
IBM MQSeries for UnixWare

User’s Guide  

Version 1 Release 4.1

SC33-1379-03

IBM



Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on 
page xi.

Fourth Edition (January 1997)

This edition applies to Version 1 Release 4.1 of IBM MQSeries for UnixWare (part number 63H9503, program number 5697-265) and to 
all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the 
level of the product.

In Europe, Middle East and Africa, use the program number to order the product. Otherwise, order the product by part number.

This book is based on Version 1 Release 4, order number SC33-1379-02. Changes from that edition are marked by vertical lines to the 
left of the text.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the 
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods described 
are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development
Mail Point 095, Hursley Park, Winchester, Hampshire, SO21 2JN, United Kingdom

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes 
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions 
set forth in GSA ADP Schedule Contract with IBM Corp.



© Copyright IBM Corp. 1993, 1997 iii

   

Contents

Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

About this book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Who should use this book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii
What’s in this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii
How to use this book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiv
Typographical conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiv
Where to find more information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

MQSeries publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1. Product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
 Version 1 MQSeries System elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Queue manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Software components of the MQSeries System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Message queuing interface (MQI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Message channel agent (MCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Message channel agent maintenance daemon (MCAMD)  . . . . . . . . . . . . . . . . . . . . . . . . .  2
Message queue management (MQM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Sample programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

The MQSeries System’s distributed architecture on UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Chapter 2. Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
Prerequisites for normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Combined file/communications server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
File server only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
Communications server only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
MQI application only  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
Languages for application development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Prerequisites for NFS operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Contents of distribution media  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
MQSeries System installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
Post-Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Verifying the MQSeries System installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
MQSeries System files and directories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Configuring MQSeries System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Service history file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Chapter 3. Planning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
A planning framework for distributed applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Tasks and responsibilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
System designer tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

Traditional analysis and design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Extending to a distributed design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Mapping the design to the physical world  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

System / Network administrator tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Map the logical design to the physical network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Ensure that hardware and software are in place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Establish the transport layer of the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

MQSeries System administrator tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25



        

iv  IBM MQSeries for UnixWare User’s Guide

Application developer tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Including legacy applications in distributed designs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Planning considerations for UNIX systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Chapter 4. Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
 MQSeries System configuration elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Queue names and message routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Message queue manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Local message queues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Dead letter queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Remote queue definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Aliases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
Transmission queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
Communications channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

MQSeries System message routing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Basic message routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
The MQSeries System routing table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
Alias queues, remote queues, and routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
Other alias types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

Recommended naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Configuration capacities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
System disk space requirements for the MQSeries System . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Configuration worksheets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Configuration examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

Simple network - minimum configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Simple network - improved configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Simple network - improved configuration #2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Complex network - recommended configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

IBM MQSeries Version 1 UNIX product configuration guidelines . . . . . . . . . . . . . . . . . . . . . .  53
Channel configuration guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Queue manager configuration guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56
Queue configuration guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56
Number of channels per MCA guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Multiple MCA guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Kernel configuration guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

Example configuration:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

Chapter 5. System operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59
MQM operator interface - main menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

Operator action keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60
Configuration functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

Modify queue manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
Display queue manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
Create queue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64
Modify queue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Delete queue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74
Display queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
Create channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
Modify channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85
Delete channel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Display channel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

Operation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
Enable/Disable channel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90
Start/stop channel trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91
Terminate MCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
Reset message sequence number (MSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94
Purge deleted messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

Monitoring functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
Monitor queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
Monitor channel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98



Contents v

  

Browse function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
The MCAMD process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
Starting the MCA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104
MCA shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
Viewing error logs with OS utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

Chapter 6. Application programming interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
Working with the MQI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

MQI calls & sequence of operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
Sample source code provided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108
Compiling your application program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108
Applications not written in C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108

Application design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
The hidden network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Syncpoint considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

MQI call reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
MQCONN - Connect queue manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
MQOPEN - open message queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
MQGET - get message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
MQPUT - put message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
MQCLOSE - close object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
MQDISC - disconnect queue manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
MQPUT1 - put one message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
MQINQ - inquire about object attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

MQI data types and structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
MQOD - MQ object descriptor structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131
MQMD - MQ message descriptor structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
MQPMO - MQPut message options structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
MQGMO - MQGet message options structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
MQDLH - dead-letter header structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

MQI return codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144
MQI completion codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144
MQI reason codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144

Appendix A. UnixWare error messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157
MQSeries System internal messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

Understanding MQSeries System internal messages . . . . . . . . . . . . . . . . . . . . . . . . . . .  157
Internal MQSeries System function names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158
MQSeries System messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159

MCA error messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160
Understanding MCA error messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160
Internal MCA function names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161
MCA messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
Transport layer protocol for LU 6.2 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
Transport layer protocol for LU 6.2 CPI-C messages  . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
Internal transport layer protocol for TCP/IP functions  . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
Internal transport layer protocol for TCP/IP messages  . . . . . . . . . . . . . . . . . . . . . . . . . .  165
Internal MCA daemon functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
Internal MCA daemon messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166

Appendix B. Sample source listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
zmqecho.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
zmqread.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170
zmqwrite.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172
 cmqc.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174
 mqconst.h  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177
 mqtypes.h  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181



        

vi  IBM MQSeries for UnixWare User’s Guide

Appendix C. C programming language examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Language considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Elementary data types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187
Structure data types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187

Appendix D. Configuration worksheets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189
System list worksheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190
Application list worksheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
Application look at queues -- worksheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192
System look at queues -- worksheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193
Channel list -- worksheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
MQSeries System configuration (routing table) -- worksheet  . . . . . . . . . . . . . . . . . . . . . . . .  195

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201



© Copyright IBM Corp. 1993, 1997 vii

   

Figures

Figure 1. Queue manager definition screen.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   11
Figure 2. Main menu    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   11
Figure 3. Configuration menu  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   12
Figure 4. Define queue name  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   12
Figure 5. Create local queue   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   13
Figure 6. Display local queue  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   13
Figure 7. Monitor menu    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   14
Figure 8. Monitor local queues.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   14
Figure 9. Messages on monitor local queue    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   15
Figure 10. Reading messages from local queue with zmqread .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   15
Figure 11. No messages on monitor local queue  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   16
Figure 12. Tasks and responsibilities.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   22
Figure 13. Typical data flow diagram .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   23
Figure 14. Process C queue isolation    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   23
Figure 15. No messaging and queuing  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   26
Figure 16. Messaging and queuing   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   26
Figure 17. Queue enabled version of legacy application   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   27
Figure 18. Multiple message queue managers on the same LAN .   .   .   .   .   .   .   .   .   .   .   .   .   .   31
Figure 19. System administration relationships .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   59
Figure 20. Main menu    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   60
Figure 21. Configuration menu  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   61
Figure 22. Queue manager    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   61
Figure 23. Display queue manager    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   63
Figure 24. Define queues  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   64
Figure 25. Create local queue   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   65
Figure 26. Create remote queue    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   66
Figure 27. Create alias queue   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   67
Figure 28. Create alias queue manager.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   68
Figure 29. Create alias reply queue   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   69
Figure 30. Select queue to modify .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   70
Figure 31. Modify local queue    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   70
Figure 32. Modify remote queue    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   71
Figure 33. Modify alias queue    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   72
Figure 34. Modify alias queue manager .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   72
Figure 35. Modify alias reply queue   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   73
Figure 36. Delete queue.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   74
Figure 37. Delete local queue    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   74
Figure 38. Delete remote queue    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   75
Figure 39. Delete alias queue    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   76
Figure 40. Delete alias queue manager .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   76
Figure 41. Delete alias reply queue   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   77
Figure 42. Select queue to display.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   78
Figure 43. Display local queue  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   78
Figure 44. Display remote queue   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   79
Figure 45. Display alias queue  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   79
Figure 46. Display alias queue manager   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   80
Figure 47. Display alias reply queue  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   80
Figure 48. Create channel .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   81
Figure 49. Create channel - LU 6.2 parameters (SENDER channel).   .   .   .   .   .   .   .   .   .   .   .   .   83
Figure 50. Create channel (TCP/IP parameters)   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   84
Figure 51. Select channel to modify   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   85
Figure 52. Modify channel  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   85
Figure 53. Modify channel - LU 6.2 parameters (SENDER channel) .   .   .   .   .   .   .   .   .   .   .   .   .   86
Figure 54. Modify channel (TCP/IP parameters)   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   86
Figure 55. Select channel to delete   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   87
Figure 56. Delete channel  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   87
Figure 57. Select channel to display  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   88



        

viii  IBM MQSeries for UnixWare User’s Guide

Figure 58. Display channel .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   88
Figure 59. Display channel - LU 6.2 parameters (SENDER channel).   .   .   .   .   .   .   .   .   .   .   .   .   89
Figure 60. Display channel (TCP/IP parameters)   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   89
Figure 61. Operation menu .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   90
Figure 62. Select channel to enable/disable   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   90
Figure 63. Enable/disable channel .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   91
Figure 64. Start/stop trace  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   92
Figure 65. Start/stop channel trace.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   92
Figure 66. Select channel to terminate MCA  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   93
Figure 67. Terminate MCA .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   93
Figure 68. Select channel to modify MSN  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   94
Figure 69. Reset MSN    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   94
Figure 70. Select queue to purge   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   95
Figure 71. Monitor menu.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   96
Figure 72. Monitor local queues .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   97
Figure 73. Monitor channels   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   98
Figure 74. Select queue to browse .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 101
Figure 75. Browse queue record.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 101



© Copyright IBM Corp. 1993, 1997 ix

   

Tables

Table 1. Important files and directories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Table 2. Application and queue name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Table 3. etc/services format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
Table 4. etc/services example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Table 5. Routing table format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
Table 6. Local routing table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
Table 7. Remote server routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Table 8. Additional system routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Table 9. Remote server’s new routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Table 10. Minimal Boston routing table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Table 11. Minimal Chicago routing table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Table 12. Improved Boston routing table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Table 13. Improved Boston routing table using ALIAS_M  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Table 14. Boston host routing table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
Table 15. Chicago host routing table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
Table 16. New York host routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52
Table 17. State LAN routing table (identical at each site except for state name) . . . . . . . . . . . . . . . .  52
Table 18. Channel status descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Table 19. MCAMD options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
Table 20. Valid open options for each queue type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
Table 21. Initial values of fields in MQDLH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
Table 22. Header file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Table 23. Elementary data types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187



        

x IBM MQSeries for UnixWare User’s Guide



© Copyright IBM Corp. 1993, 1997 xi

   

Notices 

The following paragraph does not apply to any country where such provisions are 
inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION 
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING 
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, 
therefore this statement may not apply to you.

References in this publication to IBM products, programs or services do not imply that IBM 
intends to make these available in all countries in which IBM operates. Any reference to an IBM 
product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that 
does not infringe any of the intellectual property rights of IBM may be used instead of the IBM 
product, program, or service. The evaluation and verification of operation in conjunction with 
other products, except those expressly designated by IBM, are the responsibility of the user. 

Any additional information necessary to achieve interoperability of the programs described in 
this book with other programs is available from:

The MQSeries Manager
Mail Point 161
IBM United Kingdom Laboratories 
Hursley Park
Winchester
Hants
SO21 2JN
U.K.

IBM may have patents or pending patent applications covering subject matter in this document. 
The furnishing of this document does not give you any license to these patents. You can send 
license inquiries, in writing to The IBM Director of Licensing, IBM Corporation, 
500 Columbus Ave, Thornwood, New York, 10594, U.S.A.

Trademarks 
The following terms are trademarks of the IBM Corporation in the United States or other 
countries or both:

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of 
Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation 
under license.

UNIX is a registered trademark in the United States and other countries licensed 
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), 
may be trademarks or service marks of others. 

AIX IBM MQ

MQSeries MVS/ESA OS/2

OS/400 VSE



        

xii  IBM MQSeries for UnixWare User’s Guide



© Copyright IBM Corp. 1993, 1997 xiii

   

About this book

The purpose of this User’s Guide is to provide all information necessary for a user to install IBM 
MQSeries for UnixWare software, as well as how to fully use its features to provide the 
communications framework for distributed applications based on the IBM’s Message Queue 
Interface (MQI).

To accomplish this goal, this guide describes the IBM MQSeries for UnixWare software—its 
installation, configuration, and operations—and the programming interface to be used by the 
developers of applications.

Throughout this document, IBM MQSeries for UnixWare is referred to simply as MQSeries 
System.

Who should use this book

The introductory product description sections of this guide will be of interest to all users. Beyond 
that, different portions of this guide are intended for these different audiences:

• System or Network Administrators responsible for installing, operating and maintaining the 
MQSeries System software will be primarily interested in Chapter 2, “Installation” on page 5 
through Chapter 5, “System operation” on page 59.

• Distributed Application Designers will be interested in Chapter 3, “Planning” on page 21 
through Chapter 6, “Application programming interface” on page 107.

• Application Developers will be primarily interested in Chapter 6, “Application programming 
interface” on page 107.

What’s in this book

The guide provides information about the MQSeries System software as implemented for UNIX 
systems.



        

xiv  IBM MQSeries for UnixWare User’s Guide

How to use this book

This User’s Guide consists of six chapters and four appendices organized as follows:

• Chapter 1, “Product description” on page 1 - Describes the MQSeries System and services, 
provides an overview of the components and architecture, and provides an application 
example.

• Chapter 2, “Installation” on page 5 - Highlights the system requirements for using the 
MQSeries System software and provides a detailed procedure for installing the software.

• Chapter 3, “Planning” on page 21 - Provides an overview of the considerations for 
implementing a distributed application using the MQSeries System.

• Chapter 4, “Configuration” on page 29 - Covers the details for creating the system services 
to support your application.

• Chapter 5, “System operation” on page 59 - Provides procedures for activating system 
services and troubleshooting system problems.

• Chapter 6, “Application programming interface” on page 107 - Provides a reference of the 
Application Programming Interface (API) calls.

• Appendix A, “UnixWare error messages” on page 157 - Lists the full set of error messages 
built into the MQSeries System software.

• Appendix B, “Sample source listings” on page 167 - Illustrates the use of each of the MQI 
calls.

• Appendix C, “C programming language examples” on page 183 - Provides examples of 
how to invoke message-queuing calls.

• Appendix D, “Configuration worksheets” on page 189 - Contains blank worksheets to aid in 
the design and planning of a distributed application using the MQSeries System.

Typographical conventions
boldface

Identifies an item in an MQSeries System window. The item could be a keyword, an action, 
a field label, or a pushbutton. Whenever one of the steps in a procedure includes a word in 
boldface, look for an item in the window that is labeled with that word.

bold italics
Are used for emphasis. Take extra care  wherever you see bold italics!

italics
Identify one of the following: 

• New terms that describe MQSeries System components or concepts. A term printed in 
italics is usually followed by its definition.

• Parameters for which you supply the actual names or values.

• References to other books. 

<angle brackets> 
Identify a key on the keyboard. The instruction “press <Enter>” means “Find the key 
labeled ‘Enter’ and press it.” If the instruction identifies two (or more) keys, hold down the 
first key while you press the second key.

monospace 
Identifies one of the following:

• Text you must type as shown, ensuring you type the uppercase and lowercase 
characters exactly.

• Names of files and directories (path names).



About this book xv

  

Where to find more information

MQSeries publications

Evaluating products

IBM MQSeries Brochure, G511-1908

IBM MQSeries: An Introduction to Messaging and Queuing, GC33-0805

IBM MQSeries: Concepts and Architecture, GC33-1141

IBM MQSeries Message Queue Interface Technical Reference, SC33-0850

Planning

IBM MQSeries Planning Guide, GC33-1349

IBM MQSeries for MVS/ESA Version 1 Release 1.4 Licensed Program Specifications, 
GC33-1350

IBM MQSeries for OS/400 Version 3 Release 1 (and later) Licensed Program Specifications, 
GC33-1360 (softcopy only)

Administration

IBM MQSeries Programmable System Management, SC33-1482

IBM MQSeries Command Reference, SC33-1369

IBM MQSeries for AIX Version 2 Release 2.1 System Management Guide, SC33-1373

IBM MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide, SC33-1642

IBM MQSeries for HP-UX Version 2 Release 2.1 System Management Guide, GC33-1633

IBM MQSeries for MVS/ESA Version 1 Release 1.4 Program Directory, GC33-1626

IBM MQSeries for MVS/ESA Version 1 Release 1.4 System Management Guide, SC33-0806

IBM MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

IBM MQSeries for OS/400 Version 3 Release 1 (and later) Administration Guide, SC33-1361

IBM MQSeries for OS/400 Version 3 Release 6 Programmable Command Formats, SC33-1228

IBM MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

IBM MQSeries for Sun Solaris Version 2.2 System Management Guide, GC33-1800

IBM MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide, GC33-1768

IBM MQSeries for Windows NT Version 2 Release 0 System Management Guide, SC33-1643



        

xvi  IBM MQSeries for UnixWare User’s Guide

Application programming

IBM MQSeries Application Programming Guide, SC33-0807

IBM MQSeries Application Programming Reference, SC33-1673

IBM MQSeries Application Programming Summary, SX33-6095

IBM MQSeries for OS/400 Version 3 Release 1 (and later) Application Programming Reference 
(RPG), SC33-1362

IBM MQSeries for OS/400 Version 3 Release 1 (and Release 6) Application Programming 
Reference (C and COBOL), SC33-1363

Problem determination

IBM MQSeries for MVS/ESA Version 1 Release 1.4 Problem Determination Guide, SC33-0808

IBM MQSeries for MVS/ESA Version 1 Release 1.4 Messages and Codes, SC33-0819

IBM MQSeries Version 1 Products for UNIX Operating Systems Messages and Codes, 
SC33-1754

Special topics

IBM MQSeries Distributed Queuing Guide, SC33-1139

IBM MQSeries Clients, GC33-1632

Other MQSeries publications
For information about other MQSeries platforms, see the following publications:

IBM MQSeries for AT&T GIS UNIX User’s Guide, SC33-1437

IBM MQSeries for Digital VMS VAX User’s Guide, SC33-1144

IBM MQSeries for HP-UX User’s Guide, SC33-1376

IBM MQSeries for OS/400 User’s Guide, SC33-1145

IBM MQSeries for SCO UNIX User’s Guide, SC33-1378

IBM MQSeries for SunOS User’s Guide, SC33-1377

IBM MQSeries for Sun Solaris User’s Guide, SC33-1439

IBM MQSeries for Tandem NonStop Kernel, SC33-1755

IBM MQSeries for UnixWare User’s Guide, SC33-1379

IBM MQSeries for VSE/ESA User’s Guide, SC33-1142



© Copyright IBM Corp. 1993, 1997 1

Chapter 1.  Product description 

MQSeries for UnixWare enables application programs to exchange messages with other 
MQSeries applications running on UNIX or other systems such as IBM Mainframes, VAXs**, 
Tandems**, etc.

The MQSeries System provides a set of messaging and queuing services which support data 
transfer between distributed applications. These services allow applications to communicate 
without knowledge of the lower levels of the communications network and without specific 
knowledge of the location of the other applications. The messaging and queuing services are 
accessed via an application programming interface (API) which conforms to the IBM Message 
Queuing Interface (MQI) specification.

 Version 1 MQSeries System elements

There are four key conceptual elements within the MQSeries System which must be well 
understood. They are messages, queues, queue manager, and channels. 

Messages

All data transferred by the MQSeries System is in the form of a message exchanged between 
cooperating distributed applications. Every message has two parts. The body of the message 
contains the user data supplied by an application. This user data is never touched by the 
MQSeries System.

Ancillary data commonly called a header, is added to the message by the MQSeries System to 
provide routing and other control information required for message delivery. The header is not 
normally seen by the application programs.

Messages are exchanged between applications via queues. 

Queues 

A message queue is simply a disk file used by the MQSeries System to hold messages. The 
physical management of queues is entirely hidden from the application programs. Applications 
have no access to the queues other than through the Message Queuing Interface (MQI).

Message queues are classified as either local or remote. These terms are defined from an 
application perspective. A local queue is any queue residing on the same message queuing 
system as the application. A remote queue is any queue residing on another message queuing 
system.

The special case of a local queue which is used to hold messages to be transmitted to another 
system is called a transmission queue.

An alias queue is not a true physical queue, but rather a logical naming capability which allows 
an alias queue name to be resolved to another real queue, either local or remote. This provides 
a mechanism for logical indirection which often proves a convenient method to allow application 
programs to be completely independent of the underlying message queuing definitions.

The physical management of the queues is provided by the queue manager.

Queue manager

The queue manager is responsible for providing the message queueing services used by 
applications. Applications access these services by using the MQI calls to communicate with 
the local queue manager (the queue manager on the same system as the application). It is most 
common to think of a queue manager as having a one-to-one correspondence to an MQSeries 
System installation. That is, normally there is one queue manager per system.



 

2 IBM MQSeries for UnixWare User’s Guide

Channels

A channel is a unidirectional point-to-point communications link between two MQSeries 
systems. Messages flow over a channel in one direction only. If two MQSeries systems need to 
exchange messages, then two channels are required.

For outbound channels, the MQSeries System reads messages from the associated 
transmission queue and sends them to the remote system via the communications channel. For 
inbound channels, the MQSeries System receives messages from the communication link and 
writes them to the destination local queue.

Software components of the MQSeries System

The MQSeries System system consists of the following software components:

Message queuing interface (MQI)

The Version 1 MQSeries System implementation of MQI is built around the standard C 
language function call interface. It is responsible for handling user application requests to read 
and write from the queuing system, and for arbitrating among multiple requests to the same 
queue. The MQI functions are provided in the form of an object library. Appropriate MQI 
functions are integrated into application programs that wish to use MQSeries services.

Message channel agent (MCA)

The Message Channel Agent (MCA) is an executable program which moves messages 
between machines. It implements the Message Channel Protocol (MCP). The MCP is the high 
level protocol used to transport messages between MQSeries systems. This protocol is 
implemented on top of an industry standard Transport Layer Protocol (TLP). The underlying 
TLP is not provided with the MQSeries System but is a prerequisite.

Message channel agent maintenance daemon (MCAMD)

The Message Channel Agent Maintenance Daemon (MCAMD) is a daemon process required 
by the MCA (Message Channel Agent). It runs on the same communication server as the 
MCA(s). The MCAMD provides a centralized Channel Database service allowing MCA(s) and 
the MQM interface to access and modify the Channel Database. The MCAMD must be started 
prior to running an instance of MCA or performing any channel configuration tasks.

Message queue management (MQM)

The Version 1 MQSeries System Administration and Operations functions are provided through 
a menu-driven, screen-oriented program called MQM. This program allows the system 
administrator to define, modify, and delete MQSeries queues, aliases, and channels; and to 
perform various maintenance tasks such as resetting message sequence numbers, purging 
queues, and monitoring the status of the MQSeries System.

Sample programs

Source code for three sample application programs is provided. These are simple test programs 
which will be used in verifying the system installation and which may also be referred to for 
examples of MQI calls. 



Chapter 1. Product description 3 

The MQSeries System’s distributed architecture on UNIX

On a UNIX platform, particularly one which resides on a TCP/IP network, there are three 
possible styles of operation.

First, all four programs already defined (the MCA, MCAMD, MQM and the user’s Application 
Program, incorporating the MQI) can reside on the same machine. This machine can then 
communicate with all other machines using MQSeries message queuing. These can be other 
UNIX machines, mainframes, etc.

Second, it is possible to create a network architecture where one UNIX machine acts as 
gateway to a mainframe or other systems. In this example, there may be many UNIX machines 
running several applications which use message queuing. These each would send messages to 
the gateway machine (a similar UNIX platform). The gateway machine, in turn, would send 
those messages to the mainframe or other systems. In this example, each machine has all four 
programs mentioned in the previous paragraph.

Third, it is possible to configure several machines so that the queue storage and administration 
are common to all of them. In this configuration, all but one of the machines contain only user 
application programs incorporating the MQI. These machines can be referred to as “MQI 
application only” systems, because they depend on a remote file service. For more information, 
refer to ”Multiple message queue managers on the same LAN” on page 31.

One of the machines in this configuration contains the MCA and MCAMD programs as well as 
the MQM administration programs. (It may also contain other application programs 
incorporating the MQI.) This machine can be referred to as the “comm server.”

As mentioned above, in this third configuration, the queue storage is shared between all the 
“MQI application only” systems and the comm server. This is accomplished by means of a 
distributed file system (such as NFS) which provides file storage which is addressable from 
each of the machines.

Note: We do not recommend using NFS across bridges or routers.

All of the “MQI application only” systems and the comm server in a particular configuration must 
be running the same UNIX platform (for example, all running UnixWare**). A mixture of 
UnixWare  and other UNIX platforms (such as HP-UX**) in the same “MQI application only” 
configuration is not supported. If you have a mixture of such platforms, you must configure at 
least one comm server for each platform, so that each “MQI application only” system can be 
associated with a comm server running the same platform. Messages can be exchanged 
between the comm servers using channels in the usual way.

It is strongly recommended that all NFS file storage used by your applications, including that 
used by the MQSeries System, be backed up in the usual way.

Some implementations of NFS do not support record-level locking. If the NFS system which you 
are using does not support record-level locking, you must not have more than one application 
getting messages from any one queue at the same time. To ensure that this does not happen, 
applications in such systems should never use the MQOO_INPUT_SHARED option when opening a 
queue. You should also be aware that in these systems, all MQGET, MQPUT, and MQPUT1 calls, even 
when directed at different queues, are effectively serialized, and this may have a significant 
effect on performance and throughput. With NFS systems which do  support record-level 
locking, only MQGET, MQPUT, and MQPUT1 calls to the same queue are serialized. NFS, as supplied 
with UnixWare Application Server SDK V1.1 and 2.1, does support record level locking. 

Note: An MQGET call which is waiting for a message does not hold any locks, and so does not 
prevent other calls from proceeding while it is waiting. Note also that any call which is 
unable to obtain a necessary lock will block until it can do so; in particular, an MQGET 
call does not give up if it is still blocked when the wait interval (if one was specified) 
expires.



 

4 IBM MQSeries for UnixWare User’s Guide



© Copyright IBM Corp. 1993, 1997 5

Chapter 2.  Installation

This chapter provides the installation procedure for the MQSeries System and details software 
and hardware requirements. The chapter also lists the files and directories created during 
installation, and describes the means of verifying a successful installation of the MQSeries 
System.

In the UNIX environment, the MQSeries System has a distributed architecture (described in 
Chapter 1, “Product description” on page 1). The prerequisites for a UNIX machine running the 
MQSeries System depend on the machine’s role in the Network File Services (NFS) 
environment.

Normal operation, which is not dependent upon a distributed file system, does not assume the 
use of NFS.

Prerequisites for normal operation

Combined file/communications server

Hardware and software

• Any 386 DX PC or better

– Minimum system memory = 16 MB
– Minimum system disk space = 2 MB + Size of Queues

Note: For an explanation of system disk space requirements see “System disk 
space requirements for the MQSeries System” on page 45.

• Any LAN adapter

with

• UnixWare Application Server SDK 1.1 or later 1.x

including:

– TCP/IP
Customers who wish to use UnixWare across bridges using TCP/IP and who are using 
UnixWare Application Server V1.1 or V1.1.1 or who are experiencing difficulties should 
contact their SCO** service representative for further information about the availability 
of patches: ODICOR.TAR and TOKEN.TAR.

or

• UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1

including:

– TCP/IP

For SNA connectivity

• Any 486 PC or better (including an ISA bus)

– Minimum system memory = 16 MB
– Minimum system disk space = 26.5 MB + 2 MB + Size of Queues

Note: For an explanation of system disk space requirements see “System disk 
space requirements for the MQSeries System” on page 45.

• Apertus Technologies Inc ELC Adapter (ISA)

with

For UnixWare Application Server SDK 1.1 or later 1.x:
– Express 2.04b. This product is shipped on 1/4 inch tape.

or
– Express 2.1.1. This product is shipped on 1/4 inch tape.



 

6 IBM MQSeries for UnixWare User’s Guide

For UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1:
– Express 2.1.2. This product is shipped on 1/4 inch tape.

or

• Emulex Adapter (ISA)

with

For UnixWare Application Server SDK 1.1 or later 1.x:
– Express 2.04b. This product is shipped on 1/4 inch tape.

or
– Express 2.1.1. This product is shipped on 1/4 inch tape.

For UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1:
– Express 2.1.2. This product is shipped on 1/4 inch tape.

or

• Madge Token Ring Adapter (ISA)

For UnixWare Application Server SDK 1.1 or later 1.x:

For UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1:
– Express 2.1.2 and the Madge Smart 16/4 AT PLUS card part # 52-03.

Express is shipped on 1/4 inch tape.

File server only

Hardware

• Any 386 DX PC or better

– Minimum system memory = 16 MB
– Minimum system disk space = Size of Queues

Note: For an explanation of system disk space requirements see “System disk 
space requirements for the MQSeries System” on page 45.

• Any LAN adapter

Software

• UnixWare Application Server SDK 1.1 or later 1.x

including:

– TCP/IP
Customers who wish to use UnixWare across bridges using TCP/IP and who are using 
UnixWare Application Server V1.1 or V1.1.1 or who are experiencing difficulties should 
contact their SCO service representative for further information about the availability of 
patches: ODICOR.TAR and TOKEN.TAR.

or

• UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1

including:

– TCP/IP

• Appropriate LAN software, for example, NFS to match TCP/IP

– For customers who plan to use NFS, please contact your service representative to 
obtain all available patches.

Madge Card Express Version

Madge Smart 16/4 AT card part # 52-07 Express 2.04b

or

Express 2.1.1

Madge Smart 16/4 AT PLUS card part # 52-03 Express 2.1.2



Chapter 2. Installation 7 

Communications server only

Hardware and software

• Any 386 DX PC or better

– Minimum system memory = 16 MB
– Minimum system disk space = 2 MB

Note: For an explanation of system disk space requirements see “System disk 
space requirements for the MQSeries System” on page 45.

• Any LAN adapter

with

• UnixWare Application Server SDK 1.1 or later 1.x

including:

– TCP/IP
Customers who wish to use UnixWare across bridges using TCP/IP and who are using 
UnixWare Application Server V1.1 or V1.1.1 or who are experiencing difficulties should 
contact their SCO service representative for further information about the availability of 
patches: ODICOR.TAR and TOKEN.TAR.

or

• UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1

including:

– TCP/IP

SNA connectivity

• Any 486 PC or better (including an ISA bus)

– Minimum system memory = 16 MB
– Minimum system disk space = 26.5 MB + 2 MB

Note: For an explanation of system disk space requirements see “System disk 
space requirements for the MQSeries System” on page 45.

• Apertus Technologies Inc ELC Adapter (ISA)

with

For UnixWare Application Server SDK 1.1 or later 1.x:
– Express 2.04b. This product is shipped on 1/4 inch tape.

or
– Express 2.1.1. This product is shipped on 1/4 inch tape.

For UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1:
– Express 2.1.2. This product is shipped on 1/4 inch tape.

or

• Emulex Adapter (ISA)

with

For UnixWare Application Server SDK 1.1 or later 1.x:
– Express 2.04b. This product is shipped on 1/4 inch tape.

or
– Express 2.1.1. This product is shipped on 1/4 inch tape.

For UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1:
– Express 2.1.2. This product is shipped on 1/4 inch tape.

or

• Madge Token Ring Adapter (ISA)



 

8 IBM MQSeries for UnixWare User’s Guide

For UnixWare Application Server SDK 1.1 or later 1.x:

For UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1:
– Express 2.1.2 and the Madge Smart 16/4 AT PLUS card part # 52-03.

Express is shipped on 1/4 inch tape.

MQI application only

Hardware

• Any 386 DX PC or better

– Minimum system memory = 16 MB
– Minimum system disk space = Normal disk space supplied with machine

Note: For an explanation of system disk space requirements see “System disk 
space requirements for the MQSeries System” on page 45.

• Any LAN adapter

Software

• UnixWare Application Server SDK 1.1 or later 1.x

including:

– TCP/IP
Customers who wish to use UnixWare across bridges using TCP/IP and who are using 
UnixWare Application Server V1.1 or V1.1.1 or who are experiencing difficulties should 
contact their SCO service representative for further information about the availability of 
patches: ODICOR.TAR and TOKEN.TAR.

or

• UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1

including:

– TCP/IP

• Appropriate LAN software, for example, NFS to match TCP/IP

– For customers who plan to use NFS, please contact your service representative to 
obtain all available patches.

Languages for application development
• C

Prerequisites for NFS operation
In addition to the software and hardware identified above, if you wish to use NFS to store 
messages on a file server (which also contains the message movement programs), then you 
will need the following:

Software
NFS software (same version level on both the Queuing Application machine and the Message 
Movement machine).

Madge Card Express Version

Madge Smart 16/4 AT card part # 52-07 Express 2.04b

or

Express 2.1.1

Madge Smart 16/4 AT PLUS card part # 52-03 Express 2.1.2



Chapter 2. Installation 9 

Hardware
An appropriate LAN adapter on both the Queuing Application machine and the Message 
Movement machine.

Contents of distribution media
The distribution media for IBM MQSeries for UnixWare contains the following directories: 

• Executable images of all the MQSeries System programs and sample programs.
• C header files for use in applications by developers.
• The MQI object library — shared and static versions.
• Source code for makefile and the sample programs provided with the MQSeries System.

MQSeries System installation
To install the MQSeries System, use the standard UNIX system administration installation utility 
pkgadd.

Pre-Installation
Symbolic links to MQSeries System executables are added to /usr/bin. Verify that /usr/bin 
exists in your PATH environment variable so that symbolic links to MQSeries System 
executables can be added. Symbolic links to the Transact message file are also added to the 
/var/mqi directory.

1. Either log in as root or use su.

2. Terminate or kill all MCAs and the MCAMD.

3. Insert the MQSeries System distribution media, and type:

pkgadd -d diskette1 mqi
– mqi is the name of the package to install.

– pkgadd checks to make sure this product has not already been installed. If the package 
is already installed, you will be prompted to first execute the package remove 
command (pkgrm mqi). Be sure to note the Queue Manager Config Path name before 
you remove the package; you will most likely want to restore this value after you install 
the new package and run MQM the first time. Alternatively, you can first save a copy of 
the SYSTEM.mgr file and copy it back to the new /var/mqi after installing the new 
package.

– When configuring the Queue Manager, the /var/mqi directory is used for the queue 
manager configuration file and log files. If this directory is not present, it is 
automatically created. If it is ever deleted, it must manually be created again.

4. Enter the Transmission Control Protocol (TCP) port number for the MQSeries System 
server (that is, mqmcamd). This number must be unique and greater than 1024. Default is 
7711.

– This port is used by the Message Channel Agent (MCA) Maintenance Daemon (MCAMD) 
for communication with MQM and MCAs. 

– The service is added to the /etc/services file as the mqmcamd port.

5. The directory name where the Queue Manager file will be stored during its configuration is 
always /var/mqi.

6. Enter the directory name to install the MQSeries System executables and files. Default is 
/usr. Documentation refers to this directory as install_dir. All files will be under 
install_dir/mqi.

7. Verify the installation information on your screen and, if correct, press <ENTER>. 
Otherwise, press <r> to rerun the pkgadd utility or <q> to quit installation. A copy of this 
information will be written to /var/configure.



 

10 IBM MQSeries for UnixWare User’s Guide

Notes: It is important that the default value of the environment variable LANG be correct. 
As shipped, the MQSeries System assumes this value to be En_US (United 
States English). Modify the default value of this variable in /etc/environment.

Once the MQSeries System files have been installed, the user should take the 
time to read the Service History file (HISTORY in install_dir/mqi/install). This 
file contains valuable information about the software level, service history, special 
instructions and notes on new features. 

Post-Installation
After successfully installing the MQSeries System on your UnixWare platform, carry out the 
following:

• Run MQM to create the queue manager configuration (see “Verifying the MQSeries System 
installation” on page 10).

• If using SNA/LU6.2, configure the EXPRESS SNA Server to support the transport 
connections required (see the EXPRESS SNA Server Configuration Guide).

When installing a new level of the product (a new version, release, or any maintenance), if the 
MCAMD is normally invoked by the init process, make sure that you first stop the MCAMD 
process.

If you wish to use NFS to support file service, you must also do the following (refer to “Multiple 
message queue managers on the same LAN” on page 31):

▼ Configuring MQSeries System where the MCA and MCAMD reside

1. Export the following directories via NFS:

• /var/mqi 
• The user-defined directory that was specified during installation (install_dir).
• The directory defined in the queue manager’s config.path field.

▼ Configuring MQSeries System where the queuing application resides

1. Import the following directories via NFS:

• /var/mqi 
• The user-defined directory that was specified during installation (install_dir).
• The directory defined in the queue manager’s config.path field.

2. Make sure the mqmcamd TCP/IP service name and port number as specified in step 4 of the 
installation is added to this system and the MCA Hostname field on the Queue Manager 
screen is defined.

Note: The MCAMD process needs to be running at all times for MQSeries System programs to 
operate. Please see “The MCAMD process” on page 102 for a discussion of this topic.

Verifying the MQSeries System installation
The installation verification test illustrates how to create a local queue and use the example 
programs zmqread and zmqwrite (see Appendix B, “Sample source listings” on page 167) to 
send and receive messages using this queue. Create the queue using the Message Queue 
Manager (MQM) administration screens, as follows:

▼ Creating an MQSeries System queue

1. Go to the install_dir/mqi/bin directory. 

Your PATH environment variable should include . or the full pathname of this directory. Note 
also that the NLSPATH environment variable must contain /var/mqi/%N in order to have 
access to error messages.

2. At the system prompt, type:

mqm



Chapter 2. Installation 11 

3. The first time you use MQM, the Queue Manager Definition screen is displayed:

Figure 1.  Queue manager definition screen

4. The fields on this screen must be completed before continuing with the installation test. 
(See “Modify queue manager” on page 61, for a description of the fields.)

5. To display the Main Menu, press <Ctrl-W> : 

Figure 2.  Main menu

IBM MQSeries for UnixWare Version 1
** Queue Manager **

         Name: 
  Description: 
  Config Path: 
Dead Letter Q: 
    Char. Set: 
  Max Handles: 
  Max Message: 
Max Poll time: 
 MCA Hostname: 

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes

IBM MQSeries for UnixWare Version 1
** Main Menu **

Enter Choice: 1

1. Configuration

2. Operation

3. Monitoring

4. Browse QUEUE records

<return> - Select Option <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit mqm
63H9503,5697-265 (C) Copyright IBM Corp. 1993, 1997 All Rights Reserved



 

12 IBM MQSeries for UnixWare User’s Guide

6. To select Configuration, type 1 and <ENTER> to display the Configuration menu:

Figure 3.  Configuration menu

7. To create a queue, type 3 and <ENTER> to display the Define Queue Name menu:

Figure 4.  Define queue name

8. For a local queue, fill in the following fields with these values:

Queue Type: L

Queue Name: ANYQ

IBM MQSeries for UnixWare Version 1
** Configuration Menu **

Enter Choice: 1

1. Modify Queue Manager
2. Display Queue Manager

3. Create Queue
4. Modify Queue
5. Delete Queue
6. Display Queue

7. Create Channel
8. Modify Channel
9. Delete Channel
10. Display Channel

<return> - Select Option <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Go to previous menu

IBM MQSeries for UnixWare Version 1
** Define Queue Name **

Queue Type: L L=Local, R=Remote, AQ=Alias Queue
AM=Alias Queue Manager
AR=Alias Reply Queue

Name: ANYQ

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 2. Installation 13 

9. To save the entry, press <Ctrl-W> . The Create Local Queue screen appears:

Figure 5.  Create local queue

10. Fill in the fields with these values:

Description: Anything you like.

Usage: 0 (Normal)

File Name: Test

Max Queue Depth: 100

Max Message: 2048

11. To save the entry, press <Ctrl-W> .

12. Press <Ctrl-X>  to return to the Configuration menu. To display your Queue Definition, type 
6 and <ENTER>. A selection screen appears. Use the J and K keys to select the local 
queue and press <ENTER>.

13. The screen that appears displays the queue parameters just entered. Visually verify the 
correct data has been entered.

Figure 6.  Display local queue

Congratulations. You have created your first MQSeries System queue.

IBM MQSeries for UnixWare Version 1
** Create Local Queue **

 Name: ANYQ
   Description: This is an example local queue

     Usage: 0    0 = Normal, 1 = Transmission
 File Name: Test

Max Queue Depth: 100
    Max Message: 2048

Auto Purge: N Y - Yes N - No L - Limit
From: 00:00 To: 23:59

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes

IBM MQSeries for UnixWare Version 1
** Display Local Queue **

          Name: ANYQ
   Description: This is an example local queue
         Usage: 0 0 = Normal, 1 = Transmission
     File Name: Test
   Max Message: 2048

 Max Queue Depth: 100
Inhibit Get[Y/N]: N
Inhibit Put[Y/N]: N

Auto Purge: N Y - Yes N - No L - Limit
From: 00:00 To: 23:59

*** Press any key to continue ***



 

14 IBM MQSeries for UnixWare User’s Guide

14. Repeatedly press <Ctrl-X>  to return to the Main Menu without exiting MQM.

▼ Using zmqwrite and zmqread

With the local queue that was just created in the first procedure, the following procedure uses 
the sample program zmqwrite to send messages to zmqread.

1. From the Main Menu (as shown in Figure 2 on page 11), type 3 and <ENTER> to select the 
Monitoring option and to display the Monitor Menu:

Figure 7.  Monitor menu

2. From the Monitor Menu, type 1 and <ENTER> to select Monitor Queue.

3. The Queue Monitor screen appears, showing ANYQ as the only defined queue. Note the 
number of messages currently on the queue (DEPTH).

Figure 8.  Monitor local queues

4. Move to another UNIX window, and at the system prompt, type:

zmqwrite UNIXQMGR#ANYQ 10 1000 “HELLO”

zmqwrite sends the specified messages addressed to ANYQ for the queue manager 
UNIXQMGR. The number of messages sent is displayed on the screen periodically.

IBM MQSeries for UnixWare Version 1
** Monitor Menu **

Enter Choice: 1

1. Monitor Queue

2. Monitor Channel

<return> - Select Option <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Go to previous menu

IBM MQSeries for UnixWare Version 1
** Monitor Local Queues **

Queue Type USERS LWRIT DEPTH G P
====================================================================================
ANYQ LOCAL 00000 00000 00000 A A

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit



Chapter 2. Installation 15 

5. Return to the window running the MQM Menus.

The Queue Monitor screen will still be showing ANYQ as the only defined queue. Note the 
number of messages on the queue now. 

Figure 9.  Messages on monitor local queue

6. Move to another UNIX window, and at the system prompt, type:

zmqread UNIXQMGR#ANYQ 10

zmqread reads the specified messages from ANYQ. The messages are displayed on the 
screen as they are read. 

Figure 10.  Reading messages from local queue with zmqread

7. Return to the window running the MQM Menus.

IBM MQSeries for UnixWare Version 1
** Monitor Local Queues **

Queue Type USERS LWRIT DEPTH G P
====================================================================================
ANYQ LOCAL 00000 00010 00010 A A

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

==>[0001]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 
==>[0002]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 
==>[0003]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 
==>[0004]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 
==>[0005]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 
==>[0006]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 
==>[0007]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 
==>[0008]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 
==>[0009]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 
==>[0010]:HELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHELLOHEL 



 

16 IBM MQSeries for UnixWare User’s Guide

The Queue Monitor screen still displays ANYQ as the only defined queue. Note the number 
of messages on the queue now.

Figure 11.  No messages on monitor local queue

The screen displays the number on the queue to have decreased to zero, and the total 
number of messages written to the queue (LWRIT) remains the same.

8. Exit MQM by pressing <Ctrl-X> .

You have now completed a local installation verification test demonstrating that two 
applications can send/receive messages via an MQSeries System queue. Realize that this 
test has not tested communications links that connect your system to a remote system.

Notes: In order to expand this test to include a remote link, three steps are required.  

1. Install the prerequisite hardware and software required to support the selected 
transport protocol. Refer to the manufacturers directions for this installation.

2. Define the desired the MQSeries System channel(s). Refer to Chapter 5, “System 
operation” on page 59 and coordinate with the remote system administrator to 
accomplish this.

3. Configure the transmission queue(s) and remote queue(s) required for MQSeries 
System to communicate over the channel.

IBM MQSeries for UnixWare Version 1
** Monitor Local Queues **

Queue Type USERS LWRIT DEPTH G P
====================================================================================
ANYQ LOCAL 00000 00010 00000 A A

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit



Chapter 2. Installation 17 

MQSeries System files and directories

After the MQSeries System has been installed on your UnixWare platform, verify the existence 
of these files and directories..

Table 1.  Important files and directories 

Path Name/File Purpose

/usr/bin Directory for binary files. This directory should be 
included in user’s PATH environment variable 
specification.

mqm Symbolic link to install_dir/mqi/bin/mqm

mca Symbolic link to install_dir/mqi/bin/mca

mcamd Symbolic link to install_dir/mqi/bin/mcamd

/usr/lib Directory for library files.

libmqi.so Symbolic link to shared MQI API library 
install_dir/mqi/lib/libmqi.so

libmqi.a Symbolic link to static MQI API library 
install_dir/mqi/lib/libmqi.a

/var/mqi This is the base directory for the MQSeries System 
Queue Manager. It contains the Queue Manager 
Database and the sub-directory log. It is created 
automatically by the installation script, though it must 
be manually created should it ever be deleted.

SYSTEM.mgr Queue Manager Database. This file needs to be 
seen by all MQSeries System configuration 
processes, as well as user programs linked with the 
MQSeries System MQI library. It is created and 
maintained by the MQM program.

transact.cat Default for the MQSeries System message catalog. 
Used only when the user’s native language message 
catalog cannot be located. This file exists as a 
symbolic link to 
install_dir/mqi/install/transact.cat. 

/var/mqi/log Directory where log files are stored. Though created 
by the installation script, this directory may need to 
be manually created should it ever be deleted. None 
of the MQSeries System programs or libraries will 
take care of this directory creation.

mqi??.log Files fitting this naming format are error log files. The 
'?' meta-characters are replaced with the date on 
which errors were generated. If a log file that is in 
use is deleted, then all error reporting by active 
applications will not be viewable.

install_dir/mqi Base directory to which all the MQSeries System 
programs are installed through pkgadd. 



 

18 IBM MQSeries for UnixWare User’s Guide

install_dir/mqi/bin Directory where the MQSeries System management, 
transport, and demonstration executables are 
installed.

mqm Message Queue Management program. Most of the 
MQSeries System configuration is performed 
through this utility.

mca
mcamd

Message Channel Agent.

Message Channel Agent Maintenance Daemon.

zmqecho
zmqread
zmqwrite

Demonstration programs.

install_dir/mqi/include Directory containing the MQSeries System C header 
files.

cmqc.h
mqconst.h
mqtypes.h

The end user need only include cmqc.h into the 
application. The other two will automatically be 
included by cmqc.h.

install_dir/mqi/src Directory containing sample MQSeries System 
applications.

zmqecho.c
zmqread.c
zmqwrite.c
makefile

These contain the source code that created zmqecho, 
zmqread and zmqwrite in the bin directory.

makefile places the executables in 
install_dir/mqi/src.

<config.path> This variable represents the configuration path 
defined in the Queue Manager configuration screen. 
This is the path to all queue configuration files as well 
as queues. This directory must exist prior to 
specification in the Queue Manager. It must not be 
deleted once specification has occurred. If it is, then 
it must be manually recreated or the product will not 
function.

SYSTEM.cdb Channel Data Base. This file is created by MCAMD. 
Though configuration occurs through MQM, the MCAMD 
must be running before MQM will allow configuration of 
channels. Be sure to save a backup copy after 
making any changes to this file.

SYSTEM.idx Index for all configured queues. This file is created 
by MQM. MQI functions need this index file to know 
where the next available message is for all local 
queues. Values maintained for specific queues are 
reevaluated each time the queue is opened without 
already being in use. Should it be deleted, all queue 
information will be unobtainable.

SYSTEM.qdt Queue definition table. This file is created by MQM. 
Should it be deleted, all queue information will be 
lost.

Table 1.  Important files and directories  (continued)

Path Name/File Purpose



Chapter 2. Installation 19 

*.que Queue files. These are the physical queues. The 
queues are made up of static-sized records, each 
record being of the size specified in the local queue 
creation screen. Since the record size is static, care 
should be taken when assigning queue sizes. As an 
example, if messages written to a queue are only 10 
bytes, and the queue record size is 1024, 10 records 
will occupy ((1024 + header_size) * 10) bytes, 
meaning that 10140 bytes of disk space will be 
wasted.

*.alt Temporary queues created by the Purge Deleted 
Message option on the Operation Menu in MQM.

*.qul Queue user lock files. These files are used for queue 
user accounting. If a queue’s associated .qul file is 
deleted, it will be impossible to tell if the queue is 
currently in use. If not in existence, this file will be 
recreated by the MQOPEN call.

install_dir/mqi/lib Directory where the MQSeries System libraries are 
stored.

libmqi.so MQSeries System shared library containing all 
queuing facilities. This is the recommended library to 
link with.

libmqi.a MQSeries System library containing all queuing 
facilities. This is a static library that will be linked into 
the user’s application. Should a patch be made to the 
library, the user’s application will need to be 
recompiled.

install_dir/mqi/install Directory where installation scripts and 
miscellaneous files are stored.

transact.cat MQSeries System message catalog. A symbolic link 
to this file exists in the /var/mqi directory.

HISTORY MQSeries System Service History file. This file 
contains important information about the MQSeries 
System, including the version and revision numbers, 
changes made to the system, and special 
instructions. It should be read after installing the 
MQSeries System.

Table 1.  Important files and directories  (continued)

Path Name/File Purpose



 

20 IBM MQSeries for UnixWare User’s Guide

Configuring MQSeries System
The MQSeries System software has now been loaded and the installation has been locally 
verified using the provided test programs. You can now use the administrative programs and 
the MQI libraries. But, before user applications may effectively use the system for message 
transmission, the MQSeries System must be fully configured. Configuration is explained in the 
following three chapters:

• Chapter 3, “Planning” on page 21, summarizes the planning for new installations. 

• Chapter 4, “Configuration” on page 29, provides the configuration guidelines. 

• Chapter 5, “System operation” on page 59, describes the MQSeries System administration 
screens used in the configuration.

Permissions
A user id and group id should be defined for MQSeries operations so that only users in that 
group may run MCAMD, MCA or MQM. The use of permissions will help prevent unauthorized users 
from entering MQM and performing actions against the MQSeries System processes. The 
ownership and mode of the executables should be set with the following commands:
• chown <user_ID> <filename>
• chgrp <group_ID> <filename>
• chmod u+rwx,g+rwx,o-rwx <filename>

Service history file
The Service History file, named HISTORY, is located in the installation directory and contains the 
software level, the service history of the product, and any special instructions.



© Copyright IBM Corp. 1993, 1997 21

Chapter 3.  Planning 

This chapter provides an overview of the considerations for implementing a distributed 
application using the MQSeries System. This chapter will present an overall framework for the 
planning of a distributed application and will expand on areas specific to the MQSeries System.

A planning framework for distributed applications
As the term “middleware” suggests, the MQSeries System supports the creation of 
message-enabled applications, and resides between distributed applications and the underlying 
communications network. As such, it is imbedded in an often long process of planning and 
implementation. 

Several disciplines are involved in this planning. These may be administered independently, 
resulting in separate but related planning domains for applications, systems, networks, etc., or, 
they may be integrated to a higher level of planning for the distributed environment. In either 
case, planning and implementation procedures will vary substantially from one organization to 
another. Yet, it is often desirable to have a frame of reference when discussing individual 
planning activities. It is for this purpose that a generic Distributed Planning Procedure is outlined 
below.



 

22 IBM MQSeries for UnixWare User’s Guide

Tasks and responsibilities
Figure 12 identifies tasks and allocates them to the individual or organization typically 
responsible. In the paragraphs that follow, each of the individual tasks is summarized. Those 
that include the MQSeries System are expanded further.

Figure 12.   Tasks and responsibilities

System designer tasks 

Traditional analysis and design
For new development, the design begins normally. Several well recognized methodologies exist 
for approaching the basic system design effort. Any one of these results in a functional 
decomposition of the overall system into a mesh network of processes depicting the flow of 
information through the designed system. The mesh may be arbitrarily complex based on the 
system requirements, but each process will be defined in terms of its local function and in terms 
of data formats exchanged with other processes. 

System Designer System/Network
Administrator

MQSeries System
Administrator

Application
Developers

Traditional
Systems
Design

Extend Design by
Inserting Queues

Establish Queue

Message Formats
Map Applications to
Types of Hardware

Identify Specific
Hardware Systems

Map System Design to
Physical Network

Ensure all Hardware and
Software Prerequisites for the
MQSeries System are in Place

Establish or Validate all
Communications

Configure the MQSeries 
System on all Platforms by 

-application queues
-Transmission Queues
-Aliases, as Needed
-Remote Queues
-Communication
Channels

Validate Configuration
Using Test Programs

Analyze Functional
System for Security,
Throughput, etc.

Have All Queueing
Information Required
(i.e., Queue Names
and Hardware)

Names and

and Transport Layer
(LU6.2, DECnet, etc.)
Links

Final Testing
Using Actual
Network and the
MQSeries System
Configuration

Initial Testing Using
Only Local Queues

Design and Develop
Individual Applications
Using MQSeries

defining:



Chapter 3. Planning 23 

For example:

Figure 13.   Typical data flow diagram

For existing systems which are to be modified to operate in a distributed environment, the 
above process may already be complete, or may have never been performed. If documentation 
at this level is not available, it must be created. The functional decomposition must be 
accomplished at least to the level that will identify each process which is a candidate for 
relocation. Each of the processes must be understood in terms of the data formats exchanged 
with other processes.

Extending to a distributed design
In order to extend a “traditional” design to a distributed environment, using messaging and 
queuing, there are a few essential steps. 

• Identify which application processes are to be distributed. This might apply to all 
component processes or a subset of the entire system. In many cases, this is a simple step 
since the primary system goal will have been stated in terms of a desire to distribute a 
particular function.    

• Isolate each such process by inserting q ueues  (in the design) between it and the 
remainder of the system.

• Assign names to each of the required qu eues.  These names are the logical names 
which will be used by applications throughout the distributed environment to address the 
queues. It is convenient to think of the queue name as a logical destination address for a 
message. So, the names should be associated with the process which will receive 
messages via that queue. 

• Define message formats for the new queues  to replace the exchanged data formats in 
the original design. For example, notice the queues isolating Process C  in the diagram 
below: 

Figure 14.   Process C queue isolation

Process B

Process C

Process D

Process A

Data Format B1

Data Format C

Data Format B2

Data Format D

Process B

Process C

Process D

Process A

Data Format B1

Message Format C

Message Format B2

Data Format D

QC

QB



 

24 IBM MQSeries for UnixWare User’s Guide

Mapping the design to the physical world
From a purist perspective, the highest level distributed design is complete. However, before 
much work can be done beyond the design, it must be mapped onto the physical distributed 
environment. This occurs in two steps. 

Map the component processes (applications) to the “type” of host hardware on which 
they will be implemented. Such as Mainframe, VAX, PC, etc.

At this point, all information is known that is required by the application developers to 
begin development of individual applications . They know:

• The platform on which the application will run, and, therefore, the MQSeries 
implementation specifics for that platform.

• The queue(s) on which the application will receive messages.

• The queue(s) to which the application will send messages (i.e., the queues on which 
destination applications will receive messages).

• The formats of messages to be exchanged via the above queues.

The developers have no need for further knowledge of the underlying network or of the 
MQSeries System configuration. They specifically have no need to know where destination 
queues will eventually reside. 

Map the component processes (applications) to the “specific” host hardware  on which 
they will be operational. Such as: the Mainframe in Chicago, the VAX called “Mickey” in 
Engineering, the PC LAN serving the third floor, the UNIX system at IP address 255.25.2.5, etc. 

The naming conventions for these systems will be different for every company. In any case, 
whether formal or informal, these host systems will already be known to the enterprise network 
or they will have to be added to the network. 

This step constitutes the last step of the distributed design and is the highest level map of the 
logical design to the physical network. 

System / Network administrator tasks 

Map the logical design to the physical network
This is the detailed extension of the last design step. Verify or complete the map to specific 
hardware systems. (Completion of the map may be particularly necessary in the case of LAN 
implementations. The System Designer may not have low level LAN configuration knowledge, 
such as which workstations are served by which file servers.)

Ensure that hardware and software are in place
Verify that the hardware and software prerequisites for the MQSeries System are installed at 
each system involved in the distributed implementation. 



Chapter 3. Planning 25 

Establish the transport layer of the network
This is a critical step which requires detailed system/networking knowledge of each platform but 
very little knowledge of the MQSeries System. This includes:

• Verify that physical communications links (paths through the network) exist between each 
of these systems. 

• Establish any required transport layer definitions (LUs, PUs, NCP Gens, etc.) which are 
needed to support a logical point-to-point connection between the MQSeries systems. 

Some interaction with the MQSeries System administrator is required to complete the above 
steps. The information shared between the Systems/Network Administrator(s) and the 
MQSeries System Administrator(s) include:

• End points of point-to-point logical links.
• Number of links between systems.
• Transport protocol used.
• Transport specific names (LU Names, XIDs, Node Names, etc.)

MQSeries System administrator tasks 
The MQSeries System Administrator is the focal point for a successful implementation since 
this is the one activity which touches all others. Interaction will be required with the System 
Designers, the Network Administrators, and the Application Developers. 

The Administrator will have certain operational responsibilities after the distributed system has 
been implemented, but by far the most significant duty is the initial configuration of the 
MQSeries System queues . This is the critical function which ties together the underlying 
transport network and the distributed applications. Briefly, this includes:

• Configuring the MQSeries System Message Queue Manager
• Configuring MQSeries System Local Queues
• Configuring MQSeries System Transmission Queues
• Configuring MQSeries System Queue Aliases
• Configuring MQSeries System Remote Queue Definitions
• Configuring MQSeries System Communications Channels

From a planning perspective, it should be realized that the queue configuration will require 
some level of coordination throughout the network, but will be accomplished on each individual 
system. Further, it should be recognized that configurations are typically built in three phases. 
These phases correspond to:

• Test configuration(s)  to allow local testing of applications using queues, or initial testing of 
communications lines.

• Functional configuration to include all communications channels and all queues. This 
configuration allows full application functional testing. It has not been optimized for 
performance or been modified for any security or other installation specific requirements. 

• Operational configuration  which is an extension of the above after considering 
performance requirements, security requirements, etc.

Details of all configuration activities are provided in Chapter 4, “Configuration” on page 29, of 
this document.   



 

26 IBM MQSeries for UnixWare User’s Guide

Application developer tasks 
Application development on individual platforms can begin relatively early in the implementation 
process. It can start as soon as the developers know:

• The platform on which the application will run, and, therefore, the MQSeries 
implementation specifics for that platform.

• The queue(s) on which the application will receive messages.

• The queue(s) to which the application will send messages (i.e., the queues on which 
destination applications will receive messages).

• The formats of messages to be exchanged via the above queues.

The developers have no need for further knowledge of the underlying network or of the 
MQSeries System configuration. They specifically have no need to know where destination 
queues will eventually reside. 

Development will proceed very much like traditional applications development. The only 
difference is the use of the API to interface to queues. 

The API and other Application design considerations are described in detail in Chapter 6, 
“Application programming interface” on page 107, of this document.

Including legacy applications in distributed designs 
Legacy applications are commonly old, not well understood, not well documented, but they 
work. So, no one wants to touch them. 

Such applications present an obvious paradox when they form a critical piece of a system that 
is to become distributed. Their input/output interfaces cannot be readily altered yet they must be 
modified to support messages and queues.

The solution is simple. The Legacy application is “sandwiched” between a preprocess and a 
post-process application which convert queues and message formats to/from existing data 
formats used by the legacy software. 

To illustrate this, consider a segment of our earlier flow diagram:

Figure 15.   No messaging and queuing

If Process C can be directly modified to use the MQI to take advantage of messaging and 
queueing, then the result appears as:

Figure 16.   Messaging and queuing

Data Format C Data Format B
Process C

Process C

Message Format C Message Format B

QC QB



Chapter 3. Planning 27 

But, if Process C  is a legacy application which cannot be directly modified to use the MQI, then 
new Pre and Post  processor applications are required, yielding:

Figure 17.   Queue enabled version of legacy application

Of course, the Pre and Post  processors must reside on the same hardware platform as the 
legacy application.

Planning considerations for UNIX systems 
Many of the following are detailed elsewhere in this manual. They are summarized here for 
convenience.

• Prerequisite Hardware and Software is defined in Chapter 2, “Installation” on page 5. 

• MQI Features have been implemented in a slightly different manner for each operating 
system environment. Chapter 6, “Application programming interface” on page 107 should 
be reviewed closely to ensure that any features of particular interest are fully available on 
UNIX. (In the current release, note especially that triggering is not supported under UNIX.)

• Transport protocols supported on UNIX include LU 6.2 and TCP/IP. If your enterprise 
network includes an existing TCP/IP portion, then you may wish to use that as the transport 
wherever UNIX-to-UNIX logical links are required. To merge TCP/IP with an SNA network, 
only one UNIX system need be configured to support both protocols. In this configuration, 
MQSeries System messages may be required to “multi-hop” through the gateway machine. 
This capability is supported but will have performance implications. 

• The Application Programming Language fully supported on UNIX is C. If other 
programming languages are to be used for applications development, the customer must 
recognize: 

• Only applications written in C have been tested on IBM MQSeries for UnixWare.

• Source samples are provided in C only.

• Other languages may be usable at the application level, provided the customer 
constructs the API interface calls correctly.

• Security for MQSeries System queues, communication channels, and administrative 
programs can be established by taking advantage of native UNIX security features. 

• IBM MQSeries for UnixWare is not safe for multi- threaded use and does not support 
multi-threaded application programs.

Process C

Message Message 

QC QB
Unchanged Legacy Application

Pre Post

Format C Format B
Queue Enabled Version of Legacy Application



 

28 IBM MQSeries for UnixWare User’s Guide



© Copyright IBM Corp. 1993, 1997 29

Chapter 4.  Configuration

The MQSeries System software has now been installed on your system by following the 
instructions in Chapter 2, “Installation” on page 5. However, it cannot converse with other 
MQSeries System installations or even perform local messaging until it is configured. 

Building an effective configuration for the MQSeries System operation is by far the most critical 
task to insure a successful implementation.

This chapter will explain the concepts required to properly configure the MQSeries System.

The mechanics of entering configuration data are detailed in Chapter 5, “System operation” on 
page 59.

 MQSeries System configuration elements
Configuring the MQSeries System requires that the administrator/operator define the following 
MQSeries System elements:

• Message Queue Manager
• Local Queues
• Dead Letter Queue
• Transmission Queues
• Communications Channels
• Queue Aliases and/or Remote Queue Definitions

A clear understanding of each of these elements and an understanding of MQSeries System 
message routing is needed in order to properly configure the system. 

Queue names and message routing 
Queue names are used in all MQI commands to identify the queue with which you want to work. 
Queue names are also included in message headers and, as the message traverses the 
network, are the basis for routing the message.

A fully qualified queue name consists of two parts:

• The queue_manager_name, which identifies an MQSeries System
• The queue_name, which identifies the queue itself

The full name may be written queue_name @ queue_manager_name.

This two-part naming convention represents the essence of message routing for the MQSeries 
System. The fundamental routing algorithm is very simple:

The queue_manager_name  identifies the MQSeries System on which the queue 
called queue_name  resides.

If a queue_manager_name is not specified, then it is assumed to be the local queue manager 
(that is, the queue called queue_name resides on the local system).

A goal of IBM MQSeries is to hide the network details from the application. The application 
should not have to identify the system on which a particular queue resides. For this reason, 
applications can use aliases and remote queue definitions, which are explained later in this 
section.



 

30 IBM MQSeries for UnixWare User’s Guide

Queue name format
Each part of the queue name is contained in a 48-character field (constants MQ_Q_NAME_LENGTH 
and MQ_Q_MGR_NAME_LENGTH can be used for the length), with the local-name part appearing first.

The character set that can be used for the local queue manager and local name is as follows:

• Uppercase A - Z
• Lowercase a - z
• Numerics 0 - 9
• Period (.)
• Forward slash (/)
• Underscore (_)
• Percent sign (%)

Note: Leading or embedded blanks are not allowed.

Local and queue manager names that are shorter than the full field width can be passed by an 
application program, either by padding to the right with blanks, or by using a null (X“00”) 
character after the last significant character of the name.

The null character and any characters to the right of it (which are ignored), are treated as 
blanks. There can be blanks between the last significant character of the name and the null 
character.

For example, a single null character in the first character position of the queue manager name 
field can be used to default to the connected queue manager. This method is convenient for C 
programs.

Either method (right padding or null character) can be used for names that are passed by the 
application across the interface, but all names that are returned by the queue manager are 
always padded to the right with blanks.

Any structure to the names (for example, the use of the period or underscore) is not significant 
to the queue manager.

Note: Names starting “SYSTEM” are reserved for the queue manager-defined queues.

Message queue manager
In the distributed LAN architecture, it is most reasonable to think of the Message Queue 
Manager as the domain composed of:

1. The MQSeries System disk directory containing the messaging and queuing configuration 
database.

2. Any Messaging and Queuing software which operates by using this database.

The latter includes the Message Channel Agent (MCA), the MQM operator interface screens, 
and any MQI applications. 

Note: It is possible to have more than one such domain on the same physical LAN. In this 
case, each instance is a separate Message Queue Manager and must be configured 
independently. This is illustrated in the following figure.



Chapter 4. Configuration 31 

Figure 18.  Multiple message queue managers on the same LAN

Local message queues
In Chapter 1, “Product description” on page 1, a local queue was defined as any queue residing 
on the same message queuing system as the application. A local queue corresponds directly to 
a physical disk file which holds messages. 

The queue_name of a local queue is used by all programs to access the queue.

In most cases, one local queue must be created for each MQI application running on the 
system. This queue is used by the MQSeries System to store inbound messages destined for 
the target application. Put another way, the application receives messages via its associated 
local queue. 

MQI

MCA/
MQI

MQI

Comm Server

File Server

File Server

Comm Server

Queue Manager Domain

Queue Manager Domain

MQIMCAMD

MCA/
MCAMD

Application Only Application Only

Application Only Application Only



 

32 IBM MQSeries for UnixWare User’s Guide

The required local queues are normally identified by the system designer who has 
enterprise-wide responsibility for distributed applications. The designer typically associates a 
queue name with an application program. For example, the designer may prescribe the 
following relationships:

The publication of a list, as above, establishes a naming convention by which all developers 
understand how to address messages to a particular destination application. For example, from 
the above list, any program wishing to send a message to the Order Entry application, uses the 
MQI command set to put a message to the queue named Ops_Orders. Similarly, the Order 
Entry application itself receives messages (sent by other programs) by using the MQI command 
set to get messages from the queue Ops_Orders.

Note: While the normal case is one local (input) queue per application, there are cases in 
which an application may require:

• Multiple local queues  (for example, high priority traffic on a separate queue)

• No local queues (for example, programs that generate messages, but never receive)

• A shared local queue  (for example, multiple processes all servicing the same high volume 
queue)

Dead letter queue
The dead letter queue is a local queue created expressly for the purpose of redirecting 
misguided messages. Although this is a simple statement, it is the essence of this queue’s 
purpose.

This queue is created automatically when the queue manager is created. On the Queue 
Manager modification screen is the field “Dead Letter Q,” which will contain the queue name 
associated with the dead letter queue. A default file name is SYS_DLQ.que in the same 
directory as all other queues. The message size associated with this queue shall be the Max 
Message size defined for the Queue Manager. This value may be larger than desired since all 
messages queued occupy the same number of bytes defined as the queue maximum. 
Therefore, if the Queue Manager Maximum Message size is 1024 bytes, and a 10 byte 
message is redirected to the dead letter queue, this message will occupy 1024 bytes on the 
disk. As a result, a small number of messages have the potential of using a lot of disk space.

Should this situation be seen as a serious problem, the remedy is to delete the dead letter 
queue that was automatically created and create a new one, using the Create Local Queue 
configuration screen. You may define a different dead letter queue name, file name, and 
message maximum size. However, the queue name should agree with that displayed on the 
Queue Manager screen. If not, modify the Queue Manager record. 

Note: It is extremely important that the dead letter queue be immediately recreated should it 
be deleted for purposes of resizing. It is also important that the queue name be the 
same as the one specified in the Queue Manager configuration. If the queue does not 
exist, or should its name not match the one specified in the Queue Manager, the MCA 
process will exit immediately upon startup.

Table 2.  Application and queue name

Application Queue Name

Accounts Receivable Accts_Receivable 

Accounts Payable Accts_Payable

Order Entry Ops_Orders

Shipping Ops_Shipping

Inventory Ops_Inventory



Chapter 4. Configuration 33 

Applications which put messages directly on the dead letter queue should prefix the message 
data with an MQDLH structure, and initialize the fields with appropriate values. However, the 
queue manager does not check that an MQDLH structure is present, or that valid values have 
been specified for the fields. If a message is too long to put on the dead letter queue, the 
application message data should be truncated to fit. An MCA, however will never truncate the 
application message.

The MCA process will use the dead letter queue under the following circumstances:

Requester/Receiver Channels

• The remote queue is full.
• The remote queue is PUT inhibited.
• The Message sent to the remote queue is too large.
• The remote queue does not exist.
• The message contains a duplicate Message Sequence Number.

Sender/Server Channels

• The remote Queue Manager places the message it received on its dead letter queue.

• The message on the transmission queue is greater in size than the negotiated Maximum 
Message Size of the channel.

Note: No feedback codes are generated by the queue manager.

Remote queue definitions
Both a remote queue definition and an alias are simply an alternative logical name which can be 
used to address a message queue instead of using the actual queue_name. In the case of the 
remote queue definition, a single name is provided for use by an application which relieves the 
application of needing to know the location (queue_manager_name) of the destination queue.

These extensions to the use of direct queue_names exist solely to simplify the work of 
developers and to improve the flexibility/portability of distributed applications. 

A remote queue definition is simply a logical name defined on the local system which identifies 
a queue physically resident on another system. The queue_name so defined, can be used by 
applications to address the queue, but the MQSeries System will realize the queue is elsewhere 
and direct the messages to the remote site.

Note: MQSeries does not support GET operations directed to a remote queue.

To define a remote queue, one does not supply the same fields as when defining a local queue 
(for example, no file name, or record size), but must supply both:

• the queue_manager_name of the remote system

and

• the queue_name of the actual physical queue on the remote system

Optionally, you may also identify a transmission queue (other than the default transmission 
queue) which is to be used to send messages to the remote system.

When defining a remote queue, each entered name is validated by the MQSeries System as 
follows:

queue_name must be unique among all names defined locally. 

queue_manager_name must match a local transmit queue, or the optional alternative 
transmit queue must be supplied.

remote_queue_name must match a definition on the remote system but this cannot be 
validated locally.

transmit _queue_name must match a local transmit queue, if present. 

This extended queue identity is not visible to an application on the local system. Local 
applications use only the queue_name. 



 

34 IBM MQSeries for UnixWare User’s Guide

Conversely, the queue_name used locally is not visible to the remote system. In its place, the 
fully qualified remote queue name (remote_queue_name @ queue_manager_name) is inserted 
in the message header before transmission.

Aliases 
An alias is similar to a remote queue definition in that it is an alternative logical name which can 
be used to address an MQSeries System queue instead of using the actual queue_name. An 
alias, however, is simpler than a remote queue definition.

An alias provides a simple one-to-one name substitution capability. It associates an alternative 
(alias) name with an already defined queue.

By defining an alias, the MQSeries System administrator has the ability to redirect message 
traffic. For example, if an application was originally coded to write to a queue called FRED, but 
we now want the output to go to JOHN, the redirection can be accomplished by redefining 
FRED as an alias for JOHN rather than as a real local queue.

The MQSeries System supports two other types of aliases beyond the simple queue alias. 
There is a manager_alias, which is simply an alias associated with an already defined 
queue_manager_name. There is a reply_to_alias which is somewhat more complex and 
infrequently used. This last type of alias will be explained more fully in “Alias queues, remote 
queues, and routing” on page 40.

Note: An alias can be defined for a local queue, a remote queue, or a queue manager, but 
cannot be defined for another alias.

Transmission queues
A special case of a local queue which is used to hold messages to be transmitted to another 
system is called a transmission queue. 

Since a transmission queue is a local queue, it also corresponds directly to a physical disk file 
which holds messages. Beyond that, a transmission queue is substantially different from a 
normal local queue.

Whereas a normal local queue holds inbound messages, a transmission queue holds outbound 
messages. Whereas a local queue holds messages for a single application, a transmission 
queue interleaves messages destined for several different applications residing on the same 
remote MQSeries system. 

Note: A transmission queue is associated with a communications channel. The messages on 
a transmission queue are processed by MQSeries System’s Message Channel Agent 
(MCA). Normal MQI applications cannot directly access a transmission queue for 
output purposes.

In most cases, one transmission queue must be created for each adjacent MQSeries System in 
the network. In this context, adjacent means any system with which you have a point-to-point 
logical connection at the MQSeries System level. Since the physical topology of the underlying 
transport network is hidden by the MQSeries System, this may or may not correspond to a 
point-to-point physical connection. But, it may be conceptually easier to think of the connection 
in physical terms.

While the normal case is one transmission (output) queue per adjacent MQSeries system, there 
are cases in which an MQSeries System may require:

• Multiple transmission queues to the same destination (for example, for higher 
throughput)

• No transmission queues (for example, if the MQSeries System is to be used for only local 
interprocess communications. While rare in normal operation, this arrangement is often 
useful in test scenarios.)



Chapter 4. Configuration 35 

Though the system designer typically identifies required local queues, the designer may not 
identify all required transmission queues. If not, the MQSeries System administrator must 
compile:

• A list of applications running on the local system
• A list of destination queues to which the local applications send messages
• A list of remote MQSeries systems on which these queues reside

From the above compilation, it should be simple to determine the required transmission queues. 
Further system or application information will be required to identify special cases requiring 
more than one transmission queue per connection.

Communic ations channels
In Chapter 1, “Product description” on page 1, a channel was defined as a unidirectional 
point-to-point communications link between two MQSeries systems. The MQSeries System 
channel parameters are defined by using the Channel Definition screen in the MQM program, 
as detailed in Chapter 5, “System operation” on page 59. Each channel has a number of 
characteristics:

• Twenty character channel name unique to the queue manager
• Message sequence numbers
• Communications parameters required by the transport layer

The MQM Channel Definition screen defines only the communications link parameters. The 
associated transmission queue must be defined separately. 

IBM MQSeries on UnixWare is capable of utilizing both the Common Programming Interface for 
Communications (CPI-C) API for LU 6.2 and the Transmission Control Protocol/Internet 
Protocol (TCP/IP).

To configure either one of these transport protocols requires inherent knowledge of the protocol 
itself. This knowledge may include; the current status of your system, the policies adopted by 
your network administrator(s), and the procedures to configure these protocols on other 
systems as well. We will describe the information specifically required for the MQSeries 
System.

MQSeries utilizing Ap ertus/SSI’s EXPRESS SNA server
While the menus used by the operator configuration utility (that is, MQM) require a limited 
number of items to be specified, additional configuration is mandatory to establish a working 
SNA connection. These additional levels are carried out via the EXPRESS SNA configuration 
control. For information on EXPRESS SNA, please refer to Systems Strategies EXPRESS SNA 
Server Configuration Guide (Release 2.04).

The transport level protocol in this case is implemented as a CPI-C (Common Programming 
Interface for Communications) Application Program Interface (API). CPI-C provides a 
consistent programming interface for applications that require program-to-program 
communication and it makes use of EXPRESS SNA’s LU 6.2 to create a rich set of 
inter-program services. For the program to run over SNA, certain parameters must be defined. 
They are, but not limited to:

Local LU Name A name specifying the local LU (limited to 17 characters) that may 
either be fully-qualified or locally known.

Partner LU Name A name specifying the LU on the remote system (limited to 17 
characters) that may either be fully-qualified or locally known.

Mode Name The name of the mode (limited to 8 characters) used by LU 6.2 to 
designate the properties for the session that will be allocated for the 
conversation.

TP Name The Transaction Program (TP) name which represents the partner 
program on the remote system (limited to 64 characters).



 

36 IBM MQSeries for UnixWare User’s Guide

A convenient facility exists for all CPI-C programs in a database called the “Side Information”. It 
houses the above mentioned parameters among others for each program. It is accessible in 
each program through a unique index called a:

Symbolic Destination Name Limited to 8 characters.

The MQSeries System user has the option of either choosing to enter the symbolic destination 
name index or manually entering each parameter.

The SENDER originates data and initiates the remote RECEIVER. The RECEIVER receives 
the data, initiated by the SENDER. The REQUESTER receives data and initiates the remote 
SERVER. The SERVER originates data, initiated by the REQUESTER.

The SENDER/REQUESTER channels initiate a conversation between themselves and the 
RECEIVER/SERVER channel components. The RECEIVER/SERVER channels perform an LU 
6.2 Accept Incoming. Through the Accept Incoming, the MCA process notifies the SNA controller 
that it is prepared to maintain a conversation with a transaction program (another MCA process) 
on the remote system. 

The remote system actually starts the conversation by performing an LU 6.2 Allocate. When the 
Allocate arrives at the SNA controller (which has an Accept Incoming outstanding) and the 
transaction program name specified in both the Accept and Allocate match exactly, the SNA 
controller notifies the MCA process that performed the Accept Incoming, and a conversation is 
established.

To establish the conversation, it is desirable to start the MCA processes that support the 
RECEIVER/SERVER channels prior to starting instances of MCA that support 
SENDER/REQUESTERs. This requirement is not absolute. If the SENDER/REQUESTER is 
started prior to its remote complementary component, this channel will attempt a retry if 
configured to do so.

Stopping and starting EXPRESS SNA
EXPRESS SNA must be started, and sessions activated, before starting any MCA which will run 
SNA channels. Similarly, any MCA which runs SNA channels must be terminated or killed before 
stopping EXPRESS SNA.

MQSeries System utilizing TCP/IP
The MQSeries System is capable of using TCP/IP as a transport protocol. The RECEIVER and 
SERVER channels will open a listener socket accepting one connection from a SENDER or 
REQUESTER, respectively.

Configuring a channel for TCP/IP requires at most two parameters, a remote hostname 
(SENDER/REQUESTER only) and a service name.

The remote hostname specifies the system running the complementary channel 
(RECEIVER/SERVER) on the TCP/IP network. This host must be accessible from the local host 
over the TCP/IP network. Either the host must be defined in the /etc/hosts file or it must be 
defined to a name server used by the local host. If the host resides in a different network, 
TCP/IP routing must be set up to allow this access. The service name is an entry you must 
create in the file /etc/services or incorporate into the services portion of the name server 
database.



Chapter 4. Configuration 37 

The services file provides a mapping between a service name and a port number.

The port number entered:

• should be greater than 1024
• must be identical on both machines
• must be unique within /etc/services file or name server

If you are configuring your system within a network administered by network administrators, you 
should consult them to avoid conflicts in assignment of port numbers.

The following is an example of an entry in the file /etc/services:

A port number can service: 

• one or more SENDER channels, and
• one or more REQUESTER channels, and
• one RECEIVER or SERVER (not both) channels

at the same time. For example, port number 1414, with service name MQSERIES could be used 
by all local sender and requester channels that connect to remote V2 MQSeries systems and by 
exactly one local receiver or server channel that receives connections from a remote MQSeries 
system.

To configure multiple RECEIVER and SERVER channels active at the same time, the 
/etc/services file must contain a different service name and port number for each RECEIVER 
and SERVER.

The recommended configuration technique is as follows:

• Use only port number 1414 for SENDER and REQUESTER channels to talk to Version 2 
IBM Message Queue Managers. Give the service a name such as V2MQSERIES or MQSERIES.

• Allocate a port number to each RECEIVER or SERVER channel. The SENDER or 
REQUESTER at the other end of the channel must use this same port number. A different 
port number must be used for each channel pair.

• Allocate the same port number to each SENDER or REQUESTER channel as used by the 
RECEIVER or SERVER at the other end of the channel. A different port number must be 
used for each channel pair.

• Name the service for the port the same as the channel name (except for those channels 
using the “V2MQSERIES” service). This will avoid confusion.

Port number 1414 is assigned by the Internet Assigned Numbers Authority to MQSeries.

Table 3.  etc/services format

channel1 3000/tcp # Channel

channel2 3001/tcp # Channel



 

38 IBM MQSeries for UnixWare User’s Guide

Example: To set up SENDER and RECEIVER channels from T1 to M1, M2, T2, and T3, the 
channels can be configured as follows at T1 (T1, T2, and T3 are Version 1 IBM MQSeries for 
UnixWare Queue Managers, and M1 and M2 are Version 2 IBM Message Queue Managers):

Note: If the Internet Protocol is shut down on a remote system that is supporting 
TCP/IP-based channels, the local channels will not receive notification of the 
shutdown. Therefore, the local channels will remain in the state they were in at the 
time of the shutdown.

MQSeries System channel implementation
To fully implement an MQSeries System channel, you must perform several functions on each 
of two systems. For example, in order to connect SystemA (running IBM MQSeries for 
UnixWare) to SystemB (running the same or another MQSeries system), you must:

On the MQSeries System system installed on SystemA:

• Use the MQM Queue Definition screen to define an outbound transmission queue called, 
for example, QUE_TO_SYS_B.

• Use the MQM Channel Definition screen to define communications parameters for the 
channel named, for example, CHANNEL_1 . In the channel definition, you will specifically 
identify QUE_TO_SYS_B as the name of the transmission queue for this channel.

• Insure all transport layer hardware and software is properly installed.

• Activate the MCAMD and MCA to process the SystemA end of CHANNEL_1 .

On the MQSeries system installed on SystemB:

• Insure all transport layer hardware and software is properly installed.

• Use the MQSeries System channel definition function to define communications 
parameters for the channel named CHANNEL_1 . (On the receiving end of a channel, no 
transmission queue is involved.)

• Activate the MCA, supplied with the MQSeries system, to process the SystemB end of 
CHANNEL_1 .

Note: The above sequence of actions has established a channel in one direction only, from 
SystemA to SystemB. The same steps must be performed to create another channel, if 
desired, to allow messages to flow in the opposite direction.

Table 4.  etc/services example

Channel name Channel type Port number Service name

CHANNEL_T1_TO_M1 SENDER 1414 (listener at M1) V2MQSERIES

CHANNEL_T1_TO_M2 SENDER 1414 (listener at M2) V2MQSERIES

CHANNEL_T1_TO_T2 SENDER 3000 (1st listener at T2) CHANNEL_T1_TO_T2

CHANNEL_T1_TO_T3 SENDER 3004 (5th listener at T3) CHANNEL_T1_TO_T3

CHANNEL_M1_TO_T1 RECEIVER 3000 (1st listener at T1) CHANNEL_M1_TO_T1

CHANNEL_M2_TO_T1 RECEIVER 3001 (2nd listener at T1) CHANNEL_M2_TO_T1

CHANNEL_T2_TO_T1 RECEIVER 3002 (3rd listener at T1) CHANNEL_T2_TO_T1

CHANNEL_T3_TO_T1 RECEIVER 3003 (4th listener at T1) CHANNEL_T3_TO_T1



Chapter 4. Configuration 39 

MQSeries System message routing
MQSeries System message routing is not to be confused with lower level network routing. The 
MQSeries System is normally concerned only with fixed, point-to-point routing which is 
substantially simpler than dynamic, adaptive, multi-hop, network routing algorithms. However, 
the many options available can make MQSeries System routing somewhat complex.

The MQSeries System must be explicitly configured (that is, queues, channels, aliases, etc. 
must be defined) to insure the desired flow of messages through the network. To do this 
effectively, the MQSeries System routing algorithm must be understood.

To understand MQSeries System routing, we will look first at the basic routing algorithm, then at 
the MQSeries System routing table, and finally at effects on routing which can be generated 
through aliases and remote queue definitions.

Basic message routing
Early in this chapter, it was noted that the two-part MQSeries System queue names embodied 
the essence of message routing for the MQSeries System. The fundamental routing algorithm is 
very simple:

The queue_manager_name  identifies the MQSeries System on which the queue 
called queue_name  resides

The basic algorithm may be expanded by following the flow of a typical message from one 
system to another, as follows:

1. At the originating system, a message is presented (PUT) to the MQI with the two-part 
destination queue_name.

2. The MQSeries System examines the destination queue_manager_name to see if it 
matches the local_queue_manager_name. Typically, it does not match, so the MQSeries 
System knows the message goes to another system.

3. In this case, the destination queue_manager_name must  match a transmission queue 
defined on the originating system. This is the default transmission queue to reach the 
specified queue_manager. 

4. The message is enqueued to this transmission queue.

5. The MQSeries System MCA on the originating (output) system GETs the message from 
the transmission queue and sends it over the link to the remote system. Notice that the 
output MCA utilizes no routing logic.

6. The MCA on the destination (input) MQSeries system receives the message from the 
communications link (and invokes routing logic to determine what to do with it).

7. The MQSeries System examines the destination queue_manager_name to see if it 
matches the local_queue_manager_name. Typically, it does, so the MQSeries System 
knows the message belongs “here.”

8. The MQSeries System then examines the destination queue_name. In this case, the 
destination queue_name must  match a local queue defined on the destination system.

9. The message is enqueued to this destination queue.

10. The destination application receives (GETs) the message via the MQI.

From this example, several basic configuration principles  may be observed:

1. MQSeries System routing logic is exercised independently on each system. Therefore, 
each MQSeries System must be configured individually, but all configurations must be 
coordinated to be effective.

2. Any configuration must have defined one local queue for each inbound destination on the 
system. These will be used to receive incoming messages. The defined queue_name must 
match the queue_name applications will use in message headers.



 

40 IBM MQSeries for UnixWare User’s Guide

3. Any configuration must have defined one transmission queue for each remote destination 
system. These will be used to transmit outbound messages. The defined queue_name 
must match the queue_manager_name applications will use in headers of outbound 
message.

The MQSeries System routing table
Before exploring the routing logic further, it is useful to understand the MQSeries System's 
Routing Table  which is used to resolve all queue references. Note that the table is described 
here as a logical entity and may not exactly correspond to the data structure on a particular 
system. 

The MQSeries System queue names are of the form queue_name @ queue_manager_name , 
each half of which is 48 characters. The MQSeries System Routing Table, however, is keyed to 
a single 48-character string. This string is normally a queue_name but will be called 
Object_Name to avoid/reduce confusion in this discussion.

An entry must exist in the Routing Table for each of the following:

• All LOCAL  queues (Type=Local, Usage=Normal)
• All TRANSMISSION queues (Type=Local, Usage=Transmission)
• Any desired definitions for REMOTE queues
• Any desired ALIAS_Q  names for queues
• Any desired ALIAS_M  names for queue_managers
• Any desired ALIAS_R  names for reply_to_queues

The format of each Routing Table entry varies according to type. This is summarized in the 
chart below. 

Alias queues, remote queues, and routing
What happens to routing, when alias queues and remote queues are introduced into the 
algorithm? This can be seen by considering various routing scenarios and examining the results 
of these scenarios under the MQSeries System routing logic. These sample routing cases will 
also further illustrate normal routing cases.

In these cases, the QName @ QMgrName  shown as input indicate the “actual” nature of the 
input. The routing algorithm results will be as indicated for each case. 

Note: The following is not intended to suggest application level pseudo-code, but only to 
explain what happens within MQSeries System routing.

1.  Application attempts to operate on queue identified as 

Queue_Name @ Local_Queue_Manager

Routing Process:

Queue_Name  matches Routing Table entry for Local or Remote queue .... or error.

2. Application attempts to operate on queue identified as 

Table 5.  Routing table format 

Obj_Name Type Q_Name QMgr_Name Xmit_QName

Required Local ---- ---- ----

Required Transmit ---- ---- ----

Required Remote Required Required  Optional

Required Alias_Q Required ---- ----

Required Alias_M ---- Required Optional

Required Alias_R Required Required ----



Chapter 4. Configuration 41 

Queue_Name @ (Blank_Queue_Manager)

Routing Process:

Queue_Name  matches Routing Table entry for Local or Remote queue .... or error.

3. Application attempts to operate on queue identified as 

Queue_Name @ Remote_Queue_Manager

Routing Process:

Remote_Queue_Manager  matches Routing Table entry for Transmit queue .... or error, 
Queue_Name  is ignored.

4. Application attempts to operate on queue identified as 

Remote_Queue_Name @ (Blank_Queue_Manager)

Routing Process:

Remote_Queue_Name  matches Routing Table entry for Remote queue .... or error.

5. Application attempts to operate on queue identified as 

Alias_Name @ Local_Queue_Manager

Routing Process:

Alias_Name  matches Routing Table entry which resolves to another Routing Table entry 

for Local or REMOTE queue .... or error.

6. Application attempts to operate on queue identified as 

Alias_Name @ (Blank_Queue_Manager)

Routing Process:

Alias_Name  matches Routing Table entry which resolves to another Routing Table entry 
for Local or REMOTE queue ... or error.

7. Application attempts to operate on queue identified as 

Alias_Name @ Remote_Queue_Manager

Routing Process:

Remote_Queue_Manager  matches Routing Table entry for Transmit queue ... or error, 
Alias_Name  is ignored.

8. Application attempts to operate on queue identified as 

Some_Queue_Name @ Alias_Queue_Manager

Routing Process:

Alias_Queue_Manager  matches Routing Table entry with type ALIAS_M which resolves 
to Local_Queue_Mgr_Name . Second pass through search logic resolves 
Some_Queue_Name  to either case (1) or (5) above.

OR

Alias_Queue_Manager  matches Routing Table entry with type ALIAS_M which does NOT 
resolve to Local_Queue_Mgr_Name.

This case is handled same as case (3) or (7) above. No second pass through the search 
logic is required. Some_Queue_Name  is ignored.

OR

Alias_Queue_Manager  matches nothing, and is an error.

9. Message Channel Agent receives inbound message with destination queue identified as: 

Some_Queue_Name@Some_Queue_Manager

Routing Process:

Some_Queue_Manager  matches Local_Queue_Manager_Name and 
Some_Queue_Name  is resolved as in case (1) or (5) above with a single pass through the 
search logic.



 

42 IBM MQSeries for UnixWare User’s Guide

OR

Some_Queue_Manager  matches Routing Table entry with type

Alias_M which resolves to the Local_Queue_Manager_Name .

On second pass through search logic, Some_Queue_Name  is resolved as in case (1) or 
(5) above.

OR

Some_Queue_Manager  matches Routing Table entry with type

ALIAS_M which does NOT resolve to Local_Queue_Mgr_Name.

This case is handled same as case (3) or (7) above. No second pass through the search 
logic is required. Some_Queue_Name  is ignored.

OR

Some_Queue_Manager  matches Routing Table entry with type Transmit and is handled 
same as case (3) or (7) above.

Some_Queue_Name  is ignored.

OR

Some_Queue_Manager  is invalid.

Other alias types
In some cases, it is desirable to have multiple channels, and multiple transmit queues defined 
for the same remote destination system. This conflicts with the standard use of the 
queue_manager_name as the transmit queue name.

The extension of the REMOTE queue definition to include a TRANSMIT queue is convenient for 
most such cases, but may be undesirable at a central “server” system which must deal with a 
large number of remote systems. The server would require a large number of REMOTE queue 
definitions in order to handle anything more than one TRANSMIT queue per system.

A Routing Table entry type ALIAS_R provides a mechanism to allow the name for the response 
transmission queue to be expanded at the originating system. 

This may be thought of as a “Reverse Queue Manager Alias” or as a “Response Class” or as a 
“Response Category”. 

It is a relatively simple concept which simultaneously frees a remote server from the need to 
define a long list of REMOTE queues, and frees the local application from the need to know 
details of the transmit queue structures, and allows the local application code to be completely 
portable.

For example:

This example shows the use of reply aliases and manager aliases to reduce the definitions 
required at a central server site.

An application running on SYS1 originates a message to a remote server and specifies 
Reply_to_Queue  = PRIORITY (and Reply_to_Queue_Manager = BLANK).

At SYS1, the Routing Table contains three related entries:

Table 6.  Local routing table

Obj_Name Type Q_Name QMgr_Name Xmit_QName

My_Queue LOCAL ---- ---- ----

PRIORITY ALIAS_R My_Queue SYS1_PRI ----

SYS1_PRI ALIAS_M ---- SYS1 ----



Chapter 4. Configuration 43 

During outbound processing, MQSeries System finds that PRIORITY matches a Routing Table 
entry of type ALIAS_R, and substitutes MY_QUEUE @ SYS1_PRI into the outbound 
Reply_to_Queue fields.

At the remote server, the Routing Table contains one related entry:

When the server has completed processing the original message, the response is queued to 
the transmit queue SYS1_PRI.

Back at SYS1, the response arrives with QMgrName =SYS1_PRI. This is resolved through the 
Routing Table to match SYS1 and so the message is accepted and enqueued to the local 
queue MY_QUEUE. 

Portable application code:

Not only did the above result in minimizing Routing Table entries at the server, but also it 
promotes totally portable application code.

Consider the case in which the network in the above example is to be expanded by adding a 
new system called SYS2. The new system will run the same application software as SYS1, and 
will post requests to the same server application. 

By simply copying the unmodified application (executable) code from SYS1 to SYS2, and 
making the following Routing Table updates, all will work correctly.

At SYS2, the Routing Table contains three related entries: 

At the remote server, the Routing Table expands by only one related entry: 

At both SYS1 and SYS2, the application code uses the name “PRIORITY” as the 
Reply_to_Queue. The ALIAS_R logic resolves this correctly via the Routing Table and 
correctly directs response traffic through the server to two different remote systems through 
TRANSMIT queues which are not the default queues. 

This, of course, can be extended to any number of Message_Queue_Managers and to any 
number of TRANSMIT queues used for Response messages.

Table 7.  Remote server routing table

Obj_Name Type Q_Name QMgr_Name Xmit_QName

SYS1_PRI Transmit ---- ---- ----

Table 8.  Additional system routing table

Obj_Name Type Q_Name QMgr_Name Xmit_QName

My_Queue LOCAL ---- ---- ----

PRIORITY ALIAS_R My_Queue SYS2_PRI ----

SYS2_PRI ALIAS_M ---- SYS2 ----

Table 9.  Remote server’s new routing table

Obj_Name Type Q_Name QMgr_Name Xmit_QName

SYS1_PRI Transmit ---- ---- ----

SYS2_PRI Transmit ---- ---- ----



 

44 IBM MQSeries for UnixWare User’s Guide

Recommended naming conventions
The naming (of queue_managers, queues, and aliases) used in the MQSeries System can be 
very flexible. Each organization will have its own view of how these names should be 
constructed. Beyond conforming to the format described in “Queue name format” on page 30, 
choosing names is left entirely in the hands of the user organization. However, a few 
suggestions are provided below.

1. Don't use very long names:  Though the name fields are 48 characters long, very long 
names are cumbersome. Also, in some cases, the MQSeries System displays or 
messages may truncate very long names due to screen size limitations. In most cases 
names substantially shorter than 48 characters are sufficient.

2. Attempt to configure the MQSeries System so that all queues may be referred to by a 
one-part name:  This will maximize the “network independence,” or minimize the network 
topology knowledge required, of the distributed applications. It is desirable for applications 
to use only a queue_name rather than the two-part queue_name@queue_manager_name 
construct, allowing the MQSeries System, through its routing table, to determine the 
location of the queue. This can easily be accomplished by using remote queue definitions 
and/or aliases to identify all remote queues. (In installations which require access to a large 
number of remote queues, this may be too cumbersome to configure.)

3. Use aliases:  First, this can avoid the need to change application source code when the 
network changes or when a remote application changes. Also, aliases can be used to 
resolve incompatibilities between different naming domains. For example, if two computers 
in different companies are talking via MQSeries Systems, each company will probably want 
to name their own queues and queue managers. A “territorial” dispute is not uncommon. 
Such conflicts can be resolved by using aliases to “translate” names at the “border”.

Configuration capacities
In the current release, the major configuration elements are limited as follows:

Queue Managers: One.

Local Queue Def init ions: Unlimited. 

Alias Definitions: Unlimited. 

Remote Queue Defi nitions: Unlimited. 

Total Queue Objects: Unlimited. 

Object Handles: Unlimited. (The User may set a maximum number via the 
Define Queue Manager screen, but this number is currently 
ignored).

Channels: Maximum of 20 per MCA process.

MCA Processes : Maximum of 9.

Maximum Message Size: 64,000 bytes for LU 6.2 and TCP/IP, excluding header 
information. The User may set a system-wide maximum 
message size up to 64,000 bytes via the Define Queue 
Manager screen. The User may also set a maximum message 
size up to the system-wide maximum message size for each 
queue via the queue definition screen.



Chapter 4. Configuration 45 

System disk space requirements for the MQSeries System
The following equation may be used to provide an indication of the system disk space 
requirements. This is a general guide, the user should be aware of any particular needs and 
restrictions that his own system setup may impose. 

Total system disk space required = 
FMR MegaBytes + BMQ bytes + QDT bytes + IDX bytes + CDM bytes + LOG bytes

where the values FMR, BMQ, QDT, IDX, CDM, LOG are described below.

In the process of determining these values, it is necessary to estimate the number of queues 
and channels the user will be creating and defining. While impossible to determine an exact 
number, there are certain assumptions that can be made. A novice user will tend to delete more 
queues or channels, as they may “experiment” or make more errors. An experienced user will 
tend to delete very few queues or channels, as they only need to delete queues that were 
incorrectly created. Therefore, a reasonable assumption is that the number of queues created 
will generally be approximately twice the number of channels needed. When a queue or 
channel is deleted, the values of QDT, IDX and CDM are not decremented; system disk space 
is not freed up when a user deletes a queue, but is reused when a new queue is defined. Since 
these values are relatively small, equations are given in the following descriptions to provide a 
reasonable estimation.

To compute the system disk space requirements for the MQSeries System, the following values 
need to be determined:

1. Fixed system disk space requirements (FMR) :
Installed files take up 3.2 MegaBytes.
Therefore FMR = 3.2 MegaBytes.

2. Variable system disk space requirements :
There are 4 variable system disk space requirements.

a. The Basic system disk space requirement for each Local Queue (BMQ) : 
The value of BMQ is in bytes. 

The MQSeries System creates two files for each local queue defined. They are 
xxx.que and xxx.qul, where xxx is the local file name that the user has configured 
when defining the local queue. The system disk space requirements for the two 
files can be determined for each local queue created by using the following 
formula to compute the value of BMQ for each local queue.

BMQ = (NumMsgs * (MaxRecordSize + 588 bytes)) + 64 bytes 
where: 
NumMsgs is the number of messages on a particular queue.
MaxRecordSize is Max Message value defined for a particular queue.

The value BMQ represents the actual value of bytes used at a particular time. To 
determine the maximum value of BMQ, for each local queue, the user will have to 
estimate the maximum number of messages on the queue.

b. The Queue Definition Table system disk space requirement (QDT).
The value of QDT is in bytes and represents the total number of queues defined. 

The MQSeries System creates a file called SYSTEM.qdt. This file contains 
configuration information for each local, remote and alias queue defined by the 
user. The system disk space requirements for the file SYSTEM.qdt, can be 
determined by computing the value of QDT.

Use the following approximation to determine the value of QDT:

QDT = 320 bytes * Total # of Queues Created
where:
Total # of Queues Created is the number of queues the user has created, 
regardless of how many queues they have deleted.



 

46 IBM MQSeries for UnixWare User’s Guide

c. The Index Table system disk space requirement (IDX).
The value of IDX is in bytes and represents the number of local queues defined.

The MQSeries System creates a file called SYSTEM.idx. This file contains 
additional configuration information for each local queue defined by the user. The 
system disk space requirements for the file SYSTEM.idx, can be determined by 
computing the value of IDX. 

The number of local queues created is usually approximately twice the number of 
sender/server channels plus the number of receiver/requester channels.

Use the following approximation to compute the value of IDX:

IDX = 56 bytes * Total # of Local Queues Created
where:
Total # of Local Queues Created is the number of local queues the user has 
created, regardless of how many local queues they have deleted.

d. The Channel Database requirement (CDM).
The value of CDM is in bytes and represents the number of channels defined.

The MQSeries System creates a file called SYSTEM.cdb. This file contains 
configuration information for each channel defined by the user. The system disk 
space requirements for the file SYSTEM.cdb, can be determined by computing 
the value of CDM. 

Use the following approximation to compute the value of CDM:

CDM = 460 bytes x Total # of Channels Configured
3. Log file 

The log file(s) is always placed in the directory “/var/mqi/log”. It is recommended that the 
user has at least one MegaByte available in the “/var” partition available for the MQSeries 
System. To determine the amount of total and available system disk space in the “/var” 
partition, use the system command “/etc/dfspace” (if available) or “/etc/df”. The MQSeries 
System will write as much data as is available in the “/var” partition to the log file, and can 
use up all the system disk space in this partition. When the “/var” partition is filled, all 
subsequent log messages are written to standard error, and not to the log file. Typically, a 
user does not need a large amount of system disk space for the log file. A user would only 
need a large amount of system disk space if any of the following conditions apply:

a. The tracing function is turned on for a channel.
b. The user does not periodically clean up old log files.
c. The user performs an extraordinary large number of MCA start-ups and shutdowns.

While one MegaByte of space is recommended, a more typical range of values needed for 
the log file is two to five MegaBytes. 

Call the value needed for the log file LOG.

As an example, consider the following:

A user will need 10 channels:
4 sender channels
3 receiver channels
2 requester channels
1 server channels

The user defines 15 local queues, which is twice the number of sender/server plus the number 
of receiver/requester channels (15 = (2 * (4 + 1)) + (3 + 2)).

Each local queue has a value of 10 KiloBytes for the Max Message value. The user assumes 
that there will be a maximum of 500 messages on each queue. Therefore, NumMsgs = 500 and 
MaxRecordSize = 10 KiloBytes for each queue.

The user also creates 5 remote queues and no alias queues.



Chapter 4. Configuration 47 

Since this is an experienced user and the amount of queues that they delete is low, we can 
assume that only 2 queues will need to be deleted, due to typographical or configuration error. 
Therefore, the total number of queues the user created was 22, although 2 queues were 
deleted. 

The total number of local queues created was 15, as the user did not delete any local queues.

The user determines that the log file should be 2 MegaBytes.

Now for the calculations:

The value of FMR = 3.2 MegaBytes. 

The value of BMQ = (500 x (10240 + 588)) + 64) = 5414064 bytes or about 5.28 
MegaBytes.

The value of QDT = 320 x 22 = 7040 bytes.

The value of IDX = 56 x 15 = 840 bytes.

The value of CDM = 460 x 10 = 4600 bytes. 

The value of LOG = 2 MegaBytes.

Total System Disk Space Required = 3.2 MegaBytes + 5.28 MegaBytes + 2 MegaBytes + 
7040 bytes + 840 bytes + 4600 bytes = 10751344 bytes or about 10.5 MegaBytes. 

Notice that in this example the values of QDT, IDX and CDM are usually small compared to the 
values of FMR, BMQ and LOG. This may not always be the case, depending on how many 
queues and channels the users defines.

Configuration worksheets
The set of sample worksheets is provided in Appendix D, “Configuration worksheets” on page 
189, and is presented in a format intended for duplication and use by the MQSeries Systems 
administrator or other individuals who design, configure, or require knowledge of the MQSeries 
System network. 

The worksheets presented are: 

• System List (Message Queue Manager Names)
• Application List (Queue Names and Host Systems)
• Application Look at Queues
• System Look at Queues
• Channel List
• MQSeries System Configuration (Routing Table) Work Sheet

Each of the worksheets is presented one-worksheet-per-page on the following pages. The 
purpose and field descriptions appear at the beginning of each worksheet. Users may use all, 
some, or none of these worksheets at their discretion.



 

48 IBM MQSeries for UnixWare User’s Guide

Configuration examples
Four sample configurations are presented below.

Simple network - minimum configuration
Consider two systems, one in Chicago, one in Boston. Each system has a single 
Message_Queue_Manager which has the same name as the host city.

Both Chicago and Boston run copies of the same two applications, Application_1  and 
Application_2 , which are served by local queues App_1  and App_2  respectively.

Any application must be able to talk to any other application, but no segregation of traffic is 
required on the transmission between nodes. So, the default transmission queues are sufficient.

With the above configuration, applications at Boston may put messages to: 

App_1  (The LOCAL application)

or

App_1 @ Chicago  (The REMOTE application)

or

App_2  (The LOCAL application)

or

App_2 @ Chicago (The REMOTE application)

Similarly, applications at Chicago may put messages to: 

App_1 (The LOCAL application)

or

App_1 @ Boston (The REMOTE application)

or

App_2 (The LOCAL application)

or

App_2 @ Boston (The REMOTE application)

Table 10.  Minimal Boston routing table

Obj_Name Type Q_Name QMgr_Name Xmit_QName

App_1 Local --- --- ---

App_2 Local --- --- ---

Chicago Transmit --- --- ---

Table 11.  Minimal Chicago routing table

Obj_Name Type Q_Name QMgr_Name Xmit_QName

App_1 Local --- --- ---

App_2 Local --- --- ---

Boston Transmit --- --- ---



Chapter 4. Configuration 49 

Simple network - improved configuration
This simple configuration in the preceding example is workable, but it requires the applications 
to be aware of “Boston” and “Chicago” as the existing transmission queues.

This configuration could be improved as follows:

With the above configuration, and complementary changes to the Chicago Routing Table, 
applications at either Chicago or Boston may put messages to: 

App_1 (The LOCAL application)

or

Rem_App_1 (The REMOTE application)

or

App_2 (The LOCAL application)

or

Rem_App_2 (The REMOTE application)

Simple network - improved configuration #2
A similar result could also be achieved with an alternative Routing Table using ALIAS_M 
entries, for example:

With the above configuration, and similar changes to the Chicago Routing Table, applications at 
either Chicago or Boston may put messages to: 

App_1 (The LOCAL application)

or

App_1 @ Remote (The REMOTE application)

or

App_2 (The LOCAL application)

or

App_2 @ Remote (The REMOTE application)

Table 12.  Improved Boston routing table

Obj_Name Type Q_Name QMgr_Name Xmit_QName

App_1 Local --- --- ---

App_2 Local --- --- ---

Rem_App_1 Remote App_1 Chicago ---

Rem_App_2 Remote App_2 Chicago ---

Chicago Transmit --- --- ---

Table 13.  Improved Boston routing table using ALIAS_M

Obj_Name Type Q_Name QMgr_Name Xmit_QName

App_1 Local --- --- ---

App_2 Local --- --- ---

Remote Alias_M --- Chicago ---

Chicago Transmit --- --- ---



 

50 IBM MQSeries for UnixWare User’s Guide

Complex network - recommended con figuration 
Consider three host systems, one in Chicago, one in NewYork, one in Boston. Each of these 
systems has a single Message_Queue_Manager which has the same name as the host city.

Both Chicago and Boston run copies of the same four applications, Application_1 , 
Application_2 , Application_3 , and Security . At both locations, these applications are served 
by local queues App_1 , App_2 , App_3,  and Sec respectively. The first three applications at 
these sites interact only with a server at New York but not with each other. Additionally, App_3  
uses a segregated priority transmission queue.

New York is a centralized server site running two applications, Server and Security. Server is 
an “advanced” application which is served by two local queues Nor_Req and Pri_Req . 
Typically the remote applications #1 and #2 send normal traffic to Nor_Req . Application #3 
sends “high priority requests” to Pri_Req . 

At all three locations, the Security  applications may talk to any other Security  application but 
their “classified” traffic must be segregated from the other applications' traffic. That is they must 
have a separate transmission queue.

Finally, in addition to these 3 host systems, there are fifty (50) distributed LANs, one in every 
state. Each LAN supports up to 20 applications which can generate both normal and priority 
requests to Server  at New York. The normal and priority traffic must have segregated 
transmission queues to and from the server system.

Table 14.  Boston host routing table 

Obj_Name Type Q_Name QMgr_Name Xmit_QName

App_1 Local --- --- ---

App_2 Local --- --- ---

App_3 Local --- --- ---

Sec Local --- --- ---

NewYork Transmit --- --- ---

NY_Priority Transmit --- --- ---

NY_Secure Transmit --- --- ---

Chicago Transmit --- --- ---

Chi_Secure Transmit --- --- ---

Sec_NY Remote Security NewYork NY_Secure

Sec_Chi Remote Security Chicago Chi_Secure

Nor_Req Remote Nor_Req NewYork ---

Pri_Req Remote Pri_Req NewYork NY_Priority

Pri_Reply Alias_R App_3 Boston_Pri ---

Boston_Pri Alias_M --- Boston ---



Chapter 4. Configuration 51 

Table 15.  Chicago host routing table 

Obj_Name Type Q_Name QMgr_Name Xmit_QName

App_1 Local --- --- ---

App_2 Local --- --- ---

App_3 Local --- --- ---

Sec Local --- --- ---

NewYork Transmit --- --- ---

NY_Priority Transmit --- --- ---

NY_Secure Transmit --- --- ---

Boston Transmit --- --- ---

Bos_Secure Transmit --- --- ---

Sec_NY Remote Security NewYork NY_Secure

Sec_Bos Remote Security Boston Bos_Secure

Nor_Req Remote Nor_Req NewYork ---

Pri_Req Remote Pri_Req NewYork NY_Priority

Pri_Reply Alias_R App_3 Chicago_Pri ---

Chicago_Pri Alias_M --- Chicago ---



 

52 IBM MQSeries for UnixWare User’s Guide

 

With the above Routing Table configurations, applications at either Boston or Chicago or any of 
the 50 State LANs may PUT messages to:

Table 16.  New York host routing table 

Obj_Name Type Q_Name QMgr_Name Xmit_QName

Nor_Req Local --- --- ---

Pri_Req Local --- --- ---

Sec Local --- --- ---

Chicago Transmit --- --- ---

Chicago_Pri Transmit --- --- ---

Chicago_Sec Transmit --- --- ---

Boston Transmit --- --- ---

Boston_Pri Transmit --- --- ---

Boston_Sec Transmit --- --- ---

Alabama Transmit --- --- ---

Alabama_Pri Transmit --- --- ---

Repeat above pair for all 50 State LANs

Wyoming Transmit --- --- ---

Wyoming_Pri Transmit --- --- ---

NY_Priority Alias_M --- NewYork ---

Table 17.  State LAN routing table (identical at each site except for state name) 

Obj_Name Type Q_Name QMgr_Name Xmit_QName

LAN_App_1 Local --- --- ---

Repeat above for all LAN Applications

LAN_App_20 Local --- --- ---

NewYork Transmit --- --- ---

NY_Priority Transmit --- --- ---

Nor_Req Remote Nor_Req NewYork ---

Pri_Req Remote Pri_Req NewYork NY_Priority

Nor_Reply_1 Alias_R LAN_App_1 StateName ---

 Pri_Reply_1 Alias_R LAN_App_1 StateName_Pri ---

Repeat above two lines for all LAN Applications

StateName_Pri Alias_M StateName --- ---



Chapter 4. Configuration 53 

Nor_Req (to Server  at NewYork  via “normal” path) 

or

Pri_Req  (to Server  at NewYork  via “fast” path including segregated Transmission Queue)

Any replies from Server  may be specified by the originating application to be returned via 
Pri_Reply  (or Pri_Reply_n  for LAN Applications) which will use the segregated transmission 
queue for high-priority responses from New York back to whichever system originated the 
request.

Also, applications at the Boston or Chicago hosts may PUT messages to:

Sec_NY (to Security  at NewYork  via “secure” path including segregated Transmission 
Queue)

Notice that the Security  applications are fully defined as REMOTE queues at all of the three 
major hosts. Thus no ALIAS_R routing entries are required, yet all traffic (including responses) 
can flow over the segregated Secure transmission queues.

Finally, consider the Routing Table entries required to support the Server  application at 
NewYork. Entries are needed for 106 TRANSMIT queues (2 to each of 50 LANs and 3 to each 
of the other hosts). While this is a large number of entries, realize that it allows for segregated 
responses to each of more than 1,000 applications (20 at each LAN plus those at the hosts). To 
provide this same capability using only REMOTE queue definitions at the server (and not using 
ALIAS_R logic) would require the New York Routing Table to be over 2,000 entries (a normal 
path and a priority path to each remote application).

IBM MQSeries Version 1 UNIX product configuration guidelines

Channel configuration guidelines
When configuring the channel, use the following guidelines for the following fields:

Disconnect Timeout The Disconnect Timeout field represents the number of seconds 
before a sender or server channel disconnects due to an idle 
(empty) transmit queue.

For SNA Channels, consider the LU6.2 resources being used by 
both ends of the channel. For example, on a mainframe using CICS, 
it is relatively “expensive” in terms of system resources, to keep a 
LU 6.2 transaction up and active (for example, SNA sessions per LU 
may be limited). Therefore, typically the Disconnect Timeout on a 
mainframe, will be very small (in the order of 1 to 5 seconds).

On most UNIX and Tandem operating systems, it is relatively 
“inexpensive”, in terms of system resources, to keep a transaction 
up and active. Therefore, either a large timeout value (in the order of 
60 to 300 seconds) or even the infinite value of “0” may be 
acceptable. 

For TCP/IP Channels, the only major factor to consider is the actual 
setup time for the TCP/IP connections to complete. If the setup time 
is large, you may want to consider keeping the Disconnect Timeout 
value large (in the order of 60 to 300 seconds) or infinite. If the setup 
time is small, then the Disconnect Timeout value can be kept to a 
relatively small value (in the order of 5 to 30 seconds).

The default value for the Disconnect Timeout when creating a 
channel definition is “0”. With this value, the sender or server 
channel will never disconnect normally except by a channel disable 
command.



 

54 IBM MQSeries for UnixWare User’s Guide

Retry Count The Retry Count field represents the number of times a connection 
is retried either when communications have not been established, or 
when communications have been established but have 
subsequently disconnected abnormally. Each retry is performed at 
the interval specified in the Reconnect Timeout field.

If the Retry Count is too small and the channel is constantly 
disconnecting, then the channel will exhaust its retries, the channel 
status on the Monitor Channel screen will show up as DISABLED, 
and operator intervention will be necessary to enable the channels.

If the Retry Count is large, then connection retries will proceed 
automatically without operator intervention. This is usually the 
preferred mode of operation. However, the Monitor Channel status 
for such a channel will show a status of IDLE and will not appear to 
be having a problem. Only by monitoring the queues and noting that 
the channel's transmit queue depth is non zero and not decreasing, 
or by monitoring the log file and noting the repetitive connect 
attempts and failures, will the operator realize there is a channel 
problem. The other drawback to a large Retry Count, is that it may 
use a significant amount of some system resources, especially if 
SNA channels are being used.

The default value for the Retry Count when creating a channel 
definition is “0”. With this value, connection retries will not occur. It is 
usually better to have a large Retry Count specified, in the order of 
100 to 10000.

Reconnect Timer The Reconnect Timer field represents the length of time in seconds 
before a reconnect is attempted.

The only consideration is not to make the Reconnect Timer too 
small of a value, since it is possible to retry a connection too quickly. 
In this case, the retry will most likely fail, and system resources will 
be wasted. Therefore, a value larger than 15 seconds is 
recommended.

The default value for the Reconnect Timer when creating a channel 
definition is “0”.

Checkpoint Count The Checkpoint Count field represents the number of messages 
that will be sent or received before a checkpoint of the channel 
information will be written to the system channel database.

If this value is low, in the order of 1 to 5, there is more system 
overhead I/O being performed, reducing the channel throughput 
(messages per second), and also reducing the channel restart time 
(message sequence number recovery) after an MCA restart.

If this value is high, in the order of 50 or greater, then channel 
throughput will be higher, but channel recovery will take longer.

The default value chosen for the Checkpoint Count is “10”, as this 
represents a good compromise, between system overhead and 
channel recovery overhead.

Line Check Timeout The Line Check Timeout is the length of time in seconds between 
the transmission of line check messages. This definition applies 
only to Sender and Server Channels. Line check messages are 
used to determine if the remote partner is still connected. Line check 
messages will be sent while the connection is active, but only during 
the Disconnect Timeout interval.



Chapter 4. Configuration 55 

The Line Check Timeout must be smaller than Disconnect Timeout. 
If it is set too small (that is, in the order of 1 - 5 seconds), the 
channel will be very busy sending and receiving line checks, and 
degrading MCA performance for other active channels. A number in 
the range of 15-30 seconds would be reasonable.

Another guideline is to make the Line Check Timeout value 
one-fourth the value of the Disconnect Timeout.

The default value for Line Check Timeout when creating a channel 
definition is “0”. With this value, line checks will not occur during the 
Disconnect Timeout interval. However, the Sender or Server MCA 
will still be able to detect and log the abnormal termination of a 
TCP/IP socket connection or an SNA connection.

Message Size The Message Size field represents the maximum length of a 
message processed by this channel.

This field needs to be large enough to accommodate the largest 
message. 

Therefore, if the anticipated largest message will be 2KB, the Max 
Message field should be 2KB (where KB equals 1024 bytes). If the 
largest message size is unknown, the default value of almost 64KB 
should be sufficient, but may be inefficient. As each installation is 
site-dependent, the best value will vary.

The default value for Max Message when creating a channel 
definition is the value specified for this field in the Queue Manager 
configuration.

MSN Wrap Count The MSN Wrap Count field represents the highest MSN (Message 
Sequence Number) value which will be used on this channel, after 
which it will revert to 1.

The value of the MSN Wrap Count must be the same at both the 
sending and receiving ends of the channel.

The default value for the MSN Wrap Count is “999999”. This value is 
the recommended value. 



 

56 IBM MQSeries for UnixWare User’s Guide

Queue manager configuration guidelines
When configuring the Queue Manager, use the following guidelines for the following fields:

Max Message The Max Message field represents the maximum length of a 
message processed by this MQSeries installation. No individual 
queue may have a Max Message size greater than that defined in 
the Queue Manager.

This field needs to be large enough to accommodate the largest 
message. This value should not be any larger than necessary, since 
any messages that are placed on the dead letter queue will also use 
up this amount of space on the disk ( the dead letter queue is 
created automatically with this Max Message size as soon as the 
Queue Manager record is defined).

Therefore, if the anticipated largest message will be 2KB, then the 
Max Message field should be 2KB. If the largest message size is 
unknown, the default value of almost 64KB should be sufficient, but 
may be inefficient. As each installation is site-dependent, the best 
value will vary.

Max Poll Time The Max Poll Time field represents the time in milliseconds between 
polls of a message queue, when there is an MQGET call using the 
wait option.

If the application will not be using the MQGET call with the wait 
option, then the value for poll time has no usage and can be set to 
zero.

If the application will be using the MQGET call with the wait option, 
the Max Poll Time value is very significant. If the value is a high rate, 
in the order of 50 milliseconds, a lot of disk access will degrade 
system performance. If the value is a slow rate, in the order of 250 to 
500 milliseconds, then the application may not respond fast enough 
to an arriving message. In addition, another application could 
potentially read the data during the wait interval, assuming the 
queue was opened for shared access.

The default value for the Max Poll Time when creating the Queue 
Manager definition is “100”, as this represents a good compromise, 
between system performance and slow application access.

CAUTION: Do not set this field value to “0”; severe performance 
degradation will occur.

Queue configuration guidelines
When configuring a queue, use the following guidelines for the following fields:

Max Queue Depth The Max Queue Depth field represents the maximum number of 
messages allowed on this queue. A value of “999999999” means 
that the depth is unlimited.

The value should be set to the maximum number of messages 
expected to be queued before an application or MCA starts to read 
and process the queue. Adding an extra 25% as a safety factor 
should be sufficient.

If the value is set too low, the queue could fill up too fast. An MCA 
attempting to put a received message on a full queue will get back 
an error and will be forced to put the message on the dead letter 
queue or return a rejection to the remote MCA if the dead letter 
queue is full.

The default value for Max Queue Depth when creating a queue 
definition is “999999999”.



Chapter 4. Configuration 57 

Max Message The Max Message field represents the maximum length of a 
message processed on this queue.

This field needs to be large enough to accommodate the largest 
message. 

Therefore, if the anticipated largest message size will be 2KB, the 
Max Message field should be 2KB. If the largest message size is 
unknown, the default value of almost 64KB should be sufficient, but 
may be inefficient. As each installation is site-dependent, the best 
value will vary.

The default value for Max Message when creating a queue definition 
is the value specified for this field in the Queue Manager 
configuration.

Auto Purge The Auto Purge field indicates whether or not automatic purging of 
deleted messages will occur on a queue. When the value “Y” or “L” 
is selected, a purge occurs when new messages are written to a 
queue under the following conditions:

• The queue depth is zero, AND 

• Deleted messages exist in this queue, AND

• The number of current queue users is limited to the current 
process, which is putting a new message on the queue (The 
Monitor Local Queues screen will show a USERS count of 
0).

The value “Y”, means that the system will always purge queues 
when possible. The value “L”, means that the system will only purge 
queues during the times specified by the “From” and “To” fields.

It is desirable to have Auto Purge enabled so that disk space is 
freed up automatically without operator intervention (otherwise this 
can be done using the MQM Purge Deleted Messages operations 
command). However, if there is a need to browse through deleted 
messages for a given queue, then Auto Purge should be disabled.

The default value for Auto Purge is “N” when creating a queue 
definition.

Number of channels per MCA guidelines
The MQSeries System has a limit of 9 MCA processes that can be supported, and a limit of 20 
channels per MCA process. If it is necessary to run more than this number of channels, at least 
one MCA process must be configured to handle more than one channel. 

One disadvantage to having multiple channels per MCA process is that if the MCA process is 
terminated (“killed” in UNIX terminology), then all the associated channels for that MCA process 
are also terminated.

Multiple MCA guidelines
As described earlier, if the channel count is greater than the maximum per MCA, it is necessary 
to use multiple MCAs.

Channel servicing is “multi-threaded”. Therefore, there is no difference in the way MQSeries 
System services channels regardless of whether the channels are defined to one or more 
MCAs.



 

58 IBM MQSeries for UnixWare User’s Guide

Kernel configuration guidelines
It may be necessary to tune the kernel interprocess communication parameter SHMSEG to 
obtain the 9 MCA process configuration limit (see “Configuration capacities” on page 44). If the 
SHMSEG value in /etc/conf/cf.d/stune is less than 9, use the utility idtune to set it to at least 
that value (see the UnixWare manual “System Administration, System Performance 
Administration”). The system must be rebooted if the kernel parameter is changed.

Example configuration:
In this example, the user will be using both SNA and TCP/IP Channels and has computed the 
maximum message size to be 8KB. The SNA channels will be connecting to a mainframe.

Reasonable MQSeries System configuration values would be:

For the SNA Channels: 

For the TCP/IP Channels: 

If too many disconnects occur, increase the Disconnect Timeout value.

For the Queue Manager: 

For the Queue : 

Field Value Units

Disconnect Timeout 5 seconds

Retry Count 10000 integer

Reconnect Timer 30 seconds

Checkpoint Count 10 integer

Line Check Timeout 30 seconds

Field Value Units

Disconnect Timeout 60 seconds

Retry Count 10000 integer

Reconnect Timer 30 seconds

Checkpoint Count 10 integer

Line Check Timeout 30 seconds

Field Value Units

Max Message 8 KB

Max Poll Time 100 milliseconds

Field Value Units

Max Queue Depth 999999999 integer

Max Message 8 KB

Auto Purge Y character



© Copyright IBM Corp. 1993, 1997 59

Chapter 5.  System operation

This chapter will describe the system operation and administration functions available in IBM 
MQSeries for UnixWare. Most such functions are provided through the menu-driven, 
screen-oriented program called Message Queue Management (MQM). 

The menus and display screens of MQM are organized in a hierarchy as depicted in the 
following diagram.

Figure 19.  System administration relationships

In the next section, the main MQM menu is presented. The subsequent sections will present 
each of the operator functions available through these screens. The final section in this chapter 
will present those few functions which require operator action outside the MQM program.

IMPORTANT:  After you have configured the system, or after having completed any significant 
portion of that effort, you should make a backup copy of the critical files, as follows: 

cd <config.path>
cp SYSTEM.cdb SYSTEM.cdb.SAV
cp SYSTEM.idx SYSTEM.idx.SAV
cp SYSTEM.qdt SYSTEM.qdt.SAV

By performing this backup, you will have a “clean” copy of the channel database in case the 
original becomes corrupted, for any reason.

Reset MSN

Start/Stop Trace

Enable/Disable

Create 
Queue 

Configuration Operations Browse

Select Channel to 
Enable/Disable

Select Channel 
to Trace

Monitor All 
Local 

Queues

Main Menu

Select Queue 
to Browse

Monitor All 
Channels

Select Channel 
to Reset

Select Queue 
& Purge

Monitor

Browse

Create Local
Create Alias
Create Remote

Select Queue 
to Modify 

Modify Local
Modify Alias

Modify Remote

Select Queue 
to Delete

Verify/Delete

Create

Channel
Transport

Options

Select Channel 
to Modify

Modify Channel

Select Channel 
to Delete

Verify/Delete

Select Queue 
to Display

Queue Display

Queue Mgr.
Display

Select Channel 
to Display

Display Channel

Terminate MCA

Modify Queue 
Mgr.



 

60 IBM MQSeries for UnixWare User’s Guide

MQM operator interface - main menu

The MQSeries System administrator program, MQM, may be executed on any system at which 
the MQSeries System has been installed except for a “MQI application only” system (see “The 
MQSeries System’s distributed architecture on UNIX” on page 3). To invoke MQM, simply type 
the following at the system prompt:

mqm

When MQM starts, the Main Menu is displayed.

Figure 20.  Main menu

From the Main Menu, one of several sub-menus may be selected. The first three choices 
correspond to broad categories which include most MQSeries System operator functions: 

• Configuring the MQSeries System
• Operating (controlling) the MQSeries System
• Monitoring the MQSeries System

The fourth function allows the operator to display the records on a selected queue.
• Browsing MQSeries System Queues

Each sub-menu presents a list of operator functions available from that screen. When a specific 
function is selected, the appropriate data entry or data display screens are presented to the 
operator.

Press <Ctrl-X > to exit MQM.

Note: There is one case in which MQM does not start at the Main Menu. The first time MQM 
is executed, it detects that no Message Queue Manager has been configured and 
branches directly to the Message Queue Manager definition screen. This might also 
happen if MQM cannot find the MQSeries System configuration files from the host 
workstation or if the MQSeries System configuration files have been corrupted.

Operator action keys 

The action keys available on each MQSeries System operator screen are displayed at the 
bottom of the screen with an explanation of their function. These keys have been selected so 
that they are available from all types of keyboards, including ASCII terminals, and so that they 
conform to conventional UNIX key usage. For example, the cursor movement keys correspond 
to those used by the vi editor.

IBM MQSeries for UnixWare Version 1
** Main Menu **

Enter Choice: 1

1. Configuration

2. Operation

3. Monitoring

4. Browse QUEUE records

<return> - Select Option <esc> - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit mqm
63H9503,5697-265 (C) Copyright IBM Corp. 1993, 1997 All Rights Reserved



Chapter 5. System operation 61 

Configuration functions

Selecting option 1 (Configuration) from the Main Menu causes MQM to display the following 
sub-menu screen:

Figure 21.  Configuration menu

From this screen, the operator can add, modify, delete, or display various MQSeries System 
configuration objects. 

Press <Ctrl-X > to return to the Main Menu.

Modify queue manager

For each installation of the MQSeries System, one and only one Queue Manager must be 
defined. This is accomplished through the following screen:

Figure 22.  Queue manager 

IBM MQSeries for UnixWare Version 1
** Configuration Menu **

Enter Choice: 1

1. Modify Queue Manager
2. Display Queue Manager

3. Create Queue
4. Modify Queue
5. Delete Queue
6. Display Queue

7. Create Channel
8. Modify Channel
9. Delete Channel
10. Display Channel

<return> - Select Option <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Go to previous menu

IBM MQSeries for UnixWare Version 1
** Queue Manager **

         Name: SYS1QMGR
  Description: Queue Manager for SYS1
  Config Path: /home/ssi/transact/comb/mqi
Dead Letter Q: DEADLETTER
    Char. Set: 437
  Max Handles: 0
  Max Message: 1024
Max Poll time: 100
 MCA Hostname: 

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

62 IBM MQSeries for UnixWare User’s Guide

On this screen, the data entry fields are as follows:

Name: This is the name of the local queue manager for this MQSeries 
System installation. The name may be up to 48 characters and must 
conform to the MQI naming requirements.

Description: This is a text field for operator use only. It may be up to 64 
characters.

Config Path: This is the path to the disk directory which contains the MQSeries 
System configuration database. 

Dead Letter Q: This is the name of the queue to which messages will be queued by 
the MQSeries System if they cannot be properly enqueued to their 
intended destination queue. Any messages directed to this queue 
will require operator action to recover.

Char. Set: This is a numeric field which identifies the Coded Character Set ID 
(CCSID) used by the Sun Solaris system. This value is used by the 
MQSeries System to determine the translation required for message 
headers between various hardware platforms on the network. The user 
data portion of messages is not translated.

This value must be any valid CCSID defined by IBM. Some of the 
CCSIDs recognized by MQSeries Systems follow:

Canada/French ASCII 863
Denmark/Norway EBCDIC 277
Finland/Sweden EBCDIC 278
France EBCDIC 297
Germany EBCDIC 273
Iceland EBCDIC 871
International EBCDIC 500
Italy EBCDIC 280
Latin Alphabet ASCII 819
Multilingual ASCII 850
Nordic ASCII 865
Portugal ASCII 860
Spain EBCDIC 284
UK EBCDIC 285
USA ASCII 437
USA EBCDIC 37

Note:  In the initial release of IBM MQSeries for UnixWare, characters used in any message 
header field must be restricted to the characters which are valid for queue names, as 
described in “Queue name format” on page 30.

Max Handles: (This field is currently ignored.)

Max Message: This is a numeric field specifying the maximum length of a message 
processed by this MQSeries System installation. This length is used 
in the initial negotiation of communications channels to other 
MQSeries Systems. This will only affect queues created subsequent 
to the modification of this field.

Max Poll time: This is the time in msec between polls of a message queue, when 
there is an MQGET call with wait. The lower this number, the more 
frequently the disk drive is kept busy. Queue polling is used in the 
support of application triggering. (See “Triggering” on page 110.)



Chapter 5. System operation 63 

MCA Host name: This is the TCP/IP hostname of the system acting as the MQI server 
for the transmission of messages to remote systems. (See “The 
MCAMD process” on page 102.) If the queue manager being 
configured is on the MQI server system, the MCA Hostname field may 
be left blank. If the field is blank, the MQM utility will communicate with 
the MCAMD via UNIX domain sockets. If the field is not blank, then it 
should contain the TCP/IP hostname of the MQI server system 
(which must match a hostname given in the /etc/hosts file). The 
MQM utility will then communicate with the MCAMD via Internet domain 
sockets. If the MQM utility is executed on the MQI server system, it is 
more efficient to leave the field blank because there is less 
overhead in UNIX domain sockets than Internet domain sockets. If 
the MQM utility is executed on an “MQI application only” system, the 
field MUST contain the Internet hostname of the MQI server system.

Note: All MCAs must be terminated and restarted for the Queue Manager modification to take 
effect.

The screen may be exited with either <Ctrl-X >, to discard changes, or with <Ctrl-W >, to save 
changes. Both of these cause the return to the Configuration Menu.

Display queue manager

Choice 2 on the Configuration Menu allows an operator to view the attributes defined for the 
local queue manager through the following screen:

Figure 23.  Display queue manager

This is a display only screen. 

The operator may press any key to return to the Configuration Menu.

IBM MQSeries for UnixWare Version 1
** Display Queue Manager **

         Name: SYS1QMGR
  Description: Queue Manager for SYS1
  Config Path: /home/ssi/transact/comb/mqi
Dead Letter Q: DEADLETTER
    Char. Set: 437
  Max Handles: 0
  Max Message: 1024
Max Poll time: 100
 MCA Hostname: 

*** Press any key to continue ***



 

64 IBM MQSeries for UnixWare User’s Guide

Create queue

Choice 3 on the Configuration Menu allows an operator to create queue definitions as required 
in order to configure the local installation of the MQSeries System. 

To define a queue, two screens are involved. The first screen is the same for all queues. It 
allows entry of the queue name and type. Based on the type entered, the appropriate second 
screen is displayed for the operator to enter the remainder of the data to complete the definition. 
The first screen displayed is:

Figure 24.  Define queues

On this screen, the data entry fields are:

Queue Type: This is a two-character field with the acceptable entries listed on the screen. 
The type determines the next screen to be displayed.

Name: This is the name of the queue (or alias) being defined. The name may be up 
to 48 characters, must be unique among all other defined queues for this 
installation, and must conform to the MQI naming requirements.

IBM MQSeries for UnixWare Version 1
** Define Queue Name **

Queue Type: L L=Local, R=Remote, AQ=Alias Queue
AM=Alias Queue Manager
AR=Alias Reply Queue

Name: Example_Local_Queue

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 65 

Upon entry of the above two fields, one of the following screens is displayed:

Create local queue

Figure 25.  Create local queue

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Text field for operator use only. It may be up to 64 characters.

Usage: Normal means the queue is used by an application to receive 
inbound messages. Transmission means the queue is used by the 
MQSeries System to hold outbound messages destined for another 
MQSeries System queue manager.

File Name: The 8-character field indicating the UNIX file name used to store 
messages for this queue. This must be a valid filename and “.que” is 
appended.

Max Queue Depth: The maximum number of messages allowed on this queue. A value 
of 999999999 means depth is unlimited.

Max Message: The maximum length of application data in a message processed on 
this queue.

Note: The value chosen for the Max Message size can affect performance (messages per 
second and/or CPU time per message). For example, if the Max Message size is set to 
64,000 bytes, but only 100 byte messages are sent to a queue, it can cost the same in 
elapsed and CPU time to MQPUT or MQGET to the queue as it would have if every 
message were a full 64,000 bytes.

Auto Purge: This field can only be filled in with either a ‘Y’, ‘N’, or ‘L’. These 
values mean that:

Y - Yes, always purge queues when possible.
N - No, do not automatically purge queues.
L - Yes, but only during the times specified by the From and To 
fields.

When Y or L is selected, purges occur when new messages are 
written to a queue under the following conditions:

• the queue depth is 0, and
• deleted messages exist in this queue, and
• the number of current users is limited to the current process only.

IBM MQSeries for UnixWare Version 1
** Create Local Queue **

 Name: Example_Local_Queue
   Description: This is an example local queue

     Usage: 0    0 = Normal, 1 = Transmission
 File Name: exlocque

Max Queue Depth: 100
    Max Message: 1024

Auto Purge: L Y - Yes N - No L - Limit
From: 14:31 To: 04:59

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

66 IBM MQSeries for UnixWare User’s Guide

Note that for an active queue, these conditions could mean that 
messages are not auto purged. The presence of unpurged 
messages on a queue can affect performance.

From: This field (though always editable) is only used when Auto Purge is 
set to ‘L’. It must be specified in 24-hour clock format (HH:MM). This 
is the beginning time for automatic queue purging.

To: This field (though always editable) is only used when Auto Purge is 
set to ‘L’. It must be specified in 24-hour clock format (HH:MM). This 
is the ending time for automatic queue purging. This value may be 
less than the From time if automatic queue purging is to begin prior 
to midnight and continue through morning.

Note: Two fields, Inhibit Get and Inhibit Put, are not displayed but are set to default values of 
‘N’. They can be modified on the Modify Local Queue screen. (See “Modify local 
queue” on page 70.)

Upon exiting this screen, the program returns to the Configuration Menu.

Create remote queue

Figure 26.  Create remote queue

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Text field for operator use only. It may be up to 64 characters.

Remote Queue Name: The queue name on the remote MQSeries System to which the 
definition in progress will refer.

Remote Queue Manager: The name of the remote MQSeries System on which Remote 
Queue Name is defined as a local queue. This name must be 
defined as a local transmission queue unless the following field 
is used.

Transmit Queue Name: The name of the local transmission queue to be used by 
MQSeries System to convey messages to this remote queue. If 
left blank then the Remote Queue Manager is required to map 
to a local transmission queue.

Upon exiting this screen, the program returns to the Configuration Menu.

IBM MQSeries for UnixWare Version 1
** Create Remote Queue **

          Name: Example_Remote_Queue
   Description: This is an example remote queue

    Remote Queue Name: AR_Process_Queue
 Remote Queue Manager: AR_Queue_Manager
  Transmit Queue Name: 

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 67 

Create alias queue 

Figure 27.  Create alias queue

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Text field for operator use only. It may be up to 64 characters.

Alias To: The name of another object already defined in the local configuration. This 
can be a local queue name, or a remote queue name. It cannot identify 
another alias.

Upon exiting this screen, the program returns to the Configuration Menu.

IBM MQSeries for UnixWare Version 1
** Create Alias Queue **

          Name: Example_Queue_Alias
   Description: This is an example alias queue
      Alias To: Example_Local_Queue

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

68 IBM MQSeries for UnixWare User’s Guide

Create alias queue manager 

Figure 28.  Create alias queue manager

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Text field for operator use only. It may be up to 64 characters.

Alias To: The name of a known queue manager. This can be a local 
transmit queue name, a remote queue manager name, or the 
local queue manager name. It cannot identify another alias. 

This name must be the local queue manager or a local 
transmission queue unless the following field is used.

Transmit Queue Name: The name of the local transmission queue to be used by the 
MQSeries System to convey messages to this remote queue 
manager. If left blank, then the Alias To:  field is required to 
map to a local transmission queue or to the local queue 
manager name.

Upon exiting this screen, the program returns to the Configuration Menu.

IBM MQSeries for UnixWare Version 1
** Create Alias Queue Manager **

               Name: Example_Alias
        Description: This is an example alias queue manager
           Alias To: Example_Queue_Manager

Transmit Queue Name:

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 69 

Create alias reply queue 

Figure 29.  Create alias reply queue 

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Text field for operator use only. It may be up to 64 characters.

Reply Queue Name: This is the queue name that will replace the ReplyToQ field in 
the MQMD. 

Reply Queue Manager: This is the queue manager name that will replace the 
ReplyToQMgr field in the MQMD.

Upon exiting this screen, the program returns to the Configuration Menu.

IBM MQSeries for UnixWare Version 1
** Create Alias Reply Queue  **

Name: Example_Reply_Queue
Description: This is an example reply queue definition

   Reply Queue Name: Local_Queue
Reply Queue Manager: SSI

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

70 IBM MQSeries for UnixWare User’s Guide

Modify queue

Choice 4 on the Configuration Menu allows an operator to modify existing queue definitions. 

To modify a queue, two screens are involved. The first allows the operator to select the desired 
queue from a list of defined queues. Based on the selection, the appropriate second screen is 
displayed for the operator to enter the remainder of the data to complete the modification. The 
first screen displayed is: 

Figure 30.  Select queue to modify

On this screen, each line displays the name and type of a defined queue. The operator uses the 
cursor control keys to highlight the desired queue and then presses <Return > to select the 
queue. The operator may also press <Ctrl-X > to return to the Configuration Menu. Based on the 
attributes of the selected queue, one of the following screens is displayed:

Modify local queue 

Figure 31.  Modify local queue

IBM MQSeries for UnixWare Version 1
** Select Queue to Modify**

Local_Queue LOCAL
Queue_Alias ALIAS
To_VMS_Queue REMOTE
Transmit_Queue TRANSMIT
DEADLETTER LOCAL
DefMan MGR ALIAS
Example_Local_Queue LOCAL
Example_Queue_Alias ALIAS
Example_Remote_Queue REMOTE
VAXINP TRANSMIT
VAXOUT LOCAL
VAXQMGR TRANSMIT
VMS_Queue_Manager TRANSMIT

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1
** Modify Local Queue **

Name: Example_Local_Queue
Description: This is an example local queue

Usage: 0 0 = Normal, 1 = Transmission
File Name: exlocq

   Max Message: 1024

 Max Queue Depth: 0
Inhibit Get[Y/N]: N
Inhibit Put[Y/N]: N

Auto Purge: L Y - Yes N - No L - Limit
From: 14:31 To: 04:59

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 71 

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Same as during queue creation. Cannot be modified.

Usage: Same as during queue creation. Cannot be modified.

File Name: Same as during queue creation. Cannot be modified.

Max Message: Same as during queue creation. Cannot be modified.

Max Queue Depth: Same as during queue creation.

Inhibit Get: This is a toggle which enables/disables MQGET operations 
against this queue. MQGET retrieves a message from a local 
queue that has been opened with an MQOPEN call.

Inhibit Put: This is a toggle which enables/disables MQPUT operations 
against this queue. MQPUT puts a message on a queue that has 
been opened with an MQOPEN call

Auto Purge: Same as during queue creation. Processes that have the queue 
open will recognize this modification.

From: Same as during queue creation.

To: Same as during queue creation.

Upon exiting this screen, the program returns to the Select Queue to Modify screen.

Modify remote queue

Figure 32.  Modify remote queue 

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Same as during queue creation. Cannot be modified.

Remote Queue Name: Same as during queue creation. Cannot be modified.

Remote Queue Manager: Same as during queue creation. Cannot be modified.

Transmit Queue Name: Same as during queue creation. Cannot be modified.

Inhibit Put: Same as for a local queue.

Upon exiting this screen, the program returns to the Select Queue to Modify screen.

IBM MQSeries for UnixWare Version 1
** Modify Remote Queue **

          Name: Example_Remote_Queue
   Description: This is an example remote queue

   Remote Queue Name: AR_Process_Queue
Remote Queue Manager: AR_Queue_Manager
 Transmit Queue Name: 

Inhibit Put[Y/N]: N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

72 IBM MQSeries for UnixWare User’s Guide

Modify alias queue

Figure 33.  Modify alias queue

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Same as during queue creation. Cannot be modified.

Alias To: Same as during queue creation. Cannot be modified.

Inhibit Get: Same as for a local queue.

Inhibit Put: Same as for a local queue.

Upon exiting this screen, the program returns to the Select Queue to Modify screen.

Modify alias queue manager 

Figure 34.  Modify alias queue manager

IBM MQSeries for UnixWare Version 1
** Modify Alias Queue **

          Name: Example_Queue_Alias
   Description: This is an example alias queue
      Alias To: Example_Local_Queue

    Inhibit Get[Y/N]: N
    Inhibit Put[Y/N]: N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes

IBM MQSeries for UnixWare Version 1
** Modify Alias Queue Manager**

               Name: Example_Alias
        Description: This is an example alias queue manager
           Alias To: Example_Queue_Manager

Transmit Queue Name:

    
    

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 73 

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Same as during queue manager creation.

Alias To: Same as during queue manager creation. Cannot be modified.

Transmit Queue Name: Same as during queue manager creation. Cannot be modified.

Upon exiting this screen, the program returns to the Select Queue to Modify screen.

Modify alias reply queue 

Figure 35.  Modify alias reply queue 

On this screen, the data entry fields are:

Name: Filled in from the previous screen. Cannot be modified.

Description: Same as during queue manager creation. Cannot be modified.

Reply Queue Name: This is the queue name that will replace the ReplyToQ field in 
the MQMD. Cannot be modified.

Reply Queue Manager: This is the queue manager name that will replace the 
ReplyToQMgr field in the MQMD. Cannot be modified.

Upon exiting this screen, the program returns to the Select Queue to Modify screen.

IBM MQSeries for UnixWare Version 1
** Modify Alias Reply Queue  **

Name: Example_Reply_Queue
Description: This is an example reply queue definition

   Reply Queue Name: Local_Queue
Reply Queue Manager: SSI

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

74 IBM MQSeries for UnixWare User’s Guide

Delete queue

Choice 5 on the Configuration Menu allows an operator to delete existing queue definitions.

To delete a queue, two screens are involved. The first allows the operator to select the desired 
queue from a list of defined queues. Based on the selection, the selected queue definition is 
displayed on an appropriate second screen. On this screen, the operator is asked to verify the 
delete request. The first screen displayed is:

Figure 36.  Delete queue

On this screen, the operator uses the cursor control keys to highlight the desired queue and 
then presses <Return > to select the queue. The operator may also press <Ctrl-X > to return to 
the Configuration Menu. Based on the attributes of the selected queue, one of the following 
screens is displayed:

Delete local queue 

Figure 37.  Delete local queue 

IBM MQSeries for UnixWare Version 1
** Select Queue to Delete **

Local_Queue LOCAL
Queue_Alias ALIAS
To_VMS_Queue REMOTE
Transmit_Queue TRANSMIT
DEADLETTER LOCAL
DefMan MGR ALIAS
Example_Local_Queue LOCAL
Example_Queue_Alias ALIAS
Example_Remote_Queue REMOTE
UNIQUE_Local_Queue LOCAL
VAXINP TRANSMIT
VAXOUT LOCAL
VAXQMGR TRANSMIT
VMS_Queue_Manager TRANSMIT

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1
** Delete Local Queue **

          Name: Local_Queue
   Description: This is an example local queue
         Usage: 0   0 = Normal,   1 = Transmission
    File Name: locq1
   Max Message: 1024

 Max Queue Depth: 100
Inhibit Get[Y/N]: N
Inhibit Put[Y/N]: N

Auto Purge: N Y - Yes N - No L - Limit
From: 14:31 To: 04:59

Is this the queue you wish to delete? [Y/N]:N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 75 

This screen displays the parameters of the local queue definition which has been selected for 
deletion and prompts the operator to verify the delete request.

The operator responds:

Y to delete the displayed queue

N to abort the delete request

Upon exiting this screen, the program returns to the Select Queue to Delete screen.

Delete remote queue 

Figure 38.  Delete remote queue

This screen displays the parameters of the remote queue definition which has been selected for 
deletion and prompts the operator to verify the delete request.

The operator responds:

Y to delete the displayed queue

N to abort the delete request

Upon exiting this screen, the program returns to the Select Queue to Delete screen.

IBM MQSeries for UnixWare Version 1
** Delete Remote Queue **

          Name: To_VMS_Queue
   Description: This is an example remote queue
      

   Remote Queue Name: Receive_Queue
Remote Queue Manager: VMS_Queue_Manager
 Transmit Queue Name: Transmit_Queue
        Inhibit Put[Y/N]: N

Is this the queue you wish to delete? [Y/N]:N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

76 IBM MQSeries for UnixWare User’s Guide

Delete alias queue

Figure 39.  Delete alias queue

This screen displays the parameters of the alias definition which has been selected for deletion 
and prompts the operator to verify the delete request.

The operator responds:

Y to delete the displayed queue

N to abort the delete request

Upon exiting this screen, the program returns to the Select Queue to Delete screen.

Delete alias queue manager

Figure 40.  Delete alias queue manager

IBM MQSeries for UnixWare Version 1
** Delete Alias Queue **

          Name: Queue_Alias
   Description: This is an example queue alias
      Alias To: Local_Queue

Inhibit Get[Y/N]: N
Inhibit Put[Y/N]: N

Is this the queue you wish to delete? [Y/N]:N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes

IBM MQSeries for UnixWare Version 1
** Delete Alias Queue Manager **

               Name: Manager_Alias
        Description: This is an example queue manager alias
           Alias To: Local_Queue_Manager

Transmit Queue Name:

Is this the alias you wish to delete? [Y/N]:N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 77 

This screen displays the parameters of the alias definition which has been selected for deletion 
and prompts the operator to verify the delete request.

The operator responds:

Y to delete the displayed queue manager alias

N to abort the delete request

Upon exiting this screen, the program returns to the Select Queue to Delete screen.

Delete alias reply queue 

Figure 41.  Delete alias reply queue 

This screen displays the parameters of the alias definition which has been selected for deletion 
and prompts the operator to verify the delete request.

The operator responds:

Y to delete the displayed queue manager alias

N to abort the delete request

Upon exiting this screen, the program returns to the Select Queue to Delete screen.

IBM MQSeries for UnixWare Version 1
** Delete Alias Reply Queue  **

Name: Example_Reply_Queue
Description: This is an example reply queue definition

 
  Reply Queue Name: Local_Queue
Reply Queue Manager: SSI

Is this the alias you wish to delete? [Y/N]:N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

78 IBM MQSeries for UnixWare User’s Guide

Display queue
Choice 6 on the Configuration Menu allows an operator to view existing queue definitions. 

Note: This function allows an operator to see the queue definition, not the current queue 
status. To see the current queue status, refer to the Monitor Queues function in 
“Monitor queues” on page 97.

To view a queue definition, two screens are involved. The first allows the operator to select the 
desired queue from a list of defined queues. Based on the selection, the selected queue 
definition is displayed on an appropriate second screen. The first screen displayed is:

Figure 42.  Select queue to display

On this screen, each line displays the name and type of a defined queue. The operator uses the 
cursor control keys to highlight the desired queue and then presses <Return>  to select the 
queue. The operator may also press <Ctrl-X>  to return to the Configuration Menu. Based on the 
attributes of the selected queue, one of the following screens is displayed:

Display local queue

Figure 43.  Display local queue

This is a display only screen. 

The operator may press any key to return to the Select Queue to Display screen.

IBM MQSeries for UnixWare Version 1
** Select Queue to Display **

Local_Queue LOCAL
Queue_Alias ALIAS
To_VMS_Queue REMOTE
Transmit_Queue TRANSMIT
DEADLETTER LOCAL
DefMan MGR ALIAS
Example_Local_Queue LOCAL
Example_Queue_Alias ALIAS
Example_Remote_Queue REMOTE
UNIQUE_Local_Queue LOCAL
VAXINP TRANSMIT
VAXOUT LOCAL
VAXQMGR TRANSMIT
VMS_Queue_Manager TRANSMIT

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1
** Display Local Queue **

          Name: Local_Queue
   Description: This is an example local queue
         Usage: 0 0 = Normal, 1 = Transmission
     File Name: locq1
   Max Message: 1024

 Max Queue Depth: 100
Inhibit Get[Y/N]: N
Inhibit Put[Y/N]: N

Auto Purge: L Y - Yes N - No L - Limit
From: 14:31 To: 04:59

*** Press any key to continue ***



Chapter 5. System operation 79 

Display remote queue

Figure 44.  Display remote queue

This is a display only screen. 

The operator may press any key to return to the Select Queue to Display screen.

Display alias queue 

Figure 45.  Display alias queue

This is a display only screen. 

The operator may press any key to return to the Select Queue to Display screen.

IBM MQSeries for UnixWare Version 1
** Display Remote Queue **

          Name: To_VMS_Queue
   Description: This is an example remote queue

   Remote Queue Name: Receive_Queue
Remote Queue Manager: VMS_Queue_Manager
 Transmit Queue Name: Transmit_Queue
        Inhibit Put[Y/N]: N

*** Press any key to continue ***

IBM MQSeries for UnixWare Version 1
** Display Alias Queue **

          Name: Queue_Alias
   Description: This is an example queue alias
      Alias To: Local_Queue

Inhibit Get[Y/N]: N
Inhibit Put[Y/N]: N

*** Press any key to continue ***



 

80 IBM MQSeries for UnixWare User’s Guide

Display alias queue manager

Figure 46.  Display alias queue manager

This is a display only screen. 

The operator may press any key to return to the Select Queue to Display screen.

Display alias reply queue 

Figure 47.  Display alias reply queue 

This is a display only screen. 

The operator may press any key to return to the Select Queue to Display screen.

IBM MQSeries for UnixWare Version 1
** Display Alias Queue Manager **

               Name: Manager_Alias
        Description: This is an example queue manager alias
           Alias To: Local_Queue_Manager

Transmit Queue Name:

*** Press any key to continue ***

IBM MQSeries for UnixWare Version 1
** Display Alias Reply Queue  **

Name: Example_Reply_Queue
Description: This is an example reply queue definition

   Reply Queue Name: Local_Queue
Reply Queue Manager: SSI

*** Press any key to continue ***



Chapter 5. System operation 81 

Create channel

Choice 7 on the Configuration Menu allows an operator to create channel definitions as 
required in order to configure the local installation of the MQSeries System. 

Note: While MQM can operate successfully on queue information without the MCAMD process, 
the MCAMD is required to access or modify channel information.

To define a channel, two screens are involved. The first is the same for all channels. It allows 
the operator to enter generic parameters such as, channel name, message size, etc. The 
second screen varies according to the transport protocol selected for the channel.

The first screen displayed is:

Figure 48.  Create channel

On this screen, the data entry fields are:

Channel Name : The name of the Channel to be created. A maximum of 20 
characters is allowed. Acceptable characters are the same as for 
queue names. A channel must have the same name on each side of 
the connection. See “Queue name format” on page 30.

MSN: Initial value for the Message Sequence Number.

Queue Name : If the channel is a SENDER or SERVER, this specifies the name of 
the transmit queue. This field is not used by a RECEIVER or 
REQUESTER.

Type : The type of channel being created. A channel type is defined by the 
direction of data flow and whether the process is initiated locally or 
via the complementary process remotely. Using SNA terminology, 
these are typically referred to as the Source and Target Transaction 
Programs. Therefore, there are four possible combinations:

SENDER Originates data and initiates remote RECEIVER.

RECEIVER Receives data, initiated by SENDER.

REQUESTER Receives data and initiates remote SERVER.

SERVER Originates data, initiated by REQUESTER.

Retry Count: The number of times a connection is retried either when 
communications have not been established, or when 
communications have been established but have subsequently 
failed. Each retry is performed at the interval specified in the 
Reconnect field (see Reconnect ). 

IBM MQSeries for UnixWare Version 1
** Create Channel **

   Channel Name: SYS1.TO.MVS1 MSN: 1
Queue Name: Transmit_Queue

  Type: 1 1 = Sender 2 = Server 3 = Receiver 4 = Requester

* * * M A X I M U M S * * * * * * T I M E R S * * * 
     Retry Count: 1000  Disconnect: 300
  MSN Wrap Count: 999999 Reconnect: 30
Checkpoint Count: 10  Line Check: 20
    Message Size: 2048

Transport Protocol: 0 0 = LU6.2 1 = TCP/IP

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

82 IBM MQSeries for UnixWare User’s Guide

MSN Wrap Count: The highest MSN value which will be used on this channel, after 
which it will revert to 1. The value coded must be in the range 1 to 
999999. Code the same value on the definitions of this channel at 
both the sending and receiving ends of the channel; if the values 
differ, the MSN Wrap Count will NOT be negotiated during channel 
initialization: the channel will close without messages being 
transferred.

Checkpoint Count: The number of messages that will be sent before a checkpoint, or 
“snapshot”, of the channel information will be taken to the system 
channel database.

Message Size : The maximum size of a message in bytes. The value must be less 
than or equal to the maximum message value specified for the local 
queue manager. (See “Modify queue manager” on page 61.) Other 
systems ask for maximum transmit size. For UNIX, the maximum 
transmit size is Message Size plus 476 bytes.

Disconnect : The length of time in seconds before a disconnect due to an idle 
(empty) transmit queue. This interval allows for the possibility of new 
messages getting enqueued and transmitted before the channel 
disconnects. A Sender which is idle will connect (or reconnect) when 
more messages arrive on the transmit queue. A Server which is idle 
will not connect (or reconnect) until the corresponding Requester 
starts (or restarts) communication. If it is necessary to prevent the 
channel from connecting (or reconnecting), the Disable Channel 
command should be used. A value of zero designates no 
disconnect. To disconnect such a channel, use the Disable Channel 
command. This definition applies only to Sender and Server 
Channels.

Reconnect : The length of time in seconds before a reconnect is attempted either 
when communications have not been established, or when 
communications have been established but have subsequently 
failed. A reconnect is attempted the number of times specified in the 
Retry Count field (see Retry Count ). A value of 0 (zero) designates 
no reconnect.

Line Check : The length of time in seconds between the transmission of line 
check messages. This definition applies only to Sender and Server 
Channels. Line check messages are used to determine if the remote 
partner is still connected. They are sent during the disconnect 
time-out interval.

Transport Protocol : A number defining the type of transport. In this case, only a 0 (zero) 
or a 1 (one) is allowed designating SNA Type LU 6.2 or TCP/IP, 
respectively.



Chapter 5. System operation 83 

Upon exiting this screen with <Ctrl-W >, the second screen is displayed to allow entry of 
transport protocol parameters. For an LU 6.2 channel (for example, SENDER channel), this 
screen is:

Figure 49.  Create channel - LU 6.2 parameters (SENDER channel)

On this screen, the data entry fields are:

Symbolic Destination Name: This is the name (limited to 8 characters) of the index into the 
“Side Information” database. A <return> skips this field.

If the above parameter is skipped, the following four parameters have to be specified:

Source LU Name A name specifying the local LU (limited to 17 characters) that 
may either be fully-qualified or locally known.

Partner LU Name A name specifying the LU on the remote system (limited to 17 
characters) that may either be fully-qualified or locally known.

Mode Name The name of the mode (limited to 8 characters) used by LU 6.2 
to designate the properties for the session that will be allocated 
for the conversation. To use the BLANK mode, specify “null”.

TP Name The name of the partner transaction program on the remote 
system (limited to 64 characters).

Upon exiting this screen, the program returns to the Configuration Menu.

IBM MQSeries for UnixWare Version 1
** Create Channel (LU 6.2 Parameters)**

Channel Name: SYS1.TO.MVS1 Type: 1 SENDER

Symbolic Destination Name:
Mode Name: DFHLU62

Source LU Name: UWLU
Partner LU Name: MVSLU

Transaction Program Name: MVSRCV

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

84 IBM MQSeries for UnixWare User’s Guide

Upon exiting the Create Channel screen with <Ctrl-W >, the second screen for a TCP/IP 
channel is:

Figure 50.  Create channel (TCP/IP parameters)

On this screen, the data entry fields are:

Remote Hostname: The name of host to which we need to connect, and only applies to 
SENDER and REQUESTER channels. (See “MQSeries System 
utilizing TCP/IP” on page 36.)

Note: The local MCA Host Name is defined on the Modify Queue Manager screen. (See 
“Modify queue manager” on page 61.)

Service Name: The name of TCP/IP service defined in the /etc/services file. For 
every channel defined using TCP/IP as a transport, you should 
define a Service Name in the file /etc/services. This entry must 
also exist on the remote system. (See “MQSeries System utilizing 
TCP/IP” on page 36.)

Upon exiting this screen, the program returns to the Configuration Menu.

IBM MQSeries for UnixWare Version 1
** Create Channel (TCP/IP Parameters)**

   Channel Name: SYS1.TO.MVS1 Type: 1 SENDER

Remote Hostname: MVS

   Service Name: SYS1.TO.MVS

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 85 

Modify channel

Choice 8 on the Configuration Menu allows an operator to modify existing channel definitions.

A channel must be disabled before it can be modified. For modifications to Queue Name, Type, 
and Transport parameter to take effect and work properly, the MCA process must be stopped 
and restarted. To modify a channel, three screens are involved. The first allows the operator to 
select the desired channel from a list of defined channels. The parameters of the selected 
channel are then displayed for the operator to modify. The first screen displayed is:

Figure 51.  Select channel to modify

On this screen, each line displays the name and type of a defined channel. The operator uses 
the cursor control keys to highlight the desired channel and then presses <Return > to select the 
channel. Press <Ctrl-X > to return to the Configuration Menu. The selected channel is then 
displayed on the following screen:

Figure 52.  Modify channel

On this screen, the data entry fields are the same as those for creating a channel. See “Create 
channel” on page 81.

IBM MQSeries for UnixWare Version 1
** Select Channel to Modify **

Channel Name TYPE Status PID MSN Trace
======================================================================================
SYS1.TO.MVS1 SENDER DISABLED 0000000 0000416 OFF
MVS1.TO.SYS1 REQUESTER DISABLED 0000000 0004077 OFF
VAXOUT RECEIVER IDLE 0014209 0000011 OFF
VAXINP SERVER DISABLED 0014209 0000031 OFF
TO.MVS1 SERVER DISABLED 0000000 0000001 OFF
MVS1.TO RECEIVER DISABLED 0000000 0001715 OFF
SYS1.TO.VSE2 SENDER DISABLED 0000000 0000041 ON
VSE2.TO.SYS1 REQUESTER DISABLED 0000000 0000021 ON
TCPIP.TEXT.1 RECEIVER DISABLED 0000000 0000257 ON

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1
** Modify Channel **

   Channel Name: SYS1.TO.MVS1 MSN: 1
Queue Name: Transmit_Queue

  Type: 1 1 = Sender 2 = Server 3 = Receiver 4 = Requester

* * * M A X I M U M S * * * * * * T I M E R S * * * 
      Retry Count:  1000  Disconnect: 300
   MSN Wrap Count:  999999  Reconnect: 30
 Checkpoint Count:  10   Line Check: 20
  Message Size:  2048

Transport Protocol: 0 0 = LU6.2 1 = TCP/IP

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

86 IBM MQSeries for UnixWare User’s Guide

Upon exiting this screen with <Ctrl-W >, another screen is displayed to allow modifications of 
transport protocol parameters. For an LU 6.2 channel (for example, SENDER), this screen is:

Figure 53.  Modify channel - LU 6.2 parameters (SENDER channel)

On this screen, the data entry fields are the same as those for creating a channel. See “Create 
channel” on page 81.

Upon exiting this screen, the program returns to the Select Channel to Modify screen.

Upon exiting the Modify Channel screen with <Ctrl-W >, the second screen for a TCP/IP 
channel is:

Figure 54.  Modify channel (TCP/IP parameters)

On this screen, the data entry fields are the same as those for creating a channel. See “Create 
channel” on page 81.

Upon exiting this screen, the program returns to the Select Channel to Modify screen.

IBM MQSeries for UnixWare Version 1
** Modify Channel (LU 6.2 Parameters)**

Channel Name: SYS1.TO.MVS1 Type: 1 SENDER

Symbolic Destination Name:
Mode Name: DFHLU62

Source LU Name: LWLU
Partner LU Name: MVSLU

Transaction Program Name: MVSRCV

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes

IBM MQSeries for UnixWare Version 1
** Modify Channel (TCP/IP Parameters)**

   Channel Name: SYS1.TO.MVS1 Type: 1 SENDER

Remote Hostname: MVS

   Service Name: SYS1.TO.MVS

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 87 

Delete channel
Choice 9 on the Configuration Menu allows an operator to delete existing channel definitions. 

To delete a channel, two screens are involved. The first allows the operator to select the desired 
channel from a list of defined channel. The selected channel definition is displayed on the 
second screen. On this screen, the operator is asked to verify the delete request. The first 
screen displayed is:

Figure 55.  Select channel to delete

On this screen, each line displays the name and type of a defined channel. The operator uses 
the cursor control keys to highlight the desired channel and then presses <Return > to select the 
channel. Press <Ctrl-X > to return to the Configuration Menu. The selected channel is then 
displayed on the following screen:

Figure 56.  Delete channel

This screen displays the parameters of the channel definition which has been selected for 
deletion and prompts the operator to verify the delete request.

The operator responds:

Y to delete the displayed channel 

N to abort the delete request

Upon exiting this screen, the program returns to the Select Channel to Delete screen.

IBM MQSeries for UnixWare Version 1
** Select Channel to Delete**

Channel Name TYPE Status PID MSN Trace
======================================================================================
SYS1.TO.MVS1 SENDER DISABLED 0000000 0000416 OFF
MVS1.TO.SYS1  REQUESTER DISABLED 0000000 0004077 OFF
VAXOUT RECEIVER IDLE 0014209 0000011 OFF
VAXINP SERVER DISABLED 0014209 0000031 OFF
SYS1.TO.MVS1 SERVER DISABLED 0000000 0000001 OFF
MVS1.TO.SYS1 RECEIVER DISABLED 0000000 0001715 OFF
SYS1.TO.VSE2 SENDER DISABLED 0000000 0000041 ON
VSE2.TO.SYS1 REQUESTER DISABLED 0000000 0000021 ON
SYS1.TCPIP.TEXT.1 RECEIVER DISABLED 0000000 0000257 ON

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1
** Delete Channel **

   Channel Name: junk.channel MSN: 1
Queue Name: Transmit_Queue

  Type: 1 1 = Sender 2 = Server 3 = Receiver 4 = Requester

* * * M A X I M U M S * * * * * * T I M E R S * * * 
    Retry Count: 0 Disconnect: 300
  MSN Wrap Count: 999999  Reconnect: 30
Checkpoint Count: 10 Line Check: 20
   Message Size: 2048

Transport Protocol: 0 0 = LU6.2 1 = TCP/IP

Is this the Channel you wish to delete? [Y/N]: Y

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

88 IBM MQSeries for UnixWare User’s Guide

Display channel

Choice 10 on the Configuration Menu allows an operator to view existing channel definitions. 

To display a channel, three screens are involved. The first allows the operator to select the 
desired channel from a list of defined channels. The selected channel definition is displayed on 
the second screen. The first screen displayed is:

Figure 57.  Select channel to display

On this screen, each line displays the name and type of a defined channel. Note that there may 
be situations in which the Status field displayed for a particular channel is inaccurate on this 
display. To get an accurate display of Status for all channels, use the Monitor Channel function 
(see “Monitor channel” on page 98). The operator uses the cursor control keys to highlight the 
desired channel and then presses <Return > to select the channel. Press <Ctrl-X > to return to 
the Configuration Menu.

The selected channel is then displayed on the following screen:

Figure 58.  Display channel

This is a display-only screen. 

IBM MQSeries for UnixWare Version 1
** Select Channel to Display **

Channel Name TYPE Status PID MSN Trace
======================================================================================
SYS1.TO.MVS1 SENDER DISABLED 0000000 0000416 OFF
MVS1.TO.SYS1 REQUESTER DISABLED 0000000 0004077 OFF
VAXOUT RECEIVER IDLE 0014209 0000011 OFF
VAXINP SERVER DISABLED 0014209 0000031 OFF
SYS1.TO.MVS1 SERVER DISABLED 0000000 0000001 OFF
MVS1.TO.SYS1 RECEIVER DISABLED 0000000 0001715 OFF
SYS1.TO.VSE2 SENDER DISABLED 0000000 0000041 ON
VSE2.TO.SYS1 REQUESTER DISABLED 0000000 0000021 ON
SYS1.TCPIP.TEXT.1 RECEIVER DISABLED 0000000 0000257 ON

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1
** Display Channel **

   Channel Name: SYS1.TO.MVS1 MSN: 1
Queue Name: Transmit_Queue

  Type: 1 1 = Sender 2 = Server 3 = Receiver 4 = Requester

* * * M A X I M U M S * * * * * * T I M E R S * * * 
    Retry Count: 1000 Disconnect: 300
  MSN Wrap Count: 999999  Reconnect: 30
Checkpoint Count: 10 Line Check: 20
   Message Size: 2048

Transport Protocol: 0 0 = LU6.2 1 = TCP/IP

* * * Press any key to continue * * * 



Chapter 5. System operation 89 

The operator may press any key to display the second screen showing the transport layer 
parameters for either LU 6.2 or TCP/IP:

Figure 59.  Display channel - LU 6.2 parameters (SENDER channel)

This is a display only screen.

The operator may press any key to return to the Select Channel to Display screen:

Figure 60.  Display channel (TCP/IP parameters)

This is a display only screen.

The operator may press any key to return to the Select Channel to Display screen.

IBM MQSeries for UnixWare Version 1
** Display Channel (LU 6.2 Parameters)**

Channel Name: SYS1.TO.MVS1 Type: 1 SENDER

Symbolic Destination Name:
Mode Name: DFHLU62

Source LU Name: LWLU
Partner LU Name: MVSLU

Transaction Program Name: MVSRCV

*** Press any key to continue ***

IBM MQSeries for UnixWare Version 1
** Display Channel (TCP/IP Parameters)**

   Channel Name: SYS1.TO.MVS1 Type: 1 SENDER

Remote Hostname: MVS

   Service Name: SYS1.TO.MVS

*** Press any key to continue ***



 

90 IBM MQSeries for UnixWare User’s Guide

Operation functions
Selecting option 2 (Operation) from the Main Menu causes MQM to display the following 
sub-menu screen:

Figure 61.  Operation menu 

On this screen, choices correspond to available operator control functions. 

Enable/Disable channel
Choice 1 on the Operation Menu allows an operator to open or close communications on an 
existing channel. The MCA (Message Channel Agent) servicing the selected channel must be in 
operation in order to perform this function.

Note: Enabling/Disabling a Channel is NOT the same as Starting/Stopping the MCA 
process. See “Starting the MCA” on page 104.

To accomplish this, two screens are involved. The first allows the operator to select the desired 
channel from a list of defined channels. The selected channel definition is displayed on the 
second screen and the operator is asked to verify the enable/disable request. The first screen 
displayed is:

Figure 62.  Select channel to enable/disable

IBM MQSeries for UnixWare Version 1
** Operation Menu **

Enter Choice: 2

1. Enable/Disable Channel

2. Start/Stop Channel Trace

3. Terminate MCA

4. Reset Message Sequence Number

5. Purge Deleted Messages

<return> - Select Option <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Go to previous menu

IBM MQSeries for UnixWare Version 1
** Select Channel to Enable/Disable **

Channel Name TYPE Status PID MSN Trace
======================================================================================
VAXOUT RECEIVER IDLE 0014209 0000011 OFF
VAXINP SERVER DISABLED 0014209 0000031 OFF

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit



Chapter 5. System operation 91 

On this screen, the operator uses the cursor control keys to highlight the desired channel and 
presses <Return > to select the channel. The selected channel is then displayed on the 
following screen:

Figure 63.  Enable/disable channel

This screen displays the parameters of the channel definition which has been selected and 
prompts the operator to verify the enable/disable request.

If the channel is currently enabled, the operator is asked: Do you wish to disable this 
channel?  If the channel is currently disabled, the operator is asked: Do you wish to enable 
this channel?

The operator responds:

Y to enable/disable communications on the displayed channel

N to cancel the enable/disable request

Upon exiting this screen, the program returns to the Select Channel to Enable/Disable screen.

Start/stop channel trace

Choice 2 on the Operation Menu allows an operator to start or stop a channel trace. 

A channel trace causes all key events on the channel to deposit informational messages in the 
log file. The file may be examined to assist in trouble-shooting communications problems.

Two screens are involved. The first allows the operator to select the desired channel from a list 
of active channels. The selected channel definition is displayed on the second screen and the 
operator is asked to confirm the request. If the channel is not being traced, the question is 
whether to start the trace. If the channel is being traced, the question is whether to stop the 
trace.

IBM MQSeries for UnixWare Version 1
** Enable/Disable Channel **

Channel Name: VAXOUT MSN: 11
  Queue Name: VAXOUT
        Type: 3 RECEIVER

*** MAXIMUMS *** *** TIMERS ***
      Retry Count: 10 Disconnect: 300
   MSN Wrap Count: 999999   Reconnect: 30
 Checkpoint Count: 10 Line Check: 20
     Message Size: 11412

  Transport Protocol: 0 0 = LU6.2 1 = TCP/IP

Do you wish to disable this channel?[Y/N]: N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

92 IBM MQSeries for UnixWare User’s Guide

The first screen displayed is:

Figure 64.  Start/stop trace

On this screen, the operator uses the cursor control keys to highlight the desired channel and 
then presses <Return > to select the channel. The selected channel is then displayed on the 
following screen:

Figure 65.  Start/stop channel trace

The operator responds:

Y to start/stop the requested trace

N to cancel the start/stop trace request

Upon exiting, the program returns to the Select Channel to Start/Stop Trace screen.

IBM MQSeries for UnixWare Version 1
** Select Channel to Start/Stop Trace **

Channel Name TYPE Status PID MSN Trace
======================================================================================
VAXOUT RECEIVER IDLE 0014209 0000011 OFF
VAXINP SERVER DISABLED 0014209 0000031 OFF

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1
** Start/Stop Channel Trace **

  Channel Name: VAXOUT MSN:11
   Queue Name: VAXOUT

     Type: 3 RECEIVER

*** MAXIMUMS *** *** TIMERS ***
      Retry Count: 10 Disconnect: 300
   MSN Wrap Count: 999999   Reconnect: 30
 Checkpoint Count: 10 Line Check: 20
     Message Size: 11412

Transport Protocol: 0 0 = LU6.2 1 = TCP/IP

Do you wish to start channel trace?[Y/N]: N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 93 

Terminate MCA
Choice 3 on the Operation Menu allows an operator to terminate an MCA.

To accomplish this, two screens are involved. The first allows the operator to select the desired 
channel from a list of defined channels. The selected Process ID (PID) is displayed on the 
second screen and the operator is asked to confirm. Note that communications across all 
channels associated with that MCA (PID) will be terminated. The first screen displayed is:

Figure 66.  Select channel to terminate MCA

On this screen, the operator uses the cursor control keys to highlight the desired channel and 
then presses <Return > to select the channel.

Note: Stopping any channel started by a specific MCA will result in terminating all channels 
associated with that MCA. The selected MCA is then displayed on the following 
screen:

Figure 67.  Terminate MCA

On this screen, the operator keys a “Y” to indicate that the MCA should be terminated, and then 
presses <Return >. The default action is “N”, the MCA will continue to run. Upon exiting this 
screen, the program returns to the Select Channel to Terminate MCA screen.

IBM MQSeries for UnixWare Version 1
** Select Channel(s) MCA to Stop **

Channel Name TYPE Status PID MSN Trace
======================================================================================
VAXOUT RECEIVER IDLE 0014209 0000011 OFF
VAXINP SERVER DISABLED 0014209 0000031 OFF

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1
** Terminate MCA **

Terminate MCA with PID: 14209 N

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



 

94 IBM MQSeries for UnixWare User’s Guide

Reset message sequence number (MSN)
Choice 4 on the Operation Menu allows an operator to reset the message sequence numbers 
on an existing channel. You may want to reset the message sequence numbers if your local 
and remote channel definitions get out of synchronization. A channel must be disabled in order 
for this operation to be allowed.

To accomplish this, two screens are involved. The first allows the operator to select the desired 
channel from a list of defined channels. The selected channel is displayed on the second screen 
and the operator is asked to enter the new message sequence number. The first screen 
displayed is:

Figure 68.  Select channel to modify MSN

On this screen, the operator uses the cursor control keys to highlight the desired channel and 
presses <Return > to select the channel. The selected channel is then displayed on the 
following screen: 

Figure 69.  Reset MSN

This screen displays the channel definition which has been selected and allows the operator to 
enter the new message sequence number.

IBM MQSeries for UnixWare Version 1
** Select Channel to Modify MSN **

Channel Name TYPE Status PID MSN Trace
======================================================================================
SYS1.TO.MVS1 SENDER DISABLED 0000000 0000416 OFF
MVS1.TO.SYS1 REQUESTER DISABLED 0000000 0004077 OFF
VAXOUT RECEIVER IDLE 0014209 0000011 OFF
VAXINP SERVER DISABLED 0014209 0000031 OFF
SYS1.TO.MVS1 SERVER DISABLED 0000000 0000001 OFF
MVS1.TO.SYS1 RECEIVER DISABLED 0000000 0001715 OFF
SYS1.TO.VSE2 SENDER DISABLED 0000000 0000041 ON
VSE2.TO.SYS1 REQUESTER DISABLED 0000000 0000021 ON
SYS.TCPIP.TEXT.1 RECEIVER DISABLED 0000000 0000257 ON

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1
** Modify Channel MSN **

Channel Name: MVS1.TO.SYS1 Type:4 MSN:1

<return> - FIELD EXIT <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Exit discarding changes CTRL-W - Save Changes



Chapter 5. System operation 95 

The display fields are:

Channel Name : Filled in from previous screen. Cannot be modified.

Type : Filled in from previous screen. Cannot be modified.

MSN: New Message Sequence Number (sequence number of the next 
message on this channel). Must be greater than or equal to 1.

Upon exiting this screen, the program returns to the Select Channel to Modify MSN screen.

Notes:  1. The action described above does not cause a reset request to be sent to the 
remote queue manager; the user must reset the message sequence number there 
as well if required. However, if a reset request is received from a remote queue 
manager, the message sequence number at this queue manager is reset.

2. If the specified Message Sequence Number is greater than the wrap value, the 
effect is the same as setting the Message Sequence Number to 1.

3. Care must be exercised in the use of this function. If incorrectly used, it is possible 
for messages to be lost or duplicated. If the message sequence number is the 
same at both ends of the channel, then when the channel is started, the MCAs will 
assume that all previously-sent messages have been correctly received. If the 
message sequence number at the sending end is one less than that at the 
receiving end, it will be assumed that the last message transmitted was not 
successfully received. 

4. If the operating system fails whilst messages are being sent, then, after the 
system has been rebooted, the Message Number for any channel which was 
active when the failure occurred may not be correctly reflected in the MQM 
panels. This will be reset correctly once the channel is restarted.

Purge deleted messages
Choice 5 on the Operation Menu allows an operator to purge messages physically which have 
already been logically deleted from a specified queue. 

Note: Messages which have been read are not actually deleted; instead, they are marked. 
Therefore, the queue can become quite large, unless it is purged automatically or by 
the operator. Purging actually removes old messages.

To purge messages, the operator is first presented with a list of defined queues as shown on 
the following screen:

Figure 70.  Select queue to purge

IBM MQSeries for UnixWare Version 1
** Purge Deleted Messages **

Queue Type USERS LWRIT DEPTH G P
======================================================================================
Local_Queue LOCAL 00000 00000 00000 A A
Transmit_Queue TRANSMIT 00000 00000 00000 A A
DEADLETTER LOCAL 00000 00000 00000 A A
SYS1.MVS.LOCALQ1 LOCAL 00000 00000 00000 A A
VAXINP TRANSMIT 00019 00000 00000 A A
VAXOUT LOCAL 00000 00000 00000 A A
VAXQMGR TRANSMIT 00000 00000 00000 A A
VMS_Queue_Manager TRANSMIT 00000 00020 00020 A A

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit



 

96 IBM MQSeries for UnixWare User’s Guide

On this screen, the operator uses the cursor control keys to highlight the desired queue and 
then presses <Return > to select the queue. All previously deleted messages are then purged 
(physically deleted) from the selected queue.

The purge operation may only be performed on queues not currently being accessed. That is, 
the selected queue must have USERS=0. Additionally, channels that have opened queues may 
need to be terminated before the purge operation can be performed. The presence of unpurged 
messages on a queue can affect performance.

Messages are purged by copying non-deleted (that is, active) messages to a new queue file. 
The old queue file is deleted, and then the new queue file name is changed to match the old 
queue file name. As a result, the new queue file shall be owned by the person running MQM.

Upon exiting this screen, the program returns to the Operation Menu.

Monitoring functions
Selecting option 3 (Monitoring) from the Main Menu causes MQM to display the following 
sub-menu screen:

Figure 71.  Monitor menu

On this screen, choices correspond to available system monitor functions. 

IBM MQSeries for UnixWare Version 1
** Monitor Menu **

Enter Choice: 1

1. Monitor Queue

2. Monitor Channel

<return> - Select Option <esc>  - Discard Field Changes CTRL-D - Erase Field
<BKSP>   - BACKSPACE CTRL-X - Go to previous menu



Chapter 5. System operation 97 

Monitor queues

Choice 1 on the Monitor Menu allows an operator to monitor the current status of all existing 
local queues. The monitor screen displayed is:

Figure 72.  Monitor local queues

This screen displays the current status of all local queues. The displayed fields are:

Queue : Queue Name.

Type : Type of Queue, local or transmit.

USERS: Number of user applications currently connected to the queue.

LWRIT: Last written message to queue. This is a sequential count indicating 
how many messages have been written to the queue since it was 
last purged. The queue disk file contains this many physical records.

DEPTH: The number of unread messages currently on queue.

Note: The difference between LWRIT and DEPTH (LWRIT-DEPTH) is the number of 
logically deleted messages still on disk. This indicates the amount of disk space which 
can be gained by purging the queue.

G: Get operation allowed/inhibited.

P: Put operation allowed/inhibited.

For both G and P, the displayed value is:

A for Active/Allowed.

I for Inactive/Inhibited.

Upon exiting this screen, the program returns to the Monitor Menu.

IBM MQSeries for UnixWare Version 1
** Monitor Local Queues **

Queue Type USERS LWRIT DEPTH G P
======================================================================================
Local_Queue LOCAL 00000 00000 00000 A A
Transmit_Queue TRANSMIT 00000 00100 00100 A A
DEADLETTER LOCAL 00000 00000 00000 A A
Example_Local_Queue LOCAL 00000 00000 00000 A A
VAXINP TRANSMIT 00031 00000 00000 A A
VAXOUT LOCAL 00000 00000 00000 A A
VAXQMGR TRANSMIT 00000 00000 00000 A A
VMS_Queue_Manager TRANSMIT 00000 00100 00100 A A

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit



 

98 IBM MQSeries for UnixWare User’s Guide

Monitor channel

Choice 2 on the Monitor Menu allows an operator to monitor the current status of all 
communications channels. 

The current status for all channels is displayed on the following screen:

Figure 73.  Monitor channels

This screen displays the current status of all channels. The displayed fields are: 

Channel Name: Channel name.

TYPE: Type of channel.

Status: ACTIVE, IDLE, or DISABLED. Depending on the TYPE of channel, each 
Status type is interpreted according to Table 18, on page 99.

PID: The Process ID of the MCA controlling this channel.

MSN: Message Sequence Number.

Trace: OFF or ON.

Upon exiting this screen, the program returns to the Monitor Menu.

IBM MQSeries for UnixWare Version 1
** Monitor Channels **

Channel Name TYPE Status PID MSN Trace
======================================================================================
VAXOUT RECEIVER IDLE 0014209 0000011 OFF
VAXINP SERVER DISABLED 0014209 0000031 OFF

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit



Chapter 5. System operation 99 

Table 18.  Channel status descriptions 

ACTIVE

SENDER The Channel is trying to (re)establish communication with the remote 
receiver (based upon the channels retry and reconnect interval).

The Channel is negotiating communications values with its partner. 

The Channel is sending messages.

The Channel is waiting for the Disconnect interval to expire. 

SERVER The Channel is negotiating communications values with its partner. 

The Channel is sending messages. 

The Channel is waiting for the Disconnect interval to expire. 

RECEIVER The Channel is negotiating communications values with its partner. 

The Channel is receiving messages from the remote channel.

The Channel is waiting for the remote channel to Disconnect (close). 

REQUESTER The Channel is trying to (re)establish communication with the remote 
server (based upon the channels retry and reconnect interval). 

The Channel is negotiating communications values with its partner. 

The Channel is receiving messages from the remote channel. 

The Channel is waiting for the remote channel to Disconnect (close).

IDLE

SENDER The Channel is waiting for messages to be put on the transmission 
Queue. When a message arrives on the transmission Queue, the 
channel will start.

The Channel is waiting for the reconnect interval to expire, so it can 
attempt to contact the remote system again.

SERVER The Channel is waiting to be contacted by a REQUESTER channel. 

RECEIVER The Channel is waiting to be contacted by a SENDER channel. 

REQUESTER The Channel is waiting for the reconnect interval to expire, so it can 
attempt to contact the remote system again.



 

100 IBM MQSeries for UnixWare User’s Guide

DISABLED

SENDER The Channel has been disabled by the MQM disable channel function and 
when appropriate all of the retry attempts have been performed.

A communications error has occurred (or the channel has been 
instructed to stop by the remote channel due to an error in the remote 
queue manager) and (when appropriate) all off the retry attempts have 
been performed.

SERVER The Channel has been disabled by the MQM disable channel function. 

RECEIVER The Channel has been disabled by the MQM disable channel function. 

REQUESTER The Channel has been disabled by the MQM disable channel function.

A communications error has occurred, and all of the retry attempts have 
been performed.

The Channel has been disabled as the remote channel has sent all of the 
available messages and disconnected (closed).

Table 18.  Channel status descriptions  (continued)



Chapter 5. System operation 101 

Browse function

Selecting option 4 (Browse QUEUE Records) from the Main Menu takes the operator directly to 
a function with no intervening sub-menus. 

To browse the contents of a queue, two screens are involved. The first allows the operator to 
select the desired queue from a list of defined queues. The records (messages) on the selected 
queue are displayed on the second screen. The first screen displayed is:

Figure 74.  Select queue to browse

On this screen, the operator uses the cursor control keys to highlight the desired queue and 
then presses <Return > to select the queue. All records on the queue are displayable, even if 
they are logically deleted. The first record on the selected queue is displayed on the following 
screen:

Figure 75.  Browse queue record

This screen initially displays the first record on the selected queue. The available action keys 
listed at the bottom of the screen allow the operator to browse forward and backward through 
the contents of the queue.

Upon exiting this screen, the program returns to the Select Queue to Browse screen.

IBM MQSeries for UnixWare Version 1
** Select Queue To Browse **

Queue Type USERS LWRIT DEPTH G P
======================================================================================
Local_Queue LOCAL 00000 00000 00000 A A
Transmit_Queue TRANSMIT 00000 00100 00100 A A
DEADLETTER LOCAL 00000 00000 00000 A A
Example_Local_Queue LOCAL 00000 00000 00000 A A
VAXINP TRANSMIT 00031 00000 00000 A A
VAXOUT LOCAL 00000 00000 00000 A A
VAXQMGR TRANSMIT 00000 00000 00000 A A
VMS_Queue_Manager TRANSMIT 00000 00100 00100 A A

J - Down K -   Up <return> - Select
CTRL-F - PgDn CTRL-B - PgUp CTRL-X - Exit

IBM MQSeries for UnixWare Version 1

Queue:VMS_Queue_Manager Rec: 00001 Page: 01/04

EZQH1.01A.............15-A 455A5148 312E3031 41000000 00000400 00000000 31352D41
pr-93 18:38:34.+......... 70722D39 33202031 383A3338 3A333400 2BCDE3EA 00000000
.......................... 00000000 00000000 00000000 00000000 00000000 00000000

  .......................... 00000000 00000000 00000000 00000000 00000000 00000000
.......................... 00000000 00000000 00000000 00000000 00000000 00000000
........ 00000000 00000000 20202020 20202020 20202020 20202020

20202020 20202020 20202020 20202020 20202020 20202020
VMS_Local_Queue 564D535F 4C6F6361 6C5F5175 65756520 20202020 20202020

20202020 20202020 20202020 20202020 20202020 20202020
MD ....................... 4D442020 00000001 00000000 00000008 FFFFFFFF 00000000
.......................... 00000000 00000000 00000000 00000000 00000000 00000000
.......................... 00000000 00000000 00000000 00000000 00000000 00000000
.......................... 00000000 00000000 00000000 00000000 00000000 00000000
.......................... 00000000 00000000 00000000 00000000 00000000 00000000
.......................... 00000000 00000000 00000000 00000000 00000000 00000000

<+> - Record Forward CTRL-F - Page Forward CTRL-X - Exit
<-> - Record Backward CTRL-B - Page Backward



 

102 IBM MQSeries for UnixWare User’s Guide

The MCAMD process

The MCAMD (Message Channel Agent Maintenance Daemon) is a daemon process required by 
the MCA(s) (Message Channel Agent(s)). It runs on the communication server with and serving 
the MCA(s). The MCAMD provides a centralized Channel Database service allowing MCA(s) and 
the MQM interface to access and modify the Channel Database. The MCAMD must be started 
prior to running an instance of MCA.

Starting the MCAMD

The MCAMD is started using the following command line:

[nohup] mcamd [-u user_id] [-g group_id] [&]

in which:

The options available permit the system administrator to set the process user and group id to 
values which allow access by those persons responsible for administering the MQSeries 
System Product (that is, starting and stopping MCA processes).

It is recommended that the MCAMD process be invoked by the UnixWare “init” process by adding 
an entry to the file /etc/inittab in the following format:

mcad:2:respawn:/usr/mqi/bin/mcamd -u user_id -g group_id > /dev/console 2>&1

Refer to “Verifying the MQSeries System installation” on page 10, for information regarding the 
setting of the NLSPATH environment variable prior to starting the MCAMD process.

The above-mentioned entry ensures that the MCAMD process will be running at all times when the 
UnixWare operating system is in the multi-user mode, run level 2. To stop the MCAMD, refer to 
“Stopping the MCAMD” on page 103.

Table 19.  MCAMD options

[....] indicates parameter is optional

nohup (optional) used to prevent the MCAMD from exiting due to sighup 
signal, if the daemon is started interactively from a terminal window 
and the window terminates or is exited.

-u (optional) switch identifying the following argument as a user 
identification.

user_id (optional) a numeric user id as defined in the password file
/etc/passwd.

-g (optional) switch identifying the following argument as a group 
identification.

group_id (optional) a numeric group id as defined in the group file
/etc/group.

& (optional, but recommended) allows MCAMD to run in background 
mode.



Chapter 5. System operation 103 

As an alternative, the MCAMD may be started from a shell prompt as:

mcamd [-u user_id] [-g group_id] &

However, to use -u and/or -g options, root authority is needed. If you wish to start the MCAMD and 
MCA(s) within a shell script, you must allow the MCAMD to complete its initialization prior to starting 
the first MCA. This can be accomplished by the following lines:

nohup mcamd [-u user_id] [-g group_id] &
sleep 5
mca -m queue_manager_name -f filename -c channel_name &
mca -m queue_manager_name -f filename -c channel_name &

For further information on the MCA process, please refer to “Starting the MCA” on page 104 and 
“MCA shutdown” on page 105.

The MCAMD, the MCA(s) and the MQM utilities communicate through the use of sockets, both UNIX 
and INTERNET, and shared memory segments. These mechanisms are automatically 
maintained by both processes.

Stopping the MCAMD

If the “init” process is not being used to automatically start the MCAMD, then the MCAMD may simply 
be stopped with the command:

kill <pid>
where <pid> is the process id of the MCAMD, displayable with the command:

ps -aef | grep mcamd

If the “init” process is being used to automatically start the MCAMD, killing the MCAMD process will 
not work. The “init” process will detect that the MCAMD has been killed and restart it. In this case, 
the MCAMD may be stopped by changing the word respawn to off and typing the command:

/etc/init Q

which signals the init process to recognize the modification to the /etc/inittab file.

Note: Any MCA(s) which were started with a defunct MCAMD cannot be controlled by a new 
MCAMD, such as one which is respawned. To establish control, you must kill the MCAs 
from the command line and restart them.

If for some reason the MCAMD is stopped (killed), the MCA processes will continue to run without a 
problem with the following conditions:

• The operator interface through the MQM utility will not function with regard to any MCA.

• Checkpointing of the Channel Database will not occur. This is non-critical in that the only 
side effect is the increased time to verify the Message Sequence Number on a restart of 
the MQSeries System product.

• You will be unable to start any new MCA processes.

Warning: It is highly recommended that the MCAMD and the MCA processes not be killed or 
stopped with a signal SIGKILL (9) unless absolutely necessary. This defeats all the orderly 
shutdown mechanisms imbedded in these processes. If you must use a SIGKILL signal to 
shutdown the MCAMD, you must verify that all shared memory segments used by the MCAMD and 
the MCA(s) are deleted prior to restarting any of these processes.



 

104 IBM MQSeries for UnixWare User’s Guide

MCAMD error logging

The MCAMD performs error logging as do all other processes containing the MQSeries System 
components (that is, MCA and user applications using the MQI API). If the error log grows to the 
size that requires a user to create a new log, all processes using that log must be stopped. 
Simply deleting the error log will not free up the disk space used by the log file.

The MCAMD process may be restarted quickly by performing the following actions in the order 
listed:

• Stop all MCA processes (refer to “MCA shutdown” on page 105).
• Delete or rename the log file.
• Issue the command; kill -TERM pid, where pid is the process id of the MCAMD.
• Start the MCAMD process.
• Start all MCA processes.

It is obvious that this is a non-trivial operation which disrupts the operation of the MQSeries 
System. Users can avoid or minimize the problem by using the trace facility of the MCA only 
when necessary in order to minimize log-writing and to ensure that sufficient disk space is 
available to store log files over a period of time.

Starting the MCA

MCA (Message Channel Agent) is the communications engine for the MQSeries System. It runs 
on the communications server and connects the UnixWare MQSeries system to remote 
MQSeries Systems. Once MCA is started, its operation may be controlled from the MQM screens. 
However, it must first be started manually.

If needed, you can start more than one MCA process for supporting multiple channels. Each MCA 
instance may service a maximum of 20 channels. A maximum of nine MCA instances may be 
started on one IBM MQSeries for UnixWare installation. 

Each required MCA instance is started using the following command line at the shell prompt:

[nohup] mca -m queue_mgr_name [-f filename] [-c chan_name \ [-c chan_name...]] [&]
in which:

[........] indicates parameter is optional.

nohup (optional) used to prevent the MCA from exiting due to sighup signal, if 
the MCA is started interactively from a terminal window and the window 
terminates or is exited.

-m (required) switch identifying the following argument as the queue 
manager name.

queue_mgr_name (required) the name of the queue manager supported by this MCA. 
This name must match the name of the local queue manager, 
obtainable from the display queue manager panel.

-c (optional, but at least one -c or -f must be present) switch identifying 
the following argument as a channel name.

chan_name (optional) the name of a channel to be serviced by this MCA. This name 
must match the name of one of the locally defined channels.

-f (optional, but at least one -c or -f must be present) switch identifying 
the following argument, as file name.

filename (optional) the name of a source file containing a list of channel_names 
to be serviced by this MCA. Each name in the file must match the name 
of a locally defined channel.

& (optional, but preferred) allows MCA to run as a background process.



Chapter 5. System operation 105 

Examples :

To invoke MCA to service two explicit channels named channel_1 and channel_2, enter:

mca -m queue_manager_name -c channel_1 -c channel_2 &

To invoke MCA to service a list of channels contained in file chanlist, enter:

mca -m queue_manager_name -f chanlist &

In the latter case, the contents of the file chanlist would be (for example):

channel_1
channel_2
channel_3
channel_4
<End-of-File>
Note: The format of the channel list file is very simple. There is only one channel name per 

line and there can be no leading spaces.

In response to this command, MCA will begin execution. All other MCA functions may be controlled 
from the MQM display screens. 

Note: Prior to running the MCA, you must insure the prerequisite communications hardware 
and software are properly installed and configured (See Chapter 2, “Installation” on 
page 5) to support the lower level transport layer connection to the remote MQSeries 
System. 

MCA shutdown

The MQM Operation Menu, option 3, Terminate MCA, allows you to shutdown an instance of the 
MCA. The screen lists all the channels currently supported by MCA processes. If you started an 
MCA supporting more than one channel you will stop all the channels supported by this MCA 
process when you chose one from the list presented. The Process IDs of the MCAs are listed 
alongside the channels. This is to enable you to determine which channels will be affected by 
terminating a given MCA.

As described above, you may elect to send the MCA process a signal. The signals SIGINT, 
SIGQUIT and SIGTERM are processed by the MCA resulting in an orderly shutdown. Shutdown 
in this manner removes the visual feedback of the MQM from the decision making process. 
Therefore, care should be exercised.

If the MCA process you wish to terminate is supporting multiple channels, all channels will 
attempt to do an orderly shutdown. RECEIVER/REQUESTER channels by definition can only 
request a close of the channel, they are not capable of issuing a close channel command. This 
request is returned in a status message sent to a SENDER/SERVER channel. Status 
messages are returned on receipt of a data message or as a result of line check message. The 
RECEIVER/REQUESTER channels will NOT shutdown until they are able to request a close 
and a SENDER/SERVER return a close channel. Therefore, if your channels are unlikely to 
transport messages at a regular interval which you determine is a reasonable latency between 
the time you perform the action required to shutdown an MCA and the actual termination of the 
process, it is important that the line check timer be set at that interval. This latency will be equal 
to the longest interval described.

Note: If EXPRESS software is being used (SNA/LU6.2 transport links), it is important that 
EXPRESS is shut down while the MCA that is using it is still executing.



 

106 IBM MQSeries for UnixWare User’s Guide

If Terminate MCA Command Fails
If the Terminate MCA command should fail to shutdown the MCA, use the command:

kill -9 <pid>

where <pid> is the MCA process id displayed on the Terminate MCA screen or found by using the 
command:

ps -aef | grep mca

Viewing error logs with OS utilities

MQSeries System error messages and trace messages (if requested) are logged to an error file 
named:

/var/mqi/log/mqidd.log

where dd is the day of the month.

If everything is operating normally, log files will be quite small. If many errors are being 
encountered, the files can be large and can contain very useful information. They may be 
particularly useful when first attempting to establish a communications link to a remote system. 
They should also be checked when any unusual events are observed.

The error messages in the log file are in plain text format so that the file can be examined using 
any editor or various commonly available utilities.

Notes:  1. A new log file is created every day. These should be examined periodically and 
old unwanted logs should be deleted to preserve disk space.

2. A log file that already exists will be appended to and not overwritten.



© Copyright IBM Corp. 1993, 1997 107

Chapter 6. Application programming interface

The MQSeries System application programming interface implements the IBM Message Queue 
Interface (MQI). This simple set of calls provides a way for applications to easily send and 
receive messages between workstations on the same LAN, and to exchange messages with 
other MQSeries Systems such as VAX, TANDEM, AS/400, etc. 

The applications programmer/analyst/designer should read earlier chapters of this document for 
an overall understanding of the MQSeries System. The reference documents listed in the 
appendix will provide further background information. 

In addition to these sources, this chapter provides: 

• General information regarding the MQI
• Design guidelines for applications wishing to use the MQI
• Detailed reference for each individual MQI function 
• Description of key MQI data structures
• Completion codes and reason codes returned by MQI functions.

Working with the MQI 

The MQI is responsible for handling user application requests to read and write from the 
queuing system, and for arbitrating among multiple requests to the same queue.

On the MQSeries System, the MQI is built around the standard C language function call 
interface which allows a fixed number of arguments.

MQI calls & sequence of operations 

The MQI calls supported by IBM MQSeries for UnixWare are:

MQCONN Connects the application to the MQSeries System Queue Manager

MQOPEN Opens access to a specific queue

MQGET Reads a message from a specified queue

MQPUT Writes a message to a specified queue

MQPUT1 Opens a queue, writes one message, and closes the queue

MQINQ Inquires about queue status information

MQCLOSE Closes access to a specific queue

MQDISC Disconnects the application from the MQSeries System Queue Manager

These calls are described in detail in “MQI call reference” on page 110. It is also important to 
understand the data structures required by the interface -- especially as part of the MQGET and 
MQPUT calls.   The primary structures are:

MQOD MQ Object Descriptor

MQMD MQ Message Descriptor

MQPMO MQPut Message Options

MQGMO MQGet Message Options

MQDLH MQ Dead-Letter Header

The use of these data structures is described along with the MQI call descriptions in “MQI call 
reference” on page 110. The structures are described independently in “MQI data types and 
structures” on page 129.



 

108 IBM MQSeries for UnixWare User’s Guide

The sequence of MQI operations performed by an application is very similar to the sequence 
used for any familiar record-oriented I/O subsystem. That is, just as one must OPEN and 
CLOSE a disk file, one must connect to and MQOPEN a queue before accessing it, and must 
MQCLOSE and then disconnect at the completion of processing. Within the application, the user 
requirements will determine the sequence of MQGET and MQPUT operations.

Sample source code provided

Three sample programs are provided with IBM MQSeries for UnixWare. They are zmqwrite, 
zmqread, and zmqecho. The source code for these programs can be found in Appendix B, 
“Sample source listings” on page 167, or they can be listed directly from the distribution files.

Within the source code for zmqwrite, zmqread, and zmqecho, the user may find examples 
which illustrate the use of each of the MQI calls.

In addition to the three sample programs, several C language header files are provided with the 
distribution in the INCLUDE directory.

Compiling your application program 

The MQI is provided in the form of an object library called libmqi.a, and a shared library called 
libmqi.so.

A typical UNIX application, foo.c, would be compiled with the following command:

cc -I install_dir/mqi/include -L install_dir/mqi/lib -lmqi -lnsl -lsocket foo.c

where: install_dir is the user-defined directory that was specified during installation.

We recommend that you do not turn on the optimization flag.

Applications not written in C

For IBM MQSeries for UnixWare, C is the language in which the MQI is written. Applications 
written in C have been thoroughly tested with the MQI. Include modules written in C are 
provided for MQI data structures. Sample programs are provided in C.

C is clearly the language of choice for development of MQSeries applications on UNIX. 
However, for a variety of reasons, some users will want to write in another programming 
language.

In these cases, the customer must meet the interface requirements of the C language interface. 
There are no sample programs and no includable header files provided in any other language.

Nevertheless, any programming language which can call C routines should be able to be used 
in one of two manners:

• Call the MQI directly from another language. This usage requires that all interface 
parameters match up identically at the binary level. With some languages this may present 
a problem.

or

• Within the application, call an application subroutine written in C. From this C language 
subroutine issue the MQI calls. In this manner, there should be no problem with data 
alignment.



Chapter 6. Application programming interface 109 

Application design guidelines 

The hidden network 

One of the key benefits provided by the MQI is the ability for a distributed application to be 
developed which is totally independent of the underlying network. This network independence 
means there is no need for an application to be aware of either:

• The lower levels of the communication protocol(s)

or

• The physical location of other applications on the network.

In order to take full advantage of this network independence, the queue names used by the 
application must be chosen properly.

In particular, it is recommended that application programs use only a single logical name to 
refer to each MQSeries System queue. For the MQI calls, this means only the Queue_Name 
field is used to identify queues. The use of the queue’s fully qualified name (which includes both 
the Queue_Name field and the Queue_Manager_Name field) is not recommended (except 
when replying to a request message; in this case, the fully qualified name of the reply-to queue 
is presented to the application with the request message).

The reasoning behind this recommendation parallels the logical naming used in other I/O 
subsystems. When dealing with disk subsystems, no application hard-codes the device name 
and path name for a file. This would cause havoc for the application when normal system 
management functions relocate a file.

The same is true when addressing MQSeries System queues. Since the 
Queue_Manager_Name is typically associated with a particular system, its use implies 
knowledge of the physical network. This can place restrictions on any future modifications to the 
network and increase the probability that network changes will require changes to the source 
code of applications.

Note: The use of the Queue_Name field as the only logical queue name is strongly 
recommended. This usage maximizes application flexibility and network 
independence. The mapping of the queue name in this form to the proper network 
destination then becomes a configuration issue to be handled by the MQSeries 
System administrator.

This recommended usage should be reflected in the list of queue names defined by the system 
designer (as described in Chapter 3, “Planning” on page 21).

Syncpoint considerations

The IBM MQSeries for UnixWare provides no explicit support for coordination of queue 
functions with logical units of work. However, since all queues are disk resident files, they may 
be managed by any transaction monitor or syncpoint software available on the system.



 

110 IBM MQSeries for UnixWare User’s Guide

Triggering

Triggering is the ability for the MQSeries System software to notify, or awaken, an application 
when a message arrives on a particular local queue.

The IBM MQSeries for UnixWare provides only a pseudo-triggering capability.

This pseudo-triggering feature is available via the MQGET call using the MQGMO structure and the 
MQGMO_WAIT options. When this is specified, the action taken by the MQSeries System is as 
follows:

• If the target queue is non-empty when the MQGET is issued, then the first message is 
returned normally.

• If the target queue is empty when the MQGET is initially issued, MQSeries System will not 
return control to the application, but will periodically poll the queue for a message arrival. In 
this case, control is returned to the application when either a message arrives or the time 
specified in WaitInterval expires. The frequency with which the queue is polled is specified 
in Queue Manager.

If the application wishes to implement a different form of control, then the logic must be 
incorporated in the application itself.

MQI call reference 

For each of the MQI functions, this section presents the detailed call format, parameters, and 
guidelines in the following format:

The API calls are described using the following conventions:

Parameter types:

• Input  - Parameter set by the application for use by the queue manager. A null byte is 
treated as a blank.

• Output  - Parameter set by the queue manager for use by the application on return from the 
call. These parameters are always blank padded.

• Input/Output  - Set by the application for use by the queue manager, and modified by the 
queue manager for use by the application on return from the call.

Note: Features of the full IBM MQI that are not supported in IBM MQSeries for UnixWare are 
so noted in the following sections.

MQAPINAME - Call Name

MQAPINAME (Parameter 1, Parameter 2, Parameter 3, ..., Parameter N)

Description of how and when to use the API call.

Parameters

Parameter 1 - Parameter Type (see below)

Description of Parameter.

Instructions for using the parameter.

• PARAMETER_OPTION - description
• PARAMETER_OPTION_2 - description.

Guideline

Guidelines and tips for using the call.



Chapter 6. Application programming interface 111 

MQCONN - Connect queue manager
MQCONN (Name, Hconn, CompCode, Reason)

The MQCONN call connects an application program to a queue manager. It provides a queue 
manager handle, which is used by the application on subsequent message-queuing calls.

Before any of the message-queuing services can be used, the application must establish a 
connection to a queue manager. The application does this by means of the MQCONN call.

The application provides the name of the queue manager required (Name), and receives in 
return a handle (Hconn) that represents the connection to that queue manager. 

The returned handle is needed for all subsequent calls on that connection. 

CompCode and Reason are returned parameters that indicate the success or failure of the call.

The application can connect either to a specified queue manager, or to the default queue 
manager. 

The default queue manager is requested by specifying a name consisting entirely of blanks. 
The queue manager specified must be local to the application.

Parameters

Name (MQCHAR48) - input

Name of the queue manager.

The name specified must be the name of a local queue manager; if the name consists entirely 
of blanks, the name of the default queue manager is used.

The name must not contain leading or embedded blanks, but may contain trailing blanks; the 
first null character and characters following it are treated as blanks.

Hconn (PMQHCONN) - output

Connection handle.

This handle represents the connection to the queue manager. It must be specified on all 
subsequent message-queuing calls issued by the application. It ceases to be valid when the 
MQDISC call is issued, or when the application ends.

CompCode (PMQLONG) - output

Completion code.

It is one of the following:

• MQCC_OK - Successful completion.
• MQCC_WARNING - Warning (partial completion).
• MQCC_FAILED - Call failed.

Reason (PMQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

• MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:

• MQRC_ALREADY_CONNECTED - Application already connected.



 

112 IBM MQSeries for UnixWare User’s Guide

If CompCode is MQCC_FAILED:

• MQRC_ACCESS_RESTRICTED - Queue manager in restricted access mode.
• MQRC_MAX_CONN_LIMIT_REACHED - Maximum number of connections reached.
• MQRC_NOT_AUTHORIZED - Not authorized for access.
• MQRC_Q_MGR_NAME_ERROR - Queue manager name not valid or not known.
• MQRC_Q_MGR_NOT_AVAILABLE - Queue manager not available for connection.
• MQRC_SECURITY_ERROR - Security error occurred.
• MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
• MQRC_UNEXPECTED_ERROR - Unexpected error occurred.

See “MQI return codes” on page 144, for more details.

Guidelines

1. Only a local queue manager can be connected using this call; it is not possible to connect 
to a remote queue manager. Queues which belong to the connected queue manager 
appear to the application as local queues. Queues belonging to local queue managers 
other than the connected queue manager appear as remote queues. Queues belonging to 
remote queue managers also appear as remote queues.

2. After a failure of a queue manager, this call must be reissued. The application program can 
keep reissuing MQCONN calls until it finds that the queue manager has been restarted. If an 
application is not sure whether or not it is connected to the queue manager, it can safely 
reissue an MQCONN call. If it is already connected, the same handle is returned as was 
returned for the previous MQCONN call.

3. The MQDISC call is used to disconnect from the queue manager.

MQOPEN - open message queue
MQOPEN (Hconn, ObjDesc, Options, Hobj, CompCode, Reason)

The MQOPEN call establishes access to a queue object.

When a connection to the queue manager has been established, the application can open one 
or more queues for putting or getting messages. A queue is opened by means of the MQOPEN 
call.

The application specifies the queue to be opened (ObjDesc), and options (Options) that indicate 
whether the queue is opened for putting or getting messages. 

The application receives in return a handle (Hobj) to the opened queue. The returned handle is 
used on subsequent calls to access the queue.

Parameters

Hconn (MQHCONN) - input

Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN 
call.

ObjDesc (PMQOD) - input/output

Object descriptor.

This is the structure that identifies the object to be opened; see MQOD in “MQOD - MQ object 
descriptor structure” on page 131 for details.



Chapter 6. Application programming interface 113 

Options (MQLONG) - input

Options that control the action of the MQOPEN call.

One or more of the following must be specified. If more than one is required, the values are 
added together.1 Combinations that are not valid are noted; all other combinations are valid. 
Only options that are applicable to the type of object specified by ObjDesc are allowed.

The options for controlling the action of MQOPEN are as follows:

• MQOO_INPUT_SHARED - Open to get messages with shared access. The queue is opened for 
use with subsequent MQGET calls. The call can succeed if this queue is currently open, by 
this or another application, with MQOO_INPUT_SHARED, but fails if it is currently open with 
MQOO_INPUT_EXCLUSIVE. Only one of MQOO_INPUT_SHARED and MQOO_INPUT_EXCLUSIVE options 
can be specified.

Note: Please refer to “The MQSeries System’s distributed architecture on UNIX” on page 3, 
for additional information regarding the usage of MQOO_INPUT_SHARED.

• MQOO_INPUT_EXCLUSIVE - Open to get messages with exclusive access. The queue is 
opened for use with subsequent MQGET calls. The call fails if this queue is currently open, by 
this or another application, for input of any type (MQOO_INPUT_SHARED or 
MQOO_INPUT_EXCLUSIVE). Only one of MQOO_INPUT_SHARED and MQOO_INPUT_EXCLUSIVE 
options can be specified.

• MQOO_BROWSE - Open to browse messages with record locking (See “MQGMO - MQGet 
message options structure” on page 138 for usage details). The queue is opened for use 
with subsequent MQGET calls with the MQGMO_BROWSE_FIRST option. An MQOPEN call with the 
MQOO_BROWSE option establishes a browse cursor, and positions it logically before the first 
message on the queue.

• MQOO_OUTPUT - Open to put messages. The queue is opened for use with subsequent MQPUT 
calls.

• MQOO_INQUIRE - Open to inquire about object attributes. The queue is opened for use with 
subsequent MQINQ calls.

If an alias queue is being opened for input (browse does not count as input), the test for 
exclusive use (or for whether another application has exclusive use) is against the base queue 
to which the alias queue resolves.

Hobj (PMQHOBJ) - output

Object handle.

This handle represents the access that has been established to the object. It must be specified 
on subsequent message-queuing calls that operate on the object. It ceases to be valid when the 
MQCLOSE call is issued, or when the application ends.

1. Do not add the same constant more than once.

a. The validity of an alias depends on the validity of the queue to which the alias resolves.

Table 20.  Valid open options for each queue type

Option Alias a Local Remote

MQOO_INPUT_SHARED X X

MQOO_OUTPUT X X X

MQOO_INQUIRE X X X

MQOO_BROWSE X X

MQOO_INPUT_EXCLUSIVE X X



 

114 IBM MQSeries for UnixWare User’s Guide

CompCode (PMQLONG) - output

Completion Code.

It is one of the following:

• MQCC_OK - Successful completion.
• MQCC_FAILED - Call failed.

Reason (PMQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

• MQRC_NONE - No reason to report.

If CompCode is MQCC_FAILED:

• MQRC_ALIAS_BASE_Q_TYPE_ERROR - Alias base queue not a valid type.
• MQRC_CONNECTION_BROKEN - Connection lost.
• MQRC_HANDLE_NOT_AVAILABLE - No more handles available.
• MQRC_HCONN_ERROR - Connection handle not valid.
• MQRC_NOT_AUTHORIZED - Not authorized for access.
• MQRC_OBJECT_IN_USE - Object already open with conflicting options.
• MQRC_OBJECT_TYPE_ERROR - Object type not valid.
• MQRC_OD_ERROR - Object descriptor structure not valid.
• MQRC_OPTION_NOT_VALID_FOR_TYPE - Options not valid for object type.
• MQRC_OPTIONS_ERROR - Options not valid or not consistent.
• MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
• MQRC_UNEXPECTED_ERROR - Unexpected error occurred.
• MQRC_UNKNOWN_ALIAS_BASE_Q - Unknown alias base queue.
• MQRC_UNKNOWN_OBJECT_NAME - Unknown object name.
• MQRC_UNKNOWN_OBJECT_Q_MGR - Unknown object queue manager.
• MQRC_UNKNOWN_REMOTE_Q_MGR - Unknown remote queue manager.
• MQRC_XMIT_Q_TYPE_ERROR - Transmission queue not local.
• MQRC_XMIT_Q_USAGE_ERROR - Transmission queue with wrong usage.

See “MQI return codes” on page 144, for more details.

Guidelines

1. This call is used to open a queue in order to:

• Get messages (using MQGET call).
• Put messages (using the MQPUT call).
• Inquire about the attributes of the queue (using the MQINQ call).

2. It is invalid for an application to directly open for output a local queue created with Usage 
specified as Transmission.

3. It is valid for an application to open the same object more than once. Each handle that is 
returned can be used for the functions for which the corresponding open was performed.

4. All name resolution within the local queue manager instance takes place at the time of the 
MQOPEN call. This may include one or more of the following for a given MQOPEN call:

• Alias resolution to base queue name.

• Resolution of remote queue name to remote queue manager name, and the local 
queue name by which it is known at the remote queue manager.

However, be aware that subsequent MQINQ calls for the handle relate solely to the name 
that has been opened, and not to the object resulting after name resolution has occurred. 
For example, if the object opened is an alias, the attributes returned by the MQINQ call are 
the attributes of the alias, not the attributes of the base queue to which the alias resolves.



Chapter 6. Application programming interface 115 

5. The attributes of an object can change while an application has the object open. Only 
InhibitPut and InhibitGet will be recognized. For all other attributes to be recognized, the 
queue must be closed and opened again.

6. A remote queue can be specified in one of two ways in the ObjDesc parameter of this call 
(see the ObjectName field in “MQOD - MQ object descriptor structure” on page 131):

• By specifying ObjectName as the local resource-name of the remote queue, as known 
to the local queue manager. In this case, ObjectQMgrName refers to the connected 
queue manager. See “Queue name format” on page 30, for details.

• By specifying ObjectName as the local resource-name of the remote queue, as known 
to the remote queue manager. In this case, ObjectQMgrName is the name of the 
remote queue manager.

In either case:

• No message flows occur at the time of an MQOPEN call to the remote queue manager to 
perform authorization checks.

7. 2An MQOPEN call with the MQOO_BROWSE option establishes a browse cursor, for use with the 
MQGET calls that specify the object handle and one of the browse options. This allows the 
queue to be scanned without altering its contents. A message that has been found by 
browsing can subsequently be removed from the queue using the MQGMO_MSG_UNDER_CURSOR 
option.

Each established browse cursor adversely impacts the performance of non-browse MQGET 
calls. It is recommended therefore that browse operations should be completed as rapidly 
as possible, and the cursor destroyed by closing the queue. If further browse operations 
are required later, it is better to close the queue and reopen it when needed, in order to 
establish a new browse cursor.

Multiple browse cursors can be active for a single application issuing several MQOPEN 
requests for the same queue.

MQGET - get message
MQGET (Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer, DataLength, CompCode, 
Reason)

The MQGET call retrieves a message from a local queue that has been opened using an MQOPEN 
call.

For a queue that has been opened for getting, the application can get messages from that 
queue by means of the MQGET call.

The application specifies a partially filled-in message descriptor (MsgDesc), some options that 
control the action of the call (GetMsgOpts), an empty buffer (Buffer), and the length of the buffer 
(BufferLength).

The application receives in return the message data in the buffer (Buffer), and the total length of 
the message data (DataLength). The message descriptor (MsgDesc) is completed with 
information about the message just retrieved.

The MQGET call can be used repeatedly to get many messages from the same queue, without the 
intervening use of the MQOPEN and MQCLOSE calls.

Parameters

Hconn (MQHCONN) - input

Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN 
call.

2. Scanning beyond the first message on the queue is not currently supported on UNIX.



 

116 IBM MQSeries for UnixWare User’s Guide

Hobj (MQHOBJ) - input

Object handle.

This handle represents the queue from which a message is to be read. The queue must have 
been opened with one or more of the following options (see the MQOPEN call for details):

• MQOO_INPUT_SHARED 
• MQOO_INPUT_EXCLUSIVE 
• MQOO_BROWSE 

MsgDesc (PMQMD) - input/output

Message descriptor.

This structure describes the attributes of the message required, and the attributes of the 
message retrieved. See MQMD in “MQMD - MQ message descriptor structure” on page 132, for 
the format of the message descriptor.

If BufferLength is less than the message length, MsgDesc is still filled in by the queue manager, 
whether or not MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts parameter (see 
the Options field in “MQGMO - MQGet message options structure” on page 138 for more 
information).

GetMsgOpts (PMQGMO) - input/output

Options that control the action of an MQGET call.

See MQGMO in “MQGMO - MQGet message options structure” on page 138 for details.

BufferLength (MQLONG) - input

Length in bytes of the Buffer area.

Buffer (MQBYTExBufferLength) - output

Area to contain the message data.

If BufferLength is less than the message length, as much of the message as possible is moved 
into Buffer, whether or not MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts 
parameter (see the Options field in “MQGMO - MQGet message options structure” on page 138 
for more information). Unless MQGMO_ACCEPT_TRUNCATED_MSG is specified, the message is not 
deleted from the queue.

In the C programming language, the parameter is declared as a pointer-to-void; this means that 
the address of any type of data can be specified as the parameter.

If character data is used within the application message text, the coded character set identifier 
has to be agreed between the sending and receiving applications, or else the character set has 
to be limited to the subset that is known to occupy the same code points for both the sender and 
receiver.

If the buffer length parameter is zero, Buffer is not referenced; in this case, the parameter 
address passed by programs written in C can be null.



Chapter 6. Application programming interface 117 

DataLength (PMQLONG) - output

Length of the message.

This is the length of the application data in the message. If this is greater than BufferLength, 
only BufferLength bytes are returned in the Buffer parameter (the message is truncated). If the 
value is zero, it means that the message contains no application data.

If BufferLength is less than the message length, DataLength is still filled in by the queue 
manager, whether or not MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts 
parameter (see the Options field in “MQGMO - MQGet message options structure” on page 138 
for more information). This allows the application to determine the size of the buffer required to 
accommodate the message data.

CompCode (PMQLONG) - output

Completion code.

It is one of the following:

• MQCC_OK - Successful completion.
• MQCC_WARNING - Warning (partial completion).
• MQCC_FAILED - Call failed.

Reason (PMQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

• MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:

• MQRC_TRUNCATED_MSG_ACCEPTED - Truncated message returned (message deleted from 
queue).

• MQRC_TRUNCATED_MSG_FAILED - Truncated message returned (message not deleted from 
queue).

• MQRC_NO_MSG_LOCKED

If CompCode is MQCC_FAILED:

• MQRC_BUFFER_ERROR - Buffer parameter not valid.
• MQRC_BUFFER_LENGTH_ERROR - Buffer length parameter not valid.
• MQRC_CONNECTION_BROKEN - Connection lost.
• MQRC_CORREL_ID_ERROR - CorrelId field not set to MQCI_NONE.
• MQRC_DATA_LENGTH_ERROR - Data length parameter not valid.
• MQRC_GET_INHIBITED - Gets inhibited for the queue.
• MQRC_GMO_ERROR - Get Message error.
• MQRC_HCONN_ERROR - Connection handle not valid.
• MQRC_HOBJ_ERROR - Object handle not valid.
• MQRC_LOCK_NOT_AVAILABLE - No more locks available.
• MQRC_MD_ERROR - Message descriptor not valid.
• MQRC_MSG_ID_ERROR - MsgId field not set to MQMI_NONE.
• MQRC_NO_MSG_AVAILABLE - No message available.
• MQRC_NO_MSG_UNDER_CURSOR - Browse cursor not positioned on message.
• MQRC_NOT_OPEN_FOR_BROWSE - Queue object not open for browse.
• MQRC_NOT_OPEN_FOR_INPUT - Queue object not open for input.
• MQRC_OBJECT_CHANGED - Object definition changed since opened.
• MQRC_OPTIONS_ERROR - Options not valid or consistent.
• MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
• MQRC_WAIT_INTERVAL_ERROR - Negative wait interval in MQGMO.
• MQRC_UNEXPECTED_ERROR - Unexpected error occurred.

See “MQI return codes” on page 144, for more details.



 

118 IBM MQSeries for UnixWare User’s Guide

Guidelines

1. The message retrieved is normally deleted from the queue as part of the MQGET call 
(Options set to 0). Messages can be read and not deleted by specifying the 
MQGMO_BROWSE_FIRST and MQGMO_LOCK options. This does though leave an outstanding 
record lock on the read record.

2. A locked record can be unlocked by again calling MQGET with the MQGMO_UNLOCK option set. 
The previously read message is now available for another process to read. Buffer and 
DataLength are not updated.

3. A locked record can be deleted by again calling MQGET with the MQGMO_MSG_UNDER_CURSOR 
option. This deletes and unlocks the previously read message.

4. Issuing another MQGET call while having an outstanding locked record assumes that the 
currently locked record is to be unlocked. If this is the only application reading this queue, 
then the same record will be returned.

MQPUT - put message
MQPUT (Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer, CompCode, Reason)

The MQPUT call puts a message on a queue; the queue must already be open.

When the queue has been opened for putting, the application can put messages to that queue 
by means of the MQPUT call.

The application specifies information about the message to be put (MsgDesc), options that 
control the action of the put (PutMsgOpts), the length of the data (BufferLength), and the 
message itself (Buffer).

The MQPUT call can be used repeatedly to put many messages on the same queue, without 
intervening use of the MQOPEN and MQCLOSE calls.

Parameters

Hconn (MQHCONN) - input

Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN 
call.

Hobj (MQHOBJ) - input

Object handle.

This handle represents the queue to which the message is added. The queue must be opened 
for MQOO_OUTPUT (see the MQOPEN call).

MsgDesc (PMQMD) - input/output

Message descriptor.

This structure describes the attributes of the message being sent, and receives feedback 
information after the put request is complete. See MQMD in “MQMD - MQ message descriptor 
structure” on page 132 for the format of the message descriptor.

PutMsgOpts (PMQPMO) - input/output

Options that control the action of the MQPUT call.

See MQPMO in “MQI data types and structures” on page 129 for details.



Chapter 6. Application programming interface 119 

BufferLength (MQLONG) - input

Length of the message in Buffer.

Zero is valid, and indicates that the message contains no application data.

Buffer (MQBYTExBufferLength) - input

This is a buffer containing the application data to be sent.

In the C programming language, the parameter is declared as a pointer-to-void; this means that 
the address of any type of data can be specified as the parameter.

If character data is used within the application message text, the coded character set identifier 
has to be agreed between the sending and receiving applications, or else the character set 
used has to be limited to a subset that is known to occupy the same code points for both the 
sender and receiver.

If BufferLength parameter is zero, Buffer is not referenced; in this case, the parameter address 
passed by programs written in C can be null.

CompCode (PMQLONG) - output

Completion Code.

It is one of the following:

• MQCC_OK - Successful completion.
• MQCC_WARNING - Warning (partial completion).
• MQCC_FAILED - Call failed.

Reason (PMQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

• MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:

• MQRC_PRIORITY_EXCEEDS_MAXIMUM - Priority exceeds maximum.

If CompCode is MQCC_FAILED:

• MQRC_BUFFER_ERROR - Buffer parameter not valid.
• MQRC_BUFFER_LENGTH_ERROR - Buffer length parameter not valid.
• MQRC_CONNECTION_BROKEN - Connection lost.
• MQRC_EXPIRY_ERROR - Expiry time not valid.
• MQRC_FEEDBACK_ERROR - Feedback code not valid.
• MQRC_HCONN_ERROR - Connection handle not valid.
• MQRC_HOBJ_ERROR - Object handle not valid.
• MQRC_MD_ERROR - Message descriptor not valid.
• MQRC_MISSING_REPLY_TO_Q - Missing reply-to queue.
• MQRC_MSG_TOO_BIG_FOR_Q - Message length greater than maximum for queue.
• MQRC_MSG_TYPE_ERROR - Message type in message descriptor not valid.
• MQRC_PMO_ERROR - Put-message-options structure not valid.
• MQRC_NOT_OPEN_FOR_OUTPUT - Queue object not open for output.
• MQRC_OBJECT_CHANGED - Object definition changed since opened.
• MQRC_OPTIONS_ERROR - Options not valid or not consistent.
• MQRC_PERSISTENCE_ERROR - Persistence not valid.
• MQRC_PRIORITY_ERROR - Priority not valid.
• MQRC_PUT_INHIBITED - Puts inhibited for queue.
• MQRC_Q_FULL - Queue already at maximum depth.
• MQRC_Q_SPACE_NOT_AVAILABLE - No space available on disk for queue.
• MQRC_REPORT_OPTIONS_ERROR - Report options in message descriptor not valid.



 

120 IBM MQSeries for UnixWare User’s Guide

• MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
• MQRC_UNEXPECTED_ERROR - Unexpected error occurred.

See “MQI return codes” on page 144, for more details.

Guidelines

1. The MQPUT call should be used when multiple messages are to be placed on a queue. An 
MQOPEN call, with the MQOO_OUTPUT attribute, is first issued, followed by one or more MQPUT 
requests to add messages to the queue. The queue is then closed with an MQCLOSE call.

2. If only one message is to be put on the queue, the MQPUT1 call can be used.

MQCLOSE - close object
MQCLOSE (Hconn, Hobj, Options, CompCode, Reason)

The MQCLOSE call relinquishes access to an object, and is the inverse of the MQOPEN call.

When the application has finished putting messages on a queue, or getting messages from a 
queue, the application must close the queue by means of the MQCLOSE call.

The application specifies the handle of the queue to be closed (Hobj), and some options that 
control the action of the call (Options). After the call, the queue handle (Hobj) is no longer valid, 
and messages cannot be put to the queue or removed from the application unless it performs 
another MQOPEN call.

An application that is reading from a queue does not have to empty the queue before closing it. 
Messages left on a queue are retained by the queue manager, and may be accessed later by 
the same or another application.

Parameters

Hconn (MQHCONN) - input

Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN 
call.

Hobj(PMQHOBJ) - input/output

Object Handle.

This handle represents the object which is being closed. The value of Hobj was returned by a 
previous MQOPEN call.

On successful completion of the call, the queue manager sets this parameter to a value that is 
not a valid handle.

Options (MQLONG) - input

Options that control the action of an MQCLOSE call.

The following must be specified:

MQCO_NONE - No optional close processing required.

CompCode (PMQLONG) - input

Completion Code.

It is one of the following:

• MQCC_OK - Successful completion.
• MQCC_FAILED - Call failed.



Chapter 6. Application programming interface 121 

Reason (PMQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

• MQRC_NONE - No reason to report

If CompCode is MQCC_FAILED:

• MQRC_CONNECTION_BROKEN - Connection lost.
• MQRC_HCONN_ERROR - Connection handle not valid.
• MQRC_HOBJ_ERROR - Object handle not valid.
• MQRC_OPTIONS_ERROR - Options not valid or consistent.
• MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
• MQRC_UNEXPECTED_ERROR - Unexpected error occurred.

See “MQI return codes” on page 144, for more details.

Guideline

When an application issues the MQDISC call, or ends either normally or abnormally, any objects 
which were opened by the application and which are still open are closed automatically with the 
MQCO_NONE option.

MQDISC - disconnect queue manager
MQDISC (Hconn, CompCode, Reason)

The MQDISC call breaks the connection between the queue manager and the application 
program, and is the inverse of MQCONN.

When the application has finished all interaction with the queue manager, the application must 
sever the connection by means of the MQDISC call.

After the call, the connection handle (Hconn) is no longer valid, and message-queuing calls 
cannot be issued by the application unless it performs another MQCONN call.

Parameters

Hconn (PMQHCONN) - input/output

Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN 
call.

On successful completion of the call, the queue manager sets this parameter to a value that is 
not a valid handle.

CompCode (PMQLONG) - output

Completion code.

It is one of the following:

• MQCC_OK - Successful completion.
• MQCC_FAILED - Call failed.



 

122 IBM MQSeries for UnixWare User’s Guide

Reason (PMQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

• MQRC_NONE - No reason to report.

If CompCode is MQCC_FAILED:

• MQRC_CONNECTION_BROKEN - Connection lost.
• MQRC_HCONN_ERROR - Connection handle not valid.
• MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
• MQRC_UNEXPECTED_ERROR - Unexpected error occurred.

See “MQI return codes” on page 144, for more details.

Guideline

If an MQDISC call is issued when an application still has objects open, these objects are implicitly 
closed (with MQCO_NONE).

MQPUT1 - put one message
MQPUT1 (Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer, CompCode, Reason)

The MQPUT1 call puts one message on a queue; the queue need not be open.

For some applications, the typical sequence of calls to MQOPEN, multiple MQPUTS, and finally 
MQCLOSE is an efficient method for putting many messages onto a queue. For applications where 
only a single put is required, such as a remote database update for a single record, the MQPUT1 
call can be used.

The MQPUT1 call is equivalent in function to the sequence of an MQOPEN call, followed by an MQPUT, 
and finally an MQCLOSE call, but only requires a single call.

The application specifies the handle for the queue manager (Hconn), the queue to put the 
information (ObjDesc), information about the message to be put (MsgDesc), options that control 
the action of the put (PutMsgOpts), the length of the data (BufferLength), and the message itself 
(Buffer).

Parameters

Hconn (MQHCONN) - input

Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN 
call.

ObjDesc (PMQOD) - input

Object descriptor.

This is a structure which identifies the queue to which the message is added. See MQOD in 
“MQOD - MQ object descriptor structure” on page 131 for the format of the object descriptor.

MsgDesc (PMQMD) - input/output

Message descriptor.

This structure describes the attributes of the message being sent, and receives feedback 
information after the put request is complete. See MQMD in “MQMD - MQ message descriptor 
structure” on page 132 for the format of the message descriptor.



Chapter 6. Application programming interface 123 

PutMsgOpts (PMQPMO) - input/output

Options that control the action of the MQPUT1 call.

See MQPMO in “MQGMO - MQGet message options structure” on page 138 for details.

BufferLength (MQLONG) - input

Length of the message in Buffer.

Zero is valid, and indicates that the message contains no application data.

Buffer (MQBYTExBufferLength) - input

This is a buffer containing the application data to be sent.

In the C programming language, the parameter is declared as a pointer-to-void; this means that 
the address of any type of data can be specified as the parameter.

If character data is used within the application message text, the coded character set identifier 
has to be agreed between the sending and receiving applications, or else the character set 
used has to be limited to a subset that is known to occupy the same code points for both the 
sender and receiver.

If BufferLength parameter is zero, Buffer is not referenced; in this case, the parameter address 
passed by programs written in C can be null.

CompCode (PMQLONG) - output

Completion Code.

It is one of the following:

• MQCC_OK - Successful completion.
• MQCC_WARNING - Warning (partial completion).
• MQCC_FAILED - Call failed.

Reason (PMQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

• MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:

• MQRC_EXCEEDS_MAXIMUM - Priority exceeds maximum.

If CompCode is MQCC_FAILED:

• MQRC_ALIAS_BASE_Q_TYPE_ERROR - Alias base queue not a valid type.
• MQRC_BUFFER_ERROR - Buffer parameter not valid.
• MQRC_BUFFER_LENGTH_ERROR - Buffer length parameter not valid.
• MQRC_CONNECTION_BROKEN - Connection lost.
• MQRC_EXPIRY_ERROR - Expiry time not valid.
• MQRC_FEEDBACK_ERROR - Feedback code not valid.
• MQRC_HANDLE_NOT_AVAILABLE - No more handles available.
• MQRC_HCONN_ERROR - Connection handle not valid.
• MQRC_MD_ERROR - Message descriptor not valid.
• MQRC_MISSING_REPLY_TO_Q - Missing reply-to queue.
• MQRC_MSG_TOO_BIG_FOR_Q - Message length greater than maximum for queue.
• MQRC_MSG_TYPE_ERROR - Message type in message descriptor not valid.
• MQRC_NOT_AUTHORIZED - Not authorized for access.
• MQRC_OBJECT_CHANGED - Object definition changed since opened.
• MQRC_OBJECT_TYPE_ERROR - Object type not valid.
• MQRC_OD_ERROR - Object descriptor structure not valid.



 

124 IBM MQSeries for UnixWare User’s Guide

• MQRC_OPTIONS_ERROR - Options not valid or not consistent.
• MQRC_PERSISTENCE_ERROR - Persistence not valid.
• MQRC_PMO_ERROR - Put-message-options structure not valid
• MQRC_PRIORITY_ERROR - Priority not valid.
• MQRC_PUT_INHIBITED - Puts inhibited for queue.
• MQRC_Q_FULL - Queue already at maximum depth.
• MQRC_Q_SPACE_NOT_AVAILABLE - No space available on disk for queue.
• MQRC_REPORT_OPTIONS_ERROR - Report options in message descriptor not valid.
• MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
• MQRC_UNEXPECTED_ERROR - Unexpected error occurred
• MQRC_UNKNOWN_ALIAS_BASE_Q - Unknown alias base queue.
• MQRC_UNKNOWN_OBJECT_NAME - Unknown object name.
• MQRC_UNKNOWN_OBJECT_Q_MGR - Unknown object queue manager.
• MQRC_UNKNOWN_REMOTE_Q_MGR - Unknown remote queue manager.
• MQRC_XMIT_Q_TYPE_ERROR - Transmission queue not local.
• MQRC_XMIT_Q_USAGE_ERROR - Transmission queue with wrong usage.

See “MQI return codes” on page 144, for more details.

Guidelines

1. The MQPUT1 call can be used when a single message is to be added to a queue. It is 
functionally equivalent to the MQOPEN, MQPUT, MQCLOSE sequence of calls.

2. If several messages are to be added to the same queue, it is advisable to open the queue 
explicitly using an MQOPEN, call and then use repeated MQPUT calls before closing the queue 
using an MQCLOSE call, because this gives better performance than repeated use of the 
MQPUT1 call.

MQINQ - inquire about object attributes
MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs, 
CharAttrLength, CharAttrs, CompCode, Reason)

The MQINQ call returns an array of integers and a set of character strings that contain the 
attributes of a specified queue.

Sometimes an application needs to determine one or more of the properties of a queue, in order 
to take appropriate action. For example, a load-balancing program might want to determine the 
current depth of the queue (that is the number of messages on the queue), so that the 
application could start another server if the number of queued messages has exceeded the 
capacity of the current number of servers.

The attributes of the queue can be determined by means of the MQINQ call.

The application specifies the queue whose attributes are to be queried (Hobj), the number of 
attributes required (SelectorCount), and the selector codes for those attributes (Selectors). The 
application receives in return the values for those attributes (IntAttrs and CharAttrs).

In order to use the MQINQ call, the queue must first be opened for inquiry using the MQOPEN call.

Parameters

Hconn (MQHCONN) - input

Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN 
call.

Hobj (MQHOBJ) - input

Object handle.



Chapter 6. Application programming interface 125 

This handle represents the object whose attributes are required. The handle must have been 
returned by an MQOPEN call with the MQOO_INQUIRE option.

SelectorCount (MQLONG) - input

Count of selectors.

This is the count of selectors that are supplied in the Selectors array. It is the number of 
attributes that are to be returned. Zero is a valid value. The maximum value allowed is 256.

Selectors (MQLONGxSelectorCount) - input

Array of attribute selectors.

This is an array of SelectorCount attribute selectors; each selector identifies an attribute (integer 
or character) whose value is required.

Each selector must be valid for the type of object that Hobj represents. If the object is a queue, 
and the selector is:

• Not a valid selector for queues of any type, an error is raised.

• Only applicable to queues of type, or types, other than that of the object, the call completes 
with a warning.

Selectors can be specified in any order. Attribute values that correspond to integer attribute 
selectors (MQIA_* selectors) are returned in IntAttrs in the same order in which these selectors (it 
is not always possible to detect parameter pointers which are not valid; if it is not detected, 
unpredictable results occur). 

Attribute values that correspond to character attribute selectors (MQCA_* selectors) are returned 
in CharAttrs in the same order in which those selectors occur. MQIA_* selectors can be 
interleaved with the MQCA_* selectors; only the relative order within each type is important.

If all the MQIA_* selectors occur first, the same element numbers can be used to address 
corresponding elements in the Selectors and IntAttrs arrays.

For each MQCA_* selector in the following descriptions, the constant that defines the length in 
bytes of the resulting string CharAttrs is given.

The following are valid for any queue type:

• MQIA_Q_TYPE - This attribute requests the type of this queue. The value returned can be one 
of the following: MQQT_LOCAL, MQQT_ALIAS, and MQQT_REMOTE. This attribute is valid for all 
queue types and requires a field width of one longword.

• MQIA_INHIBIT_PUT - This attribute requests the setting of the put inhibit flag for this queue. A 
value of MQQA_PUT_INHIBITED is returned if puts are inhibited. Otherwise MQQA_PUT_ALLOWED 
is returned. This attribute is valid for all queue types and requires a field width of one 
longword.

• MQIA_DEF_PERSISTENCE - This attribute requests the default persistence of this queue. For 
this implementation MQPER_PERSISTENT is always returned. This attribute is valid for all 
queue types and requires a field width of one longword.

• MQCA_Q_NAME - This attribute requests the name of the currently opened queue. This 
attribute is valid for all queue types and requires a field width of 48 characters.

• MQCA_Q_DESC - This attribute requests the queue description. The data for this field comes 
from the Description field of the Create Queue Screen. This attribute is valid for all queue 
types and requires a field width of 64 characters.

The following are valid for local queues:



 

126 IBM MQSeries for UnixWare User’s Guide

• MQIA_MAX_Q_DEPTH - This attribute requests the maximum queue depth of this queue. The 
value for this attribute comes from the value assigned to the Max Queue Depth field of the 
Create Local Queue Screen of MQM. A value of 999999999 means that this queue has 
unlimited depth. This attribute is valid only for local queues and requires a field width of one 
longword.

• MQIA_MAX_MSG_LENGTH - This attribute requests the maximum message length of this queue. 
The value for this attribute comes from the value assigned to the Max Message field of the 
Create Local Queue Screen of MQM. This attribute is valid only for local queues and 
requires a field width of one longword.

• MQIA_SHAREABILITY - This attribute requests the shareability of this queue. For this 
implementation all queues are shareable so MQQA_SHAREABLE is always returned. This 
attribute is valid for local queues and requires a field width of one longword.

• MQIA_DEFINITION_TYPE - This attribute requests the definition type of this queue. For this 
implementation MQQDT_PREDEFINED is always returned. This attribute is valid only for local 
queues and requires a field width of one longword.

• MQIA_USAGE - This attribute requests the usage of this queue. The value returned is one of 
MQUS_NORMAL, meaning this is a local queue used for application purposes, or 
MQUS_TRANSMISSION, meaning this is a local queue used only for transmission purposes. 
The difference being that applications using MQI cannot open a local queue with usage = 
MQUS_TRANSMISSION for input of any kind (MQOO_INPUT_SHARED, MQOO_INPUT_EXCLUSIVE, or 
MQOO_BROWSE). This attribute is only valid for local queues and requires a field width of one 
longword.

• MQIA_TRIGGER_CONTROL - This attribute requests whether trigger control is on or off for this 
queue. Since triggering is not supported for this platform, the value MQTC_OFF is always 
returned. This attribute is valid only for local queues and requires a field width of one 
longword.

• MQIA_TRIGGER_TYPE - This attribute requests the trigger type available. Since triggering is 
not supported for this platform, the value MQTT_NONE is always returned. This attribute is 
valid only for local queues and requires a field width of one longword.

• MQIA_OPEN_INPUT_COUNT - This attribute requests the total number of times this queue has 
been opened for input and not subsequently closed. As a note, the sum of the values 
returned by MQIA_OPEN_INPUT_COUNT plus MQIA_OPEN_OUTPUT_COUNT does not equal the total 
number of queue users. This attribute is valid only for local queues and requires a field 
width of one longword.

• MQIA_OPEN_OUTPUT_COUNT - This attribute requests the total number times this queue has 
been opened for output and not subsequently closed. As a note, the sum of the values 
returned by MQIA_OPEN_INPUT_COUNT plus MQIA_OPEN_OUTPUT_COUNT does not equal the total 
number of queue users. This attribute is valid only for local queues and requires a field 
width of one longword.

• MQIA_CURRENT_Q_DEPTH - This attribute requests the current queue depth. This value is not 
to be confused with the total number of records on the queue. This value represents the 
number of non-deleted messages on the queue. This number will not exceed the maximum 
queue depth assigned with this queue. This attribute is valid for local queues and requires a 
field width of one longword.

• MQCA_PROCESS_NAME - Though supported by the MQI interface, this attribute request will only 
return a space-filled buffer as UNIX does not support process names. This attribute is valid 
for all queue types and requires a field width of 64 characters.

• MQCA_INITIATION_Q_NAME - This attribute, though supported by the MQI interface, is only 
filled with spaces in this implementation. This attribute is only valid for local queues and 
requires a field width of 48 characters.

• MQCA_CREATION_DATE - This attribute requests the creation date of a queue. This is the date 
on which the physical queue was created through MQM. Since physical queues exist for 
local queues only, this attribute is only valid for local queues and requires a field width of 12 
characters.



Chapter 6. Application programming interface 127 

• MQCA_CREATION_TIME - This attribute requests the creation time of a queue. This is the time 
at which the physical queue was created through MQM. Since physical queues exist for 
local queues only, this attribute is only valid for local queues and requires a field width of 8 
characters.

• MQIA_INHIBIT_GET - This attribute requests the setting of the get inhibit flag for this queue. A 
value of MQQA_GET_INHIBITED is returned if gets are inhibited. Otherwise MQQA_GET_ALLOWED 
is returned. The attribute is valid for all queue types and requires a field width of one 
longword.

The following are valid for remote queues:

• MQCA_REMOTE_Q_MGR_NAME - This attribute requests the name of the Remote Queue 
Manager. The data for this attribute comes from the Remote Queue Manager field of the 
Create Remote Queue Screen. This attribute is valid only for remote queues and requires a 
field width of 48 characters.

• MQCA_REMOTE_Q_NAME - This attribute requests the name of the Remote Queue. The data for 
this attribute comes from the Remote Queue field of the Create Remote Queue Screen. 
This attribute is valid only for remote queues and requires a field width of 48 characters.

• MQCA_XMIT_Q_NAME - This attribute requests the name of the transmit queue associated with 
either a remote queue definition or a Queue Manager alias definition. The data for this field 
comes from either the Transmit Queue field of the Create Remote Queue Screen or the 
Create Queue Manager Alias Screen (depending on the queue type). This attribute is valid 
only for remote queues and queue manger aliases. It requires a field width of 48 
characters.

The following are valid for alias queues:

• MQCA_BASE_Q_NAME - This attribute requests the base queue name of an alias queue. When 
an alias queue was created using MQM, this was the value of the field labeled Alias To. 
This attribute is only valid for alias queues and requires a field width of 48 characters.

• MQIA_INHIBIT_GET - This attribute requests the setting of the get inhibit flag for this queue. A 
value of MQQA_GET_INHIBITED is returned if gets are inhibited. Otherwise MQQA_GET_ALLOWED 
is returned. The attribute is valid for all queue types and requires a field width of one 
longword.

IntAttrCount (MQLONG) - input

Count of integer attributes.

This is the number of elements in the IntAttrs array. Zero is a valid value if there are no MQIA_* 
selectors in Selectors.

If this is at least the number of MQIA_* selectors in the Selectors parameter, all integer attributes 
requested are returned.

IntAttrs (MQLONGxIntAttrCount) - output

This is an array of IntAttrCount integer attribute values.

Integer attribute values are returned in the same order as the MQIA_* selectors in the Selectors 
parameter. If the array contains more elements than the number of MQIA_* selectors, the excess 
elements are unchanged.

If Hobj represents a queue, but an attribute selector is not applicable to that type of queue, the 
specific value MQIAV_NOT_APPLICABLE is returned for the corresponding element in the IntAttrs 
array.

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not referenced; in this case, 
the parameter address passed by programs written in C may be null.



 

128 IBM MQSeries for UnixWare User’s Guide

CharAttrLength (MQLONG) - input

Length of character-attributes buffer.

This is the length in bytes of the CharsAttrs parameter.

This must be at least the sum of the lengths required to hold each attribute string (see 
Selectors). Zero is a valid value if there are no MQCA_* selectors in Selectors.

CharAttrs (MQCHARxCharAttrLength) - output

Character attributes.

This is the buffer in which the character attributes are returned, concatenated together. The 
length of the buffer is given by the CharAttrLength parameter.

Character attributes are returned in the same order as the MQCA_* selectors in the Selectors 
parameter. The length of each attribute string is fixed for each attribute (see Selectors), and the 
value in it is padded to the right with blanks if necessary.

If the buffer is larger than is needed to contain all of the requested character attributes 
(including padding), the excess, beyond the last attribute returned, is unchanged.

If Hobj represents a queue, but an attribute selector is not applicable to that type of queue, a 
character string consisting entirely of asterisks (*) is returned as the value of that attribute in 
CharAttr.

If the CharAttrLength or SelectorCount parameter is zero, CharAttrs is not referenced; in this 
case, the parameter address passed by programs written in C may be null.

CompCode (PMQLONG) - output

Completion code.

It is one of the following:

• MQCC_OK - Successful completion.
• MQCC_WARNING - Warning (partial completion).
• MQCC_FAILED - Call failed.

Reason (PMQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
• MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:

• MQRC_INT_ATTR_COUNT_TOO_SMALL - Not enough space allowed for integer attributes.
• MQRC_CHAR_ATTRS_TOO_SHORT - Not enough space allowed for character attributes.
• MQRC_SELECTOR_NOT_FOR_TYPE - Selector not applicable to queue type.



Chapter 6. Application programming interface 129 

If CompCode is MQCC_FAILED:

• MQRC_CHAR_ATTR_LENGTH_ERROR - Length of character attributes not valid.
• MQRC_CHAR_ATTRS_ERROR - Character Attribute string not valid.
• MQRC_CONNECTION_BROKEN - Connection lost.
• MQRC_HCONN_ERROR - Connection handle not valid.
• MQRC_HOBJ_ERROR - Object handle not valid.
• MQRC_INT_ATTR_COUNT_ERROR - Count of integer attributes not valid.
• MQRC_INT_ATTRS_ARRAY_ERROR - Integer attributes array not valid.
• MQRC_NOT_OPEN_FOR_INQUIRE - Queue object not open for inquire.
• MQRC_OBJECT_CHANGED - Object definition changed since opened.
• MQRC_SELECTOR_COUNT_ERROR - Count of selectors not valid.
• MQRC_SELECTOR_ERROR - Attribute selector not valid.
• MQRC_SELECTOR_LIMIT_EXCEEDED - Count of selectors too big.
• MRQC_STORAGE_NOT_AVAILABLE - Storage not available.
• MQRC_UNEXPECTED_ERROR - Unexpected error occurred.

See “MQI return codes” on page 144, for more details.

Guidelines

1. The values returned are a snapshot of the selected attributes. There is no guarantee that 
the attributes will not change before the application can act upon the returned values.

2. See “MQSeries System configuration elements” on page 29, for more information about 
queue types and attributes.

3. If more than one of the warning situations arise (see the CompCode parameter), the first 
one of the following reasons that applies is returned:

• MQRC_SELECTOR_NOT_FOR_TYPE 
• MQRC_INT_ATTR_COUNT_TOO_SMALL 
• MQRC_CHAR_ATTRS_TOO_SHORT 

MQI data types and structures

This section will examine the data types used by the MQI and will then present the primary data 
structures important to the MQI functions.

Data types

The following data types are used by the message queuing services in the MQSeries System:

• Elementary
• Structure

These data types correspond to data types that could be declared in a language that supports 
user-defined data types, such as the C programming language. 

All user-defined data types ultimately resolve to elementary data types, or to aggregates of 
elementary types (arrays or structures).

Elementary data types

Message queuing uses the following elementary data types:3

• MQBYTE - A single byte (string of eight bits)
• MQCHAR - A single character in a defined character set
• MQLONG - A four-byte signed binary integer

3. Some function parameters in C are defined as being pointers to the appropriate data type.



 

130 IBM MQSeries for UnixWare User’s Guide

MQBYTE - Byte

The MQBYTE data type represents a single byte of data. No particular interpretation is placed on 
the byte. The byte is treated as a string of bits, and not as a character or binary number. No 
special alignment is required.

An array of MQBYTE is sometimes used to represent an area of main storage whose nature is not 
known to the queue manager. For example, the area may contain application message data or 
a structure. The boundary alignment of this area must be compatible with the nature of the data 
it contains.

In the C programming language, any data type can be used for function parameters that are 
shown as arrays of MQBYTE. Such parameters are always passed by address, and in C the 
function parameter is declared as a pointer-to-void.

MQBYTE24 - String of 24 Bytes

A string of 24 bytes. Each byte is described by the MQBYTE data type. 

MQCHAR - Character

The MQCHAR data type represents a single character. The coded character set identifier of the 
character is that of the queue manager. No special alignment is required.

Note: Application message data specified on MQGET, MQPUT, and MQPUT1 calls is described by 
the MQBYTE data type.

MQCHARn - String of n Characters

Each MQCHARn data type represents a string of n characters, where n can take one of the 
following values:

4, 8, 12, 16, 28, 32, 48, 64, 128, 256

Each character is described by the MQCHAR data type. No special alignment is required.

If the data in the string is shorter than the defined length of the string, the data must be padded 
with blanks to fill the string. In some cases, a null character can be used to end the string 
prematurely, instead of padding with blanks.

Characters beyond the null character, up to the defined length of the string, are ignored. Cases 
where null characters may be used are identified in the call and data type descriptions.

When the queue manager returns character strings to the application (for example, on the MQGET 
call), the queue manager always pads with blanks to the defined length of the string.

Constants are available that define the lengths of the character string fields.

MQHCONN - Connection Handle

The MQHCONN data type represents a queue manager connection handle. The MQHCONN data type 
is defined as an MQLONG, and must be aligned on a 4-byte boundary.

Applications must only test variables of this type for equality.

MQHOBJ - Object Handle

The MQHOBJ data type represents an object (queue) handle. The MQHOBJ is defined as an MQLONG, 
and must be aligned on a 4-byte boundary.

Applications must only test variables of this type for equality.



Chapter 6. Application programming interface 131 

MQLONG - Long Integer

The MQLONG data type is a 32-bit signed binary integer that can take any value in the range 
-2147483648 through +2147483647, unless otherwise restricted by the context. This data type 
is sometimes referred to as a “longword”.

Structure data types

The supported programming languages vary in their functionality with respect to structures, and 
certain rules and conventions are adopted in mapping the message-queuing structure data 
types of each programming language.

Boundary alignments

1. Structures are aligned on their natural boundaries. All message-queuing structures require 
4-byte alignment.

2. Each field in the structure is aligned on its natural boundary. Fields of type MQLONG are 
aligned on 4-byte boundaries. Other fields are aligned on 1-byte boundaries.

3. The length of a structure is a multiple of its boundary requirement. All message-queuing 
structures have lengths that are multiples of four bytes.

4. Padding fields are declared explicitly where necessary to ensure compliance with rules 2 
and 3.

References to structure components

The supported programming languages allow references to structure components to be 
qualified with the name of the structure. Multiple instances of the structure may be declared:

• C has dot-qualification

Characters in names

The supported programming languages accept mixed case, however, the following points 
should be noted:

• The C language is case-sensitive, and so the names of data types, structures fields, and 
named constants must be coded precisely as shown in this guide.

MQOD - MQ object descriptor structure

The MQOD structure is used to specify a queue object.

This structure is passed as a parameter to the MQOPEN and MQPUT1 calls.

StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQOD_STRUC_ID

Structure identifier for Object Descriptor. 

This is always an input field.

Version (MQLONG)

Structure version number.

The value must be:

MQOD_VERSION_1

Structure version number for Object Descriptor.

This is always an input field.

ObjectType (MQLONG)



 

132 IBM MQSeries for UnixWare User’s Guide

Object type.

Type of object being named in ObjectName. This must be:

MQOT_Q

Queue.

This is always an input field.

ObjectName (MQCHAR48)

Object name.

The local name of the object as defined on the queue manager identified by 
ObjectQMgrName.

The name must not contain leading or embedded blanks, but may contain trailing blanks. 
The first null character and characters following it are treated as blanks.

This is an input field.

ObjectQMgrName (MQCHAR48)

Object queue manager name.

The name of the queue manager on which the ObjectName object is defined.

If the name is specified, it must not contain leading or embedded blanks, but may contain 
trailing blanks. The first null character and characters following it are treated as blanks.

A name which is entirely blank up to the first null character or the end of the field denotes 
the queue manager to which the application is connected.

This is an input field.

DynamicQName (MQCHAR48)

This is a reserved field.

AlternateUserId (MQCHAR12)

This is a reserved field.

MQMD - MQ message descriptor structure

The MQMD structure is used to describe the attributes of a message. It is an input/output variable 
for MQGET, MQPUT, and MQPUT1 calls.

StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQMD_STRUC_ID

Structure identifier for Message Descriptor.

This is always an input field.

Version (MQLONG)

Structure version number.

The value must be:

MQMD_VERSION_1

Structure version number for Message Descriptor.

This is always an input field.

Report (MQLONG)

Reserved.

This is a reserved field. The value must be 0 (zero).



Chapter 6. Application programming interface 133 

MsgType (MQLONG)

Message type.

This indicates the type of the message. It must be one of the following:

• MQMT_REQUEST - Message requiring reply (requires non-blank ReplyToQ).
• MQMT_REPLY - A reply to earlier request message.
• MQMT_DATAGRAM - A message not requiring a reply.
• MQMT_REPORT - A report message.

The description for these options follow.

MQMT_REQUEST

This message is one requiring a reply.

MQMT_REPLY

This message is the reply to an earlier request message (MQMT_REQUEST). The message 
should be sent to the queue indicated by the ReplyToQ field of the request message.

Note: The queue manager does not enforce the request-reply relationship. The request-reply 
relationship is the responsibility of the application.

MQMT_DATAGRAM

The message is one which does not require a reply.

MQMT_REPORT

The message is reporting on some unexpected occurrence (for example, a request 
message was received which contained data which was not valid). 

The message should be sent to the queue indicated by ReplyToQ field of the message 
descriptor of the message which caused the error.

The Feedback field should be set to indicate the nature of the report. In addition, the 
CorrelId field of the report message should be set to the message identifier of the message 
which caused the error.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls.

Expiry (MQLONG)

Reserved.

This is a reserved field. The value must be -1.

Feedback (MQLONG)

Feedback code.

This is used with a message of type MQMT_REPORT to indicate the nature of the report, and is 
only meaningful with that type of message.

Feedback codes are grouped as follows:

• MQFB_NONE - No feedback provided.
• MQFB_SYSTEM_FIRST - Lowest value for system-generated feedback.
• MQFB_SYSTEM_LAST - Highest value for system-generated feedback.

Note: No feedback codes are generated by the queue manager.

• MQFB_APPL_FIRST - Lowest value for application-generated feedback.
• MQFB_APPL_LAST - Highest value for application-generated feedback.

Applications which generate report messages should not use feedback codes in the 
system range, other than MQFB_QUIT.

On MQPUT or MQPUT1 calls, the value specified must be within either the system range or the 
user range.

A special feedback code is:

MQFB_QUIT



 

134 IBM MQSeries for UnixWare User’s Guide

Application should end. This can be used by a workload scheduling program to control the 
number of instances of an application program that are running. Sending an MQMT_REPORT 
message with this feedback code to an instance of the application program indicates to that 
instance that it should stop processing. However, adherence to this convention is a matter 
for the application. It is not enforced by the queue manager.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls.

Encoding (MQLONG)

Data encoding.

This identifies the representation used for the numeric values in the application message 
data. This applies to binary integer data, packed-decimal integer data, and floating-point 
data.

The following value is defined:

MQENC_NATIVE

Native machine encoding.

The encoding is the same as that of the machine on which the application is running.

Note: The value of this constant is environment-specific.

Applications should normally specify the MQENC_NATIVE. 

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls.

CodedCharSetId (MQLONG)

Coded character-set identifier.

This specifies the coded character-set identifier of character data in the user message 
data.

Note that character data in the message descriptor and the other message queuing data 
structures must be in the character set used by the queue manager.

The following special value may be specified:

MQCCSI_Q_MGR

Queue manager’s coded character-set identifier.

Character data in the user message data is in the queue manager’s character set.

On MQPUT and MQPUT1 calls, the queue manager changes the value MQCCSI_Q_MGR to the 
value of the queue manager’s CodedCharSetId attribute. MQCCSI_Q_MGR is never returned 
by the MQGET call.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls.

Format (MQCHAR8)

Format name.

This is the name that the sender of the message may use to indicate to the receiver the 
nature of the data in the message. Any characters that are in the queue manager’s 
character set may be specified for the name, but it is recommended that the name be 
restricted to the following:

• Uppercase A through Z
• Numeric digits 1 through 9

If other characters are used, it may not be possible to translate the name between the 
character sets of the sending and receiving queue managers.

Note: Do not use names beginning with “MQ”. Names beginning with “MQ” are reserved for use 
by the queue manager.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls.

Priority (MQLONG)

Reserved.



Chapter 6. Application programming interface 135 

This is a reserved field. The value for this field must be 0 (zero). Values greater than zero 
are accepted with a warning.

Persistence (MQLONG)

Message persistence.

For MQPUT and MQPUT1 calls, the value must be one of the following:

• MQPER_PERSISTENT - Message is persistent. The message survives restarts of the 
queue manager. When a persistent message is sent to a remote queue, a 
store-and-forward mechanism is used to hold the message on a local queue manager 
instance until it is known to have arrived at the next destination.

• MQPER_NOT_PERSISTENT 4- Message not persistent. The message does not survive 
restarts of the queue manager. Note that an MQPER_NOT_PERSISTENT message found on 
a direct access storage device (DASD) is discarded on a restart, even if an intact copy 
of the message is found on the DASD during restart.

• MQPER_PERSISTENCE_AS_Q_DEF - Message has default persistence. The persistence for 
the message is taken from the DefPersistence attribute for the target queue. If the 
target is an alias queue, the default persistence for that target queue is used, not that 
for the basic queue to which the message is actually delivered.

For an MQGET call, the value returned is either MQPER_PERSISTENT or MQPER_NOT_PERSISTENT.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls.

MsgId (MQBYTE24)

Message identifier.

On return from an MQGET call, the MsgId field is set to the message identifier of the message 
returned (if any).

For MQPUT and MQPUT1 calls, if MQMI_NONE is specified by the application, the queue manager 
generates a unique message identifier5 that it places in the message descriptor sent with 
the message.

The queue manager also returns this message identifier in the message descriptor 
belonging to the sending application. The application can use this value to record 
information about particular messages, and to respond to queries from other parts of the 
application.

The sending application can also specify a particular value for the message identifier, other 
than MQMI_NONE. This stops the queue manager generating a unique message identifier. 
This facility can be used by an application that is forwarding a message, to propagate the 
message identifier of the original message.

The queue manager does not itself make any use of this field except to:

• Generate a unique value if requested.
• Deliver the value to the application that issued the get request for the message.

This field is not subject to any translation based on the character set of the queue manager. 
The field is treated as a string of bits.

The following special value may be used:

MQMI_NONE

No message identifier is specified. The value is binary zero for the length of the field.

For the MQGET call, MQMI_NONE must be specified, and the first available message on the 
queue will be returned.

4. MQPER_NOT_PERSISTENT is not supported. MQPER_NOT_PERSISTENT must not be specified by an application putting a message. 
However, this value (zero) may be returned after an MQGET call, if the message was originally put at a queue manager which does 
support this option (for example, MQSeries for MVS/ESA). The message, nevertheless, behaves as if it is persistent on the 
MQSeries System.

5. A generated MsgId consists of a 4-byte product identifier followed by a product-specific implementation of a unique number. There 
is no guarantee that queue manger-generated MsgId values do not clash with application-generated ones.



 

136 IBM MQSeries for UnixWare User’s Guide

This is an input-output field for MQGET, MQPUT and MQPUT1 calls.

CorrelId (MQBYTE24)

Correlation identifier.

For MQPUT and MQPUT1 calls, the application can specify any value. The queue manager 
transmits this value with the message and delivers it to the application that issued the get 
request for the message.

The field is not subject to any translation based on the character set of the queue manager. 
The field is treated as a string of bits.

The following special value may be used:

MQCI_NONE

No correlation identifier is specified.

The value is binary zero for the length of the field.

For the MQGET call, MQCI_NONE must be specified, and the first available message on the 
queue will be returned.

This is an input-output field for MQGET calls, and an input field for MQPUT and MQPUT1 calls.

BackoutCount (MQLONG)

This is a reserved field.

ReplyToQ (MQCHAR48)

Name of reply queue.

The name of the message queue to which the application that issued the get request for 
the message should send MQMT_REPLY and MQMT_REPORT messages. The name is the local 
name of a queue that is defined on the queue manager identified by ReplyToQMgr.

For MQPUT and MQPUT1 calls, this field is required if an MQMT_REQUEST type message is 
specified in the message descriptor. However, the value specified is passed on to the 
application that issued the get request for the message, whatever the message type. 

If the name is specified, it should not contain leading or embedded blanks, but it may 
contain trailing blanks. The first null character and characters following the null are treated 
as blanks. A name that is entirely blank up to the first null character or the end of the field 
indicates that there is no reply-to-queue.

For the MQGET call, the queue manager always returns the name padded with blanks to the 
length of the field.

The queue specified must be able to be opened for output by the application that receives 
the request message. The application design must ensure that the necessary queues exist 
and are appropriately authorized.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls.

For MQPUT and MQPUT1, the name is checked to be non-blank if the message type is 
MQMT_REQUEST. If the name is non-blank, and ReplyToQMgr is blank, the queue manager 
attempts to resolve the specified ReplyToQ. If the name will resolve, it will be substituted, 
and may be seen by the application issuing the put. If the specified name cannot be 
resolved, it is kept as is.

ReplyToQMgr (MQCHAR48)

Name of the reply queue manager.

The name of the queue manager to which the reply message is sent. ReplyToQ is the local 
name of a queue that is defined to that queue manger.

If the name is specified, it should not contain leading or embedded blanks, but it may 
contain trailing blanks. The first null character and characters following it are treated as 
blanks. A name that is entirely blank up to the first null character or the end of the field 
denotes the queue manager to which the application is connected.



Chapter 6. Application programming interface 137 

For an MQGET call, the queue manager always returns the name padded with blanks to the 
length of the field.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls.

For MQPUT and MQPUT1 requests, if ReplyToQMgr is blank and ReplyToQ is non-blank, the 
queue manager attempts to resolve the specified ReplyToQ. If the name will resolve, 
ReplyToQMgr is replaced with the resolved queue-manager name. If it will not resolve, it is 
set to the name of the connected queue manager.

UserIdentifier (MQCHAR12)

This is a reserved field.

AccountingToken (MQBYTE32)

This is a reserved field.

ApplIdentityData (MQCHAR32)

This is a reserved field.

PutApplType (MQLONG)

This is a reserved field.

PutApplName (MQCHAR28)

This is a reserved field.

PutDate (MQCHAR8)

This is a reserved field.

PutTime (MQCHAR8)

This is a reserved field.

ApplOriginData (MQCHAR4)

This is a reserved field.

MQPMO - MQPut message options structure

StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQPMO_STRUC_ID

Structure identifier for Put-Message Options.

This is always an input field.

Version (MQLONG)

Structure version number.

The value must be:

MQPMO_VERSION_1

Structure version number for Put-Message Options.

This is always an input field.

Options (MQLONG)

This is a reserved field. This field must always be 0 (zero) or MQPMO_NO_SYNCPOINT.

Timeout (MQLONG)

This is a reserved field.

Context (MQHOBJ)



 

138 IBM MQSeries for UnixWare User’s Guide

This is a reserved field.

KnownDestCount (MQLONG)

This is a reserved field.

UnknownDestCount (MQLONG)

This is a reserved field.

InvalidDestCount (MQLONG)

This is a reserved field.

ResolvedQName (MQCHAR48)

Resolved name of the destination queue.

This is an output field that is set by the queue manager to the name of the queue that 
received the message after alias resolution. This can be either a local queue name or a 
remote queue name.

In each case the name is the local name of a queue that is defined on the queue manager 
identified by ResolvedQMgrName.

ResolvedQMgrName (MQCHAR48)

Resolved name of destination queue manager.

The name of the queue manager that received the message after alias resolution. 
ResolvedQName is the local name of a queue that is defined on that queue manager.

This is an output field.

MQGMO - MQGet message options structure

The MQGMO structure is an input variable for passing the MQGET call.

StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQGMO_STRUC_ID

Structure identifier for Get-Message Options.

This is always an input field.

Version (MQLONG)

Structure version number.

The value must be:

MQGMO_VERSION_1

Structure version number for Get-Message Options.

This is always an input field.

Options (MQLONG)

Options.

Any or none of the following can be specified. If more than one is required, the values are 
added together.6 Combinations that are not valid are noted. All other combinations are 
valid. The following options are supported:

• MQGMO_NONE - No options.

• MQGMO_WAIT - Wait for message to arrive.

6. Do not add the same constant more than once.



Chapter 6. Application programming interface 139 

• MQGMO_NO_WAIT - Return immediately if no suitable message.

• MQGMO_NO_SYNCPOINT - No effect, as syncpoint is not supported.

• MQGMO_LOCK - Message get with lock (only valid with MQGMO_BROWSE_FIRST).

• MQGMO_BROWSE_FIRST - Browse from start of queue (Only valid with MQGMO_LOCK).

• MQGMO_UNLOCK - Unlock message previously locked with MQGMO_BROWSE_FIRST and 
MQGMO_LOCK.

• MQGMO_ACCEPT_TRUNCATED_MSG - Allow truncation of message data.

• MQGMO_MSG_UNDER_CURSOR - Delete message previously locked with 
MQGMO_BROWSE_FIRST and MQGMO_LOCK.

The description of these options follows.

MQGMO_NONE

The MQGET call reads the next message from the queue.

If get requests are inhibited, this call returns with an error.

MQGMO_WAIT

The application is to wait until a message arrives. The maximum time the application waits 
is specified in WaitInterval.

If get requests are inhibited, this call returns with an error, whether or not there are any 
messages on the queue. If get requests become inhibited while this call is waiting, it returns 
immediately with an error.

This option can be used with the MQGMO_BROWSE_FIRST option.

If several applications are waiting on the same shared queue, one application will be 
activated when a suitable message arrives.

The following points should be noted:

• It cannot be predicted which application is selected. In particular, the application 
waiting longest is not necessarily the one selected.

• Path length and operating system priority-scheduling considerations can mean that a 
waiting application of lower priority than expected retrieves the message.

• It may also happen that an application that is not waiting retrieves the message in 
preference to one that is waiting.

Notes:  1. Specific get-wait requests are not supported.

2. It is an error to specify MQGMO_SET_SIGNAL7 with the MQGMO_WAIT option. It is also an 
error to specify this option with a queue handle for which a signal is outstanding.

MQGMO_NO_WAIT

The application is not to wait if no suitable message is available. This is the opposite of the 
MQGMO_WAIT option, and is defined to aid program documentation. It is the default if neither 
is specified.

MQGMO_NO_SYNCPOINT

This option exists for compatibility. Syncpoint is not supported in this implementation.

MQGMO_LOCK

This option is only valid in conjunction with MQGMO_BROWSE_FIRST. MQOO_BROWSE must have 
been included in the open options when the handle was opened.

MQGMO_BROWSE_FIRST

The first message in the queue is returned to the application, but remains in the queue. A 
lock remains outstanding on this record until either MQGET is called again with 
MQGMO_MSG_UNDER_CURSOR (which will delete the record), MQGMO_UNLOCK (which will unlock 
this message thus making it available for another application), or again with 

7. MQGMO_SET_SIGNAL is not supported in this release.



 

140 IBM MQSeries for UnixWare User’s Guide

MQGMO_BROWSE_FIRST + MQGMO_LOCK (this will unlock the message). Should this application 
be the only one reading this queue, this will again read the same message establishing a 
lock.

This option is only valid in conjunction with MQGMO_LOCK. MQOO_BROWSE must have been 
included in the open options when the handle was opened.

MQGMO_UNLOCK

The message previously read with MQGMO_BROWSE_FIRST + MQGMO_LOCK is unlocked making it 
available to another application. If no message was previously locked then this call shall 
return with an error.

MQGMO_ACCEPT_TRUNCATED_MSG

The MQGET operation completes successfully, removing the message from the queue (at the 
syncpoint, if applicable), even though the BufferLength is shorter than the message (which 
would return a warning in the completion code). Without this option, a buffer which is too 
small causes the MQGET to complete unsuccessfully.

MQGMO_MSG_UNDER_CURSOR

The message previously read with MQGMO_BROWSE_FIRST + MQGMO_LOCK is deleted from the 
queue. If no message was previously locked then this call shall return with an error.

Notes:  1. This option must not be specified with the MQGMO_BROWSE_FIRST option. It is also an 
error if the queue was not opened both for browse and for input. If the browse 
cursor is not currently pointing to a retrievable message, an error is returned by 
the MQGET call.

2. If the MQGMO_WAIT option is specified with MQGMO_MSG_UNDER_CURSOR, it is ignored; 
no error is raised.

WaitInterval (MQLONG)

Wait interval.

The maximum time, expressed in milliseconds, that the MQGET call waits for a message to 
arrive. After this time, the call completes with an error (MQRC_NO_MSG_AVAILABLE). 

This field is used in conjunction with the MQGMO_WAIT option. It is ignored if this is not 
specified.

The following special value is recognized:

MQWI_UNLIMITED

An unlimited wait is required.

Signal1 (MQLONG)

This is a reserved field. 

Signal2 (MQLONG)

This is a reserved field.

ResolvedQName (MQCHAR48)

Resolved name of the destination queue.

This is an output field which is set by the queue manager to the local name of the queue 
from which the message was retrieved, as defined to the connected queue manager.

The resolved name is different from the name used to open the queue if an alias name was 
used. For the case of an alias queue, the name of the local queue is returned.



Chapter 6. Application programming interface 141 

MQDLH - dead-letter header structure

StrucId (MQCHAR4)

Structure Identifier

The value must be:

MQDLH_STRUC_ID

Identifier for dead-letter header structure.

Version (MQLONG)

Structure version number.

The value must be:

MQDLH_VERSION_l

Version number for dead-letter header structure.

Reason (MQLONG)

Reason message arrived on dead-letter queue.

This identifies the reason why the message was placed on the dead-letter queue instead of 
on the original destination queue. It should either be one of the MQRC_* values (for example, 
MQRC_Q_FULL) or one of the following MQFB_* values:

• MQFB_DUPLICATE_MSG_SEQ_NUMBER 

For a requester or receiver channel, a message was received which contained a 
message sequence number for which a message has already been received. The 
message is put on the dead-letter queue.

• MQFB_ALSO_PUT_ON_REMOTE_DEAD_Q 

A message was transmitted along the channel, but the receiving end was unable 
to put the message onto the required queue. The receiving end has placed the 
message instead on the dead-letter queue at the receiving end, with a Reason 
code which identifies the problem. The message has also been placed on the 
dead-letter queue at the sending end, with a Reason of 
MQFB_ALSO_PUT_ON_REMOTE_DEAD_Q.

Care should be taken with messages containing this feedback code, since 
another copy of the same message also exists at the receiving end of the channel. 
In order to avoid duplicating the effect of the message, only one of the two 
messages must be forwarded.

DestQName (MQCHAR48)

Name of original destination queue.

This is the name of the message queue that was the original destination for the message.

DestQMgrName (MQCHAR48)

Name of original destination queue manager.

This is the name of the queue manager that was the original destination for the message.

Encoding (MQLONG)

Original data encoding.

This specifies the data encoding used for numeric data in the original message. It applies to 
the message data which follows the MQDLH structure; it does not apply to numeric data in the 
MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original data encoding should 
be preserved by copying it from the Encoding field in the message descriptor MQMD to the 
Encoding field in the MQDLH structure. The Encoding field in the message descriptor should 
then be set to the value appropriate to the numeric data in the MQDLH structure.



 

142 IBM MQSeries for UnixWare User’s Guide

The value MQENC_NATIVE can be used for the Encoding field in both the MQDLH and MQMD 
structures.

CodedCharSetId (MQLONG)

Original coded character set identifier.

This specifies the coded character set identifier of character data in the original message. It 
applies to the message data which follows the MQDLH structure; it does not apply to 
character data in the MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original coded character set 
identifier should be preserved by copying it from the CodedCharSetId field in the message 
descriptor MQMD to the CodedCharSetId field in the MQDLH structure. The CodedCharSetId 
field in the message descriptor should then be set to the value appropriate to the character 
data in the MQDLH structure.

The value MQCCSI_Q_MGR can be used for the CodedCharSetId field in the MQMD structure, 
but should not be used for the CodedCharSetId field in the MQDLH structure, as the queue 
manager does not replace the value MQCCSI_Q_MGR in the latter field by the value that 
applies to the queue manager.

Format (MQCHAR8)

Original format name.

This is the format name of the application data in the original message. It applies to the 
message data which follows the MQDLH structure; it does not apply to the MQDLH structure 
itself.

When an MQDLH structure is prefixed to the message data, the original format name should 
be preserved by copying it from the Format field in the message descriptor MQMD to the 
Format field in the MQDLH structure. The Format field in the message descriptor should then 
be set to the value MQFMT_DEAD_LETTER_HEADER.

PutApplType (MQLONG)

Type of application that put message on dead-letter queue.

This is the type of the application that decided to put the message on the dead-letter 
queue. This field has the same meaning as the PutApplType field in the message 
descriptor MQMD.

If it is the queue manager that redirects the message to the dead-letter queue, 
PutApplType has the value MQAT_QMGR.

PutApplName (MQCHAR28)

Name of application that put message on dead-letter queue.

This is the name of the application that decided to put the message on the dead-letter 
queue. The format of the name depends on the PutApplName field. See also, the 
description of the PutApplName field in MQMD.

If it is the queue manager that redirects the message to the dead-letter queue, 
PutApplName contains the first 28 characters of the queue-manager name, padded with 
blanks if necessary.

PutDate (MQCHAR8)

Date when message was put on dead-letter queue.

This is the date when the message was put on the dead-letter queue. The format that is 
used when this field is generated by the queue manager is:

YYYYMMDD



Chapter 6. Application programming interface 143 

PutTime (MQCHAR8)

Time when message was put on dead-letter queue.

This is the time when the message was put on the dead-letter queue. The format that is 
used when this field is generated by the queue manager is:

HHMMSSTH

where the last two digits are tenths and hundredths of a second. The 24-hour clock is used, 
with a leading zero if the hour is less than 10. GMT is used (for this and for PutDate), 
subject to the accuracy of the system clock.

a. This must end in a single blank character

Table 21.  Initial values of fields in MQDLH 

Field Name Name of Constant Value of Constant

StrucId MQDLH_STRUC_ID DLHa

Version MQDLH_VERSION_1 1

Reason MQRC_NONE 0

DestQName none spaces

DestQMgrName none spaces

Encoding none 0

CodedCharSetId none 0

Format none spaces

PutApplType MQAT_NO_CONTEXT 0

PutApplName none spaces

PutDate none spaces

PutTime none spaces



 

144 IBM MQSeries for UnixWare User’s Guide

MQI return codes
For each MQI call, a completion code and a reason code are returned by the MQSeries System 
to indicate the success or failure of the MQI function. This section lists the possible codes.

MQI completion codes
The completion code (CompCode) parameter informs the application making an MQI call 
whether or not the call completed successfully, completed partially, or failed.

The possible completion codes are as follows:

0 MQCC_OK

Successful completion.

The call completed fully. All output parameters have been set.

The Reason parameter always has the value MQRC_NONE in this case.

1 MQCC_WARNING

Warning of partially completed call.

The call completed partially. Some output parameters may have been set in addition to the 
CompCode and Reason output parameters.

The Reason parameter gives additional information.

2 MQCC_FAILED

Call failed.

The processing of the call did not complete. The state of the queue manager is normally 
unchanged (exceptions are specifically noted). Only the CompCode and Reason output 
parameters have been set.

The reason may be a fault in the application program, or the reason may be a result of some 
situation outside the application, for example the application’s authority may have been 
revoked. 

The Reason parameter gives additional information.

MQI reason codes

The reason code (Reason) parameter is a qualification to the CompCode.

If there is no special reason to report, MQRC_NONE is returned. A successful call typically returns 
MQCC_OK and MQRC_NONE.

If the CompCode is either MQCC_WARNING or MQCC_FAILED, the queue manager always reports a 
qualifying reason. Details are provided under each call description.

An alphabetical listing of all reason codes and descriptions follows.

Note: Reason codes marked with an asterisk (*) are not currently implemented.

0 MQRC_NONE

No reason to report.

The call completed normally (CompCode is MQCC_OK).



Chapter 6. Application programming interface 145 

Corrective action: None.

2000 *MQRC_ACCESS_RESTRICTED

Queue manager in restricted access mode.

The MQCONN call was rejected because the queue manager has been started in restricted access 
mode.

Corrective action: Contact your system administrator.

2001 MQRC_ALIAS_BASE_Q_TYPE_ERROR

Alias base queue not a valid type.

An MQOPEN or MQPUT1 request was issued, specifying an alias queue as the target, but the 
BaseQName in the alias queue attributed resolves to a queue that is not predefined local or 
remote queue.

Corrective action: Correct the queue definitions.

2002 MQRC_ALREADY_CONNECTED

Application already connected.

An MQCONN call was issued, but the application is already connected to the queue manager.

Corrective action: None. The Hconn parameter returned has the same value as was returned 
for the previous MQCONN call.

2004 MQRC_BUFFER_ERROR

Buffer parameter not valid.

Buffer is not valid. The parameter pointer is not valid, or points to read-only storage for MGET 
calls, or to storage that cannot be accessed for the entire length specified by BufferLength (it is 
not always possible to detect parameter pointers which are not valid; if it is not detected, 
unpredictable results occur).

Corrective action: Correct the parameter.

2005 MQRC_BUFFER_LENGTH_ERROR

Buffer length parameter not valid.

BufferLength is not valid. The reason also occurs if the parameter pointer is not valid (it is not 
always possible to detect parameter pointers which are not valid; if it is not detected, 
unpredictable results occur).

Corrective action: Specify a non-negative value.

2006 MQRC_CHAR_ATTRS_LENGTH_ERROR

Length of character attributes not valid.

CharAttrLength is negative (for MQINQ calls) or is not large enough to hold all selected attributes. 
This reason also occurs if the parameter pointer is not valid (it is not always possible to detect 
parameter pointers which are not valid; if it is not detected, unpredictable results occur).



 

146 IBM MQSeries for UnixWare User’s Guide

2007 *MQRC_CHAR_ATTRS_ERROR

Character attributes string not valid.

CharAttrs is not valid. The parameter pointer is not valid, or points to read-only storage for MQINQ 
calls or to storage that is not as long as implied by CharAttrLength (it is not always possible to 
detect parameter pointers which are not valid; if it is not detected, unpredictable results occur).

Corrective action: Correct the parameter.

2008 MQRC_CHAR_ATTRS_TOO_SHORT

Not enough space allowed for character attributes.

For MQINQ calls, CharAttrLength is not large enough to contain all of the character attributes for 
which MQCA_* selectors are specified in the Selectors parameter.

The call still completes, with the CharAttrs parameter string is filled in with as many character 
attributes as there is room for. Only complete attribute strings are returned. Space at the end of 
the string that is not large enough to hold the next attribute is unchanged.

Corrective action: Specify a large enough value, unless only a subset of the values is needed.

2009 MQRC_CONNECTION_BROKEN

Connection not established.

Connection to the queue manager has been lost or was not established. This can occur 
because the MQCONN call was not executed.

Corrective action: Applications must establish connection by issuing the MQCONN call. 

2010 *MQRC_DATA_LENGTH_ERROR

Data length parameter not valid.

DataLength is not valid. The parameter pointer is not valid, or points to read-only storage (it is 
not always possible to detect parameter pointers which are not valid; if it is not detected, 
unpredictable results occur).

Corrective action: Correct the parameter.

2013 MQRC_EXPIRY_ERROR

Expiry time not valid.

The Expiry field is reserved, and must have a value of -1.

Corrective action: Specify -1.

2014 MQRC_FEEDBACK_ERROR

Feedback code not valid.

A feedback code (Feedback) was specified in MQMD that is outside both the range defined for 
system feedback codes and that defined for application feedback codes.

Corrective action: Specify a valid value.



Chapter 6. Application programming interface 147 

2016 MQRC_GET_INHIBITED

Gets failed for the queue.

MQGET calls are currently inhibited for this queue or for the queue that this queue resolves to.

Corrective action: Contact your system administrator.

2017 MQRC_HANDLE_NOT_AVAILABLE

No more handles available.

An MQOPEN or MQPUT1 request was issued, but the maximum number of open handles allowed for 
this task has already been reached.

Corrective action: Check whether the application is looping. Otherwise, reduce the complexity 
of the application. The maximum number of open handles that a task can have is 
queue-manager attribute (MaxHandles). 

2018 MQRC_HCONN_ERROR

Connection handle not valid.

Hconn is not valid. This reason occurs if the parameter pointer is not valid, or points to read-only 
storage for the MQCONN call (it is not always possible to detect parameter pointers which are not 
valid; if it is not detected, unpredictable results occur).

Corrective action: Ensure that a successful MQCONN call is performed for the queue manager 
instance, and that an MQDISC call has not already been performed for it. Check that the handle is 
being used within its valid scope. See the MQCONN call in this chapter.

2019 MQRC_HOBJ_ERROR

Object handle not valid.

Hobj is not valid. This reason also occurs if the supplied value is incorrect, the parameter 
pointer is not valid, or points to a read-only storage for an MQOPEN call (it is not always possible to 
detect parameter pointers which are not valid; if it is not detected, unpredictable results occur).

Corrective action: Ensure that a successful MQOPEN call is performed for this object, and that an 
MQCLOSE call has not already been performed for it. For MQGET and MQPUT calls, also ensure that 
the handle represents a queue object. Check that the handle is being used within its valid 
scope. See the MQOPEN call in this chapter.

2021 MQRC_INT_ATTR_COUNT_ERROR

Count of integer attributes not valid. 

IntAttrCount is negative (for MQINQ calls), or is not large enough to hold all selected attributes. 
This reason also occurs if the parameter pointer is not valid (it is not always possible to detect 
parameter pointers which are not valid; if it is not detected, unpredictable results occur).

Corrective action: Specify a value large enough for all selected integer attributes.

2022 MQRC_INT_ATTR_COUNT_TOO_SMALL

Not enough space allowed for integer attributes.

For MQINQ calls, IntAttrCount is not as large as the number of integer attribute selectors (MQIA_*) 
specified in the Selectors parameter.



 

148 IBM MQSeries for UnixWare User’s Guide

The call still completes, with the IntAttrs array filled with as many integer attributes as there is 
room for.

Corrective action: Specify a large enough value, unless only a subset of the values is needed.

2023 *MQRC_INT_ATTRS_ARRAY_ERROR

Integer attributes array not valid.

IntAttrs is not valid. The parameter pointer is not valid, or points to read-only storage for an 
MQINQ call or to storage that is not as long as indicated by IntAttrCount (it is not always possible 
to detect parameter pointers which are not valid; if it is not detected, unpredictable results 
occur).

Corrective action: Correct the parameter.

2024 MQRC_LOCK_NOT_AVAILABLE

An internal MQI (Message Queuing Interface) error has occurred.

This error is implementation specific. Examine the error log for additional information. An 
MQOPEN, MQGET, MQPUT, or MQPUT1 request was issued, and it was necessary to acquire a lock, but 
an internal error occurred.

Corrective action: Get the error code from the error log if present and review the problem.

2025 MQRC_MAX_CONNS_LIMIT_REACHED

Connection initialization failure.

The MQCONN call was rejected because the initialization necessary to connect to the queue 
manager has failed.

Corrective action: Examine the error log for additional information.

2026 MQRC_MD_ERROR

Message descriptor not valid.

MQMD control block is not valid. Either the StrucId mnemonic eye-catcher is not valid, or the 
Version is not recognized. This reason also occurs if the parameter pointer is not valid, or points 
to read only storage (it is not always possible to detect parameter pointers which are not valid; if 
it is not detected, unpredictable results occur).

Corrective action: Correct the definition of the message descriptor. Ensure that the required 
input fields are correctly set.

2027 MQRC_MISSING_REPLY_TO_Q

Missing reply-to-queue.

The reply-to-queue name (ReplyToQ) in MQMD is not specified (that is, it is all blanks), but a reply 
was requested (MQMT_REQUEST was specified in the MsgType field of the message descriptor).

Corrective action: Specify the name of the queue to which the reply is to be sent.

2029 MQRC_MSG_TYPE_ERROR

Message type in message descriptor not valid.

Message type (MsgType) in the message descriptor (MQMD) is not valid.



Chapter 6. Application programming interface 149 

Corrective action: Ensure that a valid type is specified.

2030 MQRC_MSG_TOO_BIG_FOR_Q

Message length greater than maximum for queue.

An attempt was made to put a message that is bigger than allowed by the queue.

Corrective action: Check whether BufferLength was correctly specified. If so, either break the 
message into several smaller messages, or increase MaxMsgLength for the queue.

2031 MQRC_MSG_TOO_BIG_FOR_Q_MGR

This reason is not returned directly from an MQI call, but can occur in the Reason field of the 
MQDLH structure, if a message is put on the dead-letter queue.

This code is used if the message is put on the dead-letter queue because a channel, through 
which the message is to pass, has restricted the maximum message length to a value that is 
less than the message’s length.

Note that the channel’s maximum message length may be set to a value that is less than the 
maximum message length supported by the remote queue manager.

2033 MQRC_NO_MSG_AVAILABLE

No message available.

An MQGET call was issued, but there is no message on the queue that satisfies the criteria 
specified in the message descriptor. Either the MQGMO_WAIT option was not specified or it was 
specified, but the (non-zero) timeout interval has expired.

Corrective action: If this is an unexpected condition, check whether the message was 
successfully put on the queue.

Consider waiting longer for the message.

2034 *MQRC_NO_MSG_UNDER_CURSOR

A browse was not used before issuing MQGET with MQGMO_MSG_UNDER_CURSOR.

Corrective action: Check the error log for additional information.

2035 *MQRC_NOT_AUTHORIZED

Not authorized for access.

On the MQCONN call, the application is not authorized to connect to the queue manager. On 
MQOPEN or MQPUT1 calls, the application is not authorized to open the object for the option, or 
options, specified.

Corrective action: Ensure that the correct queue manager or object was specified, and that 
appropriate authority exists.

2036 MQRC_NOT_OPEN_FOR_BROWSE

Queue object not open for browse.

An MQGET call was issued to a queue not opened for browse with one of the following options:

• MQGMO_BROWSE_FIRST + MQGMO_LOCK 
• MQGMO_MSG_UNDER_CURSOR 



 

150 IBM MQSeries for UnixWare User’s Guide

Corrective action: Specify MQOO_BROWSE when the queue is opened.

2037 MQRC_NOT_OPEN_FOR_INPUT

Queue object not open for input.

Corrective action: Specify MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED when the queue is 
opened.

2038 MQRC_NOT_OPEN_FOR_INQUIRE

Queue object not open for inquire.

Corrective action: Specify MQOO_INQUIRE when the queue is opened.

2039 MQRC_NOT_OPEN_FOR_OUTPUT

Queue object not open for output.

Corrective action: Specify MQOO_OUTPUT when the queue is opened.

2041 *MQRC_OBJECT_CHANGED

Object definition changed since opened.

Since the Hobj handle used in this call was opened, object definitions that affect this object have 
been changed. See the MQOPEN call in this chapter.

Corrective action: Issue an MQCLOSE call to return the handle to the system. Reopen the object, 
obtaining a new handle, and retry the operation.

If object definitions are critical to the application logic, an MQINQ call can be used to find out what 
has changed. See the MQINQ call in this chapter.

2042 MQRC_OBJECT_IN_USE

Object already open with conflicting options.

An MQOPEN call has been issued, but the object in question has already been opened (by this or 
another application), with options that conflict with those specified in the Options parameter. 
This arises if the request is for shared input, but the object is already open for exclusive input, 
and also if the request is for exclusive input, but the object is already open for input.

Corrective action: System design should specify whether an application is to wait and retry, or 
take other action. 

2043 MQRC_OBJECT_TYPE_ERROR

Object type not valid.

ObjectType (in MQOD) is not valid because the field specifies an unrecognized value. The object 
type must be MQOT_Q.

Corrective action: Specify a valid object type.

2044 MQRC_OD_ERROR

Object descriptor structure not valid.



Chapter 6. Application programming interface 151 

MQOD control block is not valid. Either the StrucId mnemonic eye-catcher is not valid, or the 
Version is not recognized.

Corrective action: Correct the definition of the object descriptor. Ensure that required input fields 
are correctly set.

2045 MQRC_OPTION_NOT_VALID_FOR_TYPE

Option not valid for object type.

An attempt was made to open a transmission queue for output or a remote queue for input by 
an application.

Corrective action: Specify the correct option. 

2046 MQRC_OPTIONS_ERROR

Options not valid or not consistent.

The Options field or parameter is unrecognized, or contains a combination that is not valid.

For MQGET, MQPUT, or MQPUT1 calls, this field is in the options structure (MQGMO or MQPMO) for the call.

This reason also occurs if the Options parameter pointer is not valid for MQOPEN or MQCLOSE calls 
(it is not always possible to detect parameter pointers which are not valid; if it is not detected, 
unpredictable results may occur).

Corrective action: Specify valid options. Check under the description of Options for the 
particular call, to see which option combinations are not valid.

2047 MQRC_PERSISTENCE_ERROR

Persistence not valid.

Persistence value in the message descriptor (MQMD) is not valid.

Corrective action: Specify a valid value.

2049 MQRC_PRIORITY_EXCEEDS_MAXIMUM

Priority not valid.

The specified priority is greater than 0.

Corrective action: None, this reason code is only a warning.

2050 MQRC_PRIORITY_ERROR

Priority not valid.

The Priority value in the message descriptor (MQMD) field is reserved, and must be specified as 0.

Corrective action: Specify 0 (zero).

2051 MQRC_PUT_INHIBITED

Puts inhibited for the queue.

MQPUT and MQPUT1 calls are currently inhibited for the queue(InhibitPut), or for the queue to which 
the alias queue resolves.



 

152 IBM MQSeries for UnixWare User’s Guide

Corrective action: If the system design allows applications to inhibit put requests for short 
periods, retry the operation later.

2053 MQRC_Q_FULL

Queue already at maximum depth.

The MaxQDepth limit setting has been reached.

Corrective action: Retry the operation later. Consider increasing the maximum depth for the 
queue, or arranging for additional instances of the application servicing the queue.

2056 MQRC_Q_SPACE_NOT_AVAILABLE

No space available on disk for queue.

An MQPUT or MQPUT1 request was issued, but the request failed.

Corrective action: Review the error log for additional information.

2058 MQRC_Q_MGR_NAME_ERROR

Queue manager name not valid or not known.

The queue manager name specified for the MQCONN call is not valid. This reason also occurs if 
the parameter pointer is not valid (it is not always possible to detect parameter pointers which 
are not valid; if it is not detected, unpredictable results may occur).

Corrective action: Use an all-blank name if possible, or verify the name used is valid.

2059 MQRC_Q_MGR_NOT_AVAILABLE

Queue manager initialization failed.

Corrective action: Review the error log for additional information.

2061 MQRC_REPORT_OPTIONS_ERROR

Report options in message descriptor not valid.

The Report field in the message descriptor (MQMD) is not valid.

Corrective action: Set the field to 0 (zero).

2063 *MQRC_SECURITY_ERROR

Security error occurred.

The MQCONN call was rejected because a security error occurred.

Corrective action: Note the error from the security manager, and contact your system 
programmer.

2065 MQRC_SELECTOR_COUNT_ERROR

Count of selectors not valid.

The SelectorCount parameter specifies a value which is not valid. This reason also occurs if the 
parameter pointer is not valid (it is not always possible to detect parameter pointers which are 
not valid; if it is not detected, unpredictable results may occur).



Chapter 6. Application programming interface 153 

Corrective action: Specify a value in the range 0 to 256.

2066 MQRC_SELECTOR_LIMIT_EXCEEDED

Count of selectors too big.

The SelectorCount parameter specifies a value larger than the maximum supported (256).

Corrective action: Reduce the number of selectors specified on the call. The valid range is 0 
through 256.

2067 MQRC_SELECTOR_ERROR

Attribute selector not valid.

A selector in the Selectors array is not valid. This reason occurs if the parameter pointer is not 
valid (it is not always possible to detect parameter pointers which are not valid; if it is not 
detected, unpredictable results may occur).

Corrective action: Ensure that the value specified for the selector is valid for the object type 
represented by Hobj.

2068 MQRC_SELECTOR_NOT_FOR_TYPE

Selector not applicable for queue type.

On the MQINQ call a selector in the Selectors array is not applicable to the type of queue whose 
attributes are being queried.

The call still completes, with the corresponding element, or elements, of IntAttrs set to 
MQIAV_NOT_APPLICABLE for an integer attribute, or the appropriate portion, or portions, of the 
CharAttrs string set to a character string of all asterisks (*).

Corrective action: Check the value specified in the selector.

2069 MQRC_SIGNAL_OUTSTANDING

Signal outstanding for this handle.

An MQGET request was issued, with either the MQGMO_SET_SIGNAL or MQGMO_WAIT option, but there 
is already a signal outstanding for this object handle Hobj.

Corrective action: Check the application logic. If it is necessary to set a signal or wait when 
there is a signal outstanding for the same queue, a different object handle must be used.

2070 MQRC_SIGNAL_REQUEST_ACCEPTED

No message returned, but signal request was accepted.

An MQGET request was issued, specifying MQGMO_SET_SIGNAL in the GetMsgOpts parameter. No 
suitable message is currently available. The application can now wait on the Signal1 field.

Corrective action: Wait on the Signal1 field and when the signal is delivered, check this field to 
ensure that a message is now available. If it is, reissue the MQGET request.

2071 MQRC_STORAGE_NOT_AVAILABLE

Internal error.

Corrective action: Review the error log for additional information.



 

154 IBM MQSeries for UnixWare User’s Guide

2072 MQRC_SYNCPOINT_NOT_AVAILABLE

Syncpoint was specified in the Options field (MQGMO_SYNCPOINT or MQPMO_SYNCPOINT) and is not 
supported.

Corrective action: Change the Options field to be MQGMO_NO_SYNCPOINT or MQPMO_NO_SYNCPOINT, 
as appropriate.

2079 MQRC_TRUNCATED_MSG_ACCEPTED

Truncated message returned (message deleted from queue).

On an MQGET call, the message length was too large to fit in the supplied buffer. 
MQGMO_ACCEPT_TRUNCATED_MSG was specified, so the call completes. The message is removed 
from the queue, or, if this was a browse operation, the browse cursor advanced to this 
message.

The DataLength field is set by the system, and Buffer contains as much of the message as fits.

Corrective action: None, because the application expected this situation.

2080 MQRC_TRUNCATED_MSG_FAILED

Truncated message returned (message not deleted from queue).

On an MQGET call, the message length was too large to fit in the supplied buffer. 
MQGMO_ACCEPT_TRUNCATED_MSG was not specified, so the message is not removed from the 
queue, or, if this was a browse operation, the browse cursor remains where it was before this 
call.

The DataLength field is set by the system, and Buffer contains as much of the message as fits.

Corrective action: Supply a large enough buffer, or specify MQGMO_ACCEPT_TRUNCATED_MSG if not 
all of the message data is required.

2082 *MQRC_UNKNOWN_ALIAS_BASE_Q

Unknown alias base queue.

An MQOPEN or MQPUT1 request was issued, specifying an alias queue as the target, but the 
BaseQName in the alias queue attributes is not recognized as a queue name.

Corrective action: Correct the queue definitions.

2085 MQRC_UNKNOWN_OBJECT_NAME

Unknown object name.

The ObjectName in the object descriptor (MQOD) is not recognized for the specified object type.

Corrective action: Specify a valid object name. Ensure that the name is padded to the right with 
blanks if necessary.



Chapter 6. Application programming interface 155 

2086 MQRC_UNKNOWN_OBJECT_Q_MGR

Unknown object queue manager.

The ObjectQMgrName in the object descriptor (MQOD) is not valid for MQOPEN nor MQPUT1.

Corrective action: Specify a valid queue manager name (or all blanks or an initial null character 
to refer to the connected queue manager instance). Ensure that the name is padded to the right 
with blanks if necessary. A transmission queue should normally be defined for each remote 
queue manager to which messages can be sent.

2087 MQRC_UNKNOWN_REMOTE_Q_MGR

Unknown remote queue manager.

An MQOPEN or MQPUT1 request was issued, specifying a remote queue as the target, but the 
RemoteQMgrName in the remote queue attributes is not recognized as valid. 

Corrective action: Correct the queue definitions. Ensure that a transmission queue is defined for 
each remote queue manager to which messages can be sent.

2090 MQRC_WAIT_INTERVAL_ERROR

Negative wait interval in MQGMO.

A negative time-out (WaitInterval) value was specified in MQGMO (other than the special value 
MQWI_UNLIMITED).

Corrective action: Specify a value greater than or equal to zero, or MQWI_UNLIMITED.

2091 MQRC_XMIT_Q_TYPE_ERROR

Transmission queue not local.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue manager. There is a 
queue defined on the connected queue manager with the same name as the remote queue 
manager, but this is not a local queue.

Corrective action: If a non-blank ObjectQMgrName was specified in the ObjDesc parameter, 
ensure that it was correct. Otherwise, correct the queue definitions.

2092 MQRC_XMIT_Q_USAGE_ERROR

Transmission queue with wrong usage.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue manager. There is a 
local queue defined on the connected queue manager with the same name as the remote 
queue manager, but the local queue does not have a Usage of MQUS_TRANSMISSION.

Corrective action: Correct the queue definition.



 

156 IBM MQSeries for UnixWare User’s Guide

2173 MQRC_PMO_ERROR

Put-message options structure not valid.

On an MQPUT or MQPUT1 call, the MQPMO structure is not valid. Either the StrucId mnemonic 
eye-catcher is not valid, or the Version is not recognized. This reason also occurs if the 
parameter is not valid, or points to read-only storage (it is not always possible to detect 
parameter pointers which are not valid; if it is not detected, unpredictable results occur).

Corrective action: Correct the definition of the MQPMO structure. Ensure the required input fields 
are correctly set.

2186 MQRC_GMO_ERROR

Get-message options structure not valid.

On an MQGET call, the MQGMO structure is not valid. Either the StrucId mnemonic eye-catcher is 
not valid, or the version is not recognized. This reason also occurs if the parameter is not valid, 
or points to read-only storage (it is not always possible to detect parameter pointers which are 
not valid; if it is not detected, unpredictable results occur).

Corrective action: Ensure that the MQGMO structure is initialized and correctly passed on the 
MQGET call.

2195 MQRC_UNEXPECTED_ERROR

Unexpected error occurred.

Corrective action: Contact your system programmer.

2196 MQRC_UNKNOWN_XMIT_Q

Transmission queue specified by a remote queue definition no longer exists.

Corrective action: Contact your system programmer.

2206 MQRC_MSG_ID_ERROR

MsgId field is invalid. This field must be MQMI_NONE for MQGETs.

2207 MQRC_CORREL_ID_ERROR

CorrelId is invalid.

For MQGETs, this field must be set to MQCI_NONE.

2209 MQRC_NO_MSG_LOCKED

An MQGET call was issued with the MQGMO_UNLOCK option while no lock was being held for that 
Hobj.

Corrective action: Review application logic for possible prior error that caused a lock to not be 
held (that is, no more messages).



© Copyright IBM Corp. 1993, 1997 157

Appendix A.  UnixWare error messages

MQSeries System internal messages

Understanding MQSeries System internal messages

This appendix contains an abridged listing of the IBM MQSeries for UnixWare internal error 
messages. More detailed error message information may be found in IBM MQSeries Version 1 
Products for UNIX Operating Systems Messages and Codes, SC33-1754. Each message 
contains the date, time, MQSeries System Function and the MQSeries System Message. The 
format for the Internal MQSeries System Messages is as follows:

Example Message:

day-mth-yr hr:min.sec <MQSeries_System_function> <MQSeries_System_message>

Message Definition:

day-mth-yr Represents the current date in a two character day, three 
character month and two character year. 

hr:min.sec. Represents the current time in hours, minutes and 
seconds. 

MQSeries_System_function MQSeries System function name within the system. 

MQSeries_System_message MQSeries System message text defining the error or 
message. 

These MQSeries System Functions and MQSeries System Messages are presented in 
alphabetical order. A MQSeries System Function can be associated with several MQSeries 
System Messages. These messages can also be used with other MQSeries System Functions. 
Parameters, notations, date and time stamps contained in the text of a message will be shown 
within <> marks. 

Accompanying each message and code is the following information, when applicable:

– Explanation : This section tells what the message or code means, why it occurred and 
what caused it.

– Module : This section indicates which modules issued the message, to assist in 
diagnosing problems.

– Severity : Severity values have the following meanings:

0 An information message. No error has occurred.

4 A warning message. A condition has been detected of which the user 
should be aware. The user may need to take further action.

8 An error message. An error has been detected and processing could 
not continue.

12 A severe error message. a severe error has been detected and 
processing could not continue.



 

158 IBM MQSeries for UnixWare User’s Guide

– System  action : This part tells what is happening as a result of the condition causing 
the message or code. If this information is not shown, no system action is taken.

– User response : If a response by the user is necessary, this section tells what the 
appropriate responses are, and what their effect is. If this information is not shown, no 
user response is required.

– Operator response : If an operator response is necessary, this section tells what the 
appropriate responses are, and what their effect is. If this information is not shown, no 
operator response is required.

– System programmer response : If a response by the system programmer is required, 
this part tells what the appropriate responses are, and what their effect is. If this 
information is not shown, no system programmer response is required.

– Programmer response : If a programmer response is necessary, this part tells what 
the appropriate responses are, and what their effect is. If this information is not shown, 
no programmer response is required.

– Problem determination : This section lists the actions that can be performed to obtain 
adequate data for support personnel to diagnose the cause of the error. If this 
information is not shown, no problem determination is required.

Internal MQSeries System function names
AddQueue
AttachMgr
AttachObj
CloseIndex
DeleteQueue
DeleteWin
DetachMgr
DetachObj
ezMgrClose
ezObjClose
ezObjCreate
ezObjDelete
ezObjInq
ezObjOpen
ezObjRead
ezObjUnlock
ezObjWrite
ezQueDelete
ezQueReorg
ezRecoverMSN
fCountUsers
fOpenQULFile
FindQMGR
GetDefQMGR
LoadEnvironment
LoadQDT
LockIndex
LockRecord
MapIBMCode
ModifyQueueDefinition
MQCLOSE
MQCONN
MQDISC
MQGET
MQINQ
MQOPEN
MQPUT
MQPUT1



Appendix A. UnixWare error messages 159 

NewWin
OpenIndex
OpenQDT
OpenQMGR
OpenQueueManager
PrintWinList
ReadIndex
ReadQDT
ReadQMGR
ReadQueueManager
RecoverInboundMSN
RecoverOutboundMSN
ScanIndex
SetDefQMGR
SetIndex
UnlockRecord
WriteIndex
WriteQDT
WriteQMGR
WriteQueueManager

MQSeries System messages
Could not allocate <number> bytes memory <sys error number>
Could not find mapping for <48 character string>/<48 character string>
Could not lock record <number> <sys error number>
Could not open <string> <sys error number>
Could not open index file <sys error number>
Could not open Queue Manager Database <sys error number>
Could not read default QueueManager <sys error number>
Could not rename file <string> <sys error number>
Could not seek to offset <number> <sys error number>
Could not unlink file <string> <sys error number>
Could not unlock record <number>. <sys error number>
Could not write default QueueManager <sys error number>
Failed closeing queue <string> <sys error number>
Failed opening QDT <string> <sys error number>
Failed opening queue <string> <sys error number>
Failed reading index <sys error number>
Failed seeking index <sys error number>
Failed seeking record <number> <sys error number>
Failed to close index <sys error number>
Failed to locate index for <string>
Failed to lock index <sys error number>
Failed to unlock index <sys error number>
Failed writing <number> bytes to QDT <sys error number> 
Failed writing <number> of <number> bytes to QMGR <sys error number>
Found a new MSN: <number> for <string>
Index <string> already exists
Invalid record index passed <number> vs. <number>
New window created for <number>
MCAMD rejected message, reason: <text>
where <text> is one of the following:

“No error”
“See error log”
“Non-Specific reason”
“Channel already exists”
“Channel put record failed”
“Channel get record failed”
“Channel delete record failed”



 

160 IBM MQSeries for UnixWare User’s Guide

“No valid ChannelList index”
“Channel reserved by other MQM or MCA”
“Channel in use”
“Connection in improper state”
“In control of another channel”
“Not in control of any channel”
“Unable to send msg to MCA”
“MCA already stopped”
“MCA already running”
“Message type undefined”
“Connection in improper state”
“QMgr index exceeded maximum”
“Unable to locate QMgr record”
“Unable to create MCA shared memory”
“Invalid message length”
“Exceed maximum client count”
“Invalid message type”
“Matching pid not found”
“Unknown reason code”

No available slots in index table
No messages were copied
Opening <string>
Operation failed, Queue in use
Process not authorized for GET's from <48 character string>#<48 character string>
Queue <specific string length> is in use. ReOrganization aborted!
Queue <specific string length> successfully ReOrganized
Queue manager default record corrupt!
Queue manager not properly defined
Read failed! Got <number> of <number> <sys error number>
Read failed. Read <number> of <number> bytes from <string> <sys error number>
Read of QMGR failed! Read <number> of <number> <sys error number>
Record not written with proper version of MQI
Window deleted for <number>
Win entry for <number> 
Write failed. Wrote <number> of <number> bytes to <string> <sys error number>
Write to index file failed <sys error number>
Wrong reply size from MCAMD. Rcvd <number> bytes, expected <number> bytes.
<number> byte <string> removed from the beginning of the file.
<number> byte <string> representing <number> <number>-byte record <string> were 
copied.
<number> byte <string> truncated from the end of the file.

MCA error messages

Understanding MCA error messages

This appendix contains the IBM MQSeries for UnixWare internal error messages. Each 
message contains the date, time, MCA Function and the MCA Message. The format for the 
Internal MCA Messages is as follows:

Example Message:

day-mth-yr hr:min.sec <mca_function> <mca_message>

Message Definition:   

day-mth-yr Represents the current date in a two character day, three character month 
and two character year. 

hr:mn:sc.mls Represents the current time in hours, minutes, seconds and milliseconds. 

mca_function MCA function name within the system. 



Appendix A. UnixWare error messages 161 

mca_message MCA message text defining the error or message. Although not shown, for 
most messages, the name of the affected channel appears at the beginning 
of the text.

These MCA Functions and MCA Messages are presented in alphabetical order. A MCA 
Function can be associated with several MCA Messages. These messages can also be used 
with other MCA Functions. Parameters, notations, date and time stamps contained in the text of 
a message will be shown within <> marks. 

Internal MCA function names
CloseNamedPipe
CloseSocket
CreateMCAMem
CreateQMgrMem
DelChannelRec
DelMCAMDClient
dump_rcvd_msg
dump_xmit_msg
get_channel_name_list
GetChannelRec
InitChannelCB
main
mca_abort_msg
mca_ack_rcvd
mca_alloc_channel
mca_check_init_reply
mca_check_shutdown
mca_check_stop
mca_check_tsh
mca_chkpt_channel
mca_data_rcvd
mca_delete_msg
mca_deque_msg
mca_exit
mca_init_data_rejected
mca_init_dl_queue
mca_init_line
mca_init_mcamd_conn
mca_init_mem
mca_init_qmgr
mca_init_queues
mca_init_rcvd
mca_init_signals
mca_log_nak
mca_mcamd_cmd
mca_mcamd_init_cmpl
mca_msg_rcvd
mca_no_msg
mca_output_format
mca_queue_msg_dlq
mca_reject_init_data
mca_remove_msg
mca_reset_rcvd
mca_resync_rcvd
mca_send_confirmation
mca_sna_shutdown
mca_status_rcvd
mca_trace
mca_trace_input



 

162 IBM MQSeries for UnixWare User’s Guide

mca_trace_output
mca_trace_rcvd_ack
mca_trace_send_ack
mca_wait_for_cmd
mca_wait_to_reset
MCAmain
MCAMDCloseConn
MCAMDConnect
MCAMDControl
MCAMDCreateChannel
MCAMDDeleteChannel
MCAMDListChannels
MCAMDmain
MCAMDModifyChannel
MCAMDOpenConn
MCAMDQueryChannel
MCAMDReleaseControl
MCAMDReserveControl
MCAMDStartChannel
MCAMDStartTrace
MCAMDStopChannel
MCAMDStopTrace
MCAMDUpdateChannel
mcautils
parse_command
PutChannelRec
ReadClientMsg
RecoverQueues
SendCLReply
SendLogonReply
SendMCAMsg
SendQueryReply
SendStatus
ServMCAClient
ServMCAOPERClient
soc_accept
soc_close
soc_conn
soc_open
soc_sub_read

MCA messages
Attempt to perform connect to MCAMD socket failed, error = <number>
Error executing deallocate, error = <number>
Error executing receive, error = <number>
Failed to write to the MCAMD socket
Failure during logon attempt to MCAMD
MCAMD process refused socket connection
Received client message with invalid client type
Received improper message from MCAMD process
Attempt to create <string> shared memory segment failed
Binary encoding is being negotiated
CCSID is being negotiated
Channel <channel number>, State <string>, Event Code <number>
Channel name exceeds maximum length
Channel stopped
Clients message size does not match message type, expected <number> and received 
<number>
Close channel flag set



Appendix A. UnixWare error messages 163 

Connection to MCAMD complete
Disconnect timer has expired, disconnecting
Error allocating Channel
Error allocating memory for queue header
Error attaching to application queue, reason = <number>
Error attaching to queue, reason = <number>
Error attempting to dequeue a message from transmission queue, Completion code = 
<number>,reason = <number>
Error closing client process socket
Error creating shared memory key
Error deleting message from transmission queue, Completion code = <number>, reason = 
<number>
Error destroying shared memory segment for MCA client process
Error establishing the LU62 connection, error = <number>
Error executing allocate connection, error = <number>
Error executing attach connection, error = <number>
Error executing flush, error = <number>
Error executing get send state, error = <number>
Error executing gettimer, error = <number>
Error executing incinterval, error = <number>
Error executing prepare to receive, error = <number>
Error executing queue inquire, completion code = <number>, reason = <number>
Error executing request to send, error = <number>
Error executing send, error = <number>
Error executing shared memory attach
Error executing shared memory get
Error flag in ACK set, flags = <number>
Error in line code, error = <number>
Error incrementing message sequence number
Error opening Channel Name List file, error = <number>
Error opening queue, Completion code = <number>, reason = <number>
Error opening queue, completion code = <number>, reason = <number>
Error processing Channel List File
Error reading Channel Database file, error = <number>
Error reading client process message, error = <number>
Error setting file pointer in Channel Database file, error = <number>
Error unlocking message send in batch, Completion code = <number>, reason = <number>
Error writing Channel Database file, error = <number>
Error writing channel list reply message to client process
Error writing logon reply message to client process
Error writing message to client MCA process
Error writing query reply message to client process
Error writing status message to client process
Failed to read from the MCAMD socket, error = <number>
Initialization complete
Internal error calling system subroutine select, error = <number>
INVALID EVENT; Channel <channel number>, State <string>, Event Code <number>
Line initialized
Logical Unit of Work Identification (LUWID) mismatch
Maximum size of message in negotiation
Maximum size of transmitted message in negotiation
mca -c ChannelName -f ChannelListFile -m QueueMgrName
Message Channel Agent program exiting
Message Channel Agent Starting, PID = <number>
Number of Channels requested exceeds capability
rcv stat, rtn <number>, errno <number>, what_data_rcvd <number>, w_ctrl_rcvd 
<number>,rq_t_snd <number>
Received a undefined client message
Reconnect retry limit exceeded
Request close flag set



 

164 IBM MQSeries for UnixWare User’s Guide

Sequence number mismatch in negotiation
Size of message batch in error
Trace input
Trace output
Trace received ack
Trace sent ack
Unable to access Queue Manager Database file, error = <number>
Unable to allocate memory for Channel buffer
Unable to allocate memory for Channel control block, error = <number>
Unable to connect to Queue Manager, completion code = <number>, reason = <number>
Unable to connect to the MCAMD process
Unable to initialize signal handlers
Unable to initialize transport connection
Unable to locate database records for all channels
Unable to open all transmission queues
Unable to open Channel Database file, error = <number>
Wait for command
Wait for command

Transport layer protocol for LU 6.2 functions
tlp_init_cpic
tlp_rqst_send_cpic
tlp_rcv_cpic
tlp_send_cpic
tlp_alloc_cpic
tlp_attach_cpic
tlp_deallocate_cpic
tlp_abend_cpic
tlp_turn_line_cpic

Transport layer protocol for LU 6.2 CPI-C messages
In the following messages, the return codes are standard CPI-C return codes, which can be 
looked up in the EXPRESS Common Programming Interface for Communications (CPI-C) 
Programmer's Guide, Appendix E, cpic.h Include File or in the file /usr/express/include/cpic.h. 
If any log message shows a return code of 20, an additional log message will show the Express 
product-specific return code, which can also be found in the above manual and file. 

<channel_name>: cminit failed, return code = <cpic_rc>
<channel_name>: cminic failed, return code = <cpic_rc>
<channel_name>: cmsmn failed, return code = <cpic_rc>
<channel_name>: cmspln failed, return code = <cpic_rc>
<channel_name>: cmssln failed, return code = <cpic_rc>
<channel_name>: cmstpn failed, return code = <cpic_rc>
<channel_name>: cmallc failed, return code = <cpic_rc>
<channel_name>: cmflus failed, return code = <cpic_rc>
<channel_name>: cmsltp failed, return code = <cpic_rc>
<channel_name>: cmspm failed, return code = <cpic_rc>
<channel_name>: xcsdq failed, return code = <cpic_rc>
<channel_name>: cmacci failed, return code = <cpic_rc>
<channel_name>: xcecfd failed, return code = <cpic_rc>
<channel_name>: xctest failed, return code = <cpic_rc>
<channel_name>: xctest failed, return code = <cpic_rc>, conv_return_code = <cpic_rc>
<channel_name>: cmrts failed, return code = <cpic_rc>
rcv param: fd <number>, buff <number>, length <number>
<channel_name>: cmrcv failed, return code = <cpic_rc>
Extract product-specific return code: rc = <cpic_rc>, specific_rc = <cpic_rc>



Appendix A. UnixWare error messages 165 

Internal transport layer protocol for TCP/IP functions
tlp_accept_tcpip

tlp_close_tcpip

tlp_conn_tcpip

tlp_init_tcpip

tlp_open_tcpip

tlp_recv_tcpip

tlp_send_tcpip

Internal transport layer protocol for TCP/IP messages
socket read timed out
Error closing socket, error = <number>
Error creating socket, error = <number>
Error getting port number for service <name> by name (getservbyname)
Error executing socket accept, error = <number>
Error executing socket bind, error = <number>
Error executing socket connect, error = <number>
Error executing socket listen, error = <number>
Error getting host name entry (gethostbyname) <name>
Error reading socket, error = <number>
Error unlinking socket <name>, error = <number>
<channel name>: Error executing close, error = <number>
<channel name>: Error executing send, error = <number>
<channel name>: Error setting socket options, error = <number>
<channel name>: Error attempting to accept connection on internet socket, error = 
<number>
<channel name>: Unable to connect to internet socket at host <name>, service <name>
<channel name>: Error attempting to create listener socket, error = <number>
<channel name>: Error attempting to receive message on internet socket, error = 
<number>
<channel name>: Remote channel disconnected from socket connection
Channel <channel name> received TSH with message length in excess of maximum 
transmission length (<number> vs <number>)

Internal MCA daemon functions
CloseSocket
CreateMCAMem
CreateQMgrMem
DelChannelRec
DelMCAMDClient
GetChannelRec
InitChannelCB
MCAMDCloseConn
MCAMDControl
MCAMDCreateChannel
MCAMDDeleteChannel
MCAMDListChannels
MCAMDmain
MCAMDModifyChannel
MCAMDOpenConn
MCAMDQueryChannel
MCAMDReleaseControl
MCAMDReserveControl
MCAMDStartChannel
MCAMDStartTrace
MCAMDStopChannel



 

166 IBM MQSeries for UnixWare User’s Guide

MCAMDStopTrace
MCAMDUpdateChannel
parse_command
PutChannelRec
ReadClientMsg
RecoverQueues
SendCLReply
SendLogonReply
SendMCAMsg
SendQueryReply
SendStatus
SendStatus
ServMCAClient
ServMCAOPERClient

Internal MCA daemon messages
Channel <channel number> not found
Channel database checkpoint failed, unable to update Channel <channel number>, error 
= <number>
Clients message size does not match message type, expected <number> and received 
<number>
Error accepting Internet operator connection, error = <number>
Error accepting Unix MCA connection, error = <number>
Error accepting Unix operator connection, error = <number>
Error adding Internet operator client
Error adding Unix MCA client
Error adding Unix operator client
Error closing client process socket
Error creating shared memory key, error = <number>
Error destroying shared memory segment for MCA client process
Error executing shared memory attach, error = <number>
Error executing shared memory get, error = <number>
Error opening Internet operator socket, error = <number>
Error opening Unix MCA socket, error = <number>
Error opening Unix operator socket, error = <number>
Error reading Channel Database file, error = <number>
Error reading client process message, error = <number>
Error recovering queues, Get record failed for Channel <channel number>
Error recovering queues, Put record failed for Channel <channel number>
Error setting file pointer in Channel Database file to record = <number>, error = 
<number>
Error writing Channel Database file, error = <number>
Error writing Channel list reply message to client process
Error writing logon reply message to client process
Error writing message to client MCA process
Error writing query reply message to client process
Error writing status message to client process
Internal error calling system subroutine select, error = <number>
Invalid command received
Message Channel Agent Maintenance Daemon Starting, PID = <number>
Message Channel Agent Maintenance Daemon Stopping, PID = <number>
Received an undefined client message
Received client message with invalid client type
Unable to access Queue Manager Database file for Queue Manager <queue name>
Unable to locate Channel Database record for Channel <channel number>
Unable to locate database records for all Channels
Unable to open Channel Database file, error = <number>



© Copyright IBM Corp. 1993, 1997 167

Appendix B. Sample source listings

zmqecho.c
/**********************************************************
*  Licensed Materials - Property of IBM                   *
*                                                         *
*  5765-519                                               *
*  5765-521                                               *
*  63H9503,5697-265                                       *
*  5765-520                                               *
*  5765-516                                               *
*  5765-513                                               *
*  (C) Copyright IBM Corp. 1993, 1997                     *
*                                                         *
*  US Government Users Restricted Rights - Use,           *
*  duplication or disclosure restricted by GSA ADP        *
*  Schedule Contract with IBM Corp.                       *
***********************************************************/
/**********************************************************
 *
 *  Filename:       zmqecho.c
 *  Creation Date:  04-Mar-93
 *  Sccs Revision:  "@(#)zmqecho.c IBM Version 1.4 Revised
 *                                               11/14/94"
 *  Overview:
 *            This program will read a specified number of messages
 *            from a source queue, and write them to a destination
 *           queue.
 *
 *  Modification History:
 *  Date    Author  Reason
 *  ~~~~    ~~~~~~  ~~~~~~
 *  04-Mar-93  Originate.
 *  20-May-94 When echoing messages received from a remote 
 * system some fields may be set to invalid values 
 * (maintained solely for the use of the receiving 
 * application). These values must be set to valid 
 * values before they can be put onto the
 * destination.
 *
 **********************************************************/

#include    <stdio.h>
#include    <string.h>
#include    <time.h>
#include    <stdlib.h>
#include    <sys/timeb.h>
#include    "cmqc.h"

#define     NAME_DELIMETER  '#'
#define     USAGE   \
"\n\007Usage: %s <# msgs> <Src QMGR>#<Src Que> <Dst QMGR>#<Dst 

Que>\n\n"

static char SccsID[] = "@(#)zmqecho.c   IBM Version 1.4 Revised 
11/14/94";

char    *ProgramName;

int main(int argc, char *argv[])
{
/*
*  For the MQCONN call, we shall connect to the default queue
*  manager.  This queue manager connection is used for all
*  calls.  Of course though, the queue manager names specified
*  on the command line are used in our MQOPEN calls.
*/
    MQCHAR48 QueueManager = "   "; /* Use default queue manager */
    MQHCONN qm_handle;

/*

*  The following variables deal with the source queue.
*/
    MQCHAR48 source_queue_manager, /*Name of source QueueManager*/
                source_queue; /* Name of source queue */
    MQHOBJ      source_que_handle; /*Handle to source queue*/
    MQGMO       get_options = { MQGMO_DEFAULT };
    MQOD        source_obj_desc = { MQOD_DEFAULT };

/*
*  The following variables deal with the destination queue.
*/
    MQCHAR48    dest_queue_manager, /* Name of destination QM */
                dest_queue; /* Name of destination queue */
    MQHOBJ      dest_que_handle;
    MQPMO       put_options = { MQPMO_DEFAULT };
    MQOD        dest_obj_desc = { MQOD_DEFAULT };

/*
*  The following variables are common to all MQI routines.
*/
    MQMD        msg_desc = { MQMD_DEFAULT };
    MQLONG      comp_code = MQCC_OK,
                reason = MQRC_NONE;

/*
* The following variable is used in call to MQINQ. We need to call 
* this in order to determine how large of a buffer we need to 
* allocate for reading a message from the source queue.
*/
    MQLONG      selector = MQIA_MAX_MSG_LENGTH;

    char *data_buffer; /* Pointer to data buffer */
    long buffer_length, /* Length of buffer (MQINQ) */

messages_to_echo, /*Number of messages to copy*/
message_length, /* Length of message to copy */
read_index, /* Message being copied */
name_length = 0, /* Length of arg name parsed */
arg_pos = 0; /* Position within curr arg */

    ProgramName = *argv; /* Save program name for errors */

    if (argc != 4)
    {
        fprintf(stderr, USAGE, ProgramName);
        exit(1);
    }

/*
* Get number of messages.
*/
    messages_to_echo = atoi(argv[1]);

/*
* Grab Source queue manager queue name combination.
*/
    name_length = 0;
    while ( argv[2][arg_pos] 
                && arg_pos < MQ_Q_MGR_NAME_LENGTH 
                && argv[2][arg_pos] != NAME_DELIMETER)
    {
        source_queue_manager[name_length++] = argv[2][arg_pos++];
    }
    if (arg_pos < MQ_Q_MGR_NAME_LENGTH)
     memset((void *)&source_queue_manager[name_length], (int)' ', 
               (size_t)(MQ_Q_MGR_NAME_LENGTH - name_length));
    strcpy(source_queue, &argv[2][++arg_pos]);
    if (strlen(source_queue) < MQ_Q_NAME_LENGTH)
     memset((void *)&source_queue[strlen(source_queue)], (int)' ', 
           (size_t)(MQ_Q_NAME_LENGTH - strlen(source_queue)));



168 IBM MQSeries for UnixWare User’s Guide

    strncpy(source_obj_desc.ObjectName, source_queue, 
sizeof(MQCHAR48));

    strncpy(source_obj_desc.ObjectQMgrName, source_queue_manager, 
                                    sizeof(MQCHAR48));

/*
* Grab destination queue manager queue name combination.
*/
    arg_pos = 0;
    name_length = 0;
    while ( argv[3][arg_pos] 
                && arg_pos < MQ_Q_MGR_NAME_LENGTH 
                && argv[3][arg_pos] != NAME_DELIMETER)
    {
        dest_queue_manager[name_length++] = argv[3][arg_pos++];
    }
    if (arg_pos < MQ_Q_MGR_NAME_LENGTH)
        memset((void *)&dest_queue_manager[name_length], (int)' ', 
                        (size_t)(MQ_Q_MGR_NAME_LENGTH - 

name_length));
    strcpy(dest_queue, &argv[3][++arg_pos]);
    if (strlen(dest_queue) < MQ_Q_NAME_LENGTH)
        memset((void *)&dest_queue[strlen(dest_queue)], (int)' ', 
                        (size_t)(MQ_Q_NAME_LENGTH - 

strlen(dest_queue)));

    strncpy(dest_obj_desc.ObjectName, dest_queue, 
sizeof(MQCHAR48));

    strncpy(dest_obj_desc.ObjectQMgrName, dest_queue_manager, 
                                    sizeof(MQCHAR48));

/*
* Access and write messages to queue.
*/
    MQCONN(QueueManager, &qm_handle, &comp_code, &reason);
    if (comp_code)
    {
        printf("Failed to connect to the queue manager.  (Reason = 

%ld)\n",
                        reason);
        return(1);
    }

    MQOPEN(qm_handle, &source_obj_desc, MQOO_INPUT_SHARED | 
MQOO_INQUIRE, 

                    &source_que_handle, &comp_code, &reason);
    if (comp_code)
    {
        printf("Failed to attach to source queue. Reason = %ld\n", 

reason);
        printf("%.-48s\n%-.48s\n", source_obj_desc.ObjectName,
                    source_obj_desc.ObjectQMgrName);
        return(1);
    }

    MQINQ(qm_handle, source_que_handle, 1, &selector, 1, 
&buffer_length, 0,

                NULL, &comp_code, &reason);
    if (comp_code)
    {
        printf("%s: Failed to get queue size.  (Reason = %ld)\n", 
                        ProgramName, reason);
        MQCLOSE(qm_handle, &source_que_handle, MQCO_NONE, 

&comp_code, &reason);
        MQCLOSE(qm_handle, &dest_que_handle, MQCO_NONE, 

&comp_code, &reason);
        MQDISC(&qm_handle, &comp_code, &reason);
        return(1);
    }
/*
*  Based on value returned from MQINQ, allocate buffer for data
*  reads.
*/
    data_buffer = (char *)malloc((size_t)buffer_length);

    MQOPEN(qm_handle, &dest_obj_desc, MQOO_OUTPUT | MQOO_INQUIRE, 
                    &dest_que_handle, &comp_code, &reason);
    if (comp_code)
    {
        printf("Failed to attach to destination queue. Reason = 

%ld\n", reason);
        printf("%.-48s\n%-.48s\n", dest_obj_desc.ObjectName,
                    dest_obj_desc.ObjectQMgrName);
        return(1);
    }

    for (read_index = 0; read_index < messages_to_echo; 
++read_index)

    {
 
        memcpy(msg_desc.MsgId, MQMI_NONE, sizeof(MQBYTE24));
        memcpy(msg_desc.CorrelId, MQCI_NONE, sizeof(MQBYTE24));
/*
*  Perform destructive read of data.
*/
        MQGET(qm_handle, source_que_handle, &msg_desc, 

&get_options,
                            buffer_length, data_buffer, 

&message_length,
                                    &comp_code, &reason);
        if (comp_code)
        {
            if (reason == MQRC_NO_MSG_AVAILABLE)
            {
                printf("%s: No messages left to read\n", 

ProgramName);
            }
            else
            {
                printf("Failed to get message #%ld. (Reason = 

%ld)\n", 
                                        read_index, reason);
            }
            break;
        }

/*
* 20-May-94
* At this point certain fields must be modified to legal values.
*/
        msg_desc.Report = MQRO_NONE;
        msg_desc.Persistence = MQPER_PERSISTENCE_AS_Q_DEF;
        msg_desc.Priority = 0L;

/*
*  Write data just read to the destination queue.
*/
        MQPUT(qm_handle, dest_que_handle, &msg_desc, &put_options,
                            message_length, data_buffer, &comp_code,
                                &reason);
        if (comp_code)
        {
            printf("Failed to put message #%ld. (Reason = %ld)\n", 
                                        read_index, reason);
            break;
        }
    }

    free(data_buffer);

/*
*  Close source queue.
*/
    MQCLOSE(qm_handle, &source_que_handle, MQCO_NONE, &comp_code, 

&reason);
    if (comp_code)
    {
        printf("Failed to close queue.  (Reason = %ld)\n", 

reason);



Appendix B. Sample source listings  169

   

    }

/*
*  Close destination queue.
*/
    MQCLOSE(qm_handle, &dest_que_handle, MQCO_NONE, &comp_code, 

&reason);
    if (comp_code)
    {
        printf("Failed to close queue.  (Reason = %ld)\n", reason);
    }

/*
*  Disconnect. 
*/
    MQDISC(&qm_handle, &comp_code, &reason);
    if (comp_code)
    {
        printf("Failed to disconnect from the queue manager.  

(Reason = %ld)\n",
                                reason);
    }
}



170 IBM MQSeries for UnixWare User’s Guide

zmqread.c
/**********************************************************
*  Licensed Materials - Property of IBM                   *
*                                                         *
*  5765-519                                               *
*  5765-521                                               *
*  63H9503,5697-265                                       *
*  5765-520                                               *
*  5765-516                                               *
*  5765-513                                               *
*  (C) Copyright IBM Corp. 1993, 1997                     *
*                                                         *
*  US Government Users Restricted Rights - Use,           *
*  duplication or disclosure restricted by GSA ADP        *
*  Schedule Contract with IBM Corp.                       *
***********************************************************/
/**********************************************************
 *
 *  Filename:       zmqread.c
 *  Creation Date:  01-Feb-93
 *  Sccs Revision:  "@(#)zmqread.c  IBM Version 1.4 Revised
 *                  11/14/94";
 *  Overview:
 *                  Sends messages to the message queue.
 *
 *  Modification History:
 *  Date        Author  Reason
 *  ~~~~        ~~~~~~  ~~~~~~
 *  01-Feb-93 Originate.
 *  30-Jun-94 Modified to remove Non-MQ Constant
 * MQGMO_NONE and
 * replaced with MQGMO_NO_WAIT.
 *
 **********************************************************/

#include    <stdio.h>
#include    <string.h>
#include    <time.h>
#include    <stdlib.h>
#include    <sys/timeb.h>
#include    "cmqc.h"

#define     NAME_DELIMETER  '#'
#define     USAGE   "\n\007Usage: %s <QueueManager>#<Queue> <# 

msgs>\n\n"

static char SccsID[] = "@(#)zmqread.c   IBM Version 1.4 Revised 
11/14/94";

char    *ProgramName;

int main(int argc, char *argv[])
{
    MQCHAR48    QueueManager="  ",
                queue_manager,
                queue;
    char        *message_data;
    MQHCONN     qm_handle;
    MQHOBJ      que_handle;
    MQLONG      comp_code = MQCC_OK,
                reason = MQRC_NONE,
                selector = MQIA_MAX_MSG_LENGTH;
    MQOD        obj_desc = { MQOD_DEFAULT };
    MQMD        msg_desc = { MQMD_DEFAULT };
    MQGMO       get_options = { MQGMO_DEFAULT };
    long        messages_to_read,
                message_length,
                buffer_length = 0,
                read_index,
                NameLength = 0,
                arg_pos = 0;

    ProgramName = *argv;
    if (argc != 3)
    {
        fprintf(stderr, USAGE, ProgramName);
        exit(1);
    }

/*
* Grab queue manager queue name combination.
*/
    NameLength = 0;
    while ( argv[1][arg_pos] 
                && arg_pos < MQ_Q_MGR_NAME_LENGTH 
                && argv[1][arg_pos] != NAME_DELIMETER)
    {
        queue_manager[NameLength++] = argv[1][arg_pos++];
    }
    if (arg_pos < MQ_Q_MGR_NAME_LENGTH)
        memset((void *)&queue_manager[NameLength], (int)' ', 
                            (size_t)(MQ_Q_MGR_NAME_LENGTH - 

NameLength));
    strcpy(queue, &argv[1][++arg_pos]);
    if (strlen(queue) < MQ_Q_NAME_LENGTH)
        memset(&queue[strlen(queue)], ' ', 
                        MQ_Q_NAME_LENGTH - strlen(queue));

    strncpy(obj_desc.ObjectName, queue, sizeof(MQCHAR48));
    strncpy(obj_desc.ObjectQMgrName, queue_manager, 

sizeof(MQCHAR48));

/*
* Get number of messages.
*/
    messages_to_read = atoi(argv[2]);

/*
* Access and write messages to queue.
*/
    MQCONN(QueueManager, &qm_handle, &comp_code, &reason);
    if (comp_code)
    {
        printf("Failed to read the application table 

(Reason=%ld)\n", reason);
        return(1);
    }

    MQOPEN(qm_handle, &obj_desc, MQOO_INPUT_SHARED | MQOO_INQUIRE 
| MQOO_BROWSE,

                                            &que_handle, &comp_code, 
&reason);

    if (comp_code)
    {
        printf("Failed to attach to queue. Reason = %ld \n", 

reason);
        return(1);
    }
    MQINQ(qm_handle, que_handle, 1, &selector, 1, &buffer_length, 

0,
                NULL, &comp_code, &reason);
    if (comp_code)
    {
/*
* Since we do not have a direct path to the queue, lets
* poll the first message to determine the length of the
* message.  We shall then attempt to read a message size of
* the first message size + 10 bytes for good luck!
*
*  The sequece to follow is:
*      1) Read message with only MQGMO_BROWSE_FIRST.
*          This reads a message, but does not delete it.
*      2) Read message with options = MQGMO_UNLOCK.
*          This option is used to unlock the message that 
*          was just read.  The option MQGMO_MSG_UNDER_CURSOR



Appendix B. Sample source listings  171

   

*          would have performed a delete of the previously
*          read message.
*      3) Set options back to MQGMO_NO_WAIT.
*          This sets up subsequent reads to both read and
*          delete messages in one call to MQGET.
*/
        get_options.Options = MQGMO_BROWSE_FIRST | MQGMO_LOCK;
        MQGET(qm_handle, que_handle, &msg_desc, &get_options,
                                0, message_data, &message_length,
                                    &comp_code, &reason);
        if (comp_code == MQCC_FAILED)
        {
            printf("%s: Failed to get queue size defaulting to 

75\n", 
                                                        ProgramName);
            buffer_length = 75;
        }
        else
        {
            buffer_length = message_length + 20;
            printf("%s: Message length is %d\n", ProgramName, 

buffer_length);
        }
        get_options.Options = MQGMO_UNLOCK;
        memcpy(msg_desc.MsgId, MQMI_NONE, sizeof(MQBYTE24));
        memcpy(msg_desc.CorrelId, MQCI_NONE, sizeof(MQBYTE24));
        MQGET(qm_handle, que_handle, &msg_desc, &get_options,
                            buffer_length, message_data, 

&message_length,
                                    &comp_code, &reason);
        get_options.Options = MQGMO_NO_WAIT;
    }
    message_data = (char *)malloc((size_t)buffer_length);

    get_options.Options |= MQGMO_ACCEPT_TRUNCATED_MSG;

    for (read_index = 0; read_index < messages_to_read; 
++read_index)

    {
 
       memcpy(msg_desc.MsgId, MQMI_NONE, sizeof(MQBYTE24));
        memcpy(msg_desc.CorrelId, MQCI_NONE, sizeof(MQBYTE24));
       MQGET(qm_handle, que_handle, &msg_desc, &get_options,
              buffer_length, message_data, &message_length,
                                    &comp_code, &reason);
        if (comp_code)
        {
            if (comp_code != MQCC_WARNING)
            {
                if (reason == MQRC_NO_MSG_AVAILABLE)
                {
                    printf("%s: No messages left to read\n", 

ProgramName);
                }
                else
                {
                    printf("%s: Failed to read message #%ld.\n", 

ProgramName,
                                            read_index);
                }
                printf("Failed to get message. Reason = %ld \n", 

reason);
                break;
            }
            printf("Warning getting message. Reason = %ld \n", 

reason);
        }
        printf("==> %-75.75s\n", message_data);
    }

    printf("%s: Read %ld of %ld messages!\n", ProgramName, 
                             read_index, messages_to_read);
    free(message_data);
    MQCLOSE(qm_handle, &que_handle, MQCO_NONE, &comp_code, 

&reason);

    if (comp_code)
    {
        printf("Failed to close queue. (Reason = %ld)\n", reason);
        return(1);
    }

    MQDISC(&qm_handle, &comp_code, &reason);
}



172 IBM MQSeries for UnixWare User’s Guide

zmqwrite.c
/**********************************************************
*  Licensed Materials - Property of IBM                   *
*                                                         *
*  5765-519                                               *
*  5765-521                                               *
*  63H9503,5697-265                                       *
*  5765-520                                               *
*  5765-516                                               *
*  5765-513                                               *
*  (C) Copyright IBM Corp. 1993, 1997                     *
*                                                         *
*  US Government Users Restricted Rights - Use,           *
*  duplication or disclosure restricted by GSA ADP        *
*  Schedule Contract with IBM Corp.                       *
***********************************************************/
/**********************************************************
 *
 *  Filename:       zmqwrite.c
 *  Creation Date:  01-Feb-93
 *  Sccs Revistion: "@(#)zmqwrite.c IBM Version 1.3 Revised 

11/14/94";
 *  Overview:
 *                  Sends messages to the message queue.
 *
 *  Modification History:
 *  Date        Author  Reason
 *  ~~~~        ~~~~~~  ~~~~~~
 *  01-Feb-93           Originate.
 *
 **********************************************************/

#include    <stdio.h>
#include    <string.h>
#include    <time.h>
#include    <stdlib.h>
#include    <sys/timeb.h>
#include    "cmqc.h"

#define     NAME_DELIMETER  '#'

#define     USAGE   \
"\n\007Usage: %s <QueueManager>#<Queue> <# msgs> <msg length> 

<message>\n\n"

static char SccsID[] = "@(#)zmqwrite.c  IBM Version 1.3 Revised 
11/14/94";

char    *ProgramName;

int main(int argc, char *argv[])
{
    MQCHAR48    QueueManager="  ",
                queue_manager,
                queue;
    char        *message_data,
                message_number[10],
                *msg_to_send;
    MQHCONN     qm_handle;
    MQHOBJ      que_handle;
    MQLONG      comp_code = MQCC_OK,
                reason = MQRC_NONE;
    MQOD        obj_desc = { MQOD_DEFAULT };
    MQMD        msg_desc = { MQMD_DEFAULT },
                put_msg_desc;
    MQPMO       put_options = { MQPMO_DEFAULT };
    long        messages_to_send,
                message_length,
                buffer_length,
                message_index,
                buffer_index,
                send_index,
                NameLength = 0,

                arg_pos = 0;

    ProgramName = *argv;
    if (argc != 5)
    {
        fprintf(stderr, USAGE, ProgramName);
        exit(1);
    }

/*
* Grab queue manager queue name combination.
*/
    NameLength = 0;
    while ( argv[1][arg_pos] 
                && arg_pos < MQ_Q_MGR_NAME_LENGTH 
                && argv[1][arg_pos] != NAME_DELIMETER)
    {
        queue_manager[NameLength++] = argv[1][arg_pos++];
    }
    if (arg_pos < MQ_Q_MGR_NAME_LENGTH)
        memset((void *)&queue_manager[NameLength], (int)' ', 
                            (size_t)(MQ_Q_MGR_NAME_LENGTH - 

NameLength));
    strcpy(queue, &argv[1][++arg_pos]);
    if (strlen(queue) < MQ_Q_NAME_LENGTH)
        memset(&queue[strlen(queue)], ' ', 
                        MQ_Q_NAME_LENGTH - strlen(queue));
    strncpy(obj_desc.ObjectName, queue, sizeof(MQCHAR48));
    strncpy(obj_desc.ObjectQMgrName, queue_manager, 

sizeof(MQCHAR48));

/*
* Get number of messages.
*/
    messages_to_send = atoi(argv[2]);

/*
* Get buffer length.
*/
    if ((buffer_length = atoi(argv[3])) < 8)
    {
        fprintf(stderr, "%s: Buffer length must be at least 8\n", 

ProgramName);
        exit(1);
    }

/*
* Get message data.
*/
    msg_to_send = argv[4];
    message_length = strlen(msg_to_send);

    message_data = (char *)malloc((size_t)buffer_length);
    memset((void *)message_data, (int)' ', (size_t)buffer_length);

    for (buffer_index = 8, message_index = 0; 
                    buffer_index < buffer_length; 
                        ++buffer_index, 
                            message_index = (++message_index % 

message_length))
    {
        message_data[buffer_index] = msg_to_send[message_index];
    }

/*
* Access and write messages to queue.
*/
    MQCONN(QueueManager, &qm_handle, &comp_code, &reason);
    if (comp_code)
    {



Appendix B. Sample source listings  173

   

        printf("Failed to connect to queue manager. (Reason = 
%ld)\n", reason);

        return(1);
    }

    MQOPEN(qm_handle, &obj_desc, MQOO_OUTPUT, &que_handle,
                                         &comp_code, &reason);
    if (comp_code)
    {
        printf("Failed to open queue. Reason = %ld\n", reason);
        return(1);
    }

    for (send_index = 0; send_index < messages_to_send; 
++send_index)

    {
        sprintf(message_number,"[%.04ld]:  ", send_index+1);
        memcpy(message_data, message_number, 8);
 
        memcpy(&put_msg_desc, &msg_desc, sizeof(MQMD));
        MQPUT(qm_handle, que_handle, &put_msg_desc, &put_options,
                            buffer_length, message_data, &comp_code, 

&reason);
        if (comp_code)
        {
            printf("Failed to put message #%ld on queue. (Reason = 

%ld)\n", 
                                    send_index + 1, reason);
            break;
        }
    }

    free(message_data);
    MQCLOSE(qm_handle, &que_handle, MQCO_NONE, &comp_code, 

&reason);
    if (comp_code)
    {
        printf("Failed to close queue.  (Reason = %ld)\n", reason);
        return(1);
    }

    MQDISC(&qm_handle, &comp_code, &reason);
}



174 IBM MQSeries for UnixWare User’s Guide

 cmqc.h
/**********************************************************
*  Licensed Materials - Property of IBM                   *
*                                                         *
*  This Module is "Restricted Materials of IBM"           *
*                                                         *
*  5765-519                                               *
*  5765-521                                               *
*  63H9503,5697-265                                       *
*  5765-520                                               *
*  5765-516                                               *
*  5765-513                                               *
*  (C) Copyright IBM Corp. 1993, 1997                     *
*                                                         *
*  See Copyright instructions.                            *
*                                                         *
*  US Government Users Restricted Rights - Use,           *
*  duplication or disclosure restricted by GSA ADP        *
*  Schedule Contract with IBM Corp.                       *
***********************************************************/
/*
 *  Filename:       cmqc.h
 *  Creation Date:  27-Oct-92
 *  Sccs Revision:  "@(#)cmqc.h IBM Version 1.6 Revised 11/14/94"
 *  Overview:
 *       This file contains the defines and typedefs needed
 *       to establish the datatypes used by MQI and MQ-FAP.
 *
 *  Modification History:
 *  Date        Author  Reason
 *  ~~~~        ~~~~~~  ~~~~~~
 *  27-Oct-92 Originate.
 *  30-Oct-92 Added function prototypes for both ANSI  
 * and non-ANSI compilers.
 *  10-May-92 Changed file name from mqi.h to cmqc.h.
 *  05-Jul-94 Modified check for ANSI to __STDC__
 *  28-Jul-94 Modified the AccountingToken field of
 * MQMD_DEFAULT to be 32 NULL's rather than
 * 32 SPACE's.
 *
 */

#ifndef     CMQC_H
#define     CMQC_H

#include    <mqtypes.h>
#include    <mqconst.h>

#if defined(_MSDOS) || defined(__OS2__)
#pragma pack(1)
#endif

#if defined(_cplusplus) || defined(__cplusplus)
   extern "C" {
#endif

/*
 *  The MQGMO structure is an input variable for passing options 

to the
 *  MQGET call.
 */
struct tagMQGMO   {
    MQCHAR4   StrucId;           /* Structure identifier 'GMO '  */
    MQLONG    Version;           /* Structure version number     */
    MQLONG    Options;           /* Call options                 */
    MQLONG    WaitInterval;      /* Wait interval                */
    MQLONG    Signal1;           /* Operating-system signal      */
    MQLONG    Signal2;           /* Reserved                     */
    MQCHAR48  ResolvedQName;     /* Resolved queue name        */
};
typedef struct tagMQGMO MQGMO;
typedef MQGMO *PMQGMO;

#define MQGMO_DEFAULT   MQGMO_STRUC_ID_ARRAY, \
                        MQGMO_VERSION_1, \
                        0, \
                        0, \
                        0, \
                        0, \
                        ""

/*
 *  The MQMD structure is used to describe the attributes of a 

message.
 *  It is an input/output variable for MQGET, MQPUT, and MQPUT1 

calls.
 */

struct tagMQMD    {
    MQCHAR4   StrucId;           /* Structure identifier 'MD  '  */
    MQLONG    Version;           /* Structure version number     */
    MQLONG    Report;            /* Report options               */
    MQLONG    MsgType;           /* Message type                 */
    MQLONG    Expiry;            /* Expiry time                  */
    MQLONG    Feedback;          /* Exception feedback           */
    MQLONG    Encoding;          /* Data encoding                */
    MQLONG    CodedCharSetId; /*Coded character set identifier*/
    MQCHAR8   Format;            /* Format name                  */
    MQLONG    Priority;          /* Priority                     */
    MQLONG    Persistence;       /* Persistence                  */
    MQBYTE24  MsgId;             /* Message identifier           */
    MQBYTE24  CorrelId;          /* Correlation identifier       */
    MQLONG    BackoutCount;      /* Backout counter for MQGET    */
    MQCHAR48  ReplyToQ;          /* Queue name for replies       */
    MQCHAR48  ReplyToQMgr;       /* QM name for ReplyTo queue */
    MQCHAR12  UserIdentifier;    /* Reserved                     */
    MQBYTE32  AccountingToken;   /* Reserved                     */
    MQCHAR32  ApplIdentityData;  /* Reserved                     */
    MQLONG    PutApplType;       /* Reserved                     */
    MQCHAR28  PutApplName;       /* Reserved                     */
    MQCHAR8   PutDate;           /* Reserved                     */
    MQCHAR8   PutTime;           /* Reserved                     */
    MQCHAR4   ApplOriginData;    /* Reserved                     */
};
typedef struct tagMQMD  MQMD;
typedef MQMD    *PMQMD;

#define MQMD_DEFAULT MQMD_STRUC_ID_ARRAY,\
                     MQMD_VERSION_1,\
                     0,\
                     MQMT_DATAGRAM,\
                     MQEI_UNLIMITED,\
                     MQFB_NONE,\
                     MQENC_NATIVE,\
                     MQCCSI_Q_MGR,\
                     { ' ',' ',' ',' ',' ',' ',' ',' ' }, \
                     0,\
                     MQPER_PERSISTENCE_AS_Q_DEF,\
                     MQMI_NONE_ARRAY,\
                     MQCI_NONE_ARRAY,\
                     0,\
                     "",\
                     "",\
                     "",\
                     { '\0','\0','\0','\0','\0','\0','\0','\0', \
                       '\0','\0','\0','\0','\0','\0','\0','\0', \
                       '\0','\0','\0','\0','\0','\0','\0','\0', \
                       '\0','\0','\0','\0','\0','\0','\0','\0' }, \
                     "",\
                     0,\
                     "",\
                     { ' ',' ',' ',' ',' ',' ',' ',' ' }, \
                     { ' ',' ',' ',' ',' ',' ',' ',' ' }, \
                     ""



Appendix B. Sample source listings  175

   

/*
 *  The MQOD structure is used to specify a queue object.
 */
struct tagMQOD    {
    MQCHAR4   StrucId;          /* Structure identifier 'OD  '  */
    MQLONG    Version;          /* Structure version number     */
    MQLONG    ObjectType;       /* Object type                  */
    MQCHAR48  ObjectName;       /* Object name                  */
    MQCHAR48  ObjectQMgrName;   /* Object queue manager name    */
    MQCHAR48  DynamicQName;     /* Dynamic queue name           */
    MQCHAR12  AlternateUserId;  /* Reserved                     */
};
typedef struct tagMQOD  MQOD;
typedef MQOD *PMQOD;

#define MQOD_DEFAULT MQOD_STRUC_ID_ARRAY,\
                     MQOD_VERSION_1,\
                     MQOT_Q,\
                     "",\
                     "",\
                     "*"

/*
 *  The MQPMO structure is an input variable for passing options 

to the
 *  MQPUT and MQPUT1 calls.
 */
struct tagMQPMO   {
    MQCHAR4   StrucId;          /* Structure identifier 'PMO '  */
    MQLONG    Version;          /* Structure version number     */
    MQLONG    Options;          /* Call options                 */
    MQLONG    Timeout;          /* Reserved; must be -1         */
    MQHOBJ    Context;          /* Reserved                     */
    MQLONG    KnownDestCount;   /* Reserved                     */
    MQLONG    UnknownDestCount; /* Reserved                     */
    MQLONG    InvalidDestCount; /* Reserved                     */
    MQCHAR48  ResolvedQName;    /* Resolved queue name          */
    MQCHAR48  ResolvedQMgrName; /* Resolved queue manager name  */
};
typedef struct tagMQPMO MQPMO;
typedef MQPMO *PMQPMO;

#define MQPMO_DEFAULT MQPMO_STRUC_ID_ARRAY,\
                      MQPMO_VERSION_1,\
                      0,\
                      -1,\
                      0,\
                      0,\
                      0,\
                      0,\
                      "",\
                      "" 

/**************************************************************/
/*  MQTM Structure                                        */
/**************************************************************/

struct tagMQTM {                                                 
  MQCHAR4    StrucId;      /* Structure identifier */
  MQLONG     Version;      /* Structure version number */
  MQCHAR48   QName;        /* Name of triggered queue */
  MQCHAR48   ProcessName;  /* Name of process object */
  MQCHAR64   TriggerData;  /* Trigger data */
  MQLONG     ApplType;     /* Application type */
  MQCHAR256  ApplId;       /* Application identifier */
  MQCHAR128  EnvData;      /* Environment data */
  MQCHAR128  UserData;     /* User data */
 };
typedef struct tagMQTM  MQTM;
typedef MQTM *PMQTM;

#define MQTM_DEFAULT MQTM_STRUC_ID_ARRAY,\
                     MQTM_VERSION_1,\

                     "",\
                     "",\
                     "",\
                     0,\
                     "",\
                     "",\
                     ""

/**************************************************************/
/*  MQTM Structure                                        */
/**************************************************************/
struct tagMQDLH {
    MQCHAR4     StrucId;
    MQLONG      Version;
    MQLONG      Reason;
    MQCHAR48    DestQName;
    MQCHAR48    DestQMgrName;
    MQLONG      Encoding;
    MQLONG      CodedCharSetId;
    MQCHAR8     Format;
    MQLONG      PutApplType;
    MQCHAR28    PutApplName;
    MQCHAR8     PutDate;
    MQCHAR8     PutTime;
};
typedef struct tagMQDLH MQDLH;

#define MQDLH_DEFAULT   MQDLH_STRUC_ID_ARRAY\
                        MQDLH_VERSION_1 \
                        MQRC_NONE, \
                        

"                                      
          ", \

                        
"                                      
          ", \

                        0, \
                        0, \
                        "        ", \
                        MQAT_NO_CONTEXT, \
                        "                            ", \
                        "        ", \
                        "        "

/*
 *  This section contains both ansi and non-ansi prototypes
 *  for the MQI functions.  
 */

#if defined(__STDC__) || defined(_MSDOS) || defined(__OS2__)
void MQCONN( MQCHAR48    Name,  /* Name of queue manager (input)*/
             PMQHCONN    Hconn,      /* Connection handle (output)*/
             PMQLONG     CompCode,   /* Completion code (output)*/ 
            PMQLONG     Reason  /* Code qualifying CompCode 

(output)*/
            );

void MQDISC( PMQHCONN    Hconn, /* Connection handle. 
(input/output)*/

             PMQLONG     CompCode,   /* Completion code (output)*/
            PMQLONG    Reason  /* Code qualifying CompCode 

(output)*/
            );

void MQOPEN( MQHCONN     Hconn,   /* Connection handle. (input)*/
            PMQOD      ObjDesc, /* Object descriptor. 

(input/output)*/
            MQLONG     Options, /* Action control options (input)*/
            PMQHOBJ    Hobj,          /* Object handle (output)*/
            PMQLONG    CompCode,  /* Completion code (output)*/
           PMQLONG   Reason   /* Code qualifying CompCode 

(output)*/
            );

void MQCLOSE(MQHCONN Hconn, /*Connection handle. (input)*/



176 IBM MQSeries for UnixWare User’s Guide

           PMQHOBJ Hobj, /*Object handle (input/output)*/
            MQLONG Options, /*Action control options (input)*/
           PMQLONG CompCode, /*Completion code (output)*/
            PMQLONG Reason /*Code qualifying CompCode (output)*/
            );

void MQGET(  MQHCONN Hconn, /* Connection handle. (input) */
             MQHOBJ  Hobj, /* Object handle (input) */
             PMQMD   MsgDesc, /* Message descriptor 

(input/output)*/
             PMQGMO  GetMsgOpts, /*action control (input/output)*/
             MQLONG      BufferLength,  /* Buffer length (input) */
             PMQVOID     Buffer, /* Retrieved message (output) */
             PMQLONG     DataLength, /*Length of message (output)*/
             PMQLONG     CompCode, /* Completion code (output) */
             PMQLONG     Reason /* Code qualifying CompCode 

(output)*/
            );

void MQPUT( MQHCONN  Hconn, /* Connection handle. (input) */
            MQHOBJ   Hobj,  /* Object handle (output) */
            PMQMD   MsgDesc, /* Message descriptor (input/output)*/
            PMQPMO  PutMsgOpts, /*action control (input/output)*/
           MQLONG  BufferLength,  /* Buffer length (input)*/
           PMQVOID  Buffer,/* Message data (input)*/
           PMQLONG  CompCode, /* Completion code (output)*/
            PMQLONG  Reason /* Code qualifying CompCode (output)*/
            );

void MQPUT1( MQHCONN  Hconn, /* Connection handle. (input) */
            PMQOD  ObjDesc, /* Object descriptor (input) */
             PMQMD  MsgDesc, /* Message descriptor (input/output)*/
             PMQPMO PutMsgOpts, /* action control (input/output) */
            MQLONG BufferLength, /* Buffer length (input) */
            PMQVOID Buffer,  /* Message data (input) */
             PMQLONG  CompCode, /* Completion code (output) */
             PMQLONG Reason /* Code qualifying CompCode (output)*/
            );

void MQINQ(  MQHCONN  Hconn, /* Connection handle. (input) */
          MQHOBJ   Hobj, /* Object handle (input) */
           MQLONG  SelectorCount, /* Count of selectors (input)*/
          PMQLONG  Selectors, /*attribute selectors (input)*/
           MQLONG IntAttrCount,/*Count of integer attribs(input)*/
           PMQLONG IntAttrs, /* Array of integer attribs (output)*/
           MQLONG CharAttrLength,/* Length of char attrib buf 

(input)*/
           PMQCHAR CharAttrs, /* Character attributes. (output)*/
          PMQLONG CompCode, /* Completion code (output) */
           PMQLONG Reason /* Code qualifying CompCode (output)*/
            );

#else   /*  #ifdef __STDC__  */

void MQCONN();
void MQDISC();
void MQOPEN();
void MQCLOSE();
void MQGET();
void MQPUT();
void MQPUT1();
void MQINQ();

#endif  /*  #ifdef __STDC__  */

#if defined(_cplusplus) || defined(__cplusplus)
   }
#endif
#endif      /* #ifndef CMQC_H  */



Appendix B. Sample source listings  177

   

 mqconst.h
/**********************************************************
*  Licensed Materials - Property of IBM                   *
*                                                         *
*  This Module is "Restricted Materials of IBM"           *
*                                                         *
*  5765-519                                               *
*  5765-521                                               *
*  63H9503,5697-265                                       *
*  5765-520                                               *
*  5765-516                                               *
*  5765-513                                               *
*  (C) Copyright IBM Corp. 1993, 1997                     *
*                                                         *
*  See Copyright instructions.                            *
*                                                         *
*  US Government Users Restricted Rights - Use,           *
*  duplication or disclosure restricted by GSA ADP        *
*  Schedule Contract with IBM Corp.                       *
***********************************************************/
/*
 *  Filename:       mqconst.h
 *  Creation Date:  26-Oct-92
 *  Sccs Revision: "@(#)mqconst.h IBM Version 1.10 Revised 

11/14/94";
 *  Overview:
 *    This header file contains all the define statements
 *    that were defined in the original IBM specifications
 *    document "ssisroot.lis".
 *
 *  Modification History:
 *  Date        Author  Reason
 *  ~~~~        ~~~~~~  ~~~~~~
 *  26-Oct-92    Originate
 *  18-Aug-93    Added new reason code MQRC_NO_MSG_LOCKED, and
 *               changed MQGMO_BROWSE_MSG_UNDER_CURSOR to be
 *               MQGMO_UNLOCK.
 *  12-Jul-94    Modified all instances of _INIT to be _ARRAY.  

This
 *               conforms to IBM's own internal naming conventions.
 *               There are corresponding changes in cmqc.h.  Also 

added
 *               another null to the MQMI_NONE and MQCI_NONE 

definitions.
 *               This will circumvent the compiler problem reported
 *               with AIX.  Definitions of MQMI_NONE_ARRAY and 
 *               MQCI_NONE_ARRAY have also been made for use in
 *               cmqc.h.
 *  28-Jul-94    Added definitions of MQTM_STRUC_ID_ARRAY,
 *               MQTM_STRUC_ID, and MQTM_VERSION_1.
 *  02-Aug-94    Added definition of MQFB_DUPLICATE_MSG_SENT(274).
 *  20-Sep-94    Added definition of MQRC_DATABASE_DEADLOCK(2231)
 *  18-Oct-94    Changed name of MQRC_DATABASE_DEADLOCK to be
 *               MQRC_DATABASE_ERROR.  In this way the error code 

is
 *               more flexible.  The end user must now examine the
 *               proper global variables supplied by the database
 *               in use for further explanation of the error.
 *
 */

#ifndef MQCONST_H
#define MQCONST_H

#if defined(_MSDOS) || defined(__OS2__)
#pragma pack(1)
#endif

#if defined(_cplusplus) || defined(__cplusplus)
   extern "C" {
#endif

/*

 *  Lengths of character string and byte fields
 */

#define MQ_CREATION_DATE_LENGTH               12
#define MQ_CREATION_TIME_LENGTH                8
#define MQ_PROCESS_APPL_ID_LENGTH            256
#define MQ_PROCESS_DESC_LENGTH                64
#define MQ_PROCESS_ENV_DATA_LENGTH           128
#define MQ_PROCESS_NAME_LENGTH                48
#define MQ_PROCESS_USER_DATA_LENGTH          128
#define MQ_Q_DESC_LENGTH                      64
#define MQ_Q_NAME_LENGTH                      48
#define MQ_Q_MGR_DESC_LENGTH                  64
#define MQ_Q_MGR_NAME_LENGTH                  48
#define MQ_TRIGGER_DATA_LENGTH                64

/*
 *  Application type
 */

#define MQAT_USER_FIRST                    65536L
#define MQAT_USER_LAST                 999999999L
#define MQAT_NO_CONTEXT                        0L
#define MQAT_OS2                               4L
#define MQAT_DOS                               5L
#define MQAT_AIX                               6L
#define MQAT_QMGR                              7L
#define MQAT_OS400                             8L
#define MQAT_WINDOWS                           9L
#define MQAT_CICS_VSE                         10L
#define MQAT_VMS                              12L
#define MQAT_GUARDIAN                         13L
#define MQAT_VOS                              14L

/*
 *  Character attribute selectors
 */

#define MQCA_Q_NAME                         2016L
#define MQCA_Q_DESC                         2013L
#define MQCA_PROCESS_NAME                   2012L
#define MQCA_INITIATION_Q_NAME              2008L
#define MQCA_CREATION_DATE                  2004L
#define MQCA_CREATION_TIME                  2005L
#define MQCA_REMOTE_Q_NAME                  2018L
#define MQCA_REMOTE_Q_MGR_NAME              2017L
#define MQCA_BASE_Q_NAME                    2002L
#define MQCA_XMIT_Q_NAME                    2024L

/*
 *  Coded character set identifier
 */

#define MQCCSI_Q_MGR                           0L

/*
 *  Completion codes
 */

#define MQCC_OK                                0L
#define MQCC_WARNING                           1L
#define MQCC_FAILED                            2L

/*
 *  Correlation identifier
 */

/*
 *  Note that in this definition there is one less 
 *  NULL character.  This is because the definition
 *  as string automatically appends a NULL 
 *  character to the end.
 */



178 IBM MQSeries for UnixWare User’s Guide

#define MQCI_NONE 
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0"

#define MQCI_NONE_ARRAY { 
'\0','\0','\0','\0','\0','\0','\0','\0'
, \

                        '\0','\0','\0','\0','\0','\0','\0','\0', \
                        '\0','\0','\0','\0','\0','\0','\0','\0' }

/*
 *  CPI level
 */

#define MQCL_LEVEL_1                      100L

/*
 *  Close options
 */
#define MQCO_NONE                           0L

/*
 *  Dead letter queue header structure identifier.
 */
#define MQDLH_STRUC_ID_ARRAY {'D','L','H',' '}
#define MQDLH_STRUC_ID                  "DLH "

/*
 *  Dead letter queue header version.
 */
#define MQDLH_VERSION_1                     1L

/*
 *  Encoding masks
 */

#define MQENC_INTEGER_MASK          0x0000000F
#define MQENC_DECIMAL_MASK          0x000000F0
#define MQENC_FLOAT_MASK            0x00000F00
#define MQENC_RESERVED_MASK         0xFFFFF000

/*
 *  Encoding for binary integers
 */
#define MQENC_INTEGER_UNDEFINED             0L
#define MQENC_INTEGER_NORMAL                1L
#define MQENC_INTEGER_REVERSED              2L

/*
 *  Encoding for packed-decimal integers
 */
#define MQENC_DECIMAL_UNDEFINED             0L
#define MQENC_DECIMAL_NORMAL               16L
#define MQENC_DECIMAL_REVERSED             32L

/*
 *  Encoding for floating-point numbers
 */
#define MQENC_FLOAT_UNDEFINED               0L
#define MQENC_FLOAT_IEEE_NORMAL           256L
#define MQENC_FLOAT_IEEE_REVERSED         512L
#define MQENC_FLOAT_S390                  768L

/*
 *  Encoding
 */
#if defined(_AIX) || defined(sparc) || defined(__hpux)
#define MQENC_NATIVE (MQENC_INTEGER_NORMAL | MQENC_DECIMAL_NORMAL 

| MQENC_FLOAT_IEEE_NORMAL)
#else   /*  _AIX    */

#if defined(__OS2__) || defined(_MSDOS) || defined(INTEL) || 
defined(i386)

#define MQENC_NATIVE (MQENC_INTEGER_REVERSED | 
MQENC_DECIMAL_REVERSED | 
MQENC_FLOAT_IEEE_REVERSED)

#endif  /*  __OS2__ || _MSDOS   */

#endif  /*  _AIX    */

/* Expiry Value */
#define MQEI_UNLIMITED                      -1

/*
 *  Feedback
 */

#define MQFB_NONE                              0L
#define MQFB_QUIT                            256L
#define MQFB_SYSTEM_FIRST                      1L
#define MQFB_SYSTEM_LAST                   65535L
#define MQFB_APPL_FIRST                    65536L
#define MQFB_APPL_LAST                 999999999L

#define MQFB_DUPLICATE_MSG_SEQ_NUMBER        272L
#define MQFB_ALSO_PUT_ON_REMOTE_DEAD_Q       273L
#define MQFB_DUPLICATE_MSG_SENT              274L

/*
 *  Format
 */
#define MQFMT_NONE                     "        "
#define MQFMT_DEAD_LETTER_HEADER       "MQDEAD  "
#define MQFMT_TRIGGER                  "MQTRIG  "
#define MQFMT_XMIT_Q_HEADER            "MQXMIT  "

/*
 *  Get message options
 */

#define MQGMO_WAIT                             1L
#define MQGMO_NO_WAIT                          0L
#define MQGMO_SYNCPOINT                        2L
#define MQGMO_NO_SYNCPOINT                     4L
#define MQGMO_BROWSE_FIRST                    16L
#define MQGMO_BROWSE_NEXT                     32L
#define MQGMO_ACCEPT_TRUNCATED_MSG            64L
#define MQGMO_SET_SIGNAL                       8L
#define MQGMO_MSG_UNDER_CURSOR               256L
#define MQGMO_LOCK                           512L
#define MQGMO_UNLOCK                        1024L

/* Wait Interval */
#define MQWI_UNLIMITED -1L

/*
 *  Get message options structure identifier
 */

#define MQGMO_STRUC_ID_ARRAY    {'G','M','O',' '}
#define MQGMO_STRUC_ID                     "GMO "

/*
 *  Get message options version
 */

#define MQGMO_VERSION_1                        1L

/*
 *  Integer attribute selectors
 */

#define MQIA_FIRST                             1L
#define MQIA_USAGE                            12L
#define MQIA_Q_TYPE                           20L
#define MQIA_INHIBIT_GET                       9L
#define MQIA_INHIBIT_PUT                      10L
#define MQIA_DEF_PERSISTENCE                   5L
#define MQIA_MAX_Q_DEPTH                      15L



Appendix B. Sample source listings  179

   

#define MQIA_MAX_MSG_LENGTH                    13
#define MQIA_SHAREABILITY                     23L
#define MQIA_DEFINITION_TYPE                   7L
#define MQIA_TRIGGER_CONTROL                  24L
#define MQIA_TRIGGER_TYPE                     28L
#define MQIA_OPEN_INPUT_COUNT                 17L
#define MQIA_OPEN_OUTPUT_COUNT                18L
#define MQIA_CURRENT_Q_DEPTH                   3L
#define MQIA_LAST                           2000L

/*
 *  Integer attribute value
 */

#define MQIAV_NOT_APPLICABLE               -1L

/*
 *  Message descriptor structure identifier
 */
#define MQMD_STRUC_ID_ARRAY  {'M','D',' ',' '}
#define MQMD_STRUC_ID                   "MD  "

/*
 *  Message descriptor version
 */

#define MQMD_VERSION_1                      1L

/*
 *  Message identifier
 */

#define MQMI_NONE 
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0"

#define MQMI_NONE_ARRAY { 
'\0','\0','\0','\0','\0','\0','\0','\0'
, \

   '\0','\0','\0','\0','\0','\0','\0','\0', \
    '\0','\0','\0','\0','\0','\0','\0','\0' }

/*
 *  Message type
 */
#define MQMT_REQUEST                        1L
#define MQMT_REPLY                          2L
#define MQMT_DATAGRAM                       8L
#define MQMT_REPORT                         4L

/* Report Options */
#define MQRO_NONE                  0x00000000L

/*
 *  Object descriptor structure identifier
 */

#define MQOD_STRUC_ID_ARRAY  {'O','D',' ',' '}
#define MQOD_STRUC_ID                   "OD  "

/*
 *  Object descriptor version
 */

#define MQOD_VERSION_1                      1L

/*
 *  Open options
 */

#define MQOO_INPUT_SHARED                   2L
#define MQOO_INPUT_EXCLUSIVE                4L
#define MQOO_BROWSE                         8L
#define MQOO_OUTPUT                        16L
#define MQOO_INQUIRE                       32L

/*
 *  Object type
 */

#define MQOT_Q                              1L

/*
 *  Persistence
 */

#define MQPER_PERSISTENT                    1L
#define MQPER_PERSISTENCE_AS_Q_DEF          2L

/*
 *  Put message options structure identifier
 */

#define MQPMO_STRUC_ID_ARRAY    {'P','M','O',' '}
#define MQPMO_STRUC_ID                     "PMO "

/*
 *  Put Message options version
 */

#define MQPMO_VERSION_1                        1L

#define MQPMO_SYNCPOINT                        2L
#define MQPMO_NO_SYNCPOINT                     4L

/*
 *  MQTM definitions.
 */
#define MQTM_STRUC_ID_ARRAY     {'T','M',' ',' '}
#define MQTM_STRUC_ID                      "TM  "
#define MQTM_VERSION_1                         1L

/*
 *  Inquire object attributes.
 */
#define MQIQ_MAX_SELECTORS                   256L

/*
 *  Inhibit get
 */
#define MQQA_GET_INHIBITED                     1L
#define MQQA_GET_ALLOWED                       0L

/*
 *  Inhibit put
 */
#define MQQA_PUT_INHIBITED                     1L
#define MQQA_PUT_ALLOWED                       0L

/*
 *  Queue shareability
 */

#define MQQA_SHAREABLE                         1L
#define MQQA_NOT_SHAREABLE                     0L

/*
 *  Queue definition type
 */

#define MQQDT_PREDEFINED                       1L

/*
 *  Queue type
 */

#define MQQT_LOCAL                             1L
#define MQQT_ALIAS                             3L



180 IBM MQSeries for UnixWare User’s Guide

#define MQQT_REMOTE                            6L

/*
 *  Reason codes
 */

#define MQRC_ACCESS_RESTRICTED              2000L
#define MQRC_ALIAS_BASE_Q_TYPE_ERROR        2001L
#define MQRC_ALREADY_CONNECTED              2002L
#define MQRC_BUFFER_ERROR                   2004L
#define MQRC_BUFFER_LENGTH_ERROR            2005L
#define MQRC_CHAR_ATTR_LENGTH_ERROR         2006L
#define MQRC_CHAR_ATTRS_ERROR               2007L
#define MQRC_CHAR_ATTRS_TOO_SHORT           2008L
#define MQRC_CONNECTION_BROKEN              2009L
#define MQRC_DATA_LENGTH_ERROR              2010L
#define MQRC_EXPIRY_ERROR                   2013L
#define MQRC_FEEDBACK_ERROR                 2014L
#define MQRC_GET_INHIBITED                  2016L
#define MQRC_HANDLE_NOT_AVAILABLE           2017L
#define MQRC_HCONN_ERROR                    2018L
#define MQRC_HOBJ_ERROR                     2019L
#define MQRC_INT_ATTR_COUNT_ERROR           2021L
#define MQRC_INT_ATTR_COUNT_TOO_SMALL       2022L
#define MQRC_INT_ATTRS_ARRAY_ERROR          2023L
#define MQRC_LOCK_NOT_AVAILABLE             2024L
#define MQRC_MAX_CONNS_LIMIT_REACHED        2025L
#define MQRC_MD_ERROR                       2026L
#define MQRC_MISSING_REPLY_TO_Q             2027L
#define MQRC_MSG_TYPE_ERROR                 2029L
#define MQRC_MSG_TOO_BIG_FOR_Q              2030L
#define MQRC_MSG_TOO_BIG_FOR_Q_MGR          2031L
#define MQRC_NO_MSG_AVAILABLE               2033L
#define MQRC_NO_MSG_UNDER_CURSOR            2034L
#define MQRC_NONE                              0L
#define MQRC_NOT_AUTHORIZED                 2035L
#define MQRC_NOT_OPEN_FOR_BROWSE            2036L
#define MQRC_NOT_OPEN_FOR_INPUT             2037L
#define MQRC_NOT_OPEN_FOR_INQUIRE           2038L
#define MQRC_NOT_OPEN_FOR_OUTPUT            2039L
#define MQRC_OBJECT_CHANGED                 2041L
#define MQRC_OBJECT_IN_USE                  2042L
#define MQRC_OBJECT_TYPE_ERROR              2043L
#define MQRC_OD_ERROR                       2044L
#define MQRC_OPTION_NOT_VALID_FOR_TYPE      2045L
#define MQRC_OPTIONS_ERROR                  2046L
#define MQRC_PERSISTENCE_ERROR              2047L
#define MQRC_PRIORITY_EXCEEDS_MAXIMUM       2049L
#define MQRC_PRIORITY_ERROR                 2050L
#define MQRC_PUT_INHIBITED                  2051L
#define MQRC_Q_FULL                         2053L
#define MQRC_Q_SPACE_NOT_AVAILABLE          2056L
#define MQRC_Q_MGR_NAME_ERROR               2058L
#define MQRC_Q_MGR_NOT_AVAILABLE            2059L
#define MQRC_REPORT_OPTIONS_ERROR           2061L
#define MQRC_SECURITY_ERROR                 2063L
#define MQRC_SELECTOR_COUNT_ERROR           2065L
#define MQRC_SELECTOR_LIMIT_EXCEEDED        2066L
#define MQRC_SELECTOR_ERROR                 2067L
#define MQRC_SELECTOR_NOT_FOR_TYPE          2068L
#define MQRC_SIGNAL_OUTSTANDING             2069L
#define MQRC_SIGNAL_REQUEST_ACCEPTED        2070L
#define MQRC_STORAGE_NOT_AVAILABLE          2071L
#define MQRC_SYNCPOINT_NOT_AVAILABLE        2072L
#define MQRC_TRUNCATED_MSG_ACCEPTED         2079L
#define MQRC_TRUNCATED_MSG_FAILED           2080L
#define MQRC_UNEXPECTED_CONNECT_ERROR       2081L
#define MQRC_UNKNOWN_ALIAS_BASE_Q           2082L
#define MQRC_UNKNOWN_OBJECT_NAME            2085L
#define MQRC_UNKNOWN_OBJECT_Q_MGR           2086L
#define MQRC_UNKNOWN_REMOTE_Q_MGR           2087L
#define MQRC_WAIT_INTERVAL_ERROR            2090L
#define MQRC_XMIT_Q_TYPE_ERROR              2091L

#define MQRC_XMIT_Q_USAGE_ERROR             2092L
#define MQRC_SIGNAL1_ERROR                  2099L
#define MQRC_PMO_ERROR                      2173L
#define MQRC_GMO_ERROR                      2186L
#define MQRC_UNEXPECTED_ERROR               2195L
#define MQRC_UNKNOWN_XMIT_Q                 2196L
#define MQRC_FILE_SYSTEM_ERROR              2208L
#define MQRC_MSG_ID_ERROR                   2206L
#define MQRC_CORREL_ID_ERROR                2207L
#define MQRC_NO_MSG_LOCKED                  2209L
#define MQRC_DATABASE_ERROR                 2231L
#define MQRC_INDEX_LOCKED                   7777L

/*
 *  Syncpoint
 */
#define MQSP_AVAILABLE                         1L

/*
 *  Trigger controls
 */

#define MQTC_OFF                                0L
#define MQTC_ON                                 1L

/*
 *  Trigger type
 */
#define MQTT_NONE                               0L
#define MQTT_FIRST                              1L
#define MQTT_EVERY                              2L

/*
 *  Usage
 */
#define MQUS_NORMAL                             0L
#define MQUS_TRANSMISSION                       1L

#if defined(_cplusplus) || defined(__cplusplus)
   }
#endif
#endif      /* #ifdef MQCONST_H */



Appendix B. Sample source listings  181

   

 mqtypes.h
/**********************************************************
*  Licensed Materials - Property of IBM                   *
*                                                         *
*  This Module is "Restricted Materials of IBM"           *
*                                                         *
*  5765-519                                               *
*  5765-521                                               *
*  63H9503,5697-265                                       *
*  5765-520                                               *
*  5765-516                                               *
*  5765-513                                               *
*  (C) Copyright IBM Corp. 1993, 1997                     *
*                                                         *
*  See Copyright instructions.                            *
*                                                         *
*  US Government Users Restricted Rights - Use,           *
*  duplication or disclosure restricted by GSA ADP        *
*  Schedule Contract with IBM Corp.                       *
***********************************************************/
/*
 *  Filename:       mqtypes.h
 *  Creation Date:  26-Oct-92
 *  Sccs Revision:  "@(#)mqtypes.h IBM Version 1.2 Revised 

11/14/94"
 *  Overview:
 *    This file contains the defines and typedefs needed
 *    to establish the datatypes used by MQI and MQ-FAP.
 *
 *  Modification History:
 *  Date        Author  Reason
 *  ~~~~        ~~~~~~  ~~~~~~
 *  26-Oct-92           Originate.
 *
 */

#ifndef MQTYPES_H
#define MQTYPES_H

#if defined(_MSDOS) || defined(__OS2__)
#pragma pack(1)
#endif

#if defined(_cplusplus) || defined(__cplusplus)
   extern "C" {
#endif

typedef unsigned char   MQBYTE;
typedef MQBYTE *        PMQBYTE;
typedef MQBYTE          MQBYTE24[24];
typedef MQBYTE          MQBYTE8[8];
typedef MQBYTE8 *       PMQBYTE8;
typedef MQBYTE24 *      PMQBYTE24;
typedef MQBYTE          MQBYTE32[32];
typedef MQBYTE32 *      PMQBYTE32;

typedef char            MQCHAR;
typedef MQCHAR *        PMQCHAR;
typedef MQCHAR          MQCHAR4[4];
typedef MQCHAR4 *       PMQCHAR4;
typedef MQCHAR          MQCHAR8[8];
typedef MQCHAR8 *       PMQCHAR8;
typedef MQCHAR          MQCHAR12[12];
typedef MQCHAR12 *      PMQCHAR12;
typedef MQCHAR          MQCHAR24[24];
typedef MQCHAR24 *      PMQCHAR24;
typedef MQCHAR          MQCHAR28[28];
typedef MQCHAR28 *      PMQCHAR28;
typedef MQCHAR          MQCHAR32[32];
typedef MQCHAR32 *      PMQCHAR32;
typedef MQCHAR          MQCHAR48[48];
typedef MQCHAR48 *      PMQCHAR48;

typedef MQCHAR          MQCHAR64[64];
typedef MQCHAR64 *      PMQCHAR64;
typedef MQCHAR          MQCHAR128[128];
typedef MQCHAR128 *     PMQCHAR128;
typedef MQCHAR          MQCHAR256[256];
typedef MQCHAR256 *     PMQCHAR256;

typedef long            MQLONG;
typedef MQLONG *        PMQLONG;

typedef MQLONG          MQHCONN;
typedef MQHCONN *       PMQHCONN;

typedef MQLONG          MQHOBJ;
typedef MQHOBJ *        PMQHOBJ;

typedef void            MQVOID;
typedef MQVOID *        PMQVOID;
typedef PMQVOID *       PPMQVOID;

#if defined(_cplusplus) || defined(__cplusplus)
   }
#endif
#endif      /* #ifndef  MQTYPES_H   */



182 IBM MQSeries for UnixWare User’s Guide



© Copyright IBM Corp. 1993, 1997 183

Appendix C.  C programming language examples

This appendix provides examples of how to invoke message-queuing calls. It also shows the 
various parameters and data types declared in C Programming languages. The information in 
this appendix is provided to help understand the C application programs that use message 
queuing.

This section contains:

• Language Considerations
• Functions
• Elementary data types
• Structure data types

Language considerations

Header file

A header file is provided as part of the definition of the message queue interface. The header 
file is summarized in Table 22.

Functions

Parameters that are input-only and of the type MQHCONN, MQHOBJ, or MQLONG are passed by value; 
for all other parameters, the address of the parameter is passed by value.

Not all parameters that are passed by address need to be specified every time a function is 
invoked. Where a particular parameter is not required, a null pointer can be specified as the 
parameter on the function invocation in place of the address of the parameter data. Parameters 
for which this is possible are identified in the call descriptions. See Chapter 6, “Application 
programming interface” on page 107.

No parameter is returned as the value of the function. In C terminology, this means that all 
functions return void.

Parameters with undefined data type

The MQGET, MQPUT, and MQPUT1 functions each have one parameter that has an undefined data 
type, namely the Buffer parameter. This parameter is used to send and receive the application's 
message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. It is valid to declare 
the parameters in this way, but it more convenient to declare them as the particular structure 
which describes the layout of the data in the message. The actual function parameter is defined 
as a pointer-to-void. This means that the address of any sort of data can be specified as the 
parameter on the function invocation.

Table 22.  Header file

Filename Contents

CMQC Function prototypes, data types, named constants



 

184 IBM MQSeries for UnixWare User’s Guide

Data types

All data types are defined by means of the C typedef statement. For each data type, the 
corresponding pointer data type is also defined. The name of the pointer data type is the 
elementary name or structure data type prefixed with the letter “P” to denote a pointer.

typedef MQLONG *PMQLONG /* pointer to MQLONG */
typedef MQMD *PMQMD; /*pointer to MQMD */

Manipulating binary strings

Strings of binary data are declared as one of the MQBYTEn data types. Whenever fields of this 
type are copied, compared, or set, the C functions memcpy, memcmp, or memset should be used. 
For example:

#include <string.h>
#include “CMQC.H”

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /* set “MsgId” field to nulls */
MQMI_NONE, /* ...using named constant */
sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /* set “CorrelId” field to nulls */
0x00, /* ...using different method */
sizeof(MQBYTE24));

Do not use the string functions strcpy, strcmp, strncpy, or strncmp, because these do not work 
correctly for data declared with the MQBYTEn data types.

Manipulating character strings

When the queue manager returns character data to the application, the queue manager always 
pads the character data with blanks to the defined length of the field; the queue manager does 
not return null-terminated strings. Therefore, when copying, comparing or concatenating such 
strings, the string functions strncpy, strncmp, or strncat should be used.

String functions, which require the string to be terminated by a null (strcpy, strcmp, or strcat) 
were not used. In addition the strlen function, used to determine the length of the string was 
not used. Instead the sizeof function to determine the length of the field was used.

Initial values for structures

The header file CMQC defines various macro variables that may be used to provide initial 
values for the message queuing structures when instances of those structures are declared. 
These macro variables have names of the form “MQXXX_DEFAULT”, (where “MQXXX” 
represents the name of the structure). They are used in the following way:

MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

Notational conventions

The sections that follow show how the:

• Functions should be invoked
• Parameters should be declared
• Various data types should be declared

In a number of cases, parameters are arrays whose size is not fixed. For these, a lowercase “n” 
is used to represent a numeric constant. When the declaration for that parameter is coded, the 
“n” must be replaced by the numeric value required.



Appendix C. C programming language examples 185 

Functions

MQCLOSE
MQCLOSE (Hconn, &Hobj, Options, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hobj; /* Object handle */
MQLONG Options; /* Options that control the action of MQCLOSE */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQCONN
MQCONN (Name, &Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 Name; /* Name of queue manager */
MQHCONN Hconn; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQDISC
MQDISC (&Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQGET
MQGET (Hconn, Hobj, &MsgDesc, &GetMsgOpts, BufferLength, Buffer, &DataLength, 
&CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hobj; /* Object handle */
MQMD MsgDesc; /* Message descriptor */
MQGMO GetMsgOpts; /* Options that control the action of MQGET */
MQLONG BufferLength; /* Length in bytes of the buffer area */
MQBYTE Buffer[n]; /* Area to contain the message data */
MQLONG DataLength; /* Length of the message */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQINQ
MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs, 
CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hobj; /* Object handle */
MQLONG SelectorCount; /* Count of selectors */
MQLONG Selectors[n]; /* Array of attribute selectors */
MQLONG IntAttrCount; /* Count of integer attributes */
MQLONG IntAttrs[n]; /* Array of integer attributes */
MQLONG CharAttrLength; /* Length of character attributes buffer */
MQCHAR CharAttrs[n]; /* Character attributes */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */



 

186 IBM MQSeries for UnixWare User’s Guide

MQOPEN
MQOPEN (Hconn, &ObjDesc, Options, &Hobj, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQOD ObjDesc; /* Object descriptor */
MQLONG Options; /* Options that control the action of MQOPEN */
MQHOBJ Hobj; /* Object handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQPUT
MQPUT (Hconn, Hobj, &MsgDesc, &PutMsgOpts, BufferLength, Buffer, &CompCode, 
&Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hobj; /* Object handle */
MQMD MsgDesc; /* Message descriptor */
MQPMO PutMsgOpts; /* Options that control the action of MQPUT */
MQLONG BufferLength; /* Length in bytes of the buffer area */
MQBYTE Buffer[n]; /* Area to contain the message data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQPUT1
MQPUT1 (Hconn, &ObjDesc, &MsgDesc, &PutMsgOpts, BufferLength, Buffer, &CompCode, 
&Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQOD ObjDesc; /* Object descriptor */
MQMD MsgDesc; /* Message descriptor */
MQPMO PutMsgOpts; /* Options that control the action of MQPUT1 */
MQLONG BufferLength; /* Length in bytes of the buffer area */
MQBYTE Buffer[n]; /* Area to contain the message data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */



Appendix C. C programming language examples 187 

Elementary data types

Structure data types

MQGMO
typedef struct tagMQGMO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options */
MQLONG WaitInterval; /* Wait interval */
MQLONG Signal1; /* Signal */
MQLONG Signal2; /* Reserved */
MQCHAR48 ResolvedQName; /* Resolved name of destination queue */
} MQGMO;

MQMD
typedef struct tagMQMD {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Report; /* Report options */
MQLONG MsgType; /* Message type */
MQLONG Expiry; /* Reserved */
MQLONG Feedback; /* Feedback code */
MQLONG Encoding; /* Data encoding */
MQLONG CodedCharSetId: /* Coded character set identifier */

Table 23.  Elementary data types

Data Type Representation

MQBYTE typedef unsigned char MQBYTE;

MQBYTE24 typedef MQBYTE MQBYTE24[24];

MQBYTE32 typedef MQBYTE MQBYTE32[32];

MQCHAR typedef char MQCHAR;

MQCHAR4 typedef MQCHAR MQCHAR4[4];

MQCHAR8 typedef MQCHAR MQCHAR8[8];

MQCHAR12 typedef MQCHAR MQCHAR12[12];

MQCHAR28 typedef MQCHAR MQCHAR28[28];

MQCHAR32 typedef MQCHAR MQCHAR32[32];

MQCHAR48 typedef MQCHAR MQCHAR48[48];

MQCHAR64 typedef MQCHAR MQCHAR64[64];

MQCHAR128 typedef MQCHAR MQCHAR128[128];

MQCHAR256 typedef MQCHAR MQCHAR256[256];

MQHCONN typedef MQLONG MQHCONN;

MQHOBJ typedef MQLONG MQHOBJ;

MQLONG typedef long MQLONG;

PMQVOID typedef void *PMQVOID;



 

188 IBM MQSeries for UnixWare User’s Guide

MQCHAR8 Format; /* Format name */
MQLONG Priority; /* Message priority */
MQLONG Persistence; /* Message persistence */
MQBYTE24 MsgId; /* Message identifier */
MQBYTE24 CorrelId; /* Correlation identifier */
MQLONG BackoutCount; /* Backout counter */
MQCHAR48 ReplyToQ; /* Name of reply-to queue */
MQCHAR48 ReplyToQMgr; /* Name of reply queue manager */
MQCHAR12 UserIdentifier; /* Reserved */
MQBYTE32 AccountingToken; /* Reserved */
MQCHAR32 ApplIdentityData; /* Reserved */
MQLONG PutApplType; /* Reserved */
MQCHAR28 PutApplName; /* Reserved */
MQCHAR8 PutDate; /* Reserved */
MQCHAR8 PutTime; /* Reserved */
MQCHAR4 ApplOriginData; /* Reserved */
} MQMD;

MQOD
typedef struct tagMQOD {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ObjectType; /* Object type */
MQCHAR48 ObjectName; /* Object name */
MQCHAR48 ObjectQMgrName; /* Object queue manager name */
MQCHAR48 DynamicQName; /* Dynamic queue name */
MQCHAR12 AlternateUserId; /* Reserved */
} MQOD;

MQPMO
typedef struct tagMQPMO {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options */
MQLONG Timeout; /* Reserved */
MQHOBJ Context; /* Reserved */
MQLONG KnownDestCount; /* Reserved */
MQLONG UnknownDestCount; /* Reserved */
MQLONG InvalidDestCount; /* Reserved */
MQCHAR48 ResolvedQName; /* Resolved name of destination queue */
MQCHAR48 ResolvedQMgrName; /* Resolved name of destination queue manager */
} MQPMO;

MQDLH
typedef struct tagMQDLH {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Reason; /* Reason placed on dead-letter queue */
MQCHAR48 DestQName; /* Name of destination queue */
MQCHAR48 DestQMgrName; /* Name of destination queue manager */
MQLONG Encoding; /* Data encoding */
MQLONG CodedCharSetId; /* Coded character set identifier */
MQCHAR8 Format; /* Format name of application data */
MQLONG PutApplType; /* Application type */
MQCHAR28 PutApplName; /* Application name */
MQCHAR8 PutDate; /* Date put on the queue */
MQCHAR8 PutTime; /* Time put on the queue */
} MQDLH;



© Copyright IBM Corp. 1993, 1997 189

Appendix D.  Configuration worksheets

The appendix provides a set of sample worksheets presented in a format intended for 
duplication and use by the MQSeries System administrator or other individuals who design, 
configure, or require knowledge of the MQSeries System network. 

The worksheets presented are: 

• System List (Message Queue Manager Names)
• Application List (Queue Names & Host Systems)
• Application Look at Queues
• System Look at Queues
• Channel List
• MQSeries System Configuration (Routing Table) Work Sheet

Each of the worksheets is presented one-worksheet-per-page on the following pages. The 
purpose and field descriptions appear at the beginning of each worksheet. Users may use all, 
some, or none of these worksheets at their discretion.

Chapter 4, “Configuration” on page 29, has examples of filled-out worksheets.



 

190 IBM MQSeries for UnixWare User’s Guide

System list worksheet

One list to be compiled for entire network, identifying all systems which will utilize MQSeries 
messaging and queuing. Each is assigned one message_queue_manager name. 

Column 1 = System Name or identification (User specified terminology)

Column 2 = Location of system (City, Building, Floor, etc.) 

Column 3 = Type of Hardware (Mainframe, LAN, AS/400, RS/6000, VAX, TANDEM, UNIX, etc.)

Column 4 = Assigned Message_Queue_Manager name 

Column 5 = Any other user comments

System Location Hardware QMgr_Name Comments



Appendix D. Configuration worksheets 191 

Application list worksheet

One list to be compiled for entire network, identifying all applications which will utilize MQSeries 
messaging and queuing. Each is assigned one (or more) local queue_name(s) through which 
they will receive messages. Each is mapped to a host system from the System List worksheet.

Column 1 = Application Name or identification

Column 2 = Assigned local Queue_Name

Column 3 = Type of Hardware (from SYSTEM LIST WORKSHEET)

Column 4 = Message_Queue_Manager name (from SYSTEM LIST WORKSHEET)

Column 5 = Any other user comments

Application Q_Name Hardware QMgr_Name Comments



 

192 IBM MQSeries for UnixWare User’s Guide

Application look at queues -- worksheet

One list to be compiled for each application , identifying all queues with which that application 
will interact. (This is primary input data to applications developers.)

Each Queue Box Contains:

QUEUE_NAME

and

MESSAGE FORMAT  (User Supplied Information)

Application

Input Queue Output Queue

Input Queue Output Queue

Input Queue Output Queue

Input Queue Output Queue

Input Queue Output Queue

Input Queue Output Queue

Input Queue Output Queue

Input Queue Output Queue



Appendix D. Configuration worksheets 193 

System look at queues -- worksheet

One list to be compiled for each MQSeries System . All applications on the system are 
identified, all queues required on the system are identified, all channels are identified. All data is 
derived from previous worksheets.

Column 1 = Local Application Name or identification

Column 2 = Local Queue_Name for input, transmit queue name for output 

Column 3 = Channel (direction of message flow)

Column 4 = Remote system Queue_Name 

Column 5 = Remote system Message_Queue_Manager name

Local System Remote System

Application Q_Name Channel Q_Name QMgr_Name

Input from Remote 

<---

<---

<---

<---

<---

Output to Remote 

 --->

 --->

 --->

 --->

 --->

Local Messaging 

None

None

None

None

Passthru Cases (this system is intermediate node in multi-hop 
routing)

/---

\---> 

/---

\---> 



 

194 IBM MQSeries for UnixWare User’s Guide

Channel list -- worksheet

One list to be compiled for entire network. All information in first 5 columns is derived from prior 
worksheets. All Channel names assigned (last column).

Column 1 = System Name

Column 2 = Queue_Manager_Name for above system 

Column 3 = Channel (direction of message flow)

Column 4 = System Name of “other” system in connection 

Column 5 = Queue_Manager_Name for above system

Column 6 = Assigned Channel Name

System QMgr_Name Channel System QMgr_Name Channel_Name

<---

 --->



Appendix D. Configuration worksheets 195 

MQSeries System configuration (routing table) -- worksheet

One list to be compiled for each system . 

Entries are any of the following formats

Obj_Name Type Q_Name QMgr_Name Xmit _QName

Local

Local

Local

Local

Transmit

Transmit

Remote

Remote

Remote

Obj_Name Type Q_Name QMgr_Name Xmit _QName

Required Local n.a. n.a. n.a.

Required Transmit n.a. n.a. n.a.

Required Remote Required Required Optional

Required Alias_Q Required n.a. n.a.

Required Alias_M n.a. Required Optional

Required Alias_R Required Required n.a.



 

196 IBM MQSeries for UnixWare User’s Guide



© Copyright IBM Corp. 1993, 1997 197

Glossary

This glossary describes terms used in this book and 
words used with other than their everyday meaning. In 
some cases, a definition may not be the only one 
applicable to a term, but it gives the particular sense in 
which the word is used in this book. 

If you do not find the term you are looking for, see the 
Index or the IBM Dictionary of Computing, New York: 
McGraw-Hill, 1994.

This glossary includes terms and definitions from the 
American National Dictionary for Information Systems, 
ANSI X3.172-1990, copyright 1990 by the American 
National Standards Institute (ANSI). Copies may be 
purchased from the American National Standards 
Institute, 11 West 42 Street, New York, New York 10036. 
Definitions are identified by the symbol (A) after the 
definition. The ANSI/EIA Standard--440-A: Fiber Optic 
Terminology.

Copies may be purchased from the Electronic Industries 
Association, 2001 Pennsylvania Avenue, N.W., 
Washington DC 20006. Definitions are identified by the 
symbol (E) after the definition. The Information 
Technology Vocabulary, developed by Subcommittee 1, 
Joint Technical Committee 1, of the International 
Organization for Standardization and the International 
Electrotechnical Commission (ISO/IEC JTC1/SC1). 
Definitions of published parts of this vocabulary are 
identified by the symbol (I) after the definition; definitions 
from draft international standards, committee drafts, and 
working papers being developed by ISO/IEC JTC1/SC1 
are identified by the symbol (T) after the definition, 
indicating that final agreement has not yet been reached 
among the participating National Bodies of SC1.

A

ADMINISTRATOR COMMANDS.     MQSeries 
commands used to manage MQSeries objects, such as 
queues, processes and channels.

ALIAS QUEUE OBJECT.     An MQSeries object, the 
name of which is an alias for another queue name. When 
an application or a queue manager uses an alias queue, 
the alias name is resolved and the requested operation is 
performed on the queue with the resolved name.

APAR.    Authorized program analysis report.

ATTRIBUTE.     One of a set of properties that defines 
the characteristics of an MQSeries object.

AUTHORIZED PROGRAM ANALYSIS REPORT 
(APAR).     A report of a problem caused by a suspected 
defect in a current, unaltered release of a program.

B

BACKOUT.     An operation that reverses all the changes 
made during the current unit of recovery or unit of work. 
After the operation is complete, a new unit of recovery or 
unit of work begins.

BROWSE.     In message queuing, to copy a message 
without removing it from the queue. See also get.

BROWSE CURSOR.     In message queuing, an indicator 
used when browsing a queue to identify the message that 
is next in sequence.

C

CHANNEL.     See message channel.

CLIENT.     The program that requests information in the 
particular two-program information-flow model of 
client/server. See also server. In an OS/2, DOS, Microsoft 
Windows, AIX or UNIX environment, this means a system 
which supports MQI application programs but does not 
contain the entire queue manager. For example, several 
client systems can all logically belong to the same queue 
manager.

D

DEAD-LETTER QUEUE.    A queue to which a queue 
manager or application sends messages that it cannot 
deliver to their correct destination.

DISTRIBUTED APPLICATION.     In message queuing, 
a set of application programs that can each be connected 
to a different queue manager, but that collectively 
comprise a single application.

DISTRIBUTED QUEUE MANAGEMENT.     In message 
queuing, the setup and control of message channels to 
queue managers on other systems.

F

FIFO.    First-in-first-out.

FIRST-IN-FIRST-OUT (FIFO).     A queuing technique in 
which the next item to be retrieved is the item that has 
been in the queue for the longest time. (A)

G

GET.     In message queuing, to retrieve a message by 
removing the message from a queue or by browsing the 
message. See also browse.



198 IBM MQSeries for UnixWare User’s Guide

 

I

INPUT PARAMETER.     A parameter of an MQI call in 
which you supply information when you make the call.

INPUT/OUTPUT PARAMETER.    A parameter of an 
MQI call in which you supply information when you make 
the call, and in which the queue manager changes the 
information when the call completes or fails.

L

LOCAL DEFINITION.     An MQSeries object that 
belongs to a local queue manager.

LOCAL DEFINITION OF A REMOTE QUEUE.    An 
MQSeries object that belongs to a local queue manager. 
This object defines the attributes of a remote queue.

LOCAL QUEUE.    A queue that belongs to the local 
queue manager. A local queue can contain a list of 
messages waiting to be processed. Contrast with remote 
queue.

LOCAL QUEUE MANAGER.     To a program, the queue 
manager to which the program is connected. This is the 
queue manager that provides message queuing services 
to that program. Queue managers to which a program is 
not connected are called remote queue managers, even if 
they are running on the same system as the program.

LOGICAL UNIT OF WORK (LUW).     See unit of work.

M

MCA.     Message channel agent.

MCAMD.     A system program that provides a centralized 
channel database service allowing MCAs and MQM to 
access and modify the channel database.

MESSAGE.     (1) In message queuing applications, a 
communication sent from a program to another program. 
(2) In system programming, information intended for the 
terminal operator.

MESSAGE CHANNEL.    In distributed message 
queuing, a mechanism for moving messages from one 
queue manager to another. A message channel 
comprises two message channel agents and a 
communication link.

MESSAGE CHANNEL AGENT (M CA).     A program that 
transmits prepared messages from a transmission queue 
to a communication link, or from a communication link to 
a destination queue.

MESSAGE DESCRIPTOR.    Control information that is 
carried as part of an MQSeries message. The format of 
the message descriptor is defined by the MQMD 
structure.

MESSAGE QUEUE.     Synonym for queue.

MESSAGE QUEUE INTERFACE (MQI).     The 
programming interface provided by the MQSeries 
message queue managers. This programming interface 
allows application programs to access message queuing 
services.

MQSERIES.     A family of IBM licensed programs that 
provides message queuing services.

MESSAGE QUEUING.     A programming technique in 
which each program within an application communicates 
with the other programs by putting messages on queues.

MESSAGE SEQUENCE NUMBERING.     A 
programming technique in which messages are given 
unique numbers during transmission over a 
communication link. This enables the receiving process 
to check whether all messages are received, to place 
them in a queue in the original order, and to discard 
duplicate messages.

MESSAGING.     A method for communication between 
programs. Messaging can be synchronous or 
independent of time.

MQI.     Message Queue Interface.

O

OBJECT.    In MQSeries, objects define the attributes of 
queue managers, queues and process definitions.

OBJECT DESCRIPTOR.     A data structure that 
identifies a particular MQSeries object. Included in the 
descriptor are the name of the object and the object type.

OBJECT HANDLE.     The identifier, or token, by which a 
program accesses the MQSeries object with which it is 
working.

P

PERSISTENT MESSAGE.     A message that survives a 
restart of the queue manager.

PLATFORM.     In MQSeries, the operating system under 
which a queue manager is running. See also application 
environment.

PROGRAM TEMPORARY FIX (PTF).    A solution or 
by-pass of a problem diagnosed by IBM field engineering 
as the result of a defect in a current, unaltered release of 
a program.

PTF.    Program temporary fix.



Glossary 199

 

Q

QUEUE.    An MQSeries object. Message queuing 
applications can put messages on, and get messages 
from, a queue. A queue is owned and maintained by a 
queue manager. Queues can be of type local, alias or 
remote. Local queues can contain a list of messages 
waiting to be processed. Queues of other types cannot 
contain messages -- they point to other queues.

QUEUE MANAGER.    (1) A system program that 
provides queuing services to applications. It provides an 
application programming interface so that programs can 
access messages on the queues that the queue manager 
owns. See also local queue manager and remote queue 
manager. (2) An MQSeries object that defines the 
attributes of a particular queue manager. 

QUEUING.    See message queuing.

R

REASON CODE.    A return code that describes the 
reason for the failure or partial success of an MQI call.

RECEIVER CHANNEL.    In message queuing, a channel 
that responds to a sender channel, takes messages from 
a communication link, and puts them on a local queue.

REMOTE QUEUE.    A queue that belongs to a remote 
queue manager. Programs can put messages on remote 
queues, but they cannot get messages from remote 
queues. Contrast with local queue.

REMOTE QUEUE MANAGER.    To a program, a queue 
manager is remote if it is not the queue manager to which 
the program is connected.

REMOTE QUEUING.    In message queuing, the 
provision of services to enable applications to put 
messages on queues belonging to other queue 
managers.

REPLY MESSAGE.    A type of message used for replies 
to request messages.

REPLY-TO QUEUE.    The name of a queue to which the 
program that issued an MQPUT call wants a reply 
message sent.

REQUESTER CHANNEL.    In MQSeries, a channel that 
initiates transfers, communicating with a remote server 
channel. The requester channel accepts messages from 
the server channel over a communication link and puts 
the messages on the local queue designated in the 
message.

RETURN CODES.    The collective name for completion 
codes and reason codes.

ROLLBA CK.    Synonym for backout.

S

SENDER CHANNEL.    In MQSeries, a channel that 
initiates transfers, removes messages from a 
transmission queue, and moves them over a 
communication link to a receiver channel.

SERVER.    The program that responds to requests for 
information in the particular two-program information-flow 
model of client/server. See also client.

SERVER CHANNEL.    In MQSeries, a channel that 
responds to a requester channel, removes messages 
from a transmission queue, and moves them over a 
communication link to the requester channel.

SYNCHRONOUS MESSAGING.    A method for 
communication between programs in which the 
application waits for a reply before resuming its own 
processing. Contrast with time-independent messaging.

SYNCPOINT.    An intermediate or end point during 
processing of a transaction at which the transaction's 
protected resources are consistent. At a syncpoint, 
changes to the resources can safely be committed, or 
they can be backed out to the previous syncpoint.

T

TIME-INDEPENDENT MESSAGING.    A method for 
communication between programs in which the 
requesting program proceeds with its own processing 
without waiting for a reply to its request. Contrast with 
synchronous messaging.

TRANSMISSION PROGRAM.    See message channel 
agent.

TRANSMISSION QUEUE.    A local queue on which 
prepared messages destined for a remote queue 
manager are temporarily stored.

TRIGGERING.    In MQSeries, a facility that allows a 
queue manager to start an application automatically when 
predetermined conditions on a queue are satisfied.

TWO-PHASE COMMIT.    A protocol for the coordination 
of changes to recoverable resources when more than one 
resource manager is used by a single transaction.

U

UNDELIVERED MESSAGE QUEUE.    See dead-letter 
queue.

UNIT OF WORK.    A recoverable sequence of 
operations performed by an application between two 
points of consistency. A unit of work begins when a 
transaction starts or at a user-requested syncpoint. It 
ends either at a user-requested syncpoint or at the end of 
a transaction. Compare with unit of recovery.



200 IBM MQSeries for UnixWare User’s Guide

 



© Copyright IBM Corp. 1993, 1997 201

Index

A
Action Keys 60
Alias Queue 1
Aliases 34

Types 42
Apertus/SSI’s EXPRESS SNA 35
Auto Purge 65, 71

B
Browse Function 101

C
Channels 2

Communications 35
Create 81
Delete 87
Disable 90
Display 88
Enable 90
Modify 85
Monitor 98
Start Trace 91
Stop Trace 91
Transact 38

Character Sets 62
Checkpointing of the Channel Database 103
Close Object 120
cmqc.h 174—176
Common Programming Interface for Communications 

(CPI-C) 35
Communications Channels 35
Completion Codes 144
completion codes

*MQRC_ACCESS_RESTRICTED 145
*MQRC_CHAR_ATTRS_ERROR 146
*MQRC_DATA_LENGTH_ERROR 146
*MQRC_INT_ATTRS_ARRAY_ERROR 148
*MQRC_NO_MSG_UNDER_CURSOR 149
*MQRC_OBJECT_CHANGED 150
*MQRC_SECURITY_ERROR 152
*MQRC_UNKNOWN_ALIAS_BASE_Q 154
MQCC_FAILED 144
MQCC_OK 144
MQCC_WARNING 144
MQRC_ALIAS_BASE_Q_TYPE_ERROR 145
MQRC_ALREADY_CONNECTED 145
MQRC_BUFFER_ERROR 145
MQRC_BUFFER_LENGTH_ERROR 145
MQRC_CHAR_ATTRS_LENGTH_ERROR 145
MQRC_CHAR_ATTRS_TOO_SHORT 146
MQRC_CONNECTION_BROKEN 146
MQRC_CORREL_ID_ERROR 156
MQRC_EXPIRY_ERROR 146
MQRC_FEEDBACK_ERROR 146
MQRC_GET_INHIBITED 147
MQRC_GMO_ERROR 156
MQRC_HANDLE_NOT_AVAILABLE 147
MQRC_HCONN_ERROR 147
MQRC_HOBJ_ERROR 147
MQRC_INT_ATTR_COUNT_ERROR 147
MQRC_INT_ATTR_COUNT_TOO_SMALL 147

MQRC_MAX_CONNS_LIMIT_REACHED 148
MQRC_MD_ERROR 148
MQRC_MISSING_REPLY_TO_Q 148
MQRC_MSG_ID_ERROR 156
MQRC_MSG_TOO_BIG_FOR_Q 149
MQRC_MSG_TOO_BIG_FOR_Q_MGR 149
MQRC_MSG_TYPE_ERROR 148
MQRC_NO_MSG_AVAILABLE 149
MQRC_NONE 144
MQRC_NOT_AUTHORIZED 149
MQRC_NOT_OPEN_FOR_BROWSE 149
MQRC_NOT_OPEN_FOR_INPUT 150
MQRC_NOT_OPEN_FOR_INQUIRE 150
MQRC_NOT_OPEN_FOR_OUTPUT 150
MQRC_OBJECT_IN_USE 150
MQRC_OBJECT_TYPE_ERROR 150
MQRC_OPTION_NOT_VALID_FOR_TYPE 151
MQRC_OPTIONS_ERROR 151
MQRC_PERSISTENCE_ERROR 151
MQRC_PMO_ERROR 156
MQRC_PRIORITY_EXCEEDS_MAXIMUM 151
MQRC_PUT_INHIBITED 151
MQRC_Q_FULL 152
MQRC_Q_MGR_NAME_ERROR 152
MQRC_Q_MGR_NOT_AVAILABLE 152
MQRC_Q_SPACE_NOT_AVAILABLE 152
MQRC_SELECTOR_ERROR 153
MQRC_SELECTOR_LIMIT_EXCEEDED 153
MQRC_SIGNAL_OUTSTANDING 153
MQRC_SIGNAL_REQUEST_ACCEPTED 153
MQRC_STORAGE_NOT_AVAILABLE 153
MQRC_TRUNCATED_MSG_ACCEPTED 154
MQRC_TRUNCATED_MSG_FAILED 154
MQRC_UNKNOWN_OBJECT_NAME 154
MQRC_UNKNOWN_OBJECT_Q_MGR 155
MQRC_UNKNOWN_REMOTE_Q_MGR 155
MQRC_UNKNOWN_XMIT_Q 156
MQRC_XMIT_Q_TYPE_ERROR 155

Configuration
Capacities 44
Examples 48
Worksheets 47

Configuration Functions 61
Configuration Guidelines

Channel 53
example 58
Kernel 58
Multiple MCA 57
Number of Channels per MCA 57
Queue 56
Queue Manager 56

Connect Queue Manager 111
Create Alias Queue 67
Create Alias Queue Manager 68
Create Alias Reply Queue 69
Create Channel 81
Create Local Queue 65
Create Queue 64
Create Queue Definition 64
Create Remote Queue 66



202 IBM MQSeries for UnixWare User’s Guide

 

D
Data Types

Elementary 129, 187
Structure 131, 187
See also Elementary Data Types
See also Structure Data Types

Dead Letter Header Structure 141
Dead Letter Queue 29, 32
Define Remote Queues 33
Delete Alias Queue 76
Delete Alias Queue Manager 76
Delete Alias Reply Queue 77
Delete Channel 87
Delete Local Queue 74
Delete Queue Definitions 74
Delete Remote Queue 75
DEPTH 97
Disable Channel 90
Disconnect 82
Disconnect Queue Manager 121
Display Alias Queue 79
Display Alias Queue Manager 80
Display Alias Reply Queue 80
Display Channel 88
Display Local Queue 78
Display Queue 78
Display Queue Manager 63
Display Remote Queue 79
Distributed Applications

Planning 21
Distributed Architecture 3

E
Elementary Data Types 129, 187

MQBYTE 130
MQBYTE24 130
MQCHAR 130
MQCHARn 130
MQHCONN 130
MQHOBJ 130
MQLONG 131

Enable Channel 90
Error Logs

Viewing 106
EXPRESS SNA 35
EXPRESS SNA Server 35
EXPRESS SNA server

stopping and starting 36

F
Functions

Browse 101
Configuration 61
MCA Daemon 165
Monitoring 96
MQCLOSE 107, 120, 185
MQCONN 107, 111, 185
MQDISC 107, 121, 185
MQGET 107, 115, 185
MQI 110
MQINQ 107, 124, 185
MQOPEN 107, 112, 186
MQPUT 107, 118, 186
MQPUT1 107, 122, 186

Operation 90

G
Get Message 115

H
Header Files

cmqc.h 174
mqconst.h 177
mqtypes.h 181

I
Inquire About Object Attributes 124
Installation

Verifying 10

L
Legacy Applications 26
Local LU Name 35
Local Message Queues 31
Local Queue 1

Create 65
Local Routing Table 42
Log Files 104, 106
LWRIT 97

M
MCA

Daemon Functions 165
Daemon Messages 166
Error Messages 160
Examples 105
Function Names 161
Messages 162
Shutdown 105
Starting 104
Terminate 93

mcamd 10
error logging 104
starting 102
stopping 103

Message Channel Agent (MCA) 2
Message Channel Protocol (MCP) 2
Message Queue 1
Message Queue Interface (MQI) 2
Message Queue Manager (MQM) 2, 29, 30
Message Routing 29, 39
Message Sequence Number (MSN) 81, 95, 98, 103

Reset 94
Messages 1

MCA 162
MCA Daemon 166
MCA Errors 160
Purging Deleted 95
Transact 157, 159

Mode Name 35, 83
Modify Alias Queue 72
Modify Alias Queue Manager 72
Modify Alias Reply Queue 73
Modify Channel 85
Modify Local Queue 70
Modify Queue 70
Modify Queue Definition 70



Index 203

 

Modify Queue Manager 61
Modify Remote Queue 71
Monitor Channel 98
Monitor Queues 97
Monitoring Functions 96
MQ Get Message Options Structure 138
MQ Message Descriptor Structure 132
MQ Object Descriptor Structure 131
MQ Put Message Options Structure 137
MQBYTE 130
MQBYTE24 130
MQCC_FAILED 144
MQCC_WARNING 144
MQCHAR 130
MQCHARn 130
MQCLOSE 107, 120, 185
MQCONN 107, 111, 185
mqconst.h 177—180
MQDISC 107, 121, 185
MQDLH 107, 141, 188
MQGET 107, 115, 185
MQGMO 107, 138, 187
MQHCONN 130
MQHOBJ 130
MQI 107

Completion Codes 144
Reason Codes 144

MQI Functions 110
MQINQ 107, 124, 185
MQLONG 131
MQM 2, 30

Relationships 59
MQMD 107, 132, 187
MQOD 107, 131, 188
MQOPEN 107, 112, 186
MQPMO 107, 137, 188
MQPUT 107, 118, 186
MQPUT1 107, 122, 186
*MQRC_ACCESS_RESTRICTED 145
*MQRC_CHAR_ATTRS_ERROR 146
*MQRC_DATA_LENGTH_ERROR 146
*MQRC_NO_MSG_UNDER_CURSOR 149
*MQRC_OBJECT_CHANGED 150
*MQRC_UNKNOWN_ALIAS_BASE_Q 154
MQRC_ALIAS_BASE_Q_TYPE_ERROR 145
MQRC_ALREADY_CONNECTED 145
MQRC_BUFFER_ERROR 145
MQRC_BUFFER_LENGTH_ERROR 145
MQRC_CHAR_ATTRS_TOO_SHORT 146
MQRC_CONNECTION_BROKEN 146
MQRC_EXPIRY_ERROR 146
MQRC_FEEDBACK_ERROR 146
MQRC_GET_INHIBITED 147
MQRC_HANDLE_NOT_AVAILABLE 147
MQRC_HCONN_ERROR 147
MQRC_INT_ATTR_COUNT_ERROR 147
MQRC_INT_ATTR_COUNT_TOO_SMALL 147
MQRC_MAX_CONNS_LIMIT_REACHED 148
MQRC_MD_ERROR 148
MQRC_MISSING_REPLY_TO_Q 148
MQRC_MSG_TOO_BIG_FOR_Q 149
MQRC_MSG_TOO_BIG_FOR_Q_MGR 149
MQRC_MSG_TYPE_ERROR 148
MQRC_NO_MSG_AVAILABLE 149
MQRC_NO_MSG_LOCKED 156
MQRC_NONE 144

MQRC_NOT_OPEN_FOR_BROWSE 149
MQRC_NOT_OPEN_FOR_INPUT 150
MQRC_NOT_OPEN_FOR_INQUIRE 150
MQRC_NOT_OPEN_FOR_OUTPUT 150
MQRC_OBJECT_IN_USE 150
MQRC_OBJECT_TYPE_ERROR 150
MQRC_OPTIONS_ERROR 151
MQRC_PMO_ERROR 156
MQRC_PRIORITY_EXCEEDS_MAXIMUM 151
MQRC_PUT_INHIBITED 151
MQRC_Q_FULL 152
MQRC_Q_MGR_NAME_ERROR 152
MQRC_Q_MGR_NOT_AVAILABLE 152
MQRC_SELECTOR_ERROR 153
MQRC_SELECTOR_LIMIT_EXCEEDED 153
MQRC_SIGNAL_OUTSTANDING 153
MQRC_SIGNAL_REQUEST_ACCEPTED 153
MQRC_STORAGE_NOT_AVAILABLE 153
MQRC_SYNCPOINT_NOT_AVAILABLE 154
MQRC_TRUNCATED_MSG_ACCEPTED 154
MQRC_UNKNOWN_OBJECT_NAME 154
MQRC_UNKNOWN_OBJECT_Q_MGR 155
MQRC_UNKNOWN_XMIT_Q 156
MQRC_XMIT_Q_TYPE_ERROR 155
MQSeries System Channel Implementation 38
MQSeries System Function Names 158
MQSeries System Internal Messages 157
MQSeries System Messages 159
mqtypes.h 181

N
Names

Conventions 44
MCA Functions 161
Mode 83
Partner LU 83
Queue 29
Remote Hostname 36
Remote Queue 66
Service 36
Source LU 83
Symbolic Destination 83
TP 83
Transact Functions 158
Transmit Queue 66
Validation 33

Naming Conventions 44
Network File Services (NFS) 5

O
Open Message Queue 112
Operation Functions 90
Operator Action Keys 60

P
Partner LU Name 35, 83
Permissions 20
pkgadd 9
Port Number 37
Prerequisites for NFS

Hardware 9
Software 8

Publications xv
Purge Deleted Messages 95



204 IBM MQSeries for UnixWare User’s Guide

 

Purging 65, 71
Put Message 118
Put One Message 122

Q
QRC 146, 147
Queue Manager 1

Create Alias 68
Delete Alias 76
Display 63
Display Alias 80
Modify 61
Modify Alias 72

Queue Names 29
Queue Polling 62
Queue Type Options 113
Queues 1

Create 64
Create Alias 67
Create Local 65
Create Remote 66
Dead Letter 32
Delete 74
Delete Alias 76
Delete Local 74
Delete Remote 75
Display 78
Display Alias 79
Display Local 78
Display Remote 79
Local Message 31
Message 1
Modify 70
Modify Alias 72
Modify Local 70
Modify Remote 71
Monitor 97
Polling 62
Remote Definitions 33
Transmission 34
View Definition 78

R
Reason Codes

MQRC_NO_MSG_LOCKED 156
MQRC_SYNCPOINT_NOT_AVAILABLE 154

Reconnect 82
Record Locking 3
Remote Hostname 36
Remote Queue 1

Creating 66
Remote Queue Definitions 33
Remote Queue Name 66
Remote Server Routing Table 43
Reply Queues

Create Alias 69
Delete Alias 77
Display Alias 80
Modify Alias 73

Reset Message Sequence Number 94
Routing 39
Routing Table 40

Format 40

S
Service History File 20
Service Name 36
SIGKILL (9) 103
Source Code

zmqecho.c 167
zmqread.c 170
zmqwrite.c 172

Source LU Name 83
Start/Stop Channel Trace 91
starting mcamd 102
Starting the MCA 104
Structure Data Types 131, 187

Boundary Alignments 131
Characters in Names 131
MQDLH 107, 141, 188
MQGMO 107, 138, 187
MQMD 107, 132, 187
MQOD 107, 131, 188
MQPMO 107, 137, 188
References to Components 131

Symbolic Destination Name 36, 83
Syncpoint Considerations 109
System Disk Space Requirements 45

T
TCP/IP 36
Terminate MCA 93
threads 27
TP Name 35, 83
Traces 91, 104
Transmission Control Protocol/Internet Protocol 

(TCP/IP) 35
Transmission Queues 1, 34
Transmit Queue Name 66
Transport Protocols 27
Triggering 27

V
Verifying Installation 10

W
Worksheets

Configuration 47

Z
zmqecho.c 167—169
zmqread.c 170—171
zmqwrite.c 172—173



Sending your comments to IBM

IBM MQSeries for UnixWare

User’s Guide

SC33-1379-03

If you especially like or dislike anything about this book, please use one of the methods listed below to send your 
comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization, subject 
matter, or completeness of this book. Please limit your comments to the information in this book only and the way in which 
the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM products or 
systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it 
believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

• By mail, use the Readers’ Comment Form

• By fax:

– From outside the U.K., use your international access code followed by 44 1962 870229

– From within the U.K., use 01962 870229

• Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink: WINVMD(IDRCF)
– Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

• The publication number and title
• The page number or topic number to which your comment applies
• Your name/address/telephone number/fax number/network ID.





Readers’ Comments
IBM MQSeries for UnixWare

User’s Guide

SC33-1379-03

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to express your 
opinion about it (such as organization, subject matter, appearance) or make suggestions for improvement, this is the form 
to use.

To request additional publications, or to ask questions or make comments about the functions of IBM products or 
systems, you should talk to your IBM representative or to your IBM authorized remarketer. This form is provided for 
comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it 
believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name

Phone Number

Company or Organization

Address



REPONSE PAYEE
GRANDE-BRETAGNE

NE PAS AFFRANCHIR

NO STAMP REQUIRED

IBM United Kingdom Laboratories Limited
Information Development Department (MP 095)
Hursley Park
WINCHESTER, Hants
SO21 2ZZ United Kingdom

IBRS/CCRI NUMBER: PHQ - D/1348/SO

Fold along this line

Fold along this line

C
ut along this line

C
ut along this line

You can send your comments POST FREE on this form from any one of these countries:

Australia

Belgium

Bermuda

Cyprus

Denmark

Finland

France

Germany

Greece

Hong Kong

Iceland

Israel

Italy

Luxembourg

Monaco

Netherlands

New Zealand

Norway

Portugal

Republic of Ireland

Singapore

Spain

Sweden

Switzerland

United Arab Emirates

United States

of America

If your country is not listed here, your local IBM representative will be pleased to forward your comments

to us. Or you can pay the postage and send the form direct to IBM (this includes mailing in the U.K.).

By air mail
Par avion

Name

Company or Organization

Address

EMAIL

Telephone

Fasten here with adhesive tape

From:

IBM

IBM MQSeries for UnixWare  User’s Guide
SC33-1379-03





 

IBM

Program Number:  5697-265

Printed in U.S.A.

SC33-1379-03



I
B

M
M

Q
S

eries for U
nixW

are
U

ser’s G
uide

V
ersion 1 R

elease
4.1

S
C

33-1379-03


