

IBM
046HULHV��,QWHJUDWRU

$SSOLFDWLRQ�'HYHORSPHQW�*XLGH
9HUVLRQ����

 SC34-5508-02

Note: Before using this information, and the product it supports, be sure to read the general
information under Notices on page 39.

Third edition (December 1999)
This edition applies to IBM® MQSeries Integrator, Version 1.1 and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your
locality. Publications are not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to
make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright New Era of Networks, Inc., 1998, 1999. All rights reserved.

© Copyright International Business Machines Corporation, 1999. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

&RQWHQWV

&KDSWHU����,QWURGXFWLRQ ������������������������������������
MQSeries Integrator Overview..1

Formatter ...2
Rules ...2
MQSeries Integrator Rules Daemon ..2
MQSeries..2

Product Documentation Set ...3
Before You Contact Technical Support...4
Year 2000 Readiness Disclosure...6

&KDSWHU����$SSOLFDWLRQ�3URJUDPPLQJ ����������������
Rules Processing Daemon ..7
Messages ...8

Message Header..8
&KDSWHU����'DWDEDVH�$EVWUDFWLRQ�/D\HU�$3,V����

APIs and Header Files...12
&KDSWHU����EXLOG0HVVDJH����������������������������������

Source Code for buildMessage ..29
Sample Application Using buildMessage ..32

$SSHQGL[�$��1RWLFHV ���
Trademarks and Service Marks ...41

,QGH[��
MQSeries Integrator Application Development Guide i

ii MQSeries Integrator Application Development Guide

&KDSWHU��

,QWURGXFWLRQ

046HULHV�,QWHJUDWRU�2YHUYLHZ

MQSeries Integrator, from IBM and New Era of Networks, Inc. (NEON),
provides the flexibility and scalability that allows true application
integration. MQSeries Integrator consists of four components:

n IBM MQSeries

n NEONFormatter

n NEONRules

n MQIntegrator Rules daemon

MQSeries Integrator is a cross-platform, guaranteed delivery, messaging
middleware product designed to facilitate the synchronization, management,
and distribution of information (messages) across large-scale, heterogeneous
networks.

MQSeries Integrator is configurable and uses a content-based rules message
evaluation, formatting, and routing paradigm. MQSeries Integrator also
provides a powerful data content-based, source-target mechanism with
dynamic format parsing and conversion capability.

The application program interfaces (APIs) and graphical user interfaces
(GUIs) allow you to use these systems. Refer to the Programming Reference
documents for instructions on using the APIs and the User’s Guide for
instructions on using the GUIs.
MQSeries Integrator Application Development Guide 1

Chapter 1
)RUPDWWHU
NEONFormatter translates messages from one format to another.
NEONFormatter handles multiple message format types from multiple data
value sources with the ability to convert and parse messages. When a
message is provided as input to Formatter, the message is parsed and data
values are returned.

Message formats in the NEONFormatter database are defined through the
graphical user interface (GUI). The GUI leads you through the definitions of
format components, for example, tags, delimiters, and patterns, to the
building of complete message definitions.

5XOHV
NEONRules lets you develop rules for managing message destination IDs,
receiver locations, expected message formats, and any processes initiated
upon message delivery. Creation and dispatch of multiple messages to
multiple destinations from a single input message is supported.

1RWH�
For more in-depth descriptions of NEONFormatter and NEONRules, refer to the
overviews in Chapters 3 and 4 of the MQSeries Integrator User’s Guide.

046HULHV�,QWHJUDWRU�5XOHV�'DHPRQ
The MQSeries Integrator Rules daemon combines MQSeries, NEONFormatter,
and NEONRules in a generic server process. The MQSeries Integrator Rules
daemon processes messages from an MQSeries input queue, uses
NEONFormatter to parse messages, uses NEONRules to determine what
transformations to perform and where to route the messages, and then puts
the output messages on MQSeries queues for delivery to applications.

046HULHV
MQSeries is a message-oriented middleware that is ideal for high-value
message handling and high-volume applications because it guarantees each
message is delivered only once, and it supports transactional messaging.
Messages are grouped into units of work and either all or none of the
messages in a unit or work are processed. MQSeries coordinates message
2 MQSeries Integrator Application Development Guide

Introduction
work with other transaction work, like database updates, so data integrity is
always maintained.

3URGXFW�'RFXPHQWDWLRQ�6HW

The MQSeries Integrator for OS/390 documentation set includes:

n MQSeries Integrator for OS/390 Installation and Configuration
Guide details the installation and initial implementation of MQSeries
Integrator and the MQSeries Integrator applications.

n User’s Guide helps MQSeries Integrator users understand and apply
the program through its graphical user interfaces (GUIs).

n System Management is for SPs and DBAs who work with MQSeries
Integrator on a day-to-day basis.

n Programming References are intended for users build and maintain
the links between MQSeries Integrator and other applications. This
document includes the following volumes:

– Application Development Guide assists programmers in writing
applications that use MQSeries Integrator APIs.

– Programming Reference for NEONFormatter is a reference to
NEONFormatter APIs for those who write applications to translate
messages from one format to another.

– Programming Reference for NEONRules is a reference to
NEONRules APIs for those who write applications to perform
actions based on message contents.
MQSeries Integrator Application Development Guide 3

Chapter 1
%HIRUH�<RX�&RQWDFW�7HFKQLFDO�
6XSSRUW

If you have difficulty executing one of the MQSeries Integrator programs,
analyze your environment using the following steps. Be prepared to send the
listed information and files to technical support.

1. Has this program ever worked in your environment?

If so, identify what has changed.

2. Check the values specified in the SQLSVSES (DD-name SQLSVSES)
file that the failing job is using to make sure it refers to an existing
DB2 subsystem and an existing DB2 database within that subsystem.

3. Check the values specified in the CLIINI (DD-name DSNAOINI) file
that the failing job is using to make sure it refers to an existing DB2
subsystem and an existing DB2 database within that subsystem.

4. Check whether the System Affinity is causing your job to execute on a
system that does not contain the DB2 subsystem, MQSeries queue
manager, or IBM datasets that MQSeries Integrator is trying to access.

5. In the CLIINI file (DD-name DSNAOINI), edit the following line:

CLITRACE=0

Change it to:

CLITRACE=1

Rerun your job. The CLITRACE produced (DD-name CLITRACE) is
invaluable in diagnosing problems between the DB2 database and
the MQSeries Integrator application. Your JCL should have a DD-
statement that defines CLITRACE to either a disk file or SYSOUT
class. This file is required by technical support to diagnose problems.
4 MQSeries Integrator Application Development Guide

Introduction
1RWH�
It is assumed that the DB2 CLI is installed, the DSNACLI Plan has
been bound, and you are granted execute authority on it.

6. Examine all files produced by MQSeries Integrator for error or
informational messages. Some error messages are written to
SYSOUT, some to SYSPRINT, and some to STATLOG.

7. Look for Operating System messages that may indicate why the job
has failed, such as missing files, no room to log messages (E-37,
B-37 type failures), full queue conditions, and so on.

8. If failing to put or get from an MQSeries queue, make sure the queue
is enabled for sharing:

Permit shared access Y Y=Yes,N=No
Default share option S E=Exclusive,S=Shared

9. If the problem is related to poor Rules daemon performance, check
the values of the timers specified in the input stream (DD-name
SYSIN) file of the RULENG job. Setting these timers too high can
result in poor performance of the Rules Engine.

When contacting technical support be prepared to send the following
information via email or ftp:

n The complete listing of your jobs execution, including SYSOUTs,
SYSPRINTs, STATLOG, JESMSGS, and so forth.

n The contents of the CLITRACE file

n Any dump files produced (CEEDUMP or SYSUDUMP)

n Your site’s SQLSVSES file

n Your site’s CLIINI file
MQSeries Integrator Application Development Guide 5

Chapter 1
<HDU������5HDGLQHVV�'LVFORVXUH

MQSeries Integrator, when used in accordance with its associated
documentation, is capable of correctly processing, providing, and/or
receiving date information within and between the twentieth and twenty-first
centuries, provided that all products (for example, hardware, software, and
firmware) used with this IBM program properly exchange accurate date
information with it.

Customers should contact third party owners or vendors regarding the
readiness status of their products.

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:
http://www.software.ibm.com/ts/mqseries/platforms/supported.html

For the latest IBM statement regarding Year 2000 readiness, refer to:
http://www.ibm.com/ibm/year2000/
6 MQSeries Integrator Application Development Guide

http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.ibm.com/ibm/year2000/

&KDSWHU��

$SSOLFDWLRQ�3URJUDPPLQJ

5XOHV�3URFHVVLQJ�'DHPRQ

The MQSeries Integrator Rules daemon combines MQSeries, NEONFormatter,
and NEONRules in a generic server process. The MQSeries Integrator Rules
daemon processes messages from one or more MQSeries input queues, uses
NEONFormatter to parse messages, uses NEONRules to determine what
transformations to perform and where to route the messages, then puts the
output messages on MQSeries queues for delivery to applications.
MQSeries Integrator Application Development Guide 7

Chapter 2
0HVVDJHV

MQSeries messages sent to the rules processing daemon have the following
format:

MQSeries Integrator Message Format

0HVVDJH�+HDGHU
The first part of the message body is the message header. This header
contains the application group and message type information that the
NEONRules processing daemon requires to parse the message. If the NEONRules
processing daemon receives a message that does not contain a message
header, it assigns default values for both the application group and message
type.

Format = MQHRF

MQSeries Message Descriptor
(MQMD)

Message Header

Message Body

MQRFH Structure

Option Buffer

Application Data
8 MQSeries Integrator Application Development Guide

Application Programming
Applications that put messages to the NEONRules processing daemon input
queue indicate that a message header precedes the application data by setting
the format field of the MQMD structure to MQFMT_RF_HEADER where
MQFMT_RF_HEADER is defined as the eight-character string: MQHRFbbb
(b = space).

The message header consists of two parts: the MQRFH structure and the
option buffer.

045)+�6WUXFWXUH
The MQRFH structure contains the following fields:

)LHOG 'HVFULSWLRQ

StrucId (MQCHAR4) The identifier for the MQRFH structure. The value must
be: MQRFH_STRUC_ID = “RFHb” (b = space).

Version (MQLONG) The identifier for Version-1 MQRFH structure. The value
must be: MQRFH_VERSION_1.

StrucLength
(MQLONG)

The length of the MQRFH structure and the subsequent
option buffer. There is no default value for this field
because the value depends on the length of the option
buffer, which may be different for each message.

Encoding
(MQLONG)

Encoding of the data following the MQRFH structure. The
queue manager does not check the value of this field. The
initial value of this field is MQENC_NATIVE.

CodedCharSetId
(MQLONG)

Character set identifier of the data following the MQRFH
structure. The queue manager does not check the value of
this field. The initial value of this field is zero (0).

Format (MQCHAR8) Format name of the data following the MQRFH structure.
The queue manager does not check the value of this field.
See the description of the Format field in the MQMD
structure for more information about Format names. The
initial value of this field is MQFMT_NONE.

Flags (MQLONG) General flags.
MQSeries Integrator Application Development Guide 9

Chapter 2
2SWLRQ�%XIIHU
The option buffer immediately follows the MQRFH structure in the message
header. The option buffer consists of a collection of space-delimited
tag/value pairs. The size of the option buffer is calculated as follows:

OptionBufferLength = MQRFH.StrucLength - sizeof(MQRFH)

The data in the NEON option buffer is in the following form:

<tagname1>b<value1>b<tagname2>b<value2>b (etc.)

Tag names and values cannot contain nulls or spaces (b = space).

Recognized names in option buffer:

n OPT_APP_GRP
Application Group

n OPT_MSG_TYPE
Message Type

n OPT_RELOAD_RULE_SET
Reload Rule Set

n OPT_SHUTDOWN
Shutdown
10 MQSeries Integrator Application Development Guide

&KDSWHU��

'DWDEDVH�$EVWUDFWLRQ�/D\HU�
$3,V

The Database Abstraction Layer APIs section describes functions used in
NEONFormatter and NEONRules APIs for database abstraction. Database
Abstraction Layer APIs provide a means of managing transactions and
maintaining data integrity.

Make sure the session state is accessible by using the Ok() function.
OpenDbmsSession() provides MQSeries Integrator functions a session name
to associate with an MQSeries Integrator database. CloseDbmsSession()
cleans up an MQSeries Integrator session and releases any residual storage
that may have been allocated by MQSeries Integrator or the DBMS during a
program’s execution.
MQSeries Integrator Application Development Guide 11

Chapter 3
$3,V�DQG�+HDGHU�)LOHV

Header files contain declarations for class functions and declarations for data
types and constants.

+HDGHU�)LOHV

'EPV6HVVLRQ�)DFWRU\�)XQFWLRQV

2EMHFW�
&ODVV

'HVFULSWLRQ +HDGHU�)LOH

DbmsSession For Class DbmsSession
Declarations

ses.h

Procedural APIs for
DbmsSession

sqlapi.h

5HWXUQ�
7\SH

)XQFWLRQ $UJXPHQWV

int Ok ()

DbmsSession* OpenDbmsSession (char *SessionName, int DbmsType)

DbmsSession* OpenDbmsSession (void* SessionHandle, int DbmsType)

DbmsSession* OpenDbmsSession (const char* const sessionName,
const char* const configFileName,
int DbmsType)

DbmsSession* OpenDbmsSession (const char * const serverName,
const char * const userID,
 const char * const passwd,
const char * const dbInstance,
int DbmsType)

void CloseDbmsSession (DbmsSession* Session)
12 MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs
2N

The state of the DbmsSession class.

6\QWD[

int Ok();

3DUDPHWHUV

None

5HPDUNV

None.

5HWXUQ�9DOXH

Returns 1 or TRUE for a class state that is usable, and zero (0) or FALSE if the
class is not usable. A (0) value should return an error message or failure
message.

([DPSOH

...
#include "dbtypes.h"
DbmsSession *mySession;
mySession = OpenDbmsSession(NN_DB_TYPE_MVSDB2);
if (!mySession || !mySession->Ok()) {
... // Database session not created or not connected
}

MQSeries Integrator Application Development Guide 13

Chapter 3
2SHQ'EPV6HVVLRQ

OpenDbmsSession() searches the SQLSVSES configuration file for an entry
named SessionName and instantiates a DbmsSession object of type
DbmsType.

6\QWD[

DbmsSession* OpenDbmsSession(char *SessionName,
 int DbmsType);

3DUDPHWHUV

5HPDUNV

A call to OpenDbmsSession() is required prior to using any of the high-level,
Formatter or Rules APIs.

5HWXUQ�9DOXH

Returns a session pointer for use in other MQSeries Integrator API calls;
NULL if the session object could not be allocated.

It is the application programmer’s responsibility to make sure the session
state is accessible using the Ok() function. Ok() should return 1 if the session
state is operational.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

SessionName char * Input Identifies the session tag name in the
configuration file to be used. The tag
name is the first field of a line in the
configuration file.

DbmsType int Input Identifies the type of database to use.
Supported types are defined in
dbtypes.h.
14 MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs
([DPSOH

...
#include "dbtypes.h"
DbmsSession *mySession;
mySession = OpenDbmsSession("mytag",NN_DB_TYPE_MVSDB2);
if (!mySession || !mySession->Ok())
{
... /* Database session not created or not connected */
}
... /* Use for Rules or Formatter */

6HH�$OVR

OpenDbmsSession(SessionHandle, DbmsType)

OpenDbmsSession(SessionName, configFileName, DbmsType)

OpenDbmsSession(serverName, userID, passwd, dbInstance, DbmsType)

CloseDbmsSession (DbmsSession * Session)
MQSeries Integrator Application Development Guide 15

Chapter 3
2SHQ'EPV6HVVLRQ

OpenDbmsSession() enables the user to connect to a MQSeries Integrator
database using a pre-existing, database-specific, user-created (such as a
Sybase DBPROC or Microsoft SQL Server handle, or Oracle LDA) session
handle. DbmsType indicates the database vendor and version.

6\QWD[

DbmsSession* OpenDbmsSession(void* SessionHandle,
 int DbmsType);

3DUDPHWHUV

5HPDUNV

A call to OpenDbmsSession() is required prior to using any of the high-level,
Formatter APIs, or Rules APIs.

5HWXUQ�9DOXH

Returns a session pointer for use in other MQSeries Integrator API calls;
NULL if the session object could not be allocated.

It is the application programmer’s responsibility to make sure the session
state is accessible using the Ok() function. Ok() should return 1 if the session
state is operational.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

SessionHandle void * Input Identifier for interacting with MQSeries
Integrator databases.

DbmsType int Input Supported types are defined in
dbtypes.h.
16 MQSeries Integrator Application Development Guide

([DPSOH

...
#include "dbtypes.h"
DbmsSession *mySession;
Lda_Def * myLda;
... // Manually log on to Oracle database
mySession = OpenDbmsSession((void *)myLda,NN_DB_TYPE_MVSDB2);
if (!mySession || !mySession->Ok()) {
... // Database session not created or not connected
}
... // Use for Rules or Formatter

6HH�$OVR

OpenDbmsSession(SessionName, DbmsType)

OpenDbmsSession(SessionName, configFileName, DbmsType)

OpenDbmsSession(serverName, userID, passwd, dbInstance, DbmsType)

CloseDbmsSession (DbmsSession * Session)
MQSeries Integrator Application Development Guide 17

Chapter 3
2SHQ'EPV6HVVLRQ

Use this call to open a DbmsSession with a specific file other than SQLSVSES.

6\QWD[

OpenDbmsSession (const char* const sessionName,
 const char*const configFileName,
 int DbmsType)

3DUDPHWHUV

5HPDUNV

The alternative configuration file must be in the same format as the
SQLSVSES file. A call to OpenDbmsSession() is required prior to using any of
the high-level Formatter or Rules APIs.

5HWXUQ�9DOXH

If the OpenDbmsSession() call is successful, returns a currently open
DbmsSession; NULL if the session object could not be allocated.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

SessionName const char*
const

Input Identifies the session tag name in
the configuration file used. The tag
name is the first field of a
line in the configuration file.

configFileName const char*
const

Input The configuration filename that
has the same format as the
SQLSVSES DD-name.

DbmsType int Input Identifies the type of database to
use. Supported data types are
defined in dbtypes.h.
18 MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs
It is the application programmer’s responsibility to make sure the session
state is accessible using the Ok() function. Ok() should return 1 if the session
state is operational.

([DPSOH

include dbtypes.h
DbmsSession *session = OpenDbmsSession ("oraHub",
 "DD:CONFFILE",
 NN_DB_TYPE_MVSDB2);
 if (!session)
 // handle error

6HH�$OVR

OpenDbmsSession(SessionName, DbmsType)

OpenDbmsSession(SessionHandle, DbmsType)

OpenDbmsSession(serverName, userID, passwd, dbInstance, DbmsType)

CloseDbmsSession (DbmsSession * Session)
MQSeries Integrator Application Development Guide 19

Chapter 3
2SHQ'EPV6HVVLRQ

This overloaded version of OpenDbmsSession() enables the user to connect to
a MQSeries Integrator database using a pre-existing database server name,
user ID, password, database instance, and database type.

6\QWD[

DbmsSession* OpenDbmsSession(const char* const serverName,
 const char* const userID,
 const char* const passwd,
 const char* const dbInstance,
 int DbmsType);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

serverName const char*
const

Input Server where the MQSeries
Integrator database is resident.

userId const char*
const

Input This field is not currently used, but
must be specified. Specify xxxx as a
placeholder for this field.

passwd const char*
const

Input This field is not currently used, but
must be specified. Specify xxxx as a
placeholder for this field.

SessionHandle void * Input Database session name used by
MQSeries Integrator applications.
This can be any string as long as it is
unique.

DbmsType int Input Identifies the type of database to
use. Supported types are defined in
dbtypes.h.
20 MQSeries Integrator Application Development Guide

5HPDUNV

A call to OpenDbmsSession() is required prior to using any of the high-level,
Formatter APIs or Rules APIs.

5HWXUQ�9DOXH

Returns a session pointer for use in other MQSeries Integrator API calls;
NULL if the session object could not be allocated.

It is the application programmer’s responsibility to make sure the session
state is accessible using the Ok() function. Ok() should return 1 if the session
state is operational.

([DPSOH

...
#include "dbtypes.h"
DbmsSession *mySession;
mySession = OpenDbmsSession("Portland","xxxx","xxxx",
 "myHandle",NN_DB_TYPE_MVSDB2);
if (!mySession || !mySession->Ok())
{
.../* Database session not created or not connected */
}
.../* Use for Rules or Formatter */

6HH�$OVR

OpenDbmsSession(SessionName, DbmsType)

OpenDbmsSession(SessionHandle, DbmsType)

OpenDbmsSession(SessionName, configFileName, DbmsType)

CloseDbmsSession (DbmsSession * Session)
MQSeries Integrator Application Development Guide 21

Chapter 3
&ORVH'EPV6HVVLRQ

CloseDbmsSession() cleans up a MQSeries Integrator session and releases any
residual storage that may have been allocated by MQSeries Integrator during
execution. Once a session is closed, use OpenDbmsSession() to establish
another DBMS session.

6\QWD[

void CloseDbmsSession(DbmsSession* Session);

3DUDPHWHUV

5HPDUNV

CloseDbmsSession() should be the last call after all MQSeries Integrator
processing is complete.

5HWXUQ�9DOXH

None. There are no error-handling functions for CloseDbmsSession().

([DPSOH

#include "dbtypes.h"
DbmsSession *mySession;
mySession = OpenDbmsSession(...)
... // All work on open session mySession is complete

CloseDbmsSession(mySession);

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

Session DbmsSession* Input Pointer to a currently open
DbmsSession. Session must have been
allocated using one of the
OpenDbmsSession() methods.
22 MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs
6HH�$OVR

OpenDbmsSession(SessionName, DbmsType)

OpenDbmsSession(SessionHandle, DbmsType)

OpenDbmsSession(SessionName, configFileName, DbmsType)

OpenDbmsSession(serverName, userID, passwd, dbInstance, DbmsType)
MQSeries Integrator Application Development Guide 23

Chapter 3
'EPV7\SH

Identifies the database type of DbmsSession object.

6\QWD[

int DbmsType();

3DUDPHWHUV

None

5HWXUQ�9DOXH

The DBMS type of DbmsSession is returned. Based on the DBMS you are
using, the NN_DB_TYPE macro is set accordingly and provides the
appropriate value. Complete definitions of the DBMS types is located in
dbtypes.h. The dbtypes.h file must be included in the header file.

If you are using platform-specific or database-specific sections of code, you
must add compiler flags at compile time.

'DWDEDVH�6HVVLRQ�7\SHV

5HWXUQ�9DOXH 9DOXH 'HVFULSWLRQ &RPSLOHU�
)ODJ

NN_DB_TYPE_SYB_CT 1 Sybase ctlib -Dsybase

NN_DB_TYPE_SYB_DB 2 Sybase dblib -Dsybase

NN_DB_TYPE_MSSQL 4 Microsoft SQLServer -Dmssql

NN_DB_TYPE_DB2 5 IBM DB2 ODBC CLI -Dodbc

NN_DB_TYPE_ODBC 6 ODBC -Dodbc

NN_DB_TYPE_MVSDB2 6 same value as ODBC in
MQSeries Integrator 1.1

-Dmvs

NN_DB_TYPE_MQSERIES 7 IBM MQSeries -Dmqseries

NN_DB_TYPE_ORA7 8 Oracle 7.3.X -Doracle
24 MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs
([DPSOH

...
if (mySession->DbmsType() == NN_DB_TYPE_MVSDB2)
{
 myHandle = (DBPROCESS *)mySession->Handle();
} ...

6HH�$OVR

DbmsSession::Handle ()

DbmsSession (SessionName, DbmsType)

DbmsSession (sessionName, configFileName, DbmsType)

DbmsSession (serverName, UserID, passwd, dbInstance, DbmsType)

OpenDbmsSession (sessionHandle, DbmsType)

NN_DB_TYPE_ORA8 9 Oracle 8.0.X -Doracle

5HWXUQ�9DOXH 9DOXH 'HVFULSWLRQ &RPSLOHU�
)ODJ
MQSeries Integrator Application Development Guide 25

Chapter 3
26 MQSeries Integrator Application Development Guide

&KDSWHU��

EXLOG0HVVDJH

The buildMessage routine builds messages with an MQSeries Integrator
header and initializes the associated message descriptor. After calling
buildMessage, the application can call MQPUT with the message descriptor
and the message buffer supplied by buildMessage.

)XQFWLRQ�'HFODUDWLRQ�IRU�EXLOG0HVVDJH

int buildMessage(MQMD* md,
 long dataLength,
 char* data,
 char *dataFormat
 int *bufferLength,
 char *buffer,
 char *applicationGroup,
 char *messageType,
 int shutdown,
 int reload)

3DUDPHWHUV

1DPH 'HVFULSWLRQ

md Pointer to an MQSeries message descriptor allocated by the
calling application.

dataLength Length of the application data.

data Pointer to the application data.

dataFormat The format of the data contained in the buffer pointed to by
the data parameter.

bufferLength The size of the buffer.
MQSeries Integrator Application Development Guide 27

Chapter 4
([DPSOH�&DOOV�WR�EXLOG0HVVDJH

To build a message with application group “TestApp” and message type
“TestMsgType”, call the following buildMessage routine:

buildMessage(&md, dataLength, data, "MQSTR", &bufferLength,
 buffer, "TestApp", "TestMsgType", 0 , 0);

To build a SHUTDOWN message, call the following routine:

buildMessage(&md, 0, NULL, NULL, 0, NULL, NULL, NULL, 1, 0);

To build a RELOAD message to reload the TestApp/TestMsgType rule set,
call the following routine:

buildMessage(&md, 0, NULL, NULL, 0, NULL, "TestApp",
 "TestMsgType", 0, 1);

buffer The pointer to the memory where buildMessage puts the
MQSeries Integrator message.

applicationGroup The application group to associate with the message. This
parameter should be set to NULL when building
SHUTDOWN messages.

messageType The message type to associate with the message. This
parameter should be set to NULL when building
SHUTDOWN messages.

shutdown Set to 1 for SHUTDOWN messages; 0 otherwise.

reload Set to 1 for RELOAD messages; 0 otherwise.

1DPH 'HVFULSWLRQ
28 MQSeries Integrator Application Development Guide

buildMessage
6RXUFH�&RGH�IRU�EXLOG0HVVDJH
#include "MQSIrfheader.h"
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int buildMessage(MQMD* md, long dataLength, char* data,
 char *dataFormat, int *bufferLength, char *buffer,
 char *applicationGroup, char *messageType,
 int shutdown, int reload)
{
 char optionBuffer[1024];
 int outputCursor = 0;
 int optionBufferLength = 0;
 MQMD tmpMd = {MQMD_DEFAULT};
 MQRFH header = {MQRFH_DEFAULT};

 memcpy(md, &tmpMd, sizeof(MQMD));
 memset (optionBuffer, 0, sizeof(optionBuffer));

 /*Construct the Option Buffer*/
 if (applicationGroup != NULL)
 {
 strcat(optionBuffer, "OPT_APP_GRP");
 strcat(optionBuffer, " ");
 strcat(optionBuffer, applicationGroup);
 strcat(optionBuffer, " ");
 }

 if (messageType != NULL)
 {
 strcat(optionBuffer, "OPT_MSG_TYPE");
 strcat(optionBuffer, " ");
 strcat(optionBuffer, messageType);
 strcat(optionBuffer, " ");
 }

 if (shutdown > 0)
MQSeries Integrator Application Development Guide 29

Chapter 4
 {
 strcat(optionBuffer, "OPT_SHUTDOWN");
 strcat(optionBuffer, " ");
 strcat(optionBuffer, "SHUTDOWN");
 strcat(optionBuffer, " ");
 }

 if (reload > 0)
 {
 strcat(optionBuffer, "OPT_RELOAD_RULE_SET");
 strcat(optionBuffer, " ");
 strcat(optionBuffer, "TRUE");
 strcat(optionBuffer, " ");
 }

 if (strlen(optionBuffer) > 0)
 {
 /*Remove Trailing Blank*/
 optionBufferLength = strlen(optionBuffer) - 1;
 }
 else
 {
 optionBufferLength = strlen(optionBuffer);
 }

 /*Construct the MQRFH structure*/
 header.StrucLength = sizeof(MQRFH) +
 optionBufferLength;

 if (dataFormat != NULL)
 {
 strncpy(header.Format, dataFormat,
 sizeof(header.Format));
 }

/*Make sure there is enough room in the buffer to hold*/
/*the header, options and data*/
if (*bufferLength <
 (sizeof(MQRFH) + optionBufferLength + dataLength))
{

30 MQSeries Integrator Application Development Guide

buildMessage
 return (0);
}

/*Transfer header, options, and data to the message */
/* buffer */
memcpy(buffer + outputCursor, &header, sizeof(MQRFH));
outputCursor += sizeof(MQRFH);
memcpy(buffer + outputCursor, optionBuffer,
 optionBufferLength);
outputCursor += optionBufferLength;
if (data != NULL)
{
 memcpy(buffer + outputCursor, data, dataLength);
 outputCursor += dataLength;
}
else
 {
 return(0);
 }

/*Return the size of the header + options + data*/
*bufferLength = outputCursor;

/*Set the message descriptor format field */
/*to indicate that an MQIntegrator header is present */
/*in the message buffer. */
strncpy(md->Format, "MQHRF ", sizeof(md->Format));

return(1);
}

MQSeries Integrator Application Development Guide 31

Chapter 4
6DPSOH�$SSOLFDWLRQ�8VLQJ�
EXLOG0HVVDJH

The following source code is from the AMQSPUT0 MQSeries sample
application and is modified to use the buildMessage routine. The program
functions the same as AMQSPUT0, except it prepends an MQSeries
Integrator header to each message that is sends. The program assigns the
application group TestApp and the message type TestMsg to each message
that it puts.

 /***/
 /* */
 /* Program name: AMQSPUT0 */
 /* */
 /* Description: Sample C program that puts messages to */
 /* a message queue (example using MQPUT) */
 /* */
 /* Statement: Licensed Materials - Property of IBM */
 /* */
 /* 84H2000, 5765-B73 */
 /* 84H2001, 6539-B42 */
 /* 84H2002, 5765-B74 */
 /* 84H2003, 5765-B75 */
 /* 84H2004, 6539-B43 */
 /* (C) Copyright IBM Corp. 1994, 1997 */
 /* */
 /***/
 /* */
 /* Function: */
 /* */
 /* */
 /* AMQSPUT0 is a sample C program to put messages on a message */
 /* queue, and is an example of the use of MQPUT. */
 /* */
 /* -- messages are sent to the queue named by the parameter */
 /* */
 /* -- gets lines from StdIn, and adds each to target */
 /* queue, taking each line of text as the content */
32 MQSeries Integrator Application Development Guide

 /* of a datagram message; the sample stops when a null */
 /* line (or EOF) is read. */
 /* New-line characters are removed. */
 /* If a line is longer than 99 characters it is broken up */
 /* into 99-character pieces. Each piece becomes the */
 /* content of a datagram message. */
 /* If the length of a line is a multiple of 99 plus 1, for */
 /* example 199, the last piece will only contain a new-line*/
 /* character so will terminate the input. */
 /* */
 /* -- writes a message for each MQI reason other than */
 /* MQRC_NONE; stops if there is a MQI completion code */
 /* of MQCC_FAILED */
 /* */
 /* Program logic: */
 /* MQOPEN target queue for OUTPUT */
 /* while end of input file not reached, */
 /* . read next line of text */
 /* . MQPUT datagram message with text line as data */
 /* MQCLOSE target queue */
 /* */
 /* */
 /***/
 /* */
 /* AMQSPUT0 has 2 parameters */
 /* - the name of the target queue (required) */
 /* - queue manager name (optional) */
 /* */
 /***/
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 /* includes for MQI */
 #include <cmqc.h>
 int main(int argc, char **argv)
 {
 /* Declare file and character for sample input */
 FILE *fp;
 /* Declare MQI structures needed */
 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQSeries Integrator Application Development Guide 33

Chapter 4
 /** note, sample uses defaults where it can **/
 MQHCONN Hcon; /* connection handle */
 MQHOBJ Hobj; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code for MQCONN */
 MQLONG buflen; /* buffer length */
 char buffer[100]; /* message buffer */
 char QMName[50]; /* queue manager name */

 /* buffer to hold MQIntegrator Header and Message data */
 char newBuffer[1024];
 /* size of new buffer */
 int newBufferLength = 1024;
 printf("Sample AMQSPUT0 start\n");
 if (argc < 2)
 {
 printf("Required parameter missing - queue name\n");
 exit(99);
 }

 /***/
 /* */
 /* Connect to queue manager */
 /* */
 /***/
 QMName[0] = 0; /* default */
 if (argc > 2)
 strcpy(QMName, argv[2]);
 MQCONN(QMName, /* queue manager */
 &Hcon, /* connection handle */
 &CompCode, /* completion code */
 &CReason); /* reason code */
 /* report reason and stop if it failed */
 if (CompCode == MQCC_FAILED)
 {
 printf("MQCONN ended with reason code %ld\n", CReason);
 exit((int)CReason);
 }
34 MQSeries Integrator Application Development Guide

buildMessage
 /***/
 /* */
 /* Use parameter as the name of the target queue */
 /* */
 /***/
 strncpy(od.ObjectName, argv[1], (size_t)MQ_Q_NAME_LENGTH);
 printf("target queue is %s\n", od.ObjectName);
 /***/
 /* */
 /* Open the target message queue for output */
 /* */
 /***/
 O_options = MQOO_OUTPUT /* open queue for output */
 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
 MQOPEN(Hcon, /* connection handle */
 &od, /* object descriptor for queue */
 O_options, /* open options */
 &Hobj, /* object handle */
 &OpenCode, /* MQOPEN completion code */
 &Reason); /* reason code */
 /* report reason, if any; stop if failed */
 if (Reason != MQRC_NONE)
 {
 printf("MQOPEN ended with reason code %ld\n", Reason);
 }
 if (OpenCode == MQCC_FAILED)
 {
 printf("unable to open queue for output\n");
 }
 /***/
 /* */
 /* Read lines from the file and put them to the message queue */
 /* Loop until null line or end of file, or there is a failure */
 /* */
 /***/
 CompCode = OpenCode; /* use MQOPEN result for initial test*/
 fp = stdin;
 memcpy(md.Format, /* character string format */
 MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);
 while (CompCode != MQCC_FAILED)
 {
 if (fgets(buffer, sizeof(buffer), fp) != NULL)
MQSeries Integrator Application Development Guide 35

Chapter 4
 {
 buflen = strlen(buffer); /* length without null */
 if (buffer[buflen-1] == ’\n’) /* last char is a new-line */
 {
 buffer[buflen-1] = ’\0’; /* replace new-line with null */
 --buflen; /* reduce buffer length */
 }
 }
 else buflen = 0; /* treat EOF same as null line */
 /***/
 /* */
 /* Put each buffer to the message queue */
 /* */
 /***/
 if (buflen > 0)
 {
 memcpy(md.MsgId, /* reset MsgId to get a new one */
 MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, /* reset CorrelId to get a new one*/
 MQCI_NONE, sizeof(md.CorrelId));

 buildMessage(&md, buflen, buffer, "MQSTR", &newBufferLength,
 newBuffer, "TestApp", "TestMsg",0, 0);
 MQPUT(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &pmo, /* default options (datagram) */
 newBufferLength, /* buffer length with MQIntegrator*/
 /* header */
 newBuffer, /* message buffer with */
 /* MQIntegrator header */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /* report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQPUT ended with reason code %ld\n", Reason);
 }
 }
 else /* satisfy end condition when empty line is read */
 CompCode = MQCC_FAILED;
 }
36 MQSeries Integrator Application Development Guide

 /***/
 /* */
 /* Close the target queue (if it was opened) */
 /* */
 /***/
 if (OpenCode != MQCC_FAILED)
 {
 C_options = 0; /* no close options */
 MQCLOSE(Hcon, /* connection handle */
 &Hobj, /* object handle */
 C_options,
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /* report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQCLOSE ended with reason code %ld\n", Reason);
 }
 }
 /***/
 /* */
 /* Disconnect from MQM if not already connected */
 /* */
 /***/
 if (CReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&Hcon, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /* report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQDISC ended with reason code %ld\n", Reason);
 }
 }
 /***/
 /* */
 /* END OF AMQSPUT0 */
 /* */
 /***/
 printf("Sample AMQSPUT0 end\n");

 return(0); }
MQSeries Integrator Application Development Guide 37

Chapter 4
38 MQSeries Integrator Application Development Guide

$SSHQGL[�$

1RWLFHV

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
MQSeries Integrator Application Development Guide 39

Appendix A
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
40 MQSeries Integrator Application Development Guide

Notices
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

7UDGHPDUNV�DQG�6HUYLFH�0DUNV

The following, which appear in this book or other MQSeries Integrator books,
are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

MQSeries
OS/390
AIX
DB2
IBM

NEONFormatter and NEONRules are trademarks of New Era of Networks, Inc.
in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service
marks of others.
MQSeries Integrator Application Development Guide 41

Appendix A
42 MQSeries Integrator Application Development Guide

,QGH[

$
accessors 24
application programming 7

%
buildMessage 27

samples application 32
source code 29

&
CloseDbmsSession 11, 22
components

MQIntegrator Rules daemon 2

'
Database Abstaction Layer APIs 11
Database Abstraction Layer

DbmsSession Factory functions 12
header files 12

DbmsSession Factory functions 12
DbmsType 24
dbtypes.h 24
documentation set 3

)
Formatter 2

+
header files 12
headers 8

MQRFH structure 9
option buffer 10

0
message header 8

MQRFH structure 9
option buffer 10

messages 8
MQIntegrator Rules daemon 2
MQRFH structure 9
MQSeries Integrator Rules daemon 7
MQSeries messages 8

1
NEONFormatter 2
NEONRules 2

2
OK function 13
Ok function 11
OpenDbmsSession 11, 14, 16, 18, 20
option buffer 10

3
programming applications 7

5
Rules 2
rules processing daemon 7

6
sample application for buildMessage 32
ses.h 12
source code for buildMessage 29
sqlapi.h 12
MQSeries Integrator Application Development Guide 43

44 MQSeries Integrator Application Development Guide

Sending your comments to IBM
MQSeries Integrator
Application Development Guide
SC34-5508-02

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.
Please limit your comments to the information in this book only and the way
in which the information is presented.

To request additional publications or make comments about the functions of
IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

n By mail, use the Readers’ Comment Form

n By fax:

– From outside the U.K., use your international access code
followed by 44 1962 870229

– From within the U.K., use 01962 870229

Electronically, use the appropriate network ID:

n IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

n IBMLink: HURSLEY(IDRCF)

n Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

n The publication number and title

n The page number or topic number to which your comment applies

n Your name/address/telephone number/fax number/network ID

Readers’ Comments
MQSeries Integrator
Application Development Guide
SC34-5508-02

Use this form to tell us what you think about this manual. If you have found
errors in it, or if you want to express your opinion about it (such as
organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer. This form is provided
for comments about the information in this manual and the way it is
presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate without
incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or organization

Telephone Email

MQSeries Integrator Application Development Guide SC34-5508-02 IBM

IBM

Printed in U.S.A

SC34-5508-02

	Contents
	Introduction
	MQSeries Integrator Overview
	Formatter
	Rules
	MQSeries Integrator Rules Daemon
	MQSeries

	Product Documentation Set
	Before You Contact Technical Support
	Year 2000 Readiness Disclosure

	Application Programming
	Rules Processing Daemon
	Messages
	Message Header

	Database Abstraction Layer APIs
	APIs and Header Files

	buildMessage
	Source Code for buildMessage
	Sample Application Using buildMessage

	Notices
	Trademarks and Service Marks

