conversation RECEIVE_IMMEDIATE verb with the

fill parameter set to AP_LL, this value indicates that the local TP has

received a complete logical record or the end of a logical record.

AP_DATA_INCOMPLETE

For the mapped-conversation MC_RECEIVE_IMMEDIATE verb,

this value indicates that the local TP has received an incomplete

data record. The max_len parameter specified a value less than the

length of the data record (or less than the remainder of the data

record if this is not the first receive verb to read the record).

 For the basic-conversation RECEIVE_IMMEDIATE verb with the

fill parameter set to AP_LL, this value indicates that the local TP has

received an incomplete logical record.

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

Chapter 4. APPC Conversation Verbs 177

AP_SEND

For the partner TP, the conversation has entered Receive state. For

the local TP, the conversation is now in Send state.

The following values will only be returned if rtn_status was set to AP_YES:

AP_DATA_CONFIRM

This is a combination of AP_DATA and AP_CONFIRM_WHAT_RECEIVED.

The partner TP sent data and then issued the [MC_]CONFIRM

verb, or issued the [MC_]SEND_DATA verb with a send type of

CONFIRM.

AP_DATA_COMPLETE_CONFIRM

This is a combination of AP_DATA_COMPLETE and

AP_CONFIRM_WHAT_RECEIVED. The partner TP sent a complete data

record (or the end of a data record) and then issued the

[MC_]CONFIRM verb, or issued the [MC_]SEND_DATA verb with

a send type of CONFIRM.

AP_DATA_CONFIRM_DEALLOCATE

This is a combination of AP_DATA and AP_CONFIRM_DEALLOCATE. The

partner TP sent data and then issued the [MC_]DEALLOCATE

verb with dealloc_type set to AP_SYNC_LEVEL, or issued the

[MC_]SEND_DATA verb with a send type of

DEALLOC_SYNC_LEVEL. The conversation’s synchronization

level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_COMPLETE_CONFIRM_DEALL

This is a combination of AP_DATA_COMPLETE and

AP_CONFIRM_DEALLOCATE. The partner TP sent a complete data

record (or the end of a data record) and then issued the

[MC_]DEALLOCATE verb with dealloc_type set to AP_SYNC_LEVEL,

or issued the [MC_]SEND_DATA verb with a send type of

DEALLOC_SYNC_LEVEL. The conversation’s synchronization

level, established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_CONFIRM_SEND

This is a combination of AP_DATA and AP_CONFIRM_SEND. The partner

TP sent data and then issued the [MC_]PREPARE_TO_RECEIVE

verb with ptr_type set to AP_SYNC_LEVEL, or issued the

[MC_]SEND_DATA verb with a send type of

P_TO_R_SYNC_LEVEL. The conversation’s synchronization level,

established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_COMPLETE_CONFIRM_SEND

This is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

The partner TP sent a complete data record (or the end of a data

record) and then issued the [MC_]PREPARE_TO_RECEIVE verb

with ptr_type set to AP_SYNC_LEVEL, or issued the

[MC_]SEND_DATA verb with a send type of

P_TO_R_SYNC_LEVEL. The conversation’s synchronization level,

established by the [MC_]ALLOCATE verb, is

AP_CONFIRM_SYNC_LEVEL.

AP_DATA_SEND

The partner TP sent data and then entered Receive state. For the

local TP, the conversation is now in Send_Pending state.

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

178 IBM Communications Server for AIX APPC Programmer’s Guide

AP_DATA_COMPLETE_SEND

The partner TP sent a complete data record (or the end of a data

record) and then entered Receive state. For the local TP, the

conversation is now in Send_Pending state.

AIX, LINUX

The following values will be returned on the MC_RECEIVE_IMMEDIATE

verb:

AP_USER_CONTROL_DATA_INCMP

As for AP_DATA_INCOMPLETE, except that the received data was in

User Control Data format.

AP_USER_CONTROL_DATA_COMPLETE

As for AP_DATA_COMPLETE, except that the received data was in User

Control Data format.

AP_UC_DATA_COMPLETE_SEND

As for AP_DATA_COMPLETE_SEND, except that the received data was in

User Control Data format.

AP_UC_DATA_COMPLETE_CONFIRM

As for AP_DATA_COMPLETE_CONFIRM, except that the received data

was in User Control Data format.

AP_UC_DATA_COMPLETE_CNFM_DEALL

As for AP_DATA_COMPLETE_CONFIRM_DEALL, except that the received

data was in User Control Data format.

AP_UC_DATA_COMPLETE_CNFM_SEND

As for AP_DATA_COMPLETE_CONFIRM_SEND, except that the received

data was in User Control Data format.

The following values will be returned on the MC_RECEIVE_IMMEDIATE

verb with sync_level set to AP_SYNCPT:

AP_PS_HEADER_INCOMPLETE

As for AP_DATA_INCOMPLETE, except that the received data was in PS

Header format.

AP_PS_HEADER_COMPLETE

As for AP_DATA_COMPLETE, except that the received data was in PS

Header format.

AP_PS_HDR_COMPLETE_SEND

As for AP_DATA_COMPLETE_SEND, except that the received data was in

PS Header format.

AP_PS_HDR_COMPLETE_CONFIRM

As for AP_DATA_COMPLETE_CONFIRM, except that the received data

was in PS Header format.

AP_PS_HDR_COMPLETE_CNFM_DEALL

As for AP_DATA_COMPLETE_CONFIRM_DEALL, except that the received

data was in PS Header format.

AP_PS_HDR_COMPLETE_CNFM_SEND

As for AP_DATA_COMPLETE_CONFIRM_SEND, except that the received

data was in PS Header format.

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

Chapter 4. APPC Conversation Verbs 179

rts_rcvd

Request-to-send-received indicator. This parameter applies only in a

half-duplex conversation; it is not used in a full-duplex conversation.

 Possible values are:

AP_YES The partner TP has issued the [MC_]REQUEST_TO_SEND verb,

which requests that the local TP change the conversation to

Receive state.

AP_NO The partner TP has not issued the [MC_]REQUEST_TO_SEND

verb.

For an explanation of why this indicator can be received by RECEIVE

verbs, see “MC_REQUEST_TO_SEND and REQUEST_TO_SEND” on page

190.

expd_rcvd

Expedited data indicator.

 Possible values are:

AP_YES The partner TP has sent expedited data that the local TP has not

yet received. To receive this data, the local TP can use the

[MC_]RECEIVE_EXPEDITED_DATA verb.

 This indicator can be set on a number of APPC verbs. It continues

to be set on subsequent verbs until the local TP issues the

[MC_]RECEIVE_EXPEDITED_DATA verb to receive the data.

AP_NO There is no expedited data waiting to be received.

dlen This parameter is only used if the what_rcvd parameter indicates that data

was received.

 Number of bytes of data received (the data is stored in the buffer specified

by the dptr parameter). A length of 0 (zero) indicates that no data was

received.

Conversation Deallocated: If the partner TP has deallocated the conversation

without requesting confirmation, APPC returns the following parameters:

primary_rc

AP_DEALLOC_NORMAL

The partner TP issued the [MC_]DEALLOCATE verb with

dealloc_type set to one of the following:

v AP_FLUSH

v AP_SYNC_LEVEL with the synchronization level of the conversation

specified as AP_NONE.

dlen Number of bytes of data received (the data is stored in the buffer specified

by the dptr parameter). A length of 0 (zero) indicates that no data was

received. This parameter is only used if rtn_status was set to AP_YES.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

180 IBM Communications Server for AIX APPC Programmer’s Guide

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

The rtn_status parameter was set to a value that was not valid.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AIX, LINUX

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

WINDOWS

AP_INVALID_DATA_SEGMENT

The data was longer than the allocated data segment, or the

address of the data buffer was incorrect.

AP_RCV_IMMD_BAD_FILL

This return code applies only to the basic-conversation

RECEIVE_IMMEDIATE verb. The fill parameter was set to a value

that was not valid.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

Possible values are:

AP_RCV_IMMD_BAD_STATE

The conversation was not in Receive state when the TP issued this

verb.

No Data Available: If no data is immediately available from the partner TP,

APPC returns the following parameter:

primary_rc

AP_UNSUCCESSFUL

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

Chapter 4. APPC Conversation Verbs 181

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

 AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

AIX, LINUX

primary_rc

 AP_BACKED_OUT

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

 AP_PROG_ERROR_TRUNC

 AP_INVALID_VERB

 AP_TP_BUSY

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

182 IBM Communications Server for AIX APPC Programmer’s Guide

AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

The following primary return code is returned by the MC_RECEIVE_IMMEDIATE

verb:

primary_rc

AP_DEALLOC_ABEND

 APPC does not return a secondary return code with this primary return code.

The following primary return codes are returned by the RECEIVE_IMMEDIATE

verb:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_NO_TRUNC

 AP_SVC_ERROR_PURGING

 AP_SVC_ERROR_TRUNC

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The TP can issue the [MC_]RECEIVE_IMMEDIATE verb only when the

conversation is in Send_Receive (full-duplex conversation only) or Receive state.

State Change

The state change after the [MC_]RECEIVE_IMMEDIATE verb depends on the

value of the following:

v The primary_rc parameter

v The what_rcvd parameter if primary_rc is AP_OK

The possible state changes are summarized in the following tables.

 what_rcvd parameter New state

AP_CONFIRM_WHAT_RECEIVED

AP_DATA_CONFIRM

AP_DATA_COMPLETE_CONFIRM

Confirm

AP_CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL

Confirm_Deallocate

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

Chapter 4. APPC Conversation Verbs 183

what_rcvd parameter New state

AP_CONFIRM_SEND

AP_DATA_CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND

Confirm_Send

AP_DATA

AP_DATA_COMPLETE

AP_DATA_INCOMPLETE

Receive (half-duplex conversation) or no

change (full-duplex conversation)

AP_SEND Send

AP_DATA_SEND

AP_DATA_COMPLETE_SEND

Send_Pending

 primary_rc New state

AP_PARAMETER_CHECK

AP_STATE_CHECK

AP_CONVERSATION_TYPE_MIXED

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

Reset

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_DEALLOC_NORMAL

Reset (half-duplex conversation) or

Send_Only (full-duplex conversation)

AP_PROG_ERROR_PURGING

AP_PROG_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_NO_TRUNC

AP_PROG_ERROR_TRUNC

AP_SVC_ERROR_TRUNC

Receive (half-duplex conversation) or no

change (full-duplex conversation)

PS Header Data

AIX, LINUX

In a conversation with a synchronization level of AP_SYNCPT, the received data may

be in PS Header format. In a mapped conversation, this is indicated by the value

of the what_rcvd parameter; in a basic conversation, this is indicated by an LL field

of 0x0001 (see “Logical Records” on page 57 for more information). The Syncpoint

Manager is responsible for converting the data into the appropriate Syncpoint

commands.

MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE

184 IBM Communications Server for AIX APPC Programmer’s Guide

MC_RECEIVE_EXPEDITED_DATA and RECEIVE_EXPEDITED_DATA

The MC_RECEIVE_EXPEDITED_DATA or RECEIVE_EXPEDITED_DATA verb

receives any expedited data that is currently available from the partner TP. If no

data is currently available, the verb can either return immediately or wait for data

to arrive.

VCB Structure: MC_RECEIVE_EXPEDITED_DATA

The definition of the VCB structure for the MC_RECEIVE_EXPEDITED_DATA verb

is as follows:

typedef struct mc_receive_expedited_data

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char rtn_ctl;

 unsigned char reserv1[3];

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 max_len;

 AP_UINT16 dlen;

 unsigned char *dptr;

} MC_RECEIVE_EXPEDITED_DATA;

VCB Structure: RECEIVE_EXPEDITED_DATA

The definition of the VCB structure for the RECEIVE_EXPEDITED_DATA verb is

as follows:

typedef struct receive_expedited_data

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char rtn_ctl;

 unsigned char reserv1[3];

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 max_len;

 AP_UINT16 dlen;

 unsigned char *dptr;

} RECEIVE_EXPEDITED_DATA;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_RECEIVE_EXPEDITED_DATA

For the MC_RECEIVE_EXPEDITED_DATA verb.

AP_B_RECEIVE_EXPEDITED_DATA

For the RECEIVE_EXPEDITED_DATA verb.

opext Possible values are:

MC_RECEIVE_EXPEDITED_DATA and RECEIVE_EXPEDITED_DATA

Chapter 4. APPC Conversation Verbs 185

AP_MAPPED_CONVERSATION

For the MC_RECEIVE_EXPEDITED_DATA verb.

AP_BASIC_CONVERSATION

For the RECEIVE_EXPEDITED_DATA verb.

If the verb is being issued on a full-duplex conversation or is being issued

as a non-blocking verb, combine the value above (using a logical OR) with

one or both of the following values:

AP_FULL_DUPLEX_CONVERSATION

The verb is being issued on a full-duplex conversation.

AP_NON_BLOCKING

The verb is being issued as a non-blocking verb.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rtn_ctl Indicates when the verb should return control to the TP if no expedited

data is available at the time it is issued. Possible values are:

AP_IMMEDIATE

If no expedited data is available, the verb returns immediately with

a return code indicating this.

AP_WHEN_EXPD_RCVD

If no expedited data is available, the verb waits for data to arrive.

It may wait indefinitely if the partner TP does not send any

expedited data.

max_len

Maximum number of bytes of data the local TP can receive.

 The range for this value is 0–86.

 This value must not exceed the length of the buffer to contain the received

data.

dptr Address of the buffer to contain the data received by the local LU.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

expd_rcvd

Expedited data indicator.

 Possible values are:

MC_RECEIVE_EXPEDITED_DATA and RECEIVE_EXPEDITED_DATA

186 IBM Communications Server for AIX APPC Programmer’s Guide

AP_YES The partner TP has sent further expedited data that the local TP

has not yet received, in addition to the data returned on this verb.

To receive this data, the local TP can issue the

[MC_]RECEIVE_EXPEDITED_DATA verb again.

 This indicator can be set on a number of APPC verbs. It continues

to be set on subsequent verbs until the local TP issues the

[MC_]RECEIVE_EXPEDITED_DATA verb to receive the data.

AP_NO There is no expedited data waiting to be received.

dlen Number of bytes of data received (the data is stored in the buffer specified

by the dptr parameter). A length of 0 (zero) indicates that no data was

received.

 Any data received is unformatted, and does not contain a two-byte length

field (LL).

No Data Available: If the rtn_ctl parameter was set to AP_IMMEDIATE and no

expedited data was available, APPC returns the following parameter:

primary_rc

AP_UNSUCCESSFUL

Conversation Deallocated: If the partner TP has deallocated the conversation,

APPC returns one of the following values:

primary_rc

AP_DEALLOC_NORMAL

The partner TP issued the [MC_]DEALLOCATE verb with

dealloc_type set to one of the following:

v AP_FLUSH

v AP_SYNC_LEVEL with the synchronization level of the conversation

specified as AP_NONE

primary_rc

AP_CONVERSATION_ENDED

This verb was issued as a non-blocking verb and was queued

behind an earlier verb. The partner TP issued the

[MC_]DEALLOCATE verb as for AP_DEALLOC_NORMAL above, and

the first verb in the queue returned with primary_rc set to

AP_DEALLOC_NORMAL, indicating the end of the conversation. Any

subsequent verbs in the queue then return with primary_rc set to

AP_CONVERSATION_ENDED, indicating that the conversation had

already ended before the verb could be processed.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Expedited Data Not Supported: If the verb does not execute because the remote

LU does not support expedited data, APPC returns the following parameter:

primary_rc

AP_EXPD_NOT_SUPPORTED_BY_LU

MC_RECEIVE_EXPEDITED_DATA and RECEIVE_EXPEDITED_DATA

Chapter 4. APPC Conversation Verbs 187

Data Buffer Too Small: If the verb does not execute because the TP’s data buffer

is too small to contain all of the available expedited data, APPC returns the

following parameter:

primary_rc

AP_BUFFER_TOO_SMALL

dlen Number of bytes of expedited data available at the LU.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_EXPD_BAD_RETURN_CONTROL

The rtn_ctl parameter was set to a value that was not valid.

AP_RCV_EXPD_INVALID_LENGTH

The max_len parameter was set to a value that was not valid.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

Possible values are:

AP_EXPD_DATA_BAD_CONV_STATE

The conversation was in Reset state when the TP issued this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_CONVERSATION_TYPE_MISMATCH

MC_RECEIVE_EXPEDITED_DATA and RECEIVE_EXPEDITED_DATA

188 IBM Communications Server for AIX APPC Programmer’s Guide

AP_DUPLEX_TYPE_MIXED

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

AIX, LINUX

primary_rc

 AP_BACKED_OUT

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

 AP_PROG_ERROR_TRUNC

 AP_INVALID_VERB

 AP_TP_BUSY

 APPC does not return secondary return codes with these primary return codes.

The following primary return code is returned by the

MC_RECEIVE_EXPEDITED_DATA verb:

primary_rc

AP_DEALLOC_ABEND

 APPC does not return a secondary return code with this primary return code.

The following primary return codes are returned by the

RECEIVE_EXPEDITED_DATA verb:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_NO_TRUNC

 AP_SVC_ERROR_PURGING

 AP_SVC_ERROR_TRUNC

 APPC does not return secondary return codes with these primary return codes.

MC_RECEIVE_EXPEDITED_DATA and RECEIVE_EXPEDITED_DATA

Chapter 4. APPC Conversation Verbs 189

State When Issued

The TP can issue the [MC_]RECEIVE_EXPEDITED_DATA verb when the

conversation is in any state except Reset.

State Change

The state change after the [MC_]RECEIVE_EXPEDITED_DATA verb depends on

the primary_rc parameter. The possible state changes are summarized in the

following table.

 primary_rc New state

AP_OK No change

AP_PARAMETER_CHECK

AP_STATE_CHECK

AP_CONVERSATION_TYPE_MIXED

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

AP_CONVERSATION_ENDED

Reset

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

Reset

AP_DEALLOC_NORMAL Reset

MC_REQUEST_TO_SEND and REQUEST_TO_SEND

The MC_REQUEST_TO_SEND or REQUEST_TO_SEND verb notifies the partner

TP that the local TP wants to send data.

Note: This verb can be used only in a half-duplex conversation; it is not valid in a

full-duplex conversation.

Action of the Partner TP

In response to this request, the partner TP can change the conversation to one of

the following states:

v Receive state by issuing the [MC_]PREPARE_TO_RECEIVE or

[MC_]RECEIVE_AND_WAIT verb

v Pending_Post state by issuing the [MC_]RECEIVE_AND_POST verb

The partner TP can also ignore the request to send.

When the Local TP Can Send Data

The conversation state changes to Send for the local TP when it receives one of the

following values through the what_rcvd parameter of a subsequent receive verb:

v AP_CONFIRM_SEND, AP_DATA_CONFIRM_SEND, or AP_DATA_COMPLETE_CONFIRM_SEND

(and replies with [MC_]CONFIRMED)

v AP_SEND

MC_RECEIVE_EXPEDITED_DATA and RECEIVE_EXPEDITED_DATA

190 IBM Communications Server for AIX APPC Programmer’s Guide

The conversation state changes to Send_Pending for the local TP when the local TP

receives one of the following values through the what_rcvd parameter of a

subsequent receive verb:

v AP_DATA_SEND

v AP_DATA_COMPLETE_SEND

The RECEIVE verbs are [MC_]RECEIVE_AND_WAIT,

[MC_]RECEIVE_IMMEDIATE, and [MC_]RECEIVE_AND_POST.

VCB Structure: MC_REQUEST_TO_SEND

AIX, LINUX

The definition of the VCB structure for the MC_REQUEST_TO_SEND verb is as

follows:

typedef struct mc_request_to_send

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

} MC_REQUEST_TO_SEND;

VCB Structure: REQUEST_TO_SEND

The definition of the VCB structure for the REQUEST_TO_SEND verb is as follows:

typedef struct request_to_send

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

} REQUEST_TO_SEND;

VCB Structure: MC_REQUEST_TO_SEND (Windows)

WINDOWS

The definition of the VCB structure for the MC_REQUEST_TO_SEND verb is as

follows:

typedef struct mc_request_to_send

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

} MC_REQUEST_TO_SEND;

MC_REQUEST_TO_SEND and REQUEST_TO_SEND

Chapter 4. APPC Conversation Verbs 191

VCB Structure: REQUEST_TO_SEND (Windows)

The definition of the VCB structure for the REQUEST_TO_SEND verb is as follows:

typedef struct request_to_send

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

} REQUEST_TO_SEND;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_REQUEST_TO_SEND

For the MC_REQUEST_TO_SEND verb.

AP_B_REQUEST_TO_SEND

For the REQUEST_TO_SEND verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_REQUEST_TO_SEND verb.

AP_BASIC_CONVERSATION

For the REQUEST_TO_SEND verb.

If the verb is being issued as a non-blocking verb, combine the value above

(using a logical OR) with the value AP_NON_BLOCKING.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

MC_REQUEST_TO_SEND and REQUEST_TO_SEND

192 IBM Communications Server for AIX APPC Programmer’s Guide

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Conversation Deallocated: If the partner TP has deallocated the conversation,

APPC returns the following value:

primary_rc

AP_CONVERSATION_ENDED

This verb was issued as a non-blocking verb and was queued

behind an earlier verb. The partner TP issued the

[MC_]DEALLOCATE verb as for AP_DEALLOC_NORMAL above, and

the first verb in the queue returned with primary_rc set to

AP_DEALLOC_NORMAL, indicating the end of the conversation. Any

subsequent verbs in the queue then return with primary_rc set to

AP_CONVERSATION_ENDED, indicating that the conversation had

already ended before the verb could be processed.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AIX, LINUX

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

AP_R_TO_S_INVALID_FOR_FDX

The local TP attempted to use the [MC_]REQUEST_TO_SEND verb

in a full-duplex conversation. This verb can be used only in a

half-duplex conversation.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

MC_REQUEST_TO_SEND and REQUEST_TO_SEND

Chapter 4. APPC Conversation Verbs 193

AP_R_T_S_BAD_STATE

The conversation was not in an allowed state when the TP issued

this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONVERSATION_TYPE_MIXED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation can be in any of the following states when the TP issues this

verb:

v Receive

v Confirm

v Pending_Post

State Change

The conversation state does not change for this verb.

Receiving Request-to-Send Notification

The request-to-send notification is received by the partner program through the

rts_rcvd parameter of the following verbs:

v [MC]CONFIRM

v [MC_]RECEIVE_AND_POST

v [MC_]RECEIVE_AND_WAIT

v [MC_]RECEIVE_IMMEDIATE

v [MC_]SEND_DATA

v [MC_]SEND_ERROR

It is also indicated by a primary_rc of AP_OK on the [MC_]TEST_RTS verb, or by a

callback on the [MC_]TEST_RTS_AND_POST verb.

MC_REQUEST_TO_SEND and REQUEST_TO_SEND

194 IBM Communications Server for AIX APPC Programmer’s Guide

Request-to-send notification is sent to the partner TP immediately; APPC does not

wait until the send buffer fills up or is flushed. Consequently, the request-to-send

notification may arrive out of sequence. For example, if the local TP is in Send

state and issues the [MC_]PREPARE_TO_RECEIVE verb followed by the

[MC_]REQUEST_TO_SEND verb, the partner TP, in Receive state, may receive the

request-to-send notification before it receives the send notification. For this reason,

request-to-send notification can be reported to a TP on a receive verb.

MC_SEND_CONVERSATION and SEND_CONVERSATION

The MC_SEND_CONVERSATION or SEND_CONVERSATION verb establishes a

conversation with the partner TP, sends a single data record on this conversation,

and deallocates the conversation. It is equivalent to issuing the three verbs

[MC_]ALLOCATE, [MC_]SEND_DATA, [MC_]DEALLOCATE(FLUSH).

VCB Structure: MC_SEND_CONVERSATION

AIX, LINUX

The definition of the VCB structure for the MC_SEND_CONVERSATION verb is as

follows:

typedef struct mc_send_conversation

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 unsigned char reserv3[8];

 unsigned char rtn_ctl;

 unsigned char reserv4;

 AP_UINT32 conv_group_id;

 AP_UINT32 sense_data;

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char tp_name[64];

 unsigned char security;

 unsigned char reserv6[11];

 unsigned char pwd[10];

 unsigned char user_id[10];

 AP_UINT16 pip_dlen;

 unsigned char *pip_dptr;

 unsigned char reserv6a;

 unsigned char fqplu_name[17];

 unsigned char reserv7[8];

 AP_UINT16 dlen;

 unsigned char *dptr;

} MC_SEND_CONVERSATION;

VCB Structure: SEND_CONVERSATION

The definition of the VCB structure for the SEND_CONVERSATION verb is as

follows:

typedef struct send_conversation

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

MC_REQUEST_TO_SEND and REQUEST_TO_SEND

Chapter 4. APPC Conversation Verbs 195

unsigned char tp_id[8];

 unsigned char reserv3[8];

 unsigned char rtn_ctl;

 unsigned char reserv4;

 AP_UINT32 conv_group_id;

 AP_UINT32 sense_data;

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char tp_name[64];

 unsigned char security;

 unsigned char reserv5[11];

 unsigned char pwd[10];

 unsigned char user_id[10];

 AP_UINT16 pip_dlen;

 unsigned char *pip_dptr;

 unsigned char reserv5a;

 unsigned char fqplu_name[17];

 unsigned char reserv6[8];

 AP_UINT16 dlen;

 unsigned char *dptr;

} SEND_CONVERSATION;

VCB Structure: MC_SEND_CONVERSATION (Windows)

WINDOWS

The definition of the VCB structure for the MC_SEND_CONVERSATION verb is as

follows:

typedef struct mc_send_conversation

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned char reserv3[8];

 unsigned char rtn_ctl;

 unsigned char reserv4;

 unsigned long conv_group_id;

 unsigned long sense_data;

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char tp_name[64];

 unsigned char security;

 unsigned char reserv5[11];

 unsigned char pwd[10];

 unsigned char user_id[10];

 unsigned short pip_dlen;

 unsigned char far *pip_dptr;

 unsigned char reserv6;

 unsigned char fqplu_name[17];

 unsigned char reserv7[8];

 unsigned short dlen;

 unsigned char far *dptr;

} MC_SEND_CONVERSATION;

VCB Structure: SEND_CONVERSATION (Windows)

The definition of the VCB structure for the SEND_CONVERSATION verb is as

follows:

MC_SEND_CONVERSATION and SEND_CONVERSATION

196 IBM Communications Server for AIX APPC Programmer’s Guide

typedef struct send_conversation

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned char reserv3[8];

 unsigned char rtn_ctl;

 unsigned char reserv4;

 unsigned long conv_group_id;

 unsigned long sense_data;

 unsigned char plu_alias[8];

 unsigned char mode_name[8];

 unsigned char tp_name[64];

 unsigned char security;

 unsigned char reserv5[11];

 unsigned char pwd[10];

 unsigned char user_id[10];

 unsigned short pip_dlen;

 unsigned char far *pip_dptr;

 unsigned char reserv6;

 unsigned char fqplu_name[17];

 unsigned char reserv7[8];

 unsigned short dlen;

 unsigned char far *dptr;

} SEND_CONVERSATION;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_SEND_CONVERSATION

For the MC_SEND_CONVERSATION verb.

AP_B_SEND_CONVERSATION

For the SEND_CONVERSATION verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_SEND_CONVERSATION verb.

AP_BASIC_CONVERSATION

For the SEND_CONVERSATION verb.

If the verb is being issued as a non-blocking verb, combine the value above

(using a logical OR) with the value AP_NON_BLOCKING.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rtn_ctl Specifies when the local LU acting on a session request from the local TP is

to return control to the local TP. For information about sessions, see

“LU-to-LU Sessions” on page 57. Whatever the value of this parameter, the

LU returns control to the TP immediately if it encounters certain errors

such as a zero session limit (which mean that a session will never be

allocated).

MC_SEND_CONVERSATION and SEND_CONVERSATION

Chapter 4. APPC Conversation Verbs 197

Possible values are:

AP_IMMEDIATE

If a contention-winner session is immediately available (active and

not being used by another conversation), the LU allocates this

conversation to it and returns control to the TP immediately. If a

contention-winner session is not immediately available, control is

returned to the TP immediately with a primary_rc of

AP_UNSUCCESSFUL.

AP_WHEN_SESSION_ALLOCATED

If a session is immediately available (active and not being used by

another conversation), the LU allocates this conversation to it. If a

session is not immediately available but one can be activated, the

LU activates it and allocates the conversation to it; if it cannot

activate a session, it waits for one to become free.

AP_WHEN_SESSION_FREE

If a session is immediately available (active and not being used by

another conversation), the LU allocates this conversation to it. If a

session is not immediately available but one can be activated, the

LU activates it and allocates the conversation to it. If no active

session is free and another session cannot be activated, control is

returned to the TP with the primary return code

AP_ALLOCATION_ERROR and secondary return code

AP_ALLOCATION_FAILURE_RETRY. This is similar to

AP_WHEN_SESSION_ALLOCATED except that the LU will not wait for a

session to become free.

AP_WHEN_CONWINNER_ALLOC

As for AP_WHEN_SESSION_ALLOCATED, except that the LU always

allocates the conversation to a contention-winner session; it will

not use a contention-loser session.

AP_WHEN_CONLOSER_ALLOC

As for AP_WHEN_SESSION_ALLOCATED, except that the LU always

allocates the conversation to a contention-loser session; it will not

use a contention-winner session.

AP_WHEN_CONV_GROUP_ALLOC

Use this value if you want the new conversation to use the same

session as a previous conversation; set the conv_group_id parameter

to the conversation group ID of the previous conversation, which

was returned on the [MC_]ALLOCATE or RECEIVE_ALLOCATE

verb.

 If the session identified by the conv_group_id parameter is

immediately available (active and not being used by another

conversation), the LU allocates this conversation to it and returns

control to the TP immediately. If the session is being used by

another conversation, the LU waits for it to become free. If the

session is no longer active, control is returned to the TP with the

primary return code AP_ALLOCATION_ERROR and secondary return

code AP_ALLOCATION_FAILURE_NO_RETRY

conv_group_id

Conversation group ID of the requested session for the conversation. This

parameter is used only if rtn_ctl is set to AP_WHEN_CONV_GROUP_ALLOC; set it

to binary zeros for any other value of rtn_ctl.

MC_SEND_CONVERSATION and SEND_CONVERSATION

198 IBM Communications Server for AIX APPC Programmer’s Guide

plu_alias

Alias by which the partner LU is known to the local TP. This name must

match the name of a partner LU established during configuration.

 This parameter is an 8-byte ASCII character string, padded on the right

with ASCII blanks (0x20) if the alias is shorter than eight characters. It can

consist of any of the following characters:

v Uppercase letters

v Numerals 0–9

v Blanks

v Special characters $, #, %, and @

The first character of this string cannot be a blank.

 To identify the LU by its LU name instead of its LU alias, set this

parameter to 8 binary zeros, and specify the LU name in the fqplu_name

parameter.

mode_name

Name of a set of networking characteristics defined during configuration.

 The value of mode_name must match the name of a mode associated with

the partner LU during configuration.

 This parameter is an 8-byte EBCDIC character string. It can consist of

characters from the type-A EBCDIC character set. These characters are as

follows:

v Uppercase letters

v Numerals 0–9

v Special characters $, #, and @

The first character in the string must be an uppercase letter or special

character. If the mode name is fewer than eight characters long, pad it on

the right with EBCDIC blanks (0x40).

 A mode name can also be all EBCDIC blanks (0x40).

 In a mapped conversation, the name cannot be SNASVCMG (a reserved

mode name used internally by APPC). Using this name in a basic

conversation is not recommended.

tp_name

Name of the invoked TP.

 The value of tp_name specified by the [MC_]ALLOCATE verb in the

invoking TP must match the value of tp_name specified by the

RECEIVE_ALLOCATE verb in the invoked TP.

 This parameter is a 64-byte EBCDIC character string; it is case-sensitive.

The tp_name parameter normally consists of characters from the type-AE

EBCDIC character set (except when naming a service TP). These characters

are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes, use EBCDIC blanks (0x40) to pad it

on the right.

MC_SEND_CONVERSATION and SEND_CONVERSATION

Chapter 4. APPC Conversation Verbs 199

The SNA convention for naming a service TP is an exception to the above;

the name consists of up to four characters, of which the first character is a

hexadecimal byte between 0x00 and 0x3F. The other characters are from the

EBCDIC AE character set.

security

Specifies the information the partner LU requires in order to validate

access to the invoked TP.

 Based on the conversation security established for the invoked TP during

configuration, use one of the following values:

AP_NONE

The invoked TP does not use conversation security. (If you use this

value, the invoked TP must be configured not to use conversation

security.)

AP_PGM The invoked TP uses conversation security and thus requires a user

ID and password. Supply this information through the user_id and

pwd parameters.

AP_PGM_STRONG

The invoked TP uses conversation security and thus requires a user

ID and password. In addition, setting AP_PGM_STRONG stipulates that

CS/AIX encrypts the password when sending it across the

network. Supply the user ID and password through the user_id and

pwd parameters.

AP_SAME

Use this value when your TP was invoked by another TP, using a

valid user ID and password, and is now invoking a third TP which

also requires conversation security. (The situation in which one TP

invokes a second TP which then invokes a third TP is illustrated in

“Multiple Conversations” on page 3). This value tells the third TP

(the invoked TP) that conversation security has already been

verified for the first invoking TP.

 If you use this value, the tp_id supplied on this

[MC_]SEND_CONVERSATION verb must be the same as the one

that was returned on the RECEIVE_ALLOCATE verb when this TP

was invoked.

AIX, LINUX

 This value may also be used if your TP was not invoked by

another TP, but has obtained and verified the appropriate security

information by another means (for example from the AIX user

name and password supplied during logon). In this case, APPC

uses the AIX user name with which the application is running,

truncated to 10 characters if necessary, as the user ID for

conversation security; ensure that this name consists of valid

AE-string characters (see the description of the user_id parameter)

and is a valid user name for the TP being invoked.

 If the TP has obtained the security information by another means

(for example by requesting the user to type in a valid user ID and

password before allocating the conversation), it should use

SET_TP_PROPERTIES to specify this user ID to APPC before

issuing [MC_]SEND_CONVERSATION.

MC_SEND_CONVERSATION and SEND_CONVERSATION

200 IBM Communications Server for AIX APPC Programmer’s Guide

pwd Password associated with user_id.

 This parameter is required only if the security parameter is set to AP_PGM or

AP_PGM_STRONG; otherwise it is reserved.

 The pwd and user_id parameters must match a user ID/password pair

configured on the computer where the invoked TP is located.

 This parameter is a 10-byte EBCDIC character string; it is case-sensitive.

The pwd parameter can consist of characters from the type-AE EBCDIC

character set. These characters are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC blanks (0x40) to pad it

on the right.

user_id User ID required to access the partner TP.

 This parameter is required only if the security parameter is set to AP_PGM or

AP_PGM_STRONG; otherwise it is reserved.

 The pwd and user_id parameters must match a user ID/password pair

configured on the computer where the invoked TP is located.

 This parameter is a 10-byte EBCDIC character string; it is case-sensitive.

The user_id parameter can consist of characters from the type-AE EBCDIC

character set. These characters are as follows:

v Uppercase and lowercase letters

v Numerals 0–9

v Special characters $, #, @, and period (.)

If the user ID is fewer than 10 bytes, use EBCDIC blanks (0x40) to pad it

on the right.

pip_dlen

Length of the program initialization parameters (PIP) to be passed to the

partner TP.

 The range for this value is 0–32,767.

 Not all APPC implementations can receive PIP data (although they may be

able to send it); in addition, CPI-C does not support PIP data. Set pip_dlen

to 0 (zero) if the partner TP is using an implementation of APPC that does

not support PIP data, or if the partner is a CPI-C application.

pip_dptr

Address of buffer containing PIP data.

 Use this parameter only if pip_dlen is greater than 0 (zero).

 PIP data can consist of initialization parameters or environment setup

information required by a partner TP or remote operating system. The PIP

data must follow the General Data Stream format. For further information,

refer to the IBM publication Systems Network Architecture Format and

Protocol Reference Manual: Architecture Logic for LU Type 6.2.

MC_SEND_CONVERSATION and SEND_CONVERSATION

Chapter 4. APPC Conversation Verbs 201

fqplu_name

Fully qualified LU name of the partner LU. This parameter is used only if

plu_alias is set to zeros. The name must match the name of a partner LU

established during configuration.

 This name is a 17-byte EBCDIC string, padded on the right with EBCDIC

spaces, containing one of the following:

v A network ID of 1–8 A-string characters, an EBCDIC dot (period)

character, and an LU name of 1–8 A-string characters

v An LU name of 1–8 A-string characters (without the network ID or the

EBCDIC dot)

dlen Number of bytes of data to be sent. The range for this value is 0–65,535.

dptr Address of the buffer containing the data to be sent.

WINDOWS

The data buffer can reside in a static data area or in a globally allocated

area. The data buffer must fit entirely within this area.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

conv_group_id

The conversation group identifier of the session used by the conversation.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_LL

This return code applies only to the SEND_CONVERSATION verb.

The logical record length field of a logical record contained a value

that was not valid—0x0000, 0x0001, 0x8000, or 0x8001. For more

information, see “Logical Records” on page 57.

MC_SEND_CONVERSATION and SEND_CONVERSATION

202 IBM Communications Server for AIX APPC Programmer’s Guide

AP_BAD_RETURN_CONTROL

The value specified for rtn_ctl was not valid.

AP_BAD_SECURITY

The value specified for security was not valid.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_PIP_LEN_INCORRECT

The value of pip_dlen was greater than 32,767.

AP_UNKNOWN_PARTNER_MODE

The value specified for plu_alias or mode_name was not valid.

AIX, LINUX

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: No state check errors occur for this verb.

Session Not Available: Depending on the value specified for rtn_ctl, APPC may

return the following parameter:

primary_rc

AP_UNSUCCESSFUL

The supplied parameter rtn_ctl specified immediate (AP_IMMEDIATE)

return of control to the TP, and the local LU did not have an

available contention-winner session.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

MC_SEND_CONVERSATION and SEND_CONVERSATION

Chapter 4. APPC Conversation Verbs 203

AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_REQUESTED_NOT_SUPPORTED

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

 AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_INVALID_VERB

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation state is Reset when the TP issues this verb. It can be issued

during an existing conversation that is in any state, because it always implies the

start of a new conversation that is in Reset state.

State Change

The conversation state does not change for this verb.

MC_SEND_DATA and SEND_DATA

The MC_SEND_DATA or SEND_DATA verb puts data in the local LU’s send

buffer for transmission to the partner TP.

The data collected in the local LU’s send buffer is transmitted to the partner LU

(and partner TP) when one of the following occurs:

v The send buffer fills up.

v The local TP issues a verb that flushes the LU’s send buffer. The verbs that do

this are [MC_]CONFIRM, [MC_]DEALLOCATE, [MC_]FLUSH,

[MC_]PREPARE_TO_RECEIVE, [MC_]RECEIVE_AND_WAIT,

MC_SEND_CONVERSATION and SEND_CONVERSATION

204 IBM Communications Server for AIX APPC Programmer’s Guide

[MC_]RECEIVE_AND_POST, and [MC_]SEND_ERROR. ([MC_]CONFIRM,

[MC_]PREPARE_TO_RECEIVE, and [MC_]RECEIVE_AND_POST apply only to

half-duplex conversations.)

The MC_SEND_DATA or SEND_DATA verb also includes options that enable it to

perform the function of the [MC_]CONFIRM, [MC_]DEALLOCATE, [MC_]FLUSH,

or [MC_]PREPARE_TO_RECEIVE verb in addition to sending the data. This is

equivalent to issuing [MC_]SEND_DATA followed by another verb.

([MC_]CONFIRM and [MC_]PREPARE_TO_RECEIVE apply only to half-duplex

conversations.)

VCB Structure: MC_SEND_DATA

AIX, LINUX

The definition of the VCB structure for the MC_SEND_DATA verb is as follows:

typedef struct mc_send_data

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format;

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 dlen;

 unsigned char *dptr;

 unsigned char type;

 unsigned char data_type;

} MC_SEND_DATA;

VCB Structure: SEND_DATA

The definition of the VCB structure for the SEND_DATA verb is as follows:

typedef struct send_data

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 dlen;

 unsigned char *dptr;

 unsigned char type;

 unsigned char reserv4;

} SEND_DATA;

VCB Structure: MC_SEND_DATA (Windows)

WINDOWS

The definition of the VCB structure for the MC_SEND_DATA verb is as follows:

MC_SEND_DATA and SEND_DATA

Chapter 4. APPC Conversation Verbs 205

typedef struct mc_send_data

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char rts_rcvd;

 unsigned char reserv3;

 unsigned short dlen;

 unsigned char far *dptr;

 unsigned char type;

 unsigned char reserv4;

} MC_SEND_DATA;

VCB Structure: SEND_DATA (Windows)

The definition of the VCB structure for the SEND_DATA verb is as follows:

typedef struct send_data

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char rts_rcvd;

 unsigned char reserv3;

 unsigned short dlen;

 unsigned char far *dptr;

 unsigned char type;

 unsigned char reserv4;

} SEND_DATA;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_SEND_DATA

For the MC_SEND_DATA verb.

AP_B_SEND_DATA

For the SEND_DATA verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_SEND_DATA verb.

AP_BASIC_CONVERSATION

For the SEND_DATA verb.

If the verb is being issued on a full-duplex conversation or is being issued

as a non-blocking verb, combine the value above (using a logical OR) with

one or both of the following values:

AP_FULL_DUPLEX_CONVERSATION

The verb is being issued on a full-duplex conversation.

MC_SEND_DATA and SEND_DATA

206 IBM Communications Server for AIX APPC Programmer’s Guide

AP_NON_BLOCKING

The verb is being issued as a non-blocking verb.

format This parameter applies only to the mapped-conversation MC_SEND_DATA

verb.

 If you are building a new APPC application, or recompiling an existing

APPC application with the current CS/AIX APPC header file, you must set

this parameter to 1. (Existing applications built with earlier versions of the

header file, in which this parameter was reserved, will still operate

unchanged with CS/AIX and there is no need to rebuild them.)

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

dlen Number of bytes of data to be put in the local LU’s send buffer. The range

for this value is 0–65,535.

dptr Address of the buffer containing the data to be put in the local LU’s send

buffer.

WINDOWS

The data buffer can reside in a static data area or in a globally allocated

area. The data buffer must fit entirely within this area.

type Specifies whether to perform the function of another APPC verb in

addition to [MC_]SEND_DATA. Possible values are:

AP_NONE

Send data only—do not perform any additional function.

AP_SEND_DATA_CONFIRM

This option is valid only in a half-duplex conversation. Do not use

it if the opext parameter includes the option

AP_FULL_DUPLEX_CONVERSATION.

 Perform the function of the [MC_]CONFIRM verb. This is

equivalent to issuing [MC_]SEND_DATA followed by

[MC_]CONFIRM. For the basic-conversation SEND_DATA verb,

the data sent on this verb must be a complete logical record or the

end of a logical record; this value cannot be used if an incomplete

logical record is being sent.

AP_SEND_DATA_FLUSH

Perform the function of the [MC_]FLUSH verb. This is equivalent

to issuing [MC_]SEND_DATA followed by [MC_]FLUSH. For the

basic-conversation SEND_DATA verb, the data sent on this verb

must be a complete logical record or the end of a logical record;

this value cannot be used if an incomplete logical record is being

sent.

MC_SEND_DATA and SEND_DATA

Chapter 4. APPC Conversation Verbs 207

AP_SEND_DATA_P_TO_R_FLUSH

This option is valid only in a half-duplex conversation. Do not use

it if the opext parameter includes the option

AP_FULL_DUPLEX_CONVERSATION.

 Perform the function of the [MC_]PREPARE_TO_RECEIVE verb

with ptr_type set to AP_FLUSH. This is equivalent to issuing

[MC_]SEND_DATA followed by [MC_]PREPARE_TO_RECEIVE.

For the basic-conversation SEND_DATA verb, the data sent on this

verb must be a complete logical record or the end of a logical

record; this value cannot be used if an incomplete logical record is

being sent.

AP_SEND_DATA_P_TO_R_CONFIRM

This option is valid only in a half-duplex conversation. Do not use

it if the opext parameter includes the option

AP_FULL_DUPLEX_CONVERSATION.

 Perform the function of the [MC_]PREPARE_TO_RECEIVE verb

with ptr_type set to AP_CONFIRM_TYPE. This is equivalent to issuing

[MC_]SEND_DATA followed by [MC_]PREPARE_TO_RECEIVE.

For the basic-conversation SEND_DATA verb, the data sent on this

verb must be a complete logical record or the end of a logical

record; this value cannot be used if an incomplete logical record is

being sent.

AP_SEND_DATA_P_TO_R_SYNC_LEVEL

This option is valid only in a half-duplex conversation. Do not use

it if the opext parameter includes the option

AP_FULL_DUPLEX_CONVERSATION.

 Perform the function of the [MC_]PREPARE_TO_RECEIVE verb

with ptr_type set to AP_SYNC_LEVEL. This is equivalent to issuing

[MC_]SEND_DATA followed by [MC_]PREPARE_TO_RECEIVE.

For the basic-conversation SEND_DATA verb, the data sent on this

verb must be a complete logical record or the end of a logical

record; this value cannot be used if an incomplete logical record is

being sent.

AP_SEND_DATA_DEALLOC_FLUSH

Perform the function of the [MC_]DEALLOCATE verb with

dealloc_type set to AP_FLUSH. This is equivalent to issuing

[MC_]SEND_DATA followed by [MC_]DEALLOCATE. For the

basic-conversation SEND_DATA verb, the data sent on this verb

must be a complete logical record or the end of a logical record;

this value cannot be used if an incomplete logical record is being

sent.

AP_SEND_DATA_DEALLOC_CONFIRM

This option is valid only in a half-duplex conversation. Do not use

it if the opext parameter includes the option

AP_FULL_DUPLEX_CONVERSATION.

 Perform the function of the [MC_]DEALLOCATE verb with

dealloc_type set to AP_CONFIRM_TYPE. This is equivalent to issuing

[MC_]SEND_DATA followed by [MC_]DEALLOCATE. For the

basic-conversation SEND_DATA verb, the data sent on this verb

must be a complete logical record or the end of a logical record;

this value cannot be used if an incomplete logical record is being

sent.

MC_SEND_DATA and SEND_DATA

208 IBM Communications Server for AIX APPC Programmer’s Guide

AP_SEND_DATA_DEALLOC_SYNC_LEVEL

Perform the function of the [MC_]DEALLOCATE verb with

dealloc_type set to AP_SYNC_LEVEL. This is equivalent to issuing

[MC_]SEND_DATA followed by [MC_]DEALLOCATE. For the

basic-conversation SEND_DATA verb, the data sent on this verb

must be a complete logical record or the end of a logical record;

this value cannot be used if an incomplete logical record is being

sent.

AP_SEND_DATA_DEALLOC_ABEND

Perform the function of the MC_DEALLOCATE verb with

dealloc_type set to AP_ABEND, or the DEALLOCATE verb with

dealloc_type set to AP_ABEND_PROG. This is equivalent to issuing

[MC_]SEND_DATA followed by [MC_]DEALLOCATE.

 You cannot use [MC_]SEND_DATA to perform the function of

[MC_]DEALLOCATE in the following cases:

v The conversation type is AP_BASIC_CONVERSATION, and the

required dealloc_type is AP_ABEND_SVC or AP_ABEND_TIMER

v The conversation’s synchronization level is AP_SYNCPT, and the

TP requires implied forget notification

In these cases, you need to issue [MC_]SEND_DATA and

[MC_]DEALLOCATE separately. See the description of the

[MC_]DEALLOCATE verb in Chapter 4, “APPC Conversation

Verbs,” on page 89 for more information.

AIX, LINUX

data_type

Specifies the format of the data being sent. This parameter is used only by

the mapped-conversation MC_SEND_DATA verb. Possible values are:

AP_APPLICATION

Standard APPC application data. CS/AIX sends the data to the

partner LU in Application Data GDS variables.

AP_USER_CONTROL_DATA

User Control data. CS/AIX sends the data to the partner LU in

User Control Data GDS variables. Do not set this option unless the

partner LU can accept data in this format.

AP_PS_HEADER

PS Header data. This data format is used only by Syncpoint TPs;

do not set it unless the synchronization level of the conversation is

AP_SYNCPT. The Syncpoint Manager is responsible for converting

Syncpoint commands into the appropriate PS Headers.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

MC_SEND_DATA and SEND_DATA

Chapter 4. APPC Conversation Verbs 209

primary_rc

AP_OK

rts_rcvd

Request-to-send-received indicator. This parameter applies only in a

half-duplex conversation; it is not used in a full-duplex conversation.

 Possible values are:

AP_YES The partner TP has issued an [MC_]REQUEST_TO_SEND verb,

which requests that the local TP change the conversation to

Receive state. To change to Receive state, the local TP can use the

[MC_]PREPARE_TO_RECEIVE, [MC_]RECEIVE_AND_WAIT, or

[MC_]RECEIVE_AND_POST verb.

AP_NO The partner TP has not issued the [MC_]REQUEST_TO_SEND

verb.

expd_rcvd

Expedited data indicator.

 Possible values are:

AP_YES The partner TP has sent expedited data that the local TP has not

yet received. To receive this data, the local TP can use the

[MC_]RECEIVE_EXPEDITED_DATA verb.

 This indicator can be set on a number of APPC verbs. It continues

to be set on subsequent verbs until the local TP issues the

[MC_]RECEIVE_EXPEDITED_DATA verb to receive the data.

AP_NO There is no expedited data waiting to be received.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_LL

This return code applies only to the SEND_DATA verb. The logical

record length field of a logical record contained a value that was

not valid—0x0000, 0x0001, 0x8000, or 0x8001. For more

information, see “Logical Records” on page 57.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

WINDOWS

MC_SEND_DATA and SEND_DATA

210 IBM Communications Server for AIX APPC Programmer’s Guide

AP_INVALID_DATA_SEGMENT

The data was longer than the allocated data segment, or the

address of the data buffer was incorrect.

AP_SEND_DATA_INVALID_TYPE

The type parameter was set to a value that was not valid.

AIX, LINUX

AP_INVALID_FORMAT

The format parameter was set to a value that was not valid.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

AP_SEND_TYPE_INVALID_FOR_FDX

The application issued this verb in a full-duplex conversation, but

the type parameter specified a send type that was not valid in a

full-duplex conversation.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

Possible values are:

AP_SEND_DATA_NOT_SEND_STATE

The local TP issued the [MC_]SEND_DATA verb, but the

conversation was not in Send or Send_Pending state.

AP_SEND_DATA_CONFIRM_SYNC_NONE

The local TP issued the [MC_]SEND_DATA verb with the type

parameter set to AP_SEND_DATA_CONFIRM, but the synchronization

level of the conversation was AP_NONE. The CONFIRM function is

only valid if the synchronization level is AP_CONFIRM_SYNC_LEVEL.

AP_SEND_DATA_NOT_LL_BDY

(Returned for basic-conversation SEND_DATA verb only) The local

TP issued the SEND_DATA verb to send an incomplete logical

record, and used a type parameter other than AP_NONE or

AP_SEND_DATA_DEALLOC_ABEND.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

MC_SEND_DATA and SEND_DATA

Chapter 4. APPC Conversation Verbs 211

AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

 AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

AIX, LINUX

primary_rc

AP_BACKED_OUT

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_DUPLEX_TYPE_MIXED

 AP_PROG_ERROR_PURGING

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

MC_SEND_DATA and SEND_DATA

212 IBM Communications Server for AIX APPC Programmer’s Guide

APPC does not return secondary return codes with these primary return codes.

The following primary return code is returned by the MC_SEND_DATA verb:

primary_rc

AP_DEALLOC_ABEND

 APPC does not return a secondary return code with this primary return code.

The following primary return codes are returned by the SEND_DATA verb:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_PURGING

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation must be in Send_Receive (full-duplex conversation only), Send or

Send_Pending state when the TP issues this verb.

State Change

State changes, summarized in the following table, are based on the primary_rc

parameter.

 primary_rc New state

AP_OK Send (half-duplex conversation) or no

change (full-duplex conversation)

AP_STATE_CHECK

AP_PARAMETER_CHECK

AP_CONVERSATION_TYPE_MIXED

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_ALLOCATION_ERROR Reset

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

Reset

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

Reset

AP_PROG_ERROR_PURGING

AP_SVC_ERROR_PURGING

Receive (half-duplex conversation),

Send_Receive (full-duplex conversation,

verb issued in Send_Receive state), or

Reset (full-duplex conversation, verb

issued in Send_Only state)

MC_SEND_DATA and SEND_DATA

Chapter 4. APPC Conversation Verbs 213

Waiting for Partner TP

The [MC_]SEND_DATA verb may wait indefinitely because the partner TP has not

issued a receive verb. This is because the send buffer may fill up and APPC cannot

transmit its contents to the partner LU because the partner LU has no buffers to

receive the data.

Logical Records in Basic Conversations

When using the basic-conversation SEND_DATA verb, the application must supply

data in the form of logical records (with an LLID field at the start of each data

record). For more information, see “Logical Records” on page 57.

AIX, LINUX

In a conversation with a synchronization level of AP_SYNCPT, the data to be sent

may be in PS Header format; this is indicated by a length field of 0x0001. The

Syncpoint Manager is responsible for setting up the appropriate PS headers based

on the Syncpoint functions required by the application.

MC_SEND_ERROR and SEND_ERROR

The MC_SEND_ERROR or SEND_ERROR verb notifies the partner TP that the

local TP has encountered an application-level error.

The local TP sends the error notification immediately to the partner TP; it does not

hold the information in the local LU’s send buffer.

For a half-duplex conversation, after successful execution of this verb, the

conversation is in Send state for the local TP and in Receive state for the partner

TP. For a full-duplex conversation, there is no state change after successful

execution of this verb.

VCB Structure: MC_SEND_ERROR

AIX, LINUX

The definition of the VCB structure for the MC_SEND_ERROR verb is as follows:

typedef struct mc_send_error

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char rts_rcvd;

 unsigned char err_type;

 unsigned char err_dir;

 unsigned char expd_rcvd;

 unsigned char reserv5[2];

 unsigned char reserv6[4];

} MC_SEND_ERROR;

MC_SEND_DATA and SEND_DATA

214 IBM Communications Server for AIX APPC Programmer’s Guide

VCB Structure: SEND_ERROR

The definition of the VCB structure for the SEND_ERROR verb is as follows:

typedef struct send_error

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char rts_rcvd;

 unsigned char err_type;

 unsigned char err_dir;

 unsigned char expd_rcvd;

 AP_UINT16 log_dlen;

 unsigned char *log_dptr;

} SEND_ERROR;

VCB Structure: MC_SEND_ERROR (Windows)

WINDOWS

The definition of the VCB structure for the MC_SEND_ERROR verb is as follows:

typedef struct mc_send_error

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char rts_rcvd;

 unsigned char reserv3;

 unsigned char err_dir;

 unsigned char reserv4;

 unsigned char reserv5[2];

 unsigned char reserv6[4];

} MC_SEND_ERROR;

VCB Structure: SEND_ERROR (Windows)

The definition of the VCB structure for the SEND_ERROR verb is as follows:

typedef struct send_error

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char rts_rcvd;

 unsigned char err_type;

 unsigned char err_dir;

 unsigned char reserv3;

 unsigned short log_dlen;

 unsigned char far *log_dptr;

} SEND_ERROR;

MC_SEND_ERROR and SEND_ERROR

Chapter 4. APPC Conversation Verbs 215

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_SEND_ERROR

For the MC_SEND_ERROR verb.

AP_B_SEND_ERROR

For the SEND_ERROR verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_SEND_ERROR verb.

AP_BASIC_CONVERSATION

For the SEND_ERROR verb.

If the verb is being issued on a full-duplex conversation or is being issued

as a non-blocking verb, combine the value above (using a logical OR) with

one or both of the following values:

AP_FULL_DUPLEX_CONVERSATION

The verb is being issued on a full-duplex conversation.

AP_NON_BLOCKING

The verb is being issued as a non-blocking verb.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

err_type

Indicates the type of error being reported. This determines the return code

that APPC sends to the partner TP to report the error; all of these return

codes are described in Appendix B, “Common Return Codes,” on page 267.

WINDOWS

This parameter is used only by the basic-conversation SEND_ERROR verb.

 Possible values are:

AP_PROG

The error is to be reported to an application program that does not

use Syncpoint. This value causes APPC to send one of the

following return codes to the partner TP:

MC_SEND_ERROR and SEND_ERROR

216 IBM Communications Server for AIX APPC Programmer’s Guide

v AP_PROG_ERROR_TRUNC (if the SEND_ERROR verb is issued in

Send state after sending part of a logical record)

v AP_PROG_ERROR_NO_TRUNC (if the MC_SEND_ERROR verb is

issued in Send state, or if the SEND_ERROR verb is issued in

Send state but an incomplete logical record has not been sent)

v AP_PROG_ERROR_PURGING (if the verb is issued in any state other

than Send)

AP_SVC The error is to be reported to a service program. This value is used

only by the SEND_ERROR verb. This value causes APPC to send

one of the following return codes to the partner TP:

v AP_SVC_ERROR_TRUNC (if the SEND_ERROR verb is issued in Send

state after sending part of a logical record)

v AP_SVC_ERROR_NO_TRUNC (if the SEND_ERROR verb is issued in

Send state but an incomplete logical record has not been sent)

v AP_SVC_ERROR_PURGING (if the SEND_ERROR verb is issued in

any state other than Send)

AIX, LINUX

AP_BACKOUT_NO_RESYNC

This value is allowed only if the conversation’s synchronization

level is AP_SYNCPT. The local TP (or another TP participating in the

same logical unit of work) has issued a BACKOUT request; the

local TP has completed backing out its resources. The Syncpoint

Manager is responsible for issuing [MC_]SEND_ERROR with this

value set when it receives the BACKOUT request. This value

causes APPC to send the primary and secondary return codes

AP_BACKED_OUT and AP_BO_NO_RESYNC to the partner TP.

AP_BACKOUT_RESYNC

This value is allowed only if the conversation’s synchronization

level is AP_SYNCPT. The local TP (or another TP participating in the

same logical unit of work) has issued a backout request;

resynchronization is still in progress. The Syncpoint Manager is

responsible for issuing [MC_]SEND_ERROR with this value set

when it receives the BACKOUT request. This value causes APPC to

send the primary and secondary return codes AP_BACKED_OUT and

AP_BO_RESYNC to the partner TP.

err_dir Indicates whether the error being reported is in the data received from the

partner TP, or in the data the local TP was about to send.

 In a full-duplex conversation, this parameter must be set to

AP_SEND_DIR_ERROR. In a half-duplex conversation, this parameter is used

only when the [MC_]SEND_ERROR verb is being issued in Send_Pending

state.

 Possible values are:

AP_RCV_DIR_ERROR

The local TP detected an error in the data it received from the

remote TP.

MC_SEND_ERROR and SEND_ERROR

Chapter 4. APPC Conversation Verbs 217

AP_SEND_DIR_ERROR

The local TP detected an error in its own data (for example, it

could not read data from disk) or in its own processing.

log_dlen

Number of bytes of data to be sent to the error log file. This parameter is

used only by the SEND_ERROR verb.

 The range for this value is 0–32,767. A length of 0 (zero) indicates that

there is no error log data.

log_dptr

Address of data buffer containing error information. This data is sent to

the local error log and to the partner LU.

 This parameter is used by the SEND_ERROR verb if log_dlen is greater

than 0 (zero).

 The TP must format the error data as a General Data Stream (GDS) error

log variable. For further information, refer to the IBM publication Systems

Network Architecture Format and Protocol Reference Manual: Architecture Logic

for LU Type 6.2.

WINDOWS

The data buffer can reside in a static data area or in a globally allocated

area. The data buffer must fit entirely within this area.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

rts_rcvd

Request-to-send-received indicator. This parameter applies only in a

half-duplex conversation; it is not used in a full-duplex conversation.

Possible values are:

AP_YES The partner TP has issued the [MC_]REQUEST_TO_SEND verb,

which requests that the local TP change the conversation to

Receive state. To change to Receive state, the local TP can use the

[MC_]PREPARE_TO_RECEIVE, [MC_]RECEIVE_AND_WAIT, or

[MC_]RECEIVE_AND_POST verb.

AP_NO The partner TP has not issued the [MC_]REQUEST_TO_SEND

verb.

expd_rcvd

Expedited data indicator.

 Possible values are:

MC_SEND_ERROR and SEND_ERROR

218 IBM Communications Server for AIX APPC Programmer’s Guide

AP_YES The partner TP has sent expedited data that the local TP has not

yet received. To receive this data, the local TP can use the

[MC_]RECEIVE_EXPEDITED_DATA verb.

 This indicator can be set on a number of APPC verbs. It continues

to be set on subsequent verbs until the local TP issues the

[MC_]RECEIVE_EXPEDITED_DATA verb to receive the data.

AP_NO There is no expedited data waiting to be received.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_ERROR_DIRECTION

The value of err_dir was not valid.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_SEND_ERROR_BAD_TYPE

The value of err_type was not valid.

AIX, LINUX

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

WINDOWS

AP_INVALID_DATA_SEGMENT

The log data was longer than the allocated data segment, or the

address of the log data buffer was incorrect.

 The following secondary_rc value can be returned only on the SEND_ERROR verb:

MC_SEND_ERROR and SEND_ERROR

Chapter 4. APPC Conversation Verbs 219

AP_SEND_ERROR_LOG_LL_WRONG

The LL field of the error log GDS variable did not match the actual length

of the data.

State Check: No state check errors occur for this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Verb Issued in Any Allowed State: The following return codes can be generated

when the [MC_]SEND_ERROR verb is issued in any allowed state:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_DUPLEX_TYPE_MIXED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

Verb Issued in Send State: The following return codes can be generated only if the

[MC_]SEND_ERROR verb is issued in Send state:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

MC_SEND_ERROR and SEND_ERROR

220 IBM Communications Server for AIX APPC Programmer’s Guide

AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

AIX, LINUX

primary_rc

 AP_BACKED_OUT

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

AP_PROG_ERROR_PURGING

 APPC does not return a secondary return code with this primary return code.

The following return code can be generated only if the MC_SEND_ERROR verb is

issued in Send state:

primary_rc

 AP_DEALLOC_ABEND

 APPC does not return a secondary return code with this primary return code.

The following return codes can be generated only if the SEND_ERROR verb is

issued in Send state:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_PURGING

 APPC does not return secondary return codes with these primary return codes.

Verb Issued in Receive State: The following return code can be generated only if the

verb is issued in Receive state:

primary_rc

AP_DEALLOC_NORMAL

 APPC does not return a secondary return code with this primary return code.

State When Issued

The conversation can be in any state except Reset when the TP issues this verb.

MC_SEND_ERROR and SEND_ERROR

Chapter 4. APPC Conversation Verbs 221

State Change

The new state is determined by the primary return code primary_rc. Possible state

changes are summarized in the following table.

 primary_rc New state

AP_OK Send (half-duplex conversation), or no

change (full-duplex conversation)

AP_PARAMETER_CHECK

AP_CONVERSATION_TYPE_MIXED

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_ALLOCATION_ERROR Reset

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

Reset

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_DEALLOC_NORMAL

Reset

AP_PROG_ERROR_PURGING

AP_SVC_ERROR_PURGING

Receive (half-duplex conversation),

Send_Receive (full-duplex conversation,

verb issued in Send_Receive state), or

Reset (full-duplex conversation, verb

issued in Send_Only state)

Purged Data

If the conversation is in Receive state when the TP issues the [MC_]SEND_ERROR

verb, incoming data is purged by APPC. This data includes the following:

v Data sent by the [MC_]SEND_DATA verb

v Return code indicators

v Confirmation requests

v Deallocation requests

APPC does not purge an incoming REQUEST_TO_SEND indicator.

Purged Return Code Indicators

The following primary return codes indicate that the remote TP or LU has detected

an error, and would normally be reported on the next APPC verb issued by the

local TP. However, when the local TP issues the [MC_]SEND_ERROR verb, these

return codes are purged and replaced by other return codes.

The primary return code AP_OK replaces the following purged return code

indicators:

 AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

 AP_PROG_ERROR_TRUNC

 AP_SVC_ERROR_NO_TRUNC

 AP_SVC_ERROR_PURGING

 AP_SVC_ERROR_TRUNC

MC_SEND_ERROR and SEND_ERROR

222 IBM Communications Server for AIX APPC Programmer’s Guide

The primary return code AP_DEALLOC_NORMAL replaces the following purged return

code indicators:

primary_rc

 AP_ALLOCATION_ERROR

secondary_rc

 AP_ALLOCATION_FAILURE_NO_RETRY

 AP_ALLOCATION_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

 AP_SEC_BAD_PROTOCOL_VIOLATION

 AP_SEC_BAD_PASSWORD_EXPIRED

 AP_SEC_BAD_PASSWORD_INVALID

 AP_SEC_BAD_USERID_REVOKED

 AP_SEC_BAD_USERID_INVALID

 AP_SEC_BAD_USERID_MISSING

 AP_SEC_BAD_PASSWORD_MISSING

 AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

 AP_SEC_BAD_UNAUTHRZD_AT_RLU

 AP_SEC_BAD_UNAUTHRZD_FROM_LLU

 AP_SEC_BAD_UNAUTHRZD_TO_TP

 AP_SEC_BAD_INSTALL_EXIT_FAILED

 AP_SEC_BAD_PROCESSING_FAILURE

primary_rc

 AP_DEALLOC_ABEND

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

MC_SEND_EXPEDITED_DATA and SEND_EXPEDITED_DATA

The MC_SEND_EXPEDITED_DATA or SEND_EXPEDITED_DATA verb puts data

in the local LU’s expedited send buffer for transmission to the partner TP.

The data collected in the local LU’s send buffer is transmitted to the partner LU

(and partner TP) in the same way as for the [MC_]SEND_DATA verb. However,

because the data is sent over the network as expedited data, it may arrive before

data that was sent earlier using [MC_]SEND_DATA.

VCB Structure: MC_SEND_EXPEDITED_DATA

The definition of the VCB structure for the MC_SEND_EXPEDITED_DATA verb is

as follows:

typedef struct mc_send_expedited_data

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

MC_SEND_ERROR and SEND_ERROR

Chapter 4. APPC Conversation Verbs 223

AP_UINT32 conv_id;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 dlen;

 unsigned char *dptr;

 unsigned char reserv4[2];

} MC_SEND_EXPEDITED_DATA;

VCB Structure: SEND_EXPEDITED_DATA

The definition of the VCB structure for the SEND_EXPEDITED_DATA verb is as

follows:

typedef struct send_expedited_data

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char rts_rcvd;

 unsigned char expd_rcvd;

 AP_UINT16 dlen;

 unsigned char *dptr;

 unsigned char reserv4[2];

} SEND_EXPEDITED_DATA;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_SEND_EXPEDITED_DATA

For the MC_SEND_EXPEDITED_DATA verb.

AP_B_SEND_EXPEDITED_DATA

For the SEND_EXPEDITED_DATA verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_SEND_EXPEDITED_DATA verb.

AP_BASIC_CONVERSATION

For the SEND_EXPEDITED_DATA verb.

If the verb is being issued on a full-duplex conversation or is being issued

as a non-blocking verb, combine the value above (using a logical OR) with

one or both of the following values:

AP_FULL_DUPLEX_CONVERSATION

The verb is being issued on a full-duplex conversation.

AP_NON_BLOCKING

The verb is being issued as a non-blocking verb.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

MC_SEND_EXPEDITED_DATA and SEND_EXPEDITED_DATA

224 IBM Communications Server for AIX APPC Programmer’s Guide

The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

dlen Number of bytes of data to be put in the local LU’s send buffer. The range

for this value is 0–86.

dptr Address of the buffer containing the data to be put in the local LU’s send

buffer.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

rts_rcvd

Request-to-send-received indicator. This parameter applies only in a

half-duplex conversation; it is not used in a full-duplex conversation.

 Possible values are:

AP_YES The partner TP has issued an [MC_]REQUEST_TO_SEND verb,

which requests that the local TP change the conversation to

Receive state. To change to Receive state, the local TP can use the

[MC_]PREPARE_TO_RECEIVE, [MC_]RECEIVE_AND_WAIT, or

[MC_]RECEIVE_AND_POST verb.

AP_NO The partner TP has not issued the [MC_]REQUEST_TO_SEND

verb.

expd_rcvd

Expedited data indicator.

 Possible values are:

AP_YES The partner TP has sent expedited data that the local TP has not

yet received. To receive this data, the local TP can use the

[MC_]RECEIVE_EXPEDITED_DATA verb.

 This indicator can be set on a number of APPC verbs. It continues

to be set on subsequent verbs until the local TP issues the

[MC_]RECEIVE_EXPEDITED_DATA verb to receive the data.

AP_NO There is no expedited data waiting to be received.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Expedited Data Not Supported: If the verb does not execute because the remote

LU does not support expedited data, APPC returns the following parameter:

primary_rc

AP_EXPD_NOT_SUPPORTED_BY_LU

MC_SEND_EXPEDITED_DATA and SEND_EXPEDITED_DATA

Chapter 4. APPC Conversation Verbs 225

Conversation Deallocated: If the partner TP has deallocated the conversation,

APPC returns the following value:

primary_rc

AP_CONVERSATION_ENDED

This verb was issued as a non-blocking verb and was queued

behind an earlier verb. The partner TP issued the

[MC_]DEALLOCATE verb as for AP_DEALLOC_NORMAL above, and

the first verb in the queue returned with primary_rc set to

AP_DEALLOC_NORMAL, indicating the end of the conversation. Any

subsequent verbs in the queue then return with primary_rc set to

AP_CONVERSATION_ENDED, indicating that the conversation had

already ended before the verb could be processed.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_SEND_EXPD_INVALID_LENGTH

The dlen parameter was set to a value that was not valid.

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

State Check: If the conversation is in the wrong state when the TP issues this

verb, APPC returns the following parameters:

primary_rc

AP_STATE_CHECK

secondary_rc

Possible values are:

AP_EXPD_DATA_BAD_CONV_STATE

The local TP issued the [MC_]SEND_EXPEDITED_DATA verb, but

the conversation was in Reset state.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

MC_SEND_EXPEDITED_DATA and SEND_EXPEDITED_DATA

226 IBM Communications Server for AIX APPC Programmer’s Guide

AP_ALLOCATION_ERROR

secondary_rc

 AP_CONVERSATION_TYPE_MISMATCH

 AP_PIP_NOT_ALLOWED

 AP_PIP_NOT_SPECIFIED_CORRECTLY

 AP_SECURITY_NOT_VALID

 AP_SYNC_LEVEL_NOT_SUPPORTED

 AP_TP_NAME_NOT_RECOGNIZED

 AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

 AP_TRANS_PGM_NOT_AVAIL_RETRY

primary_rc

AP_BACKED_OUT

secondary_rc

 AP_BO_NO_RESYNC

 AP_BO_RESYNC

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONV_FAILURE_NO_RETRY

 AP_CONV_FAILURE_RETRY

 AP_CONVERSATION_TYPE_MIXED

 AP_DUPLEX_TYPE_MIXED

 AP_PROG_ERROR_PURGING

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

 APPC does not return secondary return codes with these primary return codes.

The following primary return code is returned by the

MC_SEND_EXPEDITED_DATA verb:

primary_rc

AP_DEALLOC_ABEND

 APPC does not return a secondary return code with this primary return code.

The following primary return codes are returned by the SEND_EXPEDITED_DATA

verb:

primary_rc

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_SVC_ERROR_PURGING

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation must be in any state except Reset when the TP issues this verb.

State Change

State changes, summarized in the following table, are based on the primary_rc

parameter.

MC_SEND_EXPEDITED_DATA and SEND_EXPEDITED_DATA

Chapter 4. APPC Conversation Verbs 227

primary_rc New state

AP_OK No change

AP_STATE_CHECK

AP_PARAMETER_CHECK

AP_CONVERSATION_TYPE_MIXED

AP_INVALID_VERB

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

AP_TP_BUSY

AP_UNEXPECTED_DOS_ERROR

No change

AP_ALLOCATION_ERROR Reset

AP_CONV_FAILURE_RETRY

AP_CONV_FAILURE_NO_RETRY

AP_CONVERSATION_ENDED

Reset

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

Reset

Waiting for Partner TP

In the same way as for [MC_]SEND_DATA, the [MC_]SEND_EXPEDITED_DATA

verb may wait indefinitely because the partner TP has not issued an

[MC_]RECEIVE_EXPEDITED_DATA verb. This is because the send-expedited

buffer may fill up and APPC cannot transmit its contents to the partner LU

because the partner LU has no buffers to receive the data.

MC_TEST_RTS and TEST_RTS

The MC_TEST_RTS or TEST_RTS verb determines whether a REQUEST_TO_SEND

notification has been received from the partner TP.

Note: This verb can be used only in a half-duplex conversation; it is not valid in a

full-duplex conversation.

Normally, if the partner TP issues an [MC_]REQUEST_TO_SEND verb, the local TP

will be notified of this by the rts_rcvd parameter on a subsequent verb (this is a

received parameter on a number of verbs). This is only reported on the first

subsequent verb which can return this parameter, and not on any later verb. The

[MC_]TEST_RTS verb enables the local TP to check if a request-to-send notification

has been received at any time since the local TP was last in Receive state.

Instead of repeatedly issuing [MC_]TEST_RTS, the application can use

[MC_]TEST_RTS_AND_POST, which is described in “MC_TEST_RTS_AND_POST

and TEST_RTS_AND_POST” on page 232. This verb returns asynchronously when

a REQUEST_TO_SEND notification is received from the partner TP.

[MC_]TEST_RTS_AND_POST operates asynchronously in the same way as

[MC_]RECEIVE_AND_POST, so that the application can issue other APPC verbs

while it is outstanding.

VCB Structure: MC_TEST_RTS

AIX, LINUX

MC_SEND_EXPEDITED_DATA and SEND_EXPEDITED_DATA

228 IBM Communications Server for AIX APPC Programmer’s Guide

The definition of the VCB structure for the MC_TEST_RTS verb is as follows:

typedef struct mc_test_rts

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char reserv3;

} MC_TEST_RTS;

VCB Structure: TEST_RTS

The definition of the VCB structure for the TEST_RTS verb is as follows:

typedef struct test_rts

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 unsigned char reserv3;

} TEST_RTS;

VCB Structure: MC_TEST_RTS (Windows)

WINDOWS

The definition of the VCB structure for the MC_TEST_RTS verb is as follows:

typedef struct mc_test_rts

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char reserv3;

} MC_TEST_RTS;

VCB Structure: TEST_RTS (Windows)

The definition of the VCB structure for the TEST_RTS verb is as follows:

typedef struct test_rts

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char reserv3;

} TEST_RTS;

MC_TEST_RTS and TEST_RTS

Chapter 4. APPC Conversation Verbs 229

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_TEST_RTS

For the MC_TEST_RTS verb.

AP_B_TEST_RTS

For the TEST_RTS verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_TEST_RTS verb.

AP_BASIC_CONVERSATION

For the TEST_RTS verb.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

Indicates whether a REQUEST_TO_SEND notification has been received

from the partner TP. Possible values are:

AP_OK REQUEST_TO_SEND notification has been received.

AP_UNSUCCESSFUL

REQUEST_TO_SEND notification has not been received.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

MC_TEST_RTS and TEST_RTS

230 IBM Communications Server for AIX APPC Programmer’s Guide

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AIX, LINUX

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

AP_TEST_INVALID_FOR_FDX

The local TP attempted to use the [MC_]TEST_RTS verb in a

full-duplex conversation. This verb can be used only in a

half-duplex conversation.

State Check: No state check errors occur for this verb.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

primary_rc

 AP_COMM_SUBSYSTEM_ABENDED

 AP_CONVERSATION_TYPE_MIXED

 AP_INVALID_VERB

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

WINDOWS

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_STACK_TOO_SMALL

 AP_INVALID_VERB_SEGMENT

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The conversation can be in any state except Reset when the TP issues this verb.

State Change

The conversation state does not change for this verb.

MC_TEST_RTS and TEST_RTS

Chapter 4. APPC Conversation Verbs 231

MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST

The MC_TEST_RTS_AND_POST or TEST_RTS_AND_POST verb informs the

application when a REQUEST_TO_SEND notification has been received from the

partner TP.

Note: This verb can be used only in a half-duplex conversation; it is not valid in a

full-duplex conversation.

Normally, if the partner TP issues an [MC_]REQUEST_TO_SEND verb, the local TP

will be notified of this by the rts_rcvd parameter on a subsequent verb (this is a

received parameter on a number of verbs), or by a successful return code on the

[MC_]TEST_RTS verb. The [MC_]TEST_RTS_AND_POST verb enables the local TP

to receive the REQUEST_TO_SEND notification asynchronously when it arrives,

instead of having to issue verbs repeatedly to obtain the notification.

VCB Structure: MC_TEST_RTS_AND_POST

AIX, LINUX

The definition of the VCB structure for the MC_TEST_RTS_AND_POST verb is as

follows:

typedef struct mc_test_rts_and_post

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 void (*callback)();

 unsigned char reserv3;

} MC_TEST_RTS_AND_POST;

VCB Structure: TEST_RTS_AND_POST

The definition of the VCB structure for the TEST_RTS_AND_POST verb is as

follows:

typedef struct test_rts_and_post

{

 AP_UINT16 opcode;

 unsigned char opext;

 unsigned char format; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 unsigned char tp_id[8];

 AP_UINT32 conv_id;

 void (*callback)();

 unsigned char reserv3;

} TEST_RTS_AND_POST;

VCB Structure: MC_TEST_RTS_AND_POST (Windows)

WINDOWS

The definition of the VCB structure for the MC_TEST_RTS_AND_POST verb is as

follows:

MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST

232 IBM Communications Server for AIX APPC Programmer’s Guide

typedef struct mc_test_rts_and_post

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char reserv3;

 unsigned long sema;

} MC_TEST_RTS_AND_POST;

VCB Structure: TEST_RTS_AND_POST (Windows)

The definition of the VCB structure for the TEST_RTS_AND_POST verb is as

follows:

typedef struct test_rts_and_post

{

 unsigned short opcode;

 unsigned char opext;

 unsigned char reserv2;

 unsigned short primary_rc;

 unsigned long secondary_rc;

 unsigned char tp_id[8];

 unsigned long conv_id;

 unsigned char reserv3;

 unsigned long sema;

} TEST_RTS_AND_POST;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode Possible values are:

AP_M_TEST_RTS_AND_POST

For the MC_TEST_RTS_AND_POST verb.

AP_B_TEST_RTS_AND_POST

For the TEST_RTS_AND_POST verb.

opext Possible values are:

AP_MAPPED_CONVERSATION

For the MC_TEST_RTS_AND_POST verb.

AP_BASIC_CONVERSATION

For the TEST_RTS_AND_POST verb.

tp_id Identifier for the local TP.

 The value of this parameter was returned by the TP_STARTED verb in the

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Conversation identifier.

 The value of this parameter was returned by the [MC_]ALLOCATE verb in

the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST

Chapter 4. APPC Conversation Verbs 233

AIX, LINUX

callback

Address of the callback routine which APPC is to call when a

REQUEST_TO_SEND notification is received. For more information, see

“Usage Notes” on page 236.

WINDOWS

sema A Windows event handle, obtained by calling one of the two Win32

functions CreateEvent or OpenEvent. APPC signals this event handle to

inform the TP when the REQUEST_TO_SEND notification is received.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Note: When this verb is issued, it returns immediately with a primary_rc which

indicates whether or not the verb was issued successfully. The only returned

parameters which are valid at this stage are primary_rc and secondary_rc (if

the primary_rc is not AP_OK). The possible primary_rc and secondary_rc values

are as described later in this section.

If this primary_rc is AP_OK, the verb has successfully begun to wait for

REQUEST_TO_SEND notification. When the verb has completed (either

because the notification was received, or because it was terminated by the

end of the conversation or by an error), APPC calls the supplied callback

routine. At this point, the returned parameters are as shown below. The

primary_rc and secondary_rc parameters will now have new values indicating

whether or not the REQUEST_TO_SEND notification was received, and

should be examined again.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK REQUEST_TO_SEND notification was received.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST

234 IBM Communications Server for AIX APPC Programmer’s Guide

AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier

assigned by APPC.

AP_BAD_TP_ID

The value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_FORMAT

The reserved field format was set to a nonzero value.

AP_SYNC_NOT_ALLOWED

The application issued this verb within a callback routine, using

the synchronous APPC entry point. Any verb issued from a callback

routine must use the asynchronous entry point.

AP_INVALID_CALLBACK_HANDLE

The callback parameter was set to a null pointer, and the verb was

issued using the synchronous entry point (or using the

asynchronous entry point with a null pointer to a callback routine).

For more information, see “Usage Notes” on page 236.

AP_TEST_INVALID_FOR_FDX

The local TP attempted to use the [MC_]TEST_RTS_AND_POST

verb in a full-duplex conversation. This verb can be used only in a

half-duplex conversation.

State Check: No state check errors occur for this verb.

Verb Canceled: This return code cannot be returned as the initial return code, but

only as the subsequent return code if the initial return code is AP_OK. If the verb

did not execute because it was canceled by another verb issued by the TP, APPC

returns the following parameter:

primary_rc

AP_CANCELLED

The local TP issued one of the following verbs while

[MC_]TEST_RTS_AND_POST was outstanding:

v DEALLOCATE with dealloc_type set to AP_ABEND_PROG,

AP_ABEND_SVC, or AP_ABEND_TIMER

v MC_DEALLOCATE with dealloc_type set to AP_ABEND

v [MC_]SEND_ERROR

v TP_ENDED

Issuing one of these verbs causes the [MC_]TEST_RTS_AND_POST

verb to be canceled. The callback routine is not called.

Conversation Ended: If the verb returns because the conversation has ended,

APPC returns the following parameter:

primary_rc

AP_UNSUCCESSFUL

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns primary return codes (and, if applicable, secondary return codes).

For information about these return codes, see Appendix B, “Common Return

Codes,” on page 267.

Possible return codes are:

MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST

Chapter 4. APPC Conversation Verbs 235

primary_rc

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_CONVERSATION_TYPE_MIXED

 AP_INVALID_VERB

 AP_TP_BUSY

 APPC does not return secondary return codes with these primary return codes.

State When Issued

The TP can issue [MC_]TEST_RTS_AND_POST when the conversation is in any

state except Reset.

State Change

The conversation state does not change for this verb.

Usage Notes

This section provides additional usage information about the following topics:

v Callback routine

v Processing while the verb is pending

v How the TP uses the verb

v Avoiding indefinite waits

Callback Routine

AIX, LINUX

The application supplies a pointer to a callback routine as one of the parameters to

the VCB. This section describes how CS/AIX uses this routine, and the functions

that it must perform.

The callback routine is defined as follows:

 void (*callback) (

 void * vcb,

 unsigned char tp_id[8],

 AP_UINT32 conv_id

);

CS/AIX calls the routine with the following parameters:

vcb Pointer to the VCB supplied by the application, including the returned

parameters set by CS/AIX.

tp_id The 8-byte TP identifier of the TP in which the verb was issued.

conv_id

The conversation identifier of the conversation in which the verb was

issued.

 The callback routine need not use all of these parameters. It may perform all the

necessary processing on the returned VCB, or may simply set a variable to inform

the main program that the verb has completed.

The application can issue further APPC verbs from within the callback routine, if

required. However, these must be asynchronous verbs. Any synchronous verbs

MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST

236 IBM Communications Server for AIX APPC Programmer’s Guide

issued from within a callback routine will be rejected with the return codes

AP_PARAMETER_CHECK and AP_SYNC_NOT_ALLOWED.

Note: If the application issues the [MC_]TEST_RTS_AND_POST verb using the

asynchronous APPC entry point, there are two callback routines specified:

one in the VCB, the other supplied as a parameter to the entry point. In

general, APPC uses the callback routine specified in the VCB and ignores

the one on the entry point; however, if the application supplies a null

pointer for the callback routine in the VCB, APPC uses the callback routine

on the entry point.

Continuing with Other Processing While the Verb Is Pending

Because the [MC_]TEST_RTS_AND_POST verb returns immediately without

waiting for data to arrive, the TP can continue other processing while waiting for it

to complete. However, the following points should be noted:

v The VCB supplied to the [MC_]TEST_RTS_AND_POST verb continues to be

used until the callback routine returns. The TP must not change any fields in the

VCB during this time. If it issues any other APPC verb while

[MC_]TEST_RTS_AND_POST is outstanding, it must use another VCB for the

new verb.

v Only one [MC_]TEST_RTS_AND_POST verb per conversation can be active at

any time.

How the TP Uses the Verb

To use the [MC_]TEST_RTS_AND_POST verb, the local TP performs the following

steps:

Using [MC_]TEST_RTS_AND_POST

1. Issues the [MC_]TEST_RTS_AND_POST verb.

2. Checks the value of the primary return code primary_rc:

v If the primary return code is AP_OK, the verb is waiting for a

REQUEST_TO_SEND notification from the partner TP. While receiving data

asynchronously, the local TP can do the following:

– Perform tasks not related to this conversation

– Issue other APPC verbs on this conversation

– Prematurely cancel the [MC_]TEST_RTS_AND_POST verb by issuing one

of the following verbs:

- DEALLOCATE with dealloc_type set to AP_ABEND_PROG, AP_ABEND_SVC, or

AP_ABEND_TIMER

- MC_DEALLOCATE with dealloc_type set to AP_ABEND

- SEND_ERROR

- TP_ENDED
v If, however, the primary return code is not AP_OK, the

[MC_]TEST_RTS_AND_POST verb has failed. In this case, the local TP does

not perform Steps 3 and 4.
3. Checks that the callback routine (supplied as a parameter on this verb) has

been called by APPC. When a REQUEST_TO_SEND notification is received

from the partner TP, APPC calls this routine.

4. Checks the new value of the primary return code primary_rc.

MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST

Chapter 4. APPC Conversation Verbs 237

v If the primary return code is AP_OK, the partner TP has issued

[MC_]REQUEST_TO_SEND.

v If the primary return code is not AP_OK, the application should check the

primary_rc and secondary_rc parameters to determine the action it should take.

Avoiding Indefinite Waits

If the local TP issues the [MC_]TEST_RTS_AND_POST verb and subsequently

waits for the callback routine to be called, it will be suspended until

REQUEST_TO_SEND notification is received from the partner TP. It could wait

indefinitely if the partner TP does not issue [MC_]REQUEST_TO_SEND. If you

need to have the TP operating continuously, avoid waiting on the callback routine,

or use the [MC_]TEST_RTS verb.

MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST

238 IBM Communications Server for AIX APPC Programmer’s Guide

Chapter 5. TP Server Verbs

AIX, LINUX

This chapter contains a description of each APPC TP server verb. The following

information is provided for each verb:

v Definition of the verb.

v Structure defining the verb control block (VCB) used by the verb. The structure

is defined in the TP Server header file /usr/include/sna/tpsrv_c.h (AIX) or

/opt/ibm/sna/include/tpsrv_c.h (Linux). (Parameters beginning with rsrvd are

reserved.)

v Parameters (VCB fields) supplied to and returned by APPC. For each parameter,

the following information is provided:

– Description

– Possible values

– Additional information
v Additional information describing the use of the verb.

Note:

1. TP server verbs must be issued using the asynchronous entry point

APPC_Async, and not the synchronous entry point APPC. For more

information about these entry points, see Chapter 2, “Writing Transaction

Programs,” on page 25.

2. TP server verbs do not affect APPC conversations or states.

Most parameters supplied to and returned by APPC for the TP Server verbs are

hexadecimal values. To simplify coding, these values are represented by

meaningful symbolic constants defined in the header file values_c.h, which is

included by the TP Server header file tpsrv_c.h. For example, the opcode parameter

of the REGISTER_TP_SERVER verb is the hexadecimal value represented by the

symbolic constant AP_REGISTER_TP_SERVER.

It is important that you use the symbolic constant and not the hexadecimal value

when setting values for supplied parameters, or when testing values of returned

parameters. This is because different AIX systems store these values differently in

memory, so the value shown may not be in the format recognized by your system.

The TP server verbs are described in the following order:

 REGISTER_TP_SERVER

 UNREGISTER_TP_SERVER

 REGISTER_TP

 UNREGISTER_TP

 QUERY_ATTACH

 ACCEPT_ATTACH

 REJECT_ATTACH

 ABORT_ATTACH

© Copyright IBM Corp. 2000, 2005 239

REGISTER_TP_SERVER

The REGISTER_TP_SERVER verb is used to notify CS/AIX that the application is

capable of automatically starting transaction programs (TPs).

VCB Structure: REGISTER_TP_SERVER

The definition of the VCB structure for the REGISTER_TP_SERVER verb is as

follows:

typedef struct register_tp_server

{

 AP_UINT16 opcode;

 unsigned char rsrvd1; /* Reserved */

 unsigned char rsrvd2; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 AP_UINT32 tps_id;

 unsigned char tp_file_updates;

 AP_NOTIFY_CB notify_cb;

} REGISTER_TP_SERVER;

 typedef void (*AP_NOTIFY_CB) (

 unsigned char reason,

 unsigned char attach_id[8],

 AP_CORR app_corr

);

 typedef union ap_corr {

 void * corr_p;

 AP_UINT32 corr_l;

 AP_INT32 corr_i;

 } AP_CORR;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_REGISTER_TP_SERVER

tp_file_updates

Requests whether the application should be notified when the sna_tps TP

configuration file is updated. Possible values are:

AP_YES The application requests callbacks to notify it that the sna_tps file

has been changed.

AP_NO The application does not require notification of changes to the

sna_tps file.

notify_cb

The address of the notification callback function. APPC uses this function

in conjunction with the value of the app_corr parameter specified on the

REGISTER_TP verb to notify a TP server that one of the following has

occurred:

v A suitable Attach is available

v The sna_tps TP configuration file has changed (if the application

requested this notification by setting the tp_file_updates parameter to

AP_YES).

For more information on how the notification callback function is used, see

“Callback Routine” on page 241.

REGISTER_TP_SERVER

240 IBM Communications Server for AIX APPC Programmer’s Guide

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

tps_id A unique identifier for this TP server. After an application registers itself as

a TP server, the value of the tps_id parameter is valid for that process only.

The value of the tps_id parameter is not valid across process boundaries. If

another application tries to use this value of the tps_id parameter on

another verb, that verb is rejected with a primary_rc value of

AP_PARAMETER_CHECK and a secondary_rc value of AP_BAD_TPS_ID.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_INVALID_CALLBACK

The callback function address was not valid.

Register Failure: If the application cannot be registered as a TP server, APPC

returns the following parameters:

primary_rc

AP_REGISTER_FAIL

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns the following primary return code. For a list of return codes

common to all verbs, see Appendix B, “Common Return Codes,” on page 267.

primary_rc

 AP_UNEXPECTED_SYSTEM_ERROR

Usage Notes

This section provides additional usage information about the callback routine.

Callback Routine

The application supplies a pointer to a callback routine as one of the parameters to

the VCB. This section describes how CS/AIX uses this routine and the functions

that it must perform.

The callback routine is defined as follows:

REGISTER_TP_SERVER

Chapter 5. TP Server Verbs 241

typedef void (*AP_NOTIFY_CB) (

 unsigned char reason,

 unsigned char attach_id[8],

 AP_CORR app_corr

);

 typedef union ap_corr {

 void * corr_p;

 AP_UINT32 corr_l;

 AP_INT32 corr_i;

 } AP_CORR;

CS/AIX calls the routine with the following parameters:

reason Type of notification. Possible values are:

AP_ATTACH

An Attach has arrived for a TP registered by this TP server. In this

case, the attach_id parameter is passed into the notification callback

because the arrival of an Attach is used to do one or more of the

following:

v Optionally query for more information about automatically

starting a TP

v Reject the Attach if necessary

v Identify which TP to automatically start for

RECEIVE_ALLOCATE processing

AP_TP_FILE_CHANGE

The sna_tps TP configuration file has been modified.

attach_id

The ID of the attach, as returned by the attach notification callback.

app_corr

The correlator value supplied by the application. This value allows the

application to correlate the returned information with its other processing.

The meaning of the correlator passed into the notification callback depends

on the notification type as indicated by the value of the reason flag:

v If reason is set to AP_ATTACH, the correlator is the correlator that was

specified by the application on the REGISTER_TP verb. This allows the

application to correlate the Attach with the correct registered TP.

v If reason is set to AP_TP_FILE_CHANGE, the correlator is the value of the

tps_id parameter on the REGISTER_TP_SERVER verb.

 The callback routine need not use all of these parameters. It may perform all the

necessary processing on the returned VCB, or it may simply set a variable to

inform the main program that the verb has completed.

UNREGISTER_TP_SERVER

The UNREGISTER_TP_SERVER verb is used when an application no longer wishes

to receive attach notifications.

VCB Structure: UNREGISTER_TP_SERVER

The definition of the VCB structure for the UNREGISTER_TP_SERVER verb is as

follows:

typedef struct unregister_tp_server

{

 AP_UINT16 opcode;

REGISTER_TP_SERVER

242 IBM Communications Server for AIX APPC Programmer’s Guide

unsigned char rsrvd1; /* Reserved */

 unsigned char rsrvd2; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 AP_UINT32 tps_id;

} UNREGISTER_TP_SERVER;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_UNREGISTER_TP_SERVER

tps_id The ID of the TP server to be unregistered, as returned on a previous

REGISTER_TP_SERVER verb.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_TPS_ID

The specified value of the tps_id parameter was not recognized.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns the following primary return code. For a list of return codes

common to all verbs, see Appendix B, “Common Return Codes,” on page 267.

primary_rc

 AP_UNEXPECTED_SYSTEM_ERROR

REGISTER_TP

The REGISTER_TP verb is used to tell Service Manager the name of a TP whose

attaches are to be handled by the TP server. It can also be used to change the TP

type or receive allocate timeout for a TP that has already been registered.

VCB Structure: REGISTER_TP

The definition of the VCB structure for the REGISTER_TP verb is as follows:

UNREGISTER_TP_SERVER

Chapter 5. TP Server Verbs 243

typedef struct register_tp

{

 AP_UINT16 opcode;

 unsigned char rsrvd1; /* Reserved */

 unsigned char rsrvd2; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 AP_UINT32 tps_id;

 AP_UINT32 res_id;

 unsigned char tp_name[64];

 char lu_alias[8];

 unsigned char fqplu_name[17];

 unsigned char tp_type;

 AP_INT32 rcv_alloc_timeout;

 AP_UINT16 modify_existing;

 AP_CORR app_corr;

} REGISTER_TP;

 typedef union ap_corr {

 void * corr_p;

 AP_UINT32 corr_l;

 AP_INT32 corr_i;

 } AP_CORR;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_REGISTER_TP

tps_id The ID of a TP server, as returned on a previous REGISTER_TP_SERVER

verb.

res_id If REGISTER_TP is being used to change an existing TP registration (the

modify_existing parameter is set to AP_YES), this parameter specifies the

unique identifier for this resource that was returned on the original

REGISTER_TP verb. Otherwise, this parameter is reserved.

tp_name

The name of the TP being registered. Specify this name in EBCDIC padded

with EBCDIC spaces, if necessary, to a length of 64 characters. Specify a

value of 64 EBCDIC spaces (0x40) for a TP for which all attaches will be

handled.

lu_alias

The local LU alias. Specify this name in ASCII padded with ASCII spaces,

if necessary, to a length of eight characters. Specify a value of eight ASCII

spaces (0x20) for an LU for which all attaches will be handled.

fqplu_name

The fully qualified name of the partner LU. Specify one of the following

EBCDIC strings padded with EBCDIC spaces, if necessary, to a length of 17

characters:

v A fully qualified name in EBCDIC to indicate that a match is to be made

only with an attach that has the same fully qualified name.

v A value of all EBCDIC spaces (0x40) to indicate that any partner LU

name is considered a match

v A partial name, followed by an EBCDIC * (0x5C) to indicate a wildcard

LU name.

tp_type

Type of the TP being registered. Possible values are:

REGISTER_TP

244 IBM Communications Server for AIX APPC Programmer’s Guide

AP_TP_TYPE_QUEUED

Incoming attaches are queued to running copies of the TP before

attempting to start a new TP or queue the attach to wait for a

suitable TP.

AP_TP_TYPE_QUEUED_BROADCAST

Same as AP_TP_TYPE_QUEUED except that the existence of the TP is

broadcast around the CS/AIX domain. Broadcasting the existence

of this TP obviates the need to configure attach routing data for

many local LUs is they are all handled by the same TP on a single

machine.

AP_TP_TYPE_NON_QUEUED

A new instance of the TP is started for each attach received, unless

a running instance has a RECEIVE_ALLOCATE verb outstanding.

rcv_alloc_timeout

The amount of time in seconds that the TP’s RECEIVE_ALLOCATE verb

should wait for an automatically started TP. Possible values are:

0 (zero)

Do not wait. This is normally the value specified because a TP

server starts TPs in response to an attach arriving, so there should

always be an attach available for a TP’s RECEIVE_ALLOCATE.

The only exception to this is if the attach has timed out while the

TP server is starting the TP.

-1 Wait indefinitely.

x where x is greater than 0

Wait the number of seconds indicated by x.

modify_existing

Specifies whether this verb is being used to change an existing registration

or to register a new TP. Possible values are:

AP_YES This verb is being used to change the rcv_alloc_timeout parameter,

the type parameter, or both of these parameters for an existing

registration. The following restrictions apply:

v The verb must be issued by the same TP Server program that

issued the original REGISTER_TP verb.

v The res_id parameter must be specified, and must match the

value returned on the original REGISTER_TP verb.

v The rcv_alloc_timeout parameter, the type parameter, or both of

these parameters can be changed from the original

REGISTER_TP verb, but all other supplied parameters must

match the value used on the original REGISTER_TP verb.

AP_NO This verb is being used to register a new TP.

app_corr

An application provided correlator passed into the attach notification

callback. For more information, see “Usage Notes” on page 241.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

REGISTER_TP

Chapter 5. TP Server Verbs 245

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

res_id The unique identifier for this resource.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_INVALID_TP_NAME

The value specified for the tp_name parameter was not valid.

AP_INVALID_LU_ALIAS

The value specified for the lu_alias parameter was not valid.

AP_INVALID_FQ_LU_NAME

The value specified for the fqplu_name parameter was not valid.

AP_INVALID_TIMEOUT

The value specified for the rcv_alloc_timeout parameter was not

valid.

AP_BAD_TPS_ID

The value specified for the tps_id parameter was not recognized.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns the following primary return code. For a list of return codes

common to all verbs, see Appendix B, “Common Return Codes,” on page 267.

primary_rc

 AP_UNEXPECTED_SYSTEM_ERROR

UNREGISTER_TP

The UNREGISTER_TP verb is used to notify the Service Manager that the

application does not want to receive Attach notifications for the specified TP.

VCB Structure: UNREGISTER_TP

The definition of the VCB structure for the UNREGISTER_TP verb is as follows:

typedef struct unregister_tp

{

 AP_UINT16 opcode;

 unsigned char rsrvd1; /* Reserved */

 unsigned char rsrvd2; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 AP_UINT32 tps_id;

 AP_UINT32 res_id;

} UNREGISTER_TP;

REGISTER_TP

246 IBM Communications Server for AIX APPC Programmer’s Guide

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_UNREGISTER_TP

tps_id The ID of the TP server, as returned on a previous REGISTER_TP_SERVER

verb.

res_id The unique identifier for this resource, as returned on a previous

REGISTER_TP verb.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_TPS_ID

The value specified for the tps_id parameter was not recognized.

AP_BAD_RES_ID

The value specified for the res_id parameter was not recognized.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns the following primary return code. For a list of return codes

common to all verbs, see Appendix B, “Common Return Codes,” on page 267.

primary_rc

 AP_UNEXPECTED_SYSTEM_ERROR

QUERY_ATTACH

The QUERY_ATTACH verb is used to retrieve information about an Attach of

which CS/AIX has notified the application. This verb is optional. If the data

represented by the TP server correlator passed into the attach callback is sufficient

for the TP server’s use, the TP server does not need to issue this verb.

For security reasons, the user id and password information in the attach are made

available only to a TP server whose effective user id is root. For applications that

do not run as root, the returned attach has had the access security subfields

stripped from it.

UNREGISTER_TP

Chapter 5. TP Server Verbs 247

This verb can be issued as many times as required by the TP server. However, the

PIP data can be extracted only once. To retrieve attach information without

retrieving the PIP data, issued QUERY_ATTACH with max_pip_len set to 0 (zero).

VCB Structure: QUERY_ATTACH

The definition of the VCB structure for the QUERY_ATTACH verb is as follows:

typedef struct query_attach

{

 AP_UINT16 opcode;

 unsigned char rsrvd1; /* Reserved */

 unsigned char rsrvd2; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 AP_UINT32 tps_id;

 unsigned char attach_id[8];

 unsigned char tp_name[64];

 char lu_alias[8];

 unsigned char fq_plu_name[17]

 unsigned char mode_name[8];

 AP_UINT16 max_pip_len;

 AP_UINT16 pip_dlen;

 unsigned char *pip_dptr;

 AP_UINT16 max_fmh5_len;

 AP_UINT16 fmh5_dlen;

 unsigned char *fmh5_dptr;

} QUERY_ATTACH;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_QUERY_ATTACH

tps_id The ID of the TP server, as returned on a previous REGISTER_TP_SERVER

verb.

attach_id

The ID of the attach, as returned by the attach notification callback.

max_pip_len

The maximum buffer space available for PIP data.

pip_dptr

Pointer to caller-allocated buffer for returned attach pip data buffer.

max_fmh5_len

The maximum buffer space available for FM header 5 (FMH5) data.

fmh5_dptr

Pointer to caller-allocated buffer for returned attach FMH5 data buffer.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameters:

primary_rc

AP_OK

QUERY_ATTACH

248 IBM Communications Server for AIX APPC Programmer’s Guide

tp_name

The attach TP name.

lu_alias

The attach local LU alias.

fq_plu_name

The attach fully qualified partner LU name.

mode_name

The attach mode name.

pip_dlen

The actual number of bytes of PIP data returned.

fmh5_dlen

The actual number of bytes of FMH5 data returned.

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_ATTACH_ID

The value specified for the attach_id parameter was not recognized.

AP_BAD_TPS_ID

The value specified for the tps_id parameter was not recognized.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns the following primary return code. For a list of return codes

common to all verbs, see Appendix B, “Common Return Codes,” on page 267.

primary_rc

 AP_UNEXPECTED_SYSTEM_ERROR

ACCEPT_ATTACH

The ACCEPT_ATTACH verb is used to continue the processing of the attach by

this TP server.

VCB Structure: ACCEPT_ATTACH

The definition of the VCB structure for the ACCEPT_ATTACH verb is as follows:

typedef struct accept_attach

{

 AP_UINT16 opcode;

 unsigned char rsrvd1; /* Reserved */

 unsigned char rsrvd2; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 AP_UINT32 tps_id;

 unsigned char attach_id[8];

} ACCEPT_ATTACH;

QUERY_ATTACH

Chapter 5. TP Server Verbs 249

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_ACCEPT_ATTACH

tps_id The ID of the TP server, as returned on a previous REGISTER_TP_SERVER

verb.

attach_id

The ID of the attach, as returned by the attach notification callback.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_ATTACH_ID

The value specified for the attach_id parameter was not recognized.

AP_BAD_TPS_ID

The value specified for the tps_id parameter was not recognized.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns the following primary return code. For a list of return codes

common to all verbs, see Appendix B, “Common Return Codes,” on page 267.

primary_rc

 AP_UNEXPECTED_SYSTEM_ERROR

REJECT_ATTACH

The REJECT_ATTACH verb is used to end the processing of the attach by this TP

server.

VCB Structure: REJECT_ATTACH

The definition of the VCB structure for the REJECT_ATTACH verb is as follows:

typedef struct reject_attach

{

 AP_UINT16 opcode;

 unsigned char rsrvd1; /* Reserved */

ACCEPT_ATTACH

250 IBM Communications Server for AIX APPC Programmer’s Guide

unsigned char rsrvd2; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 AP_UINT32 tps_id;

 unsigned char attach_id[8];

 AP_UINT32 reason;

} REJECT_ATTACH;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_REJECT_ATTACH

tps_id The ID of the TP server, as returned on a previous REGISTER_TP_SERVER

verb.

attach_id

The ID of the attach, as returned by the attach notification callback.

reason The reason the automatic start is being rejected. The value is an SNA sense

code as shown in “SNA Sense Codes” on page 252.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_ATTACH_ID

The value specified for the attach_id parameter was not recognized.

AP_BAD_TPS_ID

The value specified for the tps_id parameter was not recognized.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns the following primary return code. For a list of return codes

common to all verbs, see Appendix B, “Common Return Codes,” on page 267.

primary_rc

 AP_UNEXPECTED_SYSTEM_ERROR

REJECT_ATTACH

Chapter 5. TP Server Verbs 251

SNA Sense Codes: Table 10 shows common SNA sense codes used to reject an

Attach as follows:

 Table 10. Common SNA Sense Codes

Symbol Value Meaning

AP_SECURITY_INVALID 080F6051 security not valid

AP_SEC_BAD_PASSWORD_EXPIRED 080FFF00 password has

expired

AP_SEC_BAD_PASSWORD_INVALID 080FFF01 password is not

valid

AP_SEC_BAD_USERID_REVOKED 080FFF02 user ID has been

revoked

AP_SEC_BAD_USERID_INVALID 080FFF03 user ID is not

valid

AP_SEC_BAD_USERID_MISSING 080FFF04 user ID is missing

AP_SEC_BAD_PASSWORD_MISSING 080FFF05 password is

missing

AP_SEC_BAD_GROUP_INVALID 080FFF06 group is not valid

AP_SEC_BAD_UID_REVOKED_IN_GRP 080FFF07 user ID is revoked

in the specified

group

AP_SEC_BAD_UID_NOT_DEFD_TO_GRP 080FFF08 user ID is not

defined in the

specified group

AP_SEC_BAD_UNAUTHRZD_AT_RLU 080FFF09 user ID is not

defined to use the

remote LU

AP_SEC_BAD_UNAUTHRZD_FROM_LLU 080FFF0A user ID is not

defined to use the

remote LU from

the local LU

AP_SEC_BAD_UNAUTHRZD_TO_TP 080FFF0B user ID is not

defined to use the

TP at the remote

LU

AP_SEC_BAD_INSTALL_EXIT_FAILED 080FFF0C installation exit

processing at the

remote LU failed

AP_SEC_BAD_PROCESSING_FAILURE 080FFF0D processing failed

between the local

and remote LUs,

but the condition

is temporary

AP_SEC_BAD_PROTOCOL_VIOLATION 080F6058 a protocol

violation resulted

in a security

validation failure

AP_TRANS_PGM_NOT_AVAIL_RETRY 084B6031 TP not

available—retry

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY 084C0000 TP not

available—no retry

AP_PIP_INVALID 1008201D PIP data not valid

AP_ATTACH_LEN_INVALID 10086000 attach length not

valid

AP_SECURITY_LEN_INVALID 10086005 security length not

valid

REJECT_ATTACH

252 IBM Communications Server for AIX APPC Programmer’s Guide

Table 10. Common SNA Sense Codes (continued)

Symbol Value Meaning

AP_PARM_LEN_INVALID 10086009 parameter length

not valid

AP_LUWID_LEN_INVALID 10086011 LUWID length not

valid

AP_TP_NAME_NOT_RECOGNIZED 10086021 TP name not

recognized

AP_PIP_NOT_ALLOWED 10086031 PIP data not

allowed

AP_PIP_FIELDS_REQUIRED 10086032 PIP data required

AP_CONVERSATION_TYPE_MISMATCH 10086034 Conversation type

mismatch

AP_LU_CAPABILITY_CONFLICT 10086040 attach LU

capabilities conflict

with bind

AP_SYNC_LEVEL_NOT_SUPPORTED 10086041 sync level not

supported by TP

Note: The generic AP_SECURITY_INVALID sense code (080F651) may be

substituted by CS/AIX for sense codes in the range 080FFF00–080FFFFF if the

remote LU does not want the extended security information.

ABORT_ATTACH

The ABORT_ATTACH verb is used to end the processing of the attach by this TP

server after the attach has been accepted using an ACCEPT_ATTACH verb because

the TP server or TP has encountered an error during further processing. For

example, the TP server was unable to fork to the TP. The ABORT_ATTACH verb

can be issued by both the TP server and the TP processes.

VCB Structure: ABORT_ATTACH

The definition of the VCB structure for the ABORT_ATTACH verb is as follows:

typedef struct abort_attach

{

 AP_UINT16 opcode;

 unsigned char rsrvd1; /* Reserved */

 unsigned char rsrvd2; /* Reserved */

 AP_UINT16 primary_rc;

 AP_UINT32 secondary_rc;

 AP_UINT32 tps_id;

 unsigned char attach_id[8];

 AP_UINT32 reason;

} ABORT_ATTACH;

Supplied Parameters

The TP supplies the following parameters to APPC:

opcode AP_ABORT_ATTACH

tps_id The ID of the TP server, as returned on a previous REGISTER_TP_SERVER

verb.

attach_id

The ID of the attach to be aborted, as returned by the attach notification

callback.

REJECT_ATTACH

Chapter 5. TP Server Verbs 253

reason The reason the automatic start is being aborted. The value is an SNA sense

code as shown in “SNA Sense Codes” on page 252.

Returned Parameters

After the verb executes, APPC returns parameters to indicate whether the

execution was successful and, if not, to indicate the reason the execution was not

successful.

Successful Execution

If the verb executes successfully, APPC returns the following parameter:

primary_rc

AP_OK

Unsuccessful Execution

If the verb does not execute successfully, APPC returns a primary return code

parameter to indicate the type of error and a secondary return code parameter to

provide specific details about the reason for unsuccessful execution.

Parameter Check: If the verb does not execute because of a parameter error,

APPC returns the following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

Possible values are:

AP_BAD_ATTACH_ID

The value specified for the attach_id parameter was not recognized.

AP_BAD_TPS_ID

The value specified for the tps_id parameter was not recognized.

Other Conditions: If the verb does not execute because other conditions exist,

APPC returns the following primary return code. For a list of return codes

common to all verbs, see Appendix B, “Common Return Codes,” on page 267.

primary_rc

 AP_UNEXPECTED_SYSTEM_ERROR

ABORT_ATTACH

254 IBM Communications Server for AIX APPC Programmer’s Guide

Chapter 6. Sample Transaction Programs

The CS/AIX APPC sample transaction programs (TPs) illustrate the use of APPC

verbs in a mapped conversation.

The programs are provided with CS/AIX as asample1.c and asample2.c, in the

directory /usr/lib/sna/samples (AIX) or /opt/ibm/sna/samples (Linux).

The following information is provided in this chapter:

v Processing overview of the sample TPs

v Pseudocode for each TP

v Instructions for compiling, linking, and running the TPs

Processing Overview

The TPs presented in this chapter enable a user to browse through a file on

another system. The user is presented with a single data block at a time, in

hexadecimal and character format. After each block, a user can request the next

block, request the previous block, or quit.

asample1 (the invoking TP) sends a file name to asample2 (the invoked TP). If

asample2 locates the file, it returns the first data block to asample1; otherwise, it

deallocates the conversation and ends.

If asample1 receives a block, it displays the block on the screen and waits for the

user to enter F for forward, B for backward, or Q for quit. If the user selects

forward or backward, asample1 sends the request to asample2, which in turn

sends the appropriate block. This process continues until the user selects the quit

option, at which time asample1 deallocates the conversation and both programs

end.

If the user asks for the next block and asample2 has sent the last one, asample2

wraps to the beginning of file. Similarly, asample2 wraps to send the last block if

the user requests the previous one and the first block is displayed.

Neither program attempts to recover from errors. A bad return code from APPC

causes the program to terminate with an explanatory message.

Pseudocode

This section contains the pseudocode for the TPs asample1 and asample2.

asample1 (Invoking TP)

The pseudocode for asample1 (the invoking TP) is as follows:

 TP_started

 mc_allocate (sync_level none)

 mc_send_data (data = filename), send type prepare_to_receive_flush

 do while no error and prompt not Q

 mc_receive_and_wait

 if data block received

 display data block

 else if permission to send received

 get user prompt (F, B, or Q)

© Copyright IBM Corp. 2000, 2005 255

if prompt = F or B /* Not Q */

 mc_send_data (data = prompt), send type p_to_r_flush

 endif

 endif

 end do

 mc_deallocate

 TP_ended

asample2 (Invoked TP)

The pseudocode for asample2 (the invoked TP) is as follows:

receive_allocate

do while conversing

 mc_receive_and_wait (return status with data)

 if data received and send indication received

 if first time (data = filename)

 open file

 if file not found

 mc_deallocate

 set conversing false

 endif

 else (data = prompt)

 read and store prompt

 endif

 if (conversing)

 read file block

 mc_send_data (file block)

 endif

 else if deallocate received

 set conversing false

 endif

 end while conversing

 close file

 tp_ended

Testing the TPs

After examining the source code for the two programs, you may want to test the

programs.

Although APPC is normally used for communications between a local and a

remote computer, you may find it convenient to run both TPs on the same CS/AIX

computer for testing purposes.

To compile and link the TPs, take the following steps.

1. Copy the two files asample1.c and asample2.c from the directory

/usr/lib/sna/samples to a private directory.

2. To compile and link the programs for AIX, use the following commands:

 cc -o asample1 -I /usr/include/sna -bimport:/usr/lib/sna/appc_r.exp -bimport:/usr/lib/sna/csv_r.exp asample1.c

cc -o asample2 -I /usr/include/sna -bimport:/usr/lib/sna/appc_r.exp -bimport:/usr/lib/sna/csv_r.exp asample2.c

To compile and link the programs for Linux, use the following commands:
gcc -o asample1 -I /opt/ibm/sna/include -L /opt/ibm/sna/lib -lappc -lsna_r -lcsv -lpLiS -lpthread asample1.c

gcc -o asample2 -I /opt/ibm/sna/include -L /opt/ibm/sna/lib -lappc -lsna_r -lcsv -lpLiS -lpthread asample2.c

To run the TPs, perform the following steps. Note that some of these steps involve

updating the CS/AIX configuration, which is usually performed by the System

Administrator.

Pseudocode

256 IBM Communications Server for AIX APPC Programmer’s Guide

The TPs can run on the same computer, or on separate computers. In the following

steps, the “source computer” is the computer where the invoking TP asample1

runs, and the “target computer” is the computer where the invoked TP asample2

runs.

 1. If you are running the TPs on separate computers, configure the

communications link to support CP-CP sessions between the source and target

computers. See Communications Server for AIX Administration Guide for more

information.

 2. Configure a mode. Specify LOCMODE as the mode name. Leave the default

values for the other parameters.

 3. Configure a logical unit (LU) on the source computer for asample1 (the

invoking TP). Set both the LU name and LU alias to TPLU1 (the LU alias

specified in the asample1 program). Leave the default values for the other

parameters.

 4. If you are running the TPs on separate computers, configure a partner LU

alias on the source computer to identify the target LU. Set the partner LU

name to netname.TPLU2, where netname is the SNA network name of the

target computer.

 5. Configure an LU on the target computer for the invoked TP. Set both the LU

name and LU alias to TPLU2 (the alias by which the asample1 program refers

to the LU serving asample2). Leave the default values for the other

parameters.

 6. Configure the invoked TP in the CS/AIX invokable TP data file on the target

computer. Refer to the Communications Server for AIX Administration Guide for

more information.

v For the TP name parameter, specify TPNAME2 (the name specified by the

invoking TP).

v For Full path to TP executable, enter the full path name of the executable file

asample2.

v For the User ID parameter, specify your AIX user ID on the target computer.

v Leave the default values for other parameters.
 7. If the invoked TP is to run with a user_id of root, change the permissions on

the executable file to allow it to do so. Use the following command:

chmod +s asample2

 8. Start the invoking program, asample1. This program requires one parameter,

the full path name (on the target computer) of the file to be displayed. For

example:

asample1 /usr/john/myfile.text

 9. Enter F or B to display blocks of the requested file.

10. Use Q to end program 1; program 2 will end as well.

Testing the TPs

Chapter 6. Sample Transaction Programs 257

258 IBM Communications Server for AIX APPC Programmer’s Guide

Appendix A. Return Code Values

This appendix lists all the possible return codes in the APPC interface in numerical

order. The values are defined in the header file values_c.h(for AIX or Linux) or

winappc.h (for Windows).

You can use this appendix as a reference to check the meaning of a return code

received by your application.

Primary Return Codes

The following primary return codes are used in APPC applications.

AP_OK 0x0000

AP_PARAMETER_CHECK 0x0100

AP_STATE_CHECK 0x0200

AP_INDICATION 0x0210

AP_TP_BUSY 0x02F0

AP_ALLOCATION_ERROR 0x0300

AP_ACTIVATION_FAIL_RETRY 0x0310

AP_COMM_SUBSYSTEM_ABENDED 0x03F0

AP_ACTIVATION_FAIL_NO_RETRY 0x0410

AP_COMM_SUBSYSTEM_NOT_LOADED 0x04F0

AP_DEALLOC_ABEND 0x0500

AP_LU_SESS_LIMIT_EXCEEDED 0x0510

AP_DEALLOC_ABEND_PROG 0x0600

AP_FUNCTION_NOT_SUPPORTED 0x0610

AP_THREAD_BLOCKING 0x06F0

AP_DEALLOC_ABEND_SVC 0x0700

AP_DEALLOC_ABEND_TIMER 0x0800

AP_DATA_POSTING_BLOCKED 0x0810

AP_INVALID_VERB_SEGMENT 0x08F0

AP_DEALLOC_NORMAL 0x0900

AP_PATH_SWITCH_NOT_ALLOWED 0x0910

AP_CP_CP_SESS_ACT_FAILURE 0x0A10

AP_PROG_ERROR_NO_TRUNC 0x0C00

AP_PROG_ERROR_TRUNC 0x0D00

AP_PROG_ERROR_PURGING 0x0E00

AP_CONV_FAILURE_RETRY 0x0F00

AP_CONV_FAILURE_NO_RETRY 0x1000

AP_SVC_ERROR_NO_TRUNC 0x1100

AP_UNEXPECTED_DOS_ERROR 0x11F0

AP_SVC_ERROR_TRUNC 0x1200

AP_SVC_ERROR_PURGING 0x1300

AP_UNSUCCESSFUL 0x1400

AP_STACK_TOO_SMALL 0x15F0

AP_MIXED_API_USED 0x16F0

AP_IN_PROGRESS 0x17F0

AP_CNOS_PARTNER_LU_REJECT 0x1800

AP_COMPLETED 0x18F0

AP_CONVERSATION_TYPE_MIXED 0x1900

AP_NODE_STOPPING 0x1A00

AP_NODE_NOT_STARTED 0x1B00

AP_CANCELLED 0x2100

AP_BACKED_OUT 0x2200

AP_DUPLEX_TYPE_MIXED 0x2300

AP_LS_FAILURE 0x2300

AP_OPERATION_INCOMPLETE 0x4000

AP_OPERATION_NOT_ACCEPTED 0x4100

AP_CONVERSATION_ENDED 0x4200

AP_ERROR_INDICATION 0x4300

AP_EXPD_NOT_SUPPORTED_BY_LU 0x4400

© Copyright IBM Corp. 2000, 2005 259

AP_BUFFER_TOO_SMALL 0x4500

AP_MEMORY_ALLOCATION_FAILURE 0x4600

AP_INVALID_VERB 0xFFFF

Secondary Return Codes

The following secondary return codes are used in APPC applications.

AP_AS_SPECIFIED 0x00000000

AP_ALLOCATION_ERROR_PENDING 0x00000300

AP_DEALLOC_ABEND_PROG_PENDING 0x00000600

AP_DEALLOC_ABEND_SVC_PENDING 0x00000700

AP_DEALLOC_ABEND_TIMER_PENDING 0x00000800

AP_UNKNOWN_ERROR_TYPE_PENDING 0x00001100

AP_BO_NO_RESYNC 0x00002408

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY 0x00004C08

AP_INVALID_SET_PROT 0x00070000

AP_INVALID_DLUS_NAME 0x00900000

AP_SEC_BAD_PASSWORD_EXPIRED 0x00FF0F08

AP_BAD_TP_ID 0x01000000

AP_BO_RESYNC 0x01002408

AP_INVALID_NEW_PROT 0x01070000

AP_DLC_ACTIVE 0x01100000

AP_NO_DEFAULT_DLUS_DEFINED 0x01900000

AP_BAD_TPSID 0x01FF0000

AP_SEC_BAD_PASSWORD_INVALID 0x01FF0F08

AP_BAD_CONV_ID 0x02000000

AP_SEND_ERROR_LOG_LL_WRONG 0x02010000

AP_INVALID_SET_UNPROT 0x02070000

AP_INVALID_NUMBER_OF_NODE_ROWS 0x02080000

AP_DUPLICATE_CP_NAME 0x02100000

AP_INVALID_PU_ID 0x02900000

AP_NOT_OWNER 0x02FF0000

AP_SEC_BAD_USERID_REVOKED 0x02FF0F08

AP_BAD_LU_ALIAS 0x03000000

AP_BAD_DLOAD_ID 0x03000001

AP_BAD_REMOTE_LU_ALIAS 0x03000002

AP_SEND_ERROR_BAD_TYPE 0x03010000

AP_INVALID_NEW_UNPROT 0x03070000

AP_DUPLICATE_DEST_ADDR 0x03100000

AP_PU_ALREADY_ACTIVATING 0x03900000

AP_INSUFFICIENT_PRIVILEGES 0x03FF0000

AP_SEC_BAD_USERID_INVALID 0x03FF0F08

AP_ALLOCATION_FAILURE_NO_RETRY 0x04000000

AP_SEND_ERROR_BAD_STATE 0x04010000

AP_INVALID_SET_USER 0x04070000

AP_NODE_ROW_WGT_LESS_THAN_LAST 0x04080000

AP_CANT_MODIFY_PORT_NAME 0x04100000

AP_PU_ALREADY_DEACTIVATING 0x04900000

AP_INVALID_CALLBACK 0x04FF0000

AP_SEC_BAD_USERID_MISSING 0x04FF0F08

AP_ALLOCATION_FAILURE_RETRY 0x05000000

AP_BAD_ERROR_DIRECTION 0x05010000

AP_INVALID_DATA_TYPE 0x05070000

AP_TG_ROW_WGT_LESS_THAN_LAST 0x05080000

AP_DUPLICATE_PORT_NUMBER 0x05100000

AP_PU_ALREADY_ACTIVE 0x05900000

AP_BAD_TP_TYPE 0x05FF0000

AP_SEC_BAD_PASSWORD_MISSING 0x05FF0F08

AP_INVALID_STATS_TYPE 0x06070000

AP_DUPLICATE_PORT_NAME 0x06100000

AP_PU_NOT_ACTIVE 0x06900000

AP_ALREADY_REGISTERED 0x06FF0000

AP_SEC_BAD_GROUP_INVALID 0x06FF0F08

AP_AS_NEGOTIATED 0x07000000

AP_INVALID_TABLE_TYPE 0x07070000

AP_INVALID_DLC_NAME 0x07100000

Primary Return Codes

260 IBM Communications Server for AIX APPC Programmer’s Guide

AP_DLUS_REJECTED 0x07900000

AP_SEC_BAD_UID_REVOKED_IN_GRP 0x07FF0F08

AP_PORT_DEACTIVATED 0x08070000

AP_INVALID_DLC_TYPE 0x08100000

AP_DLUS_CAPS_MISMATCH 0x08900000

AP_SEC_BAD_UID_NOT_DEFD_TO_GRP 0x08FF0F08

AP_ALLOCATE_NOT_PENDING 0x09050000

AP_INVALID_SET_PASSWORD 0x09070000

AP_INVALID_NUMBER_OF_TG_ROWS 0x09080000

AP_INVALID_LINK_ACTIVE_LIMIT 0x09100000

AP_PU_FAILED_ACTPU 0x09900000

AP_SEC_BAD_UNAUTHRZD_AT_RLU 0x09FF0F08

AP_SNA_DEFD_COS_CANT_BE_CHANGE 0x0A080000

AP_SNA_DEFD_COS_CANT_BE_CHANGED 0x0A080000

AP_PU_NOT_RESET 0x0A900000

AP_SEC_BAD_UNAUTHRZD_FROM_LLU 0x0AFF0F08

AP_INVALID_NUM_PORTS_SPECIFIED 0x0B100000

AP_PU_OWNS_LUS 0x0B900000

AP_SEC_BAD_UNAUTHRZD_TO_TP 0x0BFF0F08

AP_INVALID_PORT_NAME 0x0C100000

AP_INVALID_FILTER_OPTION 0x0C900000

AP_SEC_BAD_INSTALL_EXIT_FAILED 0x0CFF0F08

AP_INVALID_PORT_TYPE 0x0D100000

AP_INVALID_STOP_TYPE 0x0D900000

AP_SEC_BAD_PROCESSING_FAILURE 0x0DFF0F08

AP_UNRECOGNIZED_DEACT_TYPE 0x0E050000

AP_PORT_ACTIVE 0x0E100000

AP_PU_ALREADY_DEFINED 0x0E900000

AP_NO_PORTS_DEFINED_ON_DLC 0x0F100000

AP_DEPENDENT_LU_NOT_SUPPORTED 0x0F900000

AP_INVALID_DLC 0x10050000

AP_COS_NAME_NOT_DEFD 0x10080000

AP_DUPLICATE_PORT 0x10100000

AP_INVALID_DSPU_SERVICES 0x10900000

AP_BAD_CONV_TYPE 0x11000000

AP_SNA_DEFD_COS_CANT_BE_DELETE 0x11080000

AP_SNA_DEFD_COS_CANT_BE_DELETED 0x11080000

AP_STOP_PORT_PENDING 0x11100000

AP_DSPU_SERVICES_NOT_SUPPORTED 0x11900000

AP_BAD_SYNC_LEVEL 0x12000000

AP_LU_NAU_ADDR_ALREADY_DEFD 0x12020000

AP_INVALID_SESSION_ID 0x12050000

AP_LINK_DEACT_IN_PROGRESS 0x12100000

AP_INVALID_DSPU_NAME 0x12900000

AP_BAD_SECURITY 0x13000000

AP_INVALID_NN_SESSION_TYPE 0x13050000

AP_LINK_DEACTIVATED 0x13100000

AP_PARTNER_NOT_FOUND 0x13200000

AP_PARTNER_NOT_RESPONDING 0x13300000

AP_ERROR 0x13400000

AP_DSPU_ALREADY_DEFINED 0x13900000

AP_BAD_RETURN_CONTROL 0x14000000

AP_INVALID_MAX_NEGOT_SESS_LIM 0x14020000

AP_INVALID_SET_COLLECT_STATS 0x14050000

AP_LINK_ACT_BY_REMOTE 0x14100000

AP_INVALID_SOLICIT_SSCP_SESS 0x14900000

AP_INVALID_BACK_LEVEL_SUPPORT 0x15000000

AP_INVALID_MODE_NAME 0x15020000

AP_INVALID_SET_COLLECT_NAMES 0x15050000

AP_LINK_ACT_BY_LOCAL 0x15100000

AP_INVALID_TG_NUMBER 0x15500000

AP_MISSING_CP_NAME 0x15510000

AP_MISSING_CP_TYPE 0x15520000

AP_INVALID_CP_TYPE 0x15520000

AP_DUPLICATE_TG_NUMBER 0x15530000

AP_TG_NUMBER_IN_USE 0x15540000

AP_MISSING_TG_NUMBER 0x15550000

Secondary Return Codes

Appendix A. Return Code Values 261

AP_PARALLEL_TGS_NOT_ALLOWED 0x15570000

AP_INVALID_BKUP_DLUS_NAME 0x15900000

AP_PIP_LEN_INCORRECT 0x16000000

AP_INVALID_RECV_PACING_WINDOW 0x16020000

AP_INVALID_SET_COLLECT_RSCVS 0x16050000

AP_SEC_REQUESTED_NOT_SUPPORTED 0x16900000

AP_NO_USE_OF_SNASVCMG 0x17000000

AP_INVALID_CNOS_SLIM 0x17020000

AP_LINK_NOT_DEFD 0x17100000

AP_INVALID_DUPLEX_SUPPORT 0x17900000

AP_UNKNOWN_PARTNER_MODE 0x18000000

AP_INVALID_TARGET_PACING_CNT 0x18020000

AP_PS_CREATION_FAILURE 0x18100000

AP_QUEUE_PROHIBITED 0x18900000

AP_INVALID_MAX_RU_SIZE_UPPER 0x19020000

AP_TP_ACTIVE 0x19100000

AP_INVALID_TEMPLATE_NAME 0x19900000

AP_INVALID_SNASVCMG_MODE_LIMIT 0x1A020000

AP_MODE_ACTIVE 0x1A100000

AP_CLASHING_NAU_RANGE 0x1A900000

AP_PLU_ACTIVE 0x1B100000

AP_INVALID_NAU_RANGE 0x1B900000

AP_INVALID_COS_SNASVCMG_MODE 0x1C020000

AP_INVALID_PLU_NAME 0x1C100000

AP_INVALID_NUM_DSLU_TEMPLATES 0x1C900000

AP_INVALID_DEFAULT_RU_SIZE 0x1D020000

AP_INVALID_SET_NEGOTIABLE 0x1D100000

AP_GLOBAL_TIMEOUT_NOT_DEFINED 0x1D900000

AP_INVALID_MIN_CONWINNERS 0x1E020000

AP_INVALID_MODE_NAME_SELECT 0x1E100000

AP_INVALID_RESOURCE_NAME 0x1E900000

AP_INVALID_RESPONSIBLE 0x1F100000

AP_INVALID_DLUS_RETRY_TIMEOUT 0x1F900000

AP_MODE_SESS_LIM_EXCEEDS_NEG 0x20020000

AP_INVALID_DRAIN_SOURCE 0x20100000

AP_INVALID_DLUS_RETRY_LIMIT 0x20900000

AP_CPSVCMG_ALREADY_DEFD 0x21020000

AP_INVALID_CN_NAME 0x21080000

AP_INVALID_DRAIN_TARGET 0x21100000

AP_TP_NAME_NOT_RECOGNIZED 0x21600810

AP_INVALID_MIN_CONLOSERS 0x21900000

AP_BAD_DUPLEX_TYPE 0x22000000

AP_INVALID_BYPASS_SECURITY 0x22020000

AP_DEF_LINK_INVALID_SECURITY 0x22080000

AP_INVALID_FORCE 0x22100000

AP_SYSTEM_TP_CANT_BE_CHANGED 0x22600810

AP_INVALID_MAX_RU_SIZE_LOW 0x22900000

AP_FDX_NOT_SUPPORTED_BY_LU 0x23000000

AP_TEST_INVALID_FOR_FDX 0x23010000

AP_INVALID_IMPLICIT_PLU_FORBID 0x23020000

AP_INVALID_PROPAGATION_DELAY 0x23080000

AP_SYSTEM_TP_CANT_BE_DELETED 0x23600810

AP_INVALID_MAX_RECV_PACING_WIN 0x23900000

AP_SEND_EXPD_INVALID_LENGTH 0x24010000

AP_INVALID_SPECIFIC_SECURITY 0x24020000

AP_INVALID_EFFECTIVE_CAPACITY 0x24080000

AP_INVALID_CLEANUP_TYPE 0x24100000

AP_INVALID_DYNAMIC_LOAD 0x24600810

AP_RU_SIZE_LOW_UPPER_MISMATCH 0x24900000

AP_RCV_EXPD_INVALID_LENGTH 0x25010000

AP_INVALID_DELAYED_LOGON 0x25020000

AP_INVALID_COS_NAME 0x25100000

AP_INVALID_ENABLED 0x25600810

AP_LU_ALREADY_ACTIVATING 0x25900000

AP_EXPD_BAD_RETURN_CONTROL 0x26010000

AP_INVALID_CNOS_PERMITTED 0x26020000

AP_PW_SUB_NOT_SUPP_ON_SESS 0x26050000

Secondary Return Codes

262 IBM Communications Server for AIX APPC Programmer’s Guide

AP_INVALID_SESSION_LIMIT 0x26100000

AP_INVALID_PIP_ALLOWED 0x26600810

AP_LU_DEACTIVATING 0x26900000

AP_EXPD_DATA_BAD_CONV_STATE 0x27010000

AP_INVALID_DRAIN 0x27100000

AP_LU_ALREADY_ACTIVE 0x27900000

AP_INVALID_PRLL_SESS_SUPP 0x28100000

AP_INVALID_MIN_CONTENTION_SUM 0x28900000

AP_INVALID_LU_NAME 0x29100000

AP_COMPRESSION_NOT_SUPPORTED 0x29900000

AP_MODE_NOT_RESET 0x2A100000

AP_INVALID_MAX_COMPRESS_LVL 0x2A900000

AP_MODE_RESET 0x2B100000

AP_INVALID_COMPRESSION 0x2B900000

AP_CNOS_REJECT 0x2C100000

AP_INVALID_EXCEPTION_INDEX 0x2C900000

AP_INVALID_OP_CODE 0x2D100000

AP_INVALID_MAX_LS_EXCEPTION 0x2D900000

AP_INVALID_DISABLE 0x2E900000

AP_INVALID_MODIFY_TEMPLATE 0x2F900000

AP_INVALID_ALLOW_TIMEOUT 0x30900000

AP_CONFIRM_ON_SYNC_LEVEL_NONE 0x31000000

AP_PIP_NOT_ALLOWED 0x31600810

AP_TRANS_PGM_NOT_AVAIL_RETRY 0x31604B08

AP_POST_ON_RECEIPT_BAD_FILL 0x31900000

AP_CONFIRM_BAD_STATE 0x32000000

AP_UNKNOWN_USER 0x32100000

AP_POST_ON_RECEIPT_BAD_STATE 0x32900000

AP_CONFIRM_NOT_LL_BDY 0x33000000

AP_NO_PROFILES 0x33100000

AP_INVALID_HPR_SUPPORT 0x33900000

AP_CONFIRM_INVALID_FOR_FDX 0x34000000

AP_CONVERSATION_TYPE_MISMATCH 0x34600810

AP_INVALID_LU_MODEL 0x34900000

AP_INVALID_MODEL_NAME 0x35900000

AP_TOO_MANY_PROFILES 0x36100000

AP_INVALID_CRYPTOGRAPHY 0x36900000

AP_INVALID_UPDATE_TYPE 0x37100000

AP_INVALID_CLU_CRYPTOGRAPHY 0x37900000

AP_DIR_ENTRY_PARENT 0x38100000

AP_INVALID_RESOURCE_TYPES 0x38900000

AP_NODE_ALREADY_STARTED 0x39100000

AP_CHECKSUM_FAILED 0x39900000

AP_NODE_FAILED_TO_START 0x3A100000

AP_DATA_CORRUPT 0x3A900000

AP_LU_ALREADY_DEFINED 0x3B100000

AP_INVALID_RETRY_FLAGS 0x3B900000

AP_IMPLICIT_LU_DEFINED 0x3C100000

AP_DELAYED_VERB_PENDING 0x3C900000

AP_PORT_INACTIVE 0x3D100000

AP_DSLU_ACTIVE 0x3D900000

AP_ACTIVATION_LIMITS_REACHED 0x3E100000

AP_ACTIVATION_LIMITS_REACHED 0x3E100000

AP_INVALID_BRANCH_LINK_TYPE 0x3E900000

AP_PARALLEL_TGS_NOT_SUPPORTED 0x3F100000

AP_INVALID_BRNN_SUPPORT 0x3F900000

AP_DLC_INACTIVE 0x40100000

AP_BRNN_SUPPORT_MISSING 0x40900000

AP_CONFIRMED_BAD_STATE 0x41000000

AP_NO_LINKS_DEFINED 0x41100000

AP_SYNC_LEVEL_NOT_SUPPORTED 0x41600810

AP_INVALID_UPLINK 0x41900000

AP_CONFIRMED_INVALID_FOR_FDX 0x42000000

AP_STOP_DLC_PENDING 0x42100000

AP_INVALID_DOWNLINK 0x42900000

AP_INVALID_LS_ROLE 0x43100000

AP_INVALID_IMPLICIT_UPLINK 0x43900000

Secondary Return Codes

Appendix A. Return Code Values 263

AP_INVALID_BTU_SIZE 0x44100000

AP_INVALID_ROCP_NAME 0x44900000

AP_LAST_LINK_ON_ACTIVE_PORT 0x45100000

AP_INVALID_REG_WITH_NN 0x45900000

AP_DYNAMIC_LOAD_ALREADY_REGD 0x46100000

AP_LS_PENDING_RETRY 0x46900000

AP_INVALID_LIST_OPTION 0x47100000

AP_INVALID_COS_TABLE_VERSION 0x47900000

AP_INVALID_RES_NAME 0x48100000

AP_CFRTP_REQUIRED_FOR_MLTG 0x48900000

AP_INVALID_RES_TYPE 0x49100000

AP_INVALID_MLTG_PAC_ALGORITHM 0x49900000

AP_INVALID_ADJ_NNCP_NAME 0x4A100000

AP_LIM_RESRCE_INVALID_FOR_MLTG 0x4A900000

AP_INVALID_NODE 0x4B100000

AP_AUTO_ACT_INVALID_FOR_MLTG 0x4B900000

AP_INVALID_ORIGIN_NODE 0x4C100000

AP_MLTG_LS_VISIBILITY_MISMATCH 0x4C900000

AP_INVALID_TG 0x4D100000

AP_SLTG_LINK_ACTIVE 0x4D900000

AP_INVALID_FQPCID 0x4E100000

AP_MLTG_LINK_PROPERTIES_DIFFER 0x4E900000

AP_INVALID_POOL_NAME 0x4F100000

AP_INVALID_ADJ_CP_NAME 0x4F900000

AP_BAD_TYPE 0x50020000

AP_INVALID_NAU_ADDRESS 0x50100000

AP_INVALID_ENABLE_POOL 0x50300000

AP_INVALID_SEND_TERM_SELF 0x50900000

AP_DEALLOC_BAD_TYPE 0x51000000

AP_LU_NAME_POOL_NAME_CLASH 0x51100000

AP_SECURITY_NOT_VALID 0x51600F08

AP_INVALID_TERM_METHOD 0x51900000

AP_DEALLOC_FLUSH_BAD_STATE 0x52000000

AP_INVALID_PRIORITY 0x52100000

AP_INVALID_DISABLE_BRANCH_AWRN 0x52900000

AP_DEALLOC_CONFIRM_BAD_STATE 0x53000000

AP_INVALID_DNST_LU_NAME 0x53100000

AP_INVALID_SHARING_PROHIBITED 0x53900000

AP_INVALID_HOST_LU_NAME 0x54100000

AP_INVALID_LINK_SPEC_FORMAT 0x54900000

AP_DEALLOC_NOT_LL_BDY 0x55000000

AP_PU_NOT_DEFINED 0x55100000

AP_INVALID_CN_TYPE 0x55900000

AP_INVALID_PU_NAME 0x56100000

AP_INVALID_PU_TYPE 0x56600000

AP_INCONSISTENT_BEST_EFFORT 0x56900000

AP_DEALLOC_LOG_LL_WRONG 0x57000000

AP_CNOS_MODE_NAME_REJECT 0x57010000

AP_INVALID_MAX_IFRM_RCVD 0x57100000

AP_INVALID_CN_TG 0x57900000

AP_INVALID_SYM_DEST_NAME 0x58100000

AP_SEC_BAD_PROTOCOL_VIOLATION 0x58600F08

AP_INVALID_LINK_SPEC_DATA 0x58900000

AP_INVALID_LENGTH 0x59100000

AP_DLC_UI_ONLY 0x59900000

AP_INVALID_ISR_THRESHOLDS 0x5A100000

AP_ADJ_CP_WRONG_TYPE 0x5A900000

AP_BAD_PARTNER_LU_ALIAS 0x5B010000

AP_INVALID_NUM_LUS 0x5B100000

AP_CP_CP_SESS_ALREADY_ACTIVE 0x5B900000

AP_EXCEEDS_MAX_ALLOWED 0x5C010000

AP_CANT_DELETE_ADJ_ENDNODE 0x5C100000

AP_NO_ACTIVE_CP_CP_LINK 0x5C900000

AP_LU_MODE_SESSION_LIMIT_ZERO 0x5D010000

AP_INVALID_RESOURCE_TYPE 0x5D100000

AP_PU_CONC_NOT_SUPPORTED 0x5E100000

AP_INVALID_IMPL_APPN_LINKS_LEN 0x5E900000

Secondary Return Codes

264 IBM Communications Server for AIX APPC Programmer’s Guide

AP_CNOS_COMMAND_RACE_REJECT 0x5F010000

AP_DLUR_NOT_SUPPORTED 0x5F100000

AP_INVALID_LIMIT_ENABLE 0x5F900000

AP_INVALID_SVCMG_LIMITS 0x60010000

AP_INVALID_RTP_CONNECTION 0x60100000

AP_INVALID_LS_ATTRIBUTE 0x60900000

AP_FLUSH_NOT_SEND_STATE 0x61000000

AP_PATH_SWITCH_IN_PROGRESS 0x61100000

AP_HPR_NOT_SUPPORTED 0x62100000

AP_SOME_ENABLED 0x62900000

AP_RTP_NOT_SUPPORTED 0x63100000

AP_NONE_ENABLED 0x63900000

AP_COS_TABLE_FULL 0x64100000

AP_INCONSISTENT_IMPLICIT 0x64900000

AP_INVALID_DAYS_LEFT 0x65100000

AP_INVALID_PREFER_ACTIVE_DLUS 0x65900000

AP_ANYNET_NOT_SUPPORTED 0x66100000

AP_INVALID_PERSIST_PIPE_SUPP 0x66900000

AP_INVALID_DISCOVERY_SUPPORT 0x67100000

AP_ACTIVATION_PROHIBITED 0x67900000

AP_SESSION_FAIL_ALREADY_REGD 0x68100000

AP_INVALID_NULL_ADDR_MEANING 0x68900000

AP_CANT_MODIFY_VISIBILITY 0x69100000

AP_INVALID_CPLU_SYNCPT_SUPPORT 0x69900000

AP_CANT_MODIFY_WHEN_ACTIVE 0x6A100000

AP_INVALID_CPLU_ATTRIBUTES 0x6A900000

AP_INVALID_BASE_NUMBER 0x6B100000

AP_INVALID_REG_LEN_SUPPORT 0x6B900000

AP_DEACT_CG_INVALID_CGID 0x6C020000

AP_INVALID_NAME_ATTRIBUTES 0x6C100000

AP_LUNAME_CGID_MISMATCH 0x6C900000

AP_NAU_ADDRESS_MISMATCH 0x6D100000

AP_INVALID_DDDLU_OFFLINE 0x6D900000

AP_POSTED_DATA 0x6E100000

AP_POSTED_NO_DATA 0x6F100000

AP_DEF_PLU_INVALID_FQ_NAME 0x74020000

AP_DLC_DEACTIVATING 0x86020000

AP_INVALID_WILDCARD_NAME 0x8C020000

AP_DUPLICATE 0x8D020000

AP_LU_NAME_WILDCARD_NAME_CLASH 0x8E020000

AP_INVALID_USERID 0x90020000

AP_INVALID_PASSWORD 0x91020000

AP_INVALID_PROFILE 0x93020000

AP_INVALID_TP_NAME 0xA0020000

AP_P_TO_R_INVALID_TYPE 0xA1000000

AP_INVALID_CONV_TYPE 0xA1020000

AP_P_TO_R_NOT_LL_BDY 0xA2000000

AP_P_TO_R_NOT_SEND_STATE 0xA3000000

AP_INVALID_SYNC_LEVEL 0xA3020000

AP_P_TO_R_INVALID_FOR_FDX 0xA5000000

AP_INVALID_LINK_NAME_SPECIFIED 0xB0020000

AP_RCV_AND_WAIT_BAD_STATE 0xB1000000

AP_INVALID_LU_ALIAS 0xB1020000

AP_RCV_AND_WAIT_NOT_LL_BDY 0xB2000000

AP_INVALID_NUM_LS_SPECIFIED 0xB2020000

AP_PLU_ALIAS_CANT_BE_CHANGED 0xB3020000

AP_PLU_ALIAS_ALREADY_USED 0xB4020000

AP_RCV_AND_WAIT_BAD_FILL 0xB5000000

AP_INVALID_AUTO_ACT_SUPP 0xB5020000

AP_CANT_DELETE_IMPLICIT_LU 0xB6020000

AP_FORCED 0xB7020000

AP_INVALID_LS_NAME 0xB7030000

AP_INVALID_LFSID_SPECIFIED 0xB7040000

AP_INVALID_FILTER_TYPE 0xB7050000

AP_INVALID_MESSAGE_TYPE 0xB7060000

AP_CANT_DELETE_CP_LU 0xB7070000

AP_ALL_RESOURCES_NOT_DEFINED 0xB7090000

Secondary Return Codes

Appendix A. Return Code Values 265

AP_INVALID_LIST_TYPE 0xB70A0000

AP_RESOURCE_NAME_NOT_ALLOWED 0xB70B0000

AP_LU_ALIAS_CANT_BE_CHANGED 0xB8020000

AP_LU_ALIAS_ALREADY_USED 0xB9020000

AP_INVALID_LINK_ENABLE 0xBA020000

AP_INVALID_CLU_COMPRESSION 0xBB020000

AP_INVALID_DLUR_SUPPORT 0xBC020000

AP_ALREADY_STARTING 0xC0010000

AP_RCV_IMMD_BAD_STATE 0xC1000000

AP_INVALID_LINK_NAME 0xC1010000

AP_INVALID_USER_DEF_1 0xC3010000

AP_RCV_IMMD_BAD_FILL 0xC4000000

AP_INVALID_USER_DEF_2 0xC4010000

AP_INVALID_NODE_TYPE 0xC4020000

AP_INVALID_USER_DEF_3 0xC5010000

AP_INVALID_NAME_LEN 0xC5020000

AP_INVALID_NETID_LEN 0xC6020000

AP_INVALID_NODE_TYPE_FOR_HPR 0xC8020000

AP_INVALID_MAX_DECOMPRESS_LVL 0xC9020000

AP_INVALID_CP_NAME 0xCA010000

AP_INVALID_COMP_IN_SERIES 0xCA020000

AP_INVALID_LIMITED_RESOURCE 0xCE010000

AP_RCV_AND_POST_BAD_STATE 0xD1000000

AP_INVALID_BYTE_COST 0xD1010000

AP_RCV_AND_POST_NOT_LL_BDY 0xD2000000

AP_RCV_AND_POST_BAD_FILL 0xD5000000

AP_INVALID_TIME_COST 0xD6010000

AP_BAD_RETURN_STATUS_WITH_DATA 0xD7000000

AP_LOCAL_CP_NAME 0xD7010000

AP_LS_ACTIVE 0xDA010000

AP_INVALID_FQ_OWNING_CP_NAME 0xDB020000

AP_R_T_S_BAD_STATE 0xE1000000

AP_R_T_S_INVALID_FOR_FDX 0xE2000000

AP_BAD_LL 0xF1000000

AP_SEND_DATA_NOT_SEND_STATE 0xF2000000

AP_CP_OR_SNA_SVCMG_UNDELETABLE 0xF3010000

AP_SEND_DATA_INVALID_TYPE 0xF4000000

AP_DEL_MODE_DEFAULT_SPCD 0xF4010000

AP_SEND_DATA_CONFIRM_SYNC_NONE 0xF5000000

AP_MODE_NAME_NOT_DEFD 0xF5010000

AP_SEND_DATA_NOT_LL_BDY 0xF6000000

AP_MODE_UNDELETABLE 0xF6010000

AP_SEND_TYPE_INVALID_FOR_FDX 0xF7000000

AP_INVALID_FQ_LU_NAME 0xFD010000

AP_INVALID_PARTNER_LU 0xFE010000

AP_INVALID_LOCAL_LU 0xFF010000

Secondary Return Codes

266 IBM Communications Server for AIX APPC Programmer’s Guide

Appendix B. Common Return Codes

This appendix describes the primary return codes (and, if applicable, secondary

return codes) that are common to several APPC verbs.

Verb-specific return codes are described in the documentation for the individual

verbs.

Common return codes are described in the following sections.

AP_ALLOCATION_ERROR

The primary and secondary return codes are:

primary_rc

AP_ALLOCATION_ERROR

APPC has failed to allocate a conversation. The conversation state

is set to RESET. This code may be returned through a verb issued

after [MC_]ALLOCATE.

secondary_rc

Possible values are:

AP_ALLOCATION_FAILURE_NO_RETRY

The conversation cannot be allocated because of a permanent

condition, such as a configuration error or session protocol error.

To determine the error, the System Administrator should examine

the error log file. Do not attempt to retry the allocation until the

error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

The conversation could not be allocated because of a temporary

condition, such as a link failure. The reason for the failure is

logged in the system error log. Retry the allocation, preferably after

a timeout to allow the condition to clear.

AP_CONVERSATION_TYPE_MISMATCH

The partner LU or TP does not support the conversation type

(basic or mapped) specified in the allocation request.

AP_PIP_NOT_ALLOWED

The allocation request specified PIP data, but the partner TP did

not accept it. This may be because the partner TP does not require

this data, because it is using an APPC implementation which does

not support receiving PIP data, or because the partner is a CPI-C

application (CPI-C does not support PIP data).

AP_PIP_NOT_SPECIFIED_CORRECTLY

The partner TP requires PIP data; but the allocation request

specified either no PIP data or an incorrect number of parameters.

AP_SECURITY_NOT_VALID

The user ID or password specified in the allocation request was not

accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

The partner TP does not support the sync_level (AP_NONE,

© Copyright IBM Corp. 2000, 2005 267

AP_CONFIRM_SYNC_LEVEL, or AP_SYNCPT) specified in the allocation

request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

The partner LU does not recognize the TP name specified in the

allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

The remote LU rejected the allocation request because it was

unable to start the requested partner TP. The condition is

permanent. The reason for the error may be logged on the remote

node. Do not retry the allocation until the cause of the error has

been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

The remote LU rejected the allocation request because it was

unable to start the requested partner TP. The condition may be

temporary, such as a timeout. The reason for the error may be

logged on the remote node. Retry the allocation, preferably after a

timeout to allow the condition to clear.

AP_SEC_BAD_PROTOCOL_VIOLATION

The remote LU rejected the allocation request due to a protocol

violation.

AP_SEC_BAD_PASSWORD_EXPIRED

The remote LU rejected the allocation request because the

password provided is no longer valid.

AP_SEC_BAD_PASSWORD_INVALID

The remote LU rejected the allocation request because the

password is not valid.

AP_SEC_BAD_USERID_REVOKED

The remote LU rejected the allocation request because the user ID

is no longer valid.

AP_SEC_BAD_USERID_INVALID

The remote LU rejected the allocation request because the user ID

is not valid.

AP_SEC_BAD_USERID_MISSING

The remote LU rejected the allocation request because a user ID

was not specified but is required.

AP_SEC_BAD_PASSWORD_MISSING

The remote LU rejected the allocation request because a password

was not specified but is required.

AP_SEC_BAD_GROUP_INVALID

The remote LU rejected the allocation request because the group is

not valid.

AP_SEC_BAD_UID_REVOKED_IN_GRP

The remote LU rejected the allocation request because the user ID

is no longer in the group.

AP_SEC_BAD_UID_NOT_DEFD_TO_GRP

The remote LU rejected the allocation request because the user ID

is not in the group.

AP_ALLOCATION_ERROR

268 IBM Communications Server for AIX APPC Programmer’s Guide

AP_SEC_BAD_UNAUTHRZD_AT_RLU

The remote LU rejected the allocation request because the user ID

is not authorized to start this TP at the remote LU.

AP_SEC_BAD_UNAUTHRZD_FROM_LLU

The remote LU rejected the allocation request because the user ID

is not authorized to start this TP from the local LU.

AP_SEC_BAD_UNAUTHRZD_TO_TP

The remote LU rejected the allocation request because the user ID

is not authorized to start this TP.

AP_SEC_BAD_INSTALL_EXIT_FAILED

The remote LU rejected the allocation request because it failed to

install a required exit.

AP_SEC_BAD_PROCESSING_FAILURE

The remote LU rejected the allocation request because of a

processing failure at the remote LU.

 Because providing detailed information about security failures is a potential

security flaw, it is possible to turn off support for these AP_SEC_BAD_* return codes.

If this is done, all of these errors are reported to the application as

AP_SECURITY_NOT_VALID. See the define_defaults command in the Communications

Server for AIX Administration Command Reference and DEFINE_DEFAULTS NOF

verb in the Communications Server for AIX NOF Programmer’s Guide for details.

AP_BACKED_OUT

AIX, LINUX

The primary and secondary return codes are:

primary_rc

AP_BACKED_OUT

The partner TP (or another TP participating in the same logical

unit of work) has issued a backout request. The Syncpoint

Manager is responsible for performing the appropriate Syncpoint

processing based on the secondary return code, which is one of the

following:

secondary_rc

Possible values are:

AP_BO_NO_RESYNC

The partner TP has completed backing out its resources.

AP_BO_RESYNC

A failure occurred while the partner TP was attempting to back out

its resources; resynchronization is still in progress.

AP_ALLOCATION_ERROR

Appendix B. Common Return Codes 269

AP_CANCELLED

WINDOWS

The primary return code is:

primary_rc

AP_CANCELLED

The verb was issued using the WinAsyncAPPC entry point, and was

then canceled using the WinAPPCCancel entry point. For more

information about these entry points, see “APPC Entry Points:

Windows Systems” on page 36.

 A secondary return code is not returned.

AP_COMM_SUBSYSTEM_ABENDED

The primary return code is:

primary_rc

AP_COMM_SUBSYSTEM_ABENDED

The return code indicates that the CS/AIX software has ended

abnormally, or that there is a problem with the LAN. The System

Administrator should examine the error log to determine the

reason for the abend.

 A secondary return code is not returned.

AP_COMM_SUBSYSTEM_NOT_LOADED

The primary return code is:

primary_rc

AP_COMM_SUBSYSTEM_NOT_LOADED

This return code indicates that an attempt to start a TP using the

TP_STARTED or RECEIVE_ALLOCATE verb cannot be accepted

because of one of the following conditions.

AIX, LINUX

v The CS/AIX software has not been loaded, or the local node that

owns the LU used by this TP is not started. Contact the System

Administrator for corrective action.

v The maximum number of users permitted by the CS/AIX license

are already using CS/AIX. You cannot start this TP at present

because it would exceed the user limit; you may be able to start

it later when there are fewer users on the system.

WINDOWS

AP_CANCELLED

270 IBM Communications Server for AIX APPC Programmer’s Guide

v The CS/AIX software has not been loaded, or a communications

component used by the APPC LU you have specified is inactive.

Contact the System Administrator for corrective action.

v The LU alias specified on a TP_STARTED verb was not

recognized. Check that the LU alias specified matches an APPC

local LU alias in the configuration file.

v The maximum number of CS/AIX users permitted by the

CS/AIX licence are already using the local node that owns the

APPC local LU you are using. You cannot start this TP at present

because it would exceed the user limit; you may be able to start

it later when there are fewer users on the system.

 A secondary return code is not returned.

AP_CONV_FAILURE_NO_RETRY

The primary return code is:

primary_rc

AP_CONV_FAILURE_NO_RETRY

The conversation was terminated because of a permanent

condition, such as a session protocol error. The System

Administrator should examine the system error log to determine

the cause of the error. Do not retry the conversation until the error

has been corrected.

 A secondary return code is not returned.

AP_CONV_FAILURE_RETRY

The primary return code is:

primary_rc

AP_CONV_FAILURE_RETRY

The conversation was terminated because of a temporary error.

Restart the TP to see if the problem occurs again. If it does, the

System Administrator should examine the error log to determine

the cause of the error.

 A secondary return code is not returned.

AP_CONVERSATION_TYPE_MIXED

The primary return code is:

primary_rc

AP_CONVERSATION_TYPE_MIXED

The TP has issued both basic and mapped verbs. Only one type

can be issued in a single conversation.

 A secondary return code is not returned.

AP_COMM_SUBSYSTEM_NOT_LOADED

Appendix B. Common Return Codes 271

AP_DEALLOC_ABEND

The primary return code is:

primary_rc

AP_DEALLOC_ABEND

The conversation has been deallocated for one of the following

reasons:

v The partner TP has issued the MC_DEALLOCATE verb with

dealloc_type set to AP_ABEND.

v The partner TP has ended abnormally, causing the partner LU to

send an MC_DEALLOCATE request.

 A secondary return code is not returned.

AP_DEALLOC_ABEND_PROG

The primary return code is:

primary_rc

AP_DEALLOC_ABEND_PROG

The conversation has been deallocated for one of the following

reasons:

v The partner TP has issued the DEALLOCATE verb with

dealloc_type set to AP_ABEND_PROG.

v The partner TP has ended abnormally, causing the partner LU to

send a DEALLOCATE request.

 A secondary return code is not returned.

AP_DEALLOC_ABEND_SVC

The primary return code is:

primary_rc

AP_DEALLOC_ABEND_SVC

The conversation has been deallocated because the partner TP

issued the DEALLOCATE verb with dealloc_type set to

AP_ABEND_SVC.

 A secondary return code is not returned.

AP_DEALLOC_ABEND_TIMER

The primary return code is:

primary_rc

AP_DEALLOC_ABEND_TIMER

The conversation has been deallocated because the partner TP has

issued the DEALLOCATE verb with dealloc_type set to

AP_ABEND_TIMER.

 A secondary return code is not returned.

AP_DEALLOC_ABEND

272 IBM Communications Server for AIX APPC Programmer’s Guide

AP_DEALLOC_NORMAL

The primary return code is:

primary_rc

AP_DEALLOC_NORMAL

This return code does not indicate an error.

 The partner TP issued the [MC_]DEALLOCATE verb with

dealloc_type set to one of the following:

v AP_FLUSH

v AP_SYNC_LEVEL with the synchronization level of the conversation

specified as AP_NONE

 A secondary return code is not returned.

AP_DUPLEX_TYPE_MIXED

The primary return code is:

primary_rc

AP_DUPLEX_TYPE_MIXED

The TP has issued a conversation verb with a duplex type that

does not match the conversation. If the conversation is full-duplex

(as specified by the duplex_type parameter on [MC_]ALLOCATE or

RECEIVE_ALLOCATE), the TP must set the option

AP_FULL_DUPLEX_CONVERSATION in the opext parameter of all other

verbs in this conversation. If the conversation is half-duplex, it

must not set this option.

 A secondary return code is not returned.

AP_INVALID_VERB

The primary return code is:

primary_rc

AP_INVALID_VERB

The opcode supplied for the verb is not valid. The verb did not

execute.

 This return code is also returned if you attempt to issue the

[MC_]RECEIVE_AND_POST verb in a full-duplex conversation.

[MC_]RECEIVE_AND_POST can be used only in a half-duplex

conversation.

 A secondary return code is not returned.

AP_INVALID_VERB_SEGMENT

WINDOWS

The primary return code is:

primary_rc

AP_DEALLOC_NORMAL

Appendix B. Common Return Codes 273

AP_INVALID_VERB_SEGMENT

The verb control block extended beyond the end of a data segment.

The verb did not execute.

 A secondary return code is not returned.

AP_PROG_ERROR_NO_TRUNC

The primary return code is:

primary_rc

AP_PROG_ERROR_NO_TRUNC

The partner TP has issued one of the following verbs while the

conversation was in SEND state:

v SEND_ERROR with err_type set to AP_PROG

v MC_SEND_ERROR

Data was not truncated.

 A secondary return code is not returned.

AP_PROG_ERROR_PURGING

The primary return code is:

primary_rc

AP_PROG_ERROR_PURGING

The partner TP issued one of the following verbs:

v SEND_ERROR with err_type set to AP_PROG

v MC_SEND_ERROR

while in Receive, Pending_Post, Confirm, Confirm_Send, or

Confirm_Deallocate state. Data sent but not yet received is

purged.

 A secondary return code is not returned.

AP_PROG_ERROR_TRUNC

The primary return code is:

primary_rc

AP_PROG_ERROR_TRUNC

In SEND state, after sending an incomplete logical record, the

partner TP issued a SEND_ERROR verb with err_type set to

AP_PROG. The local TP may have received the first part of the

logical record through a receive verb.

 A secondary return code is not returned.

AP_INVALID_VERB_SEGMENT

274 IBM Communications Server for AIX APPC Programmer’s Guide

AP_SVC_ERROR_NO_TRUNC

The primary return code is:

primary_rc

AP_SVC_ERROR_NO_TRUNC

While in SEND state, the partner TP (or partner LU) issued a

SEND_ERROR verb with err_type set to AP_SVC. Data was not

truncated.

 A secondary return code is not returned.

AP_SVC_ERROR_PURGING

The primary return code is:

primary_rc

AP_SVC_ERROR_PURGING

The partner TP (or partner LU) issued a SEND_ERROR verb with

err_type set to AP_SVC while in Receive, Pending_Post, Confirm,

Confirm_Send, or Confirm_Deallocate state. Data sent to the

partner TP may have been purged.

 A secondary return code is not returned.

AP_SVC_ERROR_TRUNC

The primary return code is:

primary_rc

AP_SVC_ERROR_TRUNC

In Send state, after sending an incomplete logical record, the

partner TP (or partner LU) issued a SEND_ERROR verb. The local

TP may have received the first part of the logical record.

 A secondary return code is not returned.

AP_THREAD_BLOCKING

WINDOWS

The primary return code is:

primary_rc

AP_THREAD_BLOCKING

The verb was issued using the APPC (blocking) entry point, but

another blocking APPC verb was already outstanding. For more

information about these entry points, see “APPC Entry Points:

Windows Systems” on page 36.

 A secondary return code is not returned.

AP_SVC_ERROR_NO_TRUNC

Appendix B. Common Return Codes 275

AP_TP_BUSY

The primary return code is:

primary_rc

AP_TP_BUSY

The local TP has issued a call to APPC while APPC was processing

another call for the same TP. This may occur if the local TP has

started multiple processes, and more than one process is issuing

APPC calls using the same tp_id. However, ensure that each

process issues its own TP_STARTED or RECEIVE_ALLOCATE verb

to obtain its own tp_id; the results of multiple processes using the

same tp_id are unpredictable.

WINDOWS

This return code may also indicate that the application issuing the

verb was invoked using the Windows function SendMessage instead

of PostMessage; the application cannot issue any verbs in this state.

For more information, see “Windows Considerations” on page 51.

 A secondary return code is not returned.

AP_UNEXPECTED_SYSTEM_ERROR

The primary return code is:

primary_rc

AP_UNEXPECTED_SYSTEM_ERROR

The operating system has encountered an error while processing

an APPC call from the local TP. The operating system return code

is returned through the secondary_rc. If the problem persists,

consult your System Administrator.

AIX, LINUX

 For the meaning of the operating system return code, see the file

/usr/include/errno.h on the computer where the error occurred.

WINDOWS

For the meaning of the operating system return code, refer to your

operating system documentation.

 A secondary return code is not returned.

AP_TP_BUSY

276 IBM Communications Server for AIX APPC Programmer’s Guide

Appendix C. APPC State Changes

The following tables show the conversation states in which each APPC verb may

be issued, and the state change which occurs on completion of the verb. In some

cases, the state change depends on the primary_rc parameter returned to the verb;

where this applies, the applicable primary_rc values are shown in the same column

as the verb. Where no primary_rc values are shown, the state changes are the same

for all return codes, except as indicated in the notes following each table.

The possible conversation states are shown as column headings. For each

combination of verb and primary_rc value, the following abbreviations and symbols

are given under each state to indicate the results of issuing the verb in that state:

X Verb cannot be issued in this state.

T, S, R, ...

State of the conversation after the verb has completed.

 For half-duplex conversations:

 T Reset

S Send

SP Send_Pending

R Receive

C Confirm

CS Confirm_Send

CD Confirm_Deallocate

P Pending_Post

For full-duplex conversations:

 T Reset

SR Send_Receive

S Send_Only

R Receive_Only

- There is no conversation state after the verb is issued.

/ It is not applicable to consider the previous state, because the verb starts a

new conversation as though from Reset state; there is no effect on any

existing conversation.

(blank)

The return code shown cannot occur in this state.

Half-duplex conversations

 Verb and primary_rc Values State in Which Issued

Reset

(T)

Send

(S)

Send

Pend

(SP)

Recv

(R)

Confm

(C)

Confm

Send

(CS)

Confm

Deall

(CD)

Pend

Post

(PP)

TP_STARTED

AP_OK T / / / / / / /

© Copyright IBM Corp. 2000, 2005 277

Verb and primary_rc Values State in Which Issued

Reset

(T)

Send

(S)

Send

Pend

(SP)

Recv

(R)

Confm

(C)

Confm

Send

(CS)

Confm

Deall

(CD)

Pend

Post

(PP)

other primary_rc values -

TP_ENDED

AP_OK - - - - - - - -

other primary_rc values T S SP R C CS CD P

RECEIVE_ALLOCATE

AP_OK R / / / / / / /

other primary_rc values -

GET_LU_STATUS X S SP R C CS CD P

GET_TP_PROPERTIES T S SP R C CS CD P

SET_TP_PROPERTIES T S SP R C CS CD P

GET_TYPE X S SP R C CS CD P

[MC_]ALLOCATE

AP_OK S / / / / / / /

other primary_rc values T

[MC_]CONFIRM

AP_OK X S S X X X X X

AP_ERROR R R

[MC_]CONFIRMED X X X X R S T X

[MC_]DEALLOCATE

AP_ABEND_* dealloc_type values X T T T T T T T

other dealloc_type values

AP_ERROR X R R X X X X X

other primary_rc values T T

[MC_]FLUSH X S S X X X X X

[MC_]GET_ ATTRIBUTES X S SP R C CS CD P

[MC_]PREPARE_TO_ RECEIVE X R R X X X X X

[MC_]RECEIVE_AND_POST (See Note

4)

X P P P X X X X

[MC_]RECEIVE_AND_WAIT (See Note

4 for Windows)

X See Note

5

See Note

5

See Note

5

X X X X

[MC_]RECEIVE_ IMMEDIATE X X X See Note

5

X X X X

[MC_]RECEIVE_EXPEDITED_DATA X X X R C X X P

[MC_]REQUEST_TO_SEND X X X R C X X P

[MC_]SEND_ CONVERSATION T / / / / / / /

[MC_]SEND_DATA

AP_OK X S S X X X X X

AP_ERROR R

[MC_]SEND_ERROR

AP_OK X S S S S S S S

AP_ERROR R

[MC_]SEND_EXPEDITED_DATA X X X R C X X P

[MC_]TEST_RTS X S S R C CS CD P

[MC_]TEST_RTS_AND_ POST X S S R C CS CD P

Note:

1. In the Return codes column of the table, the abbreviation AP_ERROR is

used for:

 AP_BACKED_OUT

 AP_PROG_ERROR_TRUNC

 AP_PROG_ERROR_NO_TRUNC

 AP_PROG_ERROR_PURGING

Half-duplex conversations

278 IBM Communications Server for AIX APPC Programmer’s Guide

AP_SVC_ERROR_TRUNC

 AP_SVC_ERROR_NO_TRUNC

 AP_SVC_ERROR_PURGING

2. The conversation always enters Reset state if one of the following return

codes is received.

 AP_ALLOCATION_ERROR

 AP_COMM_SUBSYSTEM_ABENDED

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_CONV_FAILURE_RETRY

 AP_CONV_FAILURE_NO_RETRY

 AP_DEALLOC_ABEND

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

 AP_DEALLOC_NORMAL

3. The following non-OK return codes do not cause any state change. The

conversation always remains in the state in which the verb was issued.

 AP_CONVERSATION_TYPE_MIXED

 AP_INVALID_VERB

 AP_PARAMETER_CHECK

 AP_STATE_CHECK

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_UNSUCCESSFUL

4. After [MC_]RECEIVE_AND_POST has been issued and has received the

initial primary_rc of AP_OK, the conversation changes to Pending_Post

state. Once the supplied callback routine has been called, to indicate that

the verb has completed, the new conversation state depends on the

primary_rc and what_rcvd parameters as in Note 5.

5. The state change after one of the RECEIVE verbs depends on both the

primary_rc and what_rcvd parameters.

If the primary_rc parameter is AP_PROG_ERROR, AP_SVC_ERROR, or

([MC_]RECEIVE_IMMEDIATE only) AP_UNSUCCESSFUL, the new state is

Receive.

If the primary_rc parameter is AP_DEALLOC, the new state is Reset.

If the primary_rc parameter is AP_OK, the new state depends on the value

of the what_rcvd parameter:

AP_DATA, AP_DATA_COMPLETE, AP_DATA_INCOMPLETE

Receive state

AP_SEND

Send state

AP_DATA_SEND, AP_DATA_COMPLETE_SEND

Send Pending state

AP_CONFIRM_WHAT_RCVD, AP_DATA_CONFIRM, AP_DATA_COMPLETE_CONFIRM

Confirm state

AP_CONFIRM_SEND, AP_DATA_CONFIRM_SEND,

AP_DATA_COMPLETE_CONFIRM_SEND

Confirm Send state

AP_CONFIRM_DEALLOCATE, AP_DATA_CONFIRM_DEALLOCATE,

AP_DATA_COMPLETE_CONFIRM_DEALL

Confirm Deallocate state

Half-duplex conversations

Appendix C. APPC State Changes 279

Full-duplex conversations

 Verb and primary_rc Values State in Which Issued

Reset

(T)

Send

Receive

(SR)

Send Only

(S)

Receive

Only

(R)

TP_STARTED

AP_OK T / / /

other primary_rc values -

TP_ENDED

AP_OK - - - -

other primary_rc values T SR S R

RECEIVE_ALLOCATE

AP_OK SR / / /

other primary_rc values -

GET_LU_STATUS X SR S R

GET_TP_PROPERTIES T SR S R

SET_TP_PROPERTIES T SR S R

GET_TYPE X SR S R

[MC_]ALLOCATE

AP_OK SR / / /

other primary_rc values T

[MC_]DEALLOCATE

AP_ABEND_* dealloc_type values X T T T

other dealloc_type values X R T X

[MC_]FLUSH X SR S X

[MC_]GET_ ATTRIBUTES X SR S R

[MC_]RECEIVE_AND_WAIT

AP_OK X SR X R

AP_ERROR X SR X R

AP_DEALLOC_NORMAL X S X T

[MC_]RECEIVE_IMMEDIATE

AP_OK X SR X R

AP_ERROR X SR X R

AP_DEALLOC_NORMAL X S X T

[MC_]RECEIVE_

EXPEDITED_DATA

X SR S R

[MC_]SEND_DATA

AP_OK X SR S X

AP_ERROR X SR T X

[MC_]SEND_ERROR

AP_OK X SR S X

Full-duplex conversations

280 IBM Communications Server for AIX APPC Programmer’s Guide

Verb and primary_rc Values State in Which Issued

Reset

(T)

Send

Receive

(SR)

Send Only

(S)

Receive

Only

(R)

AP_ERROR X SR T X

[MC_]SEND_ EXPEDITED_DATA X SR S R

Note:

1. In the Return codes column of the table, the abbreviation AP_ERROR is

used for:

 AP_BACKED_OUT

 AP_PROG_ERROR_TRUNC

 AP_PROG_ERROR_NO_TRUNC

 AP_SVC_ERROR_TRUNC

 AP_SVC_ERROR_NO_TRUNC

2. The conversation always enters Reset state if one of the following return

codes is received.

 AP_ALLOCATION_ERROR

 AP_COMM_SUBSYSTEM_ABENDED

 AP_COMM_SUBSYSTEM_NOT_LOADED

 AP_CONV_FAILURE_RETRY

 AP_CONV_FAILURE_NO_RETRY

 AP_DEALLOC_ABEND

 AP_DEALLOC_ABEND_PROG

 AP_DEALLOC_ABEND_SVC

 AP_DEALLOC_ABEND_TIMER

3. The following non-OK return codes do not cause any state change. The

conversation always remains in the state in which the verb was issued.

 AP_CONVERSATION_TYPE_MIXED

 AP_INVALID_VERB

 AP_PARAMETER_CHECK

 AP_STATE_CHECK

 AP_TP_BUSY

 AP_UNEXPECTED_SYSTEM_ERROR

 AP_UNSUCCESSFUL

Full-duplex conversations

Appendix C. APPC State Changes 281

Full-duplex conversations

282 IBM Communications Server for AIX APPC Programmer’s Guide

Appendix D. SNA LU 6.2 Support

This appendix details how the CS/AIX implementation of APPC relates to the LU

6.2 architecture. It includes the following information:

v A summary of the LU 6.2 option sets supported by CS/AIX

v A list of the control operator verbs which are included in the CS/AIX APPC

implementation

v A list of the control operator verbs whose functions are performed in CS/AIX by

the administration tools or by the NOF API.

LU 6.2 Option Set Support

CS/AIX APPC supports the base set of LU 6.2 functions, and a selection of the

option sets. Some of these option sets are supported by APPC verbs; others are

supported by the administration tools or by the NOF API.

The following tables list the option sets supported by CS/AIX, with the option set

reference number specified in IBM’s Transaction Programmer’s Reference Manual for

LU Type 6.2. (Earlier versions of this IBM manual used different reference

numbers.)

LU 6.2 Option Sets Supported by APPC Verbs

 Reference Number Option set

101 Flushing the LU’s send buffer

102 GET_ATTRIBUTES

103 POST_ON_RECEIPT with test for posting *

104 POST_ON_RECEIPT with wait *

105 PREPARE_TO_RECEIVE

106 RECEIVE_IMMEDIATE

109 Get TP name and instance identifier

110 GET_CONVERSATION_TYPE

112 Full-duplex conversations and expedited data

113 Non-blocking support

201 Queued allocation of a contention-winner session

203 Immediate allocation of a session

204 Conversations between programs located at the same LU

205 Queued allocation for when session free

211 Session-level LU-LU verification

212 User ID verification

213 Program-supplied user ID and password

214 User ID authorization

241 Sending PIP data

242 Receiving PIP data

243 Accounting

244 Long locks

245 Test for REQUEST_TO_SEND received

247 User Control data

290 Logging of data in a system log

291 Mapped conversation LU Services component

401 Reliable One-Way Brackets

© Copyright IBM Corp. 2000, 2005 283

Reference Number Option set

616 CPSVCMG mode name support

*Options 103 and 104 are supported by the [MC_]RECEIVE_AND_POST verb.

LU 6.2 Option Sets Supported by the Administration Tools and

by the NOF API

 Reference Number Option set

501 CHANGE_SESSION_LIMIT

502 ACTIVATE_SESSION

504 DEACTIVATE_SESSION

505 LU definition verbs

601 min_conwinners_target parameter

602 responsible (TARGET) parameter

603 drain_target (NO) parameter

604 force parameter

605 LU-LU session limit

606 Locally known LU names

607 Uninterpreted LU names

610 Maximum RU size bounds

611 Session-level mandatory cryptography

612 Contention winner automatic activation limit

613 Local maximum (LU, mode) session limit

Control Operator Verb Support

The functions of the following control operator verbs are provided as part of the

CS/AIX APPC implementation:

 RECEIVE_ALLOCATE

 TP_STARTED

 TP_ENDED

The functions of the following control operator verbs are provided by the CS/AIX

administration programs and by the NOF API.

 INITIALIZE_SESSION_LIMITS

 CHANGE_SESSION_LIMITS

 RESET_SESSION_LIMITS

 DISPLAY_LU

 DISPLAY_REMOTE_LU

 DISPLAY_MODE

 DISPLAY_TP

 ACTIVATE_SESSION

 DEACTIVATE_SESSION

 DEFINE_LOCAL_LU

 DEFINE_REMOTE_LU

 DEFINE_MODE

 DELETE

LU 6.2 Option Set Support

284 IBM Communications Server for AIX APPC Programmer’s Guide

Appendix E. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS™ enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to SA22-7787

z/OS TSO/E Primer, SA22-7794 z/OS TSO/E User’s Guide, and SC34-4822 z/OS ISPF

User’s Guide Vol Ifor information about accessing TSO/E and ISPF interfaces. These

guides describe how to use TSO/E and ISPF, including the use of keyboard

shortcuts or function keys (PF keys). Each guide includes the default settings for

the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2000, 2005 285

286 IBM Communications Server for AIX APPC Programmer’s Guide

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2005 287

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation, Site Counsel

 P.O. Box 12195

 3039 Cornwallis Road

 Research Triangle Park, NC 27709-2195

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in

source language, which illustrates programming techniques on various operating

platforms. You may copy, modify, and distribute these sample programs in any

form without payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any

form without payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application programming

interfaces.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows: © (your company name) (year). Portions of

this code are derived from IBM Corp. Sample Programs. © IBM Corp. 2000, 2005.

All rights reserved.

288 IBM Communications Server for AIX APPC Programmer’s Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 ACF/VTAM

 Advanced Peer-to-Peer Networking

 AIX

 AIXwindows

 AnyNet

 Application System/400

 APPN

 AS/400

 CICS

 DATABASE 2

 DB2

 Enterprise System/3090

 Enterprise System/4381

 Enterprise System/9000

 ES/3090

 ES/9000

 eServer

 IBM

 IBMLink

 IMS

 MVS

 MVS/ESA

 Operating System/2

 Operating System/400

 OS/2

 OS/400

 PowerPC

 PowerPC Architecture

 pSeries

 S/390

 System/390

 VSE/ESA

 VTAM

 WebSphere

 zSeries

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc., in

the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed

exclusively through The Open Group.

Intel is a trademark of Intel Corporation.

Linux is a trademark of Linus Torvalds.

RedHat and RPM are trademarks of Red Hat, Inc.

SuSE Linux is a trademark of SuSE Linux AG.

UnitedLinux is a trademark of UnitedLinux LLC.

Microsoft, Windows, Windows NT, Windows 2003, and the Windows logo are

trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix F. Notices 289

290 IBM Communications Server for AIX APPC Programmer’s Guide

Bibliography

The following IBM publications provide information about the topics discussed in

this library. The publications are divided into the following broad topic areas:

v CS/AIX, Version 6.3

v IBM Communications Server for AIX, Version 4 Release 2

v Redbooks™

v AnyNet/2 and SNA

v Block Multiplexer and S/390 ESCON Channel PCI Adapter

v AIX operating system

v Systems Network Architecture (SNA)

v Host configuration

v z/OS Communications Server

v Multiprotocol Transport Networking

v Transmission Control Protocol/Internet Protocol (TCP/IP)

v X.25

v Advanced Program-to-Program Communication (APPC)

v Programming

v Other IBM networking topics

For books in the CS/AIX library, brief descriptions are provided. For other books,

only the titles, order numbers, and, in some cases, the abbreviated title used in the

text of this book are shown here.

CS/AIX Version 6.3Publications

The CS/AIX library comprises the following books. In addition, softcopy versions

of these documents are provided on the CD-ROM. See IBM Communications Server

for AIX Quick Beginnings for information about accessing the softcopy files on the

CD-ROM. To install these softcopy books on your system, you require 9–15 MB of

hard disk space (depending on which national language versions you install).

v IBM Communications Server for AIX Migration Guide (SC31-8585)

This book explains how to migrate from Communications Server for AIX Version

4 Release 2 or earlier to CS/AIX Version 6.

v IBM Communications Server for AIX Quick Beginnings (GC31-8583)

This book is a general introduction to CS/AIX, including information about

supported network characteristics, installation, configuration, and operation.

v IBM Communications Server for AIX Administration Guide (SC31-8586)

This book provides an SNA and CS/AIX overview and information about

CS/AIX configuration and operation.

v IBM Communications Server for AIX Administration Command Reference (SC31-8587)

This book provides information about SNA and CS/AIX commands.

v IBM Communications Server for AIX CPI-C Programmer’s Guide (SC31-8591)

This book provides information for experienced “C” or Java™ programmers

about writing SNA transaction programs using the CS/AIX CPI

Communications API.

© Copyright IBM Corp. 2000, 2005 291

v IBM Communications Server for AIX APPC Programmer’s Guide (SC31-8590)

This book contains the information you need to write application programs

using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX LUA Programmer’s Guide (SC31-8592)

This book contains the information you need to write applications using the

Conventional LU Application Programming Interface (LUA).

v IBM Communications Server for AIX CSV Programmer’s Guide (SC31-8593)

This book contains the information you need to write application programs

using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX MS Programmer’s Guide (SC31-8594)

This book contains the information you need to write applications using the

Management Services (MS) API.

v IBM Communications Server for AIX NOF Programmer’s Guide (SC31-8595)

This book contains the information you need to write applications using the

Node Operator Facility (NOF) API.

v IBM Communications Server for AIX Diagnostics Guide (SC31-8588)

This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX AnyNet® Guide to APPC over TCP/IP

(GC31-8598)

This book provides installation, configuration, and usage information for the

AnyNet APPC over TCP/IP function of CS/AIX.

v IBM Communications Server for AIX AnyNet Guide to Sockets over SNA (GC31-8597)

This book provides installation, configuration, and usage information for the

AnyNet Sockets over SNA function of CS/AIX.

v IBM Communications Server for AIX APPC Application Suite User’s Guide

(SC31-8596)

This book provides information about APPC applications used with CS/AIX.

v IBM Communications Server for AIX Glossary (GC31-8589)

This book provides a comprehensive list of terms and definitions used

throughout the IBM Communications Server for AIX library.

IBM Communications Server for AIX Version 4 Release 2 Publications

The following book is from a previous release of Communications Server for AIX,

and does not apply to Version 6. You may find this book useful as a reference for

information that is still supported, but not included in Version 6.

v IBM Communications Server for AIX Transaction Program Reference. (SC31-8212)

This book provides Version 4 Release 2 information about the transaction

programming APIs. Applications written to use the Version 4 Release 2 APIs can

still be used with Version 6.

IBM Redbooks

IBM maintains an International Technical Support Center that produces

publications known as Redbooks. Similar to product documentation, Redbooks

cover theoretical and practical aspects of SNA technology. However, they do not

include the information that is supplied with purchased networking products.

The following books contain information that may be useful for CS/AIX:

v IBM Communications Server for AIX Version 6 (SG24-5947)

292 IBM Communications Server for AIX APPC Programmer’s Guide

v IBM CS/AIX Understanding and Migrating to Version 5: Part 2 - Performance

(SG24-2136)

v Load Balancing for Communications Servers (SG24-5305)

On the World Wide Web, users can download Redbook publications by using

http://www.redbooks.ibm.com.

Block Multiplexer and S/390 ESCON Channel PCI Adapter publications

The following books contain information about the Block Multiplexer and the

S/390 ESCON Channel PCI Adapter:

v AIX Version 4.1 Block Multiplexer Channel Adapter: User’s Guide and Service

Information (SC31-8196)

v AIX Version 4.1 Enterprise Systems Connection Adapter: User’s Guide and

Service Information (SC31-8196)

v AIX Version 4.3 S/390 ESCON Channel PCI: User’s Guide and Service

Information (SC23-4232)

v IBM Communications Server for AIX Channel Connectivity User’s Guide

(SC31-8219)

AnyNet/2 Sockets and SNA publications

The following books contain information about AnyNet/2 Sockets and SNA

v AnyNet/2 Version 2.0: Guide to Sockets over SNA (GV40-0376)

v AnyNet/2 Version 2.0: Guide to SNA over TCP/IP (GV40-0375)

v AnyNet/2: Guide to Sockets over SNA Gateway Version 1.1 (GV40-0374)

v z/OS V1R2.0 Communications Server: AnyNet Sockets over SNA (SC31-8831)

v z/OS V1R2.0 Communications Server: AnyNet SNA over TCP/IP (SC31-8832)

AIX Operating System Publications

The following books contain information about the AIX operating system:

v AIX Version 5.3 System Management Guide: Operating System and Devices

(SC23-4910)

v AIX Version 5.3 System Management Concepts: Operating System and Devices

(SC23-4908)

v AIX Version 5.3 System Management Guide: Communications and Networks

(SC23-4909)

v AIX Version 5.3 Performance Management Guide (SC23-4905)

v AIX Version 5.3 Performance Tools Guide and Reference (SC23-4906)

v Performance Toolbox Version 2 and 3 Guide and Reference (SC23-2625)

v AIXlink/X.25 Version 2.1 for AIX: Guide and Reference (SC23-2520)

Systems Network Architecture (SNA) Publications

The following books contain information about SNA networks:

v Systems Network Architecture: Format and Protocol Reference Manual—Architecture

Logic for LU Type 6.2 (SC30-3269)

v Systems Network Architecture: Formats (GA27-3136)

v Systems Network Architecture: Guide to SNA Publications (GC30-3438)

Bibliography 293

v Systems Network Architecture: Network Product Formats (LY43-0081)

v Systems Network Architecture: Technical Overview (GC30-3073)

v Systems Network Architecture: APPN Architecture Reference (SC30-3422)

v Systems Network Architecture: Sessions between Logical Units (GC20-1868)

v Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)

v Systems Network Architecture: Transaction Programmer’s Reference Manual for LU

Type 6.2 (GC30-3084)

v Systems Network Architecture: 3270 Datastream Programmer’s Reference (GA23-0059)

v Networking Blueprint Executive Overview (GC31-7057)

v Systems Network Architecture: Management Services Reference (SC30-3346)

Host Configuration Publications

The following books contain information about host configuration:

v ES/9000, ES/3090 IOCP User’s Guide Volume A04 (GC38-0097)

v 3174 Establishment Controller Installation Guide (GG24-3061)

v 3270 Information Display System 3174 Establishment Controller: Planning Guide

(GA27-3918)

v OS/390 Hardware Configuration Definition (HCD) User’s Guide (SC28-1848)

v ESCON Director Planning (GA23-0364)

z/OS Communications Server Publications

The following books contain information about z/OS Communications Server:

v z/OS V1R7 Communications Server: SNA Network Implementation Guide

(SC31-8777-05)

v z/OS V1R7 Communications Server: SNA Diagnostics (Vol 1: GC31-6850-00, Vol 2:

GC31-6851-00)

v z/OS V1R6 Communications Server: Resource Definition Reference (SC31-8778-04)

Multiprotocol Transport Networking publications

The following books contain information about Multiprotocol Transport

Networking architecture:

v Multiprotocol Transport Networking: Formats (GC31-7074)

v Multiprotocol Transport Networking Architecture: Technical Overview

(GC31-7073)

TCP/IP Publications

The following books contain information about the Transmission Control

Protocol/Internet Protocol (TCP/IP) network protocol:

v z/OS V1R7 Communications Server: IP Configuration Guide (SC31-8775-07)

v z/OS V1R7 Communications Server: IP Configuration Reference (SC31-8776-08)

v z/VM V5R1 TCP/IP Planning and Customization (SC24-6125-00)

294 IBM Communications Server for AIX APPC Programmer’s Guide

X.25 Publications

The following books contain information about the X.25 network protocol:

v AIXLink/X.25 for AIX: Guide and Reference (SC23-2520)

v RS/6000® AIXLink/X.25 Cookbook (SG24-4475)

v Communications Server for OS/2 Version 4 X.25 Programming (SC31-8150)

APPC Publications

The following books contain information about Advanced Program-to-Program

Communication (APPC):

v APPC Application Suite V1 User’s Guide (SC31-6532)

v APPC Application Suite V1 Administration (SC31-6533)

v APPC Application Suite V1 Programming (SC31-6534)

v APPC Application Suite V1 Online Product Library (SK2T-2680)

v APPC Application Suite Licensed Program Specifications (GC31-6535)

v z/OS V1R2.0 Communications Server: APPC Application Suite User’s Guide

(SC31-8809)

Programming Publications

The following books contain information about programming:

v Common Programming Interface Communications CPI-C Reference (SC26-4399)

v Communications Server for OS/2 Version 4 Application Programming Guide

(SC31-8152)

Other IBM Networking Publications

The following books contain information about other topics related to CS/AIX:

v SDLC Concepts (GA27-3093-04)

v Local Area Network Concepts and Products: LAN Architecture (SG24-4753-00)

v Local Area Network Concepts and Products: LAN Adapters, Hubs and ATM

(SG24-4754-00)

v Local Area Network Concepts and Products: Routers and Gateways (SG24-4755-00)

v Local Area Network Concepts and Products: LAN Operating Systems and Management

(SG24-4756-00)

v IBM Network Control Program Resource Definition Guide (SC30-3349)

Bibliography 295

296 IBM Communications Server for AIX APPC Programmer’s Guide

Index

Special characters
[MC_]verb notation 61, 89

A
abnormal deallocation

basic conversation 118

mapped conversation 118

ABORT_ATTACH
parameter check 254

successful execution 254

supplied parameters 253

VCB 253

verb 253

ACCEPT_ATTACH
parameter check 250

successful execution 250

supplied parameters 250

VCB 249

verb 249

accessibility 285

AIX applications
compiling and linking 51

ALLOCATE
allocation error 103

confirming the allocation 105

EBCDIC-ASCII, ASCII-EBCDIC translation 105

immediate allocation 105

parameter check 102

session not available 103

state change 105

state when issued 105

successful execution 102

supplied parameters 96

VCB 94

verb 93

allocation errors 267

APIs 23

APPC entry point (synchronous) 32

APPC entry point for Windows 43

APPC verbs
control verbs 25

conversation verbs 26

conversation-independent verb 26

overview 2

summarized by function 27

APPC_Async entry point
callback routine 35

definition 33

returned values 34

application program interface 1

application TP 1, 3

B
basic conversations

characteristics of 57

description 3

basic-conversation verbs 26

blocking verbs for Windows 42, 43

buffer
data in local LU’s send buffer 127, 204

flushing (see flushing local LU’s send buffer) 127

C
callback routine 34, 35, 159, 236, 241

callback routine on [MC_]DEALLOCATE verb 126

callback routine used by [MC_]RECEIVE_AND_POST

verb 150

callback routine used by [MC_]TEST_RTS_AND_POST

verb 234

child process 50

comp_proc (callback routine) 34

compatibility with CPI-C applications 23

compiling AIX applications 51

compiling and linking APPC TPs 256

compiling Linux applications 51

configuration information
overview 52

sample TPs 256

CONFIRM
parameter check 108

state change 110

state check 109

state when issued 110

successful execution 107

supplied parameters 107

synchronizing with partner TP 111

VCB 106

verb 105

Confirm state 10

Confirm_Deallocate state 10

Confirm_Send state 10

confirmation processing 6

confirmation requests
receiving 8

receiving through [MC_]RECEIVE verbs 165, 177

receiving through [MC_]RECEIVE_AND_POST 151

responding to 8, 29

sending 8, 28

sending through [MC_]CONFIRM verb 105

sending through [MC_]DEALLOCATE verb 118, 119

sending through [MC_]PREPARE_TO_RECEIVE verb 139,

140

CONFIRMED
parameter check 114

state change 115

state check 114

state when issued 115

successful execution 114

supplied parameters 113

VCB 112

verb 111

contention winners and losers 57

conversation
allocating 3, 27, 28, 68, 93

basic 3

deallocating 3, 8, 30, 115

ending 6, 15

getting attributes of 29, 130

© Copyright IBM Corp. 2000, 2005 297

conversation (continued)
internal deallocation 65

mapped 3

security 53

sending 30

starting 5, 14, 27

state 10, 16

synchronization level 7

TP’s view of the conversation 11

conversation identifier 27, 28, 55, 71, 102

conversation security
already verified 83

establishing 99, 200

overview 53

password 100, 201

user ID 101, 201

conversation state
changes in state 11, 277

initial 13

overview 10, 16

conversation types
basic 3, 57

getting information 30

mapped 3

specifying through ALLOCATE verb 96

conversations, multiple 3

corr (correlator) 34, 35

correlator on [MC_]DEALLOCATE verb 121, 126

CPI-C 23

D
data

receiving (see receiving data) 6, 15

sending (see sending data) 6, 15, 28, 204

DEALLOCATE
abnormal deallocation 118

callback routine 126

confirmation requests, sending 118, 119

flushing before deallocating 118

parameter check 122

state change 125

state check 123

state when issued 125

successful execution 121

supplied parameters 117

synchronization level 118

VCB 116

verb 115

deallocating a conversation 8

disability 285

distributed transaction processing 2

E
entry points for AIX or Linux 31

entry points for Windows 36

entry points, synchronous and asynchronous 17

entry points, synchronous and asynchronous for Windows 17

error log
and DEALLOCATE verb 120

and SEND_ERROR verb 218

description 59

errors
reporting 29, 214

reporting in basic conversations 59, 217

Expedited data notification
receiving through [MC_]CONFIRM verb 108

receiving through [MC_]DEALLOCATE verb 121

receiving through [MC_]RECEIVE_AND_POST verb 154

receiving through [MC_]RECEIVE_AND_WAIT verb 168

receiving through [MC_]RECEIVE_EXPEDITED_DATA

verb 186

receiving through [MC_]RECEIVE_IMMEDIATE verb 180

receiving through [MC_]SEND_DATA verb 210

receiving through [MC_]SEND_ERROR verb 218

receiving through [MC_]SEND_EXPEDITED_DATA

verb 225

F
FLUSH

parameter check 129

state check 129

state when issued 130

successful execution 129

supplied parameters 128

VCB 127

verb 127

flushing local LU’s send buffer
through [MC_]CONFIRM verb 105

through [MC_]DEALLOCATE verb 118

through [MC_]FLUSH verb 127

through [MC_]PREPARE_TO_RECEIVE verb 139

through [MC_]RECEIVE verbs 171

through [MC_]RECEIVE_AND_POST 157

through MC_FLUSH or FLUSH 28

fork system call 50

G
GET_ATTRIBUTES

parameter check 136

returned attributes 133

state when issued 137

successful execution 133

supplied parameter 133

VCB 131

verb 130

GET_LU_STATUS
parameter check 77

state when issued 77

successful execution 76

supplied parameters 76

VCB 76

GET_TP_PROPERTIES
overview 78

parameter check 81

state when issued 82

successful execution 79

supplied parameters 79

VCB 78

GET_TYPE
parameter check 92

state when issued 93

successful execution 92

supplied parameters 91

VCB 91

GetAppcConfig call 46

GetAppcReturnCode call 49

getting LU status 30

298 IBM Communications Server for AIX APPC Programmer’s Guide

H
hexadecimal values for APPC parameters 61, 89

hexadecimal values for TP Server verb parameters 239

I
invoked TP

allocating a conversation to 3

identifier 71

nonqueued, automatically started 55

queued, automatically started 55

queued, operator-started 54

specifying 99, 199

invoking TP
configuration information needed by 52

identifier 64

in the conversation process 3

specifying 64

starting 54

K
keyboard 285

L
linking AIX applications 51

linking Linux applications 51

Linux applications
compiling and linking 51

local LU
definition 2

specifying 63

local TP 2

logical records 150, 164, 176

logical unit (LU)
local LU 2

LU 6.2 2

partner LU 2

remote LU 3

Logical Unit of Work Identifier 79, 81, 83, 136

LU 6.2 architecture 283

LU status 30

LU-to-LU sessions
contention 57

description 2, 57

returning control to TP after allocating 97, 197

M
mapped conversations 3

mapped-conversation verbs 26

MC_ALLOCATE
allocation error 103

confirming the allocation 105

EBCDIC-ASCII, ASCII-EBCDIC translation 105

immediate allocation 105

parameter check 102

session not available 103

state change 105

state when issued 105

successful execution 102

supplied parameters 96

VCB 94

verb 93

MC_CONFIRM
parameter check 108

state change 110

state check 109

state when issued 110

successful execution 107

supplied parameters 107

synchronizing with partner TP 111

VCB 106

verb 105

MC_CONFIRMED
parameter check 114

state change 115

state check 114

state when issued 115

successful execution 114

supplied parameters 113

VCB 112

verb 111

MC_DEALLOCATE
abnormal deallocation 118

callback routine 126

confirmation requests, sending 118, 119

flushing before deallocating 118

parameter check 122

state change 125

state check 123

state when issued 125

successful execution 121

supplied parameters 117

synchronization level 118

VCB 116

verb 115

MC_FLUSH
parameter check 129

state check 129

state when issued 130

successful execution 129

supplied parameters 128

VCB 127

verb 127

MC_GET_ATTRIBUTES
parameter check 136

returned attributes 133

state when issued 137

successful execution 133

supplied parameter 133

VCB 131

verb 130

MC_PREPARE_TO_RECEIVE
confirmation requests, sending 139, 140

flushing before changing state 139

parameter check 141

state change 143

state check 142

state when issued 143

successful execution 141

supplied parameters 139

synchronization level 140

VCB 138

verb 137

when partner TP can send data 144

MC_RECEIVE verbs
and the what_rcvd parameter 145

end of data 147

how a TP receives data 144

overview 144

Index 299

MC_RECEIVE verbs (continued)
testing what_rcvd parameter 147

MC_RECEIVE_AND_POST
callback routine 150, 159

CONFIRM_DEALLOCATE indicator 151

CONFIRM_SEND indicator 151

CONFIRM_WHAT_RECEIVED indicator 151

conversation deallocated 154

DATA_COMPLETE indicator 151

DATA_INCOMPLETE indicator 152

DEALLOC_NORMAL indicator 154

how the verb is used 160

indefinite waits, avoiding 161

parameter check 155

SEND indicator 152

Send state, issuing verb in 157

state change 157

state check 155

state when issued 157

status information received 151

successful execution 151

supplied parameters 149

VCB 148

verb 147

verb canceled 155

MC_RECEIVE_AND_WAIT
CONFIRM_DEALLOCATE indicator 165

CONFIRM_SEND indicator 165

CONFIRM_WHAT_RECEIVED indicator 165

conversation deallocated 168

DATA_COMPLETE indicator 165

DATA_INCOMPLETE indicator 165

DEALLOC_NORMAL indicator 168

indefinite waits, avoiding 173

parameter check 169

SEND indicator 166

Send state, issuing verb in 171

state check 169

state when issued 171

status information received 165

successful execution 165

supplied parameters 163

VCB 162

verb 161

MC_RECEIVE_EXPEDITED_DATA
conversation deallocated 187

data buffer too small 188

DEALLOC_NORMAL indicator 187

expedited data not supported 187

no data available 187

parameter check 188

state check 188

state when issued 190

successful execution 186

supplied parameters 185

VCB 185

verb 185

MC_RECEIVE_IMMEDIATE
CONFIRM_DEALLOCATE indicator 177

CONFIRM_SEND indicator 177

CONFIRM_WHAT_RECEIVED indicator 177

conversation deallocated 180

DATA_COMPLETE indicator 177

DATA_INCOMPLETE indicator 177

DEALLOC_NORMAL indicator 180

no data available 181

parameter check 181

MC_RECEIVE_IMMEDIATE (continued)
SEND indicator 178

state check 181

state when issued 183

status information received 177

successful execution 177

supplied parameters 175

UNSUCCESSFUL indicator 181

VCB 174

verb 173

MC_REQUEST_TO_SEND
action of partner TP 190

conversation deallocated 193

parameter check 193

state check 193

state when issued 194

successful execution 192

supplied parameters 192

VCB 191

verb 190

when local TP can send data 190

MC_SEND_CONVERSATION
parameter check 202

session not available 203

state when issued 204

successful execution 202

supplied parameters 197

VCB 195

verb 195

MC_SEND_DATA
parameter check 210

state change 213

state check 211

state when issued 213

successful execution 209

supplied parameters 206

VCB 205

verb 204

waiting for partner TP 214

MC_SEND_ERROR
parameter check 219

purged data 222

state change 222

state when issued 221

successful execution 218

supplied parameters 216

VCB 214

verb 214

MC_SEND_EXPEDITED_DATA
conversation deallocated 226

expedited data not supported 225

parameter check 226

state change 227

state check 226

state when issued 227

successful execution 225

supplied parameters 224

VCB 224

verb 223

waiting for partner TP 228

MC_TEST_RTS
parameter check 230

state when issued 231

successful execution 230

supplied parameters 230

VCB 229

verb 228

300 IBM Communications Server for AIX APPC Programmer’s Guide

MC_TEST_RTS_AND_POST
callback routine 234, 236

conversation deallocated 235

DEALLOC_NORMAL indicator 235

how to use the verb 237

indefinite waits, avoiding 238

parameter check 234

state when issued 236

successful execution 234

supplied parameters 233

VCB 232

verb 232

verb canceled 235

mode 99, 199

multiple processes 50

multiple sessions 57

N
nonqueued, automatically started TP 55

P
parallel sessions 57

partner LU
definition 2

specifying 98, 101, 199, 202

partner TP 2

Pending_Post state 10

PIP data 23

PREPARE_TO_RECEIVE
confirmation requests, sending 139, 140

flushing before changing state 139

parameter check 141

state change 143

state check 142

state when issued 143

successful execution 141

supplied parameters 139

synchronization level 140

VCB 138

verb 137

when partner TP can send data 144

primary return codes 259, 267

program initialization parameters (PIP) 101, 201

Q
QUERY_ATTACH

parameter check 249

successful execution 248

supplied parameters 248

VCB 248

verb 247

queued, automatically started TP 55

queued, operator-started TP 54

R
Receive state

changing to 13, 28, 137

definition 10

RECEIVE verbs
and the what_rcvd parameter 145

end of data 147

RECEIVE verbs (continued)
how a TP receives data 144

overview 144

testing what_rcvd parameter 147

RECEIVE_ALLOCATE
extended form 68

parameter check 73

state change 74

state check 73

state when issued 74

successful execution 71

supplied parameters 69

VCB 68

verb 68

waits, avoiding 74

RECEIVE_AND_POST
buffer format 150

callback routine 150, 159

CONFIRM_DEALLOCATE indicator 151

CONFIRM_SEND indicator 151

CONFIRM_WHAT_RECEIVED indicator 151

conversation deallocated 154

DATA indicator 151

DATA_COMPLETE indicator 151

DATA_INCOMPLETE indicator 152

DEALLOC_NORMAL indicator 154

how the verb is used 160

indefinite waits, avoiding 161

logical-record format 150

parameter check 155

SEND indicator 152

Send state, issuing verb in 157

state change 157

state check 155

state when issued 157

status information received 151

successful execution 151

supplied parameters 149

VCB 148

verb 147

verb canceled 155

RECEIVE_AND_WAIT
buffer format 164

CONFIRM_DEALLOCATE indicator 165

CONFIRM_SEND indicator 165

CONFIRM_WHAT_RECEIVED indicator 165

conversation deallocated 168

DATA indicator 165

DATA_COMPLETE indicator 165

DATA_INCOMPLETE indicator 165

DEALLOC_NORMAL indicator 168

indefinite waits, avoiding 173

logical-record format 164

parameter check 169

SEND indicator 166

Send state, issuing verb in 171

state check 169

state when issued 171

status information received 165

successful execution 165

supplied parameters 163

VCB 162

verb 161

RECEIVE_EXPEDITED_DATA
conversation deallocated 187

data buffer too small 188

DEALLOC_NORMAL indicator 187

Index 301

RECEIVE_EXPEDITED_DATA (continued)
expedited data not supported 187

no data available 187

parameter check 188

state check 188

state when issued 190

successful execution 186

supplied parameters 185

VCB 185

verb 185

RECEIVE_IMMEDIATE
buffer format 176

CONFIRM_DEALLOCATE indicator 177

CONFIRM_SEND indicator 177

CONFIRM_WHAT_RECEIVED indicator 177

conversation deallocated 180

DATA indicator 177

DATA_COMPLETE indicator 177

DATA_INCOMPLETE indicator 177

DEALLOC_NORMAL indicator 180

logical-record format 176

no data available 181

parameter check 181

SEND indicator 178

state check 181

state when issued 183

status information received 177

successful execution 177

supplied parameters 175

UNSUCCESSFUL indicator 181

VCB 174

verb 173

Receive-Only state
definition 16

receiving data
asynchronously 18, 29

from a partner TP 29

through MC_RECEIVE_AND_WAIT 6, 15

receiving status information with data 9

REGISTER_TP
parameter check 246

successful execution 246

supplied parameters 244

VCB 244

verb 243

REGISTER_TP_SERVER
callback routine 241

parameter check 241

register failed 241

successful execution 241

supplied parameters 240

VCB 240

verb 240

REJECT_ATTACH
parameter check 251

successful execution 251

supplied parameters 251

VCB 251

verb 250

remote LU 3

remote TP 3

REQUEST_TO_SEND
action of partner TP 190

conversation deallocated 193

parameter check 193

state check 193

state when issued 194

REQUEST_TO_SEND (continued)
successful execution 192

supplied parameters 192

VCB 191

verb 190

when local TP can send data 190

REQUEST_TO_SEND notification
receiving through [MC_]CONFIRM verb 107

receiving through [MC_]RECEIVE verbs 168, 180

receiving through [MC_]RECEIVE_AND_POST 154

receiving through [MC_]SEND_DATA verb 210

receiving through [MC_]SEND_ERROR verb 218

receiving through [MC_]SEND_EXPEDITED_DATA

verb 225

sending 29, 190

testing 30, 228, 232

Reset state 10, 16

return codes 267

primary 259

secondary 260

S
sample TPs

overview 255

pseudocode 255

testing 256

secondary return codes 260, 267

security 99, 200

Send state
changing to 13, 29, 190

definition 11

issuing [MC_]RECEIVE_AND_POST verb in 29

issuing [MC_]RECEIVE_AND_WAIT verb in 29

SEND_CONVERSATION
parameter check 202

session not available 203

state when issued 204

successful execution 202

supplied parameters 197

VCB 196

verb 195

SEND_DATA
parameter check 210

state change 213

state check 211

state when issued 213

successful execution 209

supplied parameters 206

VCB 205

verb 204

waiting for partner TP 214

SEND_ERROR
parameter check 219

purged data 222

state change 222

state when issued 221

successful execution 218

supplied parameters 216

VCB 215

verb 214

SEND_EXPEDITED_DATA
conversation deallocated 226

expedited data not supported 225

parameter check 226

state change 227

state check 226

302 IBM Communications Server for AIX APPC Programmer’s Guide

SEND_EXPEDITED_DATA (continued)
state when issued 227

successful execution 225

supplied parameters 224

VCB 224

verb 223

waiting for partner TP 228

Send_Pending state 11

Send-Only state
definition 16

Send-Receive state
definition 16

sending data
[MC_]SEND_CONVERSATION 195

definition 6, 15

through MC_SEND_DATA or SEND_DATA 204

through MC_SEND_EXPEDITED_DATA or

SEND_EXPEDITED_DATA 223

verbs used 28

sending status information with data 9

service TP
definition 1

SNA naming convention for 64, 70, 99, 200

uses basic conversation 3

sessions 2

SET_TP_PROPERTIES
definition 27

parameter check 86

state when issued 87

successful execution 85

supplied parameters 83

VCB 83

verb 83

shortcut keys 285

state changes 277

status information
receiving with data 9

sending with data 9

synchronization level
and [MC_]PREPARE_TO_RECEIVE verb 140

and deallocation 118

establishing 7, 96

T
TEST_RTS

parameter check 230

state when issued 231

successful execution 230

supplied parameters 230

VCB 229

verb 228

TEST_RTS_AND_POST
callback routine 234, 236

conversation deallocated 235

DEALLOC_NORMAL indicator 235

how to use the verb 237

indefinite waits, avoiding 238

parameter check 234

state when issued 236

successful execution 234

supplied parameters 233

VCB 232

verb 232

verb canceled 235

timeout 59

TP identifier 27, 28

TP_ENDED
internal deallocation of conversation 65

parameter check 67

state change 68

state when issued 68

successful execution 67

supplied parameters 66

VCB 66

verb 65

TP_STARTED
parameter check 64

state change 65

successful execution 64

supplied parameters 63

VCB 63

verb 62

TPs
getting attributes of 30, 78

setting properties of 83

transaction programs
application TP 1

description 1

ending 30, 65

how they get started 54

invoked TP 3

invoking TP 3

local TP 2

nonqueued, automatically started 55

partner TP 2

queued, automatically started 55

queued, operator-started 54

remote TP 3

service TP 1

starting 27, 62

U
UNREGISTER_TP

parameter check 247

successful execution 247

supplied parameters 247

VCB 246

verb 246

UNREGISTER_TP_SERVER
parameter check 243

successful execution 243

supplied parameters 243

VCB 243

verb 242

user ID, conversation security 83

V
VCB structure 32, 33, 159, 236, 241

W
WinAPPCCancelAsyncRequest call 41

WinAPPCCancelBlockingCall call 44

WinAPPCCleanup call 42

WinAPPCIsBlocking call 44

WinAPPCStartup call 37

WinAsyncAPPC call 39

WinAsyncAPPCEx call 40

Windows considerations 51

Index 303

304 IBM Communications Server for AIX APPC Programmer’s Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of

the methods listed below to send your comments to IBM. Whichever method you

choose, make sure you send your name, address, and telephone number if you

would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject

matter, or completeness of this document. However, the comments you send

should pertain to only the information in this manual and the way in which the

information is presented. To request additional publications, or to ask questions or

make comments about the functions of IBM products or systems, you should talk

to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate without incurring any

obligation to you.

Please send your comments to us in either of the following ways:

v If you prefer to send comments by FAX, use this number: 1+919-254-4028

v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com.
v If you prefer to send comments by post, use this address:

International Business Machines Corporation

Attn: z/OS Communications Server Information Development

P.O. Box 12195, 3039 Cornwallis Road

Department AKCA, Building 501

Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2000, 2005 305

306 IBM Communications Server for AIX APPC Programmer’s Guide

����

Program Number: 5765-E51

Printed in USA

SC31-8590-02

	Contents
	Tables
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions
	Graphic Conventions

	What's New
	Where to Find More Information

	Chapter 1. Concepts
	What Is APPC?
	Transaction Programs
	Communication between TPs
	Logical Unit 6.2
	Sessions
	Conversations
	APPC Verbs
	The Conversation Process
	Conversation Types
	Multiple Conversations
	Half-Duplex and Full-Duplex Conversations

	A Simple Mapped Conversation (half-duplex)
	Starting a Conversation
	Sending Data
	Receiving Data
	Ending a Conversation

	Confirmation Processing (half-duplex)
	Establishing the Synchronization Level
	Sending a Confirmation Request
	Receiving Data and a Confirmation Request
	Responding to the Confirmation Request
	Deallocating the Conversation

	Sending and Receiving Status with Data (half-duplex)
	Sending Status Information with Data
	Receiving Status Information with Data

	Conversation States (half-duplex)
	The TP's View of the Conversation
	State Changes
	State Checks

	Changing Conversation States (half-duplex)
	Initial States
	Changing to Receive State
	Changing to Send State

	Full-Duplex Conversations
	Starting a Conversation
	Sending Data
	Receiving Data
	Ending a Conversation
	Conversation States
	Half-Duplex Verbs Not Permitted in Full-Duplex Conversations

	Sending and Receiving Expedited Data
	Synchronous and Asynchronous APPC Calls
	Receiving Data Asynchronously
	Non-Blocking Operation
	Syncpoint Support
	APPC and CPI-C
	TP Server API

	Chapter 2. Writing Transaction Programs
	Categories of APPC Verbs
	Control Verbs
	Conversation Verbs
	TP Server Verbs

	APPC Verb Summary
	Starting a Conversation
	Sending Data
	Receiving Data
	Confirming Receipt of Data or Reporting Errors
	Getting Information
	Ending a Conversation
	Starting a Transaction Program (TP)

	APPC Entry Points: AIX or Linux Systems
	APPC Entry Point
	Function Call
	Supplied Parameters
	Returned Values

	APPC_Async Entry Point
	Function Call
	Supplied Parameters
	Returned Values
	Using the Asynchronous Entry Point

	Callback Routine for Asynchronous Verb Completion
	Function Call
	Supplied Parameters
	Returned Values
	Using the Callback Routine for Asynchronous Verb Completion

	APPC Entry Points: Windows Systems
	WinAPPCStartup
	Function Call
	Supplied Parameters
	Returned Values

	WinAsyncAPPC
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinAsyncAPPCEx
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinAPPCCancelAsyncRequest
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinAPPCCleanup
	Function Call
	Supplied Parameters
	Returned Values

	Blocking Verbs
	Default Blocking Function

	APPC
	Function Call
	Supplied Parameters
	Returned Values

	WinAPPCCancelBlockingCall
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinAPPCIsBlocking
	Function Call
	Supplied Parameters
	Returned Values

	WinAPPCSetBlockingHook
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinAPPCUnhookBlockingHook
	Function Call
	Supplied Parameters
	Returned Values

	GetAppcConfig
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	GetAppcReturnCode
	Function Call
	Supplied Parameters
	Returned Values

	AIX or Linux Considerations
	Multiple Processes
	Compiling and Linking the APPC Application
	AIX Applications
	Linux Applications

	Windows Considerations
	Compiling and Linking APPC Programs
	Terminating Applications

	Configuration Information
	Invoked TP
	Invoking TP

	Overview of Conversation Security
	Starting TPs
	Invoking TPs
	Invoked TPs
	Invoked TPs: User-Started
	Invoked TPs: Automatically Started by the CS/AIX Attach Manager
	Invoked TPs: Automatically Started by a TP Server Application
	Timeout Values for Invoked TPs

	LU-to-LU Sessions
	Contention

	Basic Conversations
	Logical Records
	Sending PS Headers in Logical Records

	Reporting Errors and Abends
	Error Log
	Timeouts Versus Critical Errors

	Writing TP Servers
	TP Server Responsibilities
	Default TP Server

	Writing Portable TPs

	Chapter 3. APPC Control Verbs
	TP_STARTED
	VCB Structure: TP_STARTED
	VCB Structure: TP_STARTED (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	TP_ENDED
	VCB Structure: TP_ENDED
	VCB Structure: TP_ENDED (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	RECEIVE_ALLOCATE
	VCB Structure: RECEIVE_ALLOCATE
	VCB Structure: RECEIVE_ALLOCATE (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Avoiding Waits
	Routing for Incoming Attaches

	GET_LU_STATUS
	VCB Structure: GET_LU_STATUS
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	GET_TP_PROPERTIES
	VCB Structure: GET_TP_PROPERTIES
	VCB Structure: GET_TP_PROPERTIES (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	SET_TP_PROPERTIES
	VCB Structure: SET_TP_PROPERTIES
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Usage and Restrictions

	Chapter 4. APPC Conversation Verbs
	GET_TYPE
	VCB Structure: GET_TYPE
	VCB Structure: GET_TYPE (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	MC_ALLOCATE and ALLOCATE
	VCB Structure: MC_ALLOCATE
	VCB Structure: ALLOCATE
	VCB Structure: MC_ALLOCATE (Windows)
	VCB Structure: ALLOCATE (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	EBCDIC-ASCII, ASCII-EBCDIC Translation
	Immediate Allocation
	Confirming the Allocation (half-duplex conversation only)

	MC_CONFIRM and CONFIRM
	VCB Structure: MC_CONFIRM
	VCB Structure: CONFIRM
	VCB Structure: MC_CONFIRM (Windows)
	VCB Structure: CONFIRM (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Synchronizing with Partner TP

	MC_CONFIRMED and CONFIRMED
	Sources of Confirmation Requests
	Receiving Confirmation Requests
	VCB Structure: MC_CONFIRMED
	VCB Structure: CONFIRMED
	VCB Structure: MC_CONFIRMED (Windows)
	VCB Structure: CONFIRMED (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	MC_DEALLOCATE and DEALLOCATE
	VCB Structure: MC_DEALLOCATE
	VCB Structure: DEALLOCATE
	VCB Structure: MC_DEALLOCATE (Windows)
	VCB Structure: DEALLOCATE (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Implied Forget Notification

	MC_FLUSH and FLUSH
	Sources of Buffered Data
	VCB Structure: MC_FLUSH
	VCB Structure: FLUSH
	VCB Structure: MC_FLUSH (Windows)
	VCB Structure: FLUSH (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	MC_GET_ATTRIBUTES and GET_ATTRIBUTES
	VCB Structure: MC_GET_ATTRIBUTES
	VCB Structure: GET_ATTRIBUTES
	VCB Structure: MC_GET_ATTRIBUTES (Windows)
	VCB Structure: GET_ATTRIBUTES (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	MC_PREPARE_TO_RECEIVE and PREPARE_TO_RECEIVE
	VCB Structure: MC_PREPARE_TO_RECEIVE
	VCB Structure: PREPARE_TO_RECEIVE
	VCB Structure: MC_PREPARE_TO_RECEIVE (Windows)
	VCB Structure: PREPARE_TO_RECEIVE (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Usage Note

	MC_RECEIVE and RECEIVE Verbs
	How a TP Receives Data
	The what_rcvd Parameter
	End of Data
	Testing the what_rcvd Parameter

	MC_RECEIVE_AND_POST and RECEIVE_AND_POST
	VCB Structure: MC_RECEIVE_AND_POST
	VCB Structure: RECEIVE_AND_POST
	VCB Structure: MC_RECEIVE_AND_POST (Windows)
	VCB Structure: RECEIVE_AND_POST (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	Issuing the Verb in Send State

	State Change
	Usage Notes
	PS Header Data
	Callback Routine
	Continuing with Other Processing While the Verb Is Pending
	Compatibility with Other APPC Implementations
	How the TP Uses the Verb
	Avoiding Indefinite Waits

	MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT
	VCB Structure: MC_RECEIVE_AND_WAIT
	VCB Structure: RECEIVE_AND_WAIT
	VCB Structure: MC_RECEIVE_AND_WAIT (Windows)
	VCB Structure: RECEIVE_AND_WAIT (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	Issuing the Verb in Send State (half-duplex conversation only)

	State Change
	Usage Notes
	PS Header Data
	Avoiding Indefinite Waits

	MC_RECEIVE_IMMEDIATE and RECEIVE_IMMEDIATE
	VCB Structure: MC_RECEIVE_IMMEDIATE
	VCB Structure: RECEIVE_IMMEDIATE
	VCB Structure: MC_RECEIVE_IMMEDIATE (Windows)
	VCB Structure: RECEIVE_IMMEDIATE (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	PS Header Data

	MC_RECEIVE_EXPEDITED_DATA and RECEIVE_EXPEDITED_DATA
	VCB Structure: MC_RECEIVE_EXPEDITED_DATA
	VCB Structure: RECEIVE_EXPEDITED_DATA
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	MC_REQUEST_TO_SEND and REQUEST_TO_SEND
	Action of the Partner TP
	When the Local TP Can Send Data
	VCB Structure: MC_REQUEST_TO_SEND
	VCB Structure: REQUEST_TO_SEND
	VCB Structure: MC_REQUEST_TO_SEND (Windows)
	VCB Structure: REQUEST_TO_SEND (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Receiving Request-to-Send Notification

	MC_SEND_CONVERSATION and SEND_CONVERSATION
	VCB Structure: MC_SEND_CONVERSATION
	VCB Structure: SEND_CONVERSATION
	VCB Structure: MC_SEND_CONVERSATION (Windows)
	VCB Structure: SEND_CONVERSATION (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	MC_SEND_DATA and SEND_DATA
	VCB Structure: MC_SEND_DATA
	VCB Structure: SEND_DATA
	VCB Structure: MC_SEND_DATA (Windows)
	VCB Structure: SEND_DATA (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Waiting for Partner TP
	Logical Records in Basic Conversations

	MC_SEND_ERROR and SEND_ERROR
	VCB Structure: MC_SEND_ERROR
	VCB Structure: SEND_ERROR
	VCB Structure: MC_SEND_ERROR (Windows)
	VCB Structure: SEND_ERROR (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Purged Data
	Purged Return Code Indicators

	MC_SEND_EXPEDITED_DATA and SEND_EXPEDITED_DATA
	VCB Structure: MC_SEND_EXPEDITED_DATA
	VCB Structure: SEND_EXPEDITED_DATA
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Waiting for Partner TP

	MC_TEST_RTS and TEST_RTS
	VCB Structure: MC_TEST_RTS
	VCB Structure: TEST_RTS
	VCB Structure: MC_TEST_RTS (Windows)
	VCB Structure: TEST_RTS (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change

	MC_TEST_RTS_AND_POST and TEST_RTS_AND_POST
	VCB Structure: MC_TEST_RTS_AND_POST
	VCB Structure: TEST_RTS_AND_POST
	VCB Structure: MC_TEST_RTS_AND_POST (Windows)
	VCB Structure: TEST_RTS_AND_POST (Windows)
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	State When Issued
	State Change
	Usage Notes
	Callback Routine
	Continuing with Other Processing While the Verb Is Pending
	How the TP Uses the Verb
	Avoiding Indefinite Waits

	Chapter 5. TP Server Verbs
	REGISTER_TP_SERVER
	VCB Structure: REGISTER_TP_SERVER
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Usage Notes
	Callback Routine

	UNREGISTER_TP_SERVER
	VCB Structure: UNREGISTER_TP_SERVER
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	REGISTER_TP
	VCB Structure: REGISTER_TP
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	UNREGISTER_TP
	VCB Structure: UNREGISTER_TP
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	QUERY_ATTACH
	VCB Structure: QUERY_ATTACH
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	ACCEPT_ATTACH
	VCB Structure: ACCEPT_ATTACH
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	REJECT_ATTACH
	VCB Structure: REJECT_ATTACH
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	ABORT_ATTACH
	VCB Structure: ABORT_ATTACH
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Chapter 6. Sample Transaction Programs
	Processing Overview
	Pseudocode
	asample1 (Invoking TP)
	asample2 (Invoked TP)

	Testing the TPs

	Appendix A. Return Code Values
	Primary Return Codes
	Secondary Return Codes

	Appendix B. Common Return Codes
	AP_ALLOCATION_ERROR
	AP_BACKED_OUT
	AP_CANCELLED
	AP_COMM_SUBSYSTEM_ABENDED
	AP_COMM_SUBSYSTEM_NOT_LOADED
	AP_CONV_FAILURE_NO_RETRY
	AP_CONV_FAILURE_RETRY
	AP_CONVERSATION_TYPE_MIXED
	AP_DEALLOC_ABEND
	AP_DEALLOC_ABEND_PROG
	AP_DEALLOC_ABEND_SVC
	AP_DEALLOC_ABEND_TIMER
	AP_DEALLOC_NORMAL
	AP_DUPLEX_TYPE_MIXED
	AP_INVALID_VERB
	AP_INVALID_VERB_SEGMENT
	AP_PROG_ERROR_NO_TRUNC
	AP_PROG_ERROR_PURGING
	AP_PROG_ERROR_TRUNC
	AP_SVC_ERROR_NO_TRUNC
	AP_SVC_ERROR_PURGING
	AP_SVC_ERROR_TRUNC
	AP_THREAD_BLOCKING
	AP_TP_BUSY
	AP_UNEXPECTED_SYSTEM_ERROR

	Appendix C. APPC State Changes
	Half-duplex conversations
	Full-duplex conversations

	Appendix D. SNA LU 6.2 Support
	LU 6.2 Option Set Support
	LU 6.2 Option Sets Supported by APPC Verbs
	LU 6.2 Option Sets Supported by the Administration Tools and by the NOF API

	Control Operator Verb Support

	Appendix E. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Appendix F. Notices
	Trademarks

	Bibliography
	CS/AIX Version 6.3Publications
	IBM Communications Server for AIX Version 4 Release 2 Publications
	IBM Redbooks
	Block Multiplexer and S/390 ESCON Channel PCI Adapter publications
	AnyNet/2 Sockets and SNA publications
	AIX Operating System Publications
	Systems Network Architecture (SNA) Publications
	Host Configuration Publications
	z/OS Communications Server Publications
	Multiprotocol Transport Networking publications
	TCP/IP Publications
	X.25 Publications
	APPC Publications
	Programming Publications
	Other IBM Networking Publications

	Index
	Communicating Your Comments to IBM

