MQSeries® Integrator for 0S/390®

System Management Guide

Version 1.1

SC34-5748-00

Note: Before using this information, and the product it supports, be sure to read the general
information under Notices on page 225.

First edition (December 1999)

This edition applies to IBM® MQSeries Integrator, Version 1.1 and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your
locality. Publications are not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to
make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright New Era of Networks, Inc., 1998, 1999. All rights reserved.

© Copyright International Business Machines Corporation, 1999. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Chapter 1: Introductionccccciiviinccnnnnnnnnnennn 7

MQSeries INtegrator OVEIVIEW.........c.cccivveriiierieeeeee s se st enesneens 8
FOPMALEEE ... e 8

RUIES <. 9

MQSeries Integrator RUIES DaemONccceveveiceeiee e 9

IVIQSEBIIBS ...ttt ettt ettt sttt ettt e bbb ebe et e s be e sbesre et e eraesbe e e e sbeetee e 9

Product DOCUMENTAtION SETcccovivireiirnicrer s 10

Year 2000 Readiness DISCIOSUIE. ... s 11

Before You Contact Technical SUPPOIt........ccoveveieie i 12
Chapter 2: Configuring MQSeries Integrator..15
0S/390 Operational DIfferenCesc.coceerieiiense e 15
Command Line PAarametersccoccoiiiiiiienieeeseeese s s 15

FIlenames 0N OS/390 ...t e 15

Metadata ChaNQESccoiiiiiiieiee et e bbb ae e 16

Tailoring JobS fOr YOUF SItecoiiiiiiiie et 17
Configuring SQLSVSES ...t e 18

FIlE ENCIYPLION ..ottt e ettt 21
Chapter 3: Migrating Formats and Rules23
SUIMIMIBIY .ottt bkt b bbbt b e b he bt e e be et e bt et e e s beeabeebeenbe e 23
MiIgrating FOIMALSccoiiiiiiiie e e e 25
Importing and EXporting FOrMAtS ... 26

MiIGrating RUIEScuoiiie e 73
Character SOrt OFAEr ..ot e 73

Importing and EXporting RUIES ... 74
Chapter 4: Formatterccvvvviccinniiccsnnnnn e nd 95
WAL IS FOMMALTEI? ...t e b e 95

Fields and INpUt CONLIOIS........c.cooiiiiiiiie s 96

OULPUL CONTIOIS ...ttt 97

FOIMALS ..o bbbttt ae s 97

Parsing and RefOrmattingcccooeoiiniiiiiiesee e 99

Automatic FOrmat CONVErSIONccooviiiiiieiieieee e 100

System Management Guide for OS/390 3

TESTING FOIMALS ...veviieiiceee ettt een e 100

A I S TSRS 101
ST I TSP 103
Creating Formatter USEr EXITSccoviiiiiiiiiinsee e 107
Building and Installing a C++ USer EXit.........ccocoovviiviiiininiencecc e 107
Chapter 5: Rulescivvvemimmnnsncsnsssnsnsnnnnne 131
U] [T @0 0] oT0] o =T | £SO 131
AN o] o] [Toz=1d o] 0l €1 (o 18] o 13T 132
YT To [1Y/ oL S SSP 132
RUIES .ttt 133
Expressions, Arguments, Boolean Operators, and Rules Operators133
Subscriptions, Actions, and OPLIONScccccvevvveeieincie e 133
Rules and Subscription PErMISSIONS.......c.cccvviiveienenenesese s 134
AAPLS ettt ettt eneenan 134
RUIES PEIMISSIONS ...ttt 135
RUIE OWNEISNIP ... 135
The RUIES DABIMONocviiiiiiiiisieeee e e 140
Configuring MQSeries INtegratorccccoeevvveieieieeie s 140
MQSeries Integrator Rules Daemon Processingcccccoevveeveerenieresieneeneas 141
MESSAGE ROULING ...vvveieeiieiieiece ettt nre e nnens 145
Connecting to DB2 and MQSEIIES......cc.civeieiveieesere e seese e rese e 145
Using the MQSeries Integrator Rules Daemonccccocvevvievvnenennnienens 146
RUIES CAChING.....coviiiicicece e snea 156
Shutting Down the Rules DaemonN..........ccccvcvierienieierne e 157
TESHING RUIES ..ot 157
RUIES TESEt PrOQIamMScveiveieieeeietise ettt s neas 157
Rules Debugg@ing ULty ..o 176
Chapter 6: Consistency Checker.............c...e. 179
Starting the ConsistenCy CheCKEToicieiiie e 179
Consistency Checker Report: FOrmatterc.ccoceevvvivnivniencviencesese e 181
Consistency Checker REPOrt: RUIEScccvcviviericicece e 191
Consistency Checker Report: PErmiSSIONSccocvvvreerieveienesinneseeenens 195

4 System Management Guide for OS/390

Contents

Appendix A: ASCII Extended Character Set..197

Appendix B: EBCDIC Character Set............... 203
Appendix C: Data Type Descriptions............. 215
Notes for Data CONVEISIONocveiiiiiiiecie ettt 223
Appendix D: Notices........coeciiimmiinsinnnnnnc s 225
Trademarks and SErvice MarksScccvviveiiiiiieeciccie et 227
13 L 1) e R 229

System Management Guide for OS/390 5

System Management Guide for OS/390

Chapter 1
Introduction

The System Management Guide for OS/390 is for those persons responsible
for MQSeries Integrator administration. The system administrator should
have an overall understanding of MQSeries Integrator and how it works. It is
assumed that the system administrator is responsible for MQSeries Integrator
setup, configuration, and testing. The system administrator should be
supported by a database administrator, who administers the databases
interacting with MQSeries Integrator, and a network administrator, who
ensures that network communications are set up to include MQSeries
Integrator.

The information in this guide explains how to set up, run, and test
NEoNFormatter and NeonRules, and how to configure the MQSeries Integrator
Rules daemon.

System Management Guide for OS/390 7

Chapter 1

MQSeries Integrator Overview

MQSeries Integrator, from IBM and New Era of Networks, Inc. (NEON),
provides the flexibility and scalability that allows true application
integration. MQSeries Integrator consists of four components;

= IBM MQSeries

m NeoNFormatter

= NeoNRules

= MQIintegrator Rules daemon

MQSeries Integrator is a cross-platform, guaranteed delivery, messaging
middleware product designed to facilitate the synchronization, management,
and distribution of information (messages) across large-scale, heterogeneous
networks.

MQSeries Integrator is configurable and uses a content-based rules message
evaluation, formatting, and routing paradigm. MQSeries Integrator also
provides a powerful data content-based, source-target mechanism with
dynamic format parsing and conversion capability.

The application program interfaces (APIs) and graphical user interfaces
(GUIs) allow you to use these systems. Refer to the Programming Reference
documents for instructions on using the APIs and the User’s Guide for
instructions on using the GUIs.

Formatter

NEONFormatter translates messages from one format to another.
NEoNFormatter handles multiple message format types from multiple data
value sources with the ability to convert and parse messages. When a
message is provided as input to Formatter, the message is parsed and data
values are returned.

Message formats in the NeonFormatter database are defined through the
graphical user interface (GUI). The GUI leads you through the definitions of
format components, for example, tags, delimiters, and patterns, to the
building of complete message definitions.

8 System Management Guide for OS/390

Introduction

Rules

NeoNRules lets you develop rules for managing message destination IDs,
receiver locations, expected message formats, and any processes initiated
upon message delivery. Creation and dispatch of multiple messages to
multiple destinations from a single input message is supported.

Note:
For more in-depth descriptions of NeonFormatter and neoNRules, refer to the

overviews in Chapters 3 and 4 of the MQSeries Integrator User’s Guide.

MQSeries Integrator Rules Daemon

The MQSeries Integrator Rules daemon combines MQSeries, NeonFormatter,
and neoNRules in a generic server process. The MQSeries Integrator Rules
daemon processes messages from an MQSeries input queue, uses
NEoNFormatter to parse messages, uses NeonRules to determine what
transformations to perform and where to route the messages, and then puts
the output messages on MQSeries queues for delivery to applications.

MQSeries

MQSeries is a message-oriented middleware that is ideal for high-value
message handling and high-volume applications because it guarantees each
message is delivered only once, and it supports transactional messaging.
Messages are grouped into units of work and either all or none of the
messages in a unit or work are processed. MQSeries coordinates message
work with other transaction work, like database updates, so data integrity is
always maintained.

System Management Guide for OS/390 9

Chapter 1

Product Documentation Set

The MQSeries Integrator for OS/390 documentation set includes:

m MQSeries Integrator for OS/390 Installation and Configuration
Guide details the installation and initial implementation of MQSeries
Integrator and the MQSeries Integrator applications.

m User’s Guide helps MQSeries Integrator users understand and apply
the program through its graphical user interfaces (GUIs).

= System Management is for SPs and DBAs who work with MQSeries
Integrator on a day-to-day basis.

m Programming References are intended for users who build and
maintain the links between MQSeries Integrator and other
applications. This document includes the following volumes:

— Application Development Guide assists programmers in writing
applications that use MQSeries Integrator APIs.

— Programming Reference for NEONFormatter is a reference to
NEONFormatter APIs for those who write applications to translate
messages from one format to another.

— Programming Reference for NEONRules is a reference to
NEONRules APIs for those who write applications to perform
actions based on message contents.

Year 2000 Readiness Disclosure

MQSeries Integrator, when used in accordance with its associated
documentation, is capable of correctly processing, providing, and/or
receiving date information within and between the twentieth and twenty-first
centuries, provided that all products (for example, hardware, software, and
firmware) used with this IBM program properly exchange accurate date
information with it.

10 System Management Guide for OS/390

Introduction

Customers should contact third party owners or vendors regarding the
readiness status of their products.

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:
http://www.software.ibm.com/ts/mgseries/platforms/supported.html

For the latest IBM statement regarding Year 2000 readiness, refer to:
http://www.ibm.com/ibm/year2000/

System Management Guide for OS/390 11

http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.ibm.com/ibm/year2000/

Chapter 1

Before You Contact Technical
Support

If you have difficulty executing one of the MQSeries Integrator programs,
analyze your environment using the following steps. Be prepared to send the
listed information and files to technical support.

1. Has this program ever worked in your environment?
If so, identify what has changed.

2. Check the values specified in the SQLSVSES (DD-name SQLSVSES)
file that the failing job is using to make sure it refers to an existing
DB2 subsystem and an existing DB2 database within that subsystem.

3. Check the values specified in the CLIINI (DD-name DSNAOINI) file
that the failing job is using to make sure it refers to an existing DB2
subsystem and an existing DB2 database within that subsystem.

4. Check whether the System Affinity is causing your job to execute on a
system that does not contain the DB2 subsystem, MQSeries queue
manager, or IBM datasets that MQSeries Integrator is trying to access.

5. Inthe CLIINI file (DD-name DSNAOINI), edit the following line:
CLI TRACE=0

Change it to:
CLI TRACE=1

Rerun your job. The CLITRACE produced (DD-name CLITRACE) is
invaluable in diagnosing problems between the DB2 database and
the MQSeries Integrator application. Your JCL should have a DD-
statement that defines CLITRACE to either a disk file or SYSOUT
class. This file is required by technical support to diagnose problems.

12 System Management Guide for OS/390

Introduction

Note:
It is assumed that the DB2 CLI is installed, the DSNACLI Plan has
been bound, and you are granted execute authority on it.

Examine all files produced by MQSeries Integrator for error or
informational messages. Some error messages are written to
SYSOUT, some to SYSPRINT, and some to STATLOG.

Look for Operating System messages that may indicate why the job
has failed, such as missing files, no room to log messages (E-37,
B-37 type failures), full queue conditions, and so on.

If failing to put or get from an MQSeries queue, make sure the queue
is enabled for sharing:

Permt shared access Y Y=Yes, N=No
Default share option S E=Excl usive, S=Shar ed

If the problem is related to poor Rules daemon performance, check
the values of the timers specified in the input stream (DD-name
SYSIN) file of the RULENG job. Setting these timers too high can
result in poor performance of the Rules Engine.

When contacting technical support be prepared to send the following
information via email or ftp:

The complete listing of your jobs execution, including SYSOUTSs,
SYSPRINTSs, STATLOG, JESMSGS, and so on.

The contents of the CLITRACE file

Any dump files produced (CEEDUMP or SYSUDUMP)
Your site’s SQLSVSES file

Your site’s CLIINI file

System Management Guide for OS/390 13

Chapter 1

14 System Management Guide for OS/390

Chapter 2
Configuring MQSeries
Integrator

There are operational differences between the OS/390 version of MQSeries
Integrator and the UNIX and NT versions.

0S/390 Operational Differences

Command Line Parameters

There is no command line environment to run the executables, so they are
executed in batch using Job Control Language (JCL). See Tailoring Jobs for Your
Site on page 17. Because JCL limits the size of the PARM field on the EXEC
card, several modules that previously accepted long command line argument
lists now accept their input from the standard input stream (STDIN) SYSIN.

For those modules that accept parameters in the PARM string, the PARM
string must be enclosed in quotes, and each parameter must have a blank
space between it and the next parameter.

Filenames on 0S/390

Filenames are specified on OS/390 as DD-names. For example, when a
PARM field allows the specification of a filename, the format is similar to:

PARM="-f DD:FILENAME’

A subsequent line of JCL is required with a DD-name that matches the
specified name:

/IFILENAME DD DSN=<dataset-name>,DISP=SHR

System Management Guide for OS/390 15

Chapter 2

Executable Names

Because OS/390 limits the size of member names in a PDS, some executables
have different names on OS/390, for example:

Name on UNIX and NT

Name on 0S/390

NNRDBARuleOwnership

RULOWNER

Metadata Changes

Three metadata changes for the OS/390 platform might not be reflected on
UNIX or NT versions of MQSeries Integrator. This can affect your ability to
import data from UNIX or NT platforms to OS/390. These metadata changes
are described in the following table:

UNIX or NT | 0OS/390 | Description
Value Value
ASCII String String String data is always in the native character set of

the machine on which the engine is running:
ASCIl on UNIX and NT, and EBCDIC on OS/390.

ASCII Numeric Numeric

Numeric really means graphic characters 0-9.
Numeric characters are represented in the native
character set of the platform on which the engine
is running: ASCIl on UNIX and NT, and EBCDIC
on 0S/390.

EBCDIC Data ASCII Data

This should be interpreted as “the character set
different from my own.” On an ASCII platform,
EBCDIC data is the other character set; and on
0S/390, ASCII data is the other character set.

16

System Management Guide for OS/390

Configuring MQSeries Integrator

When you use the NeonFormatter GUI to import format definitions created on
a non-0S/390 system, you might have to edit the exported input and output
control files using a text editor. Change all the occurrences of ASCII String to
String; ASCII Numeric to Numeric; and all EBCDIC data to ASCII data. This
allows the import process to find all the corresponding metadata values and
continue to import your data. Otherwise, an invalid datatype error may be
reported.

Tailoring Jobs for Your Site

Job Control Language (JCL) that contains a statement enclosed by chevrons
(< >) means that the user must provide a valid value in that statement prior to
submitting the job. For example, the APITEST job contains the following line:

/I MSE@ N DD DSN=<your-nmessage-fil e>, DI SP=SHR

The user must provide an OS/390 dataset name for the file containing the
message data.

Each job uses in-stream procedures that contain symbolic parameters. These
symbolic parameters might have to be tailored from the default installation
values to match dataset hames and dataset high-level qualifiers (HLQs) for
your site. Each job uses some combination of the following parameters:

Parameter | Description Default
Value
PRM=(") Run-time parameters passed to the program at | varies
startup.
SMPHLQ HLQ for the MQSeries Integrator distribution
libraries.
MQSHLQ HLQ for IBM MQSeries run-time libraries.
CEEHLQ HLQ for IBM Language Environment run-time
libraries.

System Management Guide for OS/390 17

Chapter 2

Parameter | Description Default
Value
CSSHLQ HLQ for IBM Callable System Services SYS1
(CSSLIB) library
SQLMEM The member of the SNEOCNTL library SQLSVSES
containing control cards for DB2 access.
OPCLAS Output class for SYSOUT statement. *
INIMEM Controls access to DB2. CLIINI
MPF= The member of the SNEOMPF library PUTDATA,
containing control cards for MQSeries access. RULENGP, or
GETDATA
TCPHLQ HLQ for TCP connection; member of TCPIP

SNEOPROC library.

LEHLQ HLQ for current version of language
environment used by the compiler; member of
SNEOPROC library.

Configuring SQLSVSES

The SQLSVSES configuration file contains information used in several
modules, including APITEST, MSGTEST, NNRIE, NNFIE, and RULETEST.
The SQLSVSES file contains information about the database and database
server used with executables. A sample file is included in the
<smphlg>.SNEOCNTL library.

The SQLSVSES file is accessed using DD-name SQLSVSES. This DD-name
can be specified in JCL as either a permanent DASD dataset or instream with
the JCL. The SQLSVSES DD-name must be present in your JCL and refer to a
valid sequential file or member of a PDS:

/1 SALSVSES DD DI SP=SHR, DSN=<smphl g>. SNEOCNTL(SQLSVSES)

18 System Management Guide for OS/390

Configuring MQSeries Integrator

The syntax for each record in the SQLSVSES file is:

OpenDbnsSessi onNane: ddf - Locat i on: useri d: pasword: sql i d:

Parameters

Parameter

Description

OpenDbmsSession
Name

Database session hame used by executables. This can be
any string as long as it is unique within the file. This
matches the string specified in the OpenDbmsSession()
API call. The default session name is new_format_demo.

ddf-Location

Identifies the DB2 subsystem to which this application
connects. This value is also in the SYSIBM.LOCATIONS
table in the DB2 catalog.

userid

This field is not currently used, but must be specified.
Security is handled by your site’s RACF, ACF2, or DB2
security exits currently in effect. Specify xxxx as a
placeholder for this field.

password

This field is not currently used, but must be specified.
Security is handled by your site’s RACF, ACF2, or DB2
security exits currently in effect. Specify xxxx as a
placeholder for this field.

sqlid

Qualifier for the database to which this application
connects. This value is used in a 'SET CURRENT SQLID’
statement after the process successfully connects to DB2.
Must be a valid primary or secondary AUTH-ID for the
database accessed.

Editing the SQLSVSES File

Use ISPF Edit to modify your SQLSVSES file. Make sure there is a session-
name for each MQSeries Integrator application you plan to run. The session-
name must match (including case) the value specified for any
OpenDbmsSession() API calls.

System Management Guide for OS/390

19

Chapter 2

20

Sample Text Lines in the SQLSVSES File:

SESS| ON_TAG. DDF- LOCATI ON: N A: NP A: SQLI D

new_f or mat _deno: <ddf - | ocat i on>: XXXXX: yyyyy: <sql i d>:
nnfi e: <ddf - | ocat i on>: xxxx: yyyy: <sql i d>:

nnrm e: <ddf - | ocat i on>: xxxx: yyyy: <sql i d>:

rul es: <ddf -l ocati on>: xxxx: yyyy: <sql i d>:

out put : <ddf -1 ocat i on>: xxxx: yyyy: <sql i d>:

i nput: <ddf -l ocati on>: xxxx: yyyy: <sql i d>:

Implementing Changes to SQLSVSES

SQLSVSES is read at application startup. To implement changes to the
SQLSVSES file, you must restart any applications using MQSeries Integrator
components for the changes to be recognized by those applications.

Configuring DSNAOINI

Any program that accesses DB2 databases must have a DD-name for
DSNAOINI in the JCL and refer to a valid sequential file or member of a PDS.
The DSNAOINI file controls connection attributes to DB2. Refer to IBM
documentation for configuration details.

//DSNAOI NI DD DI SP=SHR, DSN=<snphl g>. SNEOCNTL(CLI | NI)

The contents of the DSNAOINI file is documented in the IBM Call Level
Interface Guide and Reference manual (SC26-8959).

System Management Guide for OS/390

Configuring MQSeries Integrator

File Encryption

The NNcrypt program is distributed in the \UTIL directory on the Windows
NT CD. NNcrypt reads an encrypted file from the filename specified as the
first parameter and writes decrypted data to the file specified as the second
parameter string. The input file and the output file must be different datasets.
You cannot decrypt into the same dataset containing the encrypted files.

You must decrypt the export files on Windows NT before you FTP or transfer
them to OS/390. Use the following steps as a guide for this process:

1. Run NNcrypt on Windows NT.
2. FTP or transfer the NNFIE or NNRIE file to OS/390.
3. Import the NNFIE or NNRIE file.

System Management Guide for OS/390 21

Chapter 2

22 System Management Guide for OS/390

Chapter 3

Migrating Formats and
Rules

Summary

Use the following steps to migrate your database from MQIntegrator r. 3.2 to
MQSeries Integrator 1.1:

1. Instantiate the MQSeries Integrator 1.1 database. Load the 1.1
metadata. For more information, see the Installation and
Configuration Guide.

2. Use the NEOFIX32 SPUFI script in the SNEOSQL library to create a
backup copy of the r. 3.2 database.

3. Run the MQIntegrator r. 3.2 Consistency Checker SPUFI scripts to
insure that the data is consistent.

The Consistency Checker SPUFI scripts are FORMATCC, RULECC,
and PERMCC in the MQlIntegrator r. 3.2 SNEOSQL library. You must
correct any inconsistencies in the data before you export the data.

4. Run NNFIE r. 3.2 to export formats to a sequential file.

The export file should be preallocated with the following DCB
attributes:

DSORG=PS or PO, RECFM=VB,LRECL=32756,BLKSIZE=32760

System Management Guide for OS/390 23

Chapter 3

24

Run NNRIE r. 3.2 to export rules to a sequential file.

The export file should be preallocated with the following DCB
attributes:

DSORG=PS or PO, RECFM=VB,LRECL=32756,BLKSIZE=32760

Run NNFIE 1.1 to import formats from the export file created in
step 4. See Migrating Formats on page 25.

Run NNRIE 1.1 to import rules from the export file created in step 5.
See Migrating Rules on page 73.

You might want to run the RENAME batch job against the MQSeries
Integrator 1.1 database.

Use RENAME to rename components that start with NNDef _ to start
with a prefix you specify. See NNRENAME on page 34.

Run the MQSeries Integrator Consistency Checker against the 1.1
database to verify the consistency of the data.

The Consistency Checker SPUFI scripts are FORMATCC, RULECC,
and PERMCC in the 1.1 SNEOSQL library. The NEOMQCC batch job
is in the 1.1 SNEOJCL library. See Consistency Checker on page 179.

After migrating your data to MQSeries Integrator 1.1, you must recompile
your applications. The .h (include) files in version 1.1 are different from the
.h files in release 3.2.

System Management Guide for OS/390

Migrating Formats and Rules

Migrating Formats

Before you migrate any data, run the r. 3.2 Consistency Checkers on the
MQIntegrator r. 3.2 database to check for database errors. See Consistency
Checker on page 179.

= Run the Format Consistency Checker against your 3.2 database.

This is the FORMATCC member in the r. 3.2 SNEOSQL library.
Repair any inconsistencies using the NEONFormatter graphical user
interface (GUI).

= Run the Rules Consistency Checker against your 3.2 database.

This is the RULECC member in the r. 3.2 SNEOSQL library. Repair
any inconsistencies using the NEONRules GUI.

= Run the Permissions Consistency Checker against your 3.2 database.

This is the PERMCC member in the r. 3.2 SNEOSQL library. Repair
any inconsistencies using the NEONRules GUI.

= Run the Repair SQL script to repair any known problems in the 3.2
database.

This is the NEOFIX32 member in the MQSeries Integrator 1.1
SNEOSQL library.

To migrate existing formats from a MQIntegrator r. 3.2 database to a
MQSeries Integrator 1.1 database, use the MQlntegrator r. 3.2 Formatter GUI
export function or the 3.2 Formatter Import/Export Utility (NNFIE) to export
the existing formats. After you install MQSeries Integrator 1.1, use the
NEoNFormatter GUI import function or the 1.1 NNFIE to load MQIntegrator
release 3.2 formats into the 1.1 database.

To export formats, you must use the NNFIE version that matches the version
of your database. For example, use NNFIE version 3.x to export from a 3.x
database. NNFIE 1.1 can only export from a 1.1 database.

See the Formatter chapter in the User’s Guide for instructions on using export
and import functions of the NeonFormatter graphical user interface (GUI.

System Management Guide for OS/390 25

Chapter 3

Importing and Exporting Formats

NNFIE is used to export information from database tables and import
information to database tables associated with the NeonFormatter. NNFIE
creates a flat file during export and reads the same file structure for import.
Earlier versions of NNFIE used encrypted files; the NNFIE files are no longer
encrypted. The user can export individual formats or all formats.

During the import phase, all formats and associated controls in the import file
are loaded. NNFIE detects situations where an existing component that is
modified during an import can cause the import of that component to fail. If
an existing component will be overwritten, and the component being
imported is identical, then the import can succeed. All formats and controls
that contain a component that fails to import will fail.

The NINFIE export file contains components defined by Formatter
Management API structures. Many useful pieces of information that define
the component are in numeric form instead of text form. If a user is not
familiar with the ordinal type values and specific component definitions, the
export file can be difficult to decipher. NNFIE contains an inventory option
that produces a component inventory listing in the DD:NNFIELOG file.

When an NNFIE export file is created, a header is added to the beginning of
the file. This header includes source and date information. The user can
specify additional comments. The header and comments are preceded by a
pound sign (#) and are ignored by NNFIE during import.

All output controls associated with an output format must be exported. To
export output controls that use conditional branching, use the "export by
name" option.

In earlier releases, the record length of a Formatter component was
determined by the API structure that defined the component. The component
definition can become so long that generic tools, such as text editors and
stream tools, corrupt the data by truncating the longest lines. A text editor is
unable to read the export file and to modify records. By inserting a
continuation character, the component definition can be divided into several
lines within the export file. The backslash (\) character immediately
preceding the end-of-line character indicates that the following line is
concatenated by the export file reader. The default line width is 80 characters,
but the user can specify an optional line length.

26 System Management Guide for OS/390

Migrating Formats and Rules

When a component conflict was detected in import files using earlier versions
of NNFIE, the conflict was logged, and the component was not imported.
Identifying conflicts without importing data allows users to verify the
contents of export files with working databases. NNFIE 1.1 has greater
flexibility in conflict management, which allows NNFIE to be used as a
migration tool. Overwrite, Ignore/Skip, and Rename functionality is
available for resolving conflicts in existing database components. During the
import of format definitions, all decisions to resolve conflicts are reported to
an DD:NNFIELOG file. If a component fails to import, the line containing an
error from the export file is written to DD:NNFIELOG. During the export
phase, the user can specify a text comment to include in the export file.

Note:
NNFIE is not designed to import or export databases that are corrupt or have
unresolved issues with the data.

NNFIE can import data from a MQIntegrator r 3.2 export file into an
MQSeries Integrator 1.1 database. The input file is created using the NNFIE
export facility of a MQIntegrator r. 3.2 node. The input file DD:IMPORTFL
contains the exported formats and format components from MQIntegrator

r. 3.2. The file is then moved to OS/390 and translated from ASCII to EBCDIC
in the process

Using NNFIE requires the following preparation:
= DB2 must be installed.

m The operating system must support standard input, standard output,
and standard error stream sources and sinks (SYSIN, SYSPRINT,
SYSOUT).

m The Rules database schema and the Formatter database schema must
be created.

m Formats and related format components must be exported from a
valid database.

m The target database has been created.

The export file for NNFIE is not interchangeable with the files created using
the graphical user interface (GUI). NNFIE can import data from an export file

System Management Guide for OS/390 27

Chapter 3

into an 1.1 database. NNFIE 1.1 exports data only from a Version 1.1
database.

WARNING!
If you are using a case-insensitive database, you cannot name components the

same with only a change in case to identify them. For example, you cannot
name one format “f1” and another format “F1”. In a case-insensitive
environment, you must make each item unique using something other than
case differences.

If you import components exported from a case-sensitive database into a
case-insensitive database, NNFIE may fail during import if a conflict arises
between two components named the same with only case differences.

The SQLSVSES DD-name must reference a valid dataset containing valid
SQLSVSES entries, or the application fails to connect to DB2 and terminates.

When exporting, the DCB attributes of the export files should be set to
DSORG=PS, RECFM=VB, LRECL=32756, BLKSIZE=32760. The export
records may be very large.

Note:
The WORKFILE, FAILFILE, IMPORTFL, and any other non-print class files

should be allocated with the same DCB attributes before the job is executed.

28 System Management Guide for OS/390

Migrating Formats and Rules

NNFIE

The following sample job control language (JCL) is provided to illustrate how to run
the neon Formatter Import/Export Utility (NNFIE) job in batch and pass startup
parameters to it. The JCL at your site will be different. See Tailoring Jobs for Your Site
on page 17 for information about the symbolic parameters in this sample.

/1* <tailor menber JOBCARD and insert here>
Ir*
//**
I1*

[1* Licensed Materials - Property of New Era of Networks, Inc.
/1* Copyright (c) 1998-1999, New Era of Networks, Inc.

/[1* Al Rights Reserved.

I1*

/[1* Release 4.1.1

//**

* ok K % % ok

//**

//* *
[/*NNFIE: Formatter Inport/Export Utility *
//* *

//**

/1 NNFI E PROC PRM=(' -export -all -file DD: EXPORTFL'),

I SMPHLQ=' <snphl g>', HLQ for NEONet distrib Iibs

I MBSHLQ=" <ngshl g>', HLQ for M run-tine |ibs

I CEEHLQ=' <l ehl g>', HLQ for Lang Envir |ibs

I CSSHLQ=' SYS1', HLQ for Callable Sys Svcs (CSS-) Lib
/1 SQLMVEME' SQLSVSES' , MEMoer name for SQLSVSES cntl cards
/1 I Nl MEME" CLITNL, MEMber nane for CLIIN cntl cards

I OPCLAS=" *’ SYSQUT CLASS

I1*

/1 STP0101 EXEC PGVENNFI E,

I PARM=&PRM

I1*

/1* <tailor menber STEPLIB and copy it here>

I1*

/] SQLSVSES DD DSN=&SMPHLQ. . SNECCNTL(&SQLMEM) , DI SP=SHR

// DSNAO NI DD DSN=&SMPHLQ. . SNECCNTL(& NI MEM , DI SP=SHR

//SYSQUT DD SYSOUT=&OPCLAS

[/ SYSPRI NT DD SYSOUT=&OPCLAS

/| STATLOG DD SYSOUT=&OPCLAS

/1 CLI TRACE DD SYSOUT=&OPCLAS wused for DB2 v5 CLI high-level tracing

System Management Guide for OS/390 29

Chapter 3

/1 SYSI N DD DUMW

I PEND

Ir*

Ir*

/1* Al datasets used by MXeries |Integrator nust be preallocated and
[1* catal oged prior to running any MXeries |Integrator jobs. The
[1* recomended DCB attributes are:

/1 * DSORG=PS, RECFM=VB, LRECL=32756, BLKSI ZE=32760

Ir*

/I NNFI E EXEC NNFI E, PRM=(’ - C DD: CMDFI LE')

/I NNFI ELOG DD DI SP=SHR, DSN=<your -1 og-fil e- here>

/1 NNFI EERR DD DI SP=SHR, DSN=<your -error-fil e-here>

/ /1 MPORTFL DD DI SP=SHR, DSN=<your -format-i nport-fil e>

/ /| CVDFI LE DD *

-i DD | MPORTFL
/*
/1
/1
Syntax

NNFIE commands and options must be entered in the following order:

NNFI E ((-C <conmand fil ename>)

(-i | -inmport <inmport filenane> [-T] [-0|-g|-n|-4]
[-s <session name>])
(-e | -export <export filenane> [-m <fornmat name>+]

[-q "comrent"]
[-Q <Conment fil ename>]
[-w <nunber >]
[-s <session nanme>])
(-t <import filenane> [-s <session nane>])
(-1 <inmport filenane> [-s <session name>]))

30 System Management Guide for OS/390

Migrating Formats and Rules

Parameters
Name Mandatory/ | Description
Optional

-C <command Optional Alternate command filename; default file

filename> is DD:CMDFILE. If -C is provided, NNFIE
reads command line options from the
specified file instead of the command line.
Using -C puts import or export command
options in a text file. Do not enclose
component names in quotation marks in
the text file. Do not use back slashes in
command lines.

-i | -import Mandatory Required parameter to import data from

<import the named file; mutually exclusive from -e.

filename> The default file is DD:NNFIEEXP.

-s <session Optional Name of session in SQLSVSES. Defaults to

name> NNFIE.

-e | -export Mandatory Required parameter export data from the

<export named file; mutually exclusive from -i. The

filename> default file is DD:NNFIEEXP.

-t <import Mandatory Writes an inventory of the import file to

filename> DD:NNFIELOG.

-I<import Mandatory Writes description of all conflicts in import

filename> file to DD:NNFIELOG.

Filenames for both import and export must be no longer than 255 characters.

System Management Guide for OS/390

31

Chapter 3

Importing Formats
The following options are available for importing formats:

(-i | inport <inport filenanme> [-T] [-0|-9g|-n|-4]
[-s <session nane>])

Import Options

Parameter Mandatory/ | Description
Optional

-T Optional Loads import file as one transaction. If an
import failure for one component is
detected, then the entire import is rolled
back. The default behavior is a transaction
boundary for each component.

-0 Optional Overwrites all conflicts and replaces all
components of same name with those in
the export file.

-g Optional Ignores all conflicts and uses existing
component definitions.

-n Optional Implements the interactive conflict
resolution option. NNFIE defaults to -n if
no options are selected.

-4 Optional Use R4_0 conflict resolution if a
component in the export file conflicts with
current data in the database. Do not import
the new component but flag it in the error
file and do not import any components
that rely on the conflicting component.

Troubleshooting Import Failures

If NNFIE fails to import from a given export file, view the DD:NNFIELOG
file to determine the cause for import failure. An import can fail if the data
conflicts with the data existing in the database, or if there is incorrect or
missing data.

32 System Management Guide for OS/390

Migrating Formats and Rules

Missing or Incorrect Data Error Message

This error message should be complete without any specific component
information.

ERROR <error nessage>

Missing or Incorrect Data Error Message for a Specific
Formatter Element

This error message contains formatter component identification and the data
that is being imported.

<Formatter elenment type>

<nane of the Formatter element>: |/E failed!

ERROR <error nessage> [(Formatter managenent error code)]
<profile - contains all data itens related to this Formatter
el ement >

Resolving Component Conflicts

A conflict occurs when an imported component does not match an existing
component of the same name and type in the database. The user can
overwrite the component definition, ignore or skip the component, or rename
the inported component.

When a component is overwritten, the component definition within the
export file is imported into the database. Overwriting existing components
may cause supporting components to be unused. When a component is
ignored or skipped, the component in the export file is not imported.
However, the component is added to the internal inventory of imported
components. By skipping components, supporting components that have
already been imported might be unused. Skipping or overwriting
components does not affect the integrity of the database. If the user renames a
component, all references to that component in the export file are updated.

The user can choose to resolve conflicts in interactive mode or batch mode.

All conflicts and resolutions are reported to the DD:NNFIELOG log file.

Note:
Interactive mode is only available for use on a Windows NT workstation or
UNIX-based workstation. It is not available on the OS/390 platform.

System Management Guide for OS/390 33

Chapter 3

34

Resolving Conflicts in Batch Mode

Overwrite and Ignore/Skip options are available for resolving conflicts in
batch mode. The selected option is used to resolve all conflicts.

Use the following code to implement batch Overwrite conflict resolution:

NNFIE -i <filenane> -o

Use the following code to implement batch Ignore/Skip conflict resolution:

NNFIE -i <filename> -g

Resolving Conflicts in Interactive Mode

Overwrite, Ignore/Skip, and Rename options are available for resolving
conflicts in interactive mode on a Windows NT workstation or on a UNIX-
based workstation. If the user implements interactive conflict resolution,
descriptions of the existing components and the import components are
displayed.

Use the following code to implement interactive conflict resolution:

NNFI E -i <fil ename> -n

The following sample code illustrates interactive conflict resolution:

Literal: "MyLiteral" conflicts with an existing Fornmatter
el ement !
literal Length (existing=2 | inconing=3)

Overwite, lgnore, or Renane conponent (OR: R
Pl ease enter new conponent nane: MLiteral _Newal ue

NNRENAME

When you run NNFIE to unload your data from r.3.2 and reload your data
into MQSeries Integrator 1.1, some Formatter components are created that
did not exist in r.3.2. These components are assigned a default name:

NNDef xXxX_nnnn
where xxxx is the type of format component. For example, a literal value

might be NNDef_Literal_nnnn; a Default output operation might be
NNDef_Default_nnnn.

System Management Guide for OS/390

Migrating Formats and Rules

The NNRENAME utility takes the field value of the component that is being
renamed and creates a name:

PREFI X_VALUE_nn

Parameters
Field Description
PREFIX Default value is NN_. The user can specify a PREFIX, or can specify
PREFIX=NONE.
VALUE The value of the component field. Non-printable characters are

converted to '#’. Any character that repeats 5 or more times
sequentially will have the repeat count and then the value. For
example, the field "abcdddddddd" is converted to "abc8d". The length
of the VALUE field is truncated so that the total length of the new
name is no more than 32 characters.

nn Value between 01 and 99. The value is selected sequentially to handle
any duplicates. If there are more than 99 duplicates, only the first 99
are inserted. The rest of the duplicates remain in the database without
a name change.

The following sample job control language (JCL) is provide to illustrate how
to run the RENAME job in batch and pass startup parameters to it. The JCL at
your site will be different. See Tailoring Jobs for Your Site on page 17 for
information about the symbolic parameters in this sample.

/[1* <insert a valid jobcard here >
11+

//**

//* *
[1* Licensed Materials - Property of New Era of Networks, Inc. *
[1* Copyright (c) 1998-1999, New Era of Networks, Inc. *
/[1* Al Rights Reserved. *
//* *
/[1* Release 4.1.1 *

//**

//**

//* *
/1* NNRENAME : Renane conponents that begin with *NNDef ’ *

System Management Guide for OS/390 35

Chapter 3

//* *

//**

/1 NNRENAVE PROC SMPHLQ=' <snphl g>', HLQ for NEONet distrib libs

/1 MBSHLQ=" <ngshl g>' , HLQ for M runtinme |ibs

/1 CEEHLQ=' <l ehl g>', HLQ for Lang Envir libs

I CSSHLQ=' SYST', HLQ for Callable Sys Svcs (CSS-)Lib
/1 INl MEME" CLITNL, MEMber nane for CLI INl cntl cards
I OPCLAS=" *’ SYSQUT CLASS

Ir*

/1 STP0101 EXEC PGVENNRENAME

I1*

/1* <tailor the menber STEPLIB and copy it here>

I1*

// DSNAO NI DD DSN=&SMPHLQ. . SCTLSTMT(& NI MEM , DI SP=SHR
/1SYSQUT DD SYSQUT=&OPCLAS
/1 SYSPRINT DD SYSQUT=&OPCLAS

/1 CLITRACE DD SYSOUT=&OPCLAS used for DB2-CLI high-level tracing
/1 PEND
/1>

[1* Al datasets used by MXeries Integrator nust be preallocated and
/1* cataloged prior to running any MXeries |Integrator jobs. The
/1* recommended DCB attributes are:

/1 * DSORG=PS, RECFM=VB, LRECL=32756, BLKSI| ZE=32760

I1*

/ I NNRENAMVE EXEC NNRENANMVE

I1*

/ | DB2PARMS DD *

<db2-sysi d> <db2-sqlid>

<PREFI X=(default is NN) >

/*

I

Exporting Formats

The following options are available for exporting formats:

(-e | -export <export filenane> [-m <fornmat name>+]
[-q "comrent"]
[-Q <Conmment fil ename>]
[-w <nunber >]
[-s <session nanme>])

36 System Management Guide for OS/390

Export Options

Migrating Formats and Rul

es

Parameter Mandatory/ | Description
Optional

-q "comment” Optional Adds comments enclosed in quotation
marks to beginning of the export file.

-Q <comment Optional Adds contents of <comment file> to

file> beginning of export file.

-w <number> Optional Sets maximum line length in export file.
Default value is 80.

-m <message Optional Specifies the message type to export. By

type> default, exports all messages types within
the specified application group.

Examples

The following code illustrates exporting an entire database:

NNFI E -e [<export fil enane>]

[-s <session name>]

The following code illustrates exporting a single format:

NNFI E -e [<export fil enanme>]
[-s <session nane>]

[-m <format nane>]

The following code illustrates exporting several formats:

NNFI E -e [<export fil enane>]
[-m <format nane> <format nane> ...]
[-s <session nane>]

Conditional Branching

When you use the Export by Name option during the export of formats, each
output control that uses conditional branching exports the output controls
associated with that output format, as defined by the rules entries.

System Management Guide for OS/390

37

Chapter 3

38

Troubleshooting Export Failures

You have the option of identifying all conflicts without importing any data.
This test import function allows you to verify the contents of export files
within working databases, thus facilitating easy validation for archiving. Any
conflicts are recorded in the DD:NNFIELOG file. To use this conflict report,
type the following syntax:

NNFIE -1 <filenane> -k

Producing a Component Inventory

The NNFIE export file contains useful pieces of information that are in
numeric form instead of text form. NNFIE contains an inventory option that
produces a component inventory from the export file in the NNFIE log file.
Use the following code to produce a component inventory listing in the
DD:NNFIELOG file:

NNFIE -t <fil ename>

In earlier releases, the only access to the NeonFormatter database
configurations have been through the neonFormatter GUI. With the export
files in a readable form, the user can write or modify scripts that create
NEONFormatter components.

Sample Component Inventory

The following code samples illustrate an NNFIE export file and a component
inventory in the DD:NNFIELOG file.

NNFIE Export File

F!'4. 0! 7! NEON. Space, 0x20, 1!

F! 4. 0! 7! NEON. LOADER. KEY. 929054218, 0x4E454F4E6164617074657220666
F7220434F424F4C205B56657273696F6E203A20322E302028322E3020554E4B
AEAFS574E5F4255494CA445F56455253494F4E292C2028554E4B4EAFS574E5F425
5494CA45F5441472F57494E444F5753295D, 94!

F!'4.0!5! CCB. B- 1, B- 1!

F! 4. 0! 5! CCB. B2- 1, B2- 1!

F!' 4. 0! 16! NEON. Space. Left, NEON. Space, 0x20, 1, 1!

F!' 4. 0! 16! NEON. Space. Ri ght, NEON. Space, 0x20, 1, 2!

F!' 4. 0! 16! NEON. Space. Bot h, NEON. Space, 0x20, 1, 3!

F!'4.0! 12! NEON. Space. 1, 1, NEON. Space, 0x20, 1!

System Management Guide for OS/390

Migrating Formats and Rules

F'4.0!8'COBO.: X. 1,0, 1, String,, 1, 0, NONE, 0x00, 0, 0, 0, 0, NONE, 0x00,
0, NEON. Space. 1, 4!
Fl4.0.1'2'CcoBCOL: X. 1,0, 1, String, 1,, 2, NO\NE, 1, 0, 0, 0, NONE, 0x00,
NONE, 0, 0, 0, NONE, 0, 0, ! 0!
Fl'4.0!'1!' CCB. | F. COBOL- CCCURS: 1, 1, 0! 1, 0, 0, NONE! 1! CCB. | F. COBOL-
OCCURS: 1, CCB. B- 1, COBOL: X. 1!
Fl'4.0'1!' CCB. | F. B-2- TABLE, 1, 0! 1, 0, O, NONE! 1! CCB. | F. B- 2- TABLE,
CCB. B2- 1, COBOL: X. 1!
Fl'4.0!1! CCB. OF. COBOL- CCCURS: 1, 0, 0! 1, 0, 0, NONE! 1! CCB. OF. COBOL-
.B-1,COBOL: X. 1, 1, 0, CCB. B-1!

. OF. B-2- TABLE, 0, 0! 1, 0, 0, NONE! 1! CCB. OF. B- 2- TABLE,
CCB. B2-1, coBOL: X. 1, 1, O, CCB. B2- 1!
Fl'4.0!1!' CCB. | C. COBOL- OCCURS, 1, 1! 2! CCB. | C. COBOL- OCCURS,
CCB. | F. COBOL- OCCURS: 1, 0, 0, 0, NONE, 0, NONE! CCB. | C. COBOL- OCCURS,
CCB. | F. B- 2- TABLE, 0, 1, 3, NONE, 3, NONE!
Fl'4.0! 1! CCB. OC. COBOL- CCCURS, 0, 1! 2! CCB. OC. COBOL- OCCURS,
CCB. OF. COBOL- OCCURS: 1, 0, 0, 0, NONE, 0, NONE! CCB. OC. COBOL- OCCURS,
CCB. OF. B- 2- TABLE, 0, 1, 0, NONE, 0, NONE!

Sample Component Inventory
Conponent Type: Literal

Conmponent Nane: NEON. Space
Length: 1
Val ue: " "
Conmponent Nane: NEON. LOADER. KEY. 929054218
Length: 94
Val ue: "NEONadapter for COBOL [Version : 2.0 (2.0
UNKNOWN_BUI LD_VERSI ON), (UNKNOMN_BUI LD_TAG W NDOWS) | *
Conponent Type: Field
Conmponent Nane: CCB.B-1
Description: "B-1"
Conmponent Nane: CCB. B2-1
Description: "B2-1"
Conponent Type: Trim Qutput Operation
Conponent Nanme: NEON. Space. Left
Trim Type: Left
TrimLiteral: NEON. Space
Trim Value Length: 1
Trim Value: " "

System Management Guide for OS/390 39

Chapter 3

40

Conponent

Conponent

Conponent

Conponent

Conmponent

Conponent

Name: NEON. Space. Ri ght
Trim Type: R ght
TrimLiteral: NEON Space
Trim Value Length: 1
Trim Value: " "
Narme: NEON. Space. Bot h
Trim Type: Left and Right
TrimLiteral: NEON. Space
Trim Value Length: 1
Trim Value: " "
Type: Length Qutput Operation
Nanme: NEON. Space. 1
Pad Literal Nane: NEON Space
Pad Literal Value: " "
Type: Qutput Control Master
Nanme: COBOL: X. 1
Optional: No
Control Type: Data Field Name Search
Data Type: Ascii String
Child Control Narme: NEON. Space. 1
Child Control Type: Length
Type: |nput Control
Nanme: COBOL: X. 1
Optional: No
Control Type: Data Only
Data Type: Ascii String
Term nation: Exact Length
Length: 1
Type: Flat |nput Format
Nanme: CCB. | F. COBOL- OCCURS: 1
Input Field 1: CCB.B-1
I nput Control: COBOL: X. 1
Nanme: CCB.|F. B-2- TABLE
Input Field 1: CCB.B2-1
I nput Control: COBOL: X. 1
Type: Flat CQutput Format

Name: CCB. OF. COBOL- OCCURS: 1

System Management Guide for OS/390

Migrating Formats and Rules

Decomposi tion: O dered
Term nation: Not Applicable
Qutput Field 1: CCB.B-1
Qut put Control: COBCOL: X. 1
Access Mode: Normal Access
Input Field: CCB.B-1
Conmponent Nane: CCB. OF. B- 2- TABLE
Decomposi tion: O dered
Term nation: Not Applicable
Qutput Field 1. CCB.B2-1
Qut put Control: COBCOL: X. 1
Access Mbde: Normal Access
Input Field: CCB.B2-1
Conponent Type: Comnpound | nput For nat
Conmponent Nane: CCB. | C. COBCOL- OCCURS
Child Format 1: CCB.|F. COBOL- OCCURS: 1
Optional: No
Repeati ng: No
Child Format 2: CCB.I|F.B-2-TABLE
Optional: No
Repeati ng: Yes
Repeat Term nation: Exact Count
Repeat Count: 3
Conponent Type: Compound Qut put For nat

Conmponent Nane: CCB. OC. COBCL- OCCURS
Child Format 1. CCB. OF. COBOL- OCCURS: 1

Optional: No
Repeati ng: No
Child Format 2: CCB. OF.B-2-TABLE
Optional: No
Repeati ng: Yes
Repeat Termi nation: Not Applicable

NNFIE Readable Files

Earlier versions of NNFIE exported and imported encrypted files. In earlier
releases, the only access to the Formatter database configurations was
through the Formatter GUI. With the export files in a readable form, the user
can write or modify scripts that create NeonFormatter components.

System Management Guide for OS/390 41

Chapter 3

NNFIE Header

When an NNFIE export file is created, a header file can be added to the
beginning of the file. This file logs information about the data source and
creation of the export file.

Use the following code to add a header file:

NNFIE -e <filename> -Q <comment file>

The header file contains the following information:
1. Time of creation (using Greenwich Mean Time)
2. Version of NNFIE
3. Database logon information
4. Database server version
5. Operating system version

The first character in the header file is a pound sign (#), which indicates that
the comments should be ignored by NNFIE during import. The user can
specify additional comments using the following export option:

NNFIE -e <fil ename> -q "comrent”

Formatting Export Data

Note:
Refer to the appropriate header files for enumerated types.

42

A continuation marker divides the format component definition into several
lines within the export file. A backslash character (\) immediately preceding
an end-of-line character indicates that the next line is concatenated by the
export file text editor. The default line width is 80 characters, but the user can
specify an optional width using the following command line option:

NNFIE -e <fil ename> -w <nunber >

System Management Guide for OS/390

Migrating Formats and Rules

Identifying neonFormatter Components

Each NeonFormatter component definition begins with three identification
fields, delimited by an exclamation point (!) character.

The first field contains the letter F, which indicates the beginning of a
NEoNFormatter component definition. F must appear at the beginning of
every line in the file, with the exception of comment lines.

The second field indicates the release number of the defined component.
Using version numbers to define components enables NNFIE to support
several revisions of export files.

The third field contains an integer that identifies each valid component in an
export format. The following table lists valid format components and
corresponding integer values used in the export files.

Integer Format Component

1 Format

2 Input Control

3 Output Control (included for backward compatibility; use Output
Master Control)

4 Delimiter (included for backward compatibility; use Literal)

5 Field

6 User Defined Type

7 Literal

8 Output Master Control

9 Default Control

10 User Exit Control

11 Fix Control

12 Length Control

13 Math Expression Control

System Management Guide for OS/390 43

Chapter 3

44

Integer Format Component
14 Substitute Control

15 Substring Control

16 Trim Control

17 Collection Control

Defining Format Components
The string data type must be 32 characters or less when used as a field type.

The encoded hex field type can be up to 254 characters. Valid characters in
this field are 0x[0-9A-F].

When an integer defines a code for an enumerated type, refer to fmtcodes.h in
the include directory for valid entries. All definitions using enumerated type
have the fixed type defined as enum.

NNFIE uses the Formatter Management APIs to populate the database with
Formatter components. For a detailed explanation of field values, refer to the
structures defined in Programming Reference for NEONFormatter. NNFIE
uses the information in the export file to populate the NNFMgr<Component
Type>Info structures.

The following sample NNFIE component definitions use these conventions:
I'indicates a delimiter between format components.
/7 indicates comments.
(...)+ indicates items within parentheses exist one or more times.

(...)* indicates items within parentheses exist zero or more times.

Flat Input Format Example

Fl4a.0'1'Flat _IF, 1,0!'1,0,0, NONE! 2! Fl at _I C, al pha, al pha_I C
Flat _| C nuneric, nuneric_IC

Components

F!<Version No — number>!<Format — integer>!

System Management Guide for OS/390

Migrating Formats and Rules

/1 NNFMgr Format I nfo structure

<Format Name — string>,

1, /l Input Indicator

0] /I Compound Indicator

/I NNFMgrFlatFormatinfo structure
<Decomposition ID — int>,

<Length ID — int>,

<Termination ID — int>,

<Delimiter Name — string>!

<Number of Input Field/Control Pairs — integer>!

/I NNFMgrInFieldInfo structure
(<Format Name — string>,
<Field Name — string>,
<Control Name — string>!)+

Flat Output Format Example

F!4.0'1!Flat_OF,0,0!1,0,0,NONE!3!Flat_OC,alpha,alpha_0OC,1,0,
alphalFlat_OC,alpha,alpha_0OC,1,0,alpha!Flat_OC,numeric,
numeric_0C,4,0,numeric!

Components

F!<Version No — number>!<Format — integer>!

/I NNFMgrFormatinfo structure

<Format Name — string>,

0, // Input Indicator

0! /l Compound Indicator

/I NNFMgrFlatFormatinfo structure
<Decomposition ID —int>,

<Length ID — int>,

<Termination ID — int>,

<Delimiter Name — string>!

<Number of Output Field/Control Pairs — integer>!

/I NNFMgrOutFieldInfo structure

(<Format Name — string>,
<Field Name — string>,

System Management Guide for OS/390 45

Chapter 3

46

<Control Name — string>,
<Access Mode — int>,
<Subscript — integer>,
<Infield Name — string>!)+

Compound Format Example
F!4.0!1!CompRep_IF,1,1!1!CompRep_IF,Flat_IC,0,1,1,=,0,NONE!

Components

F!<Version No — number>!<Format — integer>!

/I NNFMgrFormatinfo structure

<Format Name — string>,

<Input Indicator ID —int>,

1! /I Compound Indicator
<Number of Child Formats — integer>!

/I NNFMgrRepeatFormatinfo structure
(<Parent Format Name — string>,
<Child Format Name — string>,
<Optional Indicator ID — integer>,
<Repeat Indicator ID — integer>,
<Repeat Termination ID — integer>,
<Repeat Delimiter Name — string>,
<Repeat Field Name — string>!)+

Input Control Example
F!4.0.1!2'alpha_IC,0,2,String,0,,2,NONE,6,0,0,3,tag,0x544147,
NONE,0,0,0,NONE,0,101,!0!

Components

F!<Version No — number>!<Input Control — integer>!

/I NNFMgrParseControlinfo structure

<Control Name — string>,

<Optional Indicator ID —int>,

<Field Type ID — int>,

<Data Type Name — string>,
<Base Data Type ID — int>,

System Management Guide for OS/390

Migrating Formats and Rules

<Custom Date Time Format— string>,
<Data Termination ID — int>,

<Data Delimiter Name — string>m
<Data Length — number>,

<Tag Type ID — int>,

<Tag Termination ID — int>,

<Tag Length — integer>,

<Tag Literal Name — string>,

<Tag Value — encoded hex>,

<Tag Delimiter Name — string>,
<Length Type ID —int>,

<Length Termination ID —int>,

<Length Length — integer>,

<Length Delimiter Name — string>,
<Decimal Location — integer>,

<Year Cut Off — integer>,

<Validation Parameter Name — string>!
<Number of Name/Value Pairs — integer>!
(<Name — string>,

<Value — string>!)+

Field Example

Fl<Version No — number>!5!numeric,Numeric field!

Components
F!<Version No — number>!<Field — integer>!
/I NNFMgrFieldInfo structure

<Field Name — string >,
<Comment — string >!

User-defined Type Example

F!4.0!6!Sample_UserDefinedType,String,
UserDefinedTypeValidation!

Components

F!<Version No — number>!<User-defined Type — integer>!

/I NNFMgrUserDefTypelnfo structure

System Management Guide for OS/390 47

Chapter 3

<Type Name — string >,
<Native Type — string >,
<Validation Routine Name — string>!

Literal Example
IF14.0!7!tag,0x544147,3!

Components

F!<Version No — number>!<Literal — integer>!

/I NNFMgrLiterallnfo structure
<Literal Name — string >,

<Value - ASCIl — encoded hex >,
<Value Length — integer>!

Output Master Control Example

F14.0!8'alpha_OC,1,1,String,,0,0,NONE,0x00,0,0,0,0,NONE,
0x00,0,NONE, 0!

Components

F!<Version No — number>!<Output Master Control — integer>!

/I NNFMgrOutMstrCntlinfo structure

<Master Name — string>,

<Optional Indicator ID —int>,

<Field Type ID — int>,

<Data Type Name — string>,

<Data Attribute ID —int>,

<Base Data Type ID — int>,

<Tag Type ID — int>,

<Tag Literal Name — string>,

<Tag Value — ASClII-encoded hex>,

<Tag Value Length — integer>,
<Tag-before-Length Indicator ID — int>,
<Length Type ID — int>,

<Operation Type ID — int>,

<Field Comparison Literal Name — string>,
<Field Comparison Value — ASCIl-encoded hex>,
<Field Comparison Value Length — integer>,

48 System Management Guide for OS/390

Migrating Formats and Rules

<Child Control Name — string>,

<Child Control Type ID —enum NNCntlType>!

Default Control Example
F!4.0!9!Sample_DefaultCntl,Literal,0x4C69746572616C,7!

Components

F!<Version No — number>!<Default Control — integer>!

/I NNFMgrDefaultCntlinfo structure
<Control Name — string>,

<Literal Name — string>,

<Value — ASCII-encoded hex>,
<Value Length — integer>!

User Exit Control Example
F!4.0!10!'Sample_UserExitCntl,ExitRoutineName!

Components

F!<Version No — number>!<User Exit Control — integer>!

/I NNFMgrUserExitCntlinfo structure
<Control Name — string>,
<Exit Routine Name — string>!

Fix Control Example
F!4.0!11!'Sample_FixCntl,Space,0x20,1,1,0!

Components

F!4.0!<PrePostFix Control — integer>!

/I NNFMgrPrePostFixCntlinfo structure
<Control Name — string>,

<Literal Name — string>,

<Value — ASCIll-encoded hex>,
<Value Length — integer>,

<Place |ID — enum NNFPrePostFix>,
<NULL Action Indicator — int>!

System Management Guide for OS/390 49

Chapter 3

50

Length Control Example
F!'4.0! 12! Sanpl e_Lengt hCnt | , 12, Space, 0x20, 1!

Components

Fl<Version No — number>!<Length Control — integer>!

/I NNFMgrLengthCntlinfo structure
<Control Name — string>,

<Pad Literal Name — string>,

<Pad Value — ASCI| — encoded hex>,
<Value Length — integer>!

Math Expression Control
F!4.0!13!Sample_MathCntl,2,0!1!Field_1 * Field_2!

Components

F!<Version No — number>!<Math Expression Control — integer>!

/I NNFMgrMathExpCntlinfo structure
<Control Name — string>,

<Decimal Precision — integer>,
<Rounding Mode ID —int>!

<Math Segment Count — integer>!
(<Expression — string>!)+

Substitute Control

F!4.0!14!Sample_SubstituteCntl,NONE,0x00,0,NONE,0x00,0,1!3!
Sample_SubstituteCntl,Space,0x20,1,X,0x58,1,1!
Sample_SubstituteCntl,-,0x2D,1, ,0x5F,1,1!

Components

F!<Version No — number>!<Substitute Control — integer>!

/I NNFMgrSubstituteCntlinfo structure
<Control Name — string>,

<Input Literal Name — string>,

<Input Value — ASCIl — encoded hex>,
<Input Value Length — integer>,

System Management Guide for OS/390

Migrating Formats and Rules

<Output Literal Name — string>,
<Output Value — ASCIl — encoded hex>,
<Qutput Value Length — integer>,
<Qutput Value Type ID —int>!
<Substitute Count — integer >!
(<Control Name — string>,

<Input Literal Name — string>,

<Input Value - ASCll-encoded hex>,
<Input Value Length — integer>,
<Qutput Literal Name — string>,
<Output Value - ASCIl-encoded hex>,
<Output Value Length — integer>,
<Output Value Type ID — int>!)*

Substring Control
F!4.0!15!Sample_SubstringCntl,5,6, NONE,0x00,0!

Components

F!<Version No — number>!<Substring Control — integer>!

/I NNFMgrSubstringCntlinfo structure
<Control Name — string>,

<Start — integer>,

<Length — integer>,

<Pad Literal Name — string>,

<Pad Value — ASCIll-encoded hex>,
<Pad Value Length — integer>!

Trim Control
F!4.0!16!Sample_TrimCntl,Space,0x20,1,2!

Components

F!<Version No — number>!<Trim Control — integer>!

/I NNFMgrTrimCntlinfo structure

<Control Name — string>,

<Trim Character Literal Name — string>,

<Trim Character Value — ASCIl-encoded hex>,
<Trim Character Value Length — integer>,

System Management Guide for OS/390 51

Chapter 3

<Trim Location ID — enum NNFTrim>!

Collection Control Example
The following Sample Data illustrates a Collection Control in an NNFIE file.

F!4.0!17!Sample_CollectionCntl,2!Sample_UserExitCntl,7!
CENTER_JUSTIFY,10!

Components

F!<Version No — number>!<Collection Control — integer>\

/I NNFMgrCollectionCntlinfo Structure
<Control Name — string>,

<Collection Count — integer>!

(<Child Control Name — string>,

<Child Control Type — enum NNCntlType>!)+

Sample Data

F!4.0!5'alpha,!

F!4.0'5'numeric,!
F!4.0!7!=,0x3D00
00
00
00, 1!
F!4.0!8!alpha_0OC,1,1,String,,0,0,NONE,0x000000000000000000000000000000

0 00
00
00
00000000000000000,0,0,0,0,NONE,0x0000000000000000000000000000000000000
00
00
00
000000000,0,NONE,0!
F!4.0!8!'numeric_0OC,1,1,String,,0,0,NONE,0x0000000000000000000000000000

0 00
00
00
000000000000000000000,0,0,0,0,NONE,0x000000000000000000000000000000000
00
00

52 System Management Guide for OS/390

Migrating Formats and Rules

00
00000000000000, 0, NONE, 0!

F'4.0.1!'2'al pha_I C 0,1, String,0,, 2, NONE, 6, 0, 0, 0, NONE, 0XOO0000EFFFE8600
0000000000A95DC00101E20000000000006B54C00000001EFFFF01400000101EFFFFO1
4EF3C7101000000010000000100101E20EFFFFODCEFFFFODCEFFFE850000B2E60EFO7D
6D800101E20EF3C717800000000EFFFE854000FA84 1 EFFFFO88EFFFFO88EFFFF014000
00000EFFFF014EFFFFODC0000000000, NONE, 0, 0, 0, NO NE, 0, 101, ! 0!

F'4.0.1!' 2! nunmeric_I C 0,1, Nuneric, 0,, 2, NONE, 8, 0, 0, 0, NONE, 0xO00000EFFFES8
6000000000000A95DC00101E20000000000006B54C00000001 EFFFF01400000101EFFF
FO14EF3C7101000000010000000100101E20EFFFFODCEFFFFODCEFFFE850000B2E60EF
07D6D800101E20EF3C717800000000EFFFE854000FA84 1EFFFFO88EFFFFO88EFFFF014
00000000EFFFF014EFFFFODCO000000000, NONE, 0, 0, 0, NONE, 0, 101, ! 0!
Fl4.0l1'Flat_IC 1,0!1,0,0, NONE! 2! Fl at _I C, al pha, al pha_I C Fl at _I C,
nuneric, nuneric_ | Cl

Fl4.0'1'Flat _CC, 0,0!1, 0, 0, NONE! 3! Fl at _QC, al pha, al pha_CC, 1, 0, al pha!

Fl at _CC, al pha, al pha_CC, 1, 0, al pha! Fl at _OC, nuneri c, nuneri c_CC, 4, 0,
numneri c!

Fl4.0! 1! ConpRep_I| F, 1, 1! 1! ConpRep_I F, Fl at _|
ConpRep_CF, 0, 1! 1! ConpRep_OF, Fl at_CC, 0, 1, 1,

NNFIE Error Messages

C

0,1,1,
, 0, NONE!

1,1, =0, NONE! Fl 4. 0! 1!

Code |Error Name Error Message |Explanation |Response

-4001 NNFIEE_FILE_ Given file already The specified Remove the file
EXISTS exists so will not export file name | or specify a

replace it already exists. different export
file name.

-4002 NNFIEE_NO_ No importfiles by the | The specified Check for the
IMPORT_FILE given name exist import file name | existence of the

already exists. file.

-4003 NNFIEE_FAILED_TO |Failed to read from | The file cannot be | Check for the
_READ_FROM_ the import file read. existence of the
IMPORT_FILE file or possible

access problems.

-4004 NNFIEE_FAILED_TO | Failed to separate The import file Restore or
_SEPARATE_INPUT_ | and fetch a piece of | has been recreate the file.
DATA the input data corrupted.

System Management Guide for OS/390

53

Chapter 3

Code |Error Name Error Message |Explanation |Response
-4005 NNFIEE_BAD_FILE_ |Bad file stream Unable to obtain | Check for the
STREAM the required file | existence of the
stream. import or export
file
-4006 NNFIEE_NAME _ Conflict with the A format To importinto a
PROPERTY_ existing Formatter component being | populated
CONFLICT element with the imported conflicts | formatdatabase,
same name with an existing rename the
component of the |existing
same name. component and
re-import, or
rename the
incoming
component in
the source
database and re-
export.
-4007 NNFIEE_INVALID_ | Invalid import/ Invalid mode Check the
IE_MODE export mode. Valid | specified on the accuracy of
modes are: command line or |arguments
EXPORT_BY_NAME |inthe command |passed to
EXPORT_ALL file. NNFIE.
IMPORT
-4008 NNFIEE_ Attempting to re- Component Remove the
ATTEMPTING_TO_ |export an element defined that circular
REEXPORT that has been references itself. reference to this
exported component.
-4009 NNFIEE_FAILED_TO | Components have During import, Determine why
IMPORT not been imported one or more of the | the component
COMPONENTS components did not import
required did not | correctly.
import. All
components that
use the failed
component will
not import.
54 System Management Guide for OS/390

Migrating Formats and Rules

Code |Error Name Error Message |Explanation |Response
-4010 NNFIEE_INVALID_ | Invalid Formatter Unknown format | Check the
FORMATTER_ element type componentfound. | version of
ELEMENT Fileexported from | MQSeries
an unsupported Integratoronthe
version of source machine.
MQSeries Recover or
Integrator, or the |recreate the
file is corrupt. export file.
-4011 NNFIEE_INVALID_ |Invalid NNFIE file; | Specified file Recreate or
NNFIE_FILE make sure the file incompatible. recover the
was generated by export file.
NNFIE
-4012 NNFIEE_INVALID_ |Invalid NNFIE Version number | Recreate the file
VERSION_NO version number found in the file | using a
not supported. supported
version of
MQSeries
Integrator.
-4013 NNFIEE_FAILED_TO |Failed to add to the | NNFIE unable to |Rerun the
_INVENTORY I/E inventory register the import or
component as export.
exported or
imported.
-4014 NNFIEE_NO_ No formats to export | Format database | Create valid
FORMATS _TO_ does not contain | formats.
EXPORT valid formats to
export.
-4015 NNFIEE_NOTHING_ | Nothing to import Import file does | Create export
TO_IMPORT notcontain format | file from
information. database that
contains
formats.
-4016 NNFIEE_FAILED_TO | Encryption failed NNFIE unable to |Rerun the
_ENCRYPT encrypt the export | export.

System Management Guide for OS/390

data successfully.

55

Chapter 3

Code |Error Name Error Message |Explanation |Response
-4017 NNFIEE_FAILED_TO | Decryption failed NNFIE unable to | Recreate of
_DECRYPT decrypt the recover the
import file. Thisis | export file.
caused by file
corruption.
-4018 NNFIEE_NNFIEERR_ | NNFIE.err already Error file Remove the
ALREADY_EXISTS exists NNFIE.err exists. | NNFIE.err file
and rerun.
-4019 NNFIEE_IE_FILE_ I/E file already exists | Specified output | Use a new
ALREADY_EXISTS file already exists. | exportfile name;
move or rename
existing export
file.
-4020 NNFIEE_FAILED_TO | Failed to open DBMS | NNFIE unable to | Verify accuracy
_OPEN_DBMS _ session connect to the of NNFIE entry
SESSION database. or session hame
specified with -s
optionin
SQLSVSES file.
-4021 NNFIEE_FAILED_TO | Failed to initialize NNFIE unable to | Verify MQSeries
_OPEN_FMGR Formatter Manager |use the Format Integrator
Manager library. |installed
correctly.
-4022 NNFIEE_INVALID_ | Invalid control type |Unknown format | Verifyversion of
CNTL_TYPE control found; file | MQSeries
exported from an | Integrator on
unsupported source machine.
version of Recover or
MQSeries recreate the
Integrator, or file |export file.
is corrupt.
56 System Management Guide for OS/390

NNFIE Format Error Messages

Migrating Formats and Rules

Code |Error Name Error Message | Explanation Response*
-4201 | NNFIEE_GetFormat | GetFormat failed Flat or compound | Use the secondary
format is not Format
accessible in the Management API
database using error code to
NNFMgrGet resolve the
Format. problem.
-4202 | NNFIEE_GetFirst GetFirstFormat First flat or Use the secondary
Format failed compound format | Format
is not accessible in | Management API
the database using |error code to
NNFMgrGetFirst resolve the
Format. problem.
-4203 | NNFIEE_GetNext GetNextFormat Next flat or Use the secondary
Format failed compound format | Format
is not accessible in | Management API
the database using |error code to
NNFMgrGetNext | resolve the
Format. problem.
-4204 | NNFIEE_GetFirst GetFirstFieldFrom | First field Use the secondary
FieldFromInput InputFormat failed |associated with a Format
Format flat input format is | Management API
not accessible in the | error code to
database using resolve the
NNFMgrGetFirst problem.
FieldFromInput
Format.
-4205 | NNFIEE_GetNext GetNextFieldFrom | Next field Use the secondary

FieldFromInput
Format

InputFormat failed

System Management Guide for OS/390

associated with a
flat input format is
not accessible in the
database using
NNFMgrGetNext
FieldFromInput
Format.

Format
Management API
error code to
resolve the
problem.

57

Chapter 3

Code |Error Name Error Message | Explanation Response*
-4206 | NNFIEE_GetFirst GetFirstFieldFrom | First field Use the secondary
FieldFromOutput OutputFormat associated with a Format
Format failed flat output format is | Management API
not accessible in the |error code to
database using resolve the
NNFMgrGetFirst problem.
FieldFromOutput
Format.
-4207 | NNFIEE_GetNext GetNextFieldFrom | Next field Use the secondary
FieldFromOutput OutputFormat associated with a Format
Format failed flat output format is | Management API
not accessible in the |error code to
database using resolve the
NNFMgrGetNext | problem.
FieldFromOutput
Format.
-4208 | NNFIEE_GetFirst GetFirstChildForm | First child format of | Use the secondary
ChildFormat at failed acompound format | Format
is not accessible in | Management API
the database using | error code to
NNFMgrGetFirst | resolve the
ChildFormat. problem.
-4209 | NNFIEE_GetNext GetNextChildForm | Nextchild format of | Use the secondary
ChildFormat at failed acompound format | Format
is not accessible in | Management API
the database using |error code to
NNFMgrGetNext | resolve the
ChildFormat. problem.
-4210 | NNFIEE_GetOutput | GetOutputControl | Specified output Use the secondary
Control failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGet resolve the
OutputControl. problem.
58 System Management Guide for OS/390

Migrating Formats and Rules

Code |Error Name Error Message | Explanation Response*
-4211 | NNFIEE_GetFirst GetFirstOutput First output control | Use the secondary
OutputControl Control failed is not accessible in | Format
the database using | Management API
the Formatter error code to
Management API resolve the
NNFMgrGetFirst problem.
OutputControl.
-4212 | NNFIEE_GetNext GetNextOutput Next output control | Use the secondary
OutputControl Control failed is not accessible in | Format
the database using | Management API
NNFMgrGetNext |error code to
OutputControl. resolve the
problem.
-4213 | NNFIEE_GetParse GetParseControl Specified parse or | Use the secondary
Control failed input control is not | Format
accessible in the Management API
database using error code to
NNFMgrGetParse | resolve the
Control. problem.
-4214 | NNFIEE_GetFirst GetFirstParse First parse or input | Use the secondary
ParseControl Control failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGetFirst resolve the
ParseControl. problem.
-4215 | NNFIEE_GetNext GetNextParse Next parse or input | Use the secondary

ParseControl

Control failed

System Management Guide for OS/390

control is not
accessible in the
database using
NNFMgrGetNext
ParseControl.

Format
Management API
error code to
resolve the
problem.

59

Chapter 3

Code |Error Name Error Message | Explanation Response*
-4216 | NNFIEE_Get GetDelimiter failed | Specified delimiter | Use the secondary
Delimiter is not accessible in | Format
the database using | Management API
NNFMgrGet error code to
Delimiter. resolve the
problem.
-4217 | NNFIEE_GetFirst GetFirstDelimiter | Firstdelimiteris not | Use the secondary
Delimiter failed accessible in the Format
database using Management API
NNFMgrGetFirst | error code to
Delimiter. resolve the
problem.
-4218 | NNFIEE_GetNext GetNextDelimiter | Next delimiter is Use the secondary
Delimiter failed not accessible in the | Format
database using Management API
NNFMgrGetNext | error code to
Delimiter. resolve the
problem.
-4219 | NNFIEE_GetField GetField failed Specified field isnot | Use the secondary
accessible in the Format
database using Management API
NNFMgrGetField. |error code to
resolve the
problem.
-4220 | NNFIEE_GetFirst GetFirstField failed |First field is not Use the secondary
Field accessible in the Format
database using Management API
NNFMgrGetFirst | error code to
Field. resolve the
problem.
-4221 | NNFIEE_GetNext GetNextField failed | Next field is not Use the secondary
Field accessible in the Format
database using Management API
NNFMgrGetNext | error code to
Field. resolve the
problem.
60 System Management Guide for OS/390

Migrating Formats and Rules

Code |Error Name Error Message | Explanation Response*
-4222 | NNFIEE_Append AppendFormatTo | Attempt to append | Use the secondary
FormatToFormat Format failed one flat or Format
compound format | Management API
into a compound error code to
format failed using | resolve the
NNFMgrAppend | problem.
FormatToFormat.
-4223 | NNFIEE_Append AppendFieldTo Attempt to append | Use the secondary
FieldTolnputFormat | InputFormat failed |afield toaflatinput | Format
format failed using | Management API
NNFMgrAppend |error code to
FieldTolnput resolve the
Format. problem.
-4224 | NNFIEE_Append AppendFieldTo Attempt to append | Use the secondary
FieldToOutput OutputFormat afield to a flat Format
Format failed output format Management API
failed using error code to
NNFMgrAppend | resolve the
FieldToOutput problem.
Format.
-4225 | NNFIEE_Append AppendMath Attempt to append | Use the secondary
MathExpression Expression failed a math expression | Format
detail entry to an Management API
existing math error code to
expression control | resolve the
failed using problem.
NNFMgrAppendM
athExpression.
-4226 | NNFIEE_Append AppendLookup Attempt to append | Use the secondary
LookupEntry Entry failed a lookup detail Format

System Management Guide for OS/390

entry to an existing
lookup control
failed using
NNFMgrAppend
LookupEntry.

Management API
error code to
resolve the
problem.

61

Chapter 3

Code |Error Name Error Message | Explanation Response*

-4227 | NNFIEE_Create CreateFormat failed | Attempt to create a | Use the secondary
Format new input/output | Format

flat or compound Management API
format failed using |error code to
NNFMgrCreateFor | resolve the

mat. problem.

-4228 | NNFIEE_Create CreateParseControl | Attempt to create a | Use the secondary

ParseControl failed new parse/input Format
control failed using | Management API
NNFMgrCreate error code to
ParseControl. resolve the
problem.

-4229 | NNFIEE_Create CreateOutput Attempt to create a | Use the secondary
OutputControl Control failed new output control | Format

failed using Management API

NNFMgrCreate error code to

OutputControl. resolve the
problem.

-4230 | NNFIEE_Create CreateDelimiter Attempt to create a | Use the secondary
Delimiter failed newdelimiterfailed | Format

using Management API

NNFMgrCreate error code to

Delimiter. resolve the
problem.

-4231 | NNFIEE_CreateField | CreateField failed | Attempt to create a | Use the secondary

new field failed Format

using Management API

NNFMgrCreate error code to

Field. resolve the
problem.

-4232 | NNFIEE_SERIOUS_ | GetErrorNo General database See Format
ERROR_POSSIBLY_ |returned serious error encountered | Management API
DB_RELATED error number using the Format error code -2604.

Management APIs.
62 System Management Guide for OS/390

Migrating Formats and Rules

Code |Error Name Error Message | Explanation Response*
-4233 | NNFIEE_GetData GetDataTypename | Attempt to retrieve | Run the Formatter
TypeName failed the formal name for | Consistency
data type code Checker to verify
failed due to an data type codes.
invalid data type
code associated
control.
-4234 | NNFIEE_GetData GetDataType failed | Attempt to retrieve | NNFIE import file
Type the data type code | does not contain
associated with the | correctformal data
formal data type type names. The
name failed. NNFIE import file
is corrupt or has
been exported
from a damaged
database.
-4235 | NNFIEE_GetFirst GetFirstUser First user-defined | Use the secondary
UserDefinedType DefinedType failed |type is not Format
accessible in the Management API
database using error code to
NNFMgrGetFirst resolve the
UserDefinedType. |problem.
-4236 | NNFIEE_GetNext GetNextUser Next user-defined | Use the secondary
UserDefinedType DefinedType failed |type is not Format
accessible in the Management API
database using error code to
NNFMgrGetNext | resolve the
UserDefinedType. |problem.
-4237 | NNFIEE_CreateUser | CreateUserDefined | Attempt to create a | Use the secondary

DefinedType

Type failed

System Management Guide for OS/390

new user-defined
type failed using
NNFMgrCreate
UserDefinedType.

Format
Management API
error code to
resolve the
problem.

63

Chapter 3

Code |Error Name Error Message | Explanation Response*
-4238 | NNFIEE_GetFirst GetFirstLiteral First literal is not Use the secondary
Literal failed accessible in the Format
database using Management API
NNFMgrGetFirst | error code to
Literal. resolve the
problem.
-4239 | NNFIEE_GetNext GetNextLiteral Next literal is not Use the secondary
Literal failed accessible in the Format
database using Management API
NNFMgrGetNext | error code to
Literal. resolve the
problem.
-4240 | NNFIEE_GetLiteral | GetLiteral failed Specified literal is | Use the secondary
not accessible in the | Format
database using Management API
NNFMgrGet error code to
Literal. resolve the
problem.
-4241 | NNFIEE_GetFirst GetFirstOutMstr First output master |Use the secondary
OutMstrCntl Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGetFirst resolve the
OutMstrCntl. problem.
-4242 | NNFIEE_GetFirst GetFirstDefaultCntl | First default control | Use the secondary
DefaultCntl failed is not accessible in | Format
the database using | Management API
NNFMgrGetFirst | error code to
DefaultCntl. resolve the
problem.
-4243 | NNFIEE_GetFirst GetFirstUserExit First user exit Use the secondary
UserExitCntl Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGetFirst resolve the
UserExitCntl. problem.
64 System Management Guide for OS/390

Migrating Formats and Rules

Code |Error Name Error Message | Explanation Response*
-4244 | NNFIEE_GetFirst GetFirstPrePostFix | First pre/postfix Use the secondary
PrePostFixCntl Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGetFirst | resolve the
PrePostFixCntl. problem.
-4245 | NNFIEE_GetFirst GetFirstSegment First segment of Use the secondary
SegmentFromMath | FromMathExpCntl | math expression Format
ExpCntl failed detail control is not | Management API
accessible in the error code to
database using resolve the
NNFMgrGetFirst problem.
SegmentFromMath
ExpCntl.
-4246 | NNFIEE_Append AppendSegmentTo | Attempt to append | Use the secondary
SegmentToMathExp | MathExpCntl failed | a math expression | Format
Cntl detail entry to an Management API
existing math error code to
expression failed resolve the
using problem.
NNFMgrAppend
SegmentMathExp
Cntl.
-4247 | NNFIEE_GetFirst GetFirstSubstitute | First substitute Use the secondary
SubstituteCntl Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGetFirst resolve the
SubstituteCntl. problem.
-4248 | NNFIEE_GetFirst GetFirstSubString | First substring Use the secondary

SubStringCntl

Cntl failed

System Management Guide for OS/390

control is not
accessible in the
database using
NNFMgrGetFirst
SubStringCntl.

Format
Management API
error code to
resolve the
problem.

65

Chapter 3

Code |Error Name Error Message | Explanation Response*
-4249 | NNFIEE_GetFirst GetFirstTrimCntl First trim control is | Use the secondary
TrimCntl failed not accessible in the | Format
database using Management API
NNFMgrGetFirst | error code to
TrimCntl. resolve the
problem.
-4250 | NNFIEE_GetFirst GetFirstCollection | First output Use the secondary
CollectionCntl Cntl failed collection control is | Format
not accessible in the | Management API
database using error code to
NNFMgrGetFirst resolve the
CollectionCntl. problem.
-4251 | NNFIEE_Append AppendCntiTo Attempt to append | Use the secondary
CntlToCollection CollectionCntl an output operation | Format
Cntl failed to an output Management API
operation control error code to
failed using resolve the
NNFMgrAppend | problem.
CntlToCollection
Cntl.
-4252 | NNFIEE_GetFirst GetFirstCntlFrom | First output Use the secondary
CntlFromCollection | Collection failed operation collection | Format
control is not Management API
accessible in the error code to
database using resolve the
NNFMgrGetFirst problem.
CntlFrom
Collection.
-4253 | NNFIEE_GetFirst GetFirstLengthCntl | First length control | Use the secondary
LengthCntl failed is not accessible in | Format
the database using | Management API
NNFMgrGetFirst | error code to
LengthCntl. resolve the
problem.
66 System Management Guide for OS/390

Migrating Formats and Rules

Code |Error Name Error Message | Explanation Response*
-4254 | NNFIEE_GetFirst GetFirstMathExp First math Use the secondary
MathExpCntl Cntl failed expression control | Format
is not accessible in | Management API
the database using |error code to
NNFMgrGetFirst resolve the
MathExpCntl. problem.
-4255 | NNFIEE_GetNext GetNextOutMstr Next output master | Use the secondary
OutMstrCntl Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGetNext | resolve the
OutMstrCntl. problem.
-4256 | NNFIEE_GetOut GetOutMstrCntl Specified output Use the secondary
MstrCntl failed master control is Format
not accessible in the | Management API
database using error code to
NNFMgrGetOut resolve the
MstrCntl. problem.
-4257 | NNFIEE_GetNext GetNextDefault Nextdefaultcontrol | Use the secondary
DefaultCntl Cntl failed is not accessible in | Format
the database using | Management API
NNFMgrGetNext |error code to
DefaultCntl. resolve the
problem.
-4258 | NNFIEE_GetDefault | GetDefaultCntl Specified default Use the secondary
Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGet resolve the
DefaultCntl. problem.
-4259 | NNFIEE_GetNext GetNextUserExit Next user exit Use the secondary
UserExitCntl Cntl failed control is not Format

System Management Guide for OS/390

accessible in the
database using
NNFMgrGetNext
UserExitCntl.

Management API
error code to
resolve the
problem.

67

Chapter 3

Code |Error Name Error Message | Explanation Response*
-4260 | NNFIEE_GetUser GetUserExitCntl Specified user exit | Use the secondary
ExitCntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGetUser | resolve the
ExitCntl. problem.
-4261 | NNFIEE_GetNext GetNextPrePostFix | Next pre/postfix Use the secondary
PrePostFixCntl Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGetNext | resolve the
PrePostFixCntl. problem.
-4262 | NNFIEE_GetPrePost | GetPrePostFixCntl | Specified prefix/ Use the secondary
FixCntl failed postfix control is Format
not accessible in the | Management API
database using error code to
NNFMgrGetPre resolve the
PostFixCntl. problem.
-4263 | NNFIEE_GetNext GetNextSegment Next segment of the | Use the secondary
SegmentFromMath | FromMathExpCntl | math expression Format
ExpCntl failed detail controlsis not | Management API
accessible in the error code to
database using resolve the
NNFMgrGetNext | problem.
SegmentFromMath
ExpCntl.
-4264 | NNFIEE_GetNext GetNextSubstitute | Next substitute Use the secondary
SubstituteCntl Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGet resolve the
SubstituteCntl. problem.
68 System Management Guide for OS/390

Migrating Formats and Rules

Code |Error Name Error Message | Explanation Response*
-4265 | NNFIEE_GetSubstit | GetSubstituteCntl | Specified substitute | Use the secondary
uteCntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGet resolve the
SubstituteCntl. problem.
-4266 | NNFIEE_GetNext GetNextSubString | Next substring Use the secondary
SubStringCntl Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGetNext | resolve the
SubStringCntl. problem.
-4267 | NNFIEE_GetSub GetSubStringCntl | Specified substring | Use the secondary
StringCntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGet resolve the
SubStringCntl. problem.
-4268 | NNFIEE_GetNext GetNextTrimCntl Next trim control is | Use the secondary
TrimCntl failed not accessible in the | Format
database using Management API
NNFMgrGetNext |error code to
TrimCntl. resolve the
problem.
-4269 | NNFIEE_GetTrim GetTrimCntl failed | Specified trim Use the secondary

Cntl

System Management Guide for OS/390

control is not
accessible in the
database using
NNFMgrGetTrim
Cntl.

Format
Management API
error code to
resolve the
problem.

69

Chapter 3

Code |Error Name Error Message | Explanation Response*
-4270 | NNFIEE_GetNext GetNextCntlFrom | Next output Use the secondary
CntlFromCollection | Collection failed operation collection | Format
control is not Management API
accessible in the error code to
database using resolve the
NNFMgrGetCntl | problem.
FromCollection.
-4271 | NNFIEE_GetNext GetNextLengthCntl | Next length control | Use the secondary
LengthCntl failed is not accessible in | Format
the database using | Management API
NNFMgrGetNext |error code to
LengthCntl. resolve the
problem.
-4272 | NNFIEE_GetLength | GetLengthCntl Specified length Use the secondary
Cntl failed control is not Format
accessible in the Management API
database using error code to
NNFMgrGet resolve the
LengthCntl. problem.
-4273 | NNFIEE_GetNext GetNextMathExp | Next math Use the secondary
MathExpCntl Cntl failed expression control | Format
is not accessible in | Management API
the database using |error code to
NNFMgrGetNextM | resolve the
athExpCntl. problem.
-4274 | NNFIEE_GetMath GetMathExpCntl Specified math Use the secondary
ExpCntl failed expression control | Format
is not accessible in | Management API
the database using |error code to
NNFMgrGetMath | resolve the
ExpCntl. problem.
70 System Management Guide for OS/390

Migrating Formats and Rules

Code |Error Name Error Message | Explanation Response*
-4275 | NNFIEE_GetNext GetNextCollection | Next output Use the secondary
CollectionCntl Cntl failed collection control is | Format
not accessible in the | Management API
database using error code to
NNFMgrGetNext | resolve the
CollectionCntl. problem.
-4276 | NNFIEE_Get GetCollectionCntl | Specified output Use the secondary
CollectionCntl failed collection control is | Format
not accessible in the | Management API
database using error code to
NNFMgrGet resolve the
CollectionCntl. problem.
-4277 | NNFIEE_GetUser GetUserDefined Specified user- Use the secondary
DefinedType Type failed defined type is not | Format
accessible in the Management API
database using error code to
NNFMgrGetUser | resolve the
DefinedType. problem.
-4278 | NNFIEE_GetNext GetNextMath Next math Use the secondary
MathExpression Expression failed expression is not Format
accessible in the Management API
database using error code to
NNFMgrGetNext | resolve the
MathExpression. problem.
-4279 | NNFIEE_GetNext GetNextLookup Next lookup entry | Use the secondary
LookupEntry Entry failed control is not Format

System Management Guide for OS/390

accessible in the
database using
NNFMgrGetNext
LookupEntry.

Management API
error code to
resolve the
problem.

71

Chapter 3

Code |Error Name Error Message | Explanation Response*
-4280 | NNFIEE_GetNext GetNextEntryFrom | Next substitute Use the secondary
EntryFromSubstitute | SubstituteCntl field segment from | Format
Cntl failed the substitute Management API
control is not error code to
accessible in the resolve the
database using problem.
NNFMgrGetNext
EntryFrom
SubstituteCntl.
-4281 | NNFIEE_Append AppendEntryTo Attempt to create a | Use the secondary
EntryToSubstitute SubstituteCntl substitute field Format
Cntl failed segment for the Management API
substitute control | error code to
failed using resolve the
NNFMgrAppend | problem.
EntryToSubstitute
Cntl.
-4500 Fatal internal error |Processing could See previous error

not continue.

messages for
further
information.

*For additional Response information, see Formatter Management API error messages in the
Programming Reference for Formatter APIs.

72

System Management Guide for OS/390

Migrating Formats and Rules

Migrating Rules

Before you migrate rules, run the MQIntegrator r. 3.2 Consistency Checker
program on the MQIntegrator r. 3.2 database to check for database errors. Fix
any problems found with the Consistency Checker in the MQIntegrator r. 3.2
database before you proceed. See Consistency Checker on page 179.

Verify that the target database has enough space for the information to be
migrated. Use NNRIE to export existing rules from a MQIntegrator 3.2
database and import to a MQSeries Integrator 1.1 database. Run the NNRIE
executable to export rules from the MQIntegrator 3.2 database. NNRIE
creates a text-based export file that can be interchanged between platforms.
All application groups and their associated message types and rules must be
exported.

The exported file should then be imported. Run the NNRIE executable again
to import rules to the MQSeries Integrator 1.1 database.

WARNING!

If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule “r1” and another rule “R1”. In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If you import components exported from a case-sensitive database into a
case-insensitive database, NNRIE may fail during import if a conflict arises
between two components named the same with only case differences.

Character Sort Order

Rules using string comparisons can evaluate differently on an EBCDIC
machine and on an ASCII machine. The user must be careful when importing
a rule set from an ASCII machine to an EBCDIC machine (or vice versa).

In ASCII, the order of charactersis0-9<A-Z<a-z.
For EBCDIC, the order of charactersisa- z<A-Z2<0-9.

System Management Guide for OS/390 73

Chapter 3

For neonRules, this difference in character sort has the following
consequences:

Rule Argument Results

int or float comparison no difference
string comparison (=) no difference
string comparison with only numeric characters no difference

string comparison with only alphabetic characters no difference

case-sensitive string comparison with only no difference
uppercase or lowercase alphabetic characters

string comparison (<, <=, >, >=) with alphabeticand | possibly different
numeric characters

case-sensitive string comparison (<, <=, >, >=) with | possibly different
mixed case alphabetic characters

Importing and Exporting Rules

74

NNRIE is used to export rule definitions and subscriptions not associated
with a rule from a database to a file, and to import the exported file into a
database.

Subscriptions are added to an Application Group/Message Type (Rule Set),
and can be associated with multiple rules in the same Application Group/
Message Type. The rule name is no longer used to identify subscriptions, so
data migration may require subscription names to be generated for
uniqueness. The user is prompted to generate the new subscription names.

NNRIE allows the user to export rule definitions from a database to a file and
to import the exported file into a database. With the NNRIE program, you can
export subscriptions, single rules, rulesets, messages types, and application
groups.

System Management Guide for OS/390

Migrating Formats and Rules

Using NNRIE to export rules requires the following preparation:
= DB2 must be installed.

m The operating system supports standard input, standard output, and
standard error stream sources and sinks (SYSIN, SYSPRINT,
SYSOUT).

m The Rules database schema and the Formatter database schema must
be created.

m The Rules data in the database must be created using the Rules GUI
or the Rules Management APIs.

m The target database has enough disk space allocated to hold the
output file.

Note:
The user must unencrypt an NNRIE export file created on an ASCII platform

prior to running NNRIE on OS/390. For more information, see File Encryption
and NNCRYPT.

The SQLSVSES DD-name must reference a valid dataset containing valid
SQLSVSES entries, or the application fails to connect to DB2 and terminates.
When importing rules on OS/390, the owner of the rules is set to the userIlD
of the person submitting the NNRIE import job, for example, the DB2 special
register USER.

When exporting, the DCB attributes of the export files should be set to
DSORG=PS, RECFM=VB, LRECL=32756, BLKSIZE=32760. The export
records may be very large.

Note:
The WORKFILE, FAILFILE, IMPORTFL, and any other non-print class files

should be allocated with the same DCB attributes before the job is executed.

NNRIE

The following sample job control language (JCL) is provided to illustrate how
to run the NNRIE job in batch and pass startup parameters to it. The JCL at

System Management Guide for OS/390 75

Chapter 3

your site will be different. See Tailoring Jobs for Your Site on page 17 for
information about the symbolic parameters in this sample.

/[1* <insert a valid jobcard here >
11+
//**
/1*

/1* Licensed Materials - Property of New Era of Networks, Inc.
[1* Copyright (c) 1998-1999, New Era of Networks, Inc.

/[1* Al Rights Reserved.

11

//* Release 4.1.1

//**

E R B B S

//**

//* *
[/*NNRIE: Rules Inmport/Export Utility *
//* *

//**

/INNRIE PROC PRM=(-export DD:EXPORTFL -0 -v -v -v),
1 SMPHLQ='<smphlg>', HLQ for NEONet distrib libs
1 MQSHLQ='<mgshlg>, HLQ for MQS runtime libs

1 CEEHLQ='<lehilg>', HLQ for Lang Envir libs

1 CSSHLQ='SYS1/, HLQ for Callable Sys Svcs (CSS-)Lib

1 SQLMEM='SQLSVSES', MEMbername for SQLSVSES cntl cards
1 INIMEM="CLIINI', MEMbername for CLIINI cntl cards

1 OPCLAS=" SYSOUT CLASS

I

/ISTP0101 EXEC PGM=NNRIE,

/I PARM=&PRM

*

/I* <tailor the member STEPLIB and copy it here>

*

[ISQLSVSES DD DSN=&SMPHLQ..SNEOCNTL(&SQLMEM),DISP=SHR
/IDSNAOINI DD DSN=&SMPHLQ..SNEOCNTL(&INIMEM),DISP=SHR
/ISYSOUT DD SYSOUT=&OPCLAS

/ISYSPRINT DD SYSOUT=&OPCLAS

/ISTATLOG DD SYSOUT=&OPCLAS

/ICLITRACE DD SYSOUT=&OPCLAS used for DB2 CLI high-level tracing
/ISYSIN