

IBM
046HULHV��,QWHJUDWRU�IRU�26�����

6\VWHP�0DQDJHPHQW�*XLGH
9HUVLRQ����

 SC34-5748-00

Note: Before using this information, and the product it supports, be sure to read the general
information under Notices on page 225.

First edition (December 1999)
This edition applies to IBM® MQSeries Integrator, Version 1.1 and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your
locality. Publications are not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to
make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright New Era of Networks, Inc., 1998, 1999. All rights reserved.

© Copyright International Business Machines Corporation, 1999. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

&RQWHQWV

&KDSWHU����,QWURGXFWLRQ ������������������������������������
MQSeries Integrator Overview..8

Formatter ...8
Rules ...9
MQSeries Integrator Rules Daemon ..9
MQSeries..9

Product Documentation Set ...10
Year 2000 Readiness Disclosure...11
Before You Contact Technical Support...12

&KDSWHU����&RQILJXULQJ�046HULHV�,QWHJUDWRU ����
OS/390 Operational Differences ...15

Command Line Parameters ...15
Filenames on OS/390...15
Metadata Changes ..16

Tailoring Jobs for Your Site ..17
Configuring SQLSVSES...18

File Encryption ...21
&KDSWHU����0LJUDWLQJ�)RUPDWV�DQG�5XOHV ����������

Summary...23
 Migrating Formats ...25

Importing and Exporting Formats ..26
Migrating Rules ...73

Character Sort Order ..73
Importing and Exporting Rules ...74

&KDSWHU����)RUPDWWHU ���������������������������������������
What is Formatter? ..95

Fields and Input Controls..96
Output Controls ...97
Formats ..97
Parsing and Reformatting ..99
Automatic Format Conversion ...100
System Management Guide for OS/390 3

Testing Formats ...100
APITEST ..101
MSGTEST ..103

Creating Formatter User Exits ...107
Building and Installing a C++ User Exit ...107

&KDSWHU����5XOHV ���
Rules Components...131

Application Groups..132
Message Types ..132
Rules ...133
Expressions, Arguments, Boolean Operators, and Rules Operators133
Subscriptions, Actions, and Options ...133
Rules and Subscription Permissions..134
APIs ..134

Rules Permissions ..135
Rule Ownership ..135

The Rules Daemon ..140
Configuring MQSeries Integrator ...140
MQSeries Integrator Rules Daemon Processing141
Message Routing ..145
Connecting to DB2 and MQSeries..145
Using the MQSeries Integrator Rules Daemon ..146
Rules Caching..156
Shutting Down the Rules Daemon...157

Testing Rules ...157
Rules Test Programs ..157
Rules Debugging Utility ...176

&KDSWHU����&RQVLVWHQF\�&KHFNHU ����������������������
Starting the Consistency Checker..179

Consistency Checker Report: Formatter ..181
Consistency Checker Report: Rules ...191
Consistency Checker Report: Permissions ...195
4 System Management Guide for OS/390

Contents
$SSHQGL[�$��$6&,,�([WHQGHG�&KDUDFWHU�6HW�����
$SSHQGL[�%��(%&',&�&KDUDFWHU�6HW������������������
$SSHQGL[�&��'DWD�7\SH�'HVFULSWLRQV����������������

Notes for Data Conversion...223
$SSHQGL[�'��1RWLFHV��

Trademarks and Service Marks ...227
,QGH[��

System Management Guide for OS/390 5

6 System Management Guide for OS/390

&KDSWHU��

,QWURGXFWLRQ

The System Management Guide for OS/390 is for those persons responsible
for MQSeries Integrator administration. The system administrator should
have an overall understanding of MQSeries Integrator and how it works. It is
assumed that the system administrator is responsible for MQSeries Integrator
setup, configuration, and testing. The system administrator should be
supported by a database administrator, who administers the databases
interacting with MQSeries Integrator, and a network administrator, who
ensures that network communications are set up to include MQSeries
Integrator.

The information in this guide explains how to set up, run, and test
NEONFormatter and NEONRules, and how to configure the MQSeries Integrator
Rules daemon.
System Management Guide for OS/390 7

Chapter 1
046HULHV�,QWHJUDWRU�2YHUYLHZ

MQSeries Integrator, from IBM and New Era of Networks, Inc. (NEON),
provides the flexibility and scalability that allows true application
integration. MQSeries Integrator consists of four components:

n IBM MQSeries

n NEONFormatter

n NEONRules

n MQIntegrator Rules daemon

MQSeries Integrator is a cross-platform, guaranteed delivery, messaging
middleware product designed to facilitate the synchronization, management,
and distribution of information (messages) across large-scale, heterogeneous
networks.

MQSeries Integrator is configurable and uses a content-based rules message
evaluation, formatting, and routing paradigm. MQSeries Integrator also
provides a powerful data content-based, source-target mechanism with
dynamic format parsing and conversion capability.

The application program interfaces (APIs) and graphical user interfaces
(GUIs) allow you to use these systems. Refer to the Programming Reference
documents for instructions on using the APIs and the User’s Guide for
instructions on using the GUIs.

)RUPDWWHU
NEONFormatter translates messages from one format to another.
NEONFormatter handles multiple message format types from multiple data
value sources with the ability to convert and parse messages. When a
message is provided as input to Formatter, the message is parsed and data
values are returned.

Message formats in the NEONFormatter database are defined through the
graphical user interface (GUI). The GUI leads you through the definitions of
format components, for example, tags, delimiters, and patterns, to the
building of complete message definitions.
8 System Management Guide for OS/390

Introduction
5XOHV
NEONRules lets you develop rules for managing message destination IDs,
receiver locations, expected message formats, and any processes initiated
upon message delivery. Creation and dispatch of multiple messages to
multiple destinations from a single input message is supported.

1RWH�
For more in-depth descriptions of NEONFormatter and NEONRules, refer to the
overviews in Chapters 3 and 4 of the MQSeries Integrator User’s Guide.

046HULHV�,QWHJUDWRU�5XOHV�'DHPRQ
The MQSeries Integrator Rules daemon combines MQSeries, NEONFormatter,
and NEONRules in a generic server process. The MQSeries Integrator Rules
daemon processes messages from an MQSeries input queue, uses
NEONFormatter to parse messages, uses NEONRules to determine what
transformations to perform and where to route the messages, and then puts
the output messages on MQSeries queues for delivery to applications.

046HULHV
MQSeries is a message-oriented middleware that is ideal for high-value
message handling and high-volume applications because it guarantees each
message is delivered only once, and it supports transactional messaging.
Messages are grouped into units of work and either all or none of the
messages in a unit or work are processed. MQSeries coordinates message
work with other transaction work, like database updates, so data integrity is
always maintained.
System Management Guide for OS/390 9

Chapter 1
3URGXFW�'RFXPHQWDWLRQ�6HW

The MQSeries Integrator for OS/390 documentation set includes:

n MQSeries Integrator for OS/390 Installation and Configuration
Guide details the installation and initial implementation of MQSeries
Integrator and the MQSeries Integrator applications.

n User’s Guide helps MQSeries Integrator users understand and apply
the program through its graphical user interfaces (GUIs).

n System Management is for SPs and DBAs who work with MQSeries
Integrator on a day-to-day basis.

n Programming References are intended for users who build and
maintain the links between MQSeries Integrator and other
applications. This document includes the following volumes:

– Application Development Guide assists programmers in writing
applications that use MQSeries Integrator APIs.

– Programming Reference for NEONFormatter is a reference to
NEONFormatter APIs for those who write applications to translate
messages from one format to another.

– Programming Reference for NEONRules is a reference to
NEONRules APIs for those who write applications to perform
actions based on message contents.

<HDU������5HDGLQHVV�'LVFORVXUH

MQSeries Integrator, when used in accordance with its associated
documentation, is capable of correctly processing, providing, and/or
receiving date information within and between the twentieth and twenty-first
centuries, provided that all products (for example, hardware, software, and
firmware) used with this IBM program properly exchange accurate date
information with it.
10 System Management Guide for OS/390

Introduction
Customers should contact third party owners or vendors regarding the
readiness status of their products.

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:
http://www.software.ibm.com/ts/mqseries/platforms/supported.html

For the latest IBM statement regarding Year 2000 readiness, refer to:
http://www.ibm.com/ibm/year2000/
System Management Guide for OS/390 11

http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.ibm.com/ibm/year2000/

Chapter 1
%HIRUH�<RX�&RQWDFW�7HFKQLFDO�
6XSSRUW

If you have difficulty executing one of the MQSeries Integrator programs,
analyze your environment using the following steps. Be prepared to send the
listed information and files to technical support.

1. Has this program ever worked in your environment?

If so, identify what has changed.

2. Check the values specified in the SQLSVSES (DD-name SQLSVSES)
file that the failing job is using to make sure it refers to an existing
DB2 subsystem and an existing DB2 database within that subsystem.

3. Check the values specified in the CLIINI (DD-name DSNAOINI) file
that the failing job is using to make sure it refers to an existing DB2
subsystem and an existing DB2 database within that subsystem.

4. Check whether the System Affinity is causing your job to execute on a
system that does not contain the DB2 subsystem, MQSeries queue
manager, or IBM datasets that MQSeries Integrator is trying to access.

5. In the CLIINI file (DD-name DSNAOINI), edit the following line:

CLITRACE=0

Change it to:

CLITRACE=1

Rerun your job. The CLITRACE produced (DD-name CLITRACE) is
invaluable in diagnosing problems between the DB2 database and
the MQSeries Integrator application. Your JCL should have a DD-
statement that defines CLITRACE to either a disk file or SYSOUT
class. This file is required by technical support to diagnose problems.
12 System Management Guide for OS/390

Introduction
1RWH�
It is assumed that the DB2 CLI is installed, the DSNACLI Plan has
been bound, and you are granted execute authority on it.

6. Examine all files produced by MQSeries Integrator for error or
informational messages. Some error messages are written to
SYSOUT, some to SYSPRINT, and some to STATLOG.

7. Look for Operating System messages that may indicate why the job
has failed, such as missing files, no room to log messages (E-37,
B-37 type failures), full queue conditions, and so on.

8. If failing to put or get from an MQSeries queue, make sure the queue
is enabled for sharing:

Permit shared access Y Y=Yes,N=No
Default share option S E=Exclusive,S=Shared

9. If the problem is related to poor Rules daemon performance, check
the values of the timers specified in the input stream (DD-name
SYSIN) file of the RULENG job. Setting these timers too high can
result in poor performance of the Rules Engine.

When contacting technical support be prepared to send the following
information via email or ftp:

n The complete listing of your jobs execution, including SYSOUTs,
SYSPRINTs, STATLOG, JESMSGS, and so on.

n The contents of the CLITRACE file

n Any dump files produced (CEEDUMP or SYSUDUMP)

n Your site’s SQLSVSES file

n Your site’s CLIINI file
System Management Guide for OS/390 13

Chapter 1
14 System Management Guide for OS/390

&KDSWHU��

&RQILJXULQJ�046HULHV�
,QWHJUDWRU�

There are operational differences between the OS/390 version of MQSeries
Integrator and the UNIX and NT versions.

26�����2SHUDWLRQDO�'LIIHUHQFHV

&RPPDQG�/LQH�3DUDPHWHUV�
There is no command line environment to run the executables, so they are
executed in batch using Job Control Language (JCL). See Tailoring Jobs for Your
Site on page 17. Because JCL limits the size of the PARM field on the EXEC
card, several modules that previously accepted long command line argument
lists now accept their input from the standard input stream (STDIN) SYSIN.

For those modules that accept parameters in the PARM string, the PARM
string must be enclosed in quotes, and each parameter must have a blank
space between it and the next parameter.

)LOHQDPHV�RQ�26����
Filenames are specified on OS/390 as DD-names. For example, when a
PARM field allows the specification of a filename, the format is similar to:

PARM=’-f DD:FILENAME’

A subsequent line of JCL is required with a DD-name that matches the
specified name:

//FILENAME DD DSN=<dataset-name>,DISP=SHR
System Management Guide for OS/390 15

Chapter 2
([HFXWDEOH�1DPHV

Because OS/390 limits the size of member names in a PDS, some executables
have different names on OS/390, for example:

0HWDGDWD�&KDQJHV
Three metadata changes for the OS/390 platform might not be reflected on
UNIX or NT versions of MQSeries Integrator. This can affect your ability to
import data from UNIX or NT platforms to OS/390. These metadata changes
are described in the following table:

1DPH�RQ�81,;�DQG�17 1DPH�RQ�26����

NNRDBARuleOwnership RULOWNER

81,;�RU�17�
9DOXH

26�����
9DOXH

'HVFULSWLRQ

ASCII String String String data is always in the native character set of
the machine on which the engine is running:
ASCII on UNIX and NT, and EBCDIC on OS/390.

ASCII Numeric Numeric Numeric really means graphic characters 0-9.
Numeric characters are represented in the native
character set of the platform on which the engine
is running: ASCII on UNIX and NT, and EBCDIC
on OS/390.

EBCDIC Data ASCII Data This should be interpreted as “the character set
different from my own.” On an ASCII platform,
EBCDIC data is the other character set; and on
OS/390, ASCII data is the other character set.
16 System Management Guide for OS/390

Configuring MQSeries Integrator
When you use the NEONFormatter GUI to import format definitions created on
a non-OS/390 system, you might have to edit the exported input and output
control files using a text editor. Change all the occurrences of ASCII String to
String; ASCII Numeric to Numeric; and all EBCDIC data to ASCII data. This
allows the import process to find all the corresponding metadata values and
continue to import your data. Otherwise, an invalid datatype error may be
reported.

7DLORULQJ�-REV�IRU�<RXU�6LWH

Job Control Language (JCL) that contains a statement enclosed by chevrons
(< >) means that the user must provide a valid value in that statement prior to
submitting the job. For example, the APITEST job contains the following line:

//MSGIN DD DSN=<your-message-file>,DISP=SHR

The user must provide an OS/390 dataset name for the file containing the
message data.

Each job uses in-stream procedures that contain symbolic parameters. These
symbolic parameters might have to be tailored from the default installation
values to match dataset names and dataset high-level qualifiers (HLQs) for
your site. Each job uses some combination of the following parameters:

3DUDPHWHU 'HVFULSWLRQ 'HIDXOW�
9DOXH

PRM=(‘ ‘) Run-time parameters passed to the program at
startup.

varies

SMPHLQ HLQ for the MQSeries Integrator distribution
libraries.

MQSHLQ HLQ for IBM MQSeries run-time libraries.

CEEHLQ HLQ for IBM Language Environment run-time
libraries.
System Management Guide for OS/390 17

Chapter 2
&RQILJXULQJ�64/696(6�
The SQLSVSES configuration file contains information used in several
modules, including APITEST, MSGTEST, NNRIE, NNFIE, and RULETEST.
The SQLSVSES file contains information about the database and database
server used with executables. A sample file is included in the
<smphlq>.SNEOCNTL library.

The SQLSVSES file is accessed using DD-name SQLSVSES. This DD-name
can be specified in JCL as either a permanent DASD dataset or instream with
the JCL. The SQLSVSES DD-name must be present in your JCL and refer to a
valid sequential file or member of a PDS:

//SQLSVSES DD DISP=SHR,DSN=<smphlq>.SNEOCNTL(SQLSVSES)

CSSHLQ HLQ for IBM Callable System Services
(CSSLIB) library

SYS1

SQLMEM The member of the SNEOCNTL library
containing control cards for DB2 access.

SQLSVSES

OPCLAS Output class for SYSOUT statement. *

INIMEM Controls access to DB2. CLIINI

MPF= The member of the SNEOMPF library
containing control cards for MQSeries access.

PUTDATA,
RULENGP, or
GETDATA

TCPHLQ HLQ for TCP connection; member of
SNEOPROC library.

TCPIP

LEHLQ HLQ for current version of language
environment used by the compiler; member of
SNEOPROC library.

3DUDPHWHU 'HVFULSWLRQ 'HIDXOW�
9DOXH
18 System Management Guide for OS/390

Configuring MQSeries Integrator
The syntax for each record in the SQLSVSES file is:

OpenDbmsSessionName:ddf-Location:userid:pasword:sqlid:

3DUDPHWHUV

(GLWLQJ�WKH�64/696(6�)LOH�
Use ISPF Edit to modify your SQLSVSES file. Make sure there is a session-
name for each MQSeries Integrator application you plan to run. The session-
name must match (including case) the value specified for any
OpenDbmsSession() API calls.

3DUDPHWHU 'HVFULSWLRQ

OpenDbmsSession
Name

Database session name used by executables. This can be
any string as long as it is unique within the file. This
matches the string specified in the OpenDbmsSession()
API call. The default session name is new_format_demo.

ddf-Location Identifies the DB2 subsystem to which this application
connects. This value is also in the SYSIBM.LOCATIONS
table in the DB2 catalog.

userid This field is not currently used, but must be specified.
Security is handled by your site’s RACF, ACF2, or DB2
security exits currently in effect. Specify xxxx as a
placeholder for this field.

password This field is not currently used, but must be specified.
Security is handled by your site’s RACF, ACF2, or DB2
security exits currently in effect. Specify xxxx as a
placeholder for this field.

sqlid Qualifier for the database to which this application
connects. This value is used in a ’SET CURRENT SQLID’
statement after the process successfully connects to DB2.
Must be a valid primary or secondary AUTH-ID for the
database accessed.
System Management Guide for OS/390 19

Chapter 2
6DPSOH�7H[W�/LQHV�LQ�WKH�64/696(6�)LOH��
SESSION_TAG:DDF-LOCATION:N/A:N/A:SQLID:
new_format_demo:<ddf-location>:xxxxx:yyyyy:<sqlid>:
nnfie:<ddf-location>:xxxx:yyyy:<sqlid>:
nnrmie:<ddf-location>:xxxx:yyyy:<sqlid>:
rules:<ddf-location>:xxxx:yyyy:<sqlid>:
output:<ddf-location>:xxxx:yyyy:<sqlid>:
input:<ddf-location>:xxxx:yyyy:<sqlid>:

,PSOHPHQWLQJ�&KDQJHV�WR�64/696(6
SQLSVSES is read at application startup. To implement changes to the
SQLSVSES file, you must restart any applications using MQSeries Integrator
components for the changes to be recognized by those applications.

&RQILJXULQJ�'61$2,1,
Any program that accesses DB2 databases must have a DD-name for
DSNAOINI in the JCL and refer to a valid sequential file or member of a PDS.
The DSNAOINI file controls connection attributes to DB2. Refer to IBM
documentation for configuration details.

//DSNAOINI DD DISP=SHR,DSN=<smphlq>.SNEOCNTL(CLIINI)

The contents of the DSNAOINI file is documented in the IBM Call Level

Interface Guide and Reference manual (SC26-8959).
20 System Management Guide for OS/390

Configuring MQSeries Integrator
)LOH�(QFU\SWLRQ

The NNcrypt program is distributed in the \UTIL directory on the Windows
NT CD. NNcrypt reads an encrypted file from the filename specified as the
first parameter and writes decrypted data to the file specified as the second
parameter string. The input file and the output file must be different datasets.
You cannot decrypt into the same dataset containing the encrypted files.

You must decrypt the export files on Windows NT before you FTP or transfer
them to OS/390. Use the following steps as a guide for this process:

1. Run NNcrypt on Windows NT.

2. FTP or transfer the NNFIE or NNRIE file to OS/390.

3. Import the NNFIE or NNRIE file.
System Management Guide for OS/390 21

Chapter 2
22 System Management Guide for OS/390

&KDSWHU��

0LJUDWLQJ�)RUPDWV�DQG�
5XOHV

6XPPDU\

Use the following steps to migrate your database from MQIntegrator r. 3.2 to
MQSeries Integrator 1.1:

1. Instantiate the MQSeries Integrator 1.1 database. Load the 1.1
metadata. For more information, see the Installation and
Configuration Guide.

2. Use the NEOFIX32 SPUFI script in the SNEOSQL library to create a
backup copy of the r. 3.2 database.

3. Run the MQIntegrator r. 3.2 Consistency Checker SPUFI scripts to
insure that the data is consistent.

The Consistency Checker SPUFI scripts are FORMATCC, RULECC,
and PERMCC in the MQIntegrator r. 3.2 SNEOSQL library. You must
correct any inconsistencies in the data before you export the data.

4. Run NNFIE r. 3.2 to export formats to a sequential file.

The export file should be preallocated with the following DCB
attributes:

DSORG=PS or PO, RECFM=VB,LRECL=32756,BLKSIZE=32760
System Management Guide for OS/390 23

Chapter 3
5. Run NNRIE r. 3.2 to export rules to a sequential file.

The export file should be preallocated with the following DCB
attributes:

DSORG=PS or PO, RECFM=VB,LRECL=32756,BLKSIZE=32760

6. Run NNFIE 1.1 to import formats from the export file created in
step 4. See Migrating Formats on page 25.

7. Run NNRIE 1.1 to import rules from the export file created in step 5.
See Migrating Rules on page 73.

8. You might want to run the RENAME batch job against the MQSeries
Integrator 1.1 database.

Use RENAME to rename components that start with NNDef_ to start
with a prefix you specify. See NNRENAME on page 34.

9. Run the MQSeries Integrator Consistency Checker against the 1.1
database to verify the consistency of the data.

The Consistency Checker SPUFI scripts are FORMATCC, RULECC,
and PERMCC in the 1.1 SNEOSQL library. The NEOMQCC batch job
is in the 1.1 SNEOJCL library. See Consistency Checker on page 179.

1RWH�
After migrating your data to MQSeries Integrator 1.1, you must recompile
your applications. The .h (include) files in version 1.1 are different from the
.h files in release 3.2.
24 System Management Guide for OS/390

Migrating Formats and Rules
�0LJUDWLQJ�)RUPDWV�

Before you migrate any data, run the r. 3.2 Consistency Checkers on the
MQIntegrator r. 3.2 database to check for database errors. See Consistency
Checker on page 179.

n Run the Format Consistency Checker against your 3.2 database.

This is the FORMATCC member in the r. 3.2 SNEOSQL library.
Repair any inconsistencies using the NEONFormatter graphical user
interface (GUI).

n Run the Rules Consistency Checker against your 3.2 database.

This is the RULECC member in the r. 3.2 SNEOSQL library. Repair
any inconsistencies using the NEONRules GUI.

n Run the Permissions Consistency Checker against your 3.2 database.

This is the PERMCC member in the r. 3.2 SNEOSQL library. Repair
any inconsistencies using the NEONRules GUI.

n Run the Repair SQL script to repair any known problems in the 3.2
database.

This is the NEOFIX32 member in the MQSeries Integrator 1.1
SNEOSQL library.

To migrate existing formats from a MQIntegrator r. 3.2 database to a
MQSeries Integrator 1.1 database, use the MQIntegrator r. 3.2 Formatter GUI
export function or the 3.2 Formatter Import/Export Utility (NNFIE) to export
the existing formats. After you install MQSeries Integrator 1.1, use the
NEONFormatter GUI import function or the 1.1 NNFIE to load MQIntegrator
release 3.2 formats into the 1.1 database.

To export formats, you must use the NNFIE version that matches the version
of your database. For example, use NNFIE version 3.x to export from a 3.x
database. NNFIE 1.1 can only export from a 1.1 database.

See the Formatter chapter in the User’s Guide for instructions on using export
and import functions of the NEONFormatter graphical user interface (GUI.
System Management Guide for OS/390 25

Chapter 3
,PSRUWLQJ�DQG�([SRUWLQJ�)RUPDWV�
NNFIE is used to export information from database tables and import
information to database tables associated with the NEONFormatter. NNFIE
creates a flat file during export and reads the same file structure for import.
Earlier versions of NNFIE used encrypted files; the NNFIE files are no longer
encrypted. The user can export individual formats or all formats.

During the import phase, all formats and associated controls in the import file
are loaded. NNFIE detects situations where an existing component that is
modified during an import can cause the import of that component to fail. If
an existing component will be overwritten, and the component being
imported is identical, then the import can succeed. All formats and controls
that contain a component that fails to import will fail.

The NNFIE export file contains components defined by Formatter
Management API structures. Many useful pieces of information that define
the component are in numeric form instead of text form. If a user is not
familiar with the ordinal type values and specific component definitions, the
export file can be difficult to decipher. NNFIE contains an inventory option
that produces a component inventory listing in the DD:NNFIELOG file.

When an NNFIE export file is created, a header is added to the beginning of
the file. This header includes source and date information. The user can
specify additional comments. The header and comments are preceded by a
pound sign (#) and are ignored by NNFIE during import.

All output controls associated with an output format must be exported. To
export output controls that use conditional branching, use the "export by
name" option.

In earlier releases, the record length of a Formatter component was
determined by the API structure that defined the component. The component
definition can become so long that generic tools, such as text editors and
stream tools, corrupt the data by truncating the longest lines. A text editor is
unable to read the export file and to modify records. By inserting a
continuation character, the component definition can be divided into several
lines within the export file. The backslash (\) character immediately
preceding the end-of-line character indicates that the following line is
concatenated by the export file reader. The default line width is 80 characters,
but the user can specify an optional line length.
26 System Management Guide for OS/390

Migrating Formats and Rules
When a component conflict was detected in import files using earlier versions
of NNFIE, the conflict was logged, and the component was not imported.
Identifying conflicts without importing data allows users to verify the
contents of export files with working databases. NNFIE 1.1 has greater
flexibility in conflict management, which allows NNFIE to be used as a
migration tool. Overwrite, Ignore/Skip, and Rename functionality is
available for resolving conflicts in existing database components. During the
import of format definitions, all decisions to resolve conflicts are reported to
an DD:NNFIELOG file. If a component fails to import, the line containing an
error from the export file is written to DD:NNFIELOG. During the export
phase, the user can specify a text comment to include in the export file.

1RWH�
NNFIE is not designed to import or export databases that are corrupt or have
unresolved issues with the data.

NNFIE can import data from a MQIntegrator r 3.2 export file into an
MQSeries Integrator 1.1 database. The input file is created using the NNFIE
export facility of a MQIntegrator r. 3.2 node. The input file DD:IMPORTFL
contains the exported formats and format components from MQIntegrator
r. 3.2. The file is then moved to OS/390 and translated from ASCII to EBCDIC
in the process

Using NNFIE requires the following preparation:

n DB2 must be installed.

n The operating system must support standard input, standard output,
and standard error stream sources and sinks (SYSIN, SYSPRINT,
SYSOUT).

n The Rules database schema and the Formatter database schema must
be created.

n Formats and related format components must be exported from a
valid database.

n The target database has been created.

The export file for NNFIE is not interchangeable with the files created using
the graphical user interface (GUI). NNFIE can import data from an export file
System Management Guide for OS/390 27

Chapter 3
into an 1.1 database. NNFIE 1.1 exports data only from a Version 1.1
database.

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one format “f1” and another format “F1”. In a case-insensitive
environment, you must make each item unique using something other than
case differences.

If you import components exported from a case-sensitive database into a
case-insensitive database, NNFIE may fail during import if a conflict arises
between two components named the same with only case differences.

The SQLSVSES DD-name must reference a valid dataset containing valid
SQLSVSES entries, or the application fails to connect to DB2 and terminates.

When exporting, the DCB attributes of the export files should be set to
DSORG=PS, RECFM=VB, LRECL=32756, BLKSIZE=32760. The export
records may be very large.

1RWH�
The WORKFILE, FAILFILE, IMPORTFL, and any other non-print class files
should be allocated with the same DCB attributes before the job is executed.
28 System Management Guide for OS/390

Migrating Formats and Rules
11),(�
The following sample job control language (JCL) is provided to illustrate how to run
the NEON Formatter Import/Export Utility (NNFIE) job in batch and pass startup
parameters to it. The JCL at your site will be different. See Tailoring Jobs for Your Site
on page 17 for information about the symbolic parameters in this sample.

//* <tailor member JOBCARD and insert here>
//*
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//*NNFIE: Formatter Import/Export Utility *
//* *
//**
//NNFIE PROC PRM=(’-export -all -file DD:EXPORTFL’),
// SMPHLQ=’<smphlq>’, HLQ for NEONet distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-) Lib
// SQLMEM=’SQLSVSES’, MEMbername for SQLSVSES cntl cards
// INIMEM=’CLIINI’, MEMbername for CLIINI cntl cards
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=NNFIE,
// PARM=&PRM
//*
//* <tailor member STEPLIB and copy it here>
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2 v5 CLI high-level tracing
System Management Guide for OS/390 29

Chapter 3
//SYSIN DD DUMMY
// PEND
//*
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//NNFIE EXEC NNFIE,PRM=(’ -C DD:CMDFILE’)
//NNFIELOG DD DISP=SHR,DSN=<your-log-file-here>
//NNFIEERR DD DISP=SHR,DSN=<your-error-file-here>
//IMPORTFL DD DISP=SHR,DSN=<your-format-import-file>
//CMDFILE DD *
-i DD:IMPORTFL
/*
//
//

6\QWD[

NNFIE commands and options must be entered in the following order:

NNFIE ((-C <command filename>)
(-i | -import <import filename> [-T] [-o|-g|-n|-4]
 [-s <session name>])
(-e | -export <export filename> [-m <format name>+]
 [-q "comment"]
 [-Q <Comment filename>]
 [-w <number>]
 [-s <session name>])
(-t <import filename> [-s <session name>])
(-I <import filename> [-s <session name>]))
30 System Management Guide for OS/390

Migrating Formats and Rules
3DUDPHWHUV

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-C <command
filename>

Optional Alternate command filename; default file
is DD:CMDFILE. If -C is provided, NNFIE
reads command line options from the
specified file instead of the command line.
Using -C puts import or export command
options in a text file. Do not enclose
component names in quotation marks in
the text file. Do not use back slashes in
command lines.

-i | -import
<import
filename>

Mandatory Required parameter to import data from
the named file; mutually exclusive from -e.
The default file is DD:NNFIEEXP.

-s <session
name>

Optional Name of session in SQLSVSES. Defaults to
NNFIE.

-e | -export
<export
filename>

Mandatory Required parameter export data from the
named file; mutually exclusive from -i. The
default file is DD:NNFIEEXP.

-t <import
filename>

Mandatory Writes an inventory of the import file to
DD:NNFIELOG.

-I<import
filename>

Mandatory Writes description of all conflicts in import
file to DD:NNFIELOG.

Filenames for both import and export must be no longer than 255 characters.
System Management Guide for OS/390 31

Chapter 3
,PSRUWLQJ�)RUPDWV
The following options are available for importing formats:

(-i | import <import filename> [-T] [-o|-g|-n|-4]
 [-s <session name>])

,PSRUW�2SWLRQV

7URXEOHVKRRWLQJ�,PSRUW�)DLOXUHV

If NNFIE fails to import from a given export file, view the DD:NNFIELOG
file to determine the cause for import failure. An import can fail if the data
conflicts with the data existing in the database, or if there is incorrect or
missing data.

3DUDPHWHU� 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-T Optional Loads import file as one transaction. If an
import failure for one component is
detected, then the entire import is rolled
back. The default behavior is a transaction
boundary for each component.

-o Optional Overwrites all conflicts and replaces all
components of same name with those in
the export file.

-g Optional Ignores all conflicts and uses existing
component definitions.

-n Optional Implements the interactive conflict
resolution option. NNFIE defaults to -n if
no options are selected.

-4 Optional Use R4_0 conflict resolution if a
component in the export file conflicts with
current data in the database. Do not import
the new component but flag it in the error
file and do not import any components
that rely on the conflicting component.
32 System Management Guide for OS/390

Migrating Formats and Rules
0LVVLQJ�RU�,QFRUUHFW�'DWD�(UURU�0HVVDJH

This error message should be complete without any specific component
information.

ERROR: <error message>

0LVVLQJ�RU�,QFRUUHFW�'DWD�(UURU�0HVVDJH�IRU�D�6SHFLILF�
)RUPDWWHU�(OHPHQW

This error message contains formatter component identification and the data
that is being imported.

<Formatter element type>
<name of the Formatter element>: I/E failed!
ERROR: <error message> [(Formatter management error code)]
<profile - contains all data items related to this Formatter
element>

5HVROYLQJ�&RPSRQHQW�&RQIOLFWV
A conflict occurs when an imported component does not match an existing
component of the same name and type in the database. The user can
overwrite the component definition, ignore or skip the component, or rename
the inported component.

When a component is overwritten, the component definition within the
export file is imported into the database. Overwriting existing components
may cause supporting components to be unused. When a component is
ignored or skipped, the component in the export file is not imported.
However, the component is added to the internal inventory of imported
components. By skipping components, supporting components that have
already been imported might be unused. Skipping or overwriting
components does not affect the integrity of the database. If the user renames a
component, all references to that component in the export file are updated.

The user can choose to resolve conflicts in interactive mode or batch mode.

All conflicts and resolutions are reported to the DD:NNFIELOG log file.

1RWH�
Interactive mode is only available for use on a Windows NT workstation or
UNIX-based workstation. It is not available on the OS/390 platform.
System Management Guide for OS/390 33

Chapter 3
5HVROYLQJ�&RQIOLFWV�LQ�%DWFK�0RGH

Overwrite and Ignore/Skip options are available for resolving conflicts in
batch mode. The selected option is used to resolve all conflicts.

Use the following code to implement batch Overwrite conflict resolution:

NNFIE -i <filename> -o

Use the following code to implement batch Ignore/Skip conflict resolution:

NNFIE -i <filename> -g

5HVROYLQJ�&RQIOLFWV�LQ�,QWHUDFWLYH�0RGH

Overwrite, Ignore/Skip, and Rename options are available for resolving
conflicts in interactive mode on a Windows NT workstation or on a UNIX-
based workstation. If the user implements interactive conflict resolution,
descriptions of the existing components and the import components are
displayed.

Use the following code to implement interactive conflict resolution:

NNFIE -i <filename> -n

The following sample code illustrates interactive conflict resolution:

Literal: "MyLiteral" conflicts with an existing Formatter
element!
literalLength (existing=2 | incoming=3)
Overwrite, Ignore, or Rename component (OIR): R

Please enter new component name: MyLiteral_NewValue

115(1$0(
When you run NNFIE to unload your data from r.3.2 and reload your data
into MQSeries Integrator 1.1, some Formatter components are created that
did not exist in r.3.2. These components are assigned a default name:

NNDef_xxxx_nnnn

where xxxx is the type of format component. For example, a literal value
might be NNDef_Literal_nnnn; a Default output operation might be
NNDef_Default_nnnn.
34 System Management Guide for OS/390

Migrating Formats and Rules
The NNRENAME utility takes the field value of the component that is being
renamed and creates a name:

PREFIX_VALUE_nn

3DUDPHWHUV

The following sample job control language (JCL) is provide to illustrate how
to run the RENAME job in batch and pass startup parameters to it. The JCL at
your site will be different. See Tailoring Jobs for Your Site on page 17 for
information about the symbolic parameters in this sample.

//* <insert a valid jobcard here >
//*
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//* NNRENAME : Rename components that begin with ’NNDef_’ *

)LHOG 'HVFULSWLRQ

PREFIX Default value is NN_. The user can specify a PREFIX, or can specify
PREFIX=NONE.

VALUE The value of the component field. Non-printable characters are
converted to ’#’. Any character that repeats 5 or more times
sequentially will have the repeat count and then the value. For
example, the field "abcdddddddd" is converted to "abc8d". The length
of the VALUE field is truncated so that the total length of the new
name is no more than 32 characters.

nn Value between 01 and 99. The value is selected sequentially to handle
any duplicates. If there are more than 99 duplicates, only the first 99
are inserted. The rest of the duplicates remain in the database without
a name change.
System Management Guide for OS/390 35

Chapter 3
//* *
//**
//NNRENAME PROC SMPHLQ=’<smphlq>’, HLQ for NEONet distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS runtime libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-)Lib
// INIMEM=’CLIINI’, MEMbername for CLI INI cntl cards
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=NNRENAME
//*
//* <tailor the member STEPLIB and copy it here>
//*
//DSNAOINI DD DSN=&SMPHLQ..SCTLSTMT(&INIMEM),DISP=SHR
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2-CLI high-level tracing
// PEND
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//NNRENAME EXEC NNRENAME
//*
//DB2PARMS DD *
<db2-sysid> <db2-sqlid>
<PREFIX=(default is NN_) >
/*
//

([SRUWLQJ�)RUPDWV
The following options are available for exporting formats:

(-e | -export <export filename> [-m <format name>+]
 [-q "comment"]
 [-Q <Comment filename>]
 [-w <number>]
 [-s <session name>])
36 System Management Guide for OS/390

Migrating Formats and Rules
([SRUW�2SWLRQV

([DPSOHV

The following code illustrates exporting an entire database:

NNFIE -e [<export filename>] [-s <session name>]

The following code illustrates exporting a single format:

NNFIE -e [<export filename>] [-m <format name>]
 [-s <session name>]

The following code illustrates exporting several formats:

NNFIE -e [<export filename>]
 [-m <format name> <format name> ...]
 [-s <session name>]

&RQGLWLRQDO�%UDQFKLQJ

When you use the Export by Name option during the export of formats, each
output control that uses conditional branching exports the output controls
associated with that output format, as defined by the rules entries.

3DUDPHWHU� 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-q "comment" Optional Adds comments enclosed in quotation
marks to beginning of the export file.

-Q <comment
file>

Optional Adds contents of <comment file> to
beginning of export file.

-w <number> Optional Sets maximum line length in export file.
Default value is 80.

-m <message
type>

Optional Specifies the message type to export. By
default, exports all messages types within
the specified application group.
System Management Guide for OS/390 37

Chapter 3
7URXEOHVKRRWLQJ�([SRUW�)DLOXUHV

You have the option of identifying all conflicts without importing any data.
This test import function allows you to verify the contents of export files
within working databases, thus facilitating easy validation for archiving. Any
conflicts are recorded in the DD:NNFIELOG file. To use this conflict report,
type the following syntax:

NNFIE -I <filename> -k

3URGXFLQJ�D�&RPSRQHQW�,QYHQWRU\
The NNFIE export file contains useful pieces of information that are in
numeric form instead of text form. NNFIE contains an inventory option that
produces a component inventory from the export file in the NNFIE log file.
Use the following code to produce a component inventory listing in the
DD:NNFIELOG file:

NNFIE -t <filename>

In earlier releases, the only access to the NEONFormatter database
configurations have been through the NEONFormatter GUI. With the export
files in a readable form, the user can write or modify scripts that create
NEONFormatter components.

6DPSOH�&RPSRQHQW�,QYHQWRU\

The following code samples illustrate an NNFIE export file and a component
inventory in the DD:NNFIELOG file.

11),(�([SRUW�)LOH

F!4.0!7!NEON.Space,0x20,1!
F!4.0!7!NEON.LOADER.KEY.929054218,0x4E454F4E6164617074657220666
F7220434F424F4C205B56657273696F6E203A20322E302028322E3020554E4B
4E4F574E5F4255494C445F56455253494F4E292C2028554E4B4E4F574E5F425
5494C445F5441472F57494E444F5753295D,94!
F!4.0!5!CCB.B-1,B-1!
F!4.0!5!CCB.B2-1,B2-1!
F!4.0!16!NEON.Space.Left,NEON.Space,0x20,1,1!
F!4.0!16!NEON.Space.Right,NEON.Space,0x20,1,2!
F!4.0!16!NEON.Space.Both,NEON.Space,0x20,1,3!
F!4.0!12!NEON.Space.1,1,NEON.Space,0x20,1!
38 System Management Guide for OS/390

Migrating Formats and Rules
F!4.0!8!COBOL:X.1,0,1,String,,1,0,NONE,0x00,0,0,0,0,NONE,0x00,
0,NEON.Space.1,4!
F!4.0.1!2!COBOL:X.1,0,1,String,1,,2,NONE,1,0,0,0,NONE,0x00,
NONE,0,0,0,NONE,0,0,!0!
F!4.0!1!CCB.IF.COBOL-OCCURS:1,1,0!1,0,0,NONE!1!CCB.IF.COBOL-
OCCURS:1,CCB.B-1,COBOL:X.1!
F!4.0!1!CCB.IF.B-2-TABLE,1,0!1,0,0,NONE!1!CCB.IF.B-2-TABLE,
CCB.B2-1,COBOL:X.1!
F!4.0!1!CCB.OF.COBOL-OCCURS:1,0,0!1,0,0,NONE!1!CCB.OF.COBOL-
OCCURS:1,CCB.B-1,COBOL:X.1,1,0,CCB.B-1!
F!4.0!1!CCB.OF.B-2-TABLE,0,0!1,0,0,NONE!1!CCB.OF.B-2-TABLE,
CCB.B2-1,COBOL:X.1,1,0,CCB.B2-1!
F!4.0!1!CCB.IC.COBOL-OCCURS,1,1!2!CCB.IC.COBOL-OCCURS,
CCB.IF.COBOL-OCCURS:1,0,0,0,NONE,0,NONE!CCB.IC.COBOL-OCCURS,
CCB.IF.B-2-TABLE,0,1,3,NONE,3,NONE!
F!4.0!1!CCB.OC.COBOL-OCCURS,0,1!2!CCB.OC.COBOL-OCCURS,
CCB.OF.COBOL-OCCURS:1,0,0,0,NONE,0,NONE!CCB.OC.COBOL-OCCURS,
CCB.OF.B-2-TABLE,0,1,0,NONE,0,NONE!

6DPSOH�&RPSRQHQW�,QYHQWRU\

Component Type: Literal

Component Name: NEON.Space

Length: 1
Value: " "

Component Name: NEON.LOADER.KEY.929054218
Length: 94
Value: "NEONadapter for COBOL [Version : 2.0 (2.0

 UNKNOWN_BUILD_VERSION), (UNKNOWN_BUILD_TAG/WINDOWS)]"
Component Type: Field

Component Name: CCB.B-1

Description: "B-1"
Component Name: CCB.B2-1

Description: "B2-1"
Component Type: Trim Output Operation

Component Name: NEON.Space.Left

Trim Type: Left
Trim Literal: NEON.Space
Trim Value Length: 1
Trim Value: " "
System Management Guide for OS/390 39

Chapter 3
Component Name: NEON.Space.Right
Trim Type: Right
Trim Literal: NEON.Space
Trim Value Length: 1
Trim Value: " "

Component Name: NEON.Space.Both
Trim Type: Left and Right
Trim Literal: NEON.Space
Trim Value Length: 1
Trim Value: " "

Component Type: Length Output Operation

Component Name: NEON.Space.1

Pad Literal Name: NEON.Space
Pad Literal Value: " "

Component Type: Output Control Master

Component Name: COBOL:X.1

Optional: No
Control Type: Data Field Name Search
Data Type: Ascii String
Child Control Name: NEON.Space.1
Child Control Type: Length

Component Type: Input Control

Component Name: COBOL:X.1

Optional: No
Control Type: Data Only
Data Type: Ascii String

Termination: Exact Length
Length: 1

Component Type: Flat Input Format

Component Name: CCB.IF.COBOL-OCCURS:1

Input Field 1: CCB.B-1
Input Control: COBOL:X.1

Component Name: CCB.IF.B-2-TABLE
Input Field 1: CCB.B2-1

Input Control: COBOL:X.1
Component Type: Flat Output Format

Component Name: CCB.OF.COBOL-OCCURS:1
40 System Management Guide for OS/390

Migrating Formats and Rules
Decomposition: Ordered
Termination: Not Applicable
Output Field 1: CCB.B-1

Output Control: COBOL:X.1
Access Mode: Normal Access
Input Field: CCB.B-1

Component Name: CCB.OF.B-2-TABLE
Decomposition: Ordered
Termination: Not Applicable
Output Field 1: CCB.B2-1

Output Control: COBOL:X.1
Access Mode: Normal Access
Input Field: CCB.B2-1

Component Type: Compound Input Format

Component Name: CCB.IC.COBOL-OCCURS

Child Format 1: CCB.IF.COBOL-OCCURS:1
Optional: No
Repeating: No

Child Format 2: CCB.IF.B-2-TABLE
Optional: No
Repeating: Yes
Repeat Termination: Exact Count
Repeat Count: 3

Component Type: Compound Output Format

Component Name: CCB.OC.COBOL-OCCURS

Child Format 1: CCB.OF.COBOL-OCCURS:1
Optional: No
Repeating: No

Child Format 2: CCB.OF.B-2-TABLE
Optional: No
Repeating: Yes
Repeat Termination: Not Applicable

11),(�5HDGDEOH�)LOHV
Earlier versions of NNFIE exported and imported encrypted files. In earlier
releases, the only access to the Formatter database configurations was
through the Formatter GUI. With the export files in a readable form, the user
can write or modify scripts that create NEONFormatter components.
System Management Guide for OS/390 41

Chapter 3
11),(�+HDGHU

When an NNFIE export file is created, a header file can be added to the
beginning of the file. This file logs information about the data source and
creation of the export file.

Use the following code to add a header file:

NNFIE -e <filename> -Q <comment file>

The header file contains the following information:

1. Time of creation (using Greenwich Mean Time)

2. Version of NNFIE

3. Database logon information

4. Database server version

5. Operating system version

The first character in the header file is a pound sign (#), which indicates that
the comments should be ignored by NNFIE during import. The user can
specify additional comments using the following export option:

NNFIE -e <filename> -q "comment"

)RUPDWWLQJ�([SRUW�'DWD

1RWH�
Refer to the appropriate header files for enumerated types.

A continuation marker divides the format component definition into several
lines within the export file. A backslash character (\) immediately preceding
an end-of-line character indicates that the next line is concatenated by the
export file text editor. The default line width is 80 characters, but the user can
specify an optional width using the following command line option:

NNFIE -e <filename> -w <number>
42 System Management Guide for OS/390

Migrating Formats and Rules
,GHQWLI\LQJ�1(21)RUPDWWHU�&RPSRQHQWV

Each NEONFormatter component definition begins with three identification
fields, delimited by an exclamation point (!) character.

The first field contains the letter F, which indicates the beginning of a
NEONFormatter component definition. F must appear at the beginning of
every line in the file, with the exception of comment lines.

The second field indicates the release number of the defined component.
Using version numbers to define components enables NNFIE to support
several revisions of export files.

The third field contains an integer that identifies each valid component in an
export format. The following table lists valid format components and
corresponding integer values used in the export files.

,QWHJHU�)RUPDW�&RPSRQHQW

1 Format

2 Input Control

3 Output Control (included for backward compatibility; use Output
Master Control)

4 Delimiter (included for backward compatibility; use Literal)

5 Field

6 User Defined Type

7 Literal

8 Output Master Control

9 Default Control

10 User Exit Control

11 Fix Control

12 Length Control

13 Math Expression Control
System Management Guide for OS/390 43

Chapter 3
'HILQLQJ�)RUPDW�&RPSRQHQWV

The string data type must be 32 characters or less when used as a field type.

The encoded hex field type can be up to 254 characters. Valid characters in
this field are 0x[0-9A-F].

When an integer defines a code for an enumerated type, refer to fmtcodes.h in
the include directory for valid entries. All definitions using enumerated type
have the fixed type defined as enum.

NNFIE uses the Formatter Management APIs to populate the database with
Formatter components. For a detailed explanation of field values, refer to the
structures defined in Programming Reference for NEONFormatter. NNFIE
uses the information in the export file to populate the NNFMgr<Component
Type>Info structures.

The following sample NNFIE component definitions use these conventions:

! indicates a delimiter between format components.

// indicates comments.

(…)+ indicates items within parentheses exist one or more times.

(…)* indicates items within parentheses exist zero or more times.

)ODW�,QSXW�)RUPDW�([DPSOH

F!4.0!1!Flat_IF,1,0!1,0,0,NONE!2!Flat_IC,alpha,alpha_IC!
Flat_IC,numeric,numeric_IC!

&RPSRQHQWV

F!<Version No — number>!<Format — integer>!

14 Substitute Control

15 Substring Control

16 Trim Control

17 Collection Control

,QWHJHU�)RUPDW�&RPSRQHQW
44 System Management Guide for OS/390

Migrating Formats and Rules
// NNFMgrFormatInfo structure
<Format Name — string>,
1, // Input Indicator
0! // Compound Indicator

// NNFMgrFlatFormatInfo structure
<Decomposition ID — int>,
<Length ID — int>,
<Termination ID — int>,
<Delimiter Name — string>!
<Number of Input Field/Control Pairs — integer>!

// NNFMgrInFieldInfo structure
(<Format Name — string>,
<Field Name — string>,
<Control Name — string>!)+

)ODW�2XWSXW�)RUPDW�([DPSOH

F!4.0!1!Flat_OF,0,0!1,0,0,NONE!3!Flat_OC,alpha,alpha_OC,1,0,
alpha!Flat_OC,alpha,alpha_OC,1,0,alpha!Flat_OC,numeric,
numeric_OC,4,0,numeric!

&RPSRQHQWV

F!<Version No — number>!<Format — integer>!

// NNFMgrFormatInfo structure
<Format Name — string>,
0, // Input Indicator
0! // Compound Indicator

// NNFMgrFlatFormatInfo structure
<Decomposition ID —int>,
<Length ID — int>,
<Termination ID — int>,
<Delimiter Name — string>!
<Number of Output Field/Control Pairs — integer>!

// NNFMgrOutFieldInfo structure
(<Format Name — string>,
<Field Name — string>,
System Management Guide for OS/390 45

Chapter 3
<Control Name — string>,
<Access Mode — int>,
<Subscript — integer>,
<Infield Name — string>!)+

&RPSRXQG�)RUPDW�([DPSOH

F!4.0!1!CompRep_IF,1,1!1!CompRep_IF,Flat_IC,0,1,1,=,0,NONE!

&RPSRQHQWV

F!<Version No — number>!<Format — integer>!

// NNFMgrFormatInfo structure
<Format Name — string>,
<Input Indicator ID —int>,
1! // Compound Indicator
<Number of Child Formats — integer>!

// NNFMgrRepeatFormatInfo structure
(<Parent Format Name — string>,
<Child Format Name — string>,
<Optional Indicator ID — integer>,
<Repeat Indicator ID — integer>,
<Repeat Termination ID — integer>,
<Repeat Delimiter Name — string>,
<Repeat Field Name — string>!)+

,QSXW�&RQWURO�([DPSOH

F!4.0.1!2!alpha_IC,0,2,String,0,,2,NONE,6,0,0,3,tag,0x544147,
NONE,0,0,0,NONE,0,101,!0!

&RPSRQHQWV

F!<Version No — number>!<Input Control — integer>!

// NNFMgrParseControlInfo structure
<Control Name — string>,
<Optional Indicator ID —int>,
<Field Type ID — int>,
<Data Type Name — string>,
<Base Data Type ID — int>,
46 System Management Guide for OS/390

Migrating Formats and Rules
<Custom Date Time Format— string>,
<Data Termination ID — int>,
<Data Delimiter Name — string>m
<Data Length — number>,
<Tag Type ID — int>,
<Tag Termination ID — int>,
<Tag Length — integer>,
<Tag Literal Name — string>,
<Tag Value — encoded hex>,
<Tag Delimiter Name — string>,
<Length Type ID —int>,
<Length Termination ID —int>,
<Length Length — integer>,
<Length Delimiter Name — string>,
<Decimal Location — integer>,
<Year Cut Off — integer>,
<Validation Parameter Name — string>!
<Number of Name/Value Pairs — integer>!
(<Name — string>,
<Value — string>!)+

)LHOG�([DPSOH

F!<Version No — number>!5!numeric,Numeric field!

&RPSRQHQWV

F!<Version No — number>!<Field — integer>!

// NNFMgrFieldInfo structure
<Field Name — string >,
<Comment — string >!

8VHU�GHILQHG�7\SH�([DPSOH

F!4.0!6!Sample_UserDefinedType,String,
UserDefinedTypeValidation!

&RPSRQHQWV

F!<Version No — number>!<User-defined Type — integer>!

// NNFMgrUserDefTypeInfo structure
System Management Guide for OS/390 47

Chapter 3
<Type Name — string >,
<Native Type — string >,
<Validation Routine Name — string>!

/LWHUDO�([DPSOH

!F!4.0!7!tag,0x544147,3!

&RPSRQHQWV

F!<Version No — number>!<Literal — integer>!

// NNFMgrLiteralInfo structure
<Literal Name — string >,
<Value - ASCII — encoded hex >,
<Value Length — integer>!

2XWSXW�0DVWHU�&RQWURO�([DPSOH

F!4.0!8!alpha_OC,1,1,String,,0,0,NONE,0x00,0,0,0,0,NONE,
0x00,0,NONE,0!

&RPSRQHQWV

F!<Version No — number>!<Output Master Control — integer>!

// NNFMgrOutMstrCntlInfo structure
<Master Name — string>,
<Optional Indicator ID —int>,
<Field Type ID — int>,
<Data Type Name — string>,
<Data Attribute ID —int>,
<Base Data Type ID — int>,
<Tag Type ID — int>,
<Tag Literal Name — string>,
<Tag Value — ASCII-encoded hex>,
<Tag Value Length — integer>,
<Tag-before-Length Indicator ID — int>,
<Length Type ID — int>,
<Operation Type ID — int>,
<Field Comparison Literal Name — string>,
<Field Comparison Value — ASCII-encoded hex>,
<Field Comparison Value Length — integer>,
48 System Management Guide for OS/390

Migrating Formats and Rules
<Child Control Name — string>,
<Child Control Type ID —enum NNCntlType>!

'HIDXOW�&RQWURO�([DPSOH

F!4.0!9!Sample_DefaultCntl,Literal,0x4C69746572616C,7!

&RPSRQHQWV

F!<Version No — number>!<Default Control — integer>!

// NNFMgrDefaultCntlInfo structure
<Control Name — string>,
<Literal Name — string>,
<Value — ASCII-encoded hex>,
<Value Length — integer>!

8VHU�([LW�&RQWURO�([DPSOH

F!4.0!10!Sample_UserExitCntl,ExitRoutineName!

&RPSRQHQWV

F!<Version No — number>!<User Exit Control — integer>!

// NNFMgrUserExitCntlInfo structure
<Control Name — string>,
<Exit Routine Name — string>!

)L[�&RQWURO�([DPSOH

F!4.0!11!Sample_FixCntl,Space,0x20,1,1,0!

&RPSRQHQWV

F!4.0!<PrePostFix Control — integer>!

// NNFMgrPrePostFixCntlInfo structure
<Control Name — string>,
<Literal Name — string>,
<Value — ASCII-encoded hex>,
<Value Length — integer>,
<Place ID — enum NNFPrePostFix>,
<NULL Action Indicator — int>!
System Management Guide for OS/390 49

Chapter 3
/HQJWK�&RQWURO�([DPSOH

F!4.0!12!Sample_LengthCntl,12,Space,0x20,1!

&RPSRQHQWV

F!<Version No — number>!<Length Control — integer>!

// NNFMgrLengthCntlInfo structure
<Control Name — string>,
<Pad Literal Name — string>,
<Pad Value — ASCII — encoded hex>,
<Value Length — integer>!

0DWK�([SUHVVLRQ�&RQWURO�

F!4.0!13!Sample_MathCntl,2,0!1!Field_1 * Field_2!

&RPSRQHQWV

F!<Version No — number>!<Math Expression Control — integer>!

// NNFMgrMathExpCntlInfo structure
<Control Name — string>,
<Decimal Precision — integer>,
<Rounding Mode ID —int>!
<Math Segment Count — integer>!
(<Expression — string>!)+

6XEVWLWXWH�&RQWURO

F!4.0!14!Sample_SubstituteCntl,NONE,0x00,0,NONE,0x00,0,1!3!
Sample_SubstituteCntl,Space,0x20,1,X,0x58,1,1!
Sample_SubstituteCntl,-,0x2D,1,_,0x5F,1,1!

&RPSRQHQWV

F!<Version No — number>!<Substitute Control — integer>!

// NNFMgrSubstituteCntlInfo structure
<Control Name — string>,
<Input Literal Name — string>,
<Input Value — ASCII — encoded hex>,
<Input Value Length — integer>,
50 System Management Guide for OS/390

Migrating Formats and Rules
<Output Literal Name — string>,
<Output Value — ASCII — encoded hex>,
<Output Value Length — integer>,
<Output Value Type ID —int>!
<Substitute Count — integer >!
(<Control Name — string>,
<Input Literal Name — string>,
<Input Value - ASCII-encoded hex>,
<Input Value Length — integer>,
<Output Literal Name — string>,
<Output Value - ASCII-encoded hex>,
<Output Value Length — integer>,
<Output Value Type ID — int>!)*

6XEVWULQJ�&RQWURO

F!4.0!15!Sample_SubstringCntl,5,6,NONE,0x00,0!

&RPSRQHQWV

F!<Version No — number>!<Substring Control — integer>!

// NNFMgrSubstringCntlInfo structure
<Control Name — string>,
<Start — integer>,
<Length — integer>,
<Pad Literal Name — string>,
<Pad Value — ASCII-encoded hex>,
<Pad Value Length — integer>!

7ULP�&RQWURO

F!4.0!16!Sample_TrimCntl,Space,0x20,1,2!

&RPSRQHQWV

F!<Version No — number>!<Trim Control — integer>!

// NNFMgrTrimCntlInfo structure
<Control Name — string>,
<Trim Character Literal Name — string>,
<Trim Character Value — ASCII-encoded hex>,
<Trim Character Value Length — integer>,
System Management Guide for OS/390 51

Chapter 3
<Trim Location ID — enum NNFTrim>!

&ROOHFWLRQ�&RQWURO�([DPSOH

The following Sample Data illustrates a Collection Control in an NNFIE file.

F!4.0!17!Sample_CollectionCntl,2!Sample_UserExitCntl,7!
CENTER_JUSTIFY,10!

&RPSRQHQWV

F!<Version No — number>!<Collection Control — integer>!\

// NNFMgrCollectionCntlInfo Structure
<Control Name — string>,
<Collection Count — integer>!
(<Child Control Name — string>,
<Child Control Type — enum NNCntlType>!)+

6DPSOH�'DWD
F!4.0!5!alpha,!
F!4.0!5!numeric,!
F!4.0!7!=,0x3D00
00
00
00,1!
F!4.0!8!alpha_OC,1,1,String,,0,0,NONE,0x000000000000000000000000000000
0 00
00
00
00000000000000000,0,0,0,0,NONE,0x0000000000000000000000000000000000000
00
00
00
000000000,0,NONE,0!
F!4.0!8!numeric_OC,1,1,String,,0,0,NONE,0x0000000000000000000000000000
0 00
00
00
000000000000000000000,0,0,0,0,NONE,0x000000000000000000000000000000000
00
00
52 System Management Guide for OS/390

Migrating Formats and Rules
00
00000000000000,0,NONE,0!
F!4.0.1!2!alpha_IC,0,1,String,0,,2,NONE,6,0,0,0,NONE,0x000000EFFFE8600
0000000000A95DC00101E20000000000006B54C00000001EFFFF01400000101EFFFF01
4EF3C7101000000010000000100101E20EFFFF0DCEFFFF0DCEFFFE850000B2E60EF07D
6D800101E20EF3C717800000000EFFFE854000FA841EFFFF088EFFFF088EFFFF014000
00000EFFFF014EFFFF0DC0000000000,NONE,0,0,0,NO NE,0,101,!0!
F!4.0.1!2!numeric_IC,0,1,Numeric,0,,2,NONE,8,0,0,0,NONE,0x000000EFFFE8
6000000000000A95DC00101E20000000000006B54C00000001EFFFF01400000101EFFF
F014EF3C7101000000010000000100101E20EFFFF0DCEFFFF0DCEFFFE850000B2E60EF
07D6D800101E20EF3C717800000000EFFFE854000FA841EFFFF088EFFFF088EFFFF014
00000000EFFFF014EFFFF0DC0000000000,NONE,0,0, 0,NONE,0,101,!0!
F!4.0!1!Flat_IC,1,0!1,0,0,NONE!2!Flat_IC,alpha,alpha_IC!Flat_IC,
numeric,numeric_IC!
F!4.0!1!Flat_OC,0,0!1,0,0,NONE!3!Flat_OC,alpha,alpha_OC,1,0,alpha!
Flat_OC,alpha,alpha_OC,1,0,alpha!Flat_OC,numeric,numeric_OC,4,0,
numeric!
F!4.0!1!CompRep_IF,1,1!1!CompRep_IF,Flat_IC,0,1,1,=,0,NONE!F!4.0!1!
CompRep_OF,0,1!1!CompRep_OF,Flat_OC,0,1,1,=,0,NONE!

11),(�(UURU�0HVVDJHV

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

-4001 NNFIEE_FILE_
EXISTS

Given file already
exists so will not
replace it

The specified
export file name
already exists.

Remove the file
or specify a
different export
file name.

-4002 NNFIEE_NO_
IMPORT_FILE

No import files by the
given name exist

The specified
import file name
already exists.

Check for the
existence of the
file.

-4003 NNFIEE_FAILED_TO
_READ_FROM_
IMPORT_FILE

Failed to read from
the import file

The file cannot be
read.

Check for the
existence of the
file or possible
access problems.

 -4004 NNFIEE_FAILED_TO
_SEPARATE_INPUT_
DATA

Failed to separate
and fetch a piece of
the input data

The import file
has been
corrupted.

Restore or
recreate the file.
System Management Guide for OS/390 53

Chapter 3
-4005 NNFIEE_BAD_FILE_
STREAM

Bad file stream Unable to obtain
the required file
stream.

Check for the
existence of the
import or export
file

-4006 NNFIEE_NAME_
PROPERTY_
CONFLICT

Conflict with the
existing Formatter
element with the
same name

A format
component being
imported conflicts
with an existing
component of the
same name.

To import into a
populated
format database,
rename the
existing
component and
re-import, or
rename the
incoming
component in
the source
database and re-
export.

-4007 NNFIEE_INVALID_
IE_MODE

Invalid import/
export mode. Valid
modes are:
EXPORT_BY_NAME
EXPORT_ALL
IMPORT

Invalid mode
specified on the
command line or
in the command
file.

Check the
accuracy of
arguments
passed to
NNFIE.

-4008 NNFIEE_
ATTEMPTING_TO_
REEXPORT

Attempting to re-
export an element
that has been
exported

Component
defined that
references itself.

Remove the
circular
reference to this
component.

-4009 NNFIEE_FAILED_TO
IMPORT
COMPONENTS

Components have
not been imported

During import,
one or more of the
components
required did not
import. All
components that
use the failed
component will
not import.

Determine why
the component
did not import
correctly.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH
54 System Management Guide for OS/390

Migrating Formats and Rules
-4010 NNFIEE_INVALID_
FORMATTER_
ELEMENT

Invalid Formatter
element type

Unknown format
component found.
File exported from
an unsupported
version of
MQSeries
Integrator, or the
file is corrupt.

Check the
version of
MQSeries
Integrator on the
source machine.
Recover or
recreate the
export file.

-4011 NNFIEE_INVALID_
NNFIE_FILE

Invalid NNFIE file;
make sure the file
was generated by
NNFIE

Specified file
incompatible.

Recreate or
recover the
export file.

-4012 NNFIEE_INVALID_
VERSION_NO

Invalid NNFIE
version number

Version number
found in the file
not supported.

Recreate the file
using a
supported
version of
MQSeries
Integrator.

-4013 NNFIEE_FAILED_TO
_INVENTORY

Failed to add to the
 I/E inventory

NNFIE unable to
register the
component as
exported or
imported.

Rerun the
import or
export.

-4014 NNFIEE_NO_
FORMATS_TO_
EXPORT

No formats to export Format database
does not contain
valid formats to
export.

Create valid
formats.

-4015 NNFIEE_NOTHING_
TO_IMPORT

Nothing to import Import file does
not contain format
information.

Create export
file from
database that
contains
formats.

-4016 NNFIEE_FAILED_TO
_ENCRYPT

Encryption failed NNFIE unable to
encrypt the export
data successfully.

Rerun the
export.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH
System Management Guide for OS/390 55

Chapter 3
-4017 NNFIEE_FAILED_TO
_DECRYPT

Decryption failed NNFIE unable to
decrypt the
import file. This is
caused by file
corruption.

Recreate of
recover the
export file.

-4018 NNFIEE_NNFIEERR_
ALREADY_EXISTS

NNFIE.err already
exists

Error file
NNFIE.err exists.

Remove the
NNFIE.err file
and rerun.

-4019 NNFIEE_IE_FILE_
ALREADY_EXISTS

I/E file already exists Specified output
file already exists.

Use a new
export file name;
move or rename
existing export
file.

-4020 NNFIEE_FAILED_TO
_OPEN_DBMS_
SESSION

Failed to open DBMS
session

NNFIE unable to
connect to the
database.

Verify accuracy
of NNFIE entry
or session name
specified with -s
option in
SQLSVSES file.

-4021 NNFIEE_FAILED_TO
_OPEN_FMGR

Failed to initialize
Formatter Manager

NNFIE unable to
use the Format
Manager library.

Verify MQSeries
Integrator
installed
correctly.

-4022 NNFIEE_INVALID_
CNTL_TYPE

Invalid control type Unknown format
control found; file
exported from an
unsupported
version of
MQSeries
Integrator, or file
is corrupt.

Verify version of
MQSeries
Integrator on
source machine.
Recover or
recreate the
export file.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH
56 System Management Guide for OS/390

Migrating Formats and Rules
11),(�)RUPDW�(UURU�0HVVDJHV

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

-4201 NNFIEE_GetFormat GetFormat failed Flat or compound
format is not
accessible in the
database using
NNFMgrGet
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4202 NNFIEE_GetFirst
Format

GetFirstFormat
failed

First flat or
compound format
is not accessible in
the database using
NNFMgrGetFirst
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4203 NNFIEE_GetNext
Format

GetNextFormat
failed

Next flat or
compound format
is not accessible in
the database using
NNFMgrGetNext
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4204 NNFIEE_GetFirst
FieldFromInput
Format

GetFirstFieldFrom
InputFormat failed

First field
associated with a
flat input format is
not accessible in the
database using
NNFMgrGetFirst
FieldFromInput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4205 NNFIEE_GetNext
FieldFromInput
Format

GetNextFieldFrom
InputFormat failed

Next field
associated with a
flat input format is
not accessible in the
database using
NNFMgrGetNext
FieldFromInput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem.
System Management Guide for OS/390 57

Chapter 3
-4206 NNFIEE_GetFirst
FieldFromOutput
Format

GetFirstFieldFrom
OutputFormat
failed

First field
associated with a
flat output format is
not accessible in the
database using
NNFMgrGetFirst
FieldFromOutput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4207 NNFIEE_GetNext
FieldFromOutput
Format

GetNextFieldFrom
OutputFormat
failed

Next field
associated with a
flat output format is
not accessible in the
database using
NNFMgrGetNext
FieldFromOutput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem.

 -4208 NNFIEE_GetFirst
ChildFormat

GetFirstChildForm
at failed

First child format of
a compound format
is not accessible in
the database using
NNFMgrGetFirst
ChildFormat.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4209 NNFIEE_GetNext
ChildFormat

GetNextChildForm
at failed

Next child format of
a compound format
is not accessible in
the database using
NNFMgrGetNext
ChildFormat.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4210 NNFIEE_GetOutput
Control

GetOutputControl
failed

Specified output
control is not
accessible in the
database using
NNFMgrGet
OutputControl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

58 System Management Guide for OS/390

Migrating Formats and Rules
-4211 NNFIEE_GetFirst
OutputControl

GetFirstOutput
Control failed

First output control
is not accessible in
the database using
the Formatter
Management API
NNFMgrGetFirst
OutputControl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4212 NNFIEE_GetNext
OutputControl

GetNextOutput
Control failed

Next output control
is not accessible in
the database using
NNFMgrGetNext
OutputControl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4213 NNFIEE_GetParse
Control

GetParseControl
failed

Specified parse or
input control is not
accessible in the
database using
NNFMgrGetParse
Control.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4214 NNFIEE_GetFirst
ParseControl

GetFirstParse
Control failed

First parse or input
control is not
accessible in the
database using
NNFMgrGetFirst
ParseControl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4215 NNFIEE_GetNext
ParseControl

GetNextParse
Control failed

Next parse or input
control is not
accessible in the
database using
NNFMgrGetNext
ParseControl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

System Management Guide for OS/390 59

Chapter 3
-4216 NNFIEE_Get
Delimiter

GetDelimiter failed Specified delimiter
is not accessible in
the database using
NNFMgrGet
Delimiter.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4217 NNFIEE_GetFirst
Delimiter

GetFirstDelimiter
failed

First delimiter is not
accessible in the
database using
NNFMgrGetFirst
Delimiter.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4218 NNFIEE_GetNext
Delimiter

GetNextDelimiter
failed

Next delimiter is
not accessible in the
database using
NNFMgrGetNext
Delimiter.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4219 NNFIEE_GetField GetField failed Specified field is not
accessible in the
database using
NNFMgrGetField.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4220 NNFIEE_GetFirst
Field

GetFirstField failed First field is not
accessible in the
database using
NNFMgrGetFirst
Field.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4221 NNFIEE_GetNext
Field

GetNextField failed Next field is not
accessible in the
database using
NNFMgrGetNext
Field.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

60 System Management Guide for OS/390

Migrating Formats and Rules
-4222 NNFIEE_Append
FormatToFormat

AppendFormatTo
Format failed

Attempt to append
one flat or
compound format
into a compound
format failed using
NNFMgrAppend
FormatToFormat.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4223 NNFIEE_Append
FieldToInputFormat

AppendFieldTo
InputFormat failed

Attempt to append
a field to a flat input
format failed using
NNFMgrAppend
FieldToInput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4224 NNFIEE_Append
FieldToOutput
Format

AppendFieldTo
OutputFormat
failed

Attempt to append
a field to a flat
output format
failed using
NNFMgrAppend
FieldToOutput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4225 NNFIEE_Append
MathExpression

AppendMath
Expression failed

Attempt to append
a math expression
detail entry to an
existing math
expression control
failed using
NNFMgrAppendM
athExpression.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4226 NNFIEE_Append
LookupEntry

AppendLookup
Entry failed

Attempt to append
a lookup detail
entry to an existing
lookup control
failed using
NNFMgrAppend
LookupEntry.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

System Management Guide for OS/390 61

Chapter 3
-4227 NNFIEE_Create
Format

CreateFormat failed Attempt to create a
new input/output
flat or compound
format failed using
NNFMgrCreateFor
mat.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4228 NNFIEE_Create
ParseControl

CreateParseControl
failed

Attempt to create a
new parse/input
control failed using
NNFMgrCreate
ParseControl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4229 NNFIEE_Create
OutputControl

CreateOutput
Control failed

Attempt to create a
new output control
failed using
NNFMgrCreate
OutputControl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4230 NNFIEE_Create
Delimiter

CreateDelimiter
failed

Attempt to create a
new delimiter failed
using
NNFMgrCreate
Delimiter.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4231 NNFIEE_CreateField CreateField failed Attempt to create a
new field failed
using
NNFMgrCreate
Field.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4232 NNFIEE_SERIOUS_
ERROR_POSSIBLY_
DB_RELATED

GetErrorNo
returned serious
error number

General database
error encountered
using the Format
Management APIs.

See Format
Management API
error code -2604.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

62 System Management Guide for OS/390

Migrating Formats and Rules
-4233 NNFIEE_GetData
TypeName

GetDataTypename
failed

Attempt to retrieve
the formal name for
data type code
failed due to an
invalid data type
code associated
control.

Run the Formatter
Consistency
Checker to verify
data type codes.

-4234 NNFIEE_GetData
Type

GetDataType failed Attempt to retrieve
the data type code
associated with the
formal data type
name failed.

NNFIE import file
does not contain
correct formal data
type names. The
NNFIE import file
is corrupt or has
been exported
from a damaged
database.

-4235 NNFIEE_GetFirst
UserDefinedType

GetFirstUser
DefinedType failed

First user-defined
type is not
accessible in the
database using
NNFMgrGetFirst
UserDefinedType.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4236 NNFIEE_GetNext
UserDefinedType

GetNextUser
DefinedType failed

Next user-defined
type is not
accessible in the
database using
NNFMgrGetNext
UserDefinedType.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4237 NNFIEE_CreateUser
DefinedType

CreateUserDefined
Type failed

Attempt to create a
new user-defined
type failed using
NNFMgrCreate
UserDefinedType.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

System Management Guide for OS/390 63

Chapter 3
-4238 NNFIEE_GetFirst
Literal

GetFirstLiteral
failed

First literal is not
accessible in the
database using
NNFMgrGetFirst
Literal.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4239 NNFIEE_GetNext
Literal

GetNextLiteral
failed

Next literal is not
accessible in the
database using
NNFMgrGetNext
Literal.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4240 NNFIEE_GetLiteral GetLiteral failed Specified literal is
not accessible in the
database using
NNFMgrGet
Literal.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4241 NNFIEE_GetFirst
OutMstrCntl

GetFirstOutMstr
Cntl failed

First output master
control is not
accessible in the
database using
NNFMgrGetFirst
OutMstrCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4242 NNFIEE_GetFirst
DefaultCntl

GetFirstDefaultCntl
failed

First default control
is not accessible in
the database using
NNFMgrGetFirst
DefaultCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4243 NNFIEE_GetFirst
UserExitCntl

GetFirstUserExit
Cntl failed

First user exit
control is not
accessible in the
database using
NNFMgrGetFirst
UserExitCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

64 System Management Guide for OS/390

Migrating Formats and Rules
-4244 NNFIEE_GetFirst
PrePostFixCntl

GetFirstPrePostFix
Cntl failed

First pre/postfix
control is not
accessible in the
database using
NNFMgrGetFirst
PrePostFixCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4245 NNFIEE_GetFirst
SegmentFromMath
ExpCntl

GetFirstSegment
FromMathExpCntl
failed

First segment of
math expression
detail control is not
accessible in the
database using
NNFMgrGetFirst
SegmentFromMath
ExpCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4246 NNFIEE_Append
SegmentToMathExp
Cntl

AppendSegmentTo
MathExpCntl failed

Attempt to append
a math expression
detail entry to an
existing math
expression failed
using
NNFMgrAppend
SegmentMathExp
Cntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4247 NNFIEE_GetFirst
SubstituteCntl

GetFirstSubstitute
Cntl failed

First substitute
control is not
accessible in the
database using
NNFMgrGetFirst
SubstituteCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4248 NNFIEE_GetFirst
SubStringCntl

GetFirstSubString
Cntl failed

First substring
control is not
accessible in the
database using
NNFMgrGetFirst
SubStringCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

System Management Guide for OS/390 65

Chapter 3
-4249 NNFIEE_GetFirst
TrimCntl

GetFirstTrimCntl
failed

First trim control is
not accessible in the
database using
NNFMgrGetFirst
TrimCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4250 NNFIEE_GetFirst
CollectionCntl

GetFirstCollection
Cntl failed

First output
collection control is
not accessible in the
database using
NNFMgrGetFirst
CollectionCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4251 NNFIEE_Append
CntlToCollection
Cntl

AppendCntlTo
CollectionCntl
failed

Attempt to append
an output operation
to an output
operation control
failed using
NNFMgrAppend
CntlToCollection
Cntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4252 NNFIEE_GetFirst
CntlFromCollection

GetFirstCntlFrom
Collection failed

First output
operation collection
control is not
accessible in the
database using
NNFMgrGetFirst
CntlFrom
Collection.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4253 NNFIEE_GetFirst
LengthCntl

GetFirstLengthCntl
failed

First length control
is not accessible in
the database using
NNFMgrGetFirst
LengthCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

66 System Management Guide for OS/390

Migrating Formats and Rules
-4254 NNFIEE_GetFirst
MathExpCntl

GetFirstMathExp
Cntl failed

First math
expression control
is not accessible in
the database using
NNFMgrGetFirst
MathExpCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4255 NNFIEE_GetNext
OutMstrCntl

GetNextOutMstr
Cntl failed

Next output master
control is not
accessible in the
database using
NNFMgrGetNext
OutMstrCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4256 NNFIEE_GetOut
MstrCntl

GetOutMstrCntl
failed

Specified output
master control is
not accessible in the
database using
NNFMgrGetOut
MstrCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4257 NNFIEE_GetNext
DefaultCntl

GetNextDefault
Cntl failed

Next default control
is not accessible in
the database using
NNFMgrGetNext
DefaultCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4258 NNFIEE_GetDefault
Cntl

GetDefaultCntl
failed

Specified default
control is not
accessible in the
database using
NNFMgrGet
DefaultCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4259 NNFIEE_GetNext
UserExitCntl

GetNextUserExit
Cntl failed

Next user exit
control is not
accessible in the
database using
NNFMgrGetNext
UserExitCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

System Management Guide for OS/390 67

Chapter 3
-4260 NNFIEE_GetUser
ExitCntl

GetUserExitCntl
failed

Specified user exit
control is not
accessible in the
database using
NNFMgrGetUser
ExitCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4261 NNFIEE_GetNext
PrePostFixCntl

GetNextPrePostFix
Cntl failed

Next pre/postfix
control is not
accessible in the
database using
NNFMgrGetNext
PrePostFixCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4262 NNFIEE_GetPrePost
FixCntl

GetPrePostFixCntl
failed

Specified prefix/
postfix control is
not accessible in the
database using
NNFMgrGetPre
PostFixCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4263 NNFIEE_GetNext
SegmentFromMath
ExpCntl

GetNextSegment
FromMathExpCntl
failed

Next segment of the
math expression
detail controls is not
accessible in the
database using
NNFMgrGetNext
SegmentFromMath
ExpCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4264 NNFIEE_GetNext
SubstituteCntl

GetNextSubstitute
Cntl failed

Next substitute
control is not
accessible in the
database using
NNFMgrGet
SubstituteCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

68 System Management Guide for OS/390

Migrating Formats and Rules
-4265 NNFIEE_GetSubstit
uteCntl

GetSubstituteCntl
failed

Specified substitute
control is not
accessible in the
database using
NNFMgrGet
SubstituteCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4266 NNFIEE_GetNext
SubStringCntl

GetNextSubString
Cntl failed

Next substring
control is not
accessible in the
database using
NNFMgrGetNext
SubStringCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4267 NNFIEE_GetSub
StringCntl

GetSubStringCntl
failed

Specified substring
control is not
accessible in the
database using
NNFMgrGet
SubStringCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4268 NNFIEE_GetNext
TrimCntl

GetNextTrimCntl
failed

Next trim control is
not accessible in the
database using
NNFMgrGetNext
TrimCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4269 NNFIEE_GetTrim
Cntl

GetTrimCntl failed Specified trim
control is not
accessible in the
database using
NNFMgrGetTrim
Cntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

System Management Guide for OS/390 69

Chapter 3
-4270 NNFIEE_GetNext
CntlFromCollection

GetNextCntlFrom
Collection failed

Next output
operation collection
control is not
accessible in the
database using
NNFMgrGetCntl
FromCollection.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4271 NNFIEE_GetNext
LengthCntl

GetNextLengthCntl
failed

Next length control
is not accessible in
the database using
NNFMgrGetNext
LengthCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4272 NNFIEE_GetLength
Cntl

GetLengthCntl
failed

Specified length
control is not
accessible in the
database using
NNFMgrGet
LengthCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4273 NNFIEE_GetNext
MathExpCntl

GetNextMathExp
Cntl failed

Next math
expression control
is not accessible in
the database using
NNFMgrGetNextM
athExpCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4274 NNFIEE_GetMath
ExpCntl

GetMathExpCntl
failed

Specified math
expression control
is not accessible in
the database using
NNFMgrGetMath
ExpCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

70 System Management Guide for OS/390

Migrating Formats and Rules
-4275 NNFIEE_GetNext
CollectionCntl

GetNextCollection
Cntl failed

Next output
collection control is
not accessible in the
database using
NNFMgrGetNext
CollectionCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4276 NNFIEE_Get
CollectionCntl

GetCollectionCntl
failed

Specified output
collection control is
not accessible in the
database using
NNFMgrGet
CollectionCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4277 NNFIEE_GetUser
DefinedType

GetUserDefined
Type failed

Specified user-
defined type is not
accessible in the
database using
NNFMgrGetUser
DefinedType.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4278 NNFIEE_GetNext
MathExpression

GetNextMath
Expression failed

Next math
expression is not
accessible in the
database using
NNFMgrGetNext
MathExpression.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4279 NNFIEE_GetNext
LookupEntry

GetNextLookup
Entry failed

Next lookup entry
control is not
accessible in the
database using
NNFMgrGetNext
LookupEntry.

Use the secondary
Format
Management API
error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

System Management Guide for OS/390 71

Chapter 3
-4280 NNFIEE_GetNext
EntryFromSubstitute
Cntl

GetNextEntryFrom
SubstituteCntl
failed

Next substitute
field segment from
the substitute
control is not
accessible in the
database using
NNFMgrGetNext
EntryFrom
SubstituteCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4281 NNFIEE_Append
EntryToSubstitute
Cntl

AppendEntryTo
SubstituteCntl
failed

Attempt to create a
substitute field
segment for the
substitute control
failed using
NNFMgrAppend
EntryToSubstitute
Cntl.

Use the secondary
Format
Management API
error code to
resolve the
problem.

-4500 Fatal internal error Processing could
not continue.

See previous error
messages for
further
information.

*For additional Response information, see Formatter Management API error messages in the
Programming Reference for Formatter APIs.

&RGH (UURU�1DPH (UURU�0HVVDJH ([SODQDWLRQ 5HVSRQVH

72 System Management Guide for OS/390

Migrating Formats and Rules
0LJUDWLQJ�5XOHV�

Before you migrate rules, run the MQIntegrator r. 3.2 Consistency Checker
program on the MQIntegrator r. 3.2 database to check for database errors. Fix
any problems found with the Consistency Checker in the MQIntegrator r. 3.2
database before you proceed. See Consistency Checker on page 179.

Verify that the target database has enough space for the information to be
migrated. Use NNRIE to export existing rules from a MQIntegrator 3.2
database and import to a MQSeries Integrator 1.1 database. Run the NNRIE
executable to export rules from the MQIntegrator 3.2 database. NNRIE
creates a text-based export file that can be interchanged between platforms.
All application groups and their associated message types and rules must be
exported.

The exported file should then be imported. Run the NNRIE executable again
to import rules to the MQSeries Integrator 1.1 database.

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule “r1” and another rule “R1”. In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If you import components exported from a case-sensitive database into a
case-insensitive database, NNRIE may fail during import if a conflict arises
between two components named the same with only case differences.

&KDUDFWHU�6RUW�2UGHU
Rules using string comparisons can evaluate differently on an EBCDIC
machine and on an ASCII machine. The user must be careful when importing
a rule set from an ASCII machine to an EBCDIC machine (or vice versa).

In ASCII, the order of characters is 0 - 9 < A - Z < a - z.

For EBCDIC, the order of characters is a - z < A - Z < 0 - 9.
System Management Guide for OS/390 73

Chapter 3
For NEONRules, this difference in character sort has the following
consequences:

,PSRUWLQJ�DQG�([SRUWLQJ�5XOHV�
NNRIE is used to export rule definitions and subscriptions not associated
with a rule from a database to a file, and to import the exported file into a
database.

Subscriptions are added to an Application Group/Message Type (Rule Set),
and can be associated with multiple rules in the same Application Group/
Message Type. The rule name is no longer used to identify subscriptions, so
data migration may require subscription names to be generated for
uniqueness. The user is prompted to generate the new subscription names.

NNRIE allows the user to export rule definitions from a database to a file and
to import the exported file into a database. With the NNRIE program, you can
export subscriptions, single rules, rulesets, messages types, and application
groups.

5XOH�$UJXPHQW 5HVXOWV

int or float comparison no difference

string comparison (=) no difference

string comparison with only numeric characters no difference

string comparison with only alphabetic characters no difference

case-sensitive string comparison with only
uppercase or lowercase alphabetic characters

no difference

string comparison (<, <=, >, >=) with alphabetic and
numeric characters

possibly different

case-sensitive string comparison (<, <=, >, >=) with
mixed case alphabetic characters

possibly different
74 System Management Guide for OS/390

Migrating Formats and Rules
Using NNRIE to export rules requires the following preparation:

n DB2 must be installed.

n The operating system supports standard input, standard output, and
standard error stream sources and sinks (SYSIN, SYSPRINT,
SYSOUT).

n The Rules database schema and the Formatter database schema must
be created.

n The Rules data in the database must be created using the Rules GUI
or the Rules Management APIs.

n The target database has enough disk space allocated to hold the
output file.

1RWH�
The user must unencrypt an NNRIE export file created on an ASCII platform
prior to running NNRIE on OS/390. For more information, see File Encryption
and NNCRYPT.

The SQLSVSES DD-name must reference a valid dataset containing valid
SQLSVSES entries, or the application fails to connect to DB2 and terminates.
When importing rules on OS/390, the owner of the rules is set to the userID
of the person submitting the NNRIE import job, for example, the DB2 special
register USER.

When exporting, the DCB attributes of the export files should be set to
DSORG=PS, RECFM=VB, LRECL=32756, BLKSIZE=32760. The export
records may be very large.

1RWH�
The WORKFILE, FAILFILE, IMPORTFL, and any other non-print class files
should be allocated with the same DCB attributes before the job is executed.

115,(�
The following sample job control language (JCL) is provided to illustrate how
to run the NNRIE job in batch and pass startup parameters to it. The JCL at
System Management Guide for OS/390 75

Chapter 3
your site will be different. See Tailoring Jobs for Your Site on page 17 for
information about the symbolic parameters in this sample.

//* <insert a valid jobcard here >
//*
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//*NNRIE: Rules Import/Export Utility *
//* *
//**
//NNRIE PROC PRM=('-export DD:EXPORTFL -o -v -v -v ’),
// SMPHLQ='<smphlq>', HLQ for NEONet distrib libs
// MQSHLQ='<mqshlq>', HLQ for MQS runtime libs
// CEEHLQ='<lehlq>', HLQ for Lang Envir libs
// CSSHLQ='SYS1', HLQ for Callable Sys Svcs (CSS-)Lib
// SQLMEM='SQLSVSES', MEMbername for SQLSVSES cntl cards
// INIMEM='CLIINI', MEMbername for CLIINI cntl cards
// OPCLAS='*' SYSOUT CLASS
//*
//STP0101 EXEC PGM=NNRIE,
// PARM=&PRM
//*
//* <tailor the member STEPLIB and copy it here>
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2 CLI high-level tracing
//SYSIN DD DUMMY
// PEND
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
76 System Management Guide for OS/390

Migrating Formats and Rules
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//*
//*
//*SAMPLE EXPORT JCL
//*
//*NNRIE EXEC NNRIE,
//* PRM=(’-export DD:EXPORTFL -o ’)
//*//FAILFILE DD DISP=SHR,DSN=<your-fail-file>
//*//RIEWRKFL DD DISP=SHR,DSN=<your-work-file>
//*//EXPORTFL DD DISP=SHR,DSN=<your-rules-export-file>
//*//INVTRYFL DD DISP=SHR,DSN=<your-rules-export-file>
//*//ALTCMD DD DUMMY
//*
//*SAMPLE IMPORT JCL
//*
//NNRIE EXEC NNRIE,
// PRM=(’-import DD:IMPORTFL -o ’)
//FAILFILE DD DISP=SHR,DSN=<your-fail-file>
//RIEWRKFL DD DISP=SHR,DSN=<your-work-file>
//IMPORTFL DD DISP=SHR,DSN=<your-rules-import-file>
//NNRIET DD DISP=SHR,DSN=<your-rules-export-file>
//CNFLCTFL DD DISP=SHR,DSN=<your-rules-export-file>
//ALTCMD DD DUMMY

6\QWD[
NNRIE (-C [<command filename>] | -V |
(-i | -import [<import filename>]
 [-T [<trace filename>]]
 [-o|-O|-l [<inventory conflict report filename>]
 |-g|-n]
 [-f [<failure report filename>]
 [-s [<session name>]) |
(-e | -export [<export filename>]
 [-t [<inventory report filename>]]
 [[[-a <appname> [...]]
 [-m <msgname>] [...]]
 [-r <rulename>] [...]] | [-S <subsname> [...]]]
 [-s <session name>])
 [-c <database configuration file name>])
System Management Guide for OS/390 77

Chapter 3
3DUDPHWHUV

5HPDUNV

NNRIE shows a brief usage reminder if it is entered with no parameters. If
the -V parameter is used, only the version and copyright information is
displayed. If no export options are provided (-a, -m, -r, or -S), the entire
database is exported.

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-C [<command
filename>]

Optional Alternate command file. The default is
DD:ALTCMD. If -C is provided, NNRIE
reads command line options from the
specified file instead of the command line.

-V (version) Optional Shows program version information only
and does no processing.

-i |-import
[<import
filename>]

Mandatory Required parameter to import data;
mutually exclusive from -e. This
parameter can include the name of a file
that contains the import data. The default
is DD:IMPORTFL. The referenced file
must have been created with the NNRIE
-e option.

-e | -export
[<export
filename>]

Mandatory Required parameter to export data;
mutually exclusive from -i. This parameter
can include the name of a file that contains
the export data. The default is
DD:IMPORTFL.

-s [<session
name>]

Optional Name of session name in SQLSVSES;
defaults to NNRIE.

-c <configuration
filename>

Optional Indicates the name of the configuration
file. The default configuration file is
SQLSVSES.
78 System Management Guide for OS/390

Migrating Formats and Rules
,PSRUWLQJ�5XOHV

6\QWD[
NNRIE (-i | -import [<import filename>]
 [-T [<trace filename>]]
 [-o|-O|-l [<inventory conflict report filename>]|-g|-n]
 [-f [<failure filename>]]
 [-s [<session name>]])

3DUDPHWHUV

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-i | -import
[<import
filename>]

Mandatory Required parameter to import data;
mutually exclusive from -e. This
parameter can include the name of a file
that contains the import data. The default
is DD:IMPORTFL.

-T [<trace
filename>]

Optional Specifies the name of the trace file. The
default is DD:NNRIET.

-O Optional Overwrites imported message types. The
default behavior is off (do not overwrite).

-o (overwrite
flag)

Optional The default behavior is off (do not
overwrite). If this parameter is set during
import, and a rule or subscription defined
in the import file exists in the importing
database, the old rule is overwritten with
the new definition if you have update
permission. If the user does not have
update permission, an error is noted and
the rule is replaced. If not overwriting
rules, any rule that cannot be processed
because it already exists and is different in
expression or subscription links in the
importing database is noted.
System Management Guide for OS/390 79

Chapter 3
Use the following syntax to overwrite component by component:

NNRIE -i <filename> -o

Use the following syntax to import and completely overwrite the application
group/message type pair in the database:

NNRIE –i DD:IMPORTFL –O

7UDFLQJ�,PSRUW�3URJUHVV

The user can track the progress of the import using the trace option. Use the
following syntax to trace the command and save to a log file.

To track the progress on an import, enter the following:

NNRIE –i DD:NNRIET –T

This command shows, line by line, what will be imported. If a process fails,
the log stops within the errant process.

7UDFH�/HWWHUV

The following alphabetic characters define import and export components
that have been processed by NNRIE. These characters are displayed during
import and export as progress indicators:

-l [<conflict
report
filename>]

Optional Reports on any import conflicts, but does
not import data. The default behavior is
off. The default is DD:CNFLCTFL.

-f [<failure
filename>]

Optional Specifies the failure file that contains lines
not imported. The default is FAILFILE.
This file can be used as an import file after
the issues causing the failure are
addressed.

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ
80 System Management Guide for OS/390

Migrating Formats and Rules
5HVROYLQJ�&RPSRQHQW�&RQIOLFWV
A conflict occurs when an imported rule or subscription does not match an
existing component of the same name and type in the database. The user can
overwrite the component definition, ignore or skip the component, or rename
the imported component.

When a component is overwritten, the component definition within the
export file is imported into the database.When a component is ignored or
skipped, the component in the export file is not imported. Skipping or
overwriting components does not affect the integrity of the database,
however, a cleanup utility might have to be implemented. If the user renames
a component, all references to that component in the export file are updated.

&KDUDFWHU 'HVFULSWLRQ

A Application Group

M Message Type

R Rule

e Rule expression written to file or added to database

n Permission (rule or subscription)

S Subscription; written to file or added to database

C Action; written to file or added to database

P Option; written to file or added to database

s Subscription; read from file

c Action; read from file

p Option; read from file

l Subscription linked to rule in database
System Management Guide for OS/390 81

Chapter 3
The user can choose to resolve conflicts in interactive mode or batch mode.
Interactive conflict resolution is the default option. All conflicts and
resolutions are reported to the NNRIE log file.

Use the following syntax to produce a report of import conflicts. Unless the
user specifies a filename, the report is written to the NNRIE log file.

NNRIE -i <import filename> -l <conflict report filename>

If rule or subscription conflicts exist, NNRIE goes into interactive mode. Do
not leave NNRIE running unattended, unless you specify to overwrite
existing rules and subscriptions with -o or message types with -O.

1RWH�
Interactive mode is only available for use on a Windows NT workstation or
UNIX-based workstation. It is not available on the OS/390 platform.

5HVROYLQJ�&RQIOLFWV�LQ�%DWFK�0RGH

Overwrite and Ignore/Skip options are available for resolving conflicts in
batch mode. The selected option is used to resolve all conflicts.

Use the following code to implement batch Overwrite conflict resolution:

NNRIE -i <filename> -o

Use the following code to implement batch Ignore/Skip conflict resolution:

NNRIE -i <filename> -g

Use the following syntax to replace an entire application group/message type
pair:

NNRIE –i <filename> –O

This command deletes each message type and all the Rules and subscriptions
under it before importing new information. If it fails to delete because of
rights violations or other problems, it returns an error message and does not
import the new information.
82 System Management Guide for OS/390

Migrating Formats and Rules
5HVROYLQJ�&RQIOLFWV�LQ�,QWHUDFWLYH�0RGH

Overwrite, Ignore/Skip, and Rename options are available for resolving
conflicts in interactive mode on an Windows NT workstation or UNIX-based
workstation. If the user implements interactive conflict resolution,
descriptions of the existing components and the import components are
displayed.

Use the following syntax to implement interactive conflict resolution:

NNRIE -i <filename> -n

1RWH�
NNRIE is not designed to import or export databases that are corrupted or
have unresolved issues with the data.

7URXEOHVKRRWLQJ�,PSRUW�3UREOHPV

If NNRIE is unable to import an application group, message type, rule or
subscription, the error information is written to the DD:FAILFILE file. The
reason for the component’s failure to import is written to the DD:RIEWRKFL
file.

Refer to the documentation on the import file format for instructions on
editing the DD:FAILFILE file if it is version 1.1.

1RWH�
The information in DD:FAILFILE is not guaranteed to resolve your
importation problem; rather, it should be viewed as a resource that will help
you determine where the problem is in your import file.

All conflicts and resolutions are reported to the DD:RIEWRKFL file. The
following code illustrates a sample DD:RIEWRKFL file:

Conflict with Subscription: ’S3’
 App Name: ’MsgTest’
 Msg Name: ’MsgTest’
 Subs in import file:
 Owner: ’Public’
 Comment: ’New Checking’
 Subs in Database:
System Management Guide for OS/390 83

Chapter 3
 Owner: ’PUBLIC’
 Comment: ’’
 Conflict Exists in : Comment

([SRUWLQJ�5XOHV

6\QWD[
NNRIE (-e | -export [<export filename>]
 [-t [<inventory report filename>]]
 [-a <appname>]
 [-m <msgname>]
 [-r <rulename>] | [-S <subsname>]
 [-o]
 [-q <comments in double quotes>]
 [-Q <comments filename>]
 [-s [<session name>])

3DUDPHWHUV

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-e | -export
[<export
filename>]

Mandatory Required parameter to export data;
mutually exclusive from -i. This parameter
can include the name of a file that contains
the export data. The default is
DD:IMPORTFL.

-a [<appname>] Optional Identifies an application group to export. If
a value for this parameter is not defined,
all application groups are exported. This
parameter can be repeated to define
multiple application groups to export.

-m [<msgtype>] Optional Specifies the message type to export. This
parameter requires the -a parameter.
Default is export all message types within
the specified application group. This
parameter can be repeated to define
multiple message types within the same
application group.
84 System Management Guide for OS/390

Migrating Formats and Rules
([SRUWLQJ�DQ�(QWLUH�'DWDEDVH

Use the following syntax to export an entire database:

NNRIE -e [<export file name>] [-s <session name>]

([SRUWLQJ�D�6LQJOH�$SSOLFDWLRQ�*URXS

NNRIE -e [-a <appname>]

-S [<subsname>] Optional Specifies the name of the subscription to
export. This parameter requires the -a and
-m parameters. This parameter can be
repeated to export multiple subscriptions.

-r [<rulename>] Optional Specifies the name of the rule to export.
This parameter requires the -a and -m
parameters. Default is export all rules
within the specified application group and
message type. This parameter can be
repeated to define multiple rules within
the same application group and message
type.

-t [<inventory
report
filename>]

Optional Creates an inventory of an export file in
DD:INVTRYFL (does no processing).

-o (overwrite
flag)

Mandatory for
OS/390 only

The default behavior is off (do not
overwrite). If this parameter is set during
export, the export file is overwritten.

-q <comments in
double quotes>

Optional Adds comments enclosed in quotation
marks to beginning of export file
SQLSVSES.

-Q <comments
filename>

Optional Adds contents of <comments filename> to
beginning of export file.

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ
System Management Guide for OS/390 85

Chapter 3
The application group name is exported, and then each message type within
the application group is exported. The message type export includes all
subscriptions and rules in the specified application group/message type.

([SRUWLQJ�D�0HVVDJH�7\SH�IRU�DQ�$SSOLFDWLRQ�*URXS

NNRIE -e [-a <appname>] [-m <msgname>]

The application group name and message type name are exported, and then
the rules are exported with the links to subscriptions. All subscriptions in the
application group/message type are exported, whether or not they are linked
to rules. If multiple message type names are given, the subscriptions and
rules for each message type are exported.

([SRUWLQJ�D�6LQJOH�5XOH

NNRIE -e [-a <appname>] [-m <msgname>] [-r <rulename>]

The rule’s application group name and message type name are exported. All
subscriptions linked to the rule are exported with permissions, actions, and
options. Then the rule information is exported with permissions, expressions,
and links to subscriptions. If multiple rule names are given, the subscriptions
linked to each rule are exported with no duplicates, and then the rules are
exported.

([SRUWLQJ�D�VLQJOH�VXEVFULSWLRQ

NNRIE -e [-a <appname>] [-m <msgname>] [-S <subsname>]

No rule information is exported. The application group and message type
name information are exported, and then the subscription information is
exported without a rule name. If multiple subscriptions are given, each
subscription is exported.

3URGXFLQJ�DQ�,QYHQWRU\�([SRUW�)LOH
The inventory export file provides a tool to determine the items contained
within an export file. The default log file is DD:INVTRYFL.

NNRIE –t DD:INVTRYFL
86 System Management Guide for OS/390

Migrating Formats and Rules
The following code illustrates a sample inventory report for NNRIE export
file named DD:INVTRYFL:

App Group: App1 Msg Type: AccDataIn Eval Type:
 NEONET_FORMATTER
 Sub: SendFeeQ Comment:
 Action: reformat
 Option Name: INPUT_FORMAT Value: AccDataIn
 Option Name: TARGET_FORMAT Value: AccDataOut
 Action: putqueue
 Option Name: OPT_TARGET_QUEUE Value: FeeQ
 Option Name: OPT_MSG_TYPE Value: AccDataOut
 Owner: gfullerton
 Sub: SendPromoQ Comment:
 Action: reformat
 Option Name: INPUT_FORMAT Value: AccDataIn
 Option Name: TARGET_FORMAT Value: AccDataOut
 Action: putqueue
 Option Name: OPT_TARGET_QUEUE Value: PromoQ
 Option Name: OPT_MSG_TYPE Value: AccDataOut
 Owner: gfullerton
 Rule: MinBalCheck
 Owner: gfullerton
 Expr: (AccOpenDate DATETIME>= 19970601120000 | AccType
 STRING= FEE) & Balance INT< 200
 Rule/Sub Link: Rule: MinBalCheck Sub: SendFeeQ
 Rule: NoMinCheck
 Owner: gfullerton
 Expr: AccType STRING= FREE & AccOpenDate DATETIME<
 19990601120000 & Balance INT>= 200
 Rule/Sub Link: Rule: NoMinCheck Sub: SendFeeQ
 Rule: CrazyRule
 Owner: gfullerton
 Expr: AccType EXIST
 Rule/Sub Link: Rule: CrazyRule Sub: SendFeeQ
 Rule: RealCrazyRule
 Owner: gfullerton
 Expr: AccOpenDate EXIST
 Rule/Sub Link: Rule: RealCrazyRule Sub: SendFeeQ
 Rule/Sub Link: Rule: RealCrazyRule Sub: SendPromoQ
App Group: App1 Msg Type: AccDataIn2 Eval Type:
 NEONET_FORMATTER
 Rule: Rule1
System Management Guide for OS/390 87

Chapter 3
 Owner: gfullerton
 Expr: AccType EXIST
App Group: MsgTest Msg Type: MsgTest Eval Type:
 NEONET_FORMATTER
 Sub: AS1 Comment: "None"
 Action: reformat
 Option Name: INPUT_FORMAT Value: MsgTest
 Option Name: TARGET_FORMAT Value: F1out
 Action: putqueue
 Option Name: OPT_TARGET_QUEUE Value: Q2Out
 Option Name: OPT_MSG_TYPE Value: MsgTest

115,(�5HDGDEOH�)LOHV
Earlier versions of NNRIE exported and imported encrypted files. In earlier
releases, the only access to the Rules database configurations was through the
Rules GUI. With the export files in a readable form, the user can write or
modify scripts that create NEONRules components.

:$51,1*�
Use the Rules GUI to modify rules and subscriptions. The following
information is provided for users who are experienced with importing and
exporting rules.

115,(�+HDGHU

When an NNFIE export file is created, a header file can be added to the
beginning of the file. This file logs information about the data source and
creation of the export file.

Use the following code to add a header file:

NNRIE -e <filename> -Q <comment file>

The header file contains the following information:

1. Time of creation (using Greenwich Mean Time)

2. Version of NNRIE

3. Database logon information

4. Database server version
88 System Management Guide for OS/390

Migrating Formats and Rules
5. Operating system version

The first character in the header file is a pound sign (#), which indicates that
the comments should be ignored by NNRIE during import. The user can
specify additional comments using the following export option:

NNRIE -e <filename> -q "additional comment between quotes"

)RUPDWWLQJ�115LH�([SRUW�'DWD�

Each NEONRules component definition begins with a five-digit number that
is the rule component type code defining the layout for the line, for example,
10001. The following structural concepts can help the user navigate through a
typical NNRIE export file.

n The first line contains only an R (for Rules).

n The second line indicates the version number of the export file, 1.1.

n Commas are the field delimiters.

Do not put spaces around commas.

n A comma used within a field must be preceded by a backslash (\).

n Components of an application group/message type must be listed in
the following order:

– application group

– message type

– subscription definitions

– rules definitions

n Subscriptions must be listed before rules in the file.

The following pseudocode illustrates the structure of an NNRIE export file:

R
Version
App1
Msg1 (in App1)
Sub1 (in App1/Msg1)
Action 1 (in Sub1)
Option1 (in Action1)
System Management Guide for OS/390 89

Chapter 3
Permission1 (for Sub1)--only owner and update are listed
Sub2
Action1
Option1
Permission1--owner
Permission2--update
Rule1 (in App1/Msg1)
Permission1 (for Rule1)--only owner and update are listed
Expression (for Rule1)
SubscriptionLink 1 (for Rule1)
Msg2 (in Appl)
}
App2
Msg1 (in App2)
}
Msg2 (in App2)
}

5XOH�&RPSRQHQWV

The following code illustrates a sample component inventory file. Each of the
components is described. For more information about the components, see
the Rules chapter.

R
10001,4.1
10002,sja
10003,sja,InFlat,NEONET_FORMATTER
10007,sja,InFlat,,s1,,1998/07/14-09:44:43.0,1998/07/1409:44:43.0,1
10008,sja,InFlat,,s1,putqueue,1
10009,sja,InFlat,,s1,putqueue,1,OPT_TARGET_QUEUE,1,HitQ
10009,sja,InFlat,,s1,putqueue,1,OPT_MSG_TYPE,2,InFlat
10012,sja,InFlat,,s1,RUL40RUTH,Owner,Granted
10012,sja,InFlat,,s1,RUL40RUTH,Update,Granted
10007,sja,InFlat,,s2,,1998/07/17-08:58:50.0,1998/07/17-08:58:50.0,1
10008,sja,InFlat,,s2,putqueue,1
10009,sja,InFlat,,s2,putqueue,1,OPT_TARGET_QUEUE,1,HitQ
10009,sja,InFlat,,s2,putqueue,1,OPT_MSG_TYPE,2,InFlat
10012,sja,InFlat,,s2,RUL40RUTH,Owner,Granted
10012,sja,InFlat,,s2,RUL40RUTH,Update,Granted
10004,sja,InFlat,r1,1,0,0,1
10010,sja,InFlat,r1,PUBLIC,Update,Granted
10010,sja,InFlat,r1,RUL40RUTH,Owner,Granted
90 System Management Guide for OS/390

Migrating Formats and Rules
10010,sja,InFlat,r1,RUL40RUTH,Update,Granted
10011,sja,InFlat,r1,F1 NOT_EXIST ,1998/07/17-08:59:19.0,
 1998/07/1708:59:19.0
10013,sja,InFlat,r1,s1
10004,sja,InFlat,r2,1,0,0,1
10010,sja,InFlat,r2,PUBLIC,Update,DenyAll
10010,sja,InFlat,r2,RUL40RUTH,Owner,Granted
10010,sja,InFlat,r2,RUL40RUTH,Update,Granted
10011,sja,InFlat,r2,F1 EXIST ,1998/07/17-08:59:20.0,
 1998/07/1708:59:20.0
10013,sja,InFlat,r2,s1
10013,sja,InFlat,r2,s2

��������,PSRUW�([SRUW�9HUVLRQ�

10001,1.1

1.1 is the version number.

��������$SSOLFDWLRQ�*URXS�

10002,sja

sja is the application group.

��������0HVVDJH�

10003,sja,InFlat,NEONET_FORMATTER

InFlat is the import format name.

NEONET_FORMATTER is the evaluation type. This message type refers to
an input format. For 1.1, this is the only valid evaluation type.

��������5XOH

10004,sja,InFlat,r1,1,0,0,1

&RPSRQHQW 'HVFULSWLRQ

r1 Rule name.

1 Number of arguments.
System Management Guide for OS/390 91

Chapter 3
��������6XEVFULSWLRQ

10007,sja,InFlat,,s2,,1998/07/17-08:58:50.0,
1998/07/17-08:58:50.0,1

��������$FWLRQ

10008,sja,InFlat,,s2,putqueue,1

 0,0 Not used; ignore these values.

1 Active flag;1 is active, 0 is inactive.

&RPSRQHQW 'HVFULSWLRQ

s2 Subscription name; preceded and followed by NULL
values, delimited by commas.

1998/07/17-08:58:50.0 Enable date.

 1998/07/17-08:58:50.0 Disable date.

1 Active flag;1 is active, 0 is inactive.

&RPSRQHQW 'HVFULSWLRQ

s2 Subscription name; preceded by a NULL value,
delimited by commas.

putqueue Subscription action.

1 Action sequence number.

&RPSRQHQW 'HVFULSWLRQ
92 System Management Guide for OS/390

Migrating Formats and Rules
��������2SWLRQ�

10009,sja,InFlat,,s2,putqueue,1,OPT_TARGET_QUEUE,1,HitQ

��������5XOH�3HUPLVVLRQ�

10010,sja,InFlat,r1,PUBLIC,Update,Granted

��������5XOH�([SUHVVLRQV

10011,sja,InFlat,r1,F1 NOT_EXIST ,1998/07/17-08:59:19.0,
1998/07/17-08:59:19.0

&RPSRQHQW 'HVFULSWLRQ

OPT_TARGET_QUEUE Option name.

1 Option sequence number.

HitQ Option value.

&RPSRQHQW 'HVFULSWLRQ

r1 Rule name.

PUBLIC Permission group.

Update Permission assigned to PUBLIC for this rule.

Granted Permission assigned to PUBLIC for this rule.

&RPSRQHQW 'HVFULSWLRQ

F1 NOT_EXIST Expression for r1.

1998/07/17-08:59:19.0 Enable date.

1998/07/17-08:59:19.0 Disable date.
System Management Guide for OS/390 93

Chapter 3
��������6XEVFULSWLRQ�3HUPLVVLRQ

10012,sja,InFlat,,s2,RUL40RUTH,Update,Granted

��������5XOH�±�6XEVFULSWLRQ�$VVRFLDWLRQ

10013,sja,InFlat,r1,s1

&RPSRQHQW 'HVFULSWLRQ

s2 Subscription name; preceded by a NULL value.

RUL40RUTH User name.

Update Permissions assigned to RUL40RUTH.

Granted Permissions assigned to RUL40RUTH.

&RPSRQHQW 'HVFULSWLRQ

r1 Rule name.

s1 Links the subscription name to the rule name.
94 System Management Guide for OS/390

&KDSWHU��

)RUPDWWHU

NEONFormatter is packaged as a library of C++ objects that have public
functions that constitute the Application Programming Interface (API).
Application developers develop applications that call public Formatter
functions to parse and reformat messages.

:KDW�LV�)RUPDWWHU"

NEONFormatter has two main functions: parsing and reformatting.

n Parse separates an input message into individual fields.

n Reformat converts an input message into an output message with a
different format.

NEONFormatter uses format definitions that describe how to parse an input
message and how to format an output message. Format definition data
resides in a relational database. Users build and modify format definitions
using one of two methods: the Formatter GUI tool or the Formatter
Management API functions.

The NEONFormatter GUI tool is a program with a graphical user interface that
lets users enter format definition data and this information is then stored in a
relational database.

Formatter Management API functions are a set of C functions that create
format definition data in a relational database. Users can write their own
applications that call the management API functions to build format
definitions.

APITEST and MSGTEST are two modules that show how to invoke the public
functions and serve as tools for validating format definitions. The APITEST
System Management Guide for OS/390 95

Chapter 4
module parses an input message and displays a hierarchical representation of
the parse tree. The MSGTEST module reformats an input message into an
output message.

The Consistency Checker verifies the integrity of the format definition data in
the relational database. The Consistency Checker should be run periodically
when format definition data is being built or maintained to insure the
integrity of the data.

NNFIE allows the user to export format definitions from a database to an
export file, and to import from the export file into a database. NNFIE can
import data from a MQIntegrator r.3.2 export file into an MQSeries Integrator
1.1 database. NNFIE 1.1 exports data from an MQSeries Integrator 1.1
database only.

The NEONFormatter GUI tool has its own import and export function as well.
This function uses an export file with a format different from the format used
by NNFIE.

)LHOGV�DQG�,QSXW�&RQWUROV
Information contained within a structured input message can be broken into
individual fields using input controls. Input controls define how to parse an
individual field. Fields are defined by a unique name and input control
information used to define their beginning and end. Fields are cohesive parts
of a message representing some type of information.

Each field has an associated parse control describing how to identify the field
in the message. Input control information includes the data type for the field,
tags preceding and following the field, the length of the field, the number of
times the field repeats within a message, and literals. Repetition count
indicates how many times a certain field appears in a message.

NEONFormatter supports several data types including String, Numeric, and
Binary. See Data Type Descriptions on page 215 for a complete list of supported
data types.

Tags are sets of bits or characters explicitly defining a string of data. For
example, <DATE> and </DATE> might mark the beginning and end of a
date field in a message.

Literals are symbols used in programming languages. For example, a literal
can represent numbers or strings that provide an actual value instead of
96 System Management Guide for OS/390

Formatter
representing possible values. Literals can only contain values and are often
used as delimiters to separate fields in a message.

Regular expressions (REs) are strings expressing rules for string pattern
matching. Within input parse controls, use REs to match string field data in
input fields. Instead of searching for a defined literal, use an RE to search for
complex string patterns in field data. String-matching capabilities
implemented comply with the POSIX 1003.2 standard for regular expressions.

For more information on literals and regular expressions, refer to the
Programming Reference for NEONFormatter.

2XWSXW�&RQWUROV�
Each field in an input message that appears in an output message or is used to
affect a resulting field in an output message must have a matching output
format control. Output controls specify how to get a starting value for the
output field, what data type transformation to perform, and what formatting
operations to perform, for example, prefix, suffix, trim.

Defined in much the same way as parse controls, output controls contain
additional information such as the type of mathematical operation, prefix and
suffix data, user exit routine, pad characters, and default value.

)RUPDWV�
Simple formats are defined by grouping fields and their parse or output
format controls. Messages are described to NEONFormatter using individual
data fields. However, there can be several layers of complexity in a format
definition before the actual field values within a message can be determined.

Formats can be flat or compound. Flat formats only contain fields and their
input or output format controls. Compound formats contain one or more
formats, each of which can be either flat or compound.

Both flat and compound input formats contain fields and parse controls, and
are used to parse messages so they can be reformatted according to flat or
compound output formats.

Each format must be defined by the user. However, once a format is defined,
the format is available to be used during translation. You can use either the
NEONFormatter GUI or NEONFormatter Management APIs to define and
configure format descriptions.
System Management Guide for OS/390 97

Chapter 4
Using the reformat() API, NEONFormatter can translate a message into a
different message using the descriptions for the input and output formats
defined by the user. During translation, NEONFormatter uses the parse() API
to divide the message into individual fields.

)RUPDW�6WRUDJH
NEONFormatter uses user-defined format descriptions to recognize and parse
input messages and reformat output messages. NEONFormatter uses these
descriptions to interpret the values in incoming messages and to construct
outgoing messages.

Possible transformations NEONFormatter can handle include:

n Adding, removing, or rearranging data, literals, tags, and delimiters.

n Converting between data types.

n Inserting literals into output.

n Inserting headers and trailers, including control characters, around
any field.

n Performing arithmetic operations on numeric data.

n Executing user-written data translation functions.

n Executing user-written callback functions for user-defined type input
field validation.
98 System Management Guide for OS/390

Formatter
3DUVLQJ�DQG�5HIRUPDWWLQJ�
NEONFormatter parses a message, using the parse() API to divide a message
into the individual fields specified in its input control. When a message is
parsed, the intermediate field results can be used.

The parsed message can then be reformatted using the reformat() API in a
specified output message format. If the message provided to reformat() has
not been parsed using parse(), reformat() calls parse() before reformatting the
message.

Message Formatting

Message

Message split into fields

Fields moved/
transformed and data

added/removed.

Output Message

Message
split into
individual

fileds.

Results.
System Management Guide for OS/390 99

Chapter 4
$XWRPDWLF�)RUPDW�&RQYHUVLRQ
Higher-level APIs can request NEONFormatter to reformat messages just
before delivery to the receiving application by invoking dynamic formatting
as a get option. Reformatting locations can vary, depending on the location of
resources, such as source data, necessary to format the new message.

7HVWLQJ�)RUPDWV�

Two test programs are provided with Formatter: MSGTEST and APITEST.
The APITEST program parses a message and outputs the message structure
and contents; it does not reformat a message. The MSGTEST program
provides testing for the entire range of Formatter functionality.

Before running the Formatter test programs, you must verify that the
SQLSVSES file includes the relevant information to be used to execute this
program. The session name for the Formatter modules is new_format_demo.
The syntax is:

new_format_demo:DB2PROD:USER001:XXXXX:USR001:

Run MSGTEST to test input and output formats. Run APITEST to validate
input formats and to view how Formatter interpreted a message. The source
code for MSGTEST and APITEST is included in the Programming Reference
for NEONFormatter. See MSGTEST and APITEST members in the
<smphlq>.SNEOCPP library. Refer to this source code for using the
Formatter API functions.

1RWH�
With the addition of Formatter debug functions, both MSGTEST and
APITEST have an additional command line parameter:
msgtest ... -d [filename]
apitest ... -d [filename]

This function sets debugging mode to parse for this run of MSGTEST and
APITEST. [filename] specifies an optional file where debug information will
be written. If [filename] is not specified, debug information is written to the
standard output stream (STDOUT) SYSPRINT. The default DD-name in the
distribution JCL is DD:DBGLOG.
100 System Management Guide for OS/390

Formatter
$3,7(67�
The APITEST module outputs the structure and contents of a message parsed
by Formatter. The input parameters (input filename and input format name)
are provided in the SYSIN data stream:

The APITEST module calls the following APIs:

n Formatter::GetParsedInMsgCount
n Formatter::GetParsedInMsg
n ParsedMessage::GetMsgComp
n ParsedMessage::GetInfo
n ParsedMessage::GetCompCount
n ParsedMessage::GetFieldComp
n ParsedField::GetInfo
n ParsedField::GetStringValue
n ParsedField::GetValue

&RPSLOLQJ�DQG�/LQNLQJ�$3,7(67
The following sample job control language (JCL) is used to compile and link
APITEST:

//* <insert a valid JOBCARD here>
//*
//***
//* *
//* Licensed Materials - Property of New Era of Networks, Inc.*
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//***
//PROCLIST JCLLIB ORDER=(<smphlq>.SNEOPROC,SYS1.PROCLIB)
//COMPILE EXEC CBCCL15,
// INFILE=’<smphlq>.SNEOCPP’,
// INCFILE=’<smphlq>.SNEOH’,
// OUTFILE=’<smphlq>.SNEOLOAD’,
// MEMBER=’APITEST’
//LKED.SYSIN DD *
 NAME APITEST(R)
System Management Guide for OS/390 101

Chapter 4
//

$3,7(67
The following sample job control language (JCL) is provided to illustrate how
to run the APITEST job in batch and pass startup parameters. The JCL at your
site will be different. See Tailoring Jobs for Your Site on page 17 for information
about the symbolic parameters in these samples.

//* <insert a valid jobcard here >
//*
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//* APITEST: Test Formatter parse function *
//* *
//**
//APITEST PROC PRM=(’-d DD:DBGLOG’), run-time parms
// SMPHLQ=’<smphlq>’, HLQ for NEONet distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-) Lib
// SQLMEM=’SQLSVSES’, MEMbername for SQLSVSES cntl cards
// INIMEM=’CLIINI’, MEMbername for CLIINI cntl cards
// OPCLAS=’*’ DEFAULT SYSOUT CLASS
//*
//STP0101 EXEC PGM=APITEST,PARM=&PRM
//*
//* <tailor the member STEPLIB for your site and copy it here>
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
//SYSUDUMP DD SYSOUT=&OPCLAS
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
102 System Management Guide for OS/390

Formatter
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2 v5 CLI high-level tracing
// PEND
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//APITEST EXEC APITEST,PRM=(’ -d DD:DBGLOG’)
//DBGLOG DD SYSOUT=*
//APIIN DD DISP=SHR,DSN=<your-message-file>
//SYSIN DD *
DD:APIIN
<your-format-name>
/*
//

06*7(67��
The MSGTEST module adds an input message and an output format to
Formatter, reformats the message text provided in an input file, and outputs
the results to an output file. The input and output parameters are provided in
the SYSIN data stream:

n input file name that contains the message text

n output file name

n input format name

n output format name

The MSGTEST module calls the following APIs:

n Formatter::AddInputMessage

n Formatter::AddOutputFormat

n Formatter::Reformat

n Formatter::GetOutMsgGroup

n OutMsgGroup::GetMsgCount

n OutMsgGroup::GetMsg
System Management Guide for OS/390 103

Chapter 4
n OutMsg::GetMsgBuffer

n OutMsg::GetMsgLength

&RPSLOLQJ�DQG�/LQNLQJ�06*7(67
The following sample job control language (JCL) compiles and links
MSGTEST:

//* <insert a valid jobcard here>
//*
//***
//* *
//* Licensed Materials - Property of New Era of Networks, Inc.*
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//***
//PROCLIST JCLLIB ORDER=(<smphlq>.SNEOPROC,SYS1.PROCLIB)
//COMPILE EXEC CBCCL15,
// INFILE=’<smphlq>.SNEOCPP’,
// INCFILE=’<smphlq>.SNEOH’,
// OUTFILE=’<smphlq>.SNEOLOAD’,
// MEMBER=’MSGTEST’
//LKED.SYSIN DD *
 NAME MSGTEST(R)
//
104 System Management Guide for OS/390

Formatter
06*7(67
The following sample job control language (JCL) illustrates how to run the MSGTEST
job in batch and pass startup parameters. The JCL at your site will be different. See
Tailoring Jobs for Your Site on page 17 for information about the symbolic parameters
in these samples.

//* <insert a valid jobcard here >
//*
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//* MSGTEST: Test Formatter parse and reformat function *
//* *
//**
//MSGTEST PROC PRM=(’-d DD:DBGLOG’), run-time parms
// SMPHLQ=’<smphlq>’, HLQ for NEONet distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-) Lib
// SQLMEM=’SQLSVSES’, MEMbername for SQLSVSES cntl cards
// INIMEM=’CLIINI’, MEMbername for CLI INI cntl cards
//* OPCLAS=’*’, SYSOUT CLASS
//*
//STP0101 EXEC PGM=MSGTEST,
// PARM=&PRM
//*
//* <tailor the member STEPLIB and copy it here>
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2 v5 CLI high-level tracing
System Management Guide for OS/390 105

Chapter 4
// PEND
//*
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//* All datasets used by NEONet must be preallocated and cataloged
//* prior to running any NEONet jobs. The recommended DCB attributes
//* are: DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//MSGTEST EXEC MSGTEST,
// PRM=(’-d DD:DBGLOG’)
//DBGLOG DD SYSOUT=*
//INFILE DD DISP=SHR,DSN=<your-input-message-file>
//OUTFILE DD DISP=SHR,DSN=<your-output-message-file>
//SYSIN DD *
DD:INFILE
DD:OUTFILE
<your-input-format-name>
<your-output-format-name>
/*

//
106 System Management Guide for OS/390

Formatter
&UHDWLQJ�)RUPDWWHU�8VHU�([LWV

A NEONFormatter user exit allows the user to externally customize
NEONFormatter. A user exit should be created when the type of reformatting
available in the standard Formatter product does not meet the user’s
requirements. The user-defined exit function replaces the lookup stub
NNUESTUB.cpp. See NNUESTUB on page 122.

NEONFormatter calls the application to provide the function address. The user-
defined exit code shares a location with NEONFormatter. The
<smphlq>.SNEOULOD library is provided to hold user-defined user exits.
NEONFormatter takes a field from a parsed format and passes the field to the
user exit. The value changes as part of the reformat() function, and the new
value is passed back to the field. NEONFormatter APIs include C++ user exit
APIs. See Programming Reference for NEONFormatter APIs.

%XLOGLQJ�DQG�,QVWDOOLQJ�D�&���8VHU�([LW
On OS/390, C++ user exits are written the same as C++ user exits are written
on other platforms. However, to run C++ user exits on OS/390, you construct
a DLL that contains all C++ user exits, instead of relinking the program that
executes NEONFormatter.

One program contains all the user exits. It is compiled and linked into a DLL.
NEONFormatter expects the DLL to be called NNUSER. The default NNUSER
DLL is in the <smphlq>.SNEODLL library. The user should link the
replacement NNUSER DLL into the <smphlq>.SNEOULOD library. This
library is concatenated ahead of the SNEODLL library, so the user-defined
version is executed instead of the default NNUSER DLL.

1RWH�
Do not overwrite the NNUSER member in the SNEODLL library. Save the
NNUSER member using a different file name. This NNUSER member has no
user exits.
System Management Guide for OS/390 107

Chapter 4
8VHU�([LW�6XPPDU\
The following steps are used to create and use C++ user exit functions:

1. Create user exit and user exit Cleanup functions. Functions must
conform to the NN_EXIT_FUNC_t and
NN_EXIT_CLEANUP_FUNC_t types defined in the nnexit.h header
file.

2. Create a routine named NNGetUserExitFuncPtrs() so that a
Formatter instance can look up the function pointers for the user exit
and user exit Cleanup functions given an exit function name.

3. Build a DLL called NNUSER, exporting NNGetUserExitFuncPtrs().

4. Set the STEPLIB so that your NNUSER DLL is found before the stub
version in the MQSeries Integrator library.

5. In the Formatter GUI, specify the name of the exit routine in the Exit
Routine field on the Field Format Output Control Tool window.

The following pseudo-code describes the behavior of a NEONFormatter
instance when it encounters a user exit as part of the reformat process:

user calls Formatter::Reformat()
formatter detects user exit is present and should be used as
part of output format control
formatter checks STEPLIB to determine if already cached
IF not in STEPLIB THEN
 call NNGetUserExitFuncPtrs()
 IF exit function pointer is not NULL THEN
 exit function and exit clean up function pointers added
 to registry
 ENDIF
ENDIF
IF exit function pointer is not NULL THEN
 call user exit
 IF user exit returns NN_ERSTATUS_OK error status THEN
 IF user exit cleanup defined THEN
 call user exit cleanup function
 IF user exit cleanup fails THEN
 set nonfatal error condition
 ENDIF
 ENDIF
108 System Management Guide for OS/390

Formatter
ELSE
 set fatal error condition
END

1RWH�
A user exit cleanup failure does not cause the Formatter reformat process to
fail.

&RPSLOLQJ�DQG�/LQNLQJ�8(7(67
The following sample job control language (JCL) is used to compile and link
MSGTEST as an module called UETEST:

//* <insert a valid jobcard here>
//*
//***
//* *
//* Licensed Materials - Property of New Era of Networks, Inc.*
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//***
//*
//PROCLIST JCLLIB ORDER=(<smphlq>.SNEOPROC,SYS1.PROCLIB)
//COMPILE EXEC CBCCL15,
// INFILE=’<smphlq>.SNEOCPP’,
// INCFILE=’<smphlq>.SNEOH’,
// OUTFILE=’<smphlq>.SNEOLOAD’,
// MEMBER=’MSGTEST’
//LKED.SYSIN DD *
 NAME UETEST(R)
/*
//

8(7(67
The following code runs the UETEST module built in the previous section.

//* <insert a valid jobcard here>
//*
//**
//* *
System Management Guide for OS/390 109

Chapter 4
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//* UETEST: Test Formatter User Exit processing *
//* *
//**
//UETEST PROC PRM=(’-d DD:DBGLOG’), run-time PARMs
// SMPHLQ=’<smphlq>’, HLQ for MQI distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-) Lib
// SQLMEM=’SQLSVSES’, MEMbername for SQLSVSES cntl cards
// INIMEM=’CLIINI’, MEMbername for CLI INI cntl cards
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=UETEST,PARM=&PRM
//*
//* <tailor the member STEPLIB and copy it here>
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
//SYSUDUMP DD SYSOUT=&OPCLAS
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used by DB2 CLI high-level tracing
// PEND
//*
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//UETEST EXEC UETEST,PARM=(’-d DD:DBGLOG’)
//DBGLOG DD SYSOUT=*
//MSGIN DD DISP=SHR,DSN=<your-input-message-file>
110 System Management Guide for OS/390

Formatter
//MSGOUT DD DISP=SHR,DSN=<your-output-message-file>
//SYSIN DD *
DD:MSGIN
DD:MSGOUT
<your-input-format>
<your-output-format>
/*
//

&RPSLOLQJ�DQG�/LQNLQJ�D�6WDQGDUG�8VHU�([LW
The following sample Job Control Language (JCL) is used to compile and link
the NNUSER DLL into the <smphlq>.SNEOULOD library:

//* <insert a valid jobcard here >
//*
//***
//* *
//* Licensed Materials - Property of New Era of Networks, Inc.*
//* *
//* Copyright (C) 1998, 1999, New Era of Networks *
//* Version 4 Release 03 *
//***
//* This JCL will compile the UETEST functions and create *
//* a replacement NNUSER DLL in the <smphlq>.SNEOULOD library.*
//* *
//* The NNUSER DLL is loaded. The functions are called when *
//* an Output Control of type NewUserExit_1 is created, and *
//* a message is reformatted using that output control. *
//***
//PROCLIST JCLLIB ORDER=(<smphlq>.SNEOPROC,SYS1.PROCLIB)
//COMPILE EXEC CBCCL15,
// INFILE=’<smphlq>.SNEOCPP’,
// INCFILE=’<smphlq>.SNEOH’,
// OUTFILE=’<smphlq>.SNEOULOD’,
// MEMBER=’UETEST’,
// PARM.PLKED=(DLLNAME(NNUSER),NOER),
// LPARM=(AMODE=31,RMODE=ANY,DYNAM=NO,CALL=YES)
//PLKED.SYSDEFSD DD DISP=SHR,DSN=<smphlq>.SNEOUEXP(NNUSER)
//LKED.SYSIN DD *
 NAME NNUSER(R)
//
System Management Guide for OS/390 111

Chapter 4
This compile and link JCL calls a cataloged procedure. This cataloged
procedure contains symbolic parameters. You may have to modify the
default symbolic parameters for your site. See Tailoring Jobs for Your Site on
page 17.

//**
//* MQI COMPILE PRELINK AND LINK A C++ PROGRAM *
//* VERSION 4.03 *
//* *
//**
//*
//CBCCL PROC INFILE=, INPUT ... REQUIRED
// OUTFILE=, OUTPUT ... REQUIRED
// MEMBER=, SOURCE MEMBER NAME...REQUIRED
// INCFILE=, SOURCE .H LIBRARY ...REQUIRED
// CREGSIZ=’60M’, COMPILER REGION SIZE
// LIBPRFX=’<ceehlq>’, PRFX LE REQUIRED FOR COMPILER 1.8
// LEPRFX=’<lehlq>’, PRFX LE 1.5 LIBS
// SMPPRFX=’<smphlq>’, PRFX FOR NEON LIBS
// TCPIP=’<tcphlq>’, PRFX FOR TCP/IP LIBS
// CLBPRFX=’<c++hlq>’, PRFX FOR C++ LIBS
// MQSHLQ=’<mqshlq>’, MQ SERIES HLQ FOR LOADLIB
// DB2HLQ=’<db2hlq>’, DB2 HLQ FOR LOADLIB
// CLANG=’EDCMSGE’,<NOT USED IN THIS RELEASE. KEPT FOR COMPATIBILITY
// CXXLANG=’CBCMSGE’,<NOT USED IN THIS RELEASE. KEPT FOR COMPATIBILITY
// PLANG=’EDCPMSGE’, PRE-LINKER MESSAGE NAME
// PREGSIZ=’2048K’, PRE-LINKER REGION SIZE
// LPARM=’AMODE=31,MAP,RENT’, LINKAGE EDITOR OPTIONS
// TUNIT=’SYSALLDA’, UNIT FOR TEMPORARY FILES
// OPCLAS=’*’ SYSOUT OUTPUT CLASS
//*---
//* COMPILE STEP:
//*---
//COMPILE EXEC PGM=CBCDRVR,REGION=&CREGSIZ,
// PARM=(’CXX OPTFILE(DD:OPTION)’)
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSN=&CLBPRFX..SCBCCMP,DISP=SHR
//OPTION DD DSN=&SMPPRFX..SNEOJCL(OPTNOOE),DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CLBPRFX..SCBC3MSG(&CLANG),DISP=SHR
//SYSXMSGS DD DUMMY,DSN=&CLBPRFX..SCBC3MSG(&CXXLANG),DISP=SHR
//SYSIN DD DSN=&INFILE(&MEMBER),DISP=SHR
112 System Management Guide for OS/390

Formatter
//USERLIB DD DSN=&INCFILE,DISP=SHR,DCB=(RECFM=VB,LRECL=255)
//SYSLIB DD DSN=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSN=&LEPRFX..SCEEH.SYS.H,DISP=SHR
// DD DSN=&LEPRFX..SCEEH.ARPA.H,DISP=SHR
// DD DSN=&LEPRFX..SCEEH.NET.H,DISP=SHR
// DD DSN=&LEPRFX..SCEEH.NETINET.H,DISP=SHR
// DD DSN=&CLBPRFX..SCLBH.H,DISP=SHR
// DD DSN=&TCPIP..SEZACMAC,DISP=SHR
// DD DSN=&TCPIP..SEZAINST,DISP=SHR
// DD DSN=MQSHLQ..SCSQC370,DISP=SHR
//SYSLIN DD DSN=&SMPPRFX..SNEOOBJ(&MEMBER),DISP=SHR
//SYSPRINT DD SYSOUT=&OPCLAS
//SYSOUT DD SYSOUT=&OPCLAS
//SYSCPRT DD SYSOUT=&OPCLAS
//SYSUT1 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=&OPCLAS
//SYSUT14 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT15 DD SYSOUT=&OPCLAS
//*
//*---
//* PRE-LINKEDIT STEP:
//*---
//PLKED EXEC PGM=EDCPRLK,REGION=&PREGSIZ,COND=(8,LE,COMPILE),
// PARM=(DLLNAME(&MEMBER),NOER)
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DSN=&LEPRFX..SCEEMSGP(&PLANG),DISP=SHR
//SYSLIB DD DSN=&LEPRFX..SCEECPP,DISP=SHR
//SYSIN DD DSN=&SMPPRFX..SNEOOBJ(&MEMBER),DISP=SHR
System Management Guide for OS/390 113

Chapter 4
// DD DSN=&CLBPRFX..SCLBSID(IOSTREAM),DISP=SHR
// DD DSN=&CLBPRFX..SCLBSID(COMPLEX),DISP=SHR
// DD DSN=&CLBPRFX..SCLBSID(ASCCOLL),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(FMGR),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(MQI),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(NNMQS),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(NNSQLOBJ),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(NRULEFMT),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(RMGR),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(SQLOBJ),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(NNUSER),DISP=SHR
// DD DSN=&SMPPRFX..SNEOUEXP(GETVAL),DISP=SHR
// DD DSN=&SMPPRFX..SNEOUEXP(OPENFORM),DISP=SHR
// DD DSN=&SMPPRFX..SNEOUEXP(RULES),DISP=SHR
// DD DDNAME=SYSIN2
//SYSMOD DD DSN=&SMPPRFX..SNEOPOBJ(&MEMBER),DISP=SHR
//SYSDEFSD DD DUMMY
//SYSOUT DD SYSOUT=*OPCLAS
//SYSPRINT DD SYSOUT=*OPCLAS
//SYSIN2 DD DUMMY
//*
//*---
//* LINKEDIT STEP:
//*---
//LKED EXEC PGM=HEWL,REGION=1024K,
// COND=((8,LT,COMPILE),(8,LE,PLKED)),
// PARM=’&LPARM’
//SYSLIN DD DSN=&SMPPRFX..SNEOPOBJ(&MEMBER),DISP=SHR
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&OUTFILE(&MEMBER),DISP=SHR
//MQSLOAD DD DSN=&MQSHLQ..SCSQLOAD,DISP=SHR
//DB2LOAD DD DSN=&DB2HLQ..SDSNLOAD,DISP=SHR
//SYSUT1 DD UNIT=&TUNIT.,SPACE=(32000,(30,30))
//SYSUT2 DD UNIT=&TUNIT.,SPACE=(32000,(30,30))
//SYSUT3 DD UNIT=&TUNIT.,SPACE=(32000,(30,30))
//SYSUT4 DD UNIT=&TUNIT.,SPACE=(32000,(30,30))
//SYSPRINT DD SYSOUT=&OPCLAS

3DUDPHWHU 'HVFULSWLRQ 9DOXHV�IRU�<RXU�6LWH

<ceehlq> Language Prefix
114 System Management Guide for OS/390

Formatter
&RPSLOLQJ�DQG�/LQNLQJ�D�&�&���8VHU�([LW�
&RQWDLQLQJ�(PEHGGHG�64/
A sample user exit containing embedded DB2 SQL is provided in the
SNEOSRCE library (member UETEST1). This is the same user exit as UETEST
in the SNEOCPP library with the following exceptions:

1. The lines are reorganized so that no line extends beyond column 72.
The DB2 precompiler requires its input files to be RECFM=F,FB and
LRECL=80.

2. Several additional lines of SQL illustrate how to add DB2 SQL
statements to your user exits. If a non-zero SQLCODE is returned
from the SQL call, it is displayed. If the SQLCODE is zero, then the
number of formats in the MQSeries Integrator NNF_FMT table is
displayed.

Since NEONFormatter is designed to dynamically load the NNUSER DLL and
call the functions contained therein, your user exit should be compiled and
linked as a DLL. This DLL should replace any existing NNUSER DLL in the
<smphlq>.SNEOULOD library.

A JCL member is provided (USREXIT2) to run the DB2 precompiler against
your C/C++ source code, followed by a C/C++ compile, Prelink, and Link.
The output of the Link stage is a new NNUSER DLL in the
<smphlq>.SNEOULOD library. This JCL uses the CBCDB2CL cataloged

<lehlq> Language Environment High
Level Qualifier

<tcphlq> TCPIP High Level Qualifier

<mqshlq> MQSeries Load Library

<db2hlq> DB2 Load Library

<smphlq> MQSeries Integrator Export
Library High Level Qualifiers

<c++hlq> C++ run-time and Link Edit
Libraries

3DUDPHWHU 'HVFULSWLRQ 9DOXHV�IRU�<RXU�6LWH
System Management Guide for OS/390 115

Chapter 4
procedure in the <smphlq>.SNEOPROC library. The JCL for USREXIT2 is
shown below:

//* <insert a valid jobcard here >
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc *
//* *
//* Copyright (C) 1998, 1999, New Era of Networks *
//* Version 4 Release 03 *
//**
//* This JCL will compile the UETEST1 functions and create
//* a replacement NNUSER DLL in the <smphlq>.SNEOULOD library.
//*
//* The NNUSER DLL is loaded and the functions are called when
//* an Output Control of type NewUserExit_1 is created and
//* a message is reformatted using that output control.
//*
//* NOTE that the uetest1.cpp function is in the <smphlq>.SNEOSRCE
//* library because the DB2 precompiler requires its input files
//* to be RECFM=F,FB and LRECL=80.
//*
//* NOTE that you must rebind your plan to include all the
//* DBRMs for the IBM Call Level Interface as well as your
//* own application and user exit DBRMs. See JCL member
//* BINDUSRX for control statements to do this.
//**
//PROCLIST JCLLIB ORDER=(<smphlq>.SNEOPROC,SYS1.PROCLIB)
//COMPILE EXEC CBCDB2CL,
// INFILE=’<smphlq>.SNEOSRCE’,
// INCFILE=’<smphlq>.SNEOH’,
// OUTFILE=’<smphlq>.SNEOULOD’,
// DBRMLIB=’<your-dbrm-library-here>’,
// MEMBER=’UETEST1’,
// PARM.PLKED=(DLLNAME(NNUSER),NOER),
// LPARM=(AMODE=31,RMODE=ANY,DYNAM=NO,CALL=YES)
//PLKED.SYSDEFSD DD DISP=SHR,DSN=<smphlq>.SNEOUEXP(NNUSER)
//LKED.SYSIN DD *
 INCLUDE DB2LIB(DSNALI)
 NAME NNUSER(R)
//
116 System Management Guide for OS/390

Formatter
%LQGLQJ�D�3/$1
Because MQSeries Integrator uses the IBM Call Level Interface (CLI) to access
DB2 and your User Exit contains embedded SQL, there is an additional step
required before you can use your User Exit. You must bind a plan that
contains all the DBRMs for the IBM CLI as well as your own application and
User Exit DBRMs. The JCL member BINDUSRX is designed to bind the
sample user exit DBRM with the IBM packages that were bound when the
CLI was first installed to create a new plan.

Prior to running MQSeries Integrator and your user exit, you must grant
execute authority on the plan to the users who will be executing it. The
PLANNAME=DSNACLI line in the CLIINI file (<smphlq>.SNEOCNTL
library) must be changed to use your new plan name. The BINDUSRX JCL is
shown below:

//* <insert a valid jobcard here >
//*
//**
//* This JCL is distributed for r.4.1.1 customers who may
//* have user exits that contain embedded DB2 SQL statements.
//*
//* The DBRMs created by precompiling your applications or
//* user exits must be bound into the plan that also contains
//* the IBM DBRMs for the Call Level Interface. It is assumed that
//* the Call Level Interface is installed and the package binds
//* for it have already been performed. See JCL member BINDCLI for
//* more information on binding the CLI DBRMs.
//*
//**
//JOBLIB DD DISP=SHR,DSN=<db2hlq>.SDSNLOAD
//*
//BINDCLI EXEC PGM=IKJEFT01,DYNAMNBR=20
//DBRMLIB DD DISP=SHR,DSN=<db2hlq>.SDSNDBRM
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(<db2-ssid>)

 BIND PACKAGE(USEREXIT) -
 MEMBER(UETEST1) -
System Management Guide for OS/390 117

Chapter 4
 ACTION(REPLACE) -
 ISOLATION(CS) -
 DYNAMICRULES(RUN) -
 LIBRARY(’<your-dbrm-library-here>’)

 BIND PLAN(<your-plan-name>) -
 PKLIST(DSNAOCLI.DSNCLICS -
 DSNAOCLI.DSNCLINC -
 DSNAOCLI.DSNCLIRR -
 DSNAOCLI.DSNCLIRS -
 DSNAOCLI.DSNCLIUR -
 DSNAOCLI.DSNCLIC1 -
 DSNAOCLI.DSNCLIC2 -
 DSNAOCLI.DSNCLIF4 -
 DSNAOCLI.DSNCLIMS -
 DSNAOCLI.DSNCLIQR -
 USEREXIT.UETEST1) -
 OWNER(<plan-owner>) -
 QUALIFIER(<table-qualifier>) -
 RETAIN -
 ISOLATION(CS) ACTION(REPLACE)

 END
/*
//

The NNUSER DLL can be compiled and linked using the CBCDB2CL
cataloged procedure. This cataloged procedure contains symbolic
parameters. You may have to modify the default symbolic parameters for
your site. See Tailoring Jobs for Your Site on page 17.

//**
//* *
//* NEONet COMPILE PRELINK AND LINK A C++ PROGRAM WITH EMBEDDED SQL *
//* VERSION 4.03 - SOURCE CONTROL VERSION *
//* *
//**
//*
//CBCDB2CL PROC INFILE=, INPUT ... REQUIRED
// OUTFILE=, OUTPUT REQUIRED
// MEMBER=, SOURCE MEMBER NAME...REQUIRED
// INCFILE=, SOURCE .H LIBRARY ...REQUIRED
// DBRMLIB=, DB2 DBRM LIBRARY ...REQUIRED
118 System Management Guide for OS/390

Formatter
// CREGSIZ=’60M’, COMPILER REGION SIZE
// LIBPRFX=’<ceehlq>’, PRFX LE REQUIRED FOR COMPILER 1.8
// LEPRFX=’<lehlq>’, PRFX LE 1.5 LIB(S)
// SMPPRFX=’<smphlq>’, PRFX FOR NEON LIB(S)
// TCPIP=’<tcphlq>’, PRFX FOR TCP/IP LIB(S)
// CLBPRFX=’<c++hlq>’, PRFX FOR C++ LIB(S)
// MQSHLQ=’<mqshlq>’, MQ SERIES HLQ FOR LOADLIB
// DB2HLQ=’<db2hlq>’, DB2 HLQ FOR LOADLIB
// CLANG=’EDCMSGE’, NOT USED IN THIS RELEASE. KEPT FOR COMPATIBILITY
// CXXLANG=’CBCMSGE’, NOT USED IN THIS RELEASE. KEPT FOR COMPATIBILITY
// PLANG=’EDCPMSGE’, PRE-LINKER MESSAGE NAME
// PREGSIZ=’2048K’, PRE-LINKER REGION SIZE
// LPARM=’AMODE=31,MAP,RENT’, LINKAGE EDITOR OPTIONS
// TUNIT=’SYSALLDA’, UNIT FOR TEMPORARY FILES
// OPCLAS=’*’ SYSOUT OUTPUT CLASS
//*
//* DB2 PRECOMPILE THE C/C++ PROGRAM
//*
//PC EXEC PGM=DSNHPC,REGION=4096K,
// PARM=(TW,STDSQL(NO),HOST(CPP),MAR(1,80),NOOPTN,FLAG(I))
//STEPLIB DD DISP=SHR,DSN=&DB2HLQ..SDSNEXIT
// DD DISP=SHR,DSN=&DB2HLQ..SDSNLOAD
//SYSLIB DD DISP=SHR,DSN=&INCFILE,DCB=(RECFM=VB,LRECL=255)
//SYSIN DD DISP=SHR,DSN=&INFILE(&MEMBER)
//DBRMLIB DD DISP=SHR,DSN=&DBRMLIB(&MEMBER)
//SYSCIN DD DSN=&&DSNHOUT,DISP=(NEW,PASS),UNIT=SYSDA,
// SPACE=(800,(500,500)),
// DCB=(RECFM=VB,LRECL=255,BLKSIZE=2550)
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA
//SYSUT2 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA
//SYSUT3 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA
//SYSUT4 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA
//*
//* COMPILE STEP:
//*
//COMPILE EXEC PGM=CBCDRVR,REGION=&CREGSIZ,
// PARM=(’CXX OPTFILE(DD:OPTION)’)
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSN=&CLBPRFX..SCBCCMP,DISP=SHR
System Management Guide for OS/390 119

Chapter 4
//OPTION DD DSN=&SMPPRFX..SNEOJCL(OPTNOOE),DISP=SHR
//SYSMSGS DD DUMMY,DSN=&CLBPRFX..SCBC3MSG(&CLANG),DISP=SHR
//SYSXMSGS DD DUMMY,DSN=&CLBPRFX..SCBC3MSG(&CXXLANG),DISP=SHR
//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,PASS)
//USERLIB DD DSN=&INCFILE,DISP=SHR,DCB=(RECFM=VB,LRECL=255)
//SYSLIB DD DSN=&LEPRFX..SCEEH.H,DISP=SHR
// DD DSN=&LEPRFX..SCEEH.SYS.H,DISP=SHR
// DD DSN=&LEPRFX..SCEEH.ARPA.H,DISP=SHR
// DD DSN=&LEPRFX..SCEEH.NET.H,DISP=SHR
// DD DSN=&LEPRFX..SCEEH.NETINET.H,DISP=SHR
// DD DSN=&DB2HLQ..SDSNC.H,DISP=SHR
// DD DSN=&CLBPRFX..SCLBH.H,DISP=SHR
// DD DSN=&TCPIP..SEZACMAC,DISP=SHR
// DD DSN=&TCPIP..SEZAINST,DISP=SHR
//SYSLIN DD DSN=&&LOADSET,UNIT=&TUNIT.,
// DISP=(MOD,PASS),SPACE=(512,(500,200)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSPRINT DD SYSOUT=&OPCLAS
//SYSOUT DD SYSOUT=&OPCLAS
//SYSCPRT DD SYSOUT=&OPCLAS
//SYSUT1 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD SYSOUT=&OPCLAS
//SYSUT14 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT15 DD SYSOUT=&OPCLAS
//*
//*
//* PRE-LINKEDIT STEP:
//*
120 System Management Guide for OS/390

Formatter
//PLKED EXEC PGM=EDCPRLK,REGION=&PREGSIZ,COND=(8,LE,COMPILE),
// PARM=(DLLNAME(&MEMBER),NOER)
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DSN=&LEPRFX..SCEEMSGP(&PLANG),DISP=SHR
//SYSLIB DD DSN=&LEPRFX..SCEECPP,DISP=SHR
//SYSIN DD DSN=*.COMPILE.SYSLIN,DISP=(MOD,PASS)
// DD DSN=&CLBPRFX..SCLBSID(IOSTREAM),DISP=SHR
// DD DSN=&CLBPRFX..SCLBSID(COMPLEX),DISP=SHR
// DD DSN=&CLBPRFX..SCLBSID(ASCCOLL),DISP=SHR
// DD DSN=&DB2HLQ..SDSNMACS(DSNAOCLI),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(FMGR),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(NNMQS),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(NNSQLOBJ),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(NRULEFMT),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(RMGR),DISP=SHR
// DD DSN=&SMPPRFX..SNEOEXP(SQLOBJ),DISP=SHR
// DD DSN=&SMPPRFX..SNEOUEXP(GETVAL),DISP=SHR
// DD DSN=&SMPPRFX..SNEOUEXP(OPENFORM),DISP=SHR
// DD DSN=&SMPPRFX..SNEOUEXP(RULES),DISP=SHR
// DD DDNAME=SYSIN2
//SYSMOD DD DSN=&&PLKSET,UNIT=&TUNIT.,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSDEFSD DD DUMMY
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//SYSIN2 DD DUMMY
//*
//*
//* LINKEDIT STEP:
//*
//LKED EXEC
PGM=HEWL,REGION=1024K,COND=((8,LT,COMPILE),(8,LE,PLKED)),
// PARM=’&LPARM’
//SYSLIB DD DSN=&LEPRFX..SCEELKED,DISP=SHR
//SYSOBJ DD DSN=&&OBJLIB,UNIT=&TUNIT.,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIN DD DSN=*.PLKED.SYSMOD,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&OUTFILE(&MEMBER),DISP=SHR
//MQSLOAD DD DSN=&MQSHLQ..SCSQLOAD,DISP=SHR
System Management Guide for OS/390 121

Chapter 4
//DB2LIB DD DSN=&DB2HLQ..SDSNLOAD,DISP=SHR
//SYSUT1 DD UNIT=&TUNIT.,SPACE=(32000,(30,30))
//SYSUT2 DD UNIT=&TUNIT.,SPACE=(32000,(30,30))
//SYSUT3 DD UNIT=&TUNIT.,SPACE=(32000,(30,30))
//SYSUT4 DD UNIT=&TUNIT.,SPACE=(32000,(30,30))
//SYSPRINT DD SYSOUT=&OPCLAS
//SYSIN DD DUMMY

118(678%
When a user exit is encountered as part of the reformatting process,
NEONFormatter tries to resolve the exit name to a callable function address.
Since the function name and address are developed outside the scope of
NEONFormatter, the user application is called to provide the function address.

NNUESTUB is a stub lookup function that is replaceable by a user
application. The following C++ user exit code must be modified to implement
a user exit in C++:

static const char _uetest_cpp_id_[] = "$Header: /source/aig/formatter/
test/usere
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>

#include "nnexit.h"
#include "neodefs.h"
#include "dbtypes.h"
#include "interface.h"
#include "sqlapi.h"
#include "vqueue.h"
#include "qapi.h"
#include "formatter.h"

int rules(void);
int openformatdb(void);

NNExitRet
CountFields(const DbmsSession &rSession, const NNParsedFields
&rFields){
 NNExitRet oER;
 const char* pFldVal;
122 System Management Guide for OS/390

Formatter
 int counter = 0;
 char counterString[32];

 pFldVal = rFields.GetFieldAscii("UvtFLDF2",0);
 while (pFldVal) {
 counter++;
 pFldVal = rFields.GetFieldAscii("UvtFLDF2",counter);
 }
 sprintf(counterString, "%d", counter);
 oER.SetByteArrayValue(counterString, strlen(counterString));
 return oER;
}

NNExitRet
InputNoMsgField(const DbmsSession &rSession,
 const NNParsedFields&rFields) {
 NNExitRet oER;
 const char* pFldVal = rFields.GetFieldAscii("JBLInFld!",0};
 if (!pFldVal) {
 oER.SetError(NN_ERSTATUS_ERROR,"JBLInFld1 not
 found!");
 }
 else {
 oER.SetByteArrayValue(pFldVal, strlen(pFldVal));
 }
 return oER;
}

NNExitRet
InputMsgFieldTest(const DbmsSession &rSession,
 const NNParsedFields &rFields) {
 NNExitRet oER;
 char newtext[255];
 char *addtext = "Added by ue function";
 const char* pFldVal = rFields.GetFieldAscii("F4",0);

 if (!pFldVal) {
 oER.SetError(NN_ERSTATUS_ERROR,"F4 not
found!");
 }
 else {
for (int i=0;*pFldVal !=’\0’;i++,pFldVal++)
System Management Guide for OS/390 123

Chapter 4
newtext[i]=*pFldVal;

for (;*addtext!=’\0’;i++,addtext++)
newtext[i]=*addtext;

newtext[i++]=’\0’;

oER.SetByteArrayValue(newtext, strlen(newtext));
 }
 return oER;
}

NNExitRet
DataBaseCallFunc(const DbmsSession &rSession,
 const NNParsedFields &rFields) {
 if (openformatdb()){
 return(NNExitRet((long)500,NN_ERSTATUS_OK));
 }
 else {
 cerr << "Could connect with the format database"<< end1;
 }
 NNExitRet oER;
 return oER;
}

NNExitRet
NoTypeTest(const DbmsSession &rSession, const
 const NNParsedFields &rFields) {
 NNExitRet oER;
 return oER;
}

NNExitRet
LongTest1(const DbmsSession &rSession,
 const NNParsedFields &rFields) {
 long l = 57;
 return(NNExitRet(l,NN_ERSTATUS_OK));
}

NNExitRet
CurrentFieldTest(const DbmsSession &rSession,
 const NNParsedFields &rFields) {
124 System Management Guide for OS/390

Formatter
 char buffer[256];
 int i;
 char *pBuffer;

 const char * pInFieldName = rFields.GetCurrInFldName();
 const char * pOutFieldName = rFields.GetCurrOutFldName();
 const char * pAsciiData = rFields.GetCurrInFldAsciiData();
 const char * pRawData = rFields.GetCurrInFldData();
 const int rawDataLength = rFields.GetCurrInFldLength();
 const int inFieldDataType = rFields.GetCurrInFldType();

 cerr << "Input field name = " << "’" << pInFieldName
 << "’" << endl;
 cerr << "Output field name = " << "’" << pOutFieldName
 << "’" << endl;
 cerr << "Input field ascii data = " << "’"
 << pAsciiData << "’" << endl;
 pBuffer = buffer;
 for (i = 0; i < rawDataLength; i++, pRawData++) {
 pBuffer += sprintf(pBuffer, "%c", *pRawData);
 }
 cerr << "Raw data = " << "’" << buffer << "’" << endl;
 cerr << "Input field data type = " << "’"
 << inFieldDataType << "’" << endl;

 // kbae: 4.16.1997
 // Testing rFields.GetUserExitRoutineName...
 const char* pUserExitRoutineName =
 rFields.GetUserExitRoutineName();
 cerr << "User exit routine name = ’" <<
 pUserExitRoutineName << "’" << endl;
 NNExitRet oER;
 oER.SetByteArrayValue("User exit called",
 strlen("User exit called"));
 return oER;
}

NNExitRet
RulesTest(const DbmsSession &rSession, const NNParsedFields &rFields)
{
 if (rules()){
 return(NNExitRet((long)100,NN_ERSTATUS_OK));
System Management Guide for OS/390 125

Chapter 4
 }
 else {
 cerr << "Could connect with the rules engine"<< end1;
 }
 NNExitRet oER;
 return oER;
}

NNExitRet
LongTest2(const DbmsSession &rSession, const NNParsedFields &rFields)
{
 NNExitRet oER;
 oER = (long)1000;
 return oER;
}

long
Long2Cleanup(void) {
 // quick and dirty stub for sample cleanup routine
 return NN_ERSTATUS_OK;
}

NNExitRet
BadCleanup(const DbmsSession &rSession, const NNParsedFields &rFields)
{
 NNExitRet oER;
 oER = (long)130;
 return oER;
}

long
CleanBadCleanup(void) { // <out> error, no cleaning done {
 return -1;
}

NNExitRet
DoubleTest1(const DbmsSession &rSession,
 const NNParsedFields &rFields) {
 double d = 8.87;
 return(NNExitRet(d,NN_ERSTATUS_OK));
}
126 System Management Guide for OS/390

Formatter

NNExitRet
DoubleTest2(const DbmsSession &rSession,
 const NNParsedFields &rFields) {
 NNExitRet oER;
 oER = 3.2715;
 return oER;
}

NNExitRet
ByteArrayTest1(const DbmsSession &rSession,
 const NNParsedFields &rFields) {
 char* acTestStr = "byte array test";
 return(NNExitRet(acTestStr, strlen(acTestStr),
NN_ERSTATUS_OK));
}

NNExitRet
ByteArrayTest2(const DbmsSession &rSession, const
 const NNParsedFields &rFields) {
 NNExitRet oER;
 char* acTestStr = "byte array test2";
 oER.SetByteArrayValue(acTestStr, strlen(acTestStr));
 return oER;
}

extern "C" void
NNGetUserExitFuncPtrs(
 char* acFuncName,
 NN_EXIT_FUNC_t&rUEptr,
 NN_EXIT_CLEANUP_FUNC_t&rUEClUpPtr) {

 if(strcmp(acFuncName, "NoTypeTest") == 0) {
 rUEptr = NoTypeTest;
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "CountFields") == 0) {
 rUEptr = CountFields;
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "LongTest1") == 0) {
 rUEptr = LongTest1;
System Management Guide for OS/390 127

Chapter 4
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "LongTest2") == 0) {
 rUEptr = LongTest2;
 rUEClUpPtr = Long2Cleanup;
 }
 else if(strcmp(acFuncName, "DoubleTest1") == 0) {
 rUEptr = DoubleTest1;
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "DoubleTest2") == 0) {
 rUEptr = DoubleTest2;
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "ByteArrayTest1") == 0) {
 rUEptr = ByteArrayTest1;
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "ByteArrayTest2") == 0) {
 rUEptr = ByteArrayTest2;
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "BadCleanup") == 0) {
 rUEptr = BadCleanup;
 rUEClUpPtr = CleanBadCleanup;
 }
 else if(strcmp(acFuncName, "InputMsgFieldTest") == 0) {
 rUEptr = InputMsgFieldTest;
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "DataBaseCallFunc") == 0) {
 rUEptr = DataBaseCallFunc;
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "RulesTest") == 0) {
 rUEptr = RulesTest;
 rUEClUpPtr = NULL;
 }
 else if(strcmp(acFuncName, "CurrentFieldTest") == 0) {
 rUEptr = CurrentFieldTest;
 rUEClUpPtr = NULL;
 }
128 System Management Guide for OS/390

Formatter
 else if(strcmp(acFuncName, "InputNoMsgField") == 0) {
 rUEptr = InputNoMsgField;

rUEClUpPtr = NULL;
 }
 else {
 rUEptr = NULL;
 rUEClUpPtr = NULL;
}

}
System Management Guide for OS/390 129

Chapter 4
130 System Management Guide for OS/390

&KDSWHU��

5XOHV

NEONRules has two main functions: evaluating messages against a set of rules
and reacting to the evaluation results.

n Evaluating messages means NEONFormatter parses the message, and
then performs comparisons against individual fields.

n Reacting to the evaluation results means to retrieve a list of rules that
hit (their evaluation criteria are true), as well as retrieving a list of
subscriptions (actions to perform with options used as parameters).

NEONRules uses rules definitions that describe how to parse a message using
the format parameters specified in NEONFormatter against the rules defined
for the message. The rules definitions include subscriptions and actions to
perform if the rule hits. Rules definition data resides in a relational database.
Users build and modify rule definitions using one of two methods: the
NEONRules graphical user interface (GUI) or NEONRules Management API
functions.

5XOHV�&RPSRQHQWV

The NEONRules GUI allows the user to populate screens with rule definition
data and store the information in a relational database.

NEONRules Management API functions are a set of C functions that create rule
definition data in a relational database. Users can write their own interfaces
that call the Management API functions to build rule definitions.

The Rules daemon reads messages off a queue, evaluates the messages, and
based on the results, performs the required reformatting and routing.
System Management Guide for OS/390 131

Chapter 5
The following test modules are delivered with NEONRules:

n MQIPUTDA places a message on a queue with the required queue
options for the MQSeries Integrator Rules daemon.

n MQIGETDA retrieves all messages and options from a queue.

n NNRTRACE evaluates a message against a single rule, displaying a
verbose view of each part of the evaluation criteria.

n RULETEST reads a message from a file and evaluates the message.

n RULOWNER allows the administrator to determine which rules are
owned by a specific user and to change rule ownership.

The Rules Consistency Checker utility checks the correctness of the rule
definition data in the relational database. As rule definition data is built and
maintained, users should run the consistency checker periodically to insure
data integrity.

The Permissions Consistency Checker verifies rule ownership, Read, Update,
and PUBLIC permissions.

The NEOMQCC Consistency Checker verifies that queue names referenced in
subscriptions exist.

The NNRIE tool allows the user to export rule definitions from a database to a
file, and to import the exported file into a database. NNRIE can import from a
MQIntegrator r. 3.2 export file into a MQSeries Integrator 1.1 database.

$SSOLFDWLRQ�*URXSV
Application groups are logical divisions of rule sets for different business
needs. You can define as many application groups as you need. For example,
you might want rules for the accounting department and the application
development department separated into two groups. You can define
Accounting as one application group, Application Development as another,
and then associate rules with each group as appropriate.

0HVVDJH�7\SHV
Message types define the layout of strings of data. Each application group can
contain several message types, and a message type can be used with more
than one application group. Message types are defined by the user. When
132 System Management Guide for OS/390

Rules
using Formatter, a message type is the same as an input format name. This
format name is used by Formatter to parse input messages for rules
evaluation.

5XOHV
When users create rules, they give each rule a rule name and associate the
rule name with an application group and message type. Each rule is uniquely
identified by its application group/message type/rule name triplet.

Each rule must have the following three items defined: evaluation criteria (an
expression containing arguments and operators), subscription information
(subscriptions, actions, and options), and permission information.

([SUHVVLRQV��$UJXPHQWV��%RROHDQ�
2SHUDWRUV��DQG�5XOHV�2SHUDWRUV

An expression, or evaluation criteria, consists of a list of fields, associated
operators, and associated comparison data connected with Boolean operators.
An argument consists of the combination of a field name, Rules comparison
operator, and static value or other field name. Field names depend on the
message type, or input format name. The input format name is defined using
NEONFormatter. Rules comparison operators are already defined within
NEONRules. Field comparisons can be made against static data or other field
values. Arguments are linked together with Boolean operators AND (&) and
OR (|), and parentheses can be used to set the evaluation priority. For more
information on operators, refer to Programming Reference for NEONRules
APIs.

6XEVFULSWLRQV��$FWLRQV��DQG�2SWLRQV
When a rule evaluates to true, it is considered a "hit." If the rule does not
evaluate to true, it is considered a "no-hit." When a rule hits, NEONRules lets
you retrieve associated subscriptions to be taken by the application. These
subscriptions are the actions or commands, and the associated parameters or
options to execute them.

Subscriptions are lists of actions to take when a message evaluates to true.
Each rule must have at least one associated subscription. Subscriptions are
uniquely identified within an application group/message type pair by a user-
System Management Guide for OS/390 133

Chapter 5
defined subscription name. Each action within a subscription is defined by
action name and need not be unique, since all actions are intended to be
executed in sequence. A single subscription can be shared by multiple rules
when the same subscription is associated with each of the rules. The shared
subscription is retrieved only once no matter how many of its associated rules
hit.

An action has a list of one or more associated options. An option consists of
an option name-value pair. The user defines all action names and option
name-value pairs.

5XOHV�DQG�6XEVFULSWLRQ�3HUPLVVLRQV
Rule and subscription permissions restrict user access to individual rules,
subscriptions, or their components in the NEONRules database. A rule is
uniquely identified by its application group name, message type, and rule
name. A complete rule includes everything associated with it, including an
expression, or arguments, and associated subscriptions. The subscription is
uniquely defined by its application group name, message type, and
subscription name. A complete subscription includes everything associated
with it, including actions and options. Permissions only apply to managing
rule and subscription contents, not rule evaluation. Permissions must be
defined for subscriptions in the same way they are for rules.

The rule or subscription owner is the user who created the component. When
the rule or subscription is created, owner information is determined by the
software. Owners can update their own permissions, create and update the
PUBLIC user’s permissions, and change ownership to another user.

Only Read and Update permissions are implemented. The owner is given
both Read and Update permission by default. Owners can change their own
permissions from Read to Update and back again, but they must have Update
permission to change a rule or subscription contents. Read permission cannot
be denied. All other users are grouped into a public user group named
PUBLIC and given Read permissions by default.

$3,V�
Two types of APIs exist for NEONRules: NEONRules APIs and NEONRules
Management APIs.
134 System Management Guide for OS/390

Rules
Use NEONRules APIs to evaluate rules and retrieve subscription, hit, and no-
hit information. Before you evaluate a rule, the rule must exist, and you must
use CreateRulesEngine() to create a VRule object. After that, you can perform
evaluations and subscription retrievals. When you finish, destroy the Rules
daemon object using DeleteRuleEngine().

Use NEONRules Management APIs to maintain rule information. Add, Read,
and Update APIs are implemented and available, as well as APIs to delete an
entire rule or subscription and all associated information.

5XOHV�3HUPLVVLRQV

Permissions for Rules should be managed through the NEONRules GUI or
through the NEONRules Management APIs. The RULOWNER utility allows
the administrator to determine which rules are owned by a specific user and
to change ownership of rules. To use the RULOWNER utility, you must edit
the SQLSVSES file to include "rules" as the session-name parameter so the
utility can connect to the Rules database. See Editing the SQLSVSES File on
page 19.

5XOH�2ZQHUVKLS
The ownership of any rules owned by a specific user can be changed to
another user. When rule ownership is changed, the permissions for the rules
are transferred to the new owner and previous permissions are overwritten.
The rule permissions are transferred when ownership is transferred from the
previous owner to the new owner. The new owner is given the same
permissions as the previous owner.

58/2:1(5
The following sample job control language (JCL) illustrates how to run the
RULOWNER job in batch and pass startup parameters to it.The JCL at your
site will be different. See Tailoring Jobs for Your Site on page 17 for information
about the symbolic parameters in this sample.

//* <insert a valid jobcard here >
//*
System Management Guide for OS/390 135

Chapter 5
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//*RULOWNER: Changes ownership of rules *
//* *
//**
//RULOWNER PROC PRM=(’-d DD:DBLOG’), run-time PARMs
// SMPHLQ=’<smphql>’, HLQ for MQSI distrib libs
// MQSHLQ=’<mqshql>’, HLQ for MQS run-time libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-) Lib
// SQLMEM=’SQLSVSES’, MEMbername for SQLSVSES cntl cards
// INIMEM=’CLIINI’, MEMbername for CLI INI cntl cards
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=RULOWNER,
// PARM=&PRM
//*
//* <tailor the member STEPLIB and copy it here>
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
//DBLOG DD SYSOUT=&OPCLAS
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2 CLI high-level tracing
// PEND
//*
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
136 System Management Guide for OS/390

Rules
//RULOWNER EXEC RULOWNER,PRM=(’-d DD:DBLOG’)
//DBLOG DD SYSOUT=*
//SYSIN DD *
<function: 1=list; 2=reassign>>
<if 1 or 2: current-rule-owner>
<if 2: new-rule-owner>
99 == required end-of-file indicator
/*
//

9HULI\LQJ�DQG�&KDQJLQJ�5XOH�2ZQHUVKLS
The RULOWNER utility writes prompts to the standard output stream
(STDOUT) SYSPRINT. The responses are read from the standard input
stream (STDIN) SYSIN:

Function to Perform:
1 List Rules Owned by a Certain Owner
2 Change All Rules owned by User A to be Owned By User B
3 List Subscriptions owned by a Certain User
4 Change All Subscriptions Owned by User A to be Owned by
 User B
99 Quit

To list rules owned by a certain owner, enter 1 as the first line in SYSIN, and
then enter the id of the owner of the rules on the second line of SYSIN.

To change rule ownership, enter 2 in the first line of SYSIN. The second
prompt written to SYSPRINT is:

User Name for Current Owner of Rules

Enter the current owner’s name as the second line of SYSIN. An additional
prompt is written to SYSPRINT requesting the new id assigned to the rules:

User Name for New Owner of Rules

Enter the id for the new owner of the rules as the third line of SYSIN.

If you select 1 at the prompt, then RULOWNER lists the application group
name, message type name, and rule name of all rules owned by the specified
user. If you select 2 at the prompt, then RULOWNER does not display this
rule information.
System Management Guide for OS/390 137

Chapter 5
To list the subscriptions owned by a certain user, type 3 at the prompt.

User Name for Owner of Subscriptions

The Application Group, Message Type, and Subscription Name for all the
subscriptions owned by the specified user are listed.

To change subscription ownership, type 4 at the prompt.

User Name of Current Owner of Subscription
User Name for New Owner of Subscription

The owner of the subscription is changed.

1RWH�
The last line for SYSIN must be gg to end the program.

([DPSOHV

The following examples demonstrate how to use RULOWNER. The JCL at
your site can be different. See Tailoring Jobs for Your Site on page 17 for
information about the symbolic parameters in this sample.

/LVWLQJ�DOO�UXOHV�RZQHG�E\�5��1(21

//SSYIN DD *
1
R40NEON
99
/*

/LVWLQJ�DOO�UXOHV�RZQHG�E\�5��7(67��QRW�D�YDOLG�XVHU�

//SYSIN DD *
1
R40TEST
99
/*

Expected result (in SYSOUT):
Error No: -5509
Error Msg: Unable to find user in database
138 System Management Guide for OS/390

Rules
/LVWLQJ�DOO�UXOHV�RZQHG�E\�5��865���QR�UXOHV�RZQHG�E\�XVHU�

//SYSIN DD *
1
R40USR2
99
/*

Expected result (in SYSOUT):
Error No: -5514
Error Msg: Unable to read permission

&KDQJLQJ�DOO�UXOHV�RZQHG�E\�5��1(21�WR�5��865�

//SYSIN DD *
2
R40NEON
R40USR2
99
/*

(UURU�&RQGLWLRQV

The error codes for other errors related to reading rules are listed in the
Programming Reference for NEONRules.

1R�5XOHV�IRU�2ZQHU�

Error No: -5519
Error Msg: No permissions were found

Error No: -5514
Error Msg: Unable to read permission

,QYDOLG�8VHU�

Error No: -5509
Error Msg: Unable to find user in database
System Management Guide for OS/390 139

Chapter 5
7KH�5XOHV�'DHPRQ�

The Rules daemon is a content-based rules evaluation and routing engine
used to move data from one place to another, depending on the contents of
the data. The Rules daemon performs rule evaluation against a specified
message and attempts to execute actions for rules that evaluate to true. Users
can define rules using the GUIs, explained in the User’s Guide, or by using
the Management APIs. Application programmers can use the NEONRules APIs
to interface database calls to execute rules. These functions are explained in
the Programming Reference for NEONRules.

&RQILJXULQJ�046HULHV�,QWHJUDWRU�
To successfully execute the Rules daemon, a complete and valid installation
of MQseries and MQSeries Integrator must exist prior to using Rules. All
queues, rules, and formats must be created and saved before using the Rules
daemon.

4XHXHV�
The MQSeries Integrator Rules daemon uses input and output queues. Input
queues are the queues specified in the parameter file. Output queues are:
Failure queue, No Hit queue, and any queue specified by a putqueue action.

To have a message successfully evaluated by the MQSeries Integrator Rules
daemon process, the input message must have the OPT_APP_GRP and
OPT_MSG_TYPE options set. These options overrides the default option
settings.

If these options are not set, the MQSeries Integrator Rules daemon assigns
defaults. The defaults come from the RULENG MPF file. The MPF file is a
parameter file that contains required and optional parameters. See RULENGP
on page 147.

OPT_APP_GRP assigns the message to an application group and must match
the application group name in the NEONRules GUI. The OPT_MSG_TYPE
option must match the message type in rule definitions and the input format
name in the format definitions. These two message options allow the
MQSeries Integrator Rules daemon to evaluate the message against its rules
140 System Management Guide for OS/390

Rules
and only its rules. If the options are not set, the evaluation cannot occur, and
failure processing will occur.

5XOHV�
Unless the OPT_RELOAD_RULE_SET=TRUE option is used, the MQSeries
Integrator Rules daemon is not dynamic with respect to rule definition and
subscription definition. Only rules defined prior to starting up the MQSeries
Integrator Rules daemon are used. Any rules added or modified after the
Rules daemons starts up are not used until the
OPT_RELOAD_RULE_SET=TRUE option is processed.

)RUPDWV�
All formats associated with any message put to an input queue must be
entered and saved prior to putting that message to the input queue. All
formats used during a Reformat action must be entered and saved prior to
starting the Rules daemon.

For information about entering rules and formats, refer to the User’s Guide
and the Programming Reference documents.

046HULHV�,QWHJUDWRU�5XOHV�'DHPRQ�
3URFHVVLQJ�

The MQSeries Integrator Rules daemon is built on top of the NEONRules APIs
and performs these procedures, in this order:

1. Message processing

2. Subscription execution

3. Failure processing

0HVVDJH�3URFHVVLQJ�
Message processing evaluates the message against the currently defined rule
set for the application group/message type pair. NEONFormatter is called to
parse the input message into fields. NEONRules then evaluates these fields. If a
message is successfully evaluated, then subscriptions will be executed.
System Management Guide for OS/390 141

Chapter 5
If a failure occurs when rules are evaluated against a message, then the
transaction is rolled back, and the transaction end is defined. If a failure
occurs during message processing, failure processing begins.

6XEVFULSWLRQ�([HFXWLRQ�
After a message is successfully evaluated against its rules, all subscriptions
associated with those rules that evaluate to true are executed. If a message is
successfully evaluated and no subscriptions are executed (no rules evaluate
to true), the message is routed to the No Hit queue.

By default, if the output queue or No Hit queue is full, or writing is disabled
on the output queue, the Rules daemon rolls back and waits for the queue to
become available before processing additional messages from the input
queue. The wait time is the same as the wait time used for checking the input
queue for messages (the -w command line parameter). This default behavior
puts the Rules daemon process on hold so that the input queue can become
full while waiting for the output queue to become writable.

If logging is turned on, a note in the log file notifies the user that the output
queue is full or disabled, and the system is waiting. The user must then drain
and enable the output queue so that processing can continue.

1RWH�
When you run the Rules daemon, no other process should drain the input
queues. This will destroy guaranteed delivery and guaranteed sequence, and
may cause long waits and possible deadlocks.

If the output queue does not exist or has any problem other than the queue is
full or disabled, the original message is placed on the failure queue. If the
process is unable to put to the failure queue, the process rolls back, and the
Rules daemon stays on that message until it can write to the failure queue.

To override the default waiting, the user must set the queue option
OPT_NO_WAIT to TRUE when putting the original message on the input
queue. This option causes the message to be put to the failure queue if the
output or No Hit queue is full or disabled. The Rules daemon process passes
on any options that are set in the input message when it does a putqueue,
overriding the OPT_MSG_TYPE based on the subscription option. If
OPT_NO_WAIT is set on the input message, the output queue has that option
142 System Management Guide for OS/390

Rules
set as well. To explicitly set the Rules daemon process to wait, the
OPT_NO_WAIT option must be set to FALSE.

If there is a failure at any time during subscription execution, the transaction
is rolled back, and the transaction end is defined. Once this rollback occurs,
failure processing begins.

The subscription actions that can be processed within the Rules daemon are
Reformat and Put Queue. Other actions defined require the user to write a
custom Rules daemon program to process those actions. The Rules daemon
does not execute generic actions.

5HIRUPDW

The Reformat action takes a message with an input format and reformats the
message to a message adhering to the specified output format. The Reformat
action requires an input format and an output format as options. Formatter
APIs are called to perform the reformat of messages.

3XW�4XHXH

The Put Queue action takes a message, puts it on a specified destination
queue, and sets the message type option as the message format type specified.
The Put Queue action requires a destination queue name and a message
format type as options. Both the queue name and message format type must
exist in the database. MQSeries Queuing APIs are called to perform the Put
Queue operation. The Put Queue action does not perform formatting.

If you use NEONRules Management APIs to add the Put Queue action, the
action name is putqueue, and the option names are OPT_TARGET_QUEUE
and OPT_MSG_TYPE.

:$51,1*�
If a subscription does not include the Put Queue action, messages are not put
to a queue and can be lost. Run the Rules Consistency Checker to determine
which subscriptions do not have a Put Queue action.

While the Reformat and Put Queue subscription options are the only actions
that can be performed by the Rules daemon, the NEONRules APIs allow any
number of actions and associated options. An application programmer can
use the APIs and independently generated code to execute other types of
System Management Guide for OS/390 143

Chapter 5
actions.The size of your database and performance requirements are the only
limitations on the NEONRules APIs.

)DLOXUH�3URFHVVLQJ�
Failure processing occurs when message processing or subscription execution
fails, or if there are no active rules or subscription for the application group/
message type. Failed messages are routed to the failure queue specified in this
process. Using the Rules daemon, you can write a process to manage the
messages in the failure queue.

The Rules daemon can be configured to set OPT_ERR_CODE and
OPT_ERR_MSG queue options each time a message is put to the failure
queue. Both options are intended to help users determine why the Rules
daemon sent the message to the failure queue.

The OPT_ERR_CODE option value indicates which subsystem, Formatter or
Rules, encountered the failure and provides the error code number. For a
complete listing of the MQSeries Integrator error codes, see Error Messages in
the Programming References. The NNF prefix indicates a Formatter failure
and NNR indicates a Rules failure.

The OPT_ERR_MSG queue option value provides the error message that
corresponds to the error code.

5XOHV�'DHPRQ�(UURU�0HVVDJHV

&RGH (UURU�1DPH ([SODQDWLRQ 5HVSRQVH

-10000 RULENG_INVALID_
PUT_QUEUE_ACTION
_ERR

Putqueue action contains
invalid or missing
OPT_TARGET_QUEUE
option name or value.

Correct the options
in the Put Queue
action.

-9999 QUEUE_CREATION_
FAILURE_ERR

Failure opening or connecting
to queue specified in the
OPT_TARGET_QUEUE
option.

Correct the options
in the Put Queue
action.
144 System Management Guide for OS/390

Rules
0HVVDJH�5RXWLQJ�
Based on the outcome of the Rules daemon procedures (message processing,
subscription execution, and failure processing), messages can be routed to the
No Hit queue, the Failure queue, to a log file, or to queues from a Put Queue
action.

n If no subscription actions are successfully executed, then messages
are routed to the No Hit queue.

n If failures occur at any time during processing, the message is routed
to the Failure queue.

n If errors occur during execution, all errors are written to the log file
only if logging is specified.

n The Rules daemon process waits if the output queue or No Hit queue
is full or disabled, unless the incoming message has the
OPT_NO_WAIT option set to TRUE.

&RQQHFWLQJ�WR�'%��DQG�046HULHV
To connect to DB2 and MQSeries, MQIRULEN, MQIGETDA, and
MQIPUTDA require a parameter file for input. These parameters control
various aspects of the product’s behavior. The parameter filename
DD:NAME is specified in the PARM= field. The default name is DD:MPF.

-9998 QUEUE_
INITIALIZATION_
FAILURE_ERR

Failure to initialize queue
specified in the
OPT_TARGET_QUEUE
option.

Verify that the
specified queue
exists.

-9997 RULENG_INVALID_
REFORMAT_ACTION_
ERR

Reformat action is missing a
value for the INPUT_FORMAT
or the TARGET_FORMAT
value is missing.

Correct the options
in the Reformat
action.

&RGH (UURU�1DPH ([SODQDWLRQ 5HVSRQVH
System Management Guide for OS/390 145

Chapter 5
8VLQJ�WKH�046HULHV�,QWHJUDWRU�5XOHV�
'DHPRQ�

Because OS/390 limits the size of the PARM string that can be specified, the
MQIRULEN executable accepts its parameters from the standard input
stream (STDIN) SYSIN, while writing prompts for each parameter to the
standard output stream (STDOUT) SYSPRINT.

04,58/(1�
The following sample job control language (JCL) illustrates how to run the
MQIRULEN job in batch and pass startup parameters to it. The JCL at your
site will be different. See Tailoring Jobs for Your Site on page 17 for information
about the symbolic parameters in this sample.

//* <insert a valid jobcard here>
//*
//**
//* *
//* Licensed Materials - Property of IBM *
//* *
//* (C) Copyright IBM Corp. 1998,1999 *
//**
//**
//* *
//* RULENG - Run the MQSI Rules Engine *
//* *
//**
//RULENG PROC PRM=(’ ’), run-time parameters
// SMPHLQ=’<smphlq>’, HLQ for MQI distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-)Lib
// SQLMEM=’SQLSVSES’, MEMbername for SQLSVSES cntl cards
// INIMEM=’CLIINI’, MEMbername for CLI INI cntl cards
// MPF=’RULENGP’, MEMbername for MPF parameters
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=MQIRULEN,
// PARM=&PRM
//*
//* <tailor the member STEPLIB and copy it here>
146 System Management Guide for OS/390

Rules
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DIPS=SHR
//MPF DD DSN=&SMPHLQ..SNEOMPF(&MPF), DISP=SHR
//SYSUDUMP DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//SYSOUT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2 v5 CLI high-level tracing
// PEND
//*
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//*
//RULENG EXEC RULENG
// PRM=(’ -p DD:MPF’)
//ENGLOG DD SYSOUT=* additional log file
//LOGFILE DD SYSOUT=* log file specified in MPF
//

58/(1*3
The MPF file defines parameters for rule processing. The following is a
sample parameter file for the MQSeries Integrator Rules daemon:

##
#
This is the parameter file for MQSeries Integrator Rules daemon.
#
Comments must have a # in the first column.
Names must be separated from the equals sign by whitespace, and the
value also must be separated with whitespace. No whitespace is
allowed in the value string itself, nor are trailing comments
permitted.
#
Note that any values in this parameter file will override defaults
established by the daemon!
##
System Management Guide for OS/390 147

Chapter 5

[Queues]
Parameters related to queues, MQSeries control, and Rules daemon
control

Alternate User Authority Flag
CredentialsEnabled = 0

MQSeries queue manager name...defaults to default queue manager
QueueManagerName = CSQ1

number of replay/retry attempts before message is sent to failure
queue (zero indicates no replays allowed)
MaxBackoutCount = 0

these three queue names are mandatory!
InputQueueName = RulesIn
NoHitQueueName = RulesNoHit
FailureQueueName = RulesFail

rules default application group and message type values (mandatory)
DefaultAppGroup = defaultApp
DefaultMsgType = defaultMsg

[Logging]
Log file control..."LogFileName" is the file specification for the
log. Valid "LogLevel" settings are:
3 - log only fatal errors
2 - log errors and fatal errors
1 - log warnings, errors, and fatal errors
0 - log information, warnings, errors, and fatal errors
LogFileName = DD:LOGFILE
LogLevel = 0

[Rules Database Connection]
#
Rules and Formatter database connection information
(mandatory)
#
ServerName = <db2-ssid>
UserId = XXXXX
Password = XXXXX
148 System Management Guide for OS/390

Rules
DatabaseInstance = <database-qualifier>
#
DatabaseType is a numeric with these values:
SYBASE CT 1
SYBASE DB 2
MSSQL 4
DB2 5
ODBC 6 includes db2 v5.1 using Call Level Interface (CLI)
MQSERIES 7
ORACLE 7 8
ORACLE 8 9
#
DatabaseType = 6

#
end of file!
#

3DUDPHWHUV

The following parameters are used in the RULENGP MPF file. The
parameters are tunable, so their values can be adjusted to customize control
and performance to your environment.

The parameters are organized into five areas: Operations, Logging, Queues,
Queue Handle Cache, and Rules Database Connection. Within the parameter
file, the parameters are presented in the same groupings. The group heading
must be displayed in the parameter file using square brackets ([]). Because
brackets may not display on OS/390, the left bracket ([) is represented as
x’AD’, and the right bracket (]) is represented as x’BD’.

2SHUDWLRQV

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

AllocQuantum Optional Unit of memory allocation = 2048
bytes (by default*)

ExtendQuantum Optional Unit of extension of previously
allocated memory block = 1024
bytes (by default*)
System Management Guide for OS/390 149

Chapter 5
/RJJLQJ

MaxBufferSize Optional Hard limit on growth of memory
block = 1048576 bytes (by default*).

LoadImmediate Optional Value =1.

* The default values for these parameters are recommended for most environments.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

LogFileName Optional Contains the file specification for
the daemon log file. By default, log
messages are written to stdout.

LogLevel Optional Amount of detail entered in
LogFile.
Default value = 0.
Values:
3-log only fatal errors
2-log errors and fatal errors
1-log warnings, errors, and fatal
errors
0-log information, warnings, errors,
and fatal errors

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
150 System Management Guide for OS/390

Rules
4XHXHV

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

CredentialsEnabled Optional Value determines whether
messages are put with alternate
user authority. The default value is
zero (0) or off, indicating that
messages are put using daemon
authority. When turned on (value is
1), messages are put using the
publisher’s authority.

QueueManagerName Optional Name of the local MQSeries Queue
Manager. If not specified, the
default MQSeries queue manager is
used.

MaxBackoutCount Optional Indicates the number of replays
before the message is sent to a
failure queue. This value can be
zero (0) to the maximum imposed
by MQSeries. Zero (0) is the default
value, indicating that no replay is
allowed.

InputQueueName Mandatory Name of queue used by the
MQSeries Integrator Rules daemon
to process inbound or input
messages. When multiple input
queues are specified, use
first,second,third..., where first,
second, and third are the names of
the queues. No whitespaces are
used in the queue list.
System Management Guide for OS/390 151

Chapter 5
ServiceScheme Optional Used with Input Queue Name to
specify the queue service scheme
across specified input queues.
RoundRobin (the default) processes
the first message from each queue
in strict rotation. Drain processes all
messages in the first queue before
processing from the next queue.

ServiceInterval Optional The integer number of seconds the
daemon sleeps when any input
queue is empty before continuing
the progression of the
ServiceScheme. The default is 1
second.

NoHitQueueName Mandatory Name of queue used by the
MQSeries Integrator Rules daemon
to place messages that do not satisfy
any of the defined rules. A
NoHitQueueName value must be
supplied by the user; no default
value.

FailureQueueName Mandatory Name of queue used by the
MQSeries Integrator Rules daemon
to place a message in the event
where a failure occurred. A
FailureQueueName value must be
supplied by the user; no default
value.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
152 System Management Guide for OS/390

Rules
DefaultAppGroup Mandatory Indicates the default application
group used for messages without a
MQSI header. DefaultAppGroup
value must be supplied by the user;
no default value.
Multiple default values for multiple
input queues must be mapped from
left to right. If insufficient default
values are specified, the value list is
reprocessed from the beginning
until sufficient values are assigned.
Excess default values are ignored

DefaultMsgType Mandatory Indicates the message type value
used for messages without a MQSI
header. DefaultMsgType value
must be supplied by the user; no
default value.
The daemon uses the following
MQSeries Message Descriptor
(MQMD) values at run-time:
"$MQMD.Format",
"$MQMD.PutApplName", or
"$MQMD.ApplIdentityData"
Multiple default values for multiple
input queues are mapped from left
to right. If insufficient default
values are specified, the value list is
reprocessed from the beginning
until sufficient values are assigned.
Excess default values are ignored

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
System Management Guide for OS/390 153

Chapter 5
4XHXH�+DQGOH�&DFKH

5XOHV�'DWDEDVH�&RQQHFWLRQ

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

MaxHandles Optional Integer value specifying the maximum
number of entries allowed in the queue
handle cache. When the maximum
number of handles is stored in the cache,
the next attempt to insert a queue handle
into the cache initiates a cache purge
operation. The default value is OFF.

PurgeInterval Optional Integer value indicating the number of
seconds to wait before attempting a
cache purge operation. This value is
used only when the MQSI rules daemon
is sleeping. If the input queues remain
full, MaxHandles dictates when a cache
purge occurs. The default value = 1
second.

These Queue Handle Cache parameters are not required to run the MQSI Rules
daemon. However, using these tunable parameters optimizes performance. When
MaxHandles and PurgeInterval are not specified, the default is to disable the
daemon cache. The cache is purged using a Least Recently Used (LRU) algorithm.
If the cache is full, but no entries match the purge selection criteria, a random entry
is selected for removal from the cache.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

ServerName Mandatory The name of the server you want to
connect to. For Oracle, this is optional.
For DB2, enter the SubsystemID .

UserID Mandatory Your UserID; can be encrypted using the
MQSIencrypt utility. UserID is not used
in the OS/390 version.
154 System Management Guide for OS/390

Rules
,PSURYLQJ�3HUIRUPDQFH
The wait time on the input queue defaults to three (3) seconds if no time is
specified.

Place Control messages, such as cache-reload and shutdown on the Rule
daemon primary input queue instead of on the reload queue to improve
daemon performance.

04,58/(&
The following sample JCL is used to compile and link MQIRULEN:

//* <insert a valid jobcard here >
//*

Password Mandatory Your password. Can be encrypted using
the MQSIencrypt utility. Password is
not used in the OS/390 version.

DatabaseInstance Mandatory The name of the database that you want
to connect to. Leave as "???" for Oracle.
For DB2 on OS/390, this value is the
SQLID and must be a valid primary or
secondary Auth-ID.

DatabaseType Mandatory Integer indicating the number of the
database type:
1 = SYBASE with CTLIB
2 = SYBASE with DBLIB
4 = MSSQL
5 = DB2
6 = ODBC
7 = MQSERIES
8 = ORACLE 7
9 = ORACLE 8
For OS/390 on DB2 version 5.1 and
later, MQSeries Integrator uses the Call
Level Interface (CLI). You must specify
DatabaseType 6 for the CLI.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
System Management Guide for OS/390 155

Chapter 5
//***
//* *
//* Licensed Materials - Property of IBM *
//* *
//* (c) Copyright IBM Corp. 1988, 1999 *
//* *
//***
//PROCLIST JCLLIB ORDER=<smphlq>.SNEOPROC,SYS1.PROCLIB
//COMPILE EXEC CBCCL15,
// INFILE=’<smphlq>.SNEOCPP’,
// INCFILE=’<smphlq>.SNEOH’,
// OUTFILE=’<smphlq>.SNEOLOAD’,
// MEMBER=’MQIRULEN’
//LKED.SYSIN DD *
 INCLUDE MQSLOAD(CSQBSTUB)
 NAME MQIRULEN(R)
/*

5XOHV�&DFKLQJ
When users change data within a rule or rule set specified by an Application
Group/Message Type pair, they must signal a running Rules daemon
instance to load the changes into memory, if they want to use the changes.

MQIRULEN checks the input and can be configured to check for notification
messages. Notification messages are typically empty and have the following
options:

n OPT_APP_GRP set to the application group.

n OPT_MSG_TYPE set to the message type.

The application group and message type indicate which rule set to
reload.

n OPT_RELOAD_RULE_SET set to TRUE indicating to the Rules
daemon to reload the specified rule set.

You must decide whether to create a new queue for notification notices or use
an existing queue, such as the queue used by the Rules daemon to get
messages.
156 System Management Guide for OS/390

Rules
6HQGLQJ�D�5HORDG�0HVVDJH
To send a reload message, you must modify the MQIPUTDA parameter file.
Under Put Options, set OPT_RELOAD_RULE_SET = TRUE.

6KXWWLQJ�'RZQ�WKH�5XOHV�'DHPRQ
To shut down an MQSeries Integrator Rules daemon process, run
MQIPUTDA with OPT_SHUTDOWN = SHUTDOWN. PUTDATA is a
member of the SNEOMPF library.

7HVWLQJ�5XOHV�

5XOHV�7HVW�3URJUDPV�
The MQIPUTDA, MQIGETDA, and RULETEST programs are provided for
testing Rules. The NNRTRACE program is supplied to provide a debugging
utility for NEONRules. These test programs are explained in this section.

The MQIPUTDA program can be used to put data to a Rules Daemon process
queue in such a way that the process can evaluate the message. The
MQIGETDA program can be used to get (or retrieve) messages from a Rules
Daemon process output queue, or any other queue.

04,387'$�
The MQIPUTDA program reads a message from a file and puts the message
on a queue with the OPT_APP_GRP, the OPT_MSG_TYPE, and possibly the
OPT_NO_WAIT options set. The RulesIn queue is a possible input queue for
the Rules daemon program and should be specified as such in the RULENG
SYSIN stream. Setting OPT_NO_WAIT causes the Rules Daemon process to
put messages on the Failure queue if the output queue is full or disabled.

This program sets the two options on the message that the Rules Daemon
expects, specifically the application group and message type.

MQIPUTDA requires a connection to a database containing queuing data.
The MQIPUTDA program expects that a queue name defined in the
System Management Guide for OS/390 157

Chapter 5
command line exists, is enabled, and is defined in the input stream (SYSIN) of
a running RULENG process.

Before running MQIPUTDA, you must verify that the SQLSVSES file includes
the relevant information used to execute this program.

The session name in the SQLSVSES file is used by the Rules daemon to locate
the appropriate line from which to retrieve connection data. The MQIPUTDA
program expects to have a session name of input. The MQIGETDA program
expects to have a session name of output. Using this connection data, the
Rules daemon test programs are able to make a connection to the appropriate
database.

6DPSOH�-&/�IRU�04,387'$

The following sample job control language (JCL) illustrates how to run the
MQIPUTDA job in batch and pass startup parameters to it. The JCL at your
site will be different. See Tailoring Jobs for Your Site on page 17 for information
about the symbolic parameters in this sample.

//* <insert a valid jobcard here >
//*
//**
//* *
//* Licensed Materials - Property of IBM *
//* *
//* (C) Copyright IBM Corp. 1998,1999 *
//* *
//**
//**
//* *
//* PUTDATA: Put data on a queue *
//* *
//**
//PUTDATA PROC PRM=(’ ’), run-time parameters
// SMPHLQ=’<smphlq>’, HLQ for MQI distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-)Lib
// MPF=’PUTDATA’, Member Name for MPF parameters
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=MQIPUTDA,
158 System Management Guide for OS/390

Rules
// PARM=&PRM
//*
//* <tailor the member STEPLIB and copy it here>
//*
//MPF DD DSN=&SMPHLQ..SNEOMPF(&MPF),DISP=SHR
//SYSUDUMP DD SYSOUT=&OPCLAS
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
// PEND
//*
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//PUTDATA EXEC PUTDATA,
// PRM=(’ -p DD:MPF’)
//INPUT DD DISP=SHR,DSN=<your-message-file>

04,387'$�3DUDPHWHUV

The parameters for the MQIPUTDA test program are stored in the SNEOMPF
library. See the Application Programming Guide for additional information
about the MQRFH structure.

[Put Control]
 #Name of the file that contains the message data
 #If not specified, an empty or null data file is assumed
 inputFileName = DD:INPUT

 #Name of the queue where the message will be put
 queueName = RulesIn

 #Name of the queue manager that owns the queue
 queueManagerName = CSQ1

 #Name of the queue where the reply message will be sent.
 #Comment the following line if the replyToQ is the same as
 #queueName
 #replyToQ = <your reply to q>
System Management Guide for OS/390 159

Chapter 5
 #Name of the queue manager that owns the replyToQ.
 #Comment the following line if the replyToQmgr is the same as
 #queueManagerN
 #replyToQmgr = CSQ1

 #Name of the log file. Comment the following line if the
 #error or warning information is to be logged to stderr.
 #logFileName = DD:LOGFILE

 #"logLevel" used to control message logging to the file.
 #Valid "logLevel" settings are:
 # 3 - log only fatal errors
 # 2 - log errors, and fatal errors
 # 1 - log warnings, errors, and fatal errors
 # 0 - log informationals, warnings, errors, and fatal errors
 #logLevel = 0

 #Maximum permissable record size in case of variable length
 #records.
 #Record size in case of fixed length records.
 maxUserDataLength = 10000

 #Number of times each message is to be put in the queue. An
 #integer value must be specified.
 messageCount = 1

 #Transaction commit size, 0 indicates commit all the records once
 transCommitSize = 0

 #A value of YES indicates variable length records are present in
 #the file.
 #A value of NO indicates fixed length records are present in the
 #file.
 variableLengthRecord = YES

 #segmentationAllowed, YES is allowed, NO if not allowed
 segmentationAllowed = YES

 #Record separator character. Used in conjunction with variable
 #length records to indicate the end of record. Its value must be
 #specified, if variableLengthRecord is YES. Otherwise, its value
 #is ignored.
160 System Management Guide for OS/390

Rules
 recordSeparator = xxxx

 #Number of records to load from the file, ALL if all records are
 #to be loaded
 numRecordsToRead = ALL

 #Binary value indicating whether to output statistics information
 #1 indicates yes, 0 indicates no
 showStatistics = 1

[Put Message]
 #Populate the format field of the message descriptor with this
 #value
 format = MQHRF

 #Populate the ApplIdentityData field of the message descriptor
 #with this value. The following line to be commented if no
 #ApplIdentityData field is present in the message descriptor.
 #applIdentityData = xxx

 #Populate the PutApplName field of the message descriptor with
 #this value. The following line to be commented if no PutApplName
 #field is present in the message descriptor.
 #putApplName = MQSIputdata

 #Populate the ApplOriginData field of the message descriptor with
 #this value. The following line to be commented if no
 #ApplOriginData field is present in the message descriptor.
 #applOriginData = xxx

 #Populate the expiry field of the message descriptor with this
 #value
 expiry = -1

 #Populate the persistence field of the message descriptor with
 #this value
 # Valid values for persistence:
 # MQPER_PERSISTENT 1
 # MQPER_NOT_PERSISTENT 0
 # MQPER_PERSISTENCE_AS_QDEF 2
 persistence = 0
System Management Guide for OS/390 161

Chapter 5
 #Populate the message type field of the message descriptor with
 #this value
 # Valid values for message type:
 # MQMT_REQUEST 1
 # MQMT_REPLY 2
 # MQMT_REPORT 4
 # MQMT_DATAGRAM 8
 messageType = 8

 #Specify whether to include the RF header with the inbound
 #message. 1 = yes, 0 = no
 includeHeader = 1

 #Specify how to populate the MQRFH.Format field.
 #This parameter only takes effect if the includeHeader == 1.
 dataFormat = MQSTR

[Put Options]
 #This group defines the options that are attached to the message
 #before it is sent. The parameters in this group only take effect
 #if includeHeader == 1.
 OPT_APP_GROUP = mqsiAG
 OPT_MSG_TYPE = mqsiIF

 #The OPT_SHUTDOWN option will cause the MQI Rules daemon to
 #terminate after committing the current unit-of-work.
OPT_SHUTDOWN = SHUTDOWN

 #The OPT_RELOAD_RULE_SET option will cause the Rules daemon to
 #delete its cached values and read fresh rules definitions from
 #the database.
OPT_RELOAD_RULE_SET = TRUE

3DUDPHWHUV

The following parameters are used in the MQIPUTDA file. The parameters
are used to define Put control, the Put message, and Put options.

1RWH�
The default values for MQIPUTDA should be the same as the MQMD deaults
in MQSeries.
162 System Management Guide for OS/390

Rules
3XW�&RQWURO

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

inputFileName Optional Name of file that contains the
message data. Default filename is
DD:INPUT.

queueName Mandatory Name of queue where the message
is put.

queueManagerName Optional Name of the local MQSeries Queue
Manager. If not specified, the
default MQSeries queue manager is
used.

replyToQ Optional Name of the queue where the reply
message is sent.

replyToQmgr Optional Name of the queue manager that
owns the replyToQ.

logFileName Optional Name of the log file. Default
filename is DD:LOGFILE.

logLevel Mandatory Defines message logging to the file.
Valid settings are:
3 = log only fatal errors
2 = log errors and fatal errors
1 = log warnings, errors, and fatal
errors
0 = log informationals, warnings,
errors, and fatal errors

maxUserDataLength Mandatory Maximum permissible record size
in variable length records; must be
greater than longest text between
two recordSeparators.

messageCount Mandatory Number of times each message is
put to the queue; must specify an
integer value.
System Management Guide for OS/390 163

Chapter 5
3XW�0HVVDJH

transCommitSize Mandatory Transaction commit size. Zero (0)
indicates commit all records once.

variableRecordLength Mandatory Indicates whether variable length
records are present in the file. YES
indicates variable records are
present; NO indicates fixed length
records are present.

segmentationAllowed Mandatory YES indicates segmentation is
allowed; NO indicates
segmentation is not allowed.

recordSeparator Mandatory Record separator character used
with variable length records;
indicates end of record. If
variableRecordLength is YES,
recordSeparator value must be
specified.

numRecordsToRead Mandatory Indicates number of records to load
from the file. Value is ALL if all
records are loaded.

showStatistics Mandatory Binary value indicating whether to
output statsitics information. Value
of 1 indicates yes; zero (0) indicates
no.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

format Mandatory Value used to populate the format
field of the message descriptor.

applIdentityData Optional Value used to populate the
applIdentityData field of the
message descriptor.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
164 System Management Guide for OS/390

Rules
putApplName Optional Value used to populate the
putApplName field of the message
descriptor.

applOriginData Optional Value used to populate the
applOriginData field of the
message descriptor.

expiry Mandatory Value used to populate the expiry
field of the message descriptor. The
value cannot be zero (0).

persistence Mandatory Value used to populate the
persistence field of the message
descriptor. Valid values are:
0 = MQPER_NOT_PERSISTENT
1 = MQPER_PERSISTENT
2 = MQPER_PERSISTENCE_AS
_QDEF

messageType Mandatory Value used to populate the message
type field of the message descriptor.
Valid values are:
1 = MQMT_REQUEST
2 = MQMT_REPLY
4 = MQMT_REPORT
8 = MQMT_DATAGRAM

includeHeader Mandatory Specifies whether to include the RF
header with the inbound message.
Value of 1 indicates yes; zero (0)
indicates no.

dataFormat Optional Specifies how to populate the
MQRFH.Format field. This
parameter only takes effect if
includeHeader == 1.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
System Management Guide for OS/390 165

Chapter 5
3XW�2SWLRQV

04,387'&

The following JCL is used to compile MQIPUTDA:

//* <insert a valid jobcard here >
//*
//

//* *
//* Licensed Materials - Property of IBM *
//* *
//* (C) Copyright IBM Corp. 1998,1999 *
//* *
//***
//PROCLIST JCLLIB ORDER=(<smphlq>.SNEOPROC,SYS1.PROCLIB)
//COMPILE EXEC CBCCL15,
// INFILE=’<smphlq>.SNEOCPP’,
// INCFILE=’<smphlq>.SNEOH’,
// OUTFILE=’<smphlq>.SNEOLOAD’,
// MEMBER=’MQIPUTDA’
//LKED.SYSIN DD *

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

OPT_APP_GROUP Mandatory Option attached to the message before
it is sent. The application group and
message type indicate which rule set
to reload.

OPT_MSG_TYPE Mandatory Option attached to the message before
it is sent

OPT_SHUTDOWN Optional Causes the Rules daemon to terminate
after committing the current unit of
work.

OPT_RELOAD
_RULE_SET

Optional Causes the Rules daemon to delete its
cached values and read fresh rules
from the database. Valid values are:
TRUE and FALSE.
166 System Management Guide for OS/390

Rules
 INCLUDE MQSLOAD(CSQSTUB)
 NAME MQIPUTDA(R)

04,*(7'$
The MQIGETDA process reads a queue, retrieving messages one at a time,
and writing each message to the output file until the queue is empty. The
MQIGETDA program expects that the queue name defined in the command
line exists, it is enabled, and it has messages on it.

Before running MQIGETDA, you must verify that the SQLSVSES file includes
the relevant information used to execute this program.

The session name in the SQLSVSES file is used by the Rules daemon to locate
the appropriate line from which to retrieve connection data. The MQIGETDA
program expects to have a session name of output. Using this connection
data, the Rules daemon test programs are able to make a connection to the
appropriate database.

6DPSOH�-&/�IRU�04,*(7'$

The following sample job control language (JCL) illustrates how to run the
MQIGETDA job in batch and pass startup parameters to it. The JCL at your
site will be different. See Tailoring Jobs for Your Site on page 17 for information
about the symbolic parameters in this sample.

//* <insert a valid jobcard here >
//*
//**
//* *
//* Licensed Materials - Property of IBM *
//* *
//* (C) Copyright IBM Corp. 1998,1999 *
//* *
//**
//**
//* *
//* GETDATA: Read data from a Queue *
//* *
//**
//GETDATA PROC PRM=(’ ’),
// SMPHLQ=’<smphlq>’, HLQ for MQI distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
System Management Guide for OS/390 167

Chapter 5
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-)Lib
// MPF=’GETDATA’, Member Name of MPF file
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=MQIGETDA,
// PARM=&PRM
//*
//* <tailor the member STEPLIB and copy it here>
//*
//MPF DD DSN=&SMPHLQ..SNEOMPF(&MPF), DISP=SHR
//SYSUDUMP DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//SYSOUT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//SYSIN DD DUMMY
// PEND
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//DEL EXEC PGM=IEFBR14
//OUTFILE DD DSN=<your-data-file-here>,
// UNIT=SYSALLDA,
// SPACE=<space-attributes-here>,
// DISP=(MOD,DELETE)
//*
//GETDATA EXEC GETDATA,
168 System Management Guide for OS/390

Rules
// PRM=(’ -p DD:MPF’)

//OUTPUT DD DISP=SHR,DSN=<your-data-file-here>
// DISP=(MOD,CATLG,KEEP),
// UNIT=SYSALLDA,
// SPACE=<space-attributes-here>,
// DCB=<dcb-attributes-here>

04,*(7'$�3DUDPHWHUV

The parameters for the MQIGETDA test program are stored in the SNEOMPF
library.

[Get Control]
 #Name of the file to put the message data
 outputFileName = DD:OUTPUT

 #Name of the queue to get the message from
 queueName = RulesIn

 #Name of the queue manager that owns the queue
 queueManagerName = CSQ1

 #Maximum message size
 maxUserDataLength = 10000

 #Name of the log file. Comment the following line if the
 #error/warning information is to be logged into SYSOUT.
 #logFileName = DD:LOGFILE

 #"logLevel" used to control message logging to the file.
 #Valid "logLevel" settings are:
 # 3 - log only fatal errors
 # 2 - log errors, and fatal errors
 # 1 - log warnings, errors, and fatals
 # 0 - log informationals, warnings, errors, and fatals
 #logLevel = 0

 #ID of the message to get. If this value is not defined and
 #correlID is not defined, the application gets the
 #next available message from the queue.Notice that this field uses
 #an encoded hex representation for the messageId.
 messageID = 414D51205141514D202020202020202034EA
System Management Guide for OS/390 169

Chapter 5
 #Correlation ID of the message to get. If this value is not
 #defined and messageID is not defined, the application gets the
 #next available message from the queue. The correlID field uses
 #an encoded hex representation of a binary value.
 correlID =

 #Maximum number of messages to get. The application will run until
 #messageCount messages have been dequeued or until the queue is
 #empty.
 messageCount = 1000

 #Transaction commit size,) indicates commit all the records once
 commitSize = 0

 #Maximum amount of time to wait for a message to arrive before
 #the application reports a queue empty and exits. In MQSeries
 #v.5.0 and later, the units of this timeout value are
 #milliseconds.
 getTimeout = 0

 # The following entries are binary attribute indicators
 # 1 indicates that the feature should be enabled.
 # 0 indicates that the feature should be disabled.

 # Show statistics about dequeued messages.
 showStatistics = 1

 # Should the output be sent to a file.
 # 0 indicates that output should be sent to stderr.
 outputToFile = 1

 # Should the message descriptor data be output.
 showDescriptor = 1

 # Should the message data be output.
 showData = 1

 # Should the messages be rolled back after the get operation
 rollback = 0
170 System Management Guide for OS/390

Rules
3DUDPHWHUV

The following parameters are used in the MQIGETDA file. The parameters
are used to define Get control.

1RWH�
The default values for MQIGETDA should be the same as the MQMD deaults
in MQSeries.

*HW�&RQWURO

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

outputFileName Optional Name of file to put the message data.
Default filename is DD:OUTPUT.

queueName Mandatory Name of queue to get the message
from.

queueManagerName Optional Name of the local MQSeries Queue
Manager. If not specified, the default
MQSeries queue manager is used.

maxUserDataLength Optional Maximum message size in bytes.

logFileName Optional Name of the log file. Default filename
is DD:LOGFILE.

logLevel Mandatory Defines message logging to the file.
Valid settings are:
3 = log only fatal errors
2 = log errors and fatal errors
1 = log warnings, errors, and fatal
errors
0 = log informationals, warnings,
errors, and fatal errors
System Management Guide for OS/390 171

Chapter 5
messageID Optional ID of the message to get. If message ID
and correlID are not defined, the
application gets the next available
message from the queue. The
messageID field uses an encoded hex
representation.

correlID Optional Correlation ID of the message to get. If
message ID and correlID are not
defined, the application gets the next
available message from the queue.
The correlID field uses an encoded
hex representation of a binary value.

messageCount Optional Maximum number of messages to get.
The application runs until
<messageCount> messages are
dequeued, or until the queue is
empty.

commitSize Mandatory Transaction commit size;) indicates
commit all records once.

getTimeout Mandatory Maximum length of time to wait for a
message to arrive before the
application reports a queue empty
and exits.

showStatistics Mandatory Binary value indicating whether to
output statistics information about
dequeued messages. Value of 1
indicates yes; zero (0) indicates no.

outputToFile Mandatory Binary value indicating whether to
output to a file. Value of 1 indicates
yes; zero (0) indicates output should
be sent to stderr.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
172 System Management Guide for OS/390

Rules
04,*(7'&

The following JCL compiles and links MQIGETDA:

//* <insert a valid jobcard here >
//*
//***
//* *
//* Licensed Materials - Property of IBM *
//* *
//* (c) Copyright IBM Corp. 1988, 1999 *
//* *
//***
//PROCLIST JCLLIB ORDER=(<smphlq>.SNEOPROC,SYS1.PROCLIB)
//COMPILE EXEC CBCCL15,
// INFILE=’<smphlq>.SNEOCPP’,
// INCFILE=’<smphlq>.SNEOH’,
// OUTFILE=’<smphlq>.SNEOLOAD’,
// MEMBER=’MQIGETDA’
//LKED.SYSIN DD *
 INCLUDE MQSLOAD(CSQSTUB)
 NAME MQIGETDA(R)

showDescriptor Mandatory Binary value indicating whether to
output message descriptor data.
Value of 1 indicates yes; zero (0)
indicates no.

showData Mandatory Binary value indicating whether to
output message data. Value of 1
indicates yes; zero (0) indicates no.

rollback Mandatory Binary value indicating whether to
rollback messages after the get
operation. Value of 1 indicates yes;
zero (0) indicates no.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
System Management Guide for OS/390 173

Chapter 5
58/(7(67�
The RULETEST program reads a message from a file and evaluates the
message, using the application group/message type defined in the standard
input stream (STDIN) SYSIN. The RULETEST program uses Formatter to
evaluate messages only; the RULETEST program does not execute actions.
After evaluation, subscriptions are retrieved as usual and output to the
standard output stream (STDOUT) SYSPRINT, but not executed. The
RULETEST program uses Rules for evaluating and retrieving subscriptions.
This program does not execute subscriptions using Formatter.

The RULETEST program requires a connection to a database containing both
NEONRules and NEONFormatter data, and this data must reside within the
same database.

6DPSOH�-&/�IRU�58/(7(67

The following sample job control language (JCL) is provided to illustrate how
to run the RULETEST job in batch and pass startup parameters to it. The JCL
at your site will be different. See Tailoring Jobs for Your Site on page 17 for
information about the symbolic parameters in this sample.

//* <insert a valid jobcard here >
//*
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//* RULETEST: Test Rule Evaluation *
//* *
//**
//RULETEST PROC SMPHLQ=<smphlq>’, HLQ for NEONetMQI distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-)Lib
// SQLMEM=’SQLSVSES’, MEMbername for SQLSVSES cntl cards
174 System Management Guide for OS/390

Rules
// INIMEM=’CLIINI’, MEMbername for CLI INI cntl cards
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=RULETEST
//*
//* <tailor the member STEPLIB and copy it here>
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2 v5 CLI high-level tracing
// PEND
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//* All datasets used by NEONet must be preallocated and cataloged
//* prior to running any NEONet jobs. The recommended DCB attributes
//* are: DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//RULETEST EXEC RULETEST
//PUTDIN DD DISP=SHR,DSN=<your-test-message-file>
//SYSIN DD *
rules
DD:PUTDIN
<your-AppGrp>
<your-MessageType>
<verbose-y/n>
<reload-rules-cache-y/n>
/*
//

58/(767&

The following JCL is used to compile and link RULETEST:

//* <insert a valid jobcard here >
//*
//***
System Management Guide for OS/390 175

Chapter 5
//* *
//* Licensed Materials - Property of New Era of Networks, Inc.*
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//***
//PROCLIST JCLLIB ORDER=(<smphlq>.SNEOPROC,SYS1.PROCLIB)
//COMPILE EXEC CBCCL15,
// INFILE=’<smphlq>.SNEOCPP’,
// INCFILE=’<smphlq>.SNEOH’,
// OUTFILE=’<smphlq>.SNEOLOAD’,
// MEMBER=’RULETEST’
//LKED.SYSIN DD *

 NAME RULETEST(R)

5XOHV�'HEXJJLQJ�8WLOLW\�
The NNRTRACE program is a debugging utility for testing rules.
NNRTRACE evaluates a rule and messages associated with the rule to
determine whether the rule will hit. A hit indicates that this message would
cause the rule to hit. If the rule hits, the actions that can be performed by the
rule are displayed. If no actions exist, the process fails while evaluating the
message.

To use the NNRTRACE program, create an input file for the test procedure or
use the MQIGETDA program to retrieve the messages to be tested from a
queue. If you use MQIGETDA to retrieve messages, you might have to replay
the queue to put the messages back on the queue because MQIGETDA will
take a message off the queue.

Before running this executable, you must verify that the SQLSVSES file
includes the relevant information to execute this program.

11575$&(�
The following sample job control language (JCL) illustrates how to run the
NNRTRACE job in batch and pass startup parameters to it. The JCL at your
site will be different. See Tailoring Jobs for Your Site on page 17 for information
about the symbolic parameters in this sample.
176 System Management Guide for OS/390

Rules
6DPSOH�-&/�IRU�11575$&(
//* <insert a valid jobcard here >
//*
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//* NNRTRACE: Trace Rule Processing - used for debugging *
//* *
//**
//NNRTRACE PROC SMPHLQ=<smphlq>’, HLQ for MQI distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
// CEEHLQ=’<lehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-)Lib
// SQLMEM=’SQLSVSES’, MEMbername for SQLSVSES cntl cards
// INIMEM=’CLIINI’, MEMbername for CLI INI cntl cards
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=NNRTRACE
//*
//* <tailor the member STEPLIB and copy it here>
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2 v5 CLI high-level tracing
// PEND
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQseries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
System Management Guide for OS/390 177

Chapter 5
//NNRTRACE EXEC NNRTRACE
//INPUT DD DISP=SHR,DSN=<your-test-message-file>
//SYSIN DD *
rules
DD:INPUT
<your-AppGrp>
<your-MessageType>
<your-Rule-to-trace>
<session-name>
<verbose-y/n>
/*

//
178 System Management Guide for OS/390

&KDSWHU��

&RQVLVWHQF\�&KHFNHU

The Consistency Checker is a utility to check the consistency of MQSeries
Integrator components. The Consistency Checker lists objects as invalid that
are out of synchronization due to a recovery, bad migration, or some other
reason.

Most of the items verify the internal structure of the rules to confirm that they
are properly created. Some checks verify that user-defined data is correctly
entered and whether records have corresponding features in the database. All
formats and rules in an inconsistent state generate a report indicating the
problem.

6WDUWLQJ�WKH�&RQVLVWHQF\�&KHFNHU

The following scripts constitute the Consistency Checker. Prior to contacting
technical support, you should execute these scripts, and then examine the
reports to determine if the database is corrupted. If any report produced by
these scripts contains data, a data inconsistency exists that must be repaired.

n FORMATCC

Checks logical consistency of the Formatter tables.

To run the Consistency Checker for Formatter, execute the
FORMATCC SQL script using SPUFI.

n RULECC

Checks logical consistency of the Rules tables.

To run the Consistency Checker for Rules, execute the RULECC SQL
script using SPUFI.
System Management Guide for OS/390 179

Chapter 6
n PERMCC

Checks logical consistency of the Rules permissions.

To run the Consistency Checker for Rules permissions, execute the
PERMCC SQL script using SPUFI.

n NEOMQCC

Scans the Rules database for putq Subscription actions, and
determines whether a queue exists. NEOMQCC outputs a list of any
missing queues. If all queues are valid, the following message is
displayed:

All queues exist. Put Messages are valid.

Use the following sample JCL to run NEOMQCC:

//* <tailor member JOBCARD and insert here>
//*
//**
//* *
//* Licensed Materials - Property of New Era of Networks, Inc. *
//* Copyright (c) 1998-1999, New Era of Networks, Inc. *
//* All Rights Reserved. *
//* *
//* Release 4.1.1 *
//**
//**
//* *
//* NEOMQCC: MQSeries Consistency Checker Application *
//* *
//**
//NEOMQCC PROC PRM=(’ rules CSQ1’),
// SMPHLQ=’<smphlq>’, HLQ for NEONet distrib libs
// MQSHLQ=’<mqshlq>’, HLQ for MQS run-time libs
// CEEHLQ=’<ceehlq>’, HLQ for Lang Envir libs
// CSSHLQ=’SYS1’, HLQ for Callable Sys Svcs (CSS-)Lib
// SQLMEM=’SQLSVSES’, MEMbername for SQLSVSES cntl cards
// INIMEM=’CLIINI’, MEMbername for CLI INI cntl cards
// OPCLAS=’*’ SYSOUT CLASS
//*
//STP0101 EXEC PGM=MQRPUTQC,
// PARM=&PRM
180 System Management Guide for OS/390

Consistency Checker
//*
//* <tailor member STEPLIB and insert here>
//*
//SQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
//DSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
//SYSOUT DD SYSOUT=&OPCLAS
//SYSPRINT DD SYSOUT=&OPCLAS
//STATLOG DD SYSOUT=&OPCLAS
//CLITRACE DD SYSOUT=&OPCLAS used for DB2 v5 CLI high-level tracing
//SYSIN DD DUMMY
// PEND
//*
//*
//* All datasets used by MQSeries Integrator must be preallocated and
//* cataloged prior to running any MQSeries Integrator jobs. The
//* recommended DCB attributes are:
//* DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//* All datasets used by NEONet must be preallocated and cataloged
//* prior to running any NEONet jobs. The recommended DCB attributes
//* are: DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760
//*
//NEOMQCC EXEC NEOMQCC,PRM=(’ <rules-session> <queue-manager>’)
//

&RQVLVWHQF\�&KHFNHU�5HSRUW��)RUPDWWHU�
The Formatter Consistency Checker report provides the following
information:

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ

Case operations that refer to nonexistent
case choices

Use valid choices for case operations.

Case operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Code table entries that refer to nonexistent
user-defined data types

Extraneous data in the database.
Database integrity may be
compromised.
System Management Guide for OS/390 181

Chapter 6
Collection operation components that
refer to nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Collection operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Collection type output operations that
have no collection components

Choose at least one component
operation to insert into a collection.

Compound format components that refer
to nonexistent component formats

Choose valid component formats to
insert into compound formats.

Compound format components that refer
to nonexistent parent formats

Deletion of compound format may
not have occurred successfully.
Database integrity may be
compromised.

Compound format components that refer
to nonexistent repeat delimiters

Choose valid literals for repeat
delimiters for component formats.

Compound format components that refer
to nonexistent repeat fields

Choose valid fields for "Field contains
repeat count" repeat termination.

Compound formats that have no
component formats

Insert at least one component format
into compound format.

Default operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Default operations that refer to
nonexistent padding characters

Choose valid literals to use as default.

Exit operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Flat formats that refer to nonexistent
decompositions

Choose valid decomposition (ordered
or unordered) for flat formats.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
182 System Management Guide for OS/390

Consistency Checker
Flat formats that refer to nonexistent
format delimiters

Choose valid delimiters for flat
formats.

Flat formats that refer to nonexistent
formats

A deleted flat format has not been
deleted correctly. Database integrity
may be compromised.

Flat formats that refer to nonexistent
terminations

Choose valid termination types for
flat formats.

Flat input formats that have no fields Insert at least one field into format.

Flat output formats that have no fields Insert at least one field into format.

Incomplete input format fields that refer to
field NONE or input control NONE

Choose fields other than NONE to
insert into input flat format.
Choose input controls other than
NONE for input fields.

Incomplete output format fields that refer
to field NONE or output control NONE

Choose fields other than NONE to
insert into output flat format.
Choose output format controls other
than NONE for output fields.

Input compound format components that
refer to nonexistent repeat terminations

Choose valid repeat termination types
for component formats.

Input controls of data type custom date/
time with data lengths not equal to length
of custom date/time format string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type default date
and time with data lengths not equal to
length of default date and time format
string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type default date
with data lengths not equal to length of
default time format string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type default time
with data lengths not equal to length of
default time format string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
System Management Guide for OS/390 183

Chapter 6
Input controls of data type endian 2 with
data lengths not equal to 2

These are fixed length controls that
should have a length of 2.

Input controls of data type endian 4 with
data lengths not equal to 4

These are fixed length controls that
should have a length of 4.

Input controls of length data type endian 2
with length lengths not equal to 2

These are fixed length controls that
should have a length of 2.

Input controls of length data type endian 4
with length lengths not equal to 4

These are fixed length controls that
should have a length of 4.

Input controls that have invalid default
date and time format strings

Date and time data type refers to a
date/time format string that is not the
legitimate default.

Input controls that have invalid default
date format strings

Date data type refers to a time format
string that is not the legitimate
default.

Input controls that have invalid default
time format strings

Time data type refers to a time format
string that is not the legitimate
default.

Input controls that refer to nonexistent
custom date/time format strings

Choose valid custom date/time
format strings for input parse
controls.

Input controls that refer to nonexistent
data delimiters

Choose valid literals for data
delimiters of input parse controls.

Input controls that refer to nonexistent
data termination types

Choose valid data termination types
for input parse controls.

Input controls that refer to nonexistent
data types

Choose valid data types for data
portion of input parse control.

Input controls that refer to nonexistent
input control types

Choose valid types for input parse
controls.

Input controls that refer to nonexistent
length data types

Choose valid data types for length
portion of input parse control.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
184 System Management Guide for OS/390

Consistency Checker
Input controls that refer to nonexistent
length delimiters

Choose valid literals for length
delimiters of input parse controls.

Input controls that refer to nonexistent
length locations

Choose valid length locations for
input parse controls.

Input controls that refer to nonexistent
length termination types

Choose valid length termination
types for input parse controls.

Input controls that refer to nonexistent tag
data types

Choose valid data types for tag
portion of input parse control.

Input controls that refer to nonexistent tag
delimiters

Choose valid literals for tag delimiters
of input parse controls.

Input controls that refer to nonexistent tag
or literal values

Choose valid literals for input parse
controls that are literals or that have a
tag value.

Input controls that refer to nonexistent tag
termination types

Choose valid tag termination types
for input parse controls.

Input format fields that refer to
nonexistent fields

Choose valid fields to insert into flat
input formats.

Input format fields that refer to
nonexistent flat formats

A deleted input format has not been
properly removed, there should be no
impact.

Input format fields that refer to
nonexistent input controls

Choose valid input parse controls for
the fields.

Input parse controls with 2-digit year
date/time format strings with invalid year
cutoff values

Enter a valid year cutoff value (0 to 99
inclusive) for year cutoff value.

Justify operations that refer to nonexistent
justify choices

Choose valid choices for justify
operations.

Justify operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
System Management Guide for OS/390 185

Chapter 6
Length operations that refer to nonexistent
output operations

Database integrity is compromised.

Length operations that refer to nonexistent
padding characters

Choose valid literals for padding
character.

Math expression components that refer to
nonexistent math expression operations

Extraneous data in the database.
Database integrity may be
compromised.

Math expression operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Math expression operations that refer to
nonexistent rounding modes

Choose valid rounding modes for
math expressions.

Output compound format components
that refer to nonexistent repeat
terminations

Choose valid repeat termination types
for component formats.

Output controls that have invalid default
date and time format strings

Date and time data type refers to a
date/time format string that is not the
legitimate default.

Output controls that have invalid default
date format strings

Date data type refers to a date format
string that is not the legitimate
default.

Output controls that have invalid default
time format strings

Time data type refers to a time format
string that is not the legitimate
default.

Output controls that refer to nonexistent
calculation operations

Choose valid calculation operations
for output format controls.

Output controls that refer to nonexistent
custom date/time format strings

Custom date/time data type refers to
a custom date/time format string that
is not the legitimate default.

Output controls that refer to nonexistent
data types

Choose valid data types for data
portion of output format controls.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
186 System Management Guide for OS/390

Consistency Checker
Output controls that refer to nonexistent
field comparison values

Choose valid literals for output
format controls of type “Input field
value =”.

Output controls that refer to nonexistent
length data types

Choose valid data types for length
portion of output format controls.

Output controls that refer to nonexistent
output control types

Choose valid types for output format
controls.

Output controls that refer to nonexistent
output operations

Choose valid output operations for
output format controls.

Output controls that refer to nonexistent
tag data types

Choose valid data types for tag
portion of output format controls.

Output controls that refer to nonexistent
tag or literal values

Choose valid literals for output
format controls of type “Literal” or
“Data Field Tag Search”.

Output format fields that refer to
nonexistent access modes

Choose valid access modes for fields
in flat output formats.

Output format fields that refer to
nonexistent fields

Choose valid fields to insert into flat
output formats.

Output format fields that refer to
nonexistent flat formats

A deleted output format has not been
properly removed. There should be
no impact.

Output format fields that refer to
nonexistent input fields

Choose valid mapped input fields to
insert into flat output formats.

Output format fields that refer to
nonexistent output controls

Choose valid output format controls
for the fields.

Output operations that refer to nonexistent
case operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
collection operations

Database integrity is compromised.
Delete collection and re-enter it.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
System Management Guide for OS/390 187

Chapter 6
Output operations that refer to nonexistent
default operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
justify operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
length operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
math expression operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
operation types

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
prefix/suffix operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
substitute operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
substring operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
trim operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
user exit operations

Database integrity is compromised.
Delete operation and re-enter it.

Prefix/suffix operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Prefix/suffix operations that refer to
nonexistent prefix/suffix choice

Choose valid choice for prefix/suffix
operation.

Prefix/suffix operations that refer to
nonexistent prefixes or suffixes

Choose valid literals for prefixes or
suffixes.

Substitute operations that refer to
nonexistent input values

Choose valid literals for substitute
input value.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
188 System Management Guide for OS/390

Consistency Checker
Substitute operations that refer to
nonexistent output data types

Choose valid data types for substitute
output value.

Substitute operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Substitute operations that refer to
nonexistent output values

Choose valid literals for substitute
output value.

Substring operations that have invalid
substring parameters

Choose a substring start position >= 0
and a substring length > 0.

Substring operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Trim operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Trim operations that refer to nonexistent
trim characters

Choose valid literals for trim
character.

Trim operations that refer to nonexistent
trim choices

Choose valid type for trim operation.

User-defined data type name/value pairs
that refer to nonexistent input controls

A deleted input user-validation has
not been properly removed. There
should be no impact.

User-defined data type name/value pairs
with invalid types

Database integrity is compromised.

User-defined data types that refer to
nonexistent data types

Extraneous data in the database.
Database integrity may be
compromised.

User-defined data types that refer to
nonexistent native data types

Choose valid base data types for user-
defined data types.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
System Management Guide for OS/390 189

Chapter 6
User-defined data types with invalid data
type identifiers

Extraneous data in the database.
Database integrity may be
compromised.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
190 System Management Guide for OS/390

Consistency Checker
&RQVLVWHQF\�&KHFNHU�5HSRUW��5XOHV
The Rules Consistency Checker report provides the following information:

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ

Arguments that refer to nonexistent
Boolean operators

Boolean operator does not exist for the
argument. This will cause load failures.

Arguments that refer to nonexistent
operations

The argument’s operation does not exist.
This may cause load or evaluation failure.

Arguments that refer to nonexistent
operators

The operator does not exist for the
argument. This will cause evaluation
failure.

Arguments that refer to nonexistent
rules

The rule does not exist for the argument.
This may cause load failures.

Arguments with static values with
invalid lengths

The argument length must be between 0
and 64. This situation may cause load
failure or it can cause the rule to never
evaluate to true.

Boolean operators that have an
argument count of zero (0)

A Boolean operator must always have at
least two (2) child arguments or Boolean
operators. This may cause load or
evaluation failure.

Boolean operators that recurse more
than five (5) times and maybe
infinitely

This expression has several nested
expressions. However, it can also mean
that the expression has a circular reference,
which will cause the evaluation failure.

Boolean operators that refer to
nonexistent parent Boolean operators

Child Boolean operators must refer to an
existing parent Boolean operator. This
may cause load or evaluation failure.

Boolean operators that refer to
nonexistent rules

The rule does not exist for the argument.
This may cause load failures.
System Management Guide for OS/390 191

Chapter 6
Field Name2 (Comparison Value) in
arguments that refer to nonexistent
fields in NEONFormatter

A field name was entered in an argument
as a comparison value. The field name is
not a valid field in the NEONFormatter.
Evaluation may fail or not hit.

Field Name2 (Comparison Value) in
arguments that refer to nonexistent
flat fields in NEONFormatter

A field name was entered in an argument
as a comparison value. The field name is
not a valid field in the flat input format
referred to by the message type of the rule.
Evaluation may fail or not hit.
Currently, the NEONRules Consistency
Checker does not check fields in
compound formats.

Field names in arguments that refer to
nonexistent flat fields in
NEONFormatter

A field name was entered in an argument.
The field name is not a valid field in the flat
input format referred to by the message
type of the rule. Evaluation may fail or not
hit.
Currently, the NEONRules Consistency
Checker does not check fields in
compound formats.

Fields names in arguments that refer
to nonexistent fields in
NEONFormatter

A field name was entered in an argument,
and the field name is not a valid field in the
NEONFormatter. Evaluation may fail or not
hit.

Message types in Rules that do not
match a format in NEONFormatter

The message type does not correspond to
any input format in the NEONFormatter.
The format may have been deleted in
Formatter. Do not use rules in this message
type.

Message types that refer to
nonexistent application groups

The application group does not exist for
the message type.

Number of arguments in a Boolean
AND term does not match the
argument count indicated for the
Boolean operator

A Boolean AND operator requires the
same number of children arguments or
Boolean operators as is indicated. This will
cause evaluation to work incorrectly.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
192 System Management Guide for OS/390

Consistency Checker
Number of arguments in a Boolean
OR term is incorrect

If the expression uses OR, it should have a
specific argument count of 1. A Boolean
OR operator requires a certain number of
children arguments or Boolean operators
as is indicated. This will cause evaluation
to work incorrectly.

Number of arguments in a rule does
not match the argument count
indicated for the rule

The arguments listed in the Argument
table do not match the number of
arguments in the Rule table. This rule will
not work correctly.

Operations that refer to nonexistent
message types

The application group/message type pair
does not exist for the argument or
operation. You cannot access these rules.

Rules that have argument count of
zero (0)

A rule must always have at least one
argument associated with it. This report
identifies any rules that have a zero (0)
argument count. This may cause load or
evaluation failure.

Rules that refer to nonexistent
message types

The associated application group/
message type pair does not exist for the
rule. You cannot access these rules.

Rules unique sequence generator with
no match on message type

These message type/application group
pairs do not have the capability to generate
unique identifiers for new rules,
arguments, subscriptions, or actions. It
should be okay to use the database as long
as those message types are not used.

Rules with no active subscriptions All rules must have at least one
subscription. This report displays rules
with no subscriptions. This may cause
evaluation failure.

Subscription action (Put Message)
message type does not exist in the
NEONFormatter

The message type does not exist in the
NEONFormatter.

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
System Management Guide for OS/390 193

Chapter 6
1RWH�
When running the MQSeries Integrator Rules daemon, subscriptions for rules that hit
should end with a Put Message action to route the message. This might not be
necessary if users provide their own daemon and generic actions.

Subscription action (Reformat) input
format does not exist in the Formatter

The input format entered in a reformat
action does not match an input format
name in the Formatter. This may cause the
daemon to fail reformatting a message.

Subscription action (Reformat or Put
Message) has less than two options

Subscription action (Reformat) target
format does not exist in the Formatter
tables

The target format entered in a reformat
action does not match an output format
name in the Formatter. This may cause the
daemon to fail reformatting a message.

Subscription actions that refer to
nonexistent subscriptions

The subscription does not exist for the
action. This may cause load failure.

Subscription master that refers to
nonexistent subscriptions in
subscription list

The subscription does not exist in the
subscription list. This may cause load
failure.

Subscriptions in the subscription list
that refer to nonexistent message
types

The message type/application group pair
does not exist for the subscription. You
cannot access this subscription.

Subscriptions that refer to nonexistent
rules

The rule does not exist for the
subscription. This may cause load failure.

Subscriptions with no actions All subscriptions must have at least one
action. This report displays subscriptions
with no actions. This may cause evaluation
failure.

WARNING! Rules that may not put
messages on a queue

5HSRUWHG�,QFRQVLVWHQF\ ([SODQDWLRQ
194 System Management Guide for OS/390

Consistency Checker
&RQVLVWHQF\�&KHFNHU�5HSRUW��3HUPLVVLRQV�
The Rules Permissions Consistency Checker report provides the following
information:

5HSRUWHG�,QFRQVLVWHQF\� ([SODQDWLRQ

Hierarchy definitions that are not
complete for rule or subscription
permissions

The hierarchy definitions must be
complete during the installation of
NEONRules with permissions.

Permission access or grants that are not
valid for Rules

Current valid rule permission names
are: Owner, Read, and Update.
Permission values can be Granted or
DenyAll.

Permission access or grants that are not
valid for subscription

Current valid subscription
permission names are: Owner, Read,
and Update. Permission values can be
Granted or DenyAll.

Permissions granted to nonexistent Item Rule or subscription permissions
must refer to a valid item name.

Permissions granted to nonexistent
subscriptions

Subscription permissions must refer
to a valid subscription name.

Permissions granted to nonexistent Users Rules permissions need both a valid
user and rule subscription to be
complete.

Permissions that are not complete Rule or subscription permissions
must include node, application group,
message type, and rule or
subscription name to be complete.

Permissions that do not exist in the
hierarchy

Rule or subscription permissions
must refer to valid hierarchy
information.

Permissions that refer to nonexistent
application groups

Rule or subscription permissions
must refer to a valid application
group.
System Management Guide for OS/390 195

Chapter 6
Permissions that refer to nonexistent
message types

Rule or subscription permissions
must refer to a valid message type/
format name.

Permissions that refer to nonexistent
nodes

Rule or subscription permissions
must refer to the current node.

Permissions that refer to nonexistent Rules Rule permissions must refer to a valid
rule name.

Rules with multiple owners Rules can only have one owner.

Rules with no owners Each rule must have a single owner
(Owner and Granted)

Subscriptions with multiple owners Subscriptions can only have one
owner.

Subscriptions with no owners Each subscription can only have one
owner (Owner and Granted).

Unique sequence generator invalid for
permission users

A new Participant Id is derived by
incrementing the SEQ_NUM for
Participant and using this as the Id.

Unique sequence generator invalid for
rule or subscription permission

A new Permission Grant Id is derived
by incrementing the SEQ_NUM for
Component and using this as the id
for Component Grants. The
Component Grant Id should never be
greater than SEQ_NUM.

5HSRUWHG�,QFRQVLVWHQF\� ([SODQDWLRQ
196 System Management Guide for OS/390

ASCII Extended Character Set
$SSHQGL[�$

$6&,,�([WHQGHG�&KDUDFWHU�
6HW

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�

000 00 NUL

001 01 SCH

002 02 STX

003 03 ETX

004 04 EOT

005 05 ENO

006 06 ACK

007 07 BEL

008 08 BS

009 09 HT

010 0A LF

011 0B VT

012 0C FF

013 0D CR

014 0E SO

015 0F SI

016 10 DLE

017 11 DC1

018 12 DC2

019 13 DC3

020 14 DC4

021 15 NAK

022 16 SYN

023 17 ETB

024 18 CAN

025 19 EM

026 1A SUB

027 1B ESCAPE

028 1C FS

029 1D GS

030 1E RS

031 1F US

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�
System Management Guide for OS/390 197

Appendix A
032 20 SPACE

033 21 !

034 22 “

035 23 #

036 24 $

037 25 %

038 26 &

039 27 ‘

040 28 (

041 29)

042 2A *

043 2B +

044 2C ,

045 2D -

046 2E .

047 2F /

048 30 0

049 31 1

050 32 2

051 33 3

052 34 4

053 35 5

054 36 6

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�

055 37 7

056 38 8

057 39 9

058 3A :

059 3B ;

060 3C <

061 3D =

062 3E >

063 3F ?

064 40 @

065 41 A

066 42 B

067 43 C

068 44 D

069 45 E

070 46 F

071 47 G

072 48 H

073 49 I

074 4A J

075 4B K

076 4C L

077 4D M

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�
198 System Management Guide for OS/390

ASCII Extended Character Set
078 4E N

079 4F O

080 50 P

081 51 Q

082 52 R

083 53 S

084 54 T

085 55 U

086 56 V

087 57 W

088 58 X

089 59 Y

090 5A Z

091 5B [

092 5C \

093 5D]

094 5E ^

095 5F _

096 60 ‘

097 61 a

098 62 b

099 63 c

100 64 d

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�

101 65 e

102 66 f

103 67 g

104 68 h

105 69 i

106 6A j

107 6B k

108 6C l

109 6D m

110 6E n

111 6F o

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

119 77 w

120 78 x

121 79 y

122 7A z

123 7B {

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�
System Management Guide for OS/390 199

Appendix A
124 7C |

125 7D }

126 7E ~

127 7F DEL

128 80 €

129 81 unused

130 82 ‚

131 83 ƒ

132 84 „

133 85 …

134 86 †

135 87 ‡

136 88 ˆ

137 89 ‰

138 8A Š

139 8B ‹

140 8C Œ

141 8D unused

142 8E unused

143 8F unused

144 90 unused

145 91 ‘

146 92 ‘

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�

147 93 “

148 94 ”

149 95 •

150 96 –

151 97 —

152 98 ˜

153 99 ™

154 9A š

155 9B ›

156 9C œ

157 9D unused

158 9E unused

159 9F Ÿ

160 A0 nonbreaking
space

161 A1 ¡

162 A2 ¢

163 A3 £

164 A4 ¤

165 A5 ¥

166 A6 ¦

167 A7 §

168 A8 ¨

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�
200 System Management Guide for OS/390

ASCII Extended Character Set
169 A9 ©

170 AA ª

171 AB «

172 AC ¬

173 AD -

174 AE ®

175 AF ¯

176 B0 °

177 B1 ±

178 B2 ²

179 B3 ³

180 B4 ´

181 B5 µ

182 B6 ¶

183 B7 ·

184 B8 ¸

185 B9 ¹

186 BA º

187 BB »

188 BC ¼

189 BD ½

190 BE ¾

191 BF ¿

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�

192 C0 À

193 C1 Á

194 C2 Â

195 C3 Ã

196 C4 Ä

197 C5 Å

198 C6 Æ

199 C7 Ç

200 C8 È

201 C9 É

202 CA Ê

203 CB Ë

204 CC Ì

205 CD Í

206 CE Î

207 CF Ï

208 D0 Ð

209 D1 Ñ

210 D2 Ò

211 D3 Ó

212 D4 Ô

213 D5 Õ

214 D6 Ö

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�
System Management Guide for OS/390 201

Appendix A
215 D7 ×

216 D8 Ø

217 D9 Ù

218 DA Ú

219 DB Û

220 DC Ü

221 DD Ý

222 DE Þ

223 DF ß

224 E0 à

225 E1 á

226 E2 â

227 E3 ã

228 E4 ä

229 E5 å

230 E6 æ

231 E7 ç

232 E8 è

233 E9 é

234 EA ê

235 EB ë

236 EC ì

237 ED í

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�

238 EE î

239 EF ï

240 F0 ð

241 F1 ñ

242 F2 ò

243 F3 ó

244 F4 ô

245 F5 õ

246 F6 ö

247 F7 ÷

248 F8 ø

249 F9 ù

250 FA ú

251 FB û

252 FC ü

253 FD ý

254 FE þ

255 FF ÿ

'HFLPDO�
9DOXH

+H[�
9DOXH

([WHQGHG�
&KDUDFWHU�6HW�
202 System Management Guide for OS/390

$SSHQGL[�%

(%&',&�&KDUDFWHU�6HW

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\

000 00 NUL Null 0000 0000

001 01 SOH Start of Heading 0000 0001

002 02 STX Start of Text 0000 0010

003 03 ETX End of Text 0000 0011

004 04 SEL Select 0000 0100

005 05 HT Horizontal Tab 0000 0101

006 06 RNL Required New Line 0000 0110

007 07 DEL Delete 0000 0111

008 08 GE Graphic Escape 0000 1000

009 09 SPS Superscript 0000 1001

010 0A RPT Repeat 0000 1010

011 0B VT Vertical Tab 0000 1011

012 0C FF Form Feed 0000 1100

013 0D CR Carriage Return 0000 1101

014 0E SO Shift Out 0000 1110

015 0F SI Shift In 0000 1111

016 10 DLE Data Link Escape 0001 0000
System Management Guide for OS/390 203

Appendix B
017 11 DC1 Device Control 1 0001 0001

018 12 DC2 Device Control 2 0001 0010

019 13 DC3 Device Control 3 0001 0011

020 14 RES/ENP Restore/Enable Presentation 0001 0100

021 15 NL New Line 0001 0101

022 16 BS Backspace 0001 0110

023 17 POC Program-Operator
Communication

0001 0111

024 18 CAN Cancel 0001 1000

025 19 EM End of Medium 0001 1001

026 1A UBS Unit Backspace 0001 1010

027 1B CU1 Customer Use 1 0001 1011

028 1C IFS Interchange File Separator 0001 1100

029 1D IGS Interchange Group Separator 0001 1101

030 1E IRS Interchange Record Separator 0001 1110

031 1F IBT/IUS Intermediate Transmission
Block/Interchange Unit
Separator

0001 1111

032 20 DS Digit Select 0010 0000

033 21 SOS Start of Significance 0010 0001

034 22 FS Field Separator 0010 0010

035 23 WUS Word Underscore 0010 0011

036 24 BYP/INP Bypass/Inhibit Presentation 0010 0100

037 25 LF Line Feed 0010 0101

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
204 System Management Guide for OS/390

EBCDIC Character Set
038 26 ETB End of Transmission Block 0010 0110

039 27 ESC Escape 0010 0111

040 28 SA Set Attribute 0010 1000

041 29 SFE Start Field Extended 0010 1001

042 2A SM/SW Set Mode/Switch 0010 1010

043 2B CSP Control Sequence Prefix 0010 1011

044 2C MFA Modify Field Attribute 0010 1100

045 2D ENQ Enquiry 0010 1101

046 2E ACK Acknowledge 0010 1110

047 2F BEL Bell 0010 1111

048 30 0011 0000

049 31 0011 0001

050 32 SYN Synchronous Idle 0011 0010

051 33 IR Index Return 0011 0011

052 34 PP Presentation Position 0011 0100

053 35 TRN Transparent 0011 0101

054 36 NBS Numeric Backspace 0011 0110

055 37 EOT End of Transmission 0011 0111

056 38 SBS Subscript 0011 1000

057 39 IT Indent Tab 0011 1001

058 3A RFF Required Form Feed 0011 1010

059 3B CU3 Customer Use 3 0011 1011

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
System Management Guide for OS/390 205

Appendix B
060 3C DC4 Device Control 4 0011 1100

061 3D NAK Negative Acknowledge 0011 1101

062 3E 0011 1110

063 3F SUB Substitute 0011 1111

064 40 SP Space 0100 0000

065 41 RSP 0100 0001

066 42 0100 0010

067 43 0100 0011

068 44 0100 0100

069 45 0100 0101

070 46 0100 0110

071 47 0100 0111

072 48 0100 1000

073 49 0100 1001

074 4A ¢ 0100 1010

075 4B . 0100 1011

076 4C < 0100 1100

077 4D (0100 1101

078 4E + 0100 1110

079 4F | 0100 1111

080 50 & 0101 0000

081 51 0101 0001

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
206 System Management Guide for OS/390

EBCDIC Character Set
082 52 0101 0010

083 53 0101 0011

084 54 0101 0100

085 55 0101 0101

086 56 0101 0110

087 57 0101 0111

088 58 0101 1000

089 59 0101 1001

090 5A ! 0101 1010

091 5B $ 0101 1011

092 5C * 0101 1100

093 5D) 0101 1101

094 5E ; 0101 1110

095 5F ¬ 0110 1111

096 60 - 0110 0000

097 61 / 0110 0001

098 62 0110 0010

099 63 0110 0011

100 64 0110 0100

101 65 0110 0101

102 66 0110 0110

103 67 0110 0111

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
System Management Guide for OS/390 207

Appendix B
104 68 0110 1000

105 69 0110 1001

106 6A | 0110 1010

107 6B , 0110 1011

108 6C % 0110 1100

109 6D _ 0110 1101

110 6E > 0110 1110

111 6F ? 0110 1111

112 70 0111 0000

113 71 0111 0001

114 72 0111 0010

115 73 0111 0011

116 74 0111 0100

117 75 0111 0101

118 76 0111 0110

119 77 0111 0111

120 78 0111 1000

121 79 0111 1001

122 7A : 0111 1010

123 7B # 0111 1011

124 7C @ 0111 1100

125 7D ’ 0111 1101

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
208 System Management Guide for OS/390

EBCDIC Character Set
126 7E = 0111 1110

127 7F " 0111 1111

128 80 € 1000 0000

129 81 a 1000 0001

130 82 b 1000 0010

131 83 c 1000 0011

132 84 d 1000 0100

133 85 e 1000 0101

134 86 f 1000 0110

135 87 g 1000 0111

136 88 h 1000 1000

137 89 i 1000 1001

138 8A 1000 1010

139 8B 1000 1011

140 8C 1000 1100

141 8D 1000 1101

142 8E 1000 1110

143 8F 1000 1111

144 90 1001 0000

145 91 j 1001 0001

146 92 k 1001 0010

147 93 l 1001 0011

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
System Management Guide for OS/390 209

Appendix B
148 94 m 1001 0100

149 95 n 1001 0101

150 96 o 1001 0110

151 97 p 1001 0111

152 98 q 1001 1000

153 99 r 1001 1001

154 9A 1001 1010

155 9B 1001 1011

156 9C 1001 1100

157 9D 1001 1101

158 9E 1001 1110

159 9F 1001 1111

160 A0 1010 0000

161 A1 ~ 1010 0001

162 A2 s 1010 0010

163 A3 t 1010 0011

164 A4 u 1010 0100

165 A5 v 1010 0101

166 A6 w 1010 0110

167 A7 x 1010 0111

168 A8 y 1010 1000

169 A9 z 1010 1001

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
210 System Management Guide for OS/390

EBCDIC Character Set
170 AA 1010 1010

171 AB 1010 1011

172 AC 1010 1100

173 AD 1010 1101

174 AE 1010 1110

175 AF 1010 1111

176 B0 1011 0000

177 B1 1011 0001

178 B2 1011 0010

179 B3 1011 0011

180 B4 1011 0100

181 B5 1011 0101

182 B6 1011 0110

183 B7 1011 0111

184 B8 1011 1000

185 B9 1011 1001

186 BA 1011 1010

187 BB 1011 1011

188 BC 1011 1100

189 BD 1011 1101

190 BE 1011 1110

191 BF 1011 1111

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
System Management Guide for OS/390 211

Appendix B
192 C0 { 1100 0000

193 C1 A 1100 0001

194 C2 B 1100 0010

195 C3 C 1100 0011

196 C4 D 1100 0100

197 C5 E 1100 0101

198 C6 F 1100 0110

199 C7 G 1100 0111

200 C8 H 1100 1000

201 C9 I 1100 1001

202 CA SHY 1100 1010

203 CB 1100 1011

204 CC 1100 1100

205 CD 1100 1101

206 CE 1100 1110

207 CF 1100 1111

208 D0 } 1101 0000

209 D1 J 1101 0001

210 D2 K 1101 0010

211 D3 L 1101 0011

212 D4 M 1101 0100

213 D5 N 1101 0101

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
212 System Management Guide for OS/390

EBCDIC Character Set
214 D6 O 1101 0110

215 D7 P 1101 0111

216 D8 Q 1101 1000

217 D9 R 1101 1001

218 DA 1101 1010

219 DB 1101 1011

220 DC 1101 1100

221 DD 1101 1101

222 DE 1101 1110

223 DF 1101 1111

224 E0 \ 1110 0000

225 E1 1110 0001

226 E2 S 1110 0010

227 E3 T 1110 0011

228 E4 U 1110 0100

229 E5 V 1110 0101

230 E6 W 1110 0110

231 E7 X 1110 0111

232 E8 Y 1110 1000

233 E9 Z 1110 1001

234 EA 1110 1010

235 EB 1110 1011

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
System Management Guide for OS/390 213

Appendix B
236 EC 1110 1100

237 ED 1110 1101

238 EE 1110 1110

239 EF 1110 1111

240 F0 0 1111 0000

241 F1 1 1111 0001

242 F2 2 1111 0010

243 F3 3 1111 0011

244 F4 4 1111 0100

245 F5 5 1111 0101

246 F6 6 1111 0110

247 F7 7 1111 0111

248 F8 8 1111 1000

249 F9 9 1111 1001

250 FA 1111 1010

251 FB 1111 1011

252 FC 1111 1100

253 FD 1111 1101

254 FE 1111 1110

255 FF EO Eight Ones 1111 1111

* In the IBM-DOS Character Set, the nonprinting characters may be displayed as figures, for
example, (x03) ETX is shown as a heart, and (x0D) CR is shown as a musical note.

'HFLPDO�
9DOXH

+H[�
9DOXH

(%&',&�
9DOXH

'HVFULSWLRQ %LQDU\
214 System Management Guide for OS/390

$SSHQGL[�&

'DWD�7\SH�'HVFULSWLRQV

6XSSRUWHG�'DWD�7\SHV

'DWD�7\SH�
)LHOG�9DOXHV

'DWD�7\SH�
�'HILQH

'HVFULSWLRQ

Not Applicable DATA_TYPE_Not_
Applicable

No data type is assumed.

ASCII String DATA_TYPE_ASCII_
String

A string of standard ASCII characters. Non-
printable characters are valid if they are in
the ASCII character set. EBCDIC characters
outside the valid ASCII String range are not
valid ASCII String characters. If a character
being converted from ASCII to EBCDIC is
not in the EBCDIC character set, the
conversion results in a EBCDIC space
(hexadecimal 40).

ASCII Numeric DATA_TYPE_ASCII_
Numeric

A string of standard ASCII numeric
characters. The hyphen (-) and period (.)
characters are not valid ASCII numeric
characters.
System Management Guide for OS/390 215

Appendix C
Binary DATA_TYPE_Binary_
Data

The Binary data type is used to parse any
value and transform that value to an ASCII
representation of the value internally in
Formatter. The internal representation takes
each byte of the input value and converts it to
a readable form. An example of this is
parsing a byte whose value is (hexadecimal)
0x9C and transforming that to the internal
ASCII representation of 9C, which is the
hexadecimal value 0x3943. If this value is
used in an output format with the output
control’s data type set to String, the value
placed in the message is ASCII 0x9C. If this
value is again placed in an output message
with the data type Binary, the ASCII value is
not printable and occupies one byte with the
value of (hexadecimal) 0x9C.
Conversely, an input value of ASCII 3B7A
parsed with the String data type can be
output using the Binary data type. The
output value is (hexadecimal) 0x37BA and
occupies 2 bytes in the output message. Valid
characters that can be converted to Binary
from the String data type are 0 through 9 and
A through F. All other characters are invalid.

EBCDIC DATA_TYPE_
EBCDIC_Data

A string of characters encoded using the
EBCDIC (Extended Binary Coded Decimal
Interchange Code) encoding used on larger
IBM computers. If a character being
converted from EBCDIC to ASCII is not in
the EBCDIC character set, the conversion
results in a space (hexadecimal 20).

'DWD�7\SH�
)LHOG�9DOXHV

'DWD�7\SH�
�'HILQH

'HVFULSWLRQ
216 System Management Guide for OS/390

Data Type Descriptions
IBM Packed
Decimal

DATA_TYPE_IBM_
Packed_Decimal

Data type on larger IBM computers used to
represent integers in compact form. Each
byte represents two decimal digits, one in
each nibble of the byte. The final nibble is
always a hexadecimal F. For example, the
number 1234 is stored as a 3-byte value: 01 23
4F (the number pairs show the hexadecimal
values of the nibbles of each byte). The
number 12345 is stored as a 3-byte value: 12
34 5F. There is no accounting for the sign of a
number, so all numbers are assumed to be
positive.

IBM Signed
Packed Decimal

DATA_TYPE_IBM_
Signed_Packed_
Decimal

Data type on larger IBM computers used to
represent integers in compact form. This data
type takes into account the sign (positive or
negative) of a number. Each byte represents
two decimal digits, one in each nibble of the
byte. The final nibble is a hexadecimal C if
the number is positive, and a hexadecimal D
if the number is negative. For example, the
number 1234 is stored as a 3-byte value: 01 23
4C (the number pairs show the hexadecimal
values of the nibbles of each byte). The
number -12345 is stored as a 3-byte value: 12
34 5D.

IBM Zoned
Decimal

DATA_TYPE_IBM_
Zoned_Decimal

Data type on larger IBM computers used to
represent integers. Each decimal digit is
represented by a byte. The left nibble of the
byte is a hexadecimal F. The right nibble is
the hexadecimal value of the digit. For
example, 1234 is represented as F1 F2 F3 F4
(the number pairs show the hexadecimal
values of the nibbles of each byte).

'DWD�7\SH�
)LHOG�9DOXHV

'DWD�7\SH�
�'HILQH

'HVFULSWLRQ
System Management Guide for OS/390 217

Appendix C
IBM Signed Zoned
Decimal

DATA_TYPE_IBM_
Signed_Zoned_
Decimal

Data type on larger IBM computers used to
represent integers. Each decimal digit is
represented by a byte. The left nibble of each
byte, EXCEPT THE LAST BYTE, is a
hexadecimal ‘F’. The left nibble of the last
byte is a hexadecimal ‘C’ if the number is
positive, and a hexadecimal ‘D’ if the number
is negative. The right nibble of each byte is
the hexadecimal value of the digit. For
example, 123 is represented as F1 F2 F3 C4
(the number pairs show the hexadecimal
values of the nibbles of each byte). -1234 is
represented as F1 F2 F3 D4.

Little Endian 2 DATA_TYPE_Little_
Endian2

Two-byte integer where the bytes are
ordered with the rightmost byte being the
high order or most significant byte. For
example, the hexadecimal number 0x0102 is
stored as 02 01 (where the number pairs
show the hexadecimal values of the nibbles
of a byte).

Little Swap
Endian 2

DATA_TYPE_Little_
Swap_Endian2

Two-byte integer where the two bytes are
swapped with respect to a Little Endian 2
value. For example, the hexadecimal number
0x0102 is stored as 01 02.

Little Endian 4 DATA_TYPE_Little_
Endian4

Four-byte integer where the bytes are
ordered with the rightmost byte being the
high order or most significant byte. For
example, the hexadecimal number
0x01020304 is stored as 04 03 02 01 (where the
number pairs show the hexadecimal values
of the nibbles of a byte).

Little Swap
Endian 4

DATA_TYPE_Little_
Swap_Endian4

Four-byte integer where the two bytes of
each word are swapped with respect to a
Little Endian 4 value. For example, the
hexadecimal number 0x01020304 is stored as
03 04 01 02.

'DWD�7\SH�
)LHOG�9DOXHV

'DWD�7\SH�
�'HILQH

'HVFULSWLRQ
218 System Management Guide for OS/390

Data Type Descriptions
Big Endian 2 DATA_TYPE_Big_
Endian2

Two-byte integer where the bytes are
ordered with the leftmost byte being the high
order or most significant byte. For example,
the hexadecimal number 0x0102 is stored as
01 02 (where the number pairs show the
hexadecimal values of the nibbles of a byte).

Big Swap Endian 2 DATA_TYPE_Big_
Swap_Endian2

Two-byte integer where the two bytes are
swapped with respect to a Big Endian 2
value. For example, the hexadecimal number
0x0102 is stored as 02 01.

Big Endian 4 DATA_TYPE_Big_
Endian4

Four-byte integer where the bytes are
ordered with the leftmost byte being the high
order or most significant byte. For example,
the hexadecimal number 0x01020304 is
stored as 01 02 03 04 (where the number pairs
show the hexadecimal values of the nibbles
of a byte).

Big Swap Endian 4 DATA_TYPE_Big_
Swap_Endian4

Four-byte integer where the two bytes of
each word are swapped with respect to a Big
Endian 4 value. For example, the
hexadecimal number 0x01020304 is stored as
02 01 04 03.

Decimal,
International

DATA_TYPE_
Decimal_International

Data type where every third number left of
the decimal point is preceded by a period.
The decimal point is represented by a
comma. Numbers right of the decimal point
represent a fraction of one unit. For example,
the number 12345.678 is represented as
12.345,678. Decimal international datatypes
can contain negative values.

'DWD�7\SH�
)LHOG�9DOXHV

'DWD�7\SH�
�'HILQH

'HVFULSWLRQ
System Management Guide for OS/390 219

Appendix C
Decimal, U.S. DATA_TYPE_
Decimal_US

Data type where every third number left of
the decimal point is preceded by a comma.
The decimal point is represented by a period.
Numbers right of the decimal point
represent a fraction of one unit. For example,
the number 12345.678 is represented as
12,345.678. Decimal US datatypes can
contain negative values.

Unsigned Little
Endian 2

DATA_TYPE_
Unsigned_
LittleEndian2

Like Little Endian 2, except that the value is
interpreted as an unsigned value.

Unsigned Little
Swap Endian 2

DATA_TYPE_
Unsigned_
LittleSwapEndian2

Like Little Swap Endian 2, except that the
value is interpreted as an unsigned value.

Unsigned Little
Endian 4

DATA_TYPE_
Unsigned_
LittleEndian4

Like Little Endian 4, except that the value is
interpreted as an unsigned value.

Unsigned Little
Swap Endian 4

DATA_TYPE_
Unsigned_
LittleSwapEndian4

Like Little Swap Endian 4, except that the
value is interpreted as an unsigned value.

Unsigned Big
Endian 2

DATA_TYPE_
Unsigned_
BigEndian2

Like Big Endian 2, except that the value is
interpreted as an unsigned value.

Unsigned Big
Swap Endian 2

DATA_TYPE_
Unsigned_
BigSwapEndian2

Like Big Swap Endian 2, except that the value
is interpreted as an unsigned value.

Unsigned Big
Endian 4

DATA_TYPE_
Unsigned_
BigEndian4

Like Big Endian 4, except that the value is
interpreted as an unsigned value

Unsigned Big
Swap Endian 4

DATA_TYPE_
Unsigned_
BigSwapEndian4

Like Big Swap Endian 4, except that the value
is interpreted as an unsigned value.

'DWD�7\SH�
)LHOG�9DOXHV

'DWD�7\SH�
�'HILQH

'HVFULSWLRQ
220 System Management Guide for OS/390

Data Type Descriptions
Date and Time Based on the international ISO-8601:1988
standard datetime notation:
YYYYMNDDhhmmss. See the first
paragraph of the following Date and Time
type descriptions for details on representing
Date and Time components. Combined dates
and times can be represented in any of the
following data types. The list includes String,
Numeric, and EBCDIC.

Time Based on the international ISO-8601:1988
standard time notation: HHmmss where HH
represents the number of complete hours
that have passed since midnight (between 00
and 23), mm is the number of minutes passed
since the start of the hour (between 00 and
59), and ss is the number of seconds since the
start of the minute (between 00 and 59).
Times are represented in 24-hour format.
Times may be represented in any of the
following list of data types. For some data
types, a minimum of 4 bytes is required. The
list includes: EBCDIC, String, and Numeric.

Date Based on the international ISO-8601:1988
standard date notation: YYYYMNDD where
YYYY represents the year in the usual
Gregorian calendar, MM is the month
between 01 (January) and 12 (December),
and DD is the day of the month with a value
between 01 and 31. Dates may be
represented in any of the following list of
data types. For some data types, a minimum
of 4 bytes is required. The list includes:
EBCDIC, String, and Numeric.

'DWD�7\SH�
)LHOG�9DOXHV

'DWD�7\SH�
�'HILQH

'HVFULSWLRQ
System Management Guide for OS/390 221

Appendix C
Custom Date and
Time

Custom Date and Time enables users to
specify different formats of dates, times, and
combined dates and times.
Date/Time formats may include:
1) Variations in year (2 or 4 digit year
representation: YY or YYYY).
2) Variations in month–use of a month
number (01-12) or three letter abbreviation
(JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC). The format
string for month numbers is MN. The format
string of three letter abbreviations is MON.
3) Variations in the day of the month–use of
a day of the month number (01-31). DD is the
format string.
4) Variations in hour–12-hour or 24-hour
representation, with or without a meridian
indicator (AM or PM). Hours/minutes/
seconds are represented as HHMMSS.
5) Valid data types include EBCDIC, String,
and Numeric. For information on how to set
the Year Cutoff value when you select
Custom Date and Time, refer to the section
Specifying a Year Cutoff Value.

'DWD�7\SH�
)LHOG�9DOXHV

'DWD�7\SH�
�'HILQH

'HVFULSWLRQ
222 System Management Guide for OS/390

Data Type Descriptions
1RWHV�IRU�'DWD�&RQYHUVLRQ

Formatter can convert data between any two supported types via an
intermediary representation. The data conversion occurs when Formatter,
during a reformat(), encounters an input field with one data type and a
different data type for the output field.

Certain pairs of data conversions do not make much sense. For example, if
you have a String in the input message with non-numeric data and the output
format specifies that the data type for the field should be IBM packed
decimal, that conversion cannot happen correctly. Formatter generates an
error message indicating invalid data.

Formatter does not have a conversion function for every pair of native data
types. Instead, Formatter converts data internally from the input data type to
a String representation, and then from the String representation to the output
data type. So instead of (K**2 - K) conversion functions, Formatter has (K*2 -
2) functions, where K is the number of native data types.

For example, to convert from IBM signed packed decimal to IBM packed
decimal, if the input is:

12 34 56 7C (where each pair of numbers are the 2 nibbles of a byte of data)

The data length is 4 bytes and the data represents the number “+1234567.”
The “C” is a sign nibble indicating the number is positive.

Formatter converts this to the String “+1234567,” then converts the String to
IBM packed data:

12 34 56 7F

When binary data (DATA_TYPE_Binary_Data) is involved, it means that the
bytes of data can have any value without restriction or interpretation. If you
have a field in the input format that’s in binary and the corresponding field in
the output format is also binary, what does Formatter do?

For example, if you have:

12 34 56 78 90 ab cd ef
System Management Guide for OS/390 223

Appendix C
where each pair of numbers are the 2 nibbles (in hexidecimal encoding) of a
byte of data.

Formatter first converts this data to an ASCII string representation of the
binary data:

“1234567890abcdef”

and then converts this ASCII string back to binary data:

12 34 56 78 90 ab cd ef

To convert between an ASCII string and binary, Formatter expects the ASCII
string to be a proper representation of a binary value. If you have the input:

“Hello, world!”

and you want Formatter to generate a binary value on output.

Formatter issues an error because the ASCII string is not a proper string
representation of a binary value. The string must be composed of the
characters 0-9 and A-F.

The actual binary encoding of the ASCII string “Hello, world!” is:

48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21

Specify that the data type of the input is binary, not ASCII string. Formatter
generates the internal ASCII string:

“48656c6c6f2c20776f726c6421”

and then converts this back to binary:

48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21

To construct a binary value that equates to the actual byte values of your
input, specify that the input data type is also Binary. If you have an input data
type other than Binary, Formatter attempts to interpret your input as the
string representation of a binary value.
224 System Management Guide for OS/390

$SSHQGL[�'

1RWLFHV

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
System Management Guide for OS/390 225

Appendix D
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
226 System Management Guide for OS/390

Notices
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

7UDGHPDUNV�DQG�6HUYLFH�0DUNV

The following, which appear in this book or other MQSeries Integrator books,
are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

MQSeries
OS/390
AIX
DB2
IBM

NEONFormatter and NEONRules are trademarks of New Era of Networks, Inc.
in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service
marks of others.
System Management Guide for OS/390 227

Appendix D
228 System Management Guide for OS/390

,QGH[

$
actions 133
adding rules 141
AND operator 133
APIs 95, 134
APITEST 100, 101

compiling and linking 101
job control language 102

apitest 95
application groups 132
arguments 133
ASCII Extended Character Set 197

%
Boolean operators

AND 133
OR 133

building C++ user exits 107

&
C++ user exits 107
caching Rules 156
changing ownership of rules 135
command line parameters 15
compiling and linking APITEST 101
compiling and linking MSGTEST 104
compiling and linking standard user exits 111
compiling and linking UETEST 109
compiling and linking user exits 115
component conflicts 33
component inventory 38
components

Formatter 8
MQSeries 9
MQSeries Integrator Rules daemon 9
Rules 9

compound formats 97

conditional branching 37
configuring DSNAOINI 20
configuring MQIRULEN 156
configuring MQSeries Integrator 140
configuring SQLSVSES 18
connecting to DB2 145
connecting to MQSeries 145
Consistency Checker 95, 179

FORMATCC 179
NEOMQCC 132, 180
PERMCC 132, 180
RULECC 132, 179

Consistency Checker reports
Formatter 181
permissions 195
Rules 191

converting formats 100
creating user exits 107

'
DD-names 15
debugging utility 176
defining formats 97
documentation set 10
DSNAOINI 20

(
editing SQLSVSES 19
encrypting files 21
error conditions 139
error messages 53, 144
executable names 16
exporting formats 36
exporting rules 74, 84
expressions 133
System Management Guide for OS/390 229

)
failure processing 144
Failure queue 145
fields 96
file names 15
flat formats 97
format definitions 95
FORMATCC 179
formats

converting 100
defining 97
importing 32
migrating 25
testing 100

Formatter 8
apitest 95
automatic conversion 100
compound formats 97
Consistency Checker 95
Consistency Checker reports 181
creating user exits 107
defining formats 97
exporting formats 26, 36
fields 96
flat formats 97
format definitions 95
Formatter GUI 95
Formatter Management API functions 95
Import/Export Utitlity 26
importing formats 26, 32
input controls 96
migrating formats 25
msgtest 95
NNFIE 26
NNFIE error messages 53
NNFIE header files 42
NNFIE readable files 41
NNRENAME 34
output controls 97
parsing messages 95, 99
producing component inventory 38
reformatting messages 95, 99
resolving component conflicts 33
test programs 100
testing formats 100

+
header files 42, 88

,
implementing changes to SQLSVSES 20
importing formats 32
importing Rules 74
importing rules 79
input controls 96
installing C++ user exits 107
inventory export file 86

/
literals 96
log file 145

0
Management APIs 134
message types 132
messages

parsing 99
processing 141
reformatting 99
routing 145

metadata changes 16
migrating formats 25
migrating rules 73
MQIGETDA 132, 157, 167
MQIPUTDA 132, 157

reload messages 157
MQIRULEC 155
MQIRULEN 146

notification messages 156
MQSeries 9
MQSeries Integrator

adding rules 141
configuring 140
connecting to DB2 145
connecting to MQSeries 145
Rules daemon processing 141
shutting down daemon 157

MQSeries Integrator Rules daemon 9, 146
MQSeries queues 140
230 System Management Guide for OS/390

MSGTEST 100, 103
compiling and linking 104
job control language 105

msgtest 95

1
NEOMQCC 132, 180
NEONFormatter 8
NEONRules 9
NNcrypt 21
NNFIE 26

commands 30
error messages 53
exporting format definitions 95
exporting formats 36
header files 42
options 30
producing component inventory 38
readable files 41
troubleshooting failures 32

NNRENAME 34
NNRIE 74, 132

exporting rules 84
header files 88
importing rules 79
job control language 75
producing inventory export file 86
readable files 88
resolving component conflicts 81
tracing import progress 80

NNRTRACE 132, 176
NNUESTUB 122
No Hit queue 145

2
operators 133
options 133
OR operator 133
OS/390

command line parameters 15
DD-names 15
executable names 16
file names 15
metadata changes 16

output controls 97

3
parsing messages 95, 99
PERMCC 132, 180
permissions 134

Consistency Checker reports 195
processing messages 141
producing component inventory 38
producing inventory export file 86
Put Queue 143

4
queues 140

5
readable files 41, 88
Reformat 143
reformatting messages 95, 99
reload messages 157
repetition count 96
resolving component conflicts 33, 81
routing messages 145
RULECC 132, 179
RULENGP 147
Rules 9

actions 133
application groups 132
arguments 133
associating 133
Boolean operators 133
caching 156
changing ownership 135
components 131
configuring prior to Rules daemon 140
Consistency Checker 132
Consistency Checker reports 191
debugging utility 176
error conditions 139
exporting 74
exporting rule definitions 132
exporting rules 84
expressions 133
GUI 131
importing 74, 79
importing exported files 132
Management APIs 131, 134
System Management Guide for OS/390 231

message routing 145
message types 132
migrating rules 73
MQIGETDA 132
MQIPUTDA 132
MQIRULEN 146
naming rules 133
NEOMQCC Consistency Checker 132
NNRIE 74, 132
NNRIE header files 88
NNRIE readable files 88
NNRTRACE 132
operators 133
options 133
ownership 135
permissions 134
Permissions Consistency Checker 132
producing inventory export file 86
queues 140
resolving component conflicts 81
rule names 133
Rules APIs 134
Rules daemon 131
RULETEST 132
RULOWNER 135
subscription permissions 134
subscriptions 133
test programs 157
testing 157
tracing import progress 80
transferring permissions 135
using the MQSeries Integrator Rules daemon

146
Rules daemon 140

defining parameters 147
error messages 144
executing subscriptions 142
failure 144
message processing 141
shutting down 157

Rules daemon processing 141
RULETEST 132, 157, 174
RULOWNER 135

6
shutting down Rules daemon 157
SQLSVSES

configuring 18
editing 19
implementing changes 20

starting Consistency Checker 179
subscriptions 133, 134

executing 142
Put Queue 143
Reformat action 143

7
tags 96
test programs 100

MQIGETDA 157
MQIPUTDA 157
RULETEST 157

testing formats 100
testing Rules 157
tracing import progress 80
transferring ownership 139
transferring permissions 135
troubleshooting import failures 32

8
UETEST

compiling and linking 109
sample code 109

user exits
API summary 108
binding PLAN 117
building C++ user exits 107
compiling and linking 111, 115
creating 107
installing C++ user exits 107
NNUESTUB 122
stub lookup function 122
232 System Management Guide for OS/390

Sending your comments to IBM
MQSeries Integrator for OS/390
System Management Guide
SC34-5748-00

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.
Please limit your comments to the information in this book only and the way
in which the information is presented.

To request additional publications or make comments about the functions of
IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

n By mail, use the Readers’ Comment Form

n By fax:

– From outside the U.K., use your international access code
followed by 44 1962 870229

– From within the U.K., use 01962 870229

Electronically, use the appropriate network ID:

n IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

n IBMLink: HURSLEY(IDRCF)

n Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

n The publication number and title

n The page number or topic number to which your comment applies

n Your name/address/telephone number/fax number/network ID

Readers’ Comments
MQSeries Integrator for OS/390
System Management Guide
SC34-5748-00

Use this form to tell us what you think about this manual. If you have found
errors in it, or if you want to express your opinion about it (such as
organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer. This form is provided
for comments about the information in this manual and the way it is
presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate without
incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or organization

Telephone Email

MQSeries Integrator System Management Guide SC34-5748-00 IBM

IBM

Printed in U.S.A

SC34-5748-00

	Contents
	Introduction
	MQSeries Integrator Overview
	Formatter
	Rules
	MQSeries Integrator Rules Daemon
	MQSeries

	Product Documentation Set
	Year 2000 Readiness Disclosure
	Before You Contact Technical Support

	Configuring MQSeries Integrator
	OS/390 Operational Differences
	Command Line Parameters
	Filenames on OS/390
	Metadata Changes

	Tailoring Jobs for Your Site
	Configuring SQLSVSES

	File Encryption

	Migrating Formats and Rules
	Summary
	Migrating Formats
	Importing and Exporting Formats

	Migrating Rules
	Character Sort Order
	Importing and Exporting Rules

	Formatter
	What is Formatter?
	Fields and Input Controls
	Output Controls
	Formats
	Parsing and Reformatting
	Automatic Format Conversion

	Testing Formats
	APITEST
	MSGTEST

	Creating Formatter User Exits
	Building and Installing a C++ User Exit

	Rules
	Rules Components
	Application Groups
	Message Types
	Rules
	Expressions, Arguments, Boolean Operators, and Rules Operators
	Subscriptions, Actions, and Options
	Rules and Subscription Permissions
	APIs

	Rules Permissions
	Rule Ownership

	The Rules Daemon
	Configuring MQSeries Integrator
	MQSeries Integrator Rules Daemon Processing
	Message Routing
	Connecting to DB2 and MQSeries
	Using the MQSeries Integrator Rules Daemon
	Rules Caching
	Shutting Down the Rules Daemon

	Testing Rules
	Rules Test Programs
	Rules Debugging Utility

	Consistency Checker
	Starting the Consistency Checker
	Consistency Checker Report: Formatter
	Consistency Checker Report: Rules
	Consistency Checker Report: Permissions

	ASCII Extended Character Set
	EBCDIC Character Set
	Data Type Descriptions
	Notes for Data Conversion

	Notices
	Trademarks and Service Marks

	Index

