
MQSeries Enterprise Integrator for Lotus Notes

User Guide

Release 1.0

Copyright
Original: Original book produced for IBM MQSeries Enterprise Integrator
for Lotus Notes.

© Copyright International Business Machines Corporation 1997. All
rights reserved.

Note to US Government Users - Documentation related to restricted
rights - Use, duplication or disclosure is subject to restrictions set forth in
GSA ADP schedule Contract with IBM Corp.

Lotus, Domino, LotusScript, Notes, and Lotus Notes are trademarks of
Lotus Development Corporation. AIX, IBM, IMS, MQ, MQSeries, OS/2,
and WIN-OS/2 are trademarks of International Business Machines
Corporation. Microsoft, Windows, and Windows NT are trademarks of
Microsoft Corporation. Sun and Solaris are trademarks of Sun
Microsystems Inc. HP-UX is a trademark of Hewlett-Packard Company.
Adobe and Acrobat are trademarks of Adobe Systems, Incorporated.
Unicode is a trademark of Unicode, Inc.

Preface

The MQSeries Enterprise Integrator for Lotus Notes User's Guide describes
the IBM MQSeries Enterprise Integrator LotusScript Extension (MQEI LSX),
and shows you how you can use it in your Lotus Notes applications.

Information in this book includes:

What you need to consider before you install the MQEI LSX

How to use the MQEI databases

Guidance on how to design and program your applications using the
MQEI LSX

Code samples and how you can use them in your own applications

Help if you have problems using the MQEI LSX

A full reference guide to the MQEI LSX classes and their use

Where to find more information about MQSeries™, Lotus Notes™,
LotusScript™ CICS™ and IMS™

This book covers the MQEI LSX and complements both Lotus and
MQSeries publications. An on-line version is also available as a Notes
database.

The typographical conventions used in this document are the same as those
used in the LotusScript Programmer's Guide.

Who this book is for
This book is for designers and programmers wanting to develop Lotus
Notes applications that need to interoperate with other, non-Notes
applications, using LotusScript.

This book is for you if:

You are an experienced Lotus Notes developer who may or may not be
experienced in using LotusScript.

Chapter 1 MQSeries Enterprise Integrator for Lotus Notes 1. .
MQSeries Enterprise Integrator for Lotus Notes overview . 2. . .

Example of the usefulness of MQEI . 3. . .

Features of the MQEI . 3. . .

Objectives of the MQEI . 4. . .

Components . 4. . .

About the MQEI samples . 7. . .

MQSeries Enterprise Integrator for Lotus Notes or MQSeries link LotusScript Extension? 8. . .

MQSeries Enterprise Integrator for Lotus Notes (MQEI) . 8. . .

MQSeries link LotusScript Extension (MQLSX) . 9. . .

Where to find more information . 10. .

Where to find more information about MQSeries . 10. .

Where to find more information about CICS . 11. .

Where to find more information about IMS . 12. .

Where to find more information about LotusScript . 12. .

Chapter 2 Getting Started . 13.
Pre-installation considerations . 14. .

MQEI LSX requirements . 14. .

The MQSeries Enterprise Integrator package . 17. .

Possible system configurations . 22. .

MQEI environment variables . 24. .

Installing MQSeries Enterprise Integrator for Lotus Notes . 26. .

Installing on AIX . 26. .

Installing on HP-UX . 29. .

Installing on OS/2 . 31. .

Installing on Sun Solaris . 33. .

Installing on Windows NT and Windows 95 . 35. .

Installing on Windows 3.1, Windows for Workgroups, WIN OS/2 . 38. .

Contents

If you are installing MQEI for the first time . 40. .

If you are updating your MQEI installation . 41. .

Setting up your MQEI initialization file . 42. .

Editing the initialization file . 43. .

[Base] . 44. .

[DefinitionDatabase] . 46. .

[SecurityDatabase] . 47. .

Example mqei.ini files . 48. .

Post-Installation Check program . 52. .

Using the MQEI for the first time . 55. .

Where to go next... 57. .

Chapter 3 Using the MQEI databases . 59.
General . 60. .

About the MQEI databases . 60. .

The MQEI Definition database . 63. .

About the MQEI Definition database . 63. .

Setting up the MQEI Definition database . 64. .

MQEI Message definition . 65. .

Field Type definition . 67. .

Field definition . 69. .

MQEI Service definition . 73. .

Categories view . 76. .

Using MQEI Message definitions . 77. .

Creating a new MQEI Message definition . 78. .

Copying an MQEI Message definition . 78. .

Viewing an MQEI Message definition . 79. .

Changing an MQEI Message definition . 79. .

Deleting an MQEI Message definition and its Fields . 79. .

Categorizing a new or existing MQEI Message definition . 80. .

Building MQEI Message definitions . 80. .

Viewing a built MQEI Message definition . 82. .

Deleting a built MQEI Message definition . 82. .

Using Field Type definitions . 83. .

Create a new Field Type definition . 84. .

Copying a Field Type definition . 84. .

Viewing a Field Type definition . 84. .

Changing a Field Type definition and its "relations" . 85. .

Deleting a Field Type definition . 85. .

Using Field definitions . 86. .

Creating a new Field definition . 87. .

Copying a Field definition . 87. .

Viewing a Field definition . 88. .

Changing an existing Field definition . 88. .

Deleting an existing Field definition . 88. .

Moving Field positions within a Message definition . 89. .

Changing a Field by changing the Field Type information . 89. .

Using MQEI Service definitions . 90. .

Creating a new MQEI Service definition . 91. .

Copying an MQEI Service definition . 91. .

Viewing an MQEI Service definition . 91. .

Changing an existing MQEI Service definition . 92. .

Deleting an existing MQEI Service definition . 92. .

Categorizing a new or existing MQEI Service definition . 92. .

The MQEI Security database . 93. .

About the MQEI Security database . 93. .

Setting up the MQEI Security database . 94. .

MQEI Security definition . 95. .

Using MQEI Security definitions . 97. .

Creating a new MQEI Security definition . 98. .

Copying an MQEI Security definition . 98. .

Viewing an MQEI Security definition . 98. .

Changing an MQEI Security definition . 99. .

Deleting an MQEI Security definition . 99. .

Chapter 4 Design and Programming using the MQEI LSX 101
What to do when you start to create your Notes MQEI applications . 102.

Accessing the MQEI LSX . 103.

MQEI Samples . 103.

Example LotusScript using MQEI LSX . 105.

Setting the value of a field in an EIMessage . 108.

Getting the value of a field in an EIMessage . 114.

Accessing fields in an EIMessage by their position . 118.

Message Subsets . 119.

Variant Messages . 119.

Messages with tags . 120.

Varying length messages . 123.

Controlling enterprise units of work . 124.

Data conversion . 125.

Using the MQEI LSX from an agent . 126.

Error handling . 126.

How it works . 127.

MQEI LotusScript Error . 127.

MQEI Event Handlers . 128.

Programming event handling routines . 129.

Error handling for the EISession object . 132.

Handling Warnings . 133.

Chapter 5 Security . 135
General . 136.

UserId property and security . 137.

Authenticator property and security . 138.

How the MQEI Security database is used . 138.

Authenticator and System Authenticator data type . 139.

Changing enterprise passwords . 140.

Notes agents . 141.

Chapter 6 Programming for a Native MQSeries service 143
Creating an MQEI Service definition . 144.

Creating MQEI Message definitions . 144.

Connecting to MQSeries . 144.

Sending a message . 145.

Receiving a message . 147.

Disconnecting from MQSeries . 148.

Programming a conversation . 148.

Errors . 148.

Security . 149.

Data conversion . 150.

If you are familiar with the MQI . 151.

Mapping of MQEI properties to a Native MQSeries service . 151.

What happens during a Connect . 152.

What happens during a SendMessage . 152.

Chapter 7 Programming for an IMS via MQSeries service 155
Creating an MQEI Service definition . 156.

Creating MQEI Message definitions . 156.

Connecting to MQSeries . 157.

Sending a message . 157.

Receiving a message . 158.

Disconnecting from MQSeries . 159.

Programming a conversation . 159.

Errors . 159.

Security . 160.

Data conversion . 161.

If you are familiar with the MQI . 162.

Mapping of MQEI properties to an IMS via MQSeries service . 162.

What happens during a Connect . 163.

What happens during a SendMessage . 163.

Chapter 8 Programming for a CICS DPL via MQSeries service 165
CICS DPL via MQSeries support . 165.

Creating an MQEI Service definition . 166.

Creating MQEI Message definitions . 167.

Connecting to MQSeries . 167.

Sending a message . 168.

Receiving a message . 169.

Disconnecting from MQSeries . 169.

Programming a conversation . 170.

Errors . 170.

Security . 171.

Data conversion . 172.

If you are familiar with the MQI . 173.

Mapping of MQEI properties to a CICS DPL via MQSeries service . 173.

What happens during a Connect . 174.

What happens during a SendMessage . 174.

Chapter 9 Programming for a CICS DPL direct service 177
MQEI CICS DPL direct support . 177.

Creating an MQEI Service definition . 178.

Creating MQEI Message definitions . 178.

Connecting to CICS . 178.

Sending a message . 179.

Receiving a message . 180.

Disconnecting from CICS . 180.

Programming a conversation . 181.

Errors . 182.

Security . 182.

Data conversion . 183.

If you are familiar with the CICS ECI . 184.

Mapping of MQEI properties to a CICS DPL direct service . 184.

Chapter 10 Programming for a CICS 3270 direct service 185
MQEI CICS 3270 direct support . 185.

Creating an MQEI Service definition . 186.

Creating MQEI Message definitions . 187.

Connecting to CICS . 187.

Sending a message . 188.

Receiving a message . 189.

Disconnecting from CICS . 190.

Programming a conversation . 191.

Errors . 192.

Security . 192.

Data conversion . 193.

Unsupported CICS functions . 193.

If you are familiar with the CICS EPI . 194.

Mapping of MQEI properties to a CICS 3270 direct service . 194.

BMS maps . 195.

About Basic Mapping Support (BMS) . 195.

How the BMS map conversion utility works . 196.

Before running the BMS map conversion utility . 197.

Running the BMS map conversion utility . 198.

After running the BMS map conversion utility . 199.

Chapter 11 Troubleshooting . 201
Code level tool . 202.

Dynamic loading and the MQEI LSX . 204.

MQEI databases not displaying text . 207.

Data conversion . 208.

Additional Notes . 209.

Subsystem error logging . 211.

Using trace . 212.

Trace filename and directory . 213.

Trace level . 214.

Reason Codes . 226.

Reason codes 1 - 129 . 227.

Reason codes 130 - 999 . 232.

Reason codes 1000 - 13999 . 240.

Reason codes 14000 - 24999 . 246.

Reason codes 25000 - 45000 . 260.

Chapter 12 MQEI LSX Reference . 267
Constants . 267.

Errors . 268.

EISession Class . 269.

CharacterSet Property . 272.

CompletionCode Property . 272.

DefinitionDBName Property . 273.

PrimarySystemErrorCode Property . 273.

ReasonCode Property . 274.

SecondarySystemErrorCode Property . 274.

SecurityDBName Property . 275.

SystemErrorText Property . 275.

ClearErrorCodes Method . 275.

CreateMessage Method . 276.

CreateReceiveOptions Method . 277.

CreateSendOptions Method . 277.

CreateService Method . 278.

EIService Class . 280.

AbendCode Property . 283.

Authenticator Property . 284.

AuthenticatorLength Property . 284.

CharacterSet Property . 285.

CompletionCode Property . 285.

ConnectionLength Property . 286.

ConnectionManager Property . 286.

ConnectionManagerLength Property . 287.

IdentifierLength Property . 287.

InboundConnection Property . 288.

MaxPriority Property . 288.

Name Property . 289.

OutboundConnection Property . 289.

PrimarySystemErrorCode Property . 290.

ReasonCode Property . 290.

SecondarySystemErrorCode Property . 291.

ServiceStep Property . 292.

ServiceContext Property . 293.

ServiceContextLength Property . 293.

ServiceStepLength Property . 294.

ServiceType Property . 294.

SystemErrorText Property . 295.

SystemName Property . 295.

SystemNameLength Property . 296.

UserId Property . 297.

UserIdLength Property . 298.

ClearErrorCodes Method . 298.

Connect Method . 299.

Disconnect Method . 300.

ReceiveMessage Method . 301.

SendMessage Method . 303.

EIMessage Class . 305.

CompletionCode Property . 308.

FieldCount Property . 308.

Format Property . 309.

Name Property . 309.

ReasonCode Property . 310.

ClearErrorCodes Method . 310.

GetColor Method . 311.

GetDataType Method . 312.

GetFieldName Method . 313.

GetFieldValue Method . 314.

GetHighLight Method . 315.

GetIntensity Method . 316.

GetLength Method . 317.

GetProtection Method . 318.

GetSegment Method . 319.

SetFieldValue Method . 320.

EISendOptions Class . 321.

AttentionId Property . 322.

CompletionCode Property . 323.

Delivery Property . 324.

Identifier Property . 325.

MessageType Property . 326.

Priority Property . 327.

ReasonCode Property . 328.

SelectedField Property . 329.

UnitOfWork Property . 330.

ClearErrorCodes Method . 331.

EIReceiveOptions Class . 332.

CompletionCode Property . 333.

Format Property . 333.

Identifier Property . 334.

MessageType Property . 335.

ReasonCode Property . 335.

ReceiveType Property . 336.

WaitInterval Property . 337.

WaitType Property . 338.

ClearErrorCodes Method . 338.

Appendix A Sample using a Native MQSeries service 339
Design of the Native MQSeries sample . 340.

Before you run the Native MQSeries sample . 342.

Running the Native MQSeries sample . 343.

How the Native MQSeries sample works . 345.

Error handling in the Native MQSeries sample . 346.

Appendix B Sample using an IMS via MQSeries service 347
Design of the IMS via MQSeries sample . 348.

Before you run the IMS via MQSeries sample . 350.

Running the IMS via MQSeries sample . 352.

How the IMS via MQSeries sample works . 353.

Error handling in the IMS via MQSeries sample . 354.

Appendix C Sample using a CICS DPL via MQSeries service 355
Design of the CICS DPL via MQSeries sample . 356.

Before you run the CICS DPL via MQSeries sample . 358.

Running the CICS DPL via MQSeries sample . 360.

How the CICS DPL via MQSeries sample works . 361.

Error handling in the CICS DPL via MQSeries sample . 362.

Appendix D Sample using a CICS DPL direct service 363
Restrictions . 363.

Design of the CICS DPL direct sample . 364.

Before you run the CICS DPL direct sample . 365.

Running the CICS DPL direct sample . 366.

How the CICS DPL direct sample works . 367.

Error handling in the CICS DPL direct sample . 368.

Appendix E Sample using a CICS 3270 direct service (signon) 369
Restrictions . 369.

Design of the CICS 3270 signon sample . 370.

Before you run the CICS 3270 signon sample . 372.

Running the CICS 3270 signon sample . 373.

How the CICS 3270 signon sample works . 374.

Error handling in the CICS 3270 signon sample . 376.

Appendix F Sample using a CICS 3270 direct service (FILEA) 377
Restrictions . 377.

Design of the CICS 3270 FILEA sample . 378.

Before you run the CICS 3270 FILEA sample . 379.

Running the CICS 3270 FILEA sample . 380.

How the CICS 3270 FILEA sample works . 381.

Error handling in the CICS 3270 FILEA sample . 383.

Chapter 1 MQSeries Enterprise Integrator for Lotus
Notes

This book:

Explains what you need to know before you install the MQSeries
Enterprise Integrator for Lotus Notes (MQEI)

Suggests how to get started

Explains how to use the MQEI databases

Explains where you need to consider a specific enterprise service when
designing and programming your application.

Provides you with help if you have problems using the MQEI

Describes each of the MQEI LSX classes with their properties and
methods

Describes the samples that are provided

Chapter 1: Introduction 1

MQSeries Enterprise Integrator for Lotus Notes overview

MQSeries Enterprise Integrator for Lotus Notes (known in this book as
MQEI) is a convenient way of accessing your organization's enterprise
applications through a familiar Lotus Notes interface running on your
workstation, or from a web browser if you are using a Lotus Domino
server.

Enterprise applications are typically reliable, high-volume, high
performance applications that you use to run your business. They might
include CICS or IMS for example. The user interfaces for these enterprise
applications are very likely to vary from system to system. The MQSeries
Enterprise Integrator LotusScript Extension (known in this book as MQEI
LSX) enables you to integrate your enterprise applications using a set of
classes that provide a common application programming interface (API).

2 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Example of the usefulness of MQEI

Consider an organization that has two main customer account applications.
Both of these applications were written at different times and run under
different transaction management systems. For example, one may run
under IMS and the other may use CICS. Imagine the following scenario:

1. A customer telephones your organization to notify you of a change of
address.
This will require your organization to update all its databases that hold
records of that customer.

2. To update the databases where the customer record is held, you have to
log on to both the IMS and the CICS systems.

3. To change the address, you have to run the "Update Customer"
transaction which is specific to each system.
It is highly likely that you will have to enter the new addressing
information twice (once on each system).
It is also very likely that the two user interfaces will be very different
and both systems accept totally different address formats.

MQSeries Enterprise Integrator for Lotus Notes will allow you to enter the
new address once only, using a familiar Lotus Notes user interface or a web
browser. It will then access the IMS and CICS systems on your behalf, and
update the databases on those enterprise systems.

Features of the MQEI

The MQEI provides:

Transparent access from LotusScript applications to a range of
enterprise systems:

Any MQ-enabled application

CICS DPL, using the MQSeries CICS DPL bridge

CICS DPL, using the CICS client interface

CICS 3270, using the CICS client interface

IMS, using the MQSeries IMS bridge

An MQEI Definition database containing message definitions that can
be sent to enterprise systems and definitions of the applications (or
"services") that run on these systems

Security integration from Notes to enterprise applications

The ability to populate the MQEI Definition database from CICS BMS
maps

Chapter 1: Introduction 3

Objectives of the MQEI

The objectives of the MQEI are to provide:

Access from both the Lotus Notes client and Lotus Domino server.
Using a Lotus Domino server also gives you web access to the MQEI.

A natural extension to the LotusScript development environment.

A common API for accessing enterprise services regardless of the
nature of the enterprise system. The API has a common set of verbs that
abstract away from the details of each enterprise system. The
programmer only needs to learn this single API.

An extended range of enterprise systems that can be accessed.
As well as native MQSeries applications, access is provided to IMS
applications and CICS DPL programs via the respective MQSeries
bridges to those products. Access to CICS DPL programs and CICS
3270 transactions is provided via the CICS client interfaces (the ECI and
EPI), allowing direct connectivity to CICS. The MQEI LSX is designed
to allow easy future addition of other enterprise systems.

Message building facilities enabling the programmer to build and
interpret messages by field name, and to create messages that may be
sent to multiple destinations. A utility is provided to create message
definitions from CICS BMS map source files.

Security features including the ability to sign-on automatically to
enterprise systems.

Components

The MQEI consists of the following components:

1. MQEI LSX API, comprising:

EISession Class

EIService Class

EIMessage Class

EISendOptions Class

EIReceiveOptions Class

2. MQEI Definition database, a Lotus Notes database containing Lotus
Notes documents that define the various message formats and
enterprise services. You can administer these documents in the same
way as you would administer any other Notes databases.

4 MQSeries Enterprise Integrator for Lotus Notes User's Guide

3. MQEI Security database, a Lotus Notes database containing Lotus
Notes documents that define the enterprise security parameters for
enterprise system users. You can administer these documents in the
same way as you would administer any other Notes databases.

4. CICS BMS map conversion utility that allows you to convert BMS map
files into message and field definitions in the MQEI Definition database.

5. MQEI Samples database, a Lotus Notes database containing working
sample applications that show you how to communicate with each of
the supported enterprise systems using the MQEI LSX.

Every enterprise application that your LotusScript program can access is
represented by an instance of an EIService object. Examples of enterprise
services include:

MQ-enabled application

CICS DPL programs

CICS 3270 transactions

IMS transactions

Communication, within an MQEI application, to an enterprise service is
achieved using EIService methods to connect to the enterprise system and
to send and receive EIMessage objects to and from the enterprise service.

An EIMessage object represents the actual data that is exchanged with the
service and allows your LotusScript program to build and interpret this
data, field by field, using field names, each field being a property of the
EIMessage.

The EIService and EIMessage objects are built dynamically at run-time from
enterprise services and message formats whose definitions reside on the
MQEI Definition database. Variations on how an EIMessage is sent and
received by the EIService are controlled by an EISendOptions object and an
EIReceiveOptions object respectively.

Creation of all these objects in LotusScript is controlled by a singleton
EISession class .

Chapter 1: Introduction 5

Environment specific information, such as the name of the MQEI Definition
database and MQEI Security database, is held in an MQEI initialization file,
mqei.ini.

6 MQSeries Enterprise Integrator for Lotus Notes User's Guide

About the MQEI samples

The sample applications provided, demonstrate how to communicate from
Lotus Notes to the following enterprise systems:

Any MQ-enabled application

Sample using a Native MQSeries service

CICS DPL, using the MQSeries CICS DPL bridge

Sample using a CICS DPL via MQSeries service

CICS DPL, using the CICS client interface

Sample using a CICS DPL direct service

CICS 3270, using the CICS client interface

Sample using a CICS 3270 direct service (signon)

Sample using a CICS 3270 direct service (FILEA)

IMS, using the MQSeries IMS bridge

Sample using an IMS via MQSeries service

For futher samples, information, and help, see the IBM Red book:

Lotus Notes and the MQSeries Enterprise Integrator, available at URL:

http://www.redbooks.ibm.com/SG242217/sg242217.html

or order book no: SG24-2217

Chapter 1: Introduction 7

MQSeries Enterprise Integrator for Lotus Notes or MQSeries link
LotusScript Extension?

This section describes the strengths of each product to help you decide
whether you should be using the MQEI or the MQLSX to connect to your
enterprise.

MQSeries Enterprise Integrator for Lotus Notes (MQEI)
Common API for accessing enterprise services regardless of the nature
of the enterprise system.
The API has a common set of verbs that abstract away from the details
of each enterprise system. The programmer only needs to learn this
single API.

LotusScript program independence from network configuration.
For example, names of queue managers and queues are not coded into
the LotusScript but into MQEI Service definitions within the MQEI
Definition database.

LotusScript program independence from message formats.
Similarly, the exact format of messages are not coded into the
LotusScript but into MQEI Message definitions within the MQEI
Definition database. If you want to use an MQEI Message definition in
several places, you only need a single definition that can be shared.

MQSeries or CICS can be used as network transport.

MQSeries IMS and CICS bridge headers are automatically built by the
MQEI when sending a message.

Integrated security features through the MQEI Security database allow
you to seamlessly sign on to your enterprise systems.

8 MQSeries Enterprise Integrator for Lotus Notes User's Guide

MQSeries link LotusScript Extension (MQLSX)
Incorporates the full power of the MQI.

MQSeries object model conformance.
Useful if you are already familiar with the MQSeries object model.

Better performance.
MQLSX performs slightly better because there is no database lookup at
runtime.

Note This is dependent on the speed of your network and systems
where the databases are stored.

No Notes dependency.
MQLSX has no Notes dependency, just a LotusScript dependency. This
allows you to use it from SmartSuite products in a Notes free
environment. MQEI can be used from SmartSuite but requires Notes to
be present to access the MQEI Definition and MQEI Security databases.

Chapter 1: Introduction 9

Where to find more information

The following sections tell you where you can find more information about
MQSeries, CICS, IMS and LotusScript.

Where to find more information about MQSeries
A variety of MQSeries publications are available to help you use the MQEI
LSX. The following books are a selection that you may find particularly
useful:

MQSeries An Introduction to Messaging and Queuing, GC33-0805

MQSeries Message Queue Interface Technical Reference, SC33-0850

MQSeries Planning Guide, GC33-1349

MQSeries Command Reference, SC33-1369

MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373

MQSeries for HP-UX Version 2.2.1 System Management Guide,
SC33-1633

MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for Sun Solaris Version 2.2 System Management Guide,
SC33-1800

MQSeries for Windows NT Version 2.0 System Management Guide,
SC33-1643

MQSeries Clients, SC33-1632

MQSeries Application Programming Reference, SC33-1673

MQSeries Application Programming Reference Summary, SX33-6095

MQSeries Application Programming Guide, SC33-0807

MQSeries Distributed Queuing Guide, SC33-1139

MQSeries for Windows Version 2.0 User's Guide, GC33-1822-00

MQSeries System Administration, SC33-1873-00

Each of these publications includes a complete list of the MQSeries
publications available.

For the latest information about MQSeries, visit the MQSeries World Wide
Web site at:

http://www.software.ibm.com/mqseries/

10 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Where to find more information about CICS
A variety of CICS publications are available to help you use the MQEI. The
following books are a selection that you may find particularly useful:

CICS/ESA: Application Programming Reference, SC33-0676

CICS/ESA: Application Programming Guide, SC33-1169

CICS/ESA: CICS-RACF Security Guide, SC33-1185

CICS Transaction Server for OS/390 CICS Server Support for CICS Clients,
SC33-1779
(previously CICS/ESA: Server Support for CICS Clients, SC33-1591)

CICS Family: Library Guide, GC33-0356

CICS Family: Client/Server Programming, SC33-1435

CICS Clients: Administration Version 1.0, SC33-1436

CICS Clients: Administration Version 2.0, SC33-1792

CICS Transaction Server for OS/390 release 2 Problem Determination Guide,
GC33-1693-01

CICS Transaction Server for OS/390 release 1 Problem Determination Guide,
GC33-1693-00

CICS for MVS/ESA version 4 release 1 Problem Determination Guide,
SC33-1176-00

CICS/VSE version 2 release 3 Problem Determination Guide, SC33-0716-02

CICS/VSE version 2 release 2 Problem Determination Guide, SC33-0716-01

CICS for OS/2 Version 2.0.1 Problem Determination, SC33-1005

CICS for OS/2 Version 3 Problem Determination, SC33-1584

CICS on Open Systems Problem Determination Guide, GC33-1565

For the latest information about CICS, visit the CICS World Wide Web site
at:

http://www.hursley.ibm.com/cics/

Chapter 1: Introduction 11

Where to find more information about IMS
A variety of IMS publications are available to help you use the MQEI. The
following books are a selection that you may find particularly useful:

IMS/ESA Application Programming: Database Manager, SC26-8015

IMS/ESA Application Programming: Design Guide, SC26-8016

IMS/ESA Application Programming: Transaction Manager, SC26-8017

IMS/ESA Customization Guide, SC26-8020

IMS/ESA Master Index and Glossary, SC26-8027

IMS/ESA Open Transaction Manager Access User Guide, SC26-8026-01

IMS/ESA Operator's Reference, SC26-8030

IMS/ESA Diagnosis Guide and Reference, LY27-9620

IMS/ESA Messages and Codes, SC26-8028

For the latest information about IMS, visit the IBM World Wide Web site at:

http://www.ibm.com/

Tip Use the IBM search engine to search for information about IMS.

Where to find more information about LotusScript
Lotus provide the following documentation for LotusScript:

The LotusScript Programmers Guide Part No. 312106

The LotusScript Language Reference Part No. 12382

For the latest information about LotusScript, visit the Lotus World Wide
Web site at:

http://www.lotus.com/

12 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 2 Getting Started

This chapter suggests how you might start to use the MQEI, starting with
the information you need before you install it. The topics included are:

Pre-installation considerations and requirements

Possible system configurations

Setting-up your MQEI initialization file

Checking your installation of the MQEI

Using the MQEI for the first time

Chapter 2: Getting Started 13

Pre-installation considerations

Before you install the MQEI LSX, you need to make sure that you have the
correct level of operating system and the correct level of Notes to run the
MQEI.

The MQEI only runs in either the Lotus Notes Release 4.5.1 (or higher)
client environment or the Lotus Domino Server 4.5.1 (or higher), Powered
by Notes environment.

In addition to Notes, you need either the MQSeries (client or server)
installed to enable you to connect to your MQSeries enterprise systems or
you need to have the CICS client installed, to enable you to connect directly
to your CICS enterprise systems.

Note It is strongly recommended that you read the ReadMe file provided,
or the printed Release Notes, before commencing installation.

MQEI LSX requirements

MQSeries requirements
If you use MQSeries to connect to an enterprise service, the MQEI LSX
requires access to either an MQSeries client or an MQSeries server (from the
following list) that is installed in the same environment:

MQSeries client for AIX

MQSeries client for HP-UX

MQSeries client for OS/2

MQSeries client for Sun Solaris

MQSeries client for Windows 3.1

MQSeries client for Windows 95

MQSeries client for Windows NT

MQSeries for AIX Version 2.2.1 (for the server)

MQSeries for HP-UX Version 2.2.1 (for the server)

MQSeries for OS/2 Version 2.0.1 (for the server)

MQSeries for Sun Solaris Version 2.2 (for the server)

MQSeries for Windows NT Version 2.0 (for the server)

MQSeries for Windows Version 2.0 (for the leaf-node server)

If you choose to use one of the MQSeries client environments, connect it to
an MQSeries server that supports it. This can be any MQSeries server that
supports the MQSeries client, and does not have to be a server capable of
running Notes.

14 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Note MQSeries for Windows Version 2.0 is different from the other
MQSeries family of products. It is designed to run on a workstation with
Microsoft Windows 3.1, Windows for Workgroups, Windows 95 or
WIN-OS/2. It provides significantly more function than an MQSeries client,
by including a subset of the queue manager functions.
To differentiate this type of queue manager from that provided by other
MQSeries products, the MQSeries for Windows queue manager is known as
a leaf-node queue manager.

For more information see your MQSeries for Windows User Guide.

CICS requirements
If you are connecting directly to CICS enterprise systems, the MQEI LSX
requires access to either a CICS client or a CICS server with a built-in client
(from the following list) that is installed in the same environment:

IBM CICS Client for OS/2

IBM CICS Client for Windows

IBM CICS Client for Windows 95

IBM CICS Client for Windows NT

IBM CICS for OS/2 (for the server with a built-in client)

IBM Transaction Server for OS/2 Warp (for the server with a built-in
client)

IBM CICS for Windows NT Version 2 (for the server with a built-in
client)

If you choose to use one of the CICS client environments, connect it to a
CICS server that supports it. This does not have to be a server environment
capable of running Notes.

Note

The MQEI LSX does not support connecting to the AIX Client for CICS/6000,
the CICS Client for the Solaris Operating Environment, or the CICS Client for
HP 9000.
When using the CICS Client on Windows (that is, the CICS client that runs
under Windows 3.1), it is not possible for the MQEI LSX to access CICS 3270
services.
The MQEI LSX will not be able to access CICS 3270 direct services if you are
connecting your CICS client to a CICS on System/390 server prior to CICS for
MVS/ESA Version 4 Release 1 with PTF UN901412.
It is not possible for the MQEI LSX to access CICS 3270 services and CICS DPL
services from the Notes client or Domino server agent manager at the same
time, using your CICS client.

Chapter 2: Getting Started 15

Disk space requirements
The additional disk space requirements for the MQEI LSX executable code
depend on the platform you are running:

AIX 10.5 MB

HP-UX 9.5 MB

OS/2 9.0 MB

Sun Solaris 10.5 MB

Windows 3.1 8.5 MB

Windows 95 9.0 MB

Windows NT 9.0 MB

Windows for Workgroups 8.5 MB

WIN-OS/2 8.5 MB

Plus:

 3.0 MB is required for the on-line MQSeries Enterprise Integrator User's
Guide, conversion tables, and the readme text

1.5 MB is required to hold the Adobe Acrobat PDF file (mqeihelp.pdf)
version of the MQSeries Enterprise Integrator User's Guide

16 MQSeries Enterprise Integrator for Lotus Notes User's Guide

The MQSeries Enterprise Integrator package
The MQSeries Enterprise Integrator for Lotus Notes package is provided on
a CD. For more information about installing the MQEI package on your
system, see "Installing MQSeries Enterprise Integrator for Lotus Notes"
later in this chapter.

The installation process creates a root directory with subdirectories docs,
samples, database, bin, and conv, with contents as shown in the following
table.

Directory File name What it is...

root readme.txt A file containing any product and information
updates that have become available since this
documentation was produced. It also contains
information about installing the MQEI package
on your operating system.

mqei.ini Sample MQEI initialization file

docs mqeihelp.nsf MQSeries Enterprise Integrator User's Guide as a
Notes database.

mqeihelp.pdf The MQSeries Enterprise Integrator User's Guide
as an Adobe Acrobat PDF file.

samples mqeisamp.nsf A Notes database containing the the
Post-Installation Check Program and a sample
for each enterprise system supported.

mqeisamp.jcs MQSeries for MVS/ESA Command File
containing definition statements used by some
of the samples.

mqeisamp.tst MQSeries MQSC Command File containing
queue, and channel definitions to set up
MQSeries to successfully run the samples.

database mqeidata.nsf MQEI Definition database. This is a Notes
database containing MQEI definitions used by
the MQEI Samples database.

mqeidata.ntf Lotus Notes design template for the
mqeidata.nsf file.

mqeisecu.nsf MQEI Security database. This is a Notes
database.

mqeisecu.ntf Lotus Notes design template for the
mqeisecu.nsf file.

Chapter 2: Getting Started 17

Directory File name What it is...

bin
(AIX)

libeilsx.a A directory containing the AIX 4 version of the
MQEI LSX (MQEI LSX library). This is
supported when used with the AIX Notes client
or server code in the following environments:

MQSeries for AIX
client running
under AIX 4.1.4 or
later

MQSeries for AIX
server running
under AIX 4.1.4 or
later

eilsxmqm Dynamic load library for MQSeries server

eilsxmqic Dynamic load library for MQSeries client

mqeilev Code level service utility

mqeibms BMS Map utility

bin
(HP-UX)

libeilsx.sl A directory containing the HP-UX version of
the MQEI LSX (MQEI LSX library). This is
supported when used with the HP-UX Notes
client or server code in the following
environments:

MQSeries HP-UX
client running
under HP-UX
Version 10.01 or
later Version 10

MQSeries HP-UX
server running
under HP-UX
Version 10.01 or
later Version 10

eilsxmqm Dynamic load library for MQSeries server

eilsxmqic Dynamic load library for MQSeries client

mqeilev Code level service utility

mqeibms BMS Map utility

18 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Directory File name What it is...

bin
(OS/2)

EILSX.DLL A directory containing the OS/2 version of the
MQEI LSX (MQEI LSX library). This is
supported when used with the OS/2 Notes
client or server code in the following
environments:

MQSeries OS/2
client running
under OS/2 V2.1,
OS/2 Warp, OS/2
Warp Connect, or
OS/2 Warp server

MQSeries OS/2
server running
under OS/2 V2.1,
OS/2 Warp, OS/2
Warp Connect, or
OS/2 Warp server

MQEILEV.EXE Code level service utility

MQEIBMS.EXE BMS Map utility

bin
(Sun Solaris)

libeilsx.so A directory containing the Sun Solaris (SPARC,
Ultra SPARC) version of the MQEI LSX:

(MQEI LSX library)

This is supported when
used with the Sun
Solaris Notes client or
server code in the
following environments:

MQSeries Sun
Solaris client
running under Sun
Solaris 2.5 or later

MQSeries Sun
Solaris server
running under Sun
Solaris 2.5 or later

eilsxmqm Dynamic load library for MQSeries server

eilsxmqic Dynamic load library for MQSeries client

mqeilev Code level service utility

Chapter 2: Getting Started 19

Directory File name What it is...

mqeibms BMS Map utility

bin
(Windows 3.1,
Windows for
Workgroups
and
WIN-OS/2)

EILSX.DLL A directory containing the Windows 3.1, the
Windows for Workgroups, and WIN-OS/2
version of the MQEI LSX (MQEI LSX library).
This is supported when used with Win16 Notes
client code in the following environments:

MQSeries client on
Windows 3.1
running under
Windows 3.1

MQSeries client on
Windows 3.1
running under
OS/2 Warp and
Warp Connect

MQSeries for
Windows leaf-node
server running
under Windows 3.1

MQSeries for
Windows leaf-node
server running
under Windows
fow Workgroups

MQSeries for
Windows leaf-node
server running
under WIN-OS/2

MQEILEV.EXE Code level service utility

20 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Directory File name What it is...

bin
(Windows 95
and Windows
NT)

EILSX.DLL A directory containing the Windows NT and
Windows 95 version of the MQEI LSX (MQEI
LSX library). This is supported when used with
Win32 Notes client or server code in the
following environments:

MQSeries client on
Windows NT
running under
Windows NT server
3.51 or the
Windows NT
workstation 3.51

MQSeries for
Windows NT server
running under
Windows NT server
3.51 or the
Windows NT
workstation 3.51

MQSeries for
Windows leaf-node
server running
under Windows 95

MQEILEV.EXE Code level service utility

MQEIBMS.EXE BMS Map utility

conv A directory containing the files required to
support character conversion.

README.CCS Details the supplied conversions

MQEICCS.TBL Used to establish allowed conversions

nnnnmmmm.TBL Table for supported conversions, where nnnn is
the hexidecimal value of the coded character set
identifier (CCSID) for the 'from' codepage,
mmmm is the hexidecimal value of the CCSID
for the 'to' codepage

Chapter 2: Getting Started 21

Possible system configurations

The following configurations are possible if your applications use the CICS
DPL direct service or the CICS 3270 direct service:

If your enterprise system is AIX, HP-UX, or Sun Solaris, Option 1 is the only
configuration available to you. The server must be a UNIX system, and the
client must be OS/2, Windows 3.1, Windows 95, or Windows NT.

22 MQSeries Enterprise Integrator for Lotus Notes User's Guide

The following configurations are possible if your applications use the
Native MQSeries service, IMS via MQSeries service or the CICS DPL via
MQSeries service:

Chapter 2: Getting Started 23

MQEI environment variables

There are eight environment variables that you need to know about when
setting up the MQEI on your local system. You do not have to set them all.

MQEI_INI_PATH

MQEI_TRACE

MQEI_TRACE_LEVEL

MQEI_TRACE_PATH

MQEI_XLAT_PATH

MQEI_MQ_LIB

MQEI_ECI_LIB

MQEI_EPI_LIB

Note You must set the MQEI_INI_PATH environment variable. It points
to where your mqei.ini file is located.

MQEI_INI_PATH
This environment variable is mandatory. You must set the
MQEI_INI_PATH environment variable to locate your mqei.ini file. There
must be one mqei.ini file on every system that you run MQEI LSX code and
utility programs on.

For more information, see "Setting up your MQEI initialization file" later in
this chapter.

MQEI_TRACE
If you want to use the trace facility to help you solve any problems you may
be having, switch it on or off using the MQEI_TRACE environment
variable. Unless you are having a problem, you are recommended to run
with tracing set off to avoid any unnecessary overheads on your system
resources.

For more information, see "Using trace" in Chapter 11.

MQEI_TRACE_LEVEL
Use the MQEI_TRACE_LEVEL environment variable to set the level of
detail you want recorded in your trace file.

For more information, see "Using trace" in Chapter 11.

24 MQSeries Enterprise Integrator for Lotus Notes User's Guide

MQEI_TRACE_PATH
If you have switched the trace facility on (using the MQEI_TRACE
environment variable), you can specify the directory where you want the
trace files to be stored. You do not have to give a filename for the trace file -
these are created at run time. If you do not specify a directory in the
MQEI_TRACE_PATH environment variable, the traces files will be written
to the current working directory.

You can identify a trace file by the .trc file extension.

For more information, see "Using trace" in Chapter 11.

MQEI_XLAT_PATH
If you use data conversion, you should set the MQEI_XLAT_PATH
environment variable to locate the data conversion tables that are used by
the MQEI LSX.

For more information, see "Data Conversion" in Chapter 4.

MQEI_MQ_LIB
You only need to set the MQEI_MQ_LIB environment variable if you want
to override the inbuilt mechanism for picking up MQSeries libraries.

Under normal circumstances, you should not need to set this value.

Note On HP-UX, you must set the MQEI_MQ_LIB environment variable to
enable libeilsx.sl to find eilsxmqm or eilsxmqic.

For more information, see "Dynamic loading and the MQEI LSX" in Chapter
11.

MQEI_ECI_LIB
You only need to set the MQEI_ECI_LIB environment variable if you want
to override the inbuilt mechanism for picking up CICS libraries.

Under normal circumstances, you should not need to set this value.

For more information, see "Dynamic loading and the MQEI LSX" in Chapter
11.

MQEI_EPI_LIB
You only need to set the MQEI_EPI_LIB environment variable if you want
to override the inbuilt mechanism for picking up CICS libraries.

Under normal circumstances, you should not need to set this value.

For more information, see "Dynamic loading and the MQEI LSX" in Chapter
11.

Chapter 2: Getting Started 25

Installing MQSeries Enterprise Integrator for Lotus Notes

This section describes how to install the MQSeries Enterprise Integrator for
Lotus Notes on your operating system.

Installing on AIX
Logged on as root:

1. Insert the MQEI CD_ROM into your CD-ROM drive, unless you are
installing from a server machine.

2. From the shell type:
smit

You can use the alternative fastpath command instead:

smitty install_latest

At this point, you need to follow the instructions that relate to the level of
AIX you are running.

If you are running AIX 4.1.n:
1. Select the device appropriate for your installation using this sequence of

windows:
 Software Installation and Maintenance

 Install and Update Software

 Install/Update Selectable Software (Custom Install)

 Install Software Products at Latest Level

 Install New Software Products at Latest Level

2. On panel displayed, you need to enter the device name attached to your
CD-ROM reader and the directory in which the new software resides
(on the CD or on your server). Press PF4 for a list of input devices
known to your system. Enter the CD-ROM device name or the server
device name. Press enter.

3. Select 'SOFTWARE to install'

4. Press List to get a list of all available software. To install all of the MQEI
components, select the line showing '1.0.0.0 mqei', press enter. If you
want to install specific components move the cursor to the component
line and select it. Only press enter after you have selected the
components you want.

5. There is no need to change any of the defaults displayed. Click OK

6. 'Are you Sure?', Click OK.

7. A summary installation panel is displayed.

26 MQSeries Enterprise Integrator for Lotus Notes User's Guide

8. Set the Notes_ExecDirectory environment variable to specify the Notes
executable directory and ensure that the MQEI_INI_PATH and
MQEI_XLAT_PATH environment variables are correctly set.

For example, using the Korn shell:
Notes_ExecDirectory=/opt/lotus/notes/latest/ibmpow;export
Notes_ExecDirectory
MQEI_INI_PATH=/usr/lpp/mqm/mqei;export MQEI_INI_PATH
MQEI_XLAT_PATH=/usr/lpp/mqm/mqei/conv;export
MQEI_XLAT_PATH

If you are using AIX 4.2
1. Select the device appropriate for your installation using this sequence of

windows:
 Software Installation and Maintenance

 Install and Update Software

 Install and Update from LATEST Available Software

2. Follow steps 2-8 as if you were running AIX 4.1.n.

The MQEI components are now installed on your system in:

/usr/lpp/mqm/mqei
The files in this directory are:
readme - A ReadMe file. Text that MUST be read before using the
MQEI.
mqei.ini - The MQEI initialization file. This is an example that you can
use to run the samples.
All other files are needed by the uninstall option.

/usr/lpp/mqm/mqei/bin
A directory containing the MQEI executables.

/usr/lpp/mqm/mqei/conv
A directory containing the files needed to support character conversion.

/usr/lpp/mqm/mqei/database
A directory containing the MQEI Definition database, MQEI Security
database, and a design template for each.

/usr/lpp/mqm/mqei/docs
A directory containing the MQEI User Guide in Portable Document
Format (mqeihelp.pdf) and as a Notes database (mqeihelp.nsf).

/usr/lpp/mqm/mqei/lib
A directory containing the AIX version of the MQEI including
MQSeries library stubs.

Chapter 2: Getting Started 27

/usr/lpp/mqm/mqei/samples
A directory containing components needed to run the MQEI samples.
This directory contains the MQEI Samples database (mqeisamp.nsf).

28 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Installing on HP-UX
Use the HP-UX swinstall program, to install the MQEI :

Logged on as root:

1. If you are installing from the CD, insert the MQEI / MQLSX CD-ROM
into your CD-ROM drive.

2. Type:
swinstall -s/<cd_mount_point>/hp/mqei.fpkg

substituting <cd_mount_point> with the name you mounted your
CD-ROM device as or the directory in which the MQEI package is available
to you.

3. From the Software Selection panel displayed:
- Press the spacebar to highlight the line for the complete package or
press enter to expand the package into its components, and highlight
the ones you want to install.
- Click Actions Mark for Install, from the menu bar.
- Press OK on error selection box if displayed, it's for information only.
- Click Actions Install (analysis) from the menu bar.

4. When status is Ready, check there are no errors or warnings listed in
the log file.

5. Click OK to exit from the log file window.

6. Press OK to continue install.

7. Press Yes to start install.
The installation process starts and you can follow the progress from the
information given in the window.

8. When status is completed, check there are no errors or warnings listed
in the log file.

9. Click OK to exit from the log file window.

10. Click Done to exit from the install window.

11. Select File Exit from the menu bar.

12. Set the Notes_ExecDirectory environment variable to specify the Notes
executable directory and ensure that the MQEI_INI_PATH and
MQEI_XLAT_PATH environment variables are correctly set.

For example, using the Korn shell:
Notes_ExecDirectory=/opt/lotus/notes/latest/hppa;export
Notes_ExecDirectory
MQEI_INI_PATH=/opt/mqm/mqei;export MQEI_INI_PATH
MQEI_XLAT_PATH=/opt/mqm/mqei/conv;export MQEI_XLAT_PATH

Chapter 2: Getting Started 29

13. Use the MQEI_MQ_LIB environment variable to enable libeilsx.sl to
find either eilsxmqm or eilsxmqic.

For example, using the Korn shell:
MQEI_MQ_LIB=/opt/mqm/mqei/lib/eilsxmqm;export MQEI_MQ_LIB

The MQEI components are now installed on your system in:

/opt/mqm/mqei
The files in this directory are:
readme - A ReadMe file. Text that MUST be read before using the
MQEI.
mqei.ini - The MQEI initialization file. This is an example that you can
use to run the samples.
All other files are needed by the uninstall option.

/opt/mqm/mqei/bin
A directory containing the MQEI executables.

/opt/mqm/mqei/conv
A directory containing the files needed to support character conversion.

/opt/mqm/mqei/database
A directory containing the MQEI Definition database, MQEI Security
database, and a design template for each.

/opt/mqm/mqei/docs
A directory containing the MQEI User Guide in Portable Document
Format (mqeihelp.pdf) and as a Notes database (mqeihelp.nsf).

/opt/mqm/mqei/lib
A directory containing the HP-UX version of the MQEI including
MQSeries library stubs.

/opt/mqm/mqei/samples
A directory containing components needed to run the MQEI samples.
This directory contains the MQEI Samples database (mqeisamp.nsf).

30 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Installing on OS/2
If you are installing from the CD, place it in the CD-ROM drive. If you are
installing from a server, make sure you are connected to it.

1. From an OS/2 window or a full-screen session:

Change to the drive from which you want to install the MQEI

Change to the \os2\mqei\en_us directory on the CD or server drive

At the command prompt, type INSTALL and press the enter key.

2. The MQEI Welcome window is displayed, overlaid with the
instructions window. Select the Continue button.

3. The Install window is displayed. If you select the Update CONFIG.SYS
check box, the CONFIG.SYS file is updated automatically as part of the
installation process. Your original CONFIG.SYS file is renamed to
CONFIG.BAK and is stored in the same directory. If you do not select
this check box, a CONFIG.ADD file is generated. This file is a copy of
CONFIG.SYS with the necessary updates to the LIBPATH and PATH
statement and setting of all the environment variables. You can rename
the CONFIG.ADD file to CONFIG.SYS.

4. Select the OK button to continue.

5. The Install - directories window is displayed.

The list box shows the components that you can choose to install.
When you select one or more components (the component line is
highlighted), the Bytes needed field shows the amount of disk space
required for installation.

The File directory entry field allows you to specify the drive and
directory into which the components are to be installed. The default
is c:\mqm\mqei. Select the Disk space button to show how much
disk space is free on each drive, and to select another drive for
installation. Select the Install button to continue.

6. The Install - progress window is displayed. This window shows:

The file currently being installed (source) and the drive and directory
into which it is being installed (target).

A progress bar, indicating the percentage of files already unpacked
and installed.

The elapsed time.

The status, for example, unpacking, processing or transferring.

If you select the Stop button, you are asked whether you want to delete the
partial system you have installed. Select Yes. The install program exits and
returns to an OS/2 command prompt.

Chapter 2: Getting Started 31

7. When the installation is complete, the Installation and Maintenance
window is displayed. Select OK. The install program exits and returns
to an OS/2 command prompt.

When installation is complete, a folder called MQSeries Enterprise
Integrator is created on your OS/2 desktop. This folder contains:

Enterprise Integrator Installation and Maintenance

mqeihelp.pdf

readme.txt

8. You should now shutdown and reboot your system.

The MQEI components are installed on your system in the following
directories, unless you changed the default directory or chose not to install
all the components:

mqm\mqei
The files in this directory are:
readme.txt - A ReadMe file. Text that MUST be read before using the
MQEI.
mqei.ini - The MQEI initialization file. This is an example that you can
use to run the MQEI samples.
All other files are needed by the uninstall option.

mqm\mqei\bin
A directory containing the MQEI executables and the OS/2 version of
the MQEI.

mqm\mqei\conv
A directory containing the files needed to support character conversion.

mqm\mqei\database
A directory containing the MQEI Definition database and the MQEI
Security database, and design templates for each of them.

mqm\mqei\docs
A directory containing the MQEI User Guide in Portable Document
Format (mqeihelp.pdf) and as a Notes database (mqeihelp.nsf).

mqm\mqei\samples
A directory containing components needed to run the MQEI samples.
This directory contains the MQEI Samples database (mqeisamp.nsf).

32 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Installing on Sun Solaris
1. If you are installing from the CD, check to see if the Volume Manager is

running on your system by typing the following command:
/usr/bin/ps -ef ¦ /bin/grep vold

If it is running, the CD is mounted on /cdrom/domino_mq automatically.
If it is not running, mount the CD by typing the following commands:

mkdir -p /cdrom/domino_mq

mount -F hsfs -r /dev/dsk/cntndnsn
/cdrom/domino_mq

substituting cntndnsn with the name of your CD-ROM device.

2. Use the Solaris pkgadd program, to install the MQEI type:
pkgadd -d /<cd_mount_point>/solaris/mqei.img

substituting <cd_mount_point> with cdrom/domino_mq or the directory
in which the MQEI package is available to you.

3. You are prompted for a list of packages to install. Press enter to accept
the default, or select 1 or all and press enter. As there is only one
component all these actions have the same result.

4. You are prompted for installable options. Select those you wish to
install.

Note Remember, if you do not choose all the options, and you want to
install a further option later, the pkgadd program requires you to uninstall
the original options followed by a reinstall of all the options you require.

5. Press the Enter key

6. Enter Y and press the Enter key to:
This package contains scripts which will be executed with
super-user permission during the process of installing
this package.

Do you want to continue with the installation of <mqei>
[y,n?]

"Installation of <mqei> was successful" is displayed on completion.

7. Set the Notes_ExecDirectory environment variable to specify the Notes
executable directory and ensure that the MQEI_INI_PATH and
MQEI_XLAT_PATH environment variables are correctly set.

For example, using the Korn shell:
Notes_ExecDirectory=/opt/lotus/notes/latest/sunspa ;export
Notes_ExecDirectory

Chapter 2: Getting Started 33

MQEI_INI_PATH=/opt/mqm/mqei;export MQEI_INI_PATH
MQEI_XLAT_PATH=/opt/mqm/mqei/conv;export MQEI_XLAT_PATH

The MQEI components are now installed on your system in:

/opt/mqm/mqei
The files in this directory are:
readme - A ReadMe file. Text that MUST be read before using the
MQEI.
mqei.ini - The MQEI initialization file. This is an example that you can
use to run the samples.
All other files are needed by the uninstall option.

/opt/mqm/mqei/bin
A directory containing the MQEI executables.

/opt/mqm/mqei/conv
A directory containing the files needed to support character conversion.

/opt/mqm/mqei/database
A directory containing the MQEI Definition database, MQEI Security
database, and a design template for each.

/opt/mqm/mqei/docs
A directory containing the MQEI User Guide in Portable Document
Format (mqeihelp.pdf) and as Notes database (mqeihelp.nsf).

/opt/mqm/mqei/lib
A directory containing the Sun Solaris version of the MQEI including
MQSeries library stubs.

/opt/mqm/mqei/samples
A directory containing components needed to run the MQEI samples.
This directory contains the MQEI Samples database (mqeisamp.nsf).

34 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Installing on Windows NT and Windows 95
If you are installing from the CD, place it in the CD-ROM drive. If you are
installing from a server, ensure you are connected to it.

If you are installing on Windows NT, follow the instructions for the version
of Windows NT you are using.

Tip You are recommended to exit any other Windows applications that you
may have running before you start to install MQSeries Enterprise Integrator
for Lotus Notes.

Windows NT version 4 and Windows 95
From your Windows desktop:

Click Start - Run...

Type, "drive:\win32\mqei\setup" where drive: is the drive letter
you are installing from.

Click OK.

Go to step 1.

Windows NT version 3.51
From the Windows Program Manager:

Choose File - Run... from the Windows Program Manager menu bar.

Type, "drive:\win32\mqei\setup" where drive: is the drive letter
you are installing from.

Click OK.

Go to step 1.

1. The MQEI Welcome window is displayed, introducing the installation
process. Select Next to continue.

2. "Select the destination path" panel, is displayed. If you want to use the
default drive and directory, select the Next button to continue.
Alternatively, change the drive and directory (using the Browse...
button) as required and select the Next button to continue.

3. "Select Components" panel is displayed, showing a list of components
that you can install. All components are selected by default. To deselect
any component, click on the tick-mark preceding it. When you have
selected the components you want, select the Next button to continue.

4. "Select Program Folder" panel is displayed. The default name is
MQSeries Enterprise Integrator. Choose a name for the Program Group
folder you want to add the MQEI icons to and select the Next button to
continue.

Chapter 2: Getting Started 35

5. "Start Copying Files" panel is displayed, summarizing the selections
you have made so far. If any amendments are necessary, use the Back
button to return to the relevant window and make any changes.
Otherwise, select the Next button to begin copying files onto your
system.

6. The next window displayed shows the progress of the installation
process.

Note Select the Cancel button if you have a need to stop the install, in
which case the "Exit Setup" window is displayed. Select the Exit Setup
button to stop the install, otherwise select the Resume button to
continue with the installation.

7. Setup Complete window is displayed. Uncheck the box if you do not
want to view the ReadMe file at this point. Select the Finish button.

8. Installation is now complete. If you have chosen to view the ReadMe
file, the Notepad application runs to display the file.

9. When the "Restart Windows" panel is displayed, select a check box.
Select:
Yes - to restart now, or
No - to restart later
Click OK when you have made your selection.

10. If you are using Windows 95, your AUTOEXEC.BAT file is updated
with the following statements:

SET PATH="%PATH%;C:\MQM\MQEI\BIN"

SET MQEI_XLAT_PATH=C:\MQM\MQEI\CONV

SET MQEI_INI_PATH=C:\MQM\MQEI

Note During the installation process, your Microsoft Visual C++ 4.0
Runtime library file (MSVCRT40.DLL) file may be updated.

11. The setup program will automatically add icons to the program group
you specified earlier in the the installation process. These are:

Help File

Readme

Uninstall MQSeries Enterprise Integrator

Note For the uninstall option to work, you must not move the files after
installation.

36 MQSeries Enterprise Integrator for Lotus Notes User's Guide

The MQEI components are now installed on your system in the following
directories, unless you changed the default directory or chose not to install
all the components:

mqm\mqei
The files in this directory are:
readme.txt - A ReadMe file. Text that MUST be read before using the
MQEI.
mqei.ini - The MQEI initialization file. This is an example that you can
use to run the samples.
All other files are needed by the uninstall option.

mqm\mqei\bin
A directory containing the MQEI executables and the Windows 32 bit
version of the MQEI.

mqm\mqei\conv
A directory containing the files needed to support character conversion.

mqm\mqei\database
A directory containing the MQEI Definition database, MQEI Security
database, and a design template for each.

mqm\mqei\docs
A directory containing the MQEI User Guide in Portable Document
Format (mqeihelp.pdf) and as a Notes database (mqeihelp.nsf).

mqm\mqei\samples
A directory containing components needed to run the MQEI samples.
This directory contains the MQEI Samples database (mqeisamp.nsf).

If you chose to install the MQEI components in to a directory other than the
default directory (mqm\mqei), substitute mqm\mqei with the location you
specified earlier in the installation process.

Chapter 2: Getting Started 37

Installing on Windows 3.1, Windows for Workgroups, WIN OS/2
If you are installing from the CD, place it in the CD-ROM drive. If you are
installing from a server, ensure you are connected to it.

Tip You are recommended to exit any other Windows applications that you
may have running before you start to install MQSeries Enterprise Integrator
for Lotus Notes.

1. From Windows Program Manager:

Select File Run

Type drive:\win16\mqei\setup
substituting drive with the name of the drive from which you want
to install the MQEI

Press enter

2. The MQEI Welcome window is displayed, introducing the installation
process. Select Next to continue.

3. Select the destination path panel, is displayed. If you want to use the
default drive and directory, select the Next button to continue.
Alternatively, change the drive and directory as required and select the
Next button to continue.

Note The uninstall option removes files from the directories into which
the install process places them.

4. Select Components panel is displayed, showing a list of components
that you can install. All components are selected by default. To deselect
any component, click on the tick-mark preceding it. When you have
selected the components you want, select the Next button to continue.

5. Select Program Folder window is displayed. The default name is
MQSeries Enterprise Integrator for Lotus Notes. Choose a name and
select the Next button to continue.

6. Start Copying Files window is displayed, summarizing the selections
you have made so far. If any amendments are necessary, use the Back
button to return to the relevant window and make any changes.
Otherwise, select the Next button to continue.

7. The next window displayed shows the progress of the installation
process.

Note Select the Cancel button if you have a need to stop the install, in
which case the Exit Setup window is displayed. Select the Exit Setup
button to stop the install, otherwise select the Resume button to
continue with the install.

8. Setup Complete window is displayed. Uncheck the box if you do not
want to view the ReadMe file at this point. Select the Finish button.

38 MQSeries Enterprise Integrator for Lotus Notes User's Guide

9. Installation is now complete. If you have chosen to view the ReadMe
file, the Notepad application runs to display the file.

10. The folder on your desktop contains:

Uninstall MQSeries Enterprise Integrator

Readme

Documentation

11. Reboot your system.
Your AUTOEXEC.BAT file is updated with the following statements:

SET PATH=%PATH%;C:\MQM\MQEI\BIN

SET MQEI_XLAT_PATH=C:\MQM\MQEI\CONV

SET MQEI_INI_PATH=C:\MQM\MQEI

The MQEI components are now installed on your system in the following
directories, unless you changed the default directory or chose not to install
all the components:

mqm\mqei
The files in this directory are:
readme.txt - A ReadMe file. Text that MUST be read before using the
MQEI.
mqei.ini - The MQEI initialization file. This is an example that you can
use to run the samples.
All other files are needed by the uninstall option.

mqm\mqei\bin
A directory containing the MQEI executables and the Windows 16 bit
version of the MQEI.

mqm\mqei\conv
A directory containing the files needed to support character conversion.

mqm\mqei\database
A directory containing the MQEI Definition database and the MQEI
Security database.

mqm\mqei\docs
A directory containing the MQEI User Guide in Portable Document
Format (mqeihelp.pdf) and as a Notes database (mqeihelp.nsf).

mqm\mqei\samples
A directory containing components needed to run the MQEI samples.
This directory contains the MQEI Samples database (mqeisamp.nsf).

Chapter 2: Getting Started 39

If you are installing MQEI for the first time
Copy the MQEI User Guide database (mqeihelp.nsf) in the docs directory to
your Notes/data directory.

Copy the MQEI Samples database (mqeisamp.nsf) in the samples directory,
and the MQEI Definition and MQEI Security databases and templates
(mqeidata.nsf, mqeidata.ntf, mqeisecu.nsf, mqeisecu.ntf) in the database
directory, to your Notes data directory. These three databases together
contain the code and MQEI definitions that comprise the MQEI samples.

When copying Notes databases on AIX, HP-UX or Sun Solaris, ensure that
appropriate write permission bits are preserved in the new database copies.

Copy the mqei.ini file in the mqei directory to a different directory (your
Notes/data directory for example), and update the environment variable
MQEI_INI_PATH to reflect the new directory.

For more information about environment variables, see "MQEI
Environment variables" earlier in this chapter.

After restarting your system, you can run the MQEI samples .

See the Appendices for information about the samples.

When you start to create your own MQEI applications and definitions, you
are recommended to create a new MQEI Definition database and a new
MQEI Security database with new names. You can do this either by copying
the mqeidata.nsf and mqeisecu.nsf files, or by selecting File-Database-New
and specifying mqeidata.ntf or mqeisecu.ntf (as appropriate) as the
database template. Creating new databases in this manner makes it much
easier for you to apply IBM-supplied maintenance to the MQEI samples
and your own MQEI applications.

Your mqei.ini file requires updating to reflect the names of your new
databases.

For more information about the initialization file, see "Setting up your
MQEI initialization file" later in this chapter.

40 MQSeries Enterprise Integrator for Lotus Notes User's Guide

If you are updating your MQEI installation
Copy the MQEI User Guide database (mqeihelp.nsf) in the docs directory to
your Notes data directory.

If you have modified the code or MQEI definitions that comprise the MQEI
samples (mqeidata.nsf, mqeisecu.nsf, mqeisamp.nsf), first backup these
files. Then copy the MQEI Samples database (mqeisamp.nsf) in the samples
directory, and the MQEI Definition and MQEI Security databases and
templates (mqeidata.nsf, mqeidata.ntf, mqeisecu.nsf, mqeisecu.ntf) in the
database directory, to your Notes data directory. This upgrades the MQEI
samples to the level of MQEI you have just installed. This will overwrite the
existing files with those names.

To upgrade the definitions in your own MQEI Definition and MQEI
Security databases used by your MQEI applications, ensure the design is
replaced by selecting File-Database-Replace Design and specifying
mqeidata.ntf or mqeisecu.ntf (as appropriate) as the database template. You
will also have to rebuild your MQEI Message definitions in your MQEI
Definition database (see Chapter 3). This will bring your databases up to the
level of MQEI you have just installed. Failure to do this may result in
errors when you next run your MQEI applications.

Your mqei.ini file may require modification, but only if the update has
changed the format of the mqei.ini file. If this is the case, the MQEI ReadMe
file supplied with the update will indicate this.

Chapter 2: Getting Started 41

Setting up your MQEI initialization file

This is a formatted plain text file, named mqei.ini, that is read by the
EISession object and by utility programs such as the BMS map conversion
utility. It contains environment specific information, such as:

Basic system information including the local character set and encoding

The name and location of the MQEI Definition database

The name and location of the MQEI Security database

You can also include comments in your mqei.ini file. If you start a line with
the semi-colon (;) character, it is treated as a comment. The legal values for
all the keywords are included as comments in your sample mqei.ini file that
is provided as part of the MQEI package.

You must set the MQEI_INI_PATH environment variable to point to your
mqei.ini file. If you do not set the MQEI_INI_PATH environment variable,
you get the reason code EIRC_INI_OPEN_ERROR.

You will need to edit the MQEI initialization file before you can use it. For
more information, see "Editing the initialization file" later in this chapter.

Note There must be one mqei.ini file on every client and server that you
run MQEI LSX code and utility programs on.

42 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Editing the initialization file
Before you can use the MQEI initialization file, you will need to edit it
depending on the attributes of your MQEI LSX system and where your
MQEI databases are stored. You can edit the mqei.ini file using a standard
text editor.

The mqei.ini file includes the following sections and keywords:

Base (signified by the [Base] stanza)

CharacterSet

Encoding

MQEI Definition database (signified by the [DefinitionDatabase] stanza)

DatabaseType

DatabaseName

ServerName

MQEI Security database (signified by the [SecurityDatabase] stanza)

DatabaseType

DatabaseName

ServerName

Note
If the EISession class cannot find a section (Base, DefinitionDatabase or
SecurityDatabase) within the mqei.ini file, it returns a reason code of
EIRC_INI_SECTION_NOT_FOUND.
If the EISession class cannot find a keyword (CharacterSet, Encoding,
DatabaseType, DatabaseName or ServerName) within a section of the
mqei.ini file, it returns a reason code of
EIRC_INI_KEYWORD_NOT_FOUND.
If the EISession class cannot find a value associated with a keyword, it
returns a reason code of EIRC_INI_VALUE_NOT_SPECIFIED.

Chapter 2: Getting Started 43

[Base]
This section must be present in the mqei.ini file. It describes certain basic
attributes of the MQEI LSX system, and contains the following keywords.

CharacterSet
The character set of the local machine, expressed as a code page number, or
the word 'Local'. If you set the CharacterSet to 'Local', the MQEI LSX
determines the local character set automatically. It is mandatory.

You are recommended not to set this to a numeric value unless you need to
override the local character set. However, you may need to do this if you
are running Windows NT or Windows 95.

For more information, see "Data Conversion" in Chapter 11.

Legal Values :
Local
CharacterSet = Local

A code page number
CharacterSet = nnnn

Note If you specify an invalid value for CharacterSet, the EISession class
returns EIRC_INVALID_CHARACTER_SET.

Encoding
The encoding of integer data on the local machine, expressed as the name of
an operating system, or the word 'Local'. If you set Encoding to 'Local', the
MQEI LSX determines the local encoding automatically. It is mandatory.

You are recommended not to set this to a specific value unless you need to
override the local encoding.

Legal Values :
Local
Encoding = Local

AIX
Encoding = AIX

HP-UX
Encoding = HP-UX

OS/2
Encoding = OS/2

Windows 3.1
Encoding = Windows 3.1

44 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Windows 95
Encoding = Windows 95

Windows NT
Encoding = Windows NT

Sun OS
Encoding = Sun OS

Sun Solaris
Encoding = Sun Solaris

Note If you specify an invalid value for Encoding, the EISession class
returns the reason code, EIRC_INVALID_ENCODING.

Chapter 2: Getting Started 45

[DefinitionDatabase]
This section must be present in the mqei.ini file. It describes the attributes of
the MQEI Definition database to be used by the MQEI LSX and utility
programs, and contains the following keywords.

DatabaseType
The type of the MQEI Definition database. It is mandatory.

Legal Values :
LotusNotes
DatabaseType = LotusNotes

Note If you enter an invalid DatabaseType the EISession class returns the
reason code, EIRC_INVALID_DB_TYPE.

DatabaseName
The location of the MQEI Definition database. It is mandatory.

For example:

DatabaseName = E:\NOTES\DATA\MQEIDATA.NSF (for Intel
platforms)
or

DatabaseName = /home/userid/notesr4/mqeidata.nsf (for UNIX
systems)

ServerName
The name of the Lotus Notes server upon which the MQEI Definition
database resides. It is mandatory. Specify the keyword "Local" if the
database resides on your local workstation otherwise the full server name
must be specified.

For example:

ServerName = Local

46 MQSeries Enterprise Integrator for Lotus Notes User's Guide

[SecurityDatabase]
This section must be present in the mqei.ini file. It describes the attributes of
the MQEI Security database to be used by the MQEI LSX and utility
programs, and contains the following keywords.

DatabaseType
The type of the MQEI Security database. It is mandatory.

Legal Values :
LotusNotes
DatabaseType = LotusNotes

None
DatabaseType = None

Note If you enter an invalid DatabaseType the EISession class returns the
reason code, EIRC_INVALID_DB_TYPE.

DatabaseName
The location of the MQEI Security database. It is mandatory if
DatabaseType is "LotusNotes", otherwise it may be omitted.

For example:

DatabaseName = E:\NOTES\DATA\MQEISECU.NSF (for Intel
platforms)
or

DatabaseName = /home/userid/notesr4/mqeisecu.nsf (for UNIX
systems)

ServerName
The name of the Lotus Notes server upon which the MQEI Security
database resides. It is mandatory if DatabaseType is "LotusNotes",
otherwise it may be omitted. Specify the keyword 'local' if the database
resides on your local workstation otherwise the full server name must be
specified.

For example:

ServerName = Local

Chapter 2: Getting Started 47

Example mqei.ini files
The mqei.ini file that is provided as part of the MQEI package contains the
legal values for all of the keywords as comments to help you get started
quicker. You can delete these if you prefer and just have a plain mqei.ini file
with no comments.

;***

; Sample mqei.ini file

;***

[Base]

Encoding = Local

;---

; Legal Values:

; Encoding = Local <==== RECOMMENDED

; Encoding = AIX

; Encoding = HP-UX

; Encoding = OS/2

; Encoding = Sun OS

; Encoding = Sun Solaris

; Encoding = Windows 3.1

; Encoding = Windows 95

; Encoding = Windows NT

;---

CharacterSet = Local

;---

; Legal Values:

; CharacterSet = Valid code page number

; CharacterSet = Local <==== RECOMMENDED

;---

;***

; DefinitionDatabase section...

;***

48 MQSeries Enterprise Integrator for Lotus Notes User's Guide

[DefinitionDatabase]

;---

; Name of your MQEI Definition database

;---

DatabaseName = mqeidata.nsf

;---

; Type of your Definition Database (MUST BE: LotusNotes)

;---

DatabaseType = LotusNotes

;---

; Name of the Lotus Domino Server where your MQEI Definition

; database resides

;---

ServerName = Local

;---

; Legal Values:

; ServerName = Local

; ServerName = Your Lotus Domino Server name

;---

;***

; SecurityDatabase section...

;***

[SecurityDatabase]

;---

; Name of your MQEI Security database

;---

DatabaseName = mqeisecu.nsf

;---

; Type of your Security Database

;---

Chapter 2: Getting Started 49

DatabaseType = LotusNotes

;---

; Legal Values:

; DatabaseType = LotusNotes

; DatabaseType = None

;---

;---

; Name of the Lotus Domino Server where your

; MQEI Security database resides

;---

ServerName = Local

;---

; Legal Values:

; ServerName = Local

; ServerName = Your Lotus Domino Server name

;---

The following is an example of a typical mqei.ini file if you are not using the
MQEI Security database and the MQEI Definition database resides on a
Domino server.

[Base]

 CharacterSet = Local

 Encoding = Local

[DefinitionDatabase]

 DatabaseType = LotusNotes

 DatabaseName = home/user1/notesr45/mqeidata.nsf

 ServerName = ABC Server1/XYZ

[SecurityDatabase]

 DatabaseType = None

50 MQSeries Enterprise Integrator for Lotus Notes User's Guide

The following is an example of a typical mqei.ini file if you are using the
MQEI Security database and both databases reside on your own local
workstation.

[Base]

 CharacterSet = Local

 Encoding = Local

[DefinitionDatabase]

 DatabaseType = LotusNotes

 DatabaseName = c:\path\mqeidata.nsf

 ServerName = Local

[SecurityDatabase]

 DatabaseType = LotusNotes

 DatabaseName = c:\path\mqeisecu.nsf

 ServerName = Local

Chapter 2: Getting Started 51

Post-Installation Check program

To check you have installed the MQEI LSX correctly, you should run the
Post-Installation Check program.

This program is a LotusScript agent that you run from the Actions menu
when the MQEI Samples database (mqeisamp.nsf) is selected on your
workspace.

The program checks that:

You have an MQEI initialization file (mqei.ini) on your system that it
can access.

All keywords are present in the mqei.ini file.

The supplied MQEI Definition database is located in the place indicated
in the mqei.ini file.

The supplied MQEI Security database, if used, is located in the place
indicated in the mqei.ini file.

All the definitions needed by the samples are present in the relevant
database.

Running the Post-Installation Check program
To run this you must:

Set the environment variable, MQEI_INI_PATH, to point to your
mqei.ini file, or make sure your mqei.ini file is in the current working
directory when you run Notes.
Use the platform specific commands to set the environment variable:

52 MQSeries Enterprise Integrator for Lotus Notes User's Guide

To set the environment variable on OS/2, WIN-OS/2, Windows 3.1,
Windows 95 and Windows NT:
Command Effect

SET MQEI_INI_PATH=drive:\directory Sets the directory where the mqei.ini
file is stored

SET MQEI_INI_PATH= Removes the MQEI_INI_PATH
environment variable

SET MQEI_INI_PATH Displays the current setting of the
mqei.ini file directory path on OS/2,
Windows for WorkGroups, and
Windows 3.1

ECHO %MQEI_INI_PATH% Displays the current setting of the
mqei.ini file directory path

SET Displays the contents of all the
environment variables on OS/2,
Windows 3.1, Windows for
WorkGroups, and Windows NT

To set the environment variable on AIX, HP-UX and Sun Solaris:
Command Effect

export MQEI_INI_PATH=/directory Sets the directory where the mqei.ini
file is stored

unset MQEI_INI_PATH Removes the MQEI_INI_PATH
environment variable

echo $MQEI_INI_PATH Displays the current setting of the
mqei.ini file directory path

set Displays all the settings for all the
environment variables for the session

Add the MQEI Samples database (mqeisamp.nsf) to your workspace.

Customize your mqei.ini file to your local environment.

For more information, see "Setting up your MQEI initialization file" earlier
in this chapter.

Chapter 2: Getting Started 53

Having completed these steps:

1. Select the MQEI Samples database so that it is highlighted - do not open
it

2. Choose Actions / Run MQEI Post-Installation Check from the Notes
menu bar

3. If the program is successful, the message "MQEI Post-Installation Check
completed successfully" is displayed.

If the program finds a problem, a message is displayed and the check
terminates. If there are definitions missing for samples that you do not want
to run, and everything else is OK, you can continue.

If you need the definitions or if some error has been identified, correct the
error and rerun the program.

If the eilsx library has not been loaded, the message

Error loading USE or USELSX module: eilsx

is displayed. If this occurs, check the installation documentation for details
of where it should be and put the eilsx library in the correct location before
you run it again.

54 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Using the MQEI for the first time

Having successfully installed the MQEI LSX, the next step is to start using
it. The possibilities are:

You have an existing enterprise application for which you want to
develop a Notes interface.

You are developing a new application that uses both Notes and an
enterprise system, e.g. CICS.

In both cases, the same principles apply when using the MQEI LSX. You:

1. Create definitions in your own MQEI Definition database that describe
the:

Enterprise application you wish to access (MQEI Service definitions).
To do this you need to know the properties of the enterprise
application, such as transaction name or program name, MQSeries
queue manager name or CICS system name, and any MQSeries
queue names.

Messages that you want to send to the enterprise application (MQEI
Message definitions).
To do this you need to know the formats of the data to be sent to the
application, such as the format of MQSeries messages, CICS
COMMAREAs or CICS BMS maps.
MQSeries message and CICS COMMAREAs are most likely to be
defined by data structures in the COBOL, C, PL/I or other language
copybooks used to build the application.
CICS BMS map definitions are most likely to be in source files
containing DFHMSD, DFHMDI, and DFHMDF macros.

Messages that you want to receive from the enterprise application
(MQEI Message definitions).
To do this you need to know the formats of the data to be received
from the application, such as the format of MQSeries messages, CICS
COMMAREAs or CICS BMS maps.
MQSeries message and CICS COMMAREAs are most likely to be
defined by data structures in the COBOL, C, PL/I or other language
copybooks used to build the application.
CICS BMS map definitions are most likely to be in source files
containing DFHMSD, DFHMDI, and DFHMDF macros.

2. Create a Notes application that includes LotusScript programs that use
the MQEI LSX, making use of the definitions you have created in the
MQEI Definition database.

3. Optionally create definitions in your own MQEI Security database that
describe the security details for each user of the application.

Chapter 2: Getting Started 55

This requires each user of the Notes application to have an MQEI
Security definition that contains their enterprise system userid and
authenticator. As an alternative, you can prompt the user for this
information, where practical, in your Notes application, in which case
no MQEI Security definitions are required.

For more information on Security, see Chapter 5.

56 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Where to go next...
For more information about how to create MQEI Service and MQEI
Message definitions, see "The MQEI Definition database" in Chapter 3.

For more information about how to create MQEI Security definitions, see
"The MQEI Security database" in Chapter 3. For more information on
"Security" in general, see Chapter 5.

For information on "Design and Programming using the MQEI", see
Chapter 4. For programming information specific to each particular type of
enterprise service, see Chapters 6-10.

Tip A good starting point is to examine the sample applications in the
MQEI Samples database. These are explained in Appendices A - F.

For futher samples, information, and help, see the IBM Red book:

Lotus Notes and the MQSeries Enterprise Integrator, available at URL:

http://www.redbooks.ibm.com/SG242217/sg242217.html

or order book no: SG24-2217

Chapter 2: Getting Started 57

58 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 3 Using the MQEI databases

This chapter covers:

The roles and key features of the MQEI databases.

Instructions on how to maintain the MQEI database information.

Errors that can arise and what to do about them.

Chapter 3: Using MQEI databases 59

General

This section provides you with some general information about the MQEI
databases.

It includes:

About the MQEI databases

Location of the MQEI databases

Applying service upgrades to the MQEI databases

About MQEI definitions

Using the Action Bar

About the MQEI databases
The MQEI databases are Lotus Notes databases that contain definitions of
resources that are used by the MQEI LSX at run-time. There are two of
them:

The MQEI Definition database contains definitions of enterprise
services and enterprise message formats, and is mandatory.

The MQEI Security database contains definitions of your users'
enterprise security parameters, and is optional.

Each definition is stored in the database as a Notes document. Both
databases are shipped as .NSF files. Design templates for both databases are
also shipped as .NTF files.

The MQEI Definition database is shipped as mqeidata.nsf and the MQEI
Security database is shipped as mqeisecu.nsf. You do not have to keep these
names. You can call the MQEI databases whatever you like.

Both databases are explained in more detail in subsequent sections. The
following sections contain general information that is applicable to both
databases.

60 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Help within the MQEI databases
You can get context sensitive help on any of the user input fields in both of
the MQEI databases. Click on the descriptive text to the left of the user
input field and a small box will appear telling you:

What the field is about

The legal values you can enter in the current field

One or more examples of the values you can enter in the current field

Location of the MQEI databases
You are recommended to locate the MQEI databases on Domino servers,
and to use Notes Access Control facilities to control which users have
access to them. This approach makes administration of the databases
simpler.

You can store more than one copy of the MQEI databases on your Domino
server though you can only specify the location of one of them in your
mqei.ini file.

If your users are accessing the MQEI databases from Web browsers, the
MQEI databases must be located on a Domino server.

Applying service upgrades to the MQEI databases
When applying service upgrades to the databases, IBM will ship updated
design template .NTF files. You should use these to replace the design of
your copies of the databases by selecting File-Database-Replace Design
from the Notes menu bar.

This will only replace the design of your database - not the documents
stored within it. This means that you will retain any existing MQEI
Definitions when you apply service upgrades to your MQEI databases.

Additionally, certain documents need to be "rebuilt" after service is applied.

For more information, see "Building MQEI Message definitions" later in this
chapter.

Chapter 3: Using MQEI databases 61

About MQEI definitions
Related definition documents are grouped together in views. A navigator is
provided so you can select the view you want to work with.

A view will be one of either:

Messages & Fields

Field Types

Services

Categories

Security definitions

Once in a view, you may create, copy, view, change, delete and categorize
definition documents using buttons contained in the action bar and the
dialog list in the view. The action bar is the area directly below the toolbar.
When working with a definition document, the action bar contains buttons
that allow you to perform actions specific to that document type, such as
edit, save, copy, re-position and close.

Using the Action Bar
Caution: Although it is possible to use keyboard short-cuts and standard
pull-downs to perform actions such as deleting, copying and pasting
definition documents, you are strongly recommended to use the buttons
provided by the action bar in preference. Extra processing takes place when
a button is pressed, which ensures that the integrity of the database is
maintained. Certain definition documents contain references to related
definitions, and this information is automatically maintained when a button
is pressed but not when a keyboard short-cut or standard pull-down is
used.

The one occasion when the use of keyboard short-cuts and standard
pull-downs is recommended is when copying and pasting definition
documents between databases. This may occur, for example, when
updating your production master database from a test version. It is
important to ensure that the definition documents being pasted do not exist
on the target database. If they do, you should delete them first using the
appropriate action bar button.

62 MQSeries Enterprise Integrator for Lotus Notes User's Guide

The MQEI Definition database

About the MQEI Definition database
The MQEI Definition database is a Lotus Notes database that contains
definitions of the enterprise services with which you want to communicate,
and the enterprise messages you want to send and receive. When you
create an EIService or EIMessage object in your LotusScript program, the
MQEI LSX reads the corresponding MQEI Message or MQEI Service
definition from the MQEI Definition database.

This hides a lot of the complexity of communicating with the service and
building and interpreting messages from the LotusScript program.

Definitions are stored as documents in the MQEI Definition database. You
can create, view, modify, copy and delete definitions.

There are four object definitions that you can work with in this database:

MQEI Message

Field Type

Field

MQEI Service

Chapter 3: Using MQEI databases 63

Setting up the MQEI Definition database
The MQEI Definition database should reside on your Domino server. If
your MQEI application runs under a Notes client, each user of the MQEI
application should be given Reader access to the MQEI Definition database.

If your MQEI application runs under an agent on the Domino server, the
agent owner (the person who last saved the agent) should be given Reader
access.

You should have Author access or higher in order to create the definitions
your MQEI applications need.

If you are developing an MQEI application which is to be deployed on
several Domino servers across your organization, you are recommended to
maintain a master version of the MQEI Definition database and distribute it
using Notes replication. When setting up replication, ensure that deletions
are replicated as failure to do this may result in duplicate definition
documents which may cause an MQEI LSX error at run-time, or may cause
the MQEI LSX to use obsolete definitions.

Note Deletions are replicated by default.

Building definition documents
MQEI Message definition documents need to be 'built' before they can be
used by the MQEI LSX. This enables the MQEI LSX to run much quicker at
run-time. You must rebuild whenever they have been modified. You can
tell if an MQEI Message definition has been modified since it was last built
by the icon next to the MQEI Field definition within the MQEI Message
definition. If there is a red cross next to the MQEI Message definition field,
you have made changes since the MQEI Message definition was last built
and need to rebuild the MQEI Message definition. These are marked with a
red cross. Failure to do this may cause an MQEI LSX error at run-time, or
may cause the MQEI LSX to use obsolete definitions.

You should only Build MQEI Message definitions on the master version of
the database. You can then distribute the built MQEI Message definitions
using Notes replication as described above.

Caution If you do not do this, you may experience replication conflicts.

For more information, see "Building MQEI Message definition" later in this
chapter.

64 MQSeries Enterprise Integrator for Lotus Notes User's Guide

MQEI Message definition
An MQEI Message definition defines the structure of an EIMessage that
will be sent to, or received from, an enterprise service. An EIMessage object
is created from an MQEI Message definition by the MQEI LSX. Note that an
MQEI Message definition only contains application data. For example, it
may represent a CICS DPL program COMMAREA, a CICS 3270 screen or
the user portion of an MQSeries message.

Each MQEI Message definition acts as a container for the Fields that
make-up the message, each of which is defined by a Field definition.

It comprises:

Message Name

Message Description

Message Format

Message Name
Editable text field that defines the name of the MQEI Message definition.
This is the Message Name that is quoted in your LotusScript application.

At the MQEI API, Message Name is accessible via the Name property of
the EIMessage Class.

Message Description
Editable text field that describes what the MQEI Message definition
contains. It is there for your information so that it is easier for you to
remember what the MQEI Message definition contains.

Message Format
Editable text field that describes the format of the data within the message.
Message Format is the name of the format that may be used by the
enterprise service.

At the MQEI API, Message Format is accessible via the Format property of
the EIMessage Class.

Chapter 3: Using MQEI databases 65

Key points:
A new MQEI Message definition only requires a Message name
initially.

The other fields in the MQEI Message definition form are optional.

The name of an MQEI Message definition must be unique.

The names of MQEI Message definitions are case sensitive so you
cannot have an MQEI Message definition with a message name of
MQMsg and an MQEI Message definition and a message name of
mqmsg.

The name of an MQEI Message definition must have no more than 16
characters.

Building MQEI Message definitions
MQEI Message definitions need to be built for performance reasons. Before
MQEI Messages are built, each Field definition is contained in a separate
Notes document. After MQEI Message definitions are built, all the Field
definitions are contained in one Notes document.

For more information, see "Building MQEI Message definitions" later in this
chapter.

66 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Field Type definition
A Field Type definition acts as a template for one or more Field definitions
to save re-entering common information about Fields. Field Types are not
used by the MQEI LSX API - they are used solely within the MQEI
Definition database to define default values for Field definitions. Use Field
Types to create default values for your Field definitions.

It comprises:

Type Name

Data Type

String Type

String Format

Default Value

Length

Type Name
Editable text field that defines the name of the user-defined Field Type.

Data Type
Standard keyword field that allows you to define the Data type of the Field
Type.

The default value for this field is STRING.

String Type
Standard keyword field that allows you to specify if a field of data type
STRING is fixed length or variable length.

The default value for this field is FIXED LENGTH.

At the MQEI API, String Type is accessible via the GetDataType method of
the EIMessage class.

String Format
Standard keyword field that allows you to specify the format of a variable
length string. The supported formats are:

String data terminated by a null (or by the end of the message - or by
the end of the message segment if IMS)

String data preceded by two bytes specifying the length of the string
data

The default value for this field is NULL TERMINATED.

Chapter 3: Using MQEI databases 67

Default Value
Editable text field that defines a default value for the field.

Length
Editable numeric field that defines the length of the field in bytes.

The default value for this field is 1.

You can define Field Types that you can use in your Field definitions. The
advantage of doing this is that you can change the Field Type definition,
and the corresponding Field definition values in a number of Field
definitions will change automatically without you having to edit each
individual Field definition.

For example, if a number of Field definitions have a Type of
"PartNumberType" and you want to change the Field default value (or
length or data type) in all occurrences, you can do this by editing the Field
Type definition.

Key points:
Use Field Type definitions as templates for Field definitions.

Use the Field Type definition view to manage and edit your Field Type
definitions.

A new Field Type definition initially requires a Field Type name, a Data
Type, and a Length.

The Default Value is optional.

The Field Type name of a Field Type definition must be unique.

The Field Type name must have no more than 32 characters.

The Length, String Type, and String Format are dependent on the Data
Type of the Field Type definition.

Field Types cannot be deleted whilst "in use" by Field definitions.

Caution Do not delete Field Type definitions using a keyboard short-cut.

68 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Field definition
A Field definition describes a field within a message. A Field definition is
owned by exactly one MQEI Message definition. It comprises:

Message Name

Field Name

Description

Field Type

Data Type

String Type

String Format

Default Value

Length

Segment #

Has Attributes *

Row *

Column *

Pad Character

Alignment

Position

Note Fields marked with # are only used with IMS via MQSeries service
messages.
Fields marked with * are only used with CICS 3270 direct service messages.

Message Name
Pre-defined value defining the name of MQEI Message that contains the
current Field definition. Fields definitions can only exist within MQEI
Message definitions.

At the MQEI API, Message Name is accessible via the Name property of
the EIMessage Class.

Field Name
Editable text field defining the name of the individual field within the
Message. This is the name by which it is known to your LotusScript
application.

At the MQEI API, Field Name is accessible via the GetFieldName method
of the EIMessage Class.

Chapter 3: Using MQEI databases 69

Description
Editable text field that allows you to add a description of the field.

Field Type
Editable text or a standard keyword field that allows the current field
definition to inherit the properties of an existing user-defined Field Type
definition. The properties inherited are:

Data Type

String Type

String Format

Default Value

Length

Data Type
Standard keyword field that allows you to define the data type of the field.

The default value for this field is STRING.

At the MQEI API, Data Type is accessible via the GetDataType method of
the EIMessage Class.

String Type
Standard keyword field that allows you to specify if a field of data type
STRING is fixed length or variable length.

The default value for this field is FIXED LENGTH.

At the MQEI API, String Type is accessible via the GetDataType method of
the EIMessage class.

String Format
Standard keyword field that allows you to specify the format of a variable
length string. The supported formats are:

String data terminated by a null (or by the end of the message - or by
the end of the message segment if IMS)

String data preceded by two bytes specifying the length of the string
data

The default value for this field is NULL TERMINATED.

Default Value
Editable text field that allows you to define a default value for the field.

70 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Length
Editable text field that defines the length of the field in bytes.

The default value for this field is 1.

At the MQEI API, Length is accessible via the GetLength method of the
EIMessage Class.

Segment
Editable text field that indicates the segment number the field resides in.

The default value for this field is 1.

At the MQEI API, Segment is accessible via the GetSegment method of the
EIMessage Class.

Has Attributes
Standard keyword field that allows you to specify whether the field has any
screen attributes associated with it or not.

The default value for this field is NO.

Row
Editable text field that allows you to specify the row number of the field if
the message containing this field is a CICS 3270 screen.

Column
Editable text field that allows you to specify the column number of the field
if the message containing this field is a CICS 3270 screen.

Pad Character
Standard keyword field. The pad character field applies only to data types,
STRING, AUTHENTICATOR and SYSTEM_AUTHENTICATOR and
allows you to specify the character that will be used to pad field values that
are shorter than the length property when the message is sent. The only
legal values are NULL and SPACE.

The default value for this field is NULL.

Alignment
Standard keyword field that allows the MQEI LSX to align the field on a
designated boundary when sending or receiving the enterprise message. It
is of use for enterprise messages that have been processed by a compiler
that strengthens the alignment boundary of certain data types. For
example, forcing a LONG data type onto an 8 byte boundary.

The default value for this field is 1 BYTE.

Chapter 3: Using MQEI databases 71

Position
Editable text field that allows you to specify the position of the field within
the message.

Every field in a message has a "location" value associated with it so that a
field can be correctly placed in a message. You specify the location by
specifying the position of the field and also by:

Selecting the alignment option when you define the field in the
message. You have the choice of alignment on a byte, half-word, word
or double-word boundary.

Selecting the row and column options. This is appropriate when
working with data displayed on a screen.

Key points:
Before you define any Field definitions, consider creating Field Type
definitions as templates for your Field definitions. This may save you
time later if you have lots of Fields that contain the same values.

If Field Type is specified, String Type, String Format, Default Value,
Length, and Data Type are automatically derived from the Field Type
definition.

Note You can override the Default Value derived from the Field Type
definition if you want to change it to a different value.

A new Field definition initially only requires the following fields to be
completed:

Message Name

Field Name

All other fields in the Field definition form are optional.

The Field Name of a Field definition must be unique and have no more
than 32 characters.

72 MQSeries Enterprise Integrator for Lotus Notes User's Guide

MQEI Service definition
An MQEI Service definition defines the properties of an enterprise service
to which messages will be sent and received. An EIService object is created
from an MQEI Service definition by the MQEI LSX.

It comprises:

Service Name

Type of Service

Service Step

Service Context

Connection Manager

Outbound Connection

Inbound Connection

Character Set

Encoding

System Name

Service Name
Editable text field that defines the name of the MQEI Service definition.
This is the name by which it is known in the LotusScript application.

At the MQEI API, Service Name is accessible via the Name property of the
EIService class.

Type of Service
Standard keyword field that defines the type of enterprise service.
Allowed keywords are:

CICS 3270 Direct

CICS DPL Direct

CICS DPL via MQSeries

IMS via MQSeries

Native MQSeries

At the MQEI API, Type of Service is accessible via the ServiceType property
 of the EIService class.

Chapter 3: Using MQEI databases 73

Service Step
Editable text field that defines the name of the first executable step of the
enterprise service as known on the enterprise system. This would normally
be a program name or a transaction identifier. This field does not apply to
the Native MQSeries service type.

Service Step may be case sensitive depending on the Type of Service you
have chosen. For example, the MQSeries DPL bridge is case sensitive.

At the MQEI API, Service Step is accessible via the ServiceStep property of
the EIService class.

Service Context
Editable text field that defines the name of any context with which the first
executable step of the enterprise service will execute. For example, the CICS
transaction identifier you wish a CICS DPL program to run under, or the
name of a logical terminal (LTERM) you wish to pass to an IMS transaction.

Service Context may be case sensitive depending on the Type of Service you
choose.

At the MQEI API, Service Context is accessible via the ServiceContext
property of the EIService class.

Connection Manager
Editable text field that defines the name of the connection manager being
used to communicate with the enterprise service. This would normally be
an MQSeries queue manager or the name of a CICS server as known by a
CICS client.

At the MQEI API, Connection Manager is accessible via the
ConnectionManager property of the EIService class.

Note Connection Manager names are case sensitive.

For example:

newyork.mqserv3

CICSSYS1

Outbound Connection
Editable text field that defines the name of the connection being used for the
transmission of outbound messages. For example, this could be the name
of an MQSeries queue or a CICS terminal model name.

At the MQEI API, Outbound Connection is accessible via the
OutboundConnection property of the EIService class.

Note Outbound Connection names are case sensitive.

74 MQSeries Enterprise Integrator for Lotus Notes User's Guide

For example:

PARTS.APPLICATION

Inbound Connection
Editable text field that defines the name of the connection being used for the
transmission of inbound messages. For example, this could be the name of
an MQSeries queue.

At the MQEI API, Inbound Connection is accessible via the
InboundConnection property of the EIService class.

Note Inbound Connection names are case sensitive.

For example:

PARTS.REPLY

Character Set
Editable numeric field that defines the character set of the enterprise
system.

At the MQEI API, Character Set is accessible via the CharacterSet property
of the EIService class.

Encoding
Editable keyword field that defines the representation of numeric data on
the enterprise system.

System Name
Editable text field that defines the name of the enterprise system upon
which the enterprise service resides and upon which authentication takes
place.

This is used to locate an MQEI Security definition in the MQEI Security
database.

At the MQEI API, System Name is accessible via the SystemName property
 of the EIService class.

Key points:
The Service definition name must be unique and must not exceed 16
characters.

The allowed types of services are already defined in the dialog list.

The presence of other properties and whether they are mandatory
depends on the Type of Service chosen.

Tip For more information about what values you should specify in each of
the fields when using MQEI Service definitions, see the help on that topic.

Chapter 3: Using MQEI databases 75

Categories view
You can categorize MQEI Message definitions and MQEI Service definitions
so that you can organize them in a way that you will be able to find them
easily if you have lots of MQEI definitions in your MQEI Definition
database.

You may like to think of it as a filing system for all your MQEI Message and
Service definitions. You can store them all in a view of their own so that
you can find them easily.

For example, if you want to categorize all of the MQEI definitions used by
the IMS via MQSeries sample, you can specify the category that you want
them to appear under in the definition view for the MQEI Message
definition or the MQEI Service definition you want to categorize.

For more information, see "Using MQEI Message definitions" and "Using
MQEI Service definitions" later in this chapter.

76 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Using MQEI Message definitions

This section describes how to:

Create a new MQEI Message definition.

Copy an MQEI Message definition.

View an MQEI Message definition.

Change an MQEI Message definition.

Delete an existing MQEI Message definition and its Fields.

Categorize a new or existing MQEI Message definition.

Build an MQEI Message definition.

View a built MQEI Message definition.

Delete a built MQEI Message definition.

Chapter 3: Using MQEI databases 77

Creating a new MQEI Message definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Click "New Message" on the action bar.

4. Specify values in the "Message Name" field.

Note
The "Message Name" must not exceed 16 characters and must be
unique.
The "Message Description" field is optional and is only used to describe
the content of the MQEI Message definition.
The "Message Format" field is optional.

5. Click "Save & Close" or "Save & New" on the action bar
If you choose "Save & New", you are expected to create a new MQEI
Message definition. Only choose this option if you want to create
further MQEI Message definitions.

6. Click "Build Message(s)" on the action bar to build the MQEI Message
definition.

You are now ready to start adding Field definitions to your MQEI Message
definition. For more information, see "Creating a new Field definition" later
in this chapter.

Copying an MQEI Message definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition document you want to copy by
clicking on the twisty.

4. Open the MQEI Message definition document by double clicking it.

5. Click "Copy" on the action bar.

6. Enter a new Message Name in the blank field.

7. Click "OK Copy" on the action bar if you want to copy the MQEI
Message definition.

Note Click "Cancel Copy" on the action bar if you want to cancel the
copy operation.

78 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Viewing an MQEI Message definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition you want to view by clicking on
the twisty.

4. View the MQEI Message definition by double clicking the MQEI
Message definition document.

Changing an MQEI Message definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition you want to change by clicking
on the twisty.

4. Select the MQEI Message definition document you want to change.

5. Click "Edit Message / Field" on the action bar.

6. Change the values within the MQEI Message definition.

7. Click "Save & Close" on the action bar.

8. Re-build the MQEI Message definition.

Deleting an MQEI Message definition and its Fields
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition you want to delete by clicking on
the twisty.

4. Select the MQEI Message definition document you want to delete.

5. Click "Delete Message(s) / Field(s)" on the action bar.

6. Confirm that you want to delete the selected MQEI Message definition
and its associated fields.

Chapter 3: Using MQEI databases 79

Categorizing a new or existing MQEI Message definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition you want to categorize by
clicking on the twisty.

4. Select the MQEI Message definition document you want to categorize.

5. Click "Edit Message / Field" on the action bar.

6. Enter a new category name in the Category field or choose an existing
category name from the dialog list.

Note You can select more than one existing category if you wish.

7. Click "Save & Close" or "Save & New" on the action bar.
If you choose "Save & New" , you are expected to create a new MQEI
Message definition. Only choose this option if you want to create a new
MQEI Message definition.

8. Re-build the MQEI Message definition.

Building MQEI Message definitions
Changed MQEI Message definitions need to built for performance reasons.
Until an MQEI Message definition is built, each of the MQEI Message and
Field definitions are stored in separate Notes documents. This would make
creation of an EIMessage object by the MQEI LSX extremely slow
(especially where an MQEI Message definition contains a large number of
Field definitions).

Once an MQEI Message definition is built, it is stored in a single document
that you, as a user, cannot see.

You can see which fields have not been included in the last build by the
icon next to the MQEI Field definition within the MQEI Message definition.

If there is a green tick next to the MQEI Message definition field, it was
included in the last build.

If there is a red cross next to the MQEI Message definition field, you have
made changes since the MQEI Message definition was last built and you
need to rebuild the MQEI Message definition.

80 MQSeries Enterprise Integrator for Lotus Notes User's Guide

1. Expand the MQEI Message definition that you want to build.

2. Select the MQEI Message definition document.

3. Click "Build Message(s)".

You are asked to confirm whether you want to build only the selected
MQEI Message definition, or all the MQEI Message definitions.

Confirm this by clicking "Yes" for all messages, "No" for selected messages,
or "Cancel" to cancel the build operation.

Note When you build an MQEI Message definition, the status bar at the
bottom of the Lotus Notes window tells you which MQEI Message definition
and which Field definition is currently building.

Chapter 3: Using MQEI databases 81

Viewing a built MQEI Message definition
When an MQEI Message definition is built, all of the fields that are
contained within a single MQEI Message definition are concatenated and
stored in a single Notes document.

You can view these built MQEI Message definitions in Notes:

1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. From the Notes menu bar, choose View - Show - Folders.

3. From the Folders pane, select "6. Built Messages".
All of the built MQEI Message definitions appear in alphabetical order.

4. View the built MQEI Message definition document by double clicking
the built MQEI Message definition document.

Deleting a built MQEI Message definition

Caution You should only delete built MQEI Message definitions from the
Folders view if the MQEI LSX returns a reason code of
EIRC_DUPLICATE_DEFN (5022).

1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. From the Notes menu bar, choose View - Show - Folders.

3. From the Folders pane, select "6. Built Messages".
All of the built MQEI Message definitions appear in alphabetical order.

4. Click "Delete Built Message(s)" on the action bar.

5. Confirm that you want to delete the selected MQEI Message
definition(s).

82 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Using Field Type definitions

This section describes how to:

Create a new Field Type definition.

Copy a Field Type definition.

View a Field Type definition.

Change an existing Field Type definition.

Delete an existing Field Type definition.

Chapter 3: Using MQEI databases 83

Create a new Field Type definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Field Types".

3. Click "New Field Type" on the action bar.

4. Specify values for the Field Type in the New Field Type definition
panel.

Note The maximum length for "Type Name" is 32 characters.

5. Click "Save & Close" or "Save & New" on the action bar.
If you choose "Save & New" , you are expected to create a new Field
Type definition. Only choose this option if you want to create a new
Field Type definition.

Copying a Field Type definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Field Types".

3. Open the Field Type definition document by double clicking it.

4. Click "Copy" on the action bar.

5. Enter a new Type Name in the blank field.

6. Click "OK Copy" on the action bar if you want to copy the Field Type
definition.

Note Click "Cancel Copy" on the action bar if you want to cancel the
copy operation.

Viewing a Field Type definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Field Types".

3. View the Field Type definition by double clicking it.

84 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Changing a Field Type definition and its "relations"
A "relation" is a Field definition that shares the same Field Type definition
as the one that you want to change.

1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Field Types".

3. Select the Field Type definition document you want to change.

4. Click "Edit Field Type" on the action bar.

5. Change the values.

Note The maximum length for "Type Name" is 32 characters.

6. Click "Save & Close" on the action bar.
When the dialog box appears, confirm whether you really want to
change the Field Type definition and its relations.

7. Re-build all the MQEI Message definitions containing Field definitions
that use the Field Type definition you have just changed.

Caution You must be aware that whenever you change a Field Type
definition, you will also change any other Field definitions that use that Field
Type definition.

Deleting a Field Type definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Field Types".

3. Select the Field Type definition that you want to delete.

4. Click "Delete Field Type(s)" on the action bar.

5. Confirm that you really want to delete the Field Type definition when
prompted.

Note Field Type definitions cannot be deleted if they are currently being
used by a Field definition.
In order to remove a Field Type definition from the MQEI Definition
database, you must change the Field entries first.

Chapter 3: Using MQEI databases 85

Using Field definitions

This section describes how to:

Create a new Field definition.

Copy a Field definition.

View a Field definition.

Change an existing Field definition.

Delete an existing Field definition.

Move Field positions within an MQEI Message definition.

Change Field definitions by changing the Field Type information.

86 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Creating a new Field definition

Tip Before you create a new Field definition, you may want to create some
Field Type definitions that contain default values for each of your Field
definitions. This may save you time later.
For more information, see "Creating a new Field Type definition" earlier in
this chapter.

1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition you want to add a new Field
definition to by clicking on the twisty.

4. Select the MQEI Message definition document that you want to add a
new Field definition to.

5. Click "New Field" on the action bar.

6. Specify the values for each field in the form.

Note
The "Field Name" must not exceed 32 characters.
The "Field Description" must not exceed 48 characters.

7. Click "Save & Close" or "Save & New" on the action bar.
If you choose "Save & New", you are expected to create a new Field
definition. Only choose this option if you want to create a new Field
definition.

8. Re-build the MQEI Message definition.

Copying a Field definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition you want to copy a Field
definition from by clicking on the twisty.

4. Open the Field definition document by double clicking it.

5. Click "Copy" on the action bar.

6. Enter a new Field Name in the blank field.

7. Click "OK Copy" on the action bar if you want to copy the Field
definition.

Note Click "Cancel Copy" on the action bar if you want to cancel the
copy operation.

Chapter 3: Using MQEI databases 87

Viewing a Field definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition you want to view a Field
definition from by clicking on the twisty.

4. View the Field definition by double clicking it.

Changing an existing Field definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition containing the Field definition
you want to change by clicking on the twisty.

4. Select the Field definition you want to change.

5. Click "Edit Message / Field" on the action bar.

6. Change the values in the Field.

Note
The "Field Name" must not exceed 32 characters.
The "Field Description" must not exceed 48 characters.

7. Click "Save & Close" on the action bar.

8. Re-build the MQEI Message definition.

Deleting an existing Field definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition you want to delete a Field
definition from by clicking on the twisty.

4. Select the Field definition you want to delete.

5. Click "Delete Message(s) / Field(s)" on the action bar.

6. Confirm that you want to delete the Field definition when prompted.

7. Re-build the MQEI Message definition.

Note You can mark more than one Field definition for deletion by either
using the space bar or by clicking next to the Field definition with the
mouse.

88 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Moving Field positions within a Message definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Messages & Fields".

3. Expand the MQEI Message definition you want to move a Field
definition within by clicking on the twisty.

4. Select the Field definition you want to move.

5. Double-click the document to view it - do not click the "Edit Message /
Field" button on the action bar.

6. Click "Re-position" on the action bar.

7. Specify which existing Field definition you want to move the selected
Field definition before or after.

8. Re-build the MQEI Message definition.

Note Alternatively, if you know the exact position, you can specify it in
the Position input field of the Field definition.

Changing a Field by changing the Field Type information
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Field Types".

3. Select the Field Type definition you want to edit.

4. Click "Edit Field Type" on the action bar.

5. Change the values.

Note
The "Type Name" must not exceed 32 characters.

6. Click "Save & Close" on the action bar.

7. When the dialog box appears, confirm whether you want to update the
Field definition(s) and its relations that use this Field Type definition.

8. In the navigation pane, click "Messages & Fields".

9. Re-build all the MQEI Message definitions containing Field definitions
that use the Field Type definition you have just changed.

Caution You must be aware that whenever you change a Field Type
definition, you will also change any other Field definitions that use that Field
Type definition.

Chapter 3: Using MQEI databases 89

Using MQEI Service definitions

This section describes how to:

Create a new MQEI Service definition.

Copy an MQEI Service definition.

View an MQEI Service definition.

Change an existing MQEI Service definition.

Delete an existing MQEI Service definition.

Categorize a new or existing MQEI Service definition.

90 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Creating a new MQEI Service definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Services".

3. Click "New Service" on the action bar.

4. Specify values for each of the fields in the Service definition form.

Note The "Service Name" must not exceed 16 characters.

Note When you create a new MQEI Service definition within the MQEI
Definition database, you must use the correct case when defining values
in the Connection Manager, Outbound Connection and Inbound
Connection fields.
For example, if the Queue Manager is defined within MQSeries in
uppercase, the value you specify in the Connection Manager field must
also be in uppercase.

5. Click "Save & Close" or "Save & New" on the action bar.
If you choose "Save & New", you are expected to create a new Service
definition. Only choose this option if you want to create a new Service
definition.

Copying an MQEI Service definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Services".

3. Open the MQEI Service definition you want to copy double clicking it.

4. Click "Copy" on the action bar.

5. Enter a new Service Name in the blank field.

6. Click "OK Copy" on the action bar if you want to copy the MQEI
Service definition.

Note Click "Cancel Copy" on the action bar if you want to cancel the
copy operation.

Viewing an MQEI Service definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Services".

3. View the MQEI Service definition by double clicking it.

Chapter 3: Using MQEI databases 91

Changing an existing MQEI Service definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Services".

3. Select the MQEI Service definition you want to change.

4. Select "Edit Service" on the action bar.

5. Change the values in the MQEI Service definition.

6. Click "Save & Close" on the action bar.

Deleting an existing MQEI Service definition
1. Open MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Services".

3. Select the MQEI Service definition(s) you want to delete.

4. Choose "Delete Service(s)" on the action bar.

5. Confirm that you really want to delete the MQEI Service definition(s)
when prompted.

Categorizing a new or existing MQEI Service definition
1. Open the MQEI Definition database (e.g. mqeidata.nsf).

2. In the navigation pane, click "Services".

3. Select the Service that you want to categorize.

4. Click "Edit Service" on the action bar.

5. Enter a new category name in the Category field or choose an existing
category name from the dialog list.

Note You can select more than one existing category if you wish.

6. Click "Save & Close" on the action bar.

92 MQSeries Enterprise Integrator for Lotus Notes User's Guide

The MQEI Security database

About the MQEI Security database
The MQEI Security database is a Lotus Notes database that contains
definitions of the enterprise security parameters for each user of the MQEI
applications you create. As such, it contains the user IDs and associated
authenticators (usually passwords) needed for users to authenticate with
the enterprise systems your MQEI applications communicate with. The
MQEI LSX reads the information from the database when your LotusScript
program creates an EIService object, and passes it to the enterprise system
when appropriate.

The MQEI Security database is optional as not all systems will be using
security. However, if you use the MQEI Security database, your LotusScript
program will be able to obtain the enterprise system user ID and passwords
from it. Definitions are stored as documents in the database. You can create,
copy, view, change and delete MQEI Security definitions.

There is one object definition that you can work with in this database:

MQEI Security

For more information on Security and how you can use the MQEI Security
database, see Chapter 5.

Chapter 3: Using MQEI databases 93

Setting up the MQEI Security database
If used, the MQEI Security database should reside on your Domino server.
If your MQEI application runs under a Notes client, each user of the MQEI
application should be given Author access to the MQEI Security database.

If your MQEI application runs under an agent on the Domino server the
server should be given Author access, and the agent owner (the person who
last saved the agent) should be given Reader access.

You should have Author access or higher in order to create the MQEI
Security definitions your users need.

For every user name you have given Author access to, (including the
server), you should create an MQEI Security definition per enterprise
system that requires authentication to take place or requires that a user ID
be supplied. The MQEI Security database is set up so that each user will
only see the definitions that belong to that user. You will be able to enter all
the information required, except the authenticator (unless the MQEI
Security definition is your own). You should then instruct each of your
users to edit the MQEI Security definitions belonging to that user in order
to add the authenticators (usually passwords), if authenticators are relevant
to the enterprise systems in question.

Once an authenticator has been entered, the MQEI Security definition is
encrypted. This will prevent you from editing the definition further (unless
it is your own). You can still delete the definition.

If you are developing an MQEI application that is to be deployed on several
Domino servers across your organization, you are recommended to
maintain one MQEI Security database per distinct set of users. You can
distribute an MQEI Security database using Notes replication, but do not
replicate between different sets of users.

94 MQSeries Enterprise Integrator for Lotus Notes User's Guide

MQEI Security definition
Each MQEI Security definition contains the following information:

Notes User Name

System Name

User ID

Authenticator

Verify Authenticator

Notes User Name
Editable text field. This information is initially taken from your Lotus Notes
User ID file but you should override this if you are setting up a new MQEI
Security definition for one of your users or for a server. (It controls who is
allowed to access the MQEI Security definition).

System Name
Editable text field that defines the name of the enterprise system upon
which an enterprise service resides. This is the system on which the User ID
and authenticator are verified. The value that you specify in this field must
match the value that you have specified in the "System Name" field of an
MQEI Service definition in the MQEI Definition database.

At the MQEI API, System Name is accessible via the SystemName property
 of the EIService class.

User ID
Editable text field where you enter your User ID (or that of your user) for
the enterprise system. For more information on Security, see Chapter 5.

At the MQEI API, User ID is accessible via the UserId property of the
EIService class.

Authenticator (password)
Editable text field where you enter your authenticator for the enterprise
system. This is normally a password. This is an encrypted field. For more
information on Security, see Chapter 5.

At the MQEI API, Authenticator is accessible via the Authenticator
property of the EIService class.

Chapter 3: Using MQEI databases 95

Verify Authenticator (password)
Editable text field where you verify your authenticator for the enterprise
system. This is normally a password. This is an encrypted field and must
match that entered in the Authenticator field. For more information on
Security, see Chapter 5.

At the MQEI API, Authenticator is accessible via the Authenticator
property of the EIService class.

Key points:
A new MQEI Security definition initially only requires a Notes User
Name and System Name.

The only time a Notes User Name can be entered is when a new MQEI
Security definition is created.

Authenticator and Verify Authenticator can only be entered if the Notes
user name matches your Notes user id (i.e., you own the MQEI Security
definition).

Once the authenticators have been entered, the document is encrypted
and can no longer be modified by anybody except the owner.

96 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Using MQEI Security definitions

This section introduces the MQEI Security database, and also describes how
to:

Create a new MQEI Security definition.

Copy an MQEI Security definition.

View an MQEI Security definition.

Modify an existing MQEI Security definition.

Delete an existing MQEI Security definition.

Chapter 3: Using MQEI databases 97

Creating a new MQEI Security definition
1. Open the MQEI Security database (e.g. mqeisecu.nsf).

2. In the navigation pane, click "Security definitions".

3. Click "New Security definition" on the action bar.

4. Specify values for each of the fields in the Security definition form.

Note You must enter a System Name, Notes User Name and User ID
in the fields.

5. Click "Save & Close" or "Save & New" on the action bar.
If you choose "Save & New", you are expected to create a new Security
definition. Only choose this option if you want to create a new Security
definition.

Copying an MQEI Security definition
1. Open the MQEI Security database (e.g. mqeisecu.nsf).

2. In the navigation pane, click "Security definitions".

3. Expand the System Name you want to copy an MQEI Security
definition from by clicking on the twisty.

4. Open the MQEI Security definition document by double clicking it.

5. Click "Copy" on the action bar.

6. Change the user details in the MQEI Security definition.

7. Click "OK Copy" on the action bar if you want to copy the MQEI
Security definition.

Note Click "Cancel Copy" on the action bar if you want to cancel the
copy operation.

Viewing an MQEI Security definition
1. Open the MQEI Security database (e.g. mqeisecu.nsf).

2. In the navigation pane, click "Security definitions".

3. Expand the System Name you want to view an MQEI Security
definition from by clicking on the twisty.

4. View the MQEI Security definition by double clicking it.

98 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Changing an MQEI Security definition
1. Open the MQEI Security database (e.g. mqeisecu.nsf).

2. In the navigation pane, click "Security definitions".

3. Expand the MQEI Security definition you want to change by clicking on
the twisty.

Note If you can't expand the twisty, this implies that you are not the
owner of the security definitions or do not have high enough access
rights.

4. Select the MQEI Security definition document you want to change.

5. Click "Edit Security definition" on the action bar.

6. Change the values in the MQEI Security definition.

7. Click "Save & Close" on the action bar.

Deleting an MQEI Security definition
1. Open the MQEI Security database (e.g. mqeisecu.nsf).

2. In the navigation pane, click "Systems".

3. Expand the MQEI Security definition you want to delete by clicking on
the twisty.

Note If you can't expand the twisty, this implies that you are not the
owner of the security definitions or do not have high enough access
rights.

4. Select the MQEI Security definition document you want to delete.

5. Click "Delete Security definition(s)" on the action bar.

6. Confirm that you really want to delete the MQEI Security definition
when prompted.

Chapter 3: Using MQEI databases 99

100 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 4 Design and Programming using the MQEI
LSX

This chapter complements the information provided by the Lotus Notes
and LotusScript documentation.

It includes:

Getting started

Accessing the MQEI LSX

Samples provided

Example LotusScript using MQEI LSX

Setting the value of a field in an EIMessage

Getting the value of a field in an EIMessage

Accessing fields in an EIMessage by their position

Message subsets

Variant Messages

Varying length messages

Controlling enterprise units if work

Using the MQEI LSX from an agent

Data Conversion

Error handling

Chapter 4: Design and Programming using the MQEI 101

What to do when you start to create your Notes MQEI applications

The following identifies the basic steps that you need to follow when you
start to create your Notes MQEI applications.

The language that your enterprise application is written in is one of many,
but whatever the language, somewhere you define your data structures for
the messages that the enterprise application sends and receives. For
example, you may have copybooks or define your data structures in
working storage if you are using COBOL. If you are using C, then you will
probably have C header files.

Field Type definitions
Find where the data structures are defined for your enterprise application.

Examine the copybook, C header file, or however else they are defined and
identify the common field types, e.g. 30 character strings for names, dates in
mmddyyyy format, dates in ddmmyyyy format, 10 character strings for
account numbers.

In Notes, go into your MQEI Definition database.

If you are installing MQEI for the first time, refer to Chapter 2 Getting
Started.

Select Field Types from the navigator and create those that you need.

MQEI Message definitions
Go back to the navigator and select Messages and Fields.

Define a message, followed by the fields needed in the message to match
the data structure your enterprise application is expecting, using the Field
Types you have already set up whenever they are appropriate.

Continue defining messages until you have all that you need.

Remember to build the messages when they are complete, otherwise your
LotusScript program cannot use them.

MQEI Service definitions
Before you can use the MQSeries Enterprise Integrator you must create an
MQEI Service definition for the enterprise application you want to access.

102 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Before you use the MQEI definitions with your LotusScript program
Before you can use the MQEI definitions with your LotusScript program,
you must build the MQEI Message definitions. If you have forgotten to add
any definitions you will need to add them; you can change a definition if an
error has been made or a change has been made to the enterprise
application, but always remember to build your MQEI Message definitions.

If you fail to build an MQEI Message definition and a previously built
version exists in the database, LotusScript picks up the built version.
Depending on the change and the checking you do within your LotusScript
program, you may get unexpected results or the program may fail.

For more information about how to create definitions on the MQEI
Definition database and MQEI Security database, see Chapter 3.

Accessing the MQEI LSX

In the LotusScript editor, under (options) event put the following:

Uselsx "eilsx"

For more information about the Uselsx statement, see the LotusScript
Language Reference.

MQEI Samples

To give you further help, a sample is provided to show how you can use
the MQEI to communicate with each of the supported enterprise services.
Each sample is a Lotus Notes application containing scripts that use the
MQEI LSX to interact with an enterprise service.

MQEI Sample applications and the Web
To run Notes applications over the Web, they must be Web enabled - that
is, written using a subset of Notes functions. The MQEI samples provided
in the MQEI Samples database are not written for use over the Web and
you will not be able to access them from your Web browser.

For web enabled samples, further information, and help, see the IBM Red
book:

Lotus Notes and the MQSeries Enterprise Integrator, available at URL:

http://www.redbooks.ibm.com/SG242217/sg242217.html

or order book no: SG24-2217

Chapter 4: Design and Programming using the MQEI 103

Components
The Notes databases provided are:

The MQEI Samples database
This is a Notes database that contains the sample forms.

The MQEI Definition database
This contains MQEI Message and Service definitions that are used by
all the samples.

The MQEI Security database
This contains MQEI Security definitions that you may need to modify if
you want to run the samples with security.

Two command files are provided to define resources for the MQSeries
samples:

mqeisamp.tst sets up local resources on your workstation

mqeisamp.jcs defines the resources for MQSeries for MVS/ESA

Error checking
The samples are not intended to demonstrate general programming
techniques, so some error checking (that you may want to include in a
production program) has been omitted. However, the samples are suitable
to use as a base for your own LotusScript programs.

Error checking takes place throughout all the samples.

MQEI warnings are handled by displaying a message box specific to the
warning; processing continues.

MQEI errors are handled using:

ON ERROR routines and

EVENT handlers.

For each object there is a subroutine that handles errors for the object. The
subroutine is designed to check for specific reason codes and take
appropriate action. The error codes are cleared before continuing.

For more information, see Appendices A-F.

104 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Example LotusScript using MQEI LSX

The following example illustrates the basic MQEI LSX building blocks that
you would use in your LotusScript program:

Dim sess As EISession

Dim serv As EIService

Dim msg1 As EIMessage

Dim msg2 As EIMessage

Dim sopts As EISendOptions

Dim ropts As EIReceiveOptions

.......

'***

'*Create a new session. The MQEI LSX reads the

'*mqei.ini file to determine the path for the

'*MQEI Definition database and MQEI Security

'*database.

'*The MQEI Definition database is opened. The

'*MQEI Security database is opened if the path and

'*name are included in the mqei.ini file.

'***

Set sess = New EISession

'***

'*Create a new EIService object based on an MQEI

'*Service definition on the MQEI Definition database.

'*This reads the MQEI Security database, if one

'*exists, for the userid and authenticator for the

'*target service.

'***

Set serv = sess.CreateService("name_of_service")

'***

'*Create a new EIMessage object for each message,

Chapter 4: Design and Programming using the MQEI 105

'*based on the MQEI Message definitions on the MQEI

'*Definition database.

'*Note: If the message you receive is an updated

'*version of the one you send, or vie versa, you

'*would only create one EIMessage object.

'***

Set msg1 = sess.CreateMessage("msg_out_name")

Set msg2 = sess.CreateMessage("msg_in_name")

'***

'*Create an EISendOptions object and

'*EIReceiveOptions object, using the default values.

'***

Set sopts = sess.CreateSendOptions

Set ropts = sess.CreateReceiveOptions

'***

'*Connect to the enterprise service via the

'*connection manager specified in the MQEI Service

'*definition on the MQEI Definition database.

'***

Call serv.Connect

'***

'*At this point you can now set the fields in the

'*EIMessage object, which in this case is called

'*msg1. If you want to use specific send options,

'*set them before sending each message.

'***

Call serv.SendMessage(msg1,sopts)

'***

'*If you want to use specific receive options, set

'*them before receiving each message.

'***

106 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Call serv.ReceiveMessage(msg2,ropts)

'***

'*You can now work with the contents of the

'*EIMessage you have received from the enterprise

'*service. At the end you must break your connection

'*to the service and delete the objects you have

'*previously created.

'***

Call serv.Disconnect

Delete ropts

Delete sopts

Delete msg1

Delete msg2

Delete serv

Delete sess

Note The check to ensure all MQEI LSX EIMessage method and property
names are spelt correctly takes place at run time, not compile time. For all
other classes this is done at compile time.

Chapter 4: Design and Programming using the MQEI 107

Setting the value of a field in an EIMessage

The syntax of the MQEI interface in LotusScript allows you to perform the
same function in a number of ways. The following example demonstrates
the options you have when setting a field in an EIMessage to a particular
value.

To do this, consider the situation where in your MQEI Definition database
you define a message and name it MessageA. MessageA has 3 fields in it
called FieldA, FieldB, and FieldC.

FieldA, the first field in the message, has a data type of String (fixed or
varying)

FieldB, the second field in the message, has a data type of Long

FieldC, the third field in the message, has a data type of Byte

There are various ways you can set the value of a Field using the MQEI
LSX.

Each of the following examples is preceded with:

Dim myMessageA As EIMessage

myMessageA = mySession.CreateMessage("MessageA")

108 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Setting a field of data type String
The following applies to a field defined as a fixed length string and to a
field defined as a varying length string.

In this example, FieldA is set to the string "a string of data":
myMessageA.FieldA = "a string of data"

or

Call myMessageA.SetFieldValue("FieldA","a string of data")

or

Call myMessageA.SetFieldValue(myMessageA.GetFieldName(1),"a
string of data")

In this example, FieldA is set to the string "123" using a LotusScript
variant:

myMessageA.FieldA = "123"

or

myfldvar = "123"

myMessageA.FieldA = myfldvar

In this case the LotusScript variant takes on the data type of string because
quotes are placed around the 123.

If the quotes are omitted, the LotusScript variant takes on a data type of
Integer and you cannot assign an Integer to a string. In this case the MQEI
LSX returns the completion code EICC_FAILED with the reason code
EIRC_INVALID_DATATYPE.

Chapter 4: Design and Programming using the MQEI 109

Setting a field of data type Long
In this example, FieldB is set to the value 180 (the range for Long is
-2147483647 to +2147483647):

myMessageA.FieldB = 180

or

Call myMessageA.SetFieldValue("FieldB",180)

In this example, the MQEI LSX is checking that the value 180 is acceptable
to a field with data type Long. If you attempt to set a field to a value
outside the range allowed by a data type, you get the completion code
EICC_FAILED with the reason code EIRC_DATA_OVERFLOW.

Alternatively:

Dim myLong As Long

myLong = 180

followed by:

myMessageA.FieldB = myLong

or

Call myMessageA.SetFieldValue("FieldB",myLong)

In this example, LotusScript checks that the value is within the bounds
allowed by the data type.

Example using a LotusScript variant:

myMessageA.FieldB = 180

or

myfldvar = 180

myMessageA.FieldB = myfldvar

In this case the LotusScript variant is a numeric and is within the bounds of
a Long, therefore the setting of the field is successful. If the number used is
outside the bounds of a long, the MQEI LSX returns the completion code
EICC_FAILED with the reason code EIRC_DATA_OVERFLOW.

Note You cannot set a numeric field to a string:

myMessageA.FieldB = "180"

or

myfldvar = "180"

myMessageA.FieldB = myfldvar

110 MQSeries Enterprise Integrator for Lotus Notes User's Guide

In this case the LotusScript variant is a string and is rejected by the MQEI
LSX with completion code EICC_FAILED with the reason code
EIRC_INVALID_DATATYPE.

Chapter 4: Design and Programming using the MQEI 111

Setting a field of data type Byte
In this example, FieldC is set to the value 115 (the range for Byte is -127 to
+127):

myMessageA.FieldC = 115

or

Call myMessageA.SetFieldValue("FieldC",115)

In this example, the MQEI LSX is checking that the value 115 is acceptable
to a field with data type Byte. If you attempt to set a field to a value
outside the range allowed by a data type, you get the completion code
EICC_FAILED with the reason code EIRC_DATA_OVERFLOW.

Alternatively:

Dim myByte As Integer

myByte = 115

followed by:

myMessageA.FieldC = myByte

or

Call myMessageA.SetFieldValue("FieldC",myByte)

In this example, LotusScript checks that the value is within the bounds
allowed by the data type of Integer. LotusScript does not have a data type
of Byte, hence the reason for using Integer; if a field of data type Byte is set
to a value out of range, it is rejected by the MQEI LSX with the completion
code of EICC_FAILED and the reason code of EIRC_DATA_OVERFLOW.

Example using a LotusScript variant:

myMessageA.FieldC = 115

or

myfldvar = 115

myMessageA.FieldC = myfldvar

In this case the LotusScript variant is a numeric and is within the bounds of
a Byte, therefore the setting of the field is successful. If the number used is
outside the bounds of a Byte, the MQEI LSX returns the completion code
EICC_FAILURE with the reason code EIRC_DATA_OVERFLOW.

Note You cannot set a numeric field to a string:

myMessageA.FieldC = "115"

or

112 MQSeries Enterprise Integrator for Lotus Notes User's Guide

myfldvar = "115"

myMessageA.FieldC = myfldvar

In this case the LotusScript variant is a string and is rejected by the MQEI
LSX with completion code EICC_FAILED with the reason code
EIRC_INVALID_DATATYPE.

Chapter 4: Design and Programming using the MQEI 113

Getting the value of a field in an EIMessage

In your MQEI Definition database you define a message and name it
MessageA. MessageA has 3 fields in it called FieldA, FieldB, and FieldC.

FieldA, the first field in the message, has a data type of String (fixed or
varying)

FieldB, the second field in the message, has a data type of Long

FieldC, the third field in the message, has a data type of Byte

There are various ways you can get the value of a Field in an EIMessage
using the MQEI LSX. You can put the value into a variable that you specify
to be the same as the data type of the field in the MQEI Definition database,
or you can use a LotusScript variant.

Note If you use a LotusScript variant, the syntax is always the same
because the LotusScript variant takes on the data type of the field to which
you set it .

Each of the following examples is preceded with:

Dim myMessageA As EIMessage

myMessageA = mySession.CreateMessage("MessageA")

114 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Getting a field of data type String
The following applies to a field defined as a fixed length string and to a
field defined as a varying length string.

Example using a variable with a data type of String:
myfieldx$ = myMessageA.FieldA

or

myfieldxname$ = myMessageA.GetFieldName(1)

myfieldx$ = myMessageA.GetFieldValue(myfieldxname$)

or

Set myfieldx$ = myMessageA.GetFieldValue("FieldA")

or

Set myfieldx$ =
myMessageA.GetFieldValue(myMessageA.GetFieldName(1))

Alternatively:

Dim myfieldx As String

followed by:

myfieldx = myMessageA.FieldA

or

myfieldxname = myMessageA.GetFieldName(1)

myfieldx = myMessageA.GetFieldValue(myfieldxname)

or

Set myfieldx = myMessageA.GetFieldValue("FieldA")

or

Set myfieldx =
myMessageA.GetFieldValue(myMessageA.GetFieldName(1))

Note You can get a numeric field and set it to a string, LotusScript converts
the numeric into a string.

Example using a LotusScript variant:
myfldvar = myMessageA.FieldA

Chapter 4: Design and Programming using the MQEI 115

Getting a field of data type Long
Example using a variable with a data type of Long:

myfieldy& = myMessageA.FieldB

or

myfieldyname$ = myMessageA.GetFieldName(2)

myfieldy& = myMessageA.GetFieldValue(myfieldyname$)

or

Set myfieldy& = myMessageA.GetFieldValue("FieldB")

or

Set myfieldy& =
myMessageA.GetFieldValue(myMessageA.GetFieldName(2))

Alternatively:

Dim myfieldy As Long

followed by:

myfieldy& = myMessageA.FieldB

or

myfieldy& = myMessageA.GetFieldName(2)

or

Set myfieldy& = myMessageA.GetFieldValue("FieldB")

or

Set myfieldy& =
myMessageA.GetFieldValue(myMessageA.GetFieldName(2))

Note LotusScript checks that the field you are getting fits into the field you
are setting it to. In this example, as well as being able to set a field of data
type Long into 'myfieldy', you could also set a field of data type Byte into it.
If the field does not fit, LotusScript raises an 'overflow 'error at run time. If
you try to get a field of data type string and set it to a numeric, LotusScript
raises a 'type mismatch' error.

Example using a LotusScript variant:
myfldvar = myMessageA.FieldB

116 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Getting a field of data type Byte
Example using a variable with a data type of Byte:

myfieldz% = myMessageA.FieldC

or

myfieldzname$ = myMessageA.GetFieldName(3)

myfieldz% = myMessageA.GetFieldValue(myfieldxname$)

or

Set myfieldz% = myMessageA.GetFieldValue("FieldC")

or

Set myfieldz% =
myMessageA.GetFieldValue(myMessageA.GetFieldName(3))

Alternatively:

Dim myfieldz As Integer

followed by:

myfieldz% = myMessageA.FieldC

or

Set myfieldz% = myMessageA.GetFieldValue("FieldC")

or

Set myfieldz% =
myMessageA.GetFieldValue(myMessageA.GetFieldName(3))

Note LotusScript checks that the field you are getting fits into the field you
are setting it to. In this example, as well as being able to set a field of data
type Byte into 'myfieldz', you could also set a field of data type Short into it.
If the field does not fit, LotusScript raises an 'overflow 'error at run time. If
you try to get a field of data type string and set it to a numeric, LotusScript
raises a 'type mismatch' error.

Note The data type Byte is not known to LotusScript, so any data type that
accepts a numeric value is used.

Example using a LotusScript variant:
myfldvar = myMessageA.FieldC

Chapter 4: Design and Programming using the MQEI 117

Accessing fields in an EIMessage by their position

The MQEI enables you to Get and Set a field in an EIMessage by using the
name of the field. However, there may be situation where you do not want
to hard-code the name of a field in your LotusScript program. In this
situation, consider using the EIMessage GetFieldName method . You
provide the position the field has in the message, the field index, and the
name of that field is returned in the variable you provide.
For example:

Set aname$ = myMessage.GetFieldName(4)

would cause the variable aname$ to be set to the name of the fourth field in
the message.

If you want to know the value in the field, use the EIMessage GetFieldValue
method.

For example:

Set Fval = myMessage.GetFieldValue(aname$)

If you want to set the field to a value, use the SetFieldValue method.

For example:

Call myMessageA.SetFieldValue("FieldB","string of data")

118 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Message Subsets

When receiving an enterprise message using the EIService ReceiveMessage
method, your LotusScript program may not be interested in all the fields.
The MQEI LSX allows the EIMessage passed on the ReceiveMessage call to
specify a subset of the fields in the message. In this case, the
ReceiveMessage call only completes those fields in the EIMessage and
ignores the rest of the enterprise message.

If the enterprise message represents a screen, where each field is located via
row and column attributes, the fields in the EIMessage can be any subset of
fields in the screen.

Otherwise, the fields in the EIMessage must be a contiguous subset, starting
at the beginning, of the fields in the enterprise message.

For example, if you are not interested in say the first 10 fields of an
EIMessage, but you are interested in 11 through to 15 inclusive, and you
cannot locate the fields by row and column, you can either:

Define fields 1 through to 10 as a single field, of data type string,
followed by fields 11 through to 15 individually.

Define all fields, 1 through to 15, individually.

Note To avoid any possible data conversion problems, you are
recommended to define all fields in an EIMessage up to and including the
last one you are interested in.

Variant Messages

One common circumstance is where an inbound enterprise message is
expected, but the exact format of the message is not known. Such a message
is called a variant message. An example of a variant message could be
receiving either a data message or an error message from an enterprise
application depending on the results of its processing.

This section explains how you can use the MQEI to receive a variant
message into an EIMessage object. It builds on the ability of an EIService
ReceiveMessage call to receive an enterprise message into the MQEI LSX
inbound buffer, using MQSeries MQGET for example, and selectively map
a subset of the message into the EIMessage object returned to the program
(see Message Subsets).

Chapter 4: Design and Programming using the MQEI 119

Messages with tags
Often an enterprise message contains a field at or near the start that
identifies the type of message it is. This field is sometimes known as a tag
field. To make use of these you need to:

Create an MQEI Message definition that maps just the tag field and
those that precede it.

Make a ReceiveMessage call as normal, passing the EIMessage object
created from the MQEI Message definition. The MQEI LSX receives the
message into the MQEI LSX inbound buffer, but returns only those
fields in the enterprise message corresponding to those in the
EIMessage object.

Within your LotusScript program examine the value of the tag field and
discover the format of the message.

Make another ReceiveMessage call within your LotusScript program,
passing an EIMessage object representing that particular message
format, with the EIReceiveOptions ReceiveType property set to
EIRT_RETURN. The MQEI LSX uses the message in the inbound
buffer, and returns the completed EIMessage object.

Messages without tags
If there is no tag field in the enterprise message, a different technique must
be adopted:

Make a ReceiveMessage call passing the EIMessage object that
represents the most likely format of the enterprise message. If the MQEI
LSX detects that the formats do not match, a CompletionCode of
EICC_WARNING and a ReasonCode of EIRC_WRONG_MESSAGE or
EIRC_INSUFFICIENT_DATA will be returned. If this occurs, make
another ReceiveMessage call within your LotusScript program, this
time passing the EIMessage object that represents the next most likely
format, with EIReceiveOptions ReceiveType property set to
EIRT_RETURN. And so on, until the correct EIMessage object is used.

This latter technique can be used to good effect when receiving messages
from a CICS 3270 direct service. The messages in this case are CICS screens,
normally defined by BMS maps. The CICS 3270 direct sample uses variant
message processing to discover whether CICS has returned an
informational message on row 1, an error message on row 23, or the CESN
transaction BMS map.

Note When one message format can be a subset of another message
format, it is advisable that the first ReceiveMessage is passed the
EIMessage object representing the larger format, because the MQEI LSX
allows an EIMessage to be a subset of the real message.

120 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Native MQSeries service type
If the enterprise service type is Native MQSeries, you can use the
EIReceiveOptionsFormat property as an indicator of the format of the
received enterprise message. If the enterprise application supplies a named
format for the message, the EIReceiveOptions Format property will contain
this value after a ReceiveMessage call.

The ReceiveMessage call also checks that the Format property of the passed
EIMessage object matches the named format in the message. If it does not, a
CompletionCode of EICC_WARNING and a ReasonCode of
EIRC_WRONG_MESSAGE are returned. If this occurs, examine the
EIReceiveOptions Format property within your LotusScript program to
discover the format of the received message. Make another ReceiveMessage
call within your LotusScript program, this time passing the EIMessage
object with a matching Format property, with the EIReceiveOptions
ReceiveType property set to EIRT_RETURN.

Note The format check only takes place if EIMessage Format is not
EIFMT_NONE and the named format is not blank.

IMS via MQSeries service type
If the enterprise service type is IMS via MQSeries, you can use the
EIReceiveOptions Format property as an indicator of the format of the
received enterprise message. In this case, the IMS MOD name sent by IMS
may identify the message format, and the EIReceiveOptions Format
property will contain this value after a ReceiveMessage call.

The ReceiveMessage call also checks that the Format property of the passed
EIMessage object matches the IMS MOD name. If it does not, a
CompletionCode of EICC_WARNING and a ReasonCode of
EIRC_WRONG_MESSAGE are returned. If this occurs, examine the
EIReceiveOptions Format property within your LotusScript program to
discover the format of the received message. Make another ReceiveMessage
call within your LotusScript program, this time passing the correct
EIMessage object with a matching Format property, with the
EIReceiveOptions ReceiveType property set to EIRT_RETURN.

Note The format check only takes place if EIMessage Format is not
EIFMT_NONE and the IMS MOD name is not blank.

Chapter 4: Design and Programming using the MQEI 121

Alternatives
A variation on these techniques is not to pass an EIMessage on the first
ReceiveMessage call. You do this using the reserved keyword Nothing for
the EIMessage parameter. The MQEI LSX receives the enterprise message
into its inbound buffer, and sets the EIReceiveOptions Format property if
appropriate, but does not attempt to return an EIMessage object.

This means a ReasonCode of EIRC_WRONG_MESSAGE will not occur on
this first ReceiveMessage call. Make subsequent ReceiveMessage calls
within your LotusScript program, passing an EIMessage object with the
EIReceiveOptions ReceiveType property set to EIRT_RETURN, until the
format is established.

This may result in a simplified program, because the code responsible for
determining the variant message format can be separated from the code
performing the actual receive of the message.

122 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Varying length messages

When receiving a message that contains a repeating field at the end, and the
exact number of occurrences of the repeating field is not known, the
techniques described in Variant Messages have their limitations.

For example, if the number of occurrences of the repeating field varied from
10 to 99, then 90 MQEI message definitions would be required.

An alternative technique may be used in these circumstances:

You may consider the repeating field to be one long string field. Create
an MQEI Message definition that contains, as its last field, a Field
definition of data type String, string type Variable Length, and string
format Null Terminated.

Make a ReceiveMessage call as normal, passing the EIMessage object
created from the MQEI Message definition. The MQEI LSX receives the
message into the MQEI LSX inbound buffer, and returns the completed
EIMessage object.

Within your LotusScript program assign the value of the last EIMessage
field to a local string variable. Use the LotusScript len function to get
the length of the data, which should be a multiple of the length of the
repeating field. It is up to your LotusScript program to interpret the
data in the local string variable.

Note

This technique can be used where the repeating field is in fact a repeating
structure, as long as all the members of the structure have data type String. If
numeric data types are involved, the technique does not work because the
entire structure is data converted as if it were a string. Again, it is up to your
LotusScript program to interpret the data.
This technique can also be used to receive a message that contains a varying
length string as the last field in the message. Taking this further, if a message in
its entirety is considered to be a varying length string, then this technique can
be used to receive any message. Again, this is not appropriate for messages that
contain numeric data, and it is up to your LotusScript program to interpret the
data.
This technique is not appropriate for CICS screens received from a CICS 3270
service, or for messages received from IMS via MQSeries where the repeating
field spans more than one message segment.

Chapter 4: Design and Programming using the MQEI 123

Controlling enterprise units of work

If the enterprise service you wish to communicate with supports
transactional concepts, any message you send to the service will participate
in a logical unit of work (UOW) on the enterprise system. This will be the
case if the enterprise system is CICS or IMS.

Your LotusScript program can use the EISendOptions UnitOfWork
property to control the enterprise unit of work, if the type of service
supports this.

If the type of service is CICS DPL direct or CICS DPL via MQSeries,
enterprise units of work can be controlled.

For more information, see "Programming for a CICS DPL direct service" in
Chapter 9 and Programming for a CICS DPL via MQSeries service" in
Chapter 8, and the EISendOptions UnitOfWork description in Chapter 12.

If the type of service is CICS 3270 direct or IMS via MQSeries,
enterprise units of work can not be controlled. The units of work are
dictated by the CICS or IMS transactions you run.

If the type of service is Native MQSeries, enterprise units of work can
not be controlled. Whether or not your message is part of an enterprise
unit of work depends on the MQSeries application and the system it is
running on.

Note A Notes client or Domino server does not support transactional
concepts, so cannot be used to coordinate units of work on distributed
systems. Each enterprise unit of work that your MQEI application initiates
runs independently of others.

Note The EISendOptions UnitOfWork property always refers to a unit of
work on the enterprise system. It has no effect on local commit or backout
of messages, such as that provided by MQSeries. Control over local commit
or backout is not supported by the MQEI LSX.

124 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Data conversion

You do not have to deal with data conversion within your LotusScript
program when using the MQEI LSX. On EIService SendMessage and
ReceiveMessage calls, the MQEI LSX converts the data in an EIMessage for
you, using the Encoding and CharacterSet defined by the MQEI Service
definition.

What the MQEI LSX does
The MQEI LSX converts the data in an EIMessage for:

Outgoing messages by comparing the Encoding and CharacterSet
values specified on the [Base] stanza in your mqei.ini file against those
associated with the EIService object (specified in the MQEI Service
definition in the Definition database).

Incoming messages for Services not using MQSeries (CICS DPL direct
and CICS 3270 direct), in the same way as outgoing messages.

Incoming messages for Services using MQSeries (Native MQSeries,
CICS DPL via MQSeries, and IMS via MQSeries), by comparing the
incoming MQSeries control information associated with the message
with that of the mqei.ini [Base] stanza.

Conversion (when necessary) is done on a field by field basis - fields whose
data types are numeric undergo translation based on the Encoding
comparison, fields whose data types are character based undergo
translation based on the CharacterSet comparison.

The reason code EIRC_DATA_CONVERSION_ERROR may be returned
from the ReceiveMessage or SendMessage methods for CharacterSet
conversions. This means that the MQEI LSX cannot find the necessary
conversion tables to support a requested conversion.

The environment variable MQEI_XLAT_PATH is used by the MQEI LSX to
establish the location of the conversion tables.

For more information on how these tables are used, what tables are
supplied and possible problems associated with conversion, see Chapter 11.

For more information, see "Data conversion" in chapters 6 to 10 inclusive.

Chapter 4: Design and Programming using the MQEI 125

Using the MQEI LSX from an agent

The LotusScript NotesTimer class function does not work from an agent. In
this situation, an agent must use a blocking ReceiveMessage call with a
timeout. The CICS 3270 direct service does not provide a timeout facility, so
a block is unlimited.

There are also extra aspects to consider in respect of security when you use
agents. For more information, see "Notes agents" in Chapter 5.

From Domino Release 4.5.1 onwards, agent managers on a Domino server
may run agents concurrently on separate threads in the http process used
for Domino Web access. The MQEI LSX is capable of operating in this
environment, so you can take advantage of this Domino feature when using
the MQEI LSX.

Error handling

Each MQEI LSX object includes properties to hold error information and a
method to clear (reset) them.

The properties are:

CompletionCode

ReasonCode

The method is:

ClearErrorCodes

In addition, each object can also raise the following events:

Eierror

Eiwarning

126 MQSeries Enterprise Integrator for Lotus Notes User's Guide

How it works
When your MQEI LSX program invokes an MQEI LSX object method, or
accesses a property of an MQEI LSX object the:

ReasonCode and CompletionCode in the object concerned are updated.

If the action performed is successful, the values of these properties are:

CompletionCode = EICC_OK

ReasonCode = EIRC_NONE

However, if some part of the action was not successful, and the
CompletionCode of the object is equal to EICC_FAILED:

If an Eierror event handler has been registered for the object, it is called.

If the CompletionCode is still EICC_FAILED, even after some event
handling code, the MQEI LotusScript Error (EILSX_ERROR) is raised.

Alternatively, if some part of the action was not successful and the
CompletionCode of the object is equal to EICC_WARNING:

If an Eiwarning event handler has been registered for the object, it is
called.

Note The MQEI LotusScript Error is never called for warnings.

You may wish to deal with all errors in a single place, in which case you do
not register event handlers. In this situation you use the On Error statement
in your LotusScript program to declare the part of the script to handle all
MQEI LSX errors.

MQEI LotusScript Error
This LotusScript Error has the special value EILSX_ERROR, you can use
this within your script by calling the On Error statement in your
LotusScript to process it.

For example:

On Error EILSX_ERROR GoTo

Use the Error$ function to retrieve the associated error string. This is in the
form:

 EILSX: ReasonCode=nnnnn

 where nnnnn is the ReasonCode of the MQEI LSX object in error.

For more information on how to use the On Error and Error$ statements,
see the LotusScript Language Reference manual.

Chapter 4: Design and Programming using the MQEI 127

MQEI Event Handlers
You can write event handlers to process the Eierror and Eiwarning events
generated by MQEI LSX objects (the exception is the creation of the
EISession object). All MQEI LSX events have 2 parameters:

An object reference to the MQEI LSX object that generated the event

The ReasonCode of the MQEI LSX object at the point the event was
generated

All MQEI LSX event handlers must specify these two parameters.

For example, if an event handler is needed to process the Eierror event from
an EIMessage object, you need the following:

Mainline script:

...

Dim myMessage As EIMessage

Set myMessage = mySession.CreateMessage("MSGA")

On Event Eierror From myMessage call handleMSGError

The handleMSGError subroutine could be coded as follows:

Sub handleMSGError(myMSG as EIMessage, myReasonCode as Long)

 If myReasonCode = EIRC_FIELD_NOT_FOUND then

 Messagebox "Field was not found"

 myMSG.clearErrorCodes

 End If

 ...

End Sub

128 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Errors within an Event Handler
For any error encountered within an event handler:

The ReasonCode and CompletionCode properties for the object
concerned are changed to reflect the error.

An MQEI event is not raised.

The MQEI LotusScript error is not produced.

If an event handler is taking corrective action in respect of an object, you are
recommended to do in-line error checking within the event handler. Call
the ClearErrorCodes method for the object to indicate to the MQEI that you
have resolved the error.

Note If you have resolved an error or want to bypass the error, you must
call the ClearErrorCodes method for the object. Neither the MQEI
LotusScript error or MQEI events are raised for subsequent errors on the
object in question, until the ClearErrorCodes method has been run.

Programming event handling routines
The following guidelines are intended to help you to code effective error
handling routines using the MQEI LSX:

Register an event handler for Eierror events for all MQEI LSX objects
created in your application.

Note This does not mean a separate event handler for each and every
object since objects of the same type can share event handlers.

Each event handler should process those ReasonCodes that can be
handled, calling the ClearErrorCodes method when complete

ReasonCodes that cannot be handled in the event handler, can be
passed to a general LotusScript Error routine

These ideas can be seen in the following code fragments:

Mainline script:

On Error EILSX_ERROR GoTo CatchAll

Dim mySession As New EISession

Dim myService As EIService

Dim myMSGIN As EIMessage

Dim myMSGOUT As EIMessage

' >>> Create the EIService object and register the Service
event handler

Set myService = mySession.CreateService("SERVICE")

Chapter 4: Design and Programming using the MQEI 129

On Event Eierror From myService call handleServiceError

' >>> Create the EIMessages and register the Message event
handler,

' >>> NOTE: The 2 Message objects use the same event handler

Set myMSGIN = mySession.CreateMessage("MSGIN")

Set myMSGOUT = mySession.CreateMessage("MSGOUT")

On Event Eierror From myMSGIN call handleMSGError

On Event Eierror From myMSGOUT call handleMSGError

...

CatchAll:

 Messagebox "MQEI LSX LotusScript error not handled by
event handlers gave _ message = " & Error & " at line
number " & Erl

 Exit Sub

Event handler script:

Sub handleSessionError(mySess As EISession, myReasonCode As
Long)

 Select Case myReasonCode

 Case EIRC_INVALID_OBJECT_NAME:

 ...

 mySess.ClearErrorCodes

 ...

 Case Else:

 Print "ReasonCode = " & myReasonCode
& " not handled _ here"

 End Select

End Sub

Sub handleServiceError(myServ As EIService, myReasonCode As
Long)

 Select Case myReasonCode

 Case EIRC_INVALID_SYSTEM_NAME:

 ...

 myServ.clearErrorCodes

130 MQSeries Enterprise Integrator for Lotus Notes User's Guide

 ...

 Case Else:

 Print "ReasonCode = " & myReasonCode
& " not handled _ here"

 End Select

End Sub

Sub handleMSGError(myMSG As EIMessage, myReasonCode As Long)

 Select Case myReasonCode

 Case EIRC_FIELD_NOT_FOUND:

 ...

 myMSG.ClearErrorCodes

 ...

 Case Else:

 Print "ReasonCode = " & myReasonCode
& " not handled here"

 End Select

End Sub

Alternatives
You may wish to deal with all errors in a single place, in which case, you
should never register event handlers. To do this you use the On Error
statement in your LotusScript program to declare the part of the script to
handle all MQEI LSX errors.

Chapter 4: Design and Programming using the MQEI 131

Error handling for the EISession object
The MQEI EISession object is a special case since:

It is the only MQEI object that can be created using the LotusScript new
method

There is only ever one EISession object; any attempt to create more than
one of these objects gives a reference to the first

For these reasons, error handling is a little different for the EISession object.

EISession creation
An EISession object is created using the new method supplied by
LotusScript. MQEI events or the MQEI LotusScript error are not generated
from this call, so an alternative way must be used to check on the status of
the new call.

This can be done in line, for example:

 Dim mySession As New EISession

 If mySession.reasonCode <> EIRC_NONE Then

 Select Case mySession.reasonCode

 Case EIRC_INI_OPEN_ERROR:

 ...

 Case EIRC_INI_KEYWORD_NOT_FOUND:

 ...

 Case EIRC_INI_SECTION_NOT_FOUND:

 ...

 Case EIRC_DEFN_DB_SYSERROR:

 ...

 Case EIRC_SEC_DB_SYSERROR:

 ...

 Case Else:

 ...

 End Select

 End If

Errors in the creation of the EISession object tend to be setup problems. You
can identify and subsequently resolve these problems by running the
Post-Installation Check program.

132 MQSeries Enterprise Integrator for Lotus Notes User's Guide

For more information, see Post-Installation Check in Chapter 2.

EISession persistence
You should note that since the EISession persists as long as Notes persists
(on your Notes client or Domino Server), it retains the CompletionCode and
ReasonCode from the last LotusScript run. Although these can be cleared
using the ClearErrorCodes method, it is not recommended since errors in
the EISession tend to be setup problems that need to be solved before any
MQEI script can successfully complete.

Handling Warnings
Eiwarning events can be handled in exactly the same manner as the Eierror
events except that the MQEI LSX LotusScript Error is not raised for events
of this severity. However, warnings lend themselves well to in-line
checking of ReasonCodes.
For example, if your application wishes to receive all the messages before
proceeding:

Do until myService.ReasonCode = EIRC_NO_MESSAGE_AVAILABLE

 Call myService.ReceiveMessage(myMSGOUT)

Loop

Since no Eiwarning event handlers have been registered, they can never be
called, and since EIRC_NO_MESSAGE_AVAILABLE is a warning, the code
remains in-line.

Chapter 4: Design and Programming using the MQEI 133

134 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 5 Security

This chapter explains the security mechanisms available when using the
MQEI LSX to communicate with enterprise systems. It explains:

The UserId and Authenticator properties in the EIService class

How the MQEI Security database is used

Authenticator and System_Authenticator data types

Extra considerations when using Notes agents

Chapter 5: Security 135

General

If you are developing an MQEI application which communicates with an
enterprise application, the enterprise application may be running in a secure
environment. For example, it may require a userid and password so it can
perform authentication of its users, or it may simply require a userid so it
can identify users for system use charging or problem contact purposes. If
this is the case, the MQEI LSX must pass the appropriate enterprise userid
and authenticator (if required) to the enterprise application.

The MQEI LSX provides two properties of the EIService class to enable this
to take place:

UserId property

Authenticator property

The MQEI LSX also provides a repository for enterprise userids and
authenticators to enable your MQEI applications to seamlessly access
secure enterprise applications without prompting the application user for a
userid and authenticator. This repository is a Lotus Notes database called
the MQEI Security database. It is particularly useful if your MQEI
application is a Notes agent running on a Domino Server, where prompting
for a userid and authenticator is not practical.

The MQEI Security database is described in "The MQEI Security database"
in Chapter 3.

Each type of enterprise service has different security requirements, and
different methods of performing authentication. The MQEI LSX hides this
from you by automatically passing the enterprise userid and authenticator
to the enterprise service where it is possible for it to do so. However there
are certain types of service where your LotusScript program must explicitly
pass the enterprise userid and authenticator to the enterprise service by
setting them in an EIMessage object.

For more information, see "Security" in the Chapter (6 to 10) appropriate to
the type of service your MQEI application is using.

136 MQSeries Enterprise Integrator for Lotus Notes User's Guide

UserId property and security
The EIService UserId property is your userid on the enterprise system (not
your Notes userid), and may be different for each Service you use. The
MQEI LSX uses the UserId , if required, to logon or signon to the enterprise
system described by the EIService.

The MQEI LSX can use it with a password (authenticator) to meet system
security requirements, but it can be used by itself for other purposes. The
userid in a message enables your enterprise system to identify the owner of
a piece of work, for example, when charging for the use of a system or as a
point of contact when a problem occurs.

To set the UserId property you can:

Extract it from the MQEI Security database (this is done
automatically when the EIService object is created if an appropriate
MQEI Security definition exists).

Prompt the person running the application and use LotusScript to set
it:

userid$ = Inputbox$("Please enter your userid")

serv.userid= userid$

Extract it from somewhere that is specific to your environment and
use LotusScript to set it:

userid$ = "myname"

serv.userid= userid$

Chapter 5: Security 137

Authenticator property and security
The EIService Authenticator property holds a password or ticket, hence you
can only write to it. If you attempt to read it, you are returned the value
EIAUT_HIDDEN.

To set the EIService Authenticator property, you can:

Extract it from the MQEI Security database, this is done
automatically when the EIService object is created if an appropriate
MQEI Security definition exists.

Prompt the person running the application and use LotusScript to set
it:

auth$ = Inputbox$("Please enter your password")

serv.authenticator= auth$

Extract it from somewhere that is specific to your environment and
use LotusScript to set it:

serv.authenticator=.....

How the MQEI Security database is used
Whenever you create an EIService object the MQEI Definition database is
read to get the details of the corresponding MQEI Service definition.
Amongst the information held about a service is the SystemName property.
If there is an MQEI Security database, the MQEI LSX reads it, using your
Notes userid and the SystemName property as the key to locate an MQEI
Security definition:

If no MQEI Security definition is found, the UserId property is set to
EIUI_NOT_APPLICABLE and the Authenticator property is set to
blanks. This is not considered to be an error and the MQEI LSX
continues.

If an MQEI Security definition is found, the UserId and Authenticator
(password) information is extracted and put in the appropriate
EIService properties.

If you choose to overwrite this information by either prompting the person
running the application, or extracting the information from somewhere else,
you cannot revert back to the definitions in the MQEI Security database
until you create a new EIService object.

Note It is possible to have a UserId without an Authenticator.

138 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Authenticator and System Authenticator data type
If you want to define you own authenticator fields to go in an EIMessage,
necessary on some enterprise systems where the MQEI LSX is not able to
perform authentication automatically, e.g. MQSeries native and CICS 3270
direct, you have a choice of data type.

You are recommended to use a data type of:

AUTHENTICATOR when you do not want to use the authenticator
property from the EIService object.
Use this when you want to get the information from another source
under your own control. You can set the Authenticator property in
the EIService object.
If you try to read a field with data type Authenticator, the MQEI LSX
returns the value EIAUT_HIDDEN.

SYSTEM_AUTHENTICATOR when you want the password filled in
automatically from the Authenticator property in the EIService object
when the message is sent.
If you try to read a field with data type System Authenticator, the
MQEI LSX returns the value EIAUT_HIDDEN.
If you try to write to a field with data type System Authenticator, the
MQEI LSX returns the reason code EIRC_PROTECTED_FIELD.

For example, if you want to run the CICS CESN transaction (or your own
equivalent), you would define:
Field Data type

Userid String

Password System_Authenticator

NewPassword Authenticator

Note There is no automatic update of the information in the MQEI Security
database.

Chapter 5: Security 139

Changing enterprise passwords
It is the responsibility of your users to ensure that any passwords held on
the MQEI Security database are kept up to date. You can do this by:

Instructing your users to change their password in the MQEI Security
database whenever they change the corresponding password on the
enterprise system.

Providing an MQEI application that your users can run that changes the
password on an enterprise system and then changes the password in
the MQEI Security database to match. Changing the password on the
enterprise system should be achieved by your application using the
MQEI LSX. Changing the password on the MQEI Security database
should be achieved by your application using the NotesDatabase,
NotesDocument classes and so on, from a LotusScript program.

Note The second approach is only possible for certain types of enterprise
system that allow passwords to be changed in this manner, e.g. CICS via
the CESN transaction.

140 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Notes agents
If your MQEI application is an agent running on a Domino Server, extra
considerations apply if the MQEI Security database is being used.

Scheduled agent
When the agent manager runs a scheduled agent it runs under the server's
name, but it is given the same ACL rights as the agent's signer (the person
who last saved the agent). You can think of the agent as being a proxy for
its signer.

Web application
When a Domino Web application invokes an agent it again runs under the
server's name but the access rights granted to the agent depend on the
release of Notes. For releases prior to 4.6, the agent is given the same ACL
rights as the agent's signer. For 4.6 onwards, the user can select whether the
ACL rights are that of the agent's signer or that of the Web user - either the
user's authenticated identity, or as "Anonymous".

When the MQEI LSX runs under these circumstances, the only user name
available to it is that of the server although it will have the authority of the
agent signer or Web user when accessing the MQEI databases. You need to:

Ensure the agent signer has Reader access to the MQEI Security
database.

If you are using Notes 4.6 or later and the "Run Agent as Web user"
option is selected, ensure your Web users (or "Anonymous") have
Reader access to the MQEI Security database.

Ensure the server has Author access to the MQEI Security database.

Create MQEI Security definitions (one per enterprise system) for the
server's name.

Chapter 5: Security 141

142 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 6 Programming for a Native MQSeries service

Whatever enterprise system your application communicates with, there are
some specific aspects to consider.

Here the mapping of the MQEI properties to MQSeries attributes is
covered, along with other aspects that you may need to consider when
communicating with a Native MQSeries application.

MQEI Native MQSeries support
Creating an MQEI Service definition with a service type of Native MQSeries
allows you to exchange messages with MQSeries enabled applications in
your enterprise.

The MQEI LSX uses the MQSeries programming interface, the MQI, to
access the local MQSeries queue manager. This can be a direct connection
or via an MQSeries client. This gives access to your entire MQSeries
network. The Notes client or Domino server using the MQEI LSX needs to
reside on the same machine as the local MQSeries queue manager or
MQSeries client.

The MQI is a powerful programming interface that provides a wide range
of message and queuing functionality. Because of this, not all features of the
MQI are available from the MQEI LSX.

The following sections explain how the MQEI API relates to MQSeries.

For more information, see the MQSeries Application Programming Guide
manual.

Chaper 6: Programming for the MQSeries service 143

Creating an MQEI Service definition
The key properties when creating an MQEI Service definition for a Native
MQSeries service are ConnectionManager, OutboundConnection and
InboundConnection:

The ConnectionManager property gives the name of the MQSeries
queue manager to which connection will be made. If the
ConnectionManager property is left blank the default queue manager is
selected.

The OutboundConnection property gives the name of the MQSeries
queue used to send messages to the MQSeries enabled application.

The InboundConnection property gives the name of the MQSeries
queue used to receive messages back from the application. At least one
of InboundConnection and OutboundConnection must be specified,
and they may be the same queue.

Creating MQEI Message definitions
An MQEI Message definition for a Native MQSeries service corresponds to
the application data part of an MQSeries message. The source for the MQEI
Message definition would typically be a copybook or header file containing
the definition of the message data structure in an appropriate language.

An MQSeries message consists of control information and application data.
The control information part of the message is called the MQSeries Message
Descriptor (MQMD). You do not need to worry about the MQMD as it is
built automatically by the MQEI LSX and should not be part of your MQEI
Message definition.

Connecting to MQSeries
The EIService Connect method call translates to an MQI call to connect to
the MQSeries queue manager given by the ConnectionManager property,
followed by MQI calls to open the MQSeries queues given by the
InboundConnection and OutboundConnection properties.

If the EIService UserId property contains a userid at the time of the Connect
call, the OutboundConnection queue is opened in a mode that allows the
MQEI LSX to pass an enterprise userid to MQSeries when a message is sent.

For more information, see "Security" later in this chapter.

144 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Sending a message
Each EIService SendMessage method call translates to an MQI call to put an
MQSeries message on the queue given by the OutboundConnection
property. The EIMessage parameter fields are used to provide the
application message data.

The EISendOptions parameter controls how the message is put on the
queue. The EISendOptions properties of interest are MessageType,
Identifier, Priority, and Delivery.

The MessageType property can be specified to supply a type indicator for
the message, which may be examined by the MQSeries application that
receives the message. Depending on its value, it also governs how the other
EISendOptions properties are interpreted and what control information is
set in the message, as follows:

EIMT_DATAGRAM should be used if no reply is expected back.
If EISendOptions MessageType has this value, the Priority property
is used to set the priority of the message. The Identifier property can
be specified to supply a unique identity to the message (the message
identifier). If none is specified, MQSeries generates one automatically
and sets it in the Identifier property when the SendMessage call has
completed. The Delivery property is used to set persistence of the
message.

EIMT_REQUEST should be used when a reply is expected back.
If EISendOptions Message Type has this value, the Priority,
Identifier, and Delivery properties are treated as described for
EIMT_DATAGRAM. Additionally the MQEI LSX sets control
information to instruct the MQSeries application to send the reply
message to the queue named by the EIService InboundConnection
property, and to set the correlation identifier of the reply message
from the message identifier of the request message.

For more information, see "Receiving a message" later in this chapter.

Chaper 6: Programming for the MQSeries service 145

EIMT_REPLY should be used to reply to a received message that had
a MessageType of EIMT_REQUEST.
If EISendOptions MessageType has this value, the Priority and
Identifier properties are ignored, and the message priority, message
identifier and other control information are set by the MQEI LSX
from the control information of the last received message that had a
MessageType of EIMT_REQUEST.
This enables the LotusScript program to act as an MQSeries server
application in accordance with MQSeries recommendations. If no
such message has been received by the EIService an MQEI reason
code of EIRC_CALL_SEQUENCE_ERROR is returned. If such a
message has been received, but its control information specified to
send a reply message to a queue other than that named by the
EIService OutboundConnection property, an MQEI reason code of
EIRC_CONNECTION_UNKNOWN is returned. The value returned
in the EISendOptions Identifier property when the SendMessage call
has completed will be the identity that was assigned to the message.

If EISendOptions MessageType is anything else, the MQEI LSX assumes a
reply may be expected, so the actions taken are the same as for
EIMT_REQUEST.

The EIMessage can also provide a named format for the message from its
Format Property . This named format may be examined by the MQSeries
application that receives the message. An EIMessage Format of
EIFMT_NONE means no named format is set in the message.

146 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Receiving a message
Each ReceiveMessage method call translates to an MQI call to get an
MQSeries message from the queue given by the InboundConnection
property. The EIMessage parameter's fields are completed from the
application message data assuming they match. Because the application
message data in an incoming MQSeries message is just an unstructured
buffer, it is only possible for the MQEI LSX to detect a mismatch if either
the length of the EIMessage exceeds the length of the data, or the named
format of the message does not match the Format property of the
EIMessage parameter. This latter check is only made if the message actually
has a named format and EIMessage Format is not EIFMT_NONE. If the
EIMessage does not match the data, an MQEI reason code of
EIRC_WRONG_MESSAGE is returned and a different EIMessage should be
tried.

For more information, see "Variant Messages" in Chapter 4.

Whether a match occurred or not, the named format of the message is
returned in the EIReceiveOptions Format property when the call has
completed. When trying different EIMessages, start with the longest
message first.

When calling the ReceiveMessage method to receive a message from an
MQSeries application, the EIReceiveOptions Identifier property can be used
to target a specific message, or can be used to receive the first message on
the queue. The recommendation is to target a specific message, as this
guarantees that the wrong message is not picked up in a multi-user
environment. Here, the Identifier property equates to the correlation
identifier of the message, so by using Identifier you are locating a message
by its correlation identifier.

For more information, see "Sending a message" earlier in this chapter.

Typically, the Identifier to be used would be that from the EISendOptions
object used on any corresponding SendMessage call. If no Identifier is
specified in EIReceiveOptions the correlation identifier is returned in the
Identifier property when the call has completed.

When calling ReceiveMessage to receive a message, the EIReceiveOptions
WaitType and WaitInterval properties can be used to make the call block or
not. A blocking call will wait for the specified WaitInterval. If no message
arrives an MQEI reason code of EIRC_NO_MSG_AVAILABLE is returned.

The message type value from the received message is returned in the
EIReceiveOptions MessageType property when the call has completed.

Chaper 6: Programming for the MQSeries service 147

Disconnecting from MQSeries
An EIService Disconnect call, or destruction of the EIService, uses MQI calls
to close any open queues and disconnect from the queue manager.

This does not lose outstanding messages from the queue given by the
InboundConnection property. The existence of such messages is governed
by the usual MQSeries rules regarding message persistence and
recoverability. Messages can be recovered following a subsequent EIService
Connect for the same EIService instance, or a new instance of the EIService,
within the same, or a different, Notes client or Domino server agent.

Programming a conversation
A Native MQSeries conversation can consist of any combination of sends
and receives of messages. The usual link between the messages that make
up a conversation is the message identifier and correlation identifier,
represented by the EISendOptions and EIReceiveOptions Identifier
properties.

It is possible to use a single EIService object to run several conversations in
parallel. An example would be a query application, where three queries
needed to be made to the same MQSeries application but with different
parameters. Three SendMessage calls could be made one after the other.
The management of the Identifiers is the responsibility of the LotusScript
program.

There is a restriction when programming parallel conversations where the
LotusScript program is receiving messages with an EIReceiveOptions
MessageType of EIMT_REQUEST. Only the control information of the last
such message received is retained by the EIService object. This implies that
any reply to this message must be sent by the LotusScript program before
the next inbound message is received.

Errors
No specific action needs to be taken by the LotusScript program if a failure
occurs when sending or receiving a message.

Unsupported MQSeries functions
Local commit and backout of messages is not supported by the MQEI LSX.

148 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Security
Security here relates to any authentication performed by the MQSeries
application to which messages are sent, and to any security checking
performed by the queue manager.

If the MQSeries application is using its own security, it is assumed that any
userid is passed to it either as part of the message control information or as
part of the application message data, and that any password is passed to it
as part of the application message data.

The MQEI Service definition SystemName property can be used by the
MQEI LSX to read an MQEI Security definition for the Notes user from the
MQEI Security database. This definition should contain the MQSeries
application userid and password for the Notes user, and is used to set the
EIService UserId and Authenticator properties. Alternatively the
LotusScript program can prompt the user for this information and set
EIService UserId and Authenticator itself.

When the EIService Connect call is made, if the EIService UserId property
contains a userid, the OutboundConnection queue is opened with an
additional option that permits a userid to be set in the control information
of messages put on that queue. The userid in the control information is set
from EIService UserId when each message is sent. This userid may also be
used by MQSeries to check queue access authority, if MQSeries is
configured for this.

When the EIService Connect call is made, if the EIService UserId property is
empty, the OutboundConnection queue is opened as normal, and the userid
in the control information is left to be set by the queue manager according
to MQSeries rules. If this is the case, any MQSeries application userid must
be a field in the EIMessage.

It is the responsibility of the LotusScript program to set any userid and
authenticator fields of the EIMessage representing the MQSeries message.
A userid field may be set by the program copying the EIService UserId
property. An authenticator field will be set automatically by the MQEI LSX
from the EIService Authenticator property during SendMessage if it is
defined with a data type of System_Authenticator, or may be set explicitly
by the program if it is defined with a data type of Authenticator.

Chaper 6: Programming for the MQSeries service 149

Data conversion
It is recommended that data conversion of MQSeries messages is
performed by the MQEI LSX.

This is achieved by specifying the CharacterSet and Encoding properties in
the MQEI Service definition. An outbound message is converted to the
specified character set and numeric encoding from the local settings
specified in the MQEI initialization file (mqei.ini). An inbound message is
converted to the local settings from the character set and encoding specified
in its control information.

Alternatively outbound data conversion can be carried out under
MQSeries, by the MQSeries system programmer providing MQSeries data
conversion exits whose names match the Format properties of your
EIMessage objects. If this approach is adopted, then any outbound MQEI
LSX data conversion can be turned off by specifying a CharacterSet and an
Encoding in the MQEI Service definition that match those in the MQEI
initialization file.

Note The MQEI LSX will still perform any inbound data conversion based
on the message control information settings.

150 MQSeries Enterprise Integrator for Lotus Notes User's Guide

If you are familiar with the MQI

This section may prove helpful if you are familiar with the MQSeries MQI.

Mapping of MQEI properties to a Native MQSeries service
The following lists the properties of the EIService, EIMessage,
EISendOptions and EIReceiveOptions classes that are relevant to the MQI.

MQEI Class and Property MQI Equivalent
EIService CharacterSet CodedCharSetId (MQMD)
EIService ConnectionManager Queue Manager Name (MQCONN)
EIService Encoding Encoding (MQMD)
EIService InboundConnection Queue ObjectName (MQOPEN

MQOD)
EIService SystemName No equivalent
EIService OutboundConnection Queue ObjectName (MQOPEN

MQOD)
EIService UserId UserIdentifier (MQMD) Note 1
EIService Authenticator No equivalent
EIMessage Format Format (MQMD)
EISendOptions Delivery Persistence (MQMD) Note 2
EISendOptions Identifier MsgId and CorrelId (MQMD) Note 2
EISendOptions MessageType MsgType (MQMD)
EISendOptions Priority Priority (MQMD) Note 2
EIReceiveOptions Identifier CorrelId (MQMD)
EIReceiveOptions MessageType MsgType (MQMD)
EIReceiveOptions Format Format (MQMD)
EIReceiveOptions WaitInterval WaitInterval (MQGMO)
EIReceiveOptions WaitType Options (MQGMO) Note 3

Note 1 : Only if OutboundConnection opened with set identity context
authority.

Note 2 : Settings dependent on EISendOptions MessageType

Note 3 : MQGMO_WAIT or MQGMO_NOWAIT

The MQSeries MQI calls used are MQCONN, MQOPEN, MQPUT,
MQGET, MQCLOSE, and MQDISC.

Chaper 6: Programming for the MQSeries service 151

What happens during a Connect
The OutboundConnection queue is opened with options MQOO_OUTPUT
and MQOO_FAIL_IF_QUIESCING.

The InboundConnection queue is opened with options
MQOO_INPUT_AS_Q_DEF and MQOO_FAIL_IF_QUIESCING. If the
MQOPEN for the InboundConnection queue fails with
MQRC_OPTION_NOT_VALID_FOR_TYPE the MQOPEN is automatically
retried with MQOO_INPUT_EXCLUSIVE.

If the EIService UserId property contains a userid at the time of the Connect
call, the OutboundConnection queue is additionally opened with
MQOO_SET_IDENTITY_CONTEXT.

What happens during a SendMessage
The EISendOptions MessageType property governs how many of the
MQMD fields are set, as follows:

If EISendOptions MessageType is EIMT_DATAGRAM, MQMD
MsgType is set to MQMT_DATAGRAM and the following occurs:

MQMD Priority is set from EISendOptions Priority, a value of
EIPRI_DEFAULT being translated to
MQPRI_PRIORITY_AS_Q_DEF.

MQMD Persistence is set from EISendOptionsDelivery.
EIDEL_ASSURED translates to MQPER_PERSISTENT,
EIDEL_EXPRESS translates to MQPER_NON_PERSISTENT, and
EIDEL_DEFAULT translates to MQ_PERSISTENCE_AS_Q_DEF.

MQMD Report is set to MQRO_NEW_MSG_ID and
MQRO_COPY_MSG_ID_TO_CORREL_ID.

MQMD MsgId and CorrelId are set from EISendOptions Identifier if
specified. If no Identifier is specified, they are set to MQMI_NONE
and MQCI_NONE respectively.

If EISendOptions MessageType is EIMT_REQUEST:

MQMD MsgType is set to MQMT_REQUEST

MQMD ReplyToQ is set from EIService InboundConnection

MQMD ReplyToQMgr is set to blanks.

Other actions are the same as for EIMT_DATAGRAM,

If EISendOptions MessageType is EIMT_REPLY:

MQMD MsgType is set to MQMT_REPLY

152 MQSeries Enterprise Integrator for Lotus Notes User's Guide

The MQMD Priority, Persistence, MsgId, CorrelId, Report,
ReplyToQ and ReplyToQMgr are set from the MQMD of the last
received message that had an MQMD MsgType of
MQMT_REQUEST.

If EISendOptions MessageType is anything else, MQMD MsgType is set
to EISendOptions MessageType without translation, and the actions
taken are the same as for EIMT_REQUEST.

MQMD Expiry is always set to MQEI_UNLIMITED.

PutApplType, PutApplName, PutDate, PutTime, ApplOriginData and
BackoutCount are not set so either default or are set by the queue manager.

If the queue was opened with MQOO_SET_IDENTITY_CONTEXT:

All SendMessage calls specify MQPMO_SET_IDENTITY_CONTEXT

MQMD UserIdentifier is set from EIService UserId

MQMD AccountingToken is set to MQACT_NONE

MQMD ApplIdentityData is set to blanks.

Otherwise MQMD UserIdentifier, AccountingToken and ApplIdentityData
are left to be set by the queue manager according to MQSeries rules.

The EIMessage Format property is used to set the MQMD Format. An
EIMessage Format of EIFMT_NONE translates to MQFMT_NONE. An
EIMessage Format of EIFMT_STRING translates to MQFMT_STRING. Any
other value is not translated.

Chaper 6: Programming for the MQSeries service 153

154 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 7 Programming for an IMS via MQSeries
service

Whatever enterprise system your application communicates with, there are
some specific aspects to consider.

Here the mapping of the MQEI properties to MQSeries and IMS attributes
is covered, along with other aspects that you may need to consider when
communicating with an IMS application via MQSeries.

IMS via MQSeries support
Creating an MQEI Service definition with a service type of IMS via
MQSeries allows you to run IMS transactions on an IMS/ESA server. An
IMS transaction is identified by a transid of up to eight characters.

The MQEI LSX uses MQSeries and the MQSeries-IMS bridge as the
communication mechanism.

The MQSeries-IMS bridge allows an application program, in this case the
MQEI LSX, to run an IMS transaction on an IMS/ESA server via the MQI.
The MQEI LSX uses the MQI to access a local MQSeries queue manager,
either directly or via an MQSeries client.

The Notes client or Domino server using the MQEI LSX needs to reside on
the same machine as the local MQSeries queue manager or MQSeries client.

An MQSeries for MVS/ESA queue manager is required on the same
MVS/ESA system as the IMS server. The MQSeries-IMS bridge, which
must also be running on the same MVS/ESA system, runs the IMS
transaction, and returns results via the MQI.

For more information, see the MQSeries Application Programming Guide
manual.

The EIService object created from an MQEI Service definition of this type
would typically represent a suite of related transactions on the IMS server.

Chapter 7: Programming for the IMS service 155

Creating an MQEI Service definition
The key properties when creating an MQEI Service definition for an IMS via
MQSeries service are ConnectionManager, OutboundConnection,
InboundConnection, ServiceStep and ServiceContext:

The ConnectionManager propertygives the name of the local MQSeries
queue manager to which connection will be made. If the
ConnectionManager property is left blank the default queue manager is
selected.

The OutboundConnection property gives the name of the MQSeries
queue used to send messages to the MQSeries-IMS bridge.

The InboundConnection property gives the name of the MQSeries
queue used to receive reply messages back from the MQSeries-IMS
bridge. Both InboundConnection and OutboundConnection must be
specified, and they may not be the same queue.

The ServiceStep property gives the name of the IMS transaction itself. It
is possible to invoke several different IMS transactions using a single
EIService object, so the ServiceStep property should initially be set to
the first such transaction.

The ServiceContext property optionally gives the name of a logical
terminal (LTERM) to pass to the IMS transaction.

Creating MQEI Message definitions
An MQEI Message definition for an IMS via MQSeries service corresponds
to the IMS message data passed to the IMS transaction when it issues a GET
UNIQUE (GU) to the IOPCB, or sent as output by the IMS transaction when
it issues an INSERT (ISRT) to the IOPCB. This is transmitted to the
MQSeries-IMS bridge as the application message data part of an MQSeries
message. The application message data can be either a single-segment or a
multi-segment IMS message, the Segment property of each field in the
MQEI Message definition giving the segment that the field resides in. The
source for the MQEI Message definition would typically be an MFS map
source file or the equivalent application data structure used by the IMS
transaction (typically a copybook).

An MQSeries message consists of control information and application data.
The control information part of the message is called the MQSeries Message
Descriptor (MQMD). Additionally messages for the MQSeries-IMS bridge
have some extra control information in a bridge header called the MQIIH,
an embedded IMS trancode, and embedded IMS message <LLZZ> segment
indicators. You do not need to worry about any of these, as they are all built
automatically by the MQEI LSX and should not be part of your MQEI
Message definition.

156 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Connecting to MQSeries
The EIService Connect method call translates to an MQI call to connect to
the MQSeries queue manager given by the ConnectionManager property,
followed by MQI calls to open the MQSeries queues given by the
InboundConnection and OutboundConnection properties.

If the EIService UserId property contains a userid at the time of the Connect
call, the OutboundConnection queue is opened in a mode that allows the
MQEI LSX to pass an IMS userid to the MQSeries-IMS bridge when a
message is sent.

For more information, see "Security" later in this chapter.

Sending a message
Each EIService SendMessage method call translates to an MQI call to put an
MQSeries message on the MQSeries queue given by the
OutboundConnection property. The EIMessage parameter is used to
provide the application message data part of the message, that is, the IMS
message to be passed as input to the IMS transaction. The name of the IMS
transaction is given by the ServiceStep property. This is automatically
added to the MQSeries message by the MQEI LSX, as is the MQSeries-IMS
bridge header, and any IMS message <LLZZ> segment indicators.

The EISendOptions parameter controls how the message is put on the
queue. The EISendOptions properties of interest are Identifier and Priority:

Priority property is used to set the priority of the message

Identifier property can be specified to supply a unique identity to the
message (the message identifier) and its associated reply. If no
Identifier is specified, MQSeries generates one automatically and sets
it in the Identifier property when the SendMessage call has
completed.

Delivery property is used to set both the persistence of the message
and the IMS commit mode. Note that EIDEL_ASSURED must not be
used if the IMS transaction is conversational or Fast Path.

Note The EISendOptions MessageType property is ignored by the MQEI
LSX and is overridden internally to EIMT_REQUEST.

The EIMessage can also provide a named format for the IMS message from
its Format property. This is used to set the name of the MFS map that gets
passed to the IMS application to represent the IMS MOD. An EIMessage
Format of EIFMT_NONE means no MFS map name is set in the message.

Chapter 7: Programming for the IMS service 157

Receiving a message
Each ReceiveMessage method call translates to an MQI call to get an
MQSeries message from the MQSeries reply queue given by the
InboundConnection property .

The EIMessage parameter's fields are completed from the application
message data, that is, the IMS message output by the IMS transaction,
assuming they match. It is possible for the MQEI LSX to detect a mismatch
if either the length of the EIMessage exceeds the length of the message data,
or the EIMessage does not match the message segments, or the name of the
MFS map representing the IMS MOD does not match the Format property
of the EIMessage parameter. This latter check is only made if the message
actually contains an MFS map name and EIMessage Format is not
EIFMT_NONE. If the EIMessage does not match the data, an MQEI reason
code of EIRC_WRONG_MESSAGE is returned and a different EIMessage
should be tried.

For more information, see "Variant Messages" in Chapter 4.

Whether a match occurred or not, the MFS map name is returned in the
EIReceiveOptions Format property when the call has completed.

When calling the ReceiveMessage method to receive a reply from the
MQSeries-IMS bridge, the EIReceiveOptions Identifier property can be used
to target a specific message, or can be used to receive the first message on
the queue. The recommendation is to target a specific message, as this
guarantees that the wrong message is not picked up in a multi-user
environment. The Identifier to be used should be that from the
EISendOptions object used on the corresponding SendMessage call. If no
Identifier is specified in EIReceiveOptions, the message identifier of the
message is returned in the Identifier property when the call has completed.

When calling ReceiveMessage to receive a reply, the EIReceiveOptions
WaitType and WaitInterval properties can be used to make the call block or
not. A blocking call waits for the specified WaitInterval. If no message
arrives an MQEI reason code of EIRC_NO_MSG_AVAILABLE is returned.

The message type value from the received message is returned in the
EIReceiveOptions MessageType property when the call has completed.

158 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Disconnecting from MQSeries
An EIService Disconnect call, or destruction of the EIService, uses MQI calls
to close any open queues and disconnect from the queue manager.

This does not lose outstanding messages from the MQSeries-IMS bridge
reply queue given by the InboundConnection property. The existence of
such messages is governed by the usual MQSeries rules regarding message
persistence and recoverability. Messages can be recovered following a
subsequent EIService Connect for the same EIService instance, or a new
instance of the EIService, within the same, or a different, Notes client or
Domino server agent.

Programming a conversation
An IMS conversation can consist of running either a single IMS transaction,
or a suite of conversational IMS transactions.

During a SendMessage call, the IMS trancode is passed to IMS in the
MQSeries message only at the beginning of a conversation. The LotusScript
program can vary the IMS trancode by changing the ServiceStep property
prior to making the SendMessage call. The trancode is not normally passed
to IMS if in the middle of a conversation. In this case, the ServiceStep
property is not used. The only exception to this is if the LotusScript
program wishes to terminate the conversation prematurely, in which case
the LotusScript program should set the ServiceStep property to /EXIT.

It is not possible to use a single EIService object to run several separate
conversations in parallel. You must create an EIService for each parallel
conversation you wish to hold.

A conversation can persist across destruction and re-creation of the
EIService object only if a ReceiveMessage call is the first call made from the
new EIService object after the Connect call. This is because the transaction
instance id assigned to the conversation by IMS is lost by the MQEI LSX
when the EIService is destroyed, and can only be recreated from an
inbound reply message.

Errors
No specific action needs to be taken by the LotusScript program if a failure
occurs when sending or receiving a message.

Unsupported MQSeries functions
Local commit and backout of messages is not supported by the MQEI LSX.

Chapter 7: Programming for the IMS service 159

Security
The MQEI Service definition SystemName property can be used by the
MQEI LSX to read an MQEI Security definition for the Notes user from the
MQEI Security database. This definition should contain the IMS userid and
password for the Notes user, and is used to set the EIService UserId and
Authenticator properties. Alternatively the LotusScript program can
prompt the user for this information and set EIService UserId and
Authenticator itself.

If security is being used on the IMS server, the IMS userid and password
need to be passed by the MQEI LSX to the MQSeries-IMS bridge on each
SendMessage call so that the MQSeries-IMS bridge can authenticate the
Notes user. For this to happen, the EIService UserId property must contain
a userid when the EIService Connect call is made. If so, the
OutboundConnection queue is opened with an additional option that
permits a userid to be set in the control information of messages put on that
queue. The userid in the control information is set from EIService UserId
when each message is sent. This UserId may also be used by MQSeries to
check queue access authority, if MQSeries is configured for this.

Depending on the setup of your MQSeries-IMS bridge, it may only be
necessary to pass the IMS password on the first SendMessage call you make
to IMS. If this is the case, and you wish to miminize the number of times the
password is transmitted, the LotusScript program should set the EIService
Authenticator property to blanks after the first SendMessage call.

If the EIService UserId property is empty when the EIService Connect call is
made, the OutboundConnection queue is opened as normal, and the userid
in the control information is left to be set by the queue manager according
to MQSeries rules. This approach should only be used if security is not
being used by the IMS server.

If authentication by the MQSeries-IMS bridge fails, no reply message will be
returned. Failure to receive an expected reply message could therefore be
an indication that authentication failed. If the IMS userid does not have
sufficient authority to access resources used by the IMS transaction, a reply
message consisting of a DFS1292E error message will be returned. In both
cases the original message sent to IMS will be placed on the dead letter
queue if one is defined.

160 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Data conversion
Data conversion of MQSeries-IMS bridge messages must be performed by
the MQEI LSX. This is because the EIMessage Format property is used to
specify an IMS MFS map name and not a named message format (which is
the control information used to locate an MQSeries data conversion exit).

Data conversion by the MQEI LSX is achieved by specifying the
CharacterSet and Encoding properties in the MQEI Service definition. An
outbound message is converted to the specified character set and numeric
encoding from the local settings specified in the MQEI initialization file
(mqei.ini). An inbound reply is converted to the local settings from the
character set and encoding specified in its control information.

Chapter 7: Programming for the IMS service 161

If you are familiar with the MQI

This section may prove helpful if you are familiar with the MQSeries MQI.

Mapping of MQEI properties to an IMS via MQSeries service
The following lists the properties of the EIService, EIMessage,
EISendOptions and EIReceiveOptions classes that are relevant to the MQI.

MQEI Class and Property MQI Equivalent
EIService ServiceStep IMS trancode (in message data)
EIService Context LTermOverride (MQIIH)
EIService CharacterSet CodedCharSetId (MQMD)
EIService ConnectionManager Queue Manager Name (MQCONN)
EIService Encoding Encoding (MQMD)
EIService InboundConnection Queue ObjectName (MQOPEN MQOD)
EIService OutboundConnection Queue ObjectName (MQOPEN MQOD)
EIService SystemName No equivalent
EIService UserId UserIdentifier (MQMD) Note 1
EIService Authenticator Authenticator (MQIIH)
EIMessage Format MFSMapName (MQIIH)
EISendOptions Delivery Persistence (MQMD) and CommitMode

(MQIIH)
EISendOptions Identifier MsgId and CorrelId (MQMD)
EISendOptions Priority Priority (MQMD)
EIReceiveOptions Format MFSMapName (MQIIH)
EIReceiveOptions Identifier CorrelId (MQMD)
EIReceiveOptions MessageType MsgType (MQMD)
EIReceiveOptions WaitInterval WaitInterval (MQGMO)
EIReceiveOptions WaitType Options (MQGMO)

Note 1 : Only if OutboundConnection opened with set identity context
authority.

The MQSeries MQI calls used are MQCONN, MQOPEN, MQPUT,
MQGET, MQCLOSE, and MQDISC.

162 MQSeries Enterprise Integrator for Lotus Notes User's Guide

What happens during a Connect
The OutboundConnection queue is opened with options MQOO_OUTPUT
and MQOO_FAIL_IF_QUIESCING.

The InboundConnection queue is opened with options
MQOO_INPUT_AS_Q_DEF and MQOO_FAIL_IF_QUIESCING.

If the MQOPEN for the InboundConnection queue fails with
MQRC_OPTION_NOT_VALID_FOR_TYPE the MQOPEN is automatically
retried with MQOO_INPUT_EXCLUSIVE.

If the EIService UserId property contains a userid at the time of the Connect
call, the OutboundConnection queue is additionally opened with
MQOO_SET_IDENTITY_CONTEXT.

What happens during a SendMessage
MQMD MsgId and CorrelId are set from EISendOptions Identifier if
specified. If no Identifier is specified, they are set to MQMI_NONE and
MQCI_NONE respectively.

MQMD Priority is set from EISendOptions Priority, a value of
EIPRI_DEFAULT being translated to MQPRI_PRIORITY_AS_Q_DEF.

MQMD Persistence and MQIIH CommitMode are set from EISendOptions
Delivery.
EIDEL_ASSURED translates to MQPER_PERSISTENT and
MQCIM_COMMIT_THEN_SEND.
EIDEL_EXPRESS translates to MQPER_NON_PERSISTENT and
MQCIM_SEND_THEN_COMMIT.
EIDEL_DEFAULT translates to MQPER_PERSISTENT_AS_Q_DEF and
MQCIM_SEND_THEN_COMMIT.

The following MQMD fields can not be influenced by the LotusScript
program:

MQMD MessageType is always set to MQMT_REQUEST.

MQMD Report is always set to MQRO_NEW_MSG_ID and
MQRO_COPY_MSG_ID_TO_CORREL_ID.

MQMD ReplyToQ is always set from EIService InboundConnection

MQMD ReplyToQMgr is always set to blanks.

MQMD Expiry is always set to MQEI_UNLIMITED.

MQMD Format is always set to MQFMT_IMS to indicate that an
MQIIH bridge header follows.

Chapter 7: Programming for the IMS service 163

PutApplType, PutApplName, PutDate, PutTime, ApplOriginData
and BackoutCount are not set so either default or are set by the
queue manager.

If the queue was opened with MQOO_SET_IDENTITY_CONTEXT:

All SendMessage calls specify MQPMO_SET_IDENTITY_CONTEXT

MQMD UserIdentifier is set from EIService UserId

MQMD AccountingToken is set to MQACT_NONE

MQMD ApplIdentityData is set to blanks.

Otherwise MQMD UserIdentifier, AccountingToken and ApplIdentityData
are left to be set by the queue manager according to MQSeries rules.

The EIMessage Format property is used to set the MQIIH MFSMapName
that gets placed in the IOPCB to represent the IMS MOD. An EIMessage
Format of EIFMT_NONE means no MFS map name is set. An EIMessage
Format of EIFMT_STRING translates to MQFMT_IMS_VAR_STRING. Any
other value is assumed to be a real MFS map name and is not translated.

The MQIIH Format and ReplyToFormat are always set to MQFMT_NONE.
This means that data conversion of the IMS message data will not take
place on the MQSeries for MVS/ESA queue manager.

The following MQIIH field can not be influenced by the LotusScript
program.

MQIIH SecurityScope is always set to MQISS_CHECK.

164 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 8 Programming for a CICS DPL via MQSeries
service

Whatever enterprise system your application communicates with, there are
some specific aspects to consider.

Here the mapping of the MQEI properties to MQSeries and CICS attributes
is covered, along with other aspects that you may need to consider when
communicating with a CICS DPL application via MQSeries.

CICS DPL via MQSeries support
Creating an MQEI Service definition with a service type of CICS DPL via
MQSeries allows you to run CICS Distributed Program Link (DPL)
programs on a CICS for MVS/ESA server. A CICS DPL program is a CICS
program that may be invoked using the CICS command EXEC CICS LINK
but may not use CICS terminal or syncpoint facilities.

The MQEI LSX uses MQSeries and the MQSeries-CICS/ESA DPL bridge as
the communication mechanism. The MQSeries-CICS/ESA DPL bridge
allows an application program, in this case the MQEI LSX, to invoke a CICS
DPL program on a CICS for MVS/ESA server via the MQI. The MQEI LSX
uses the MQI to access a local MQSeries queue manager, either directly or
via an MQSeries client. The Notes client or Domino server using the MQEI
LSX needs to reside on the same machine as the local MQSeries queue
manager or MQSeries client.

An MQSeries for MVS/ESA queue manager is required on the same
MVS/ESA system as the CICS server. The MQSeries-CICS/ESA DPL
bridge, which must be running on a CICS server in the same MVS/ESA
system, invokes the DPL program, which may reside on any connected
CICS server, and returns results via the MQI.

For more information, see the MQSeries Application Programming Guide
manual and the MQSeries-CICS/ESA DPL bridge User Guide.

Chapter 8: Programming for the CICS DPL via MQSeries service 165

Creating an MQEI Service definition
The key properties when creating an MQEI Service definition for a CICS
DPL via MQSeries service are ConnectionManager, OutboundConnection,
InboundConnection and ServiceStep.

The ConnectionManager property gives the name of the local MQSeries
queue manager to which connection will be made. If the
ConnectionManager property is left blank the default queue manager is
selected.

The OutboundConnection property gives the name of the MQSeries
queue used to send messages to the MQSeries-CICS/ESA DPL bridge.

The InboundConnection property gives the name of the MQSeries
queue used to receive reply messages back from the
MQSeries-CICS/ESA DPL bridge. Both InboundConnection and
OutboundConnection must be specified, and they may not be the same
queue.

The ServiceStep property gives the name of the DPL program itself. It is
possible to invoke several different DPL programs using a single
EIService object, so the ServiceStep property should initially be set to
the first such program.

The ServiceContext property gives the CICS transaction identifier that
the DPL program will run under.

166 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Creating MQEI Message definitions
An MQEI Message definition for a CICS DPL via MQSeries service
corresponds to the CICS COMMAREA passed as a parameter to the DPL
program by the EXEC CICS LINK command. This is transmitted to the
MQSeries-CICS/ESA DPL bridge as the application message data part of an
MQSeries message. The source for the MQEI Message definition would
typically be a copybook or header file containing the definition of the
COMMAREA data structure in an appropriate language.

Often the format of the COMMAREA is the same when passing data into a
given DPL program as it is when receiving data back. In this case a single
MQEI Message definition will be needed per DPL program. However,
sometimes the format of the COMMAREA varies between input and
output, so two MQEI Message definitions will be needed, one for the input
format and one for the output format. If the output format is longer than
the input format, you must pad the MQEI Message definition for the input
format so its length matches the output format length, otherwise a failure
may occur on the CICS server.

An MQSeries message consists of control information and application data.
The control information part of the message is called the MQSeries Message
Descriptor (MQMD). Additionally messages for the MQSeries-CICS/ESA
DPL bridge have some extra control information in a bridge header called
the MQCIH, and an embedded DPL program name. You do not need to
worry about any of these, as they are all built automatically by the MQEI
LSX and should not be part of your MQEI Message definition.

Connecting to MQSeries
The EIService Connect method call translates to an MQI call to connect to
the MQSeries queue manager given by the ConnectionManager property,
followed by MQI calls to open the MQSeries queues given by the
InboundConnection and OutboundConnection properties.

If the EIService UserId property contains a userid at the time of the Connect
call, the OutboundConnection queue is opened in a mode that allows the
MQEI LSX to pass a CICS userid to the MQSeries-CICS/ESA DPL bridge
when a message is sent.

For more information see "Security" later in this chapter.

Chapter 8: Programming for the CICS DPL via MQSeries service 167

Sending a message
Each EIService SendMessage method call translates to an MQI call to put an
MQSeries message on the MQSeries queue given by the
OutboundConnection property. The EIMessage parameter's fields are used
to provide the application message data part of the message, that is, the
COMMAREA to be passed as input to the DPL program. The name of the
DPL program is given by the ServiceStep property. This is automatically
added to the message by the MQEI LSX, as is the MQSeries-CICS/ESA DPL
bridge header. The CICS transid that the DPL program will run under is
given by theServiceContext property (if this is the start of a new CICS
logical unit of work(UOW)).

The EISendOptions parameter controls how the message is put on the
queue and how the DPL program is invoked. The EISendOptions properties
of interest are UnitOfWork and Identifier:

Identifier property can be specified to supply a unique identity to the
message (the message identifier) and its associated reply. If no
Identifier is specified, MQSeries generates one automatically and sets it
in the Identifier property when the SendMessage call has completed.

Delivery property is used to set the persistence of the message.

UnitOfWork property specifies how this DPL program relates to the
CICS logical unit of work (UOW) that it will run under.

For more information see "Programming a conversation" later in this
chapter.

Note that the EISendOptions MessageType and Priority properties are
ignored. The MQEI LSX overrides MessageType internally to
EIMT_REQUEST. Priority ordered queues should not be used with the
MQSeries-CICS/ESA DPL bridge.

Note EIMessage Format property is ignored

For more information, see "Data Conversion" later in this chapter.

168 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Receiving a message
Each SendMessage method call generates exactly one reply from the
MQSeries-CICS/ESA DPL bridge. A ReceiveMessage method call translates
to an MQI call to get an MQSeries message from the reply queue given by
the InboundConnection property. The EIMessage parameter's fields are
completed from the application message data, that is, the COMMAREA,
assuming they match. Because a COMMAREA is just an unstructured
buffer, it is only possible for the MQEI LSX to detect a mismatch if the
length of the EIMessage exceeds the length of the data. If the EIMessage
does not exactly match the data, an MQEI reason code of
EIRC_WRONG_MESSAGE or EIRC_INSUFFICIENT_DATA is returned
and a different EIMessage should be tried.

For more information see "Variant Messages" in Chapter 4.

 When trying different EIMessages, start with the longest message first.

When calling the ReceiveMessage method to receive a reply from the
MQSeries-CICS/ESA DPL bridge, the EIReceiveOptions Identifier property
can be used to target a specific message, or can be used to receive the first
message on the queue. The recommendation is to target a specific message,
as this guarantees that the wrong message is not picked up in a multi-user
environment. The Identifier to be used should be that from the
EISendOptions object used on the corresponding SendMessage call. If no
Identifier is specified in EIReceiveOptions the message identifier of the
message is returned in the Identifier property when the call has completed.

When calling ReceiveMessage to receive a reply, the EIReceiveOptions
WaitType and WaitInterval properties can be used to make the call block or
not. A blocking call will wait for the specified WaitInterval. If no message
arrives an MQEI reason code of EIRC_NO_MSG_AVAILABLE is returned.

The message type value from the received message is returned in the
EIReceiveOptions MessageType property when the call has completed.

Disconnecting from MQSeries
An EIService Disconnect call l, or destruction of the EIService, uses MQI
calls to close any open queues and disconnect from the queue manager.

This does not lose outstanding messages from the MQSeries-CICS/ESA
DPL bridge reply queue given by the InboundConnection property. The
existence of such messages is governed by the usual MQSeries rules
regarding message persistence and recoverability. Messages can be
recovered following a subsequent EIService Connect for the same EIService
instance, or a new instance of the EIService, within the same, or a different,
Notes client or Domino server agent.

Chapter 8: Programming for the CICS DPL via MQSeries service 169

Programming a conversation
A CICS DPL via MQSeries conversation can consist of a single call to a DPL
program, or several calls to the same DPL program, or several calls to
different DPL programs. Varying the DPL program name may be achieved
by changing the EIService ServiceStep property from the LotusScript
program prior to making a SendMessage call. You have the choice to run
each DPL program in its own CICS logical unit of work (UOW) or to group
programs together in an extended UOW. This is controlled by the
EISendOptions UnitOfWork property.

When running an extended UOW, the EISendOptions Identifier property is
used as the link between the different calls that make up the UOW. On the
first SendMessage call of the UOW, the LotusScript program can either
provide its own, unique, Identifier or let the MQSeries queue manager
provide a unique one on its behalf. If this Identifier is not unique, an MQEI
reason code of EIRC_IDENTIFIER_ERROR will be returned when the
ReceiveMessage call is made. This same Identifier must be present on all
SendMessage calls that comprise the UOW. Failure to do this will result in
the MQSeries-CICS/ESA DPL bridge not finding messages and timing out
the unit of work.

When running an extended UOW, it is only when the last reply message is
received that the LotusScript program can be sure that the UOW has been
committed or backed out. This last reply message is distinguished by
having an EIReceiveOptions MessageType of EIMT_REPLY, whereas
intermediate reply messages will have a MessageType of EIMT_REQUEST.

It is possible to use a single EIService object to run several separate UOWs
in parallel. An example would be a query application, where three queries
needed to be made to the same DPL program but with different
parameters. Three SendMessage calls could be made one after the other.
The management of the Identifiers is the responsibility of the LotusScript
program.

Errors
No specific action needs to be taken by the LotusScript program if a failure
occurs when sending or receiving a message.

If a failure has occurred in the MQSeries-CICS/ESA DPL bridge, or there
was a problem with a message it receives, the CICS bridge task will have
backed out any changes made to recoverable resources on the CICS server.

If a failure has occurred in MQSeries, or there was a problem with a
message, which prevents an expected message arriving at the bridge, the
CICS bridge task will timeout the unit of work and again back out changes
to recoverable resources.

170 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Unsupported MQSeries functions
Local commit and backout of messages is not supported by the MQEI LSX.

Security
The MQEI Service definition SystemName property can be used by the
MQEI LSX to read an MQEI Security definition for the Notes user from the
MQEI Security database. This definition should contain the CICS userid
and password for the Notes user, and is used to set the EIService UserId
and Authenticator properties. Alternatively the LotusScript program can
prompt the user for this information and set EIService UserId and
Authenticator itself.

If security is being used on the CICS server, the CICS userid and password
need to be passed by the MQEI LSX to the MQSeries-CICS/ESA DPL
bridge on each SendMessage call so that CICS can authenticate the Notes
user.
For this to happen, the EIService UserId property must contain a userid
when the EIService Connect call is made. If so, the OutboundConnection
queue is opened with an additional option that permits a userid to be set in
the control information of messages put on that queue. The userid in the
control information is set from EIService UserId when each message is sent.
This UserId may also be used by MQSeries to check queue access authority,
if MQSeries is configured for this.

If the EIService UserId property is empty when the EIService Connect call is
made, the OutboundConnection queue is opened as normal, and the userid
in the control information is left to be set by the queue manager according
to MQSeries rules. This approach should only be used if security is not
being used by the CICS server.

If authentication fails, or if the CICS userid does not have sufficient
authority to access resources used by the DPL program, an MQEI reason
code of EIRC_SECURITY_FAILURE will be returned by the
ReceiveMessage call.

Chapter 8: Programming for the CICS DPL via MQSeries service 171

Data conversion
Data conversion of MQSeries-CICS/ESA DPL bridge messages must be
performed by the MQEI LSX. This is because there is no facility on
MQSeries queue managers to data convert the MQCIH bridge header,
which also prevents the data conversion of the COMMAREA.

Data conversion by the MQEI LSX is achieved by specifying the
CharacterSet and Encoding properties in the MQEI Service definition. An
outbound message is converted to the specified character set and numeric
encoding from the local settings specified in the MQEI initialization file
(mqei.ini). An inbound reply is converted to the local settings from the
character set and encoding specified in its control information.

Because data conversion must not take place on the MQSeries queue
managers, the EIMessage Format property is not used to set a named
message format in an outbound message. Otherwise an MQSeries data
conversion exit may be called which would fail for the reason given above.

172 MQSeries Enterprise Integrator for Lotus Notes User's Guide

If you are familiar with the MQI

This section may prove helpful if you are familiar with the MQSeries MQI.

Mapping of MQEI properties to a CICS DPL via MQSeries service
The following lists the properties of the EIService, EIMessage,
EISendOptions and EIReceiveOptions classes that are relevant to the MQI.

MQEI Class and Property MQI Equivalent
EIService AbendCode AbendCode (MQCIH)
EIService ServiceStep DPL program name (in message data)
EIService ServiceContext TransactionId (MQCIH)
EIService CharacterSet CodedCharSetId (MQMD)
EIService ConnectionManager Queue Manager Name (MQCONN)
EIService Encoding Encoding (MQMD)
EIService InboundConnection Queue ObjectName (MQOPEN MQOD)
EIService OutboundConnection Queue ObjectName (MQOPEN MQOD)
EIService SystemName No equivalent
EIService UserId UserIdentifier (MQMD) Note 1
EIService Authenticator Authenticator (MQCIH)
EISendOptions Delivery Persistence (MQMD)
EISendOptions Identifier MsgId and CorrelId (MQMD)
EISendOptions UnitOfWork UOWControl (MQCIH)
EIReceiveOptions Identifier CorrelId (MQMD)
EIReceiveOptions MessageType MsgType (MQMD)
EIReceiveOptions WaitInterval WaitInterval (MQGMO)
EIReceiveOptions WaitType Options (MQGMO)

Note 1 : Only if OutboundConnection opened with set identity context
authority.

The MQSeries MQI calls used are MQCONN, MQOPEN, MQPUT,
MQGET, MQCLOSE, and MQDISC.

Chapter 8: Programming for the CICS DPL via MQSeries service 173

What happens during a Connect
The OutboundConnection queue is opened with options MQOO_OUTPUT
and MQOO_FAIL_IF_QUIESCING.

The InboundConnection queue is opened with options
MQOO_INPUT_AS_Q_DEF and MQOO_FAIL_IF_QUIESCING. If the
MQOPEN for the InboundConnection queue fails with
MQRC_OPTION_NOT_VALID_FOR_TYPE the MQOPEN is automatically
retried with MQOO_INPUT_EXCLUSIVE.

If the EIService UserId property contains a userid at the time of the Connect
call, the OutboundConnection queue is additionally opened with
MQOO_SET_IDENTITY_CONTEXT.

What happens during a SendMessage
MQMD Persistence is set from EISendOptions Delivery.
EIDEL_ASSURED translates to MQPER_PERSISTENT.
EIDEL_EXPRESS translates to MQPER_NON_PERSISTENT.
EIDEL_DEFAULT translates to MQPER_PERSISTENT_AS_Q_DEF.

If EISendOptions UnitOfWork is EIUOW_FIRST or EIUOW_ONLY, the
following occurs:

MQMD MsgId is set from EISendOptions Identifier if specified. If no
Identifier is specified, it is set to MQMI_NONE which causes MQSeries
to generate a unique MsgId for the message.

MQMD CorrelId is set to MQCI_NEW_SESSION.

If EISendOptions UnitOfWork is anything else:

MQMD MsgId is set from EISendOptions Identifier if specified. If no
Identifier is specified, it is set to MQMI_NONE which causes MQSeries
to generate a unique MsgId for the message

MQMD CorrelId is set from the EISendOptions Identifier property in
the same manner as MQMD MsgId.

The following MQMD fields can not be influenced by the LotusScript
program:

MQMD MessageType is always set to MQMT_REQUEST.

MQMD Priority is always set to MQPRI_PRIORITY_AS_Q_DEF as
priority is not applicable for the MQSeries-CICS/ESA DPL bridge.

MQMD Report is always set to MQRO_NEW_MSG_ID and
MQRO_COPY_MSG_ID_TO_CORREL_ID.

MQMD ReplyToQ is always set from EIService InboundConnection

MQMD ReplyToQMgr is always set to blanks.

174 MQSeries Enterprise Integrator for Lotus Notes User's Guide

MQMD Expiry is always set to MQEI_UNLIMITED.

MQMD Format is always set to MQFMT_CICS to indicate that an
MQCIH bridge header follows.

PutApplType, PutApplName, PutDate, PutTime, ApplOriginData and
BackoutCount are not set so either default or are set by the queue
manager.

If the queue was opened with MQOO_SET_IDENTITY_CONTEXT:

All SendMessage calls specify MQPMO_SET_IDENTITY_CONTEXT

MQMD UserIdentifier is set from EIService UserId

MQMD AccountingToken is set to MQACT_NONE

MQMD ApplIdentityData is set to blanks.

Otherwise MQMD UserIdentifier, AccountingToken and ApplIdentityData
are left to be set by the queue manager according to MQSeries rules.

Note EIMessage Format property is ignored and MQCIH Format and
ReplyToFormat are always set to MQFMT_NONE. This ensures that data
conversion of the COMMAREA will not take place on the MQSeries for
MVS/ESA queue manager

Chapter 8: Programming for the CICS DPL via MQSeries service 175

176 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 9 Programming for a CICS DPL direct service

Whatever enterprise system your application communicates with, there are
some specific aspects to consider.

Here the mapping of the MQEI properties to CICS attributes is covered,
along with other aspects that you may need to consider when
communicating with a CICS DPL application via the CICS client.

MQEI CICS DPL direct support

Creating an MQEI Service definition with a service type of CICS DPL direct
allows you to run CICS Distributed Program Link (DPL) programs on a
CICS server. A CICS DPL program is a CICS program that may be invoked
using the CICS command EXEC CICS LINK but may not use CICS terminal
or syncpoint facilities.

The MQEI LSX uses a CICS client interface called the External Call Interface
(ECI) as the communication mechanism. The CICS ECI allows access to the
full range of servers in the CICS family via a CICS client. Also, some
members of the CICS family can be accessed without a CICS client as they
have a built-in client.

The Notes client or Domino server using the MQEI LSX needs to reside on
the same machine as the CICS client (or CICS server with the built-in
client).

For more information about the CICS ECI, see the IBM CICS Family:
Client/Server Programming manual.

Note The CICS DPL direct service type is not supported on UNIX systems.

Chapter 9: Programming for the CICS DPL direct service 177

Creating an MQEI Service definition
The key properties when creating an MQEI Service definition for a CICS
DPL direct service are ConnectionManager and ServiceStep.

The ConnectionManager property gives the name of the CICS server to
which connection will be made. It is the name of the CICS server as
defined in your CICS client initialization file ServerName property.
If a CICS server with a built-in client is being used, the
ConnectionManager property must always be set to 'CICSMRO' (this is
a CICS restriction).
If the ConnectionManager property is left blank the default CICS server
for the CICS client is selected.

The ServiceStep property gives the name of the DPL program itself. It is
possible to invoke several different DPL programs using a single
EIService object, so the ServiceStep property should initially be set to
the first such program.

The ServiceContext property gives the CICS transaction identifier that
the DPL program will run under.

Creating MQEI Message definitions
An MQEI Message definition for a CICS DPL direct service corresponds to
the CICS COMMAREA passed as a parameter to the DPL program by the
EXEC CICS LINK command. The source for the MQEI Message definition
would typically be a copybook or header file containing the definition of the
COMMAREA data structure in an appropriate language.

Often the format of the COMMAREA is the same when passing data into a
given DPL program as it is when receiving data back. In this case a single
MQEI Message definition will be needed per DPL program. However,
sometimes the format of the COMMAREA varies between input and
output, so two MQEI Message definitions are needed, one for the input
format and one for the output format.

If the output format is longer than the input format, you must pad the
MQEI Message definition for the input format so its length matches the
output format length, otherwise a storage violation may occur on the CICS
server.

Connecting to CICS
The EIService Connect method call uses the CICS ECI to check that the
CICS server given by the ConnectionManager property is up and running,
and if a CICS client is being used, that the CICS client is up as well. The
Connect call will fail if this is not the case. No attempt is made to signon at
this point.

178 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Sending a message
Each EIService SendMessage method call translates to a CICS ECI call to
invoke the DPL program, named by the ServiceStep property on the CICS
server. The EIMessage parameter fields are used to provide the
COMMAREA passed as input to the DPL program.

Note that the DPL program need not actually run on the CICS server given
by the ConnectionManager property. The CICS definition for the DPL
program may specify it as remote in which case the DPL program call is
routed to a different CICS server using CICS function shipping.

The CICS transid that the DPL program will run under is given by the
ServiceContext property (if this is the start of a new CICS logical unit of
work(UOW)).

The EISendOptions parameter controls how the DPL program is invoked.
The Identifier property can be specified to supply a unique identity to the
invocation and resulting reply. If none is specified, the MQEI LSX generates
one automatically and sets it in the Identifier property. The UnitOfWork
property specifies how this DPL program relates to the CICS logical unit of
work (UOW) that it will run under.

For more information see "Programming a conversation" later in this
chapter.

Chapter 9: Programming for the CICS DPL direct service 179

Receiving a message
Each SendMessage method call will always generate exactly one reply from
CICS. A ReceiveMessage method call translates to a CICS ECI call to get the
COMMAREA returned by the DPL program. The EIMessage parameter's
fields are completed from the COMMAREA assuming these match. Because
a COMMAREA is just an unstructured buffer, it is only possible for the
MQEI LSX to detect a mismatch if the length of the EIMessage exceeds the
length of the data. If the EIMessage does not match the data, an MQEI
reason code of EIRC_WRONG_MESSAGE is returned and a different
EIMessage should be tried.

For more information, see "Variant Messages" in Chapter 4.

When trying different EIMessages, start with the longest message first.

When calling the ReceiveMessage method to receive the reply back from
CICS, the EIReceiveOptions Identifier property can be used to target a
specific reply, or can be used to receive the first reply. The recommendation
is to target a specific reply, as this guarantees that the wrong reply is not
picked up in a multi-user environment. If no Identifier is specified the
identifier of the reply is returned in the Identifier property.

When calling the ReceiveMessage method to receive a reply, the
EIReceiveOptions WaitType and WaitInterval properties can be used to
make the call block or not. Due to the way timeout is supported by the
CICS ECI, a blocking call will only wait for the specified time if there is a
reply outstanding, otherwise it will return immediately with a warning and
an MQEI reason code of EIRC_NO_MSG_AVAILABLE. The CICS ECI does
not support unlimited timeout.

Disconnecting from CICS
An EIService Disconnect call, or destruction of the EIService, does not lose
outstanding replies nor terminate in-progress extended UOWs. Replies can
be recovered, and UOWs resumed, following a subsequent EIService
Connect for the same EIService instance, or a new instance of the EIService,
within the same Notes client or Domino server agent. It is only when the
Notes client or Domino agent terminates that the CICS ECI discards all
outstanding replies, and abends in-progress UOWs.

It is the responsibility of the LotusScript program to know the state of
UOWs it has started. The MQEI LSX provides no facility to interrogate this.

180 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Programming a conversation
A CICS DPL conversation can consist of a single call to a DPL program, or
several calls to the same DPL program, or several calls to different DPL
programs. Varying the DPL program name may be achieved by changing
the EIService ServiceStep property from the LotusScript program prior to
making a SendMessage call.

You have the choice to run each DPL program in its own CICS logical unit
of work (UOW) or to group programs together in an extended UOW. This
is controlled by the EISendOptions UnitOfWork property.

When running an extended UOW, each SendMessage for the UOW must be
followed by a ReceiveMessage in strict order. Failure to do this will result
in an MQEI reason code of EIRC_CALL_SEQUENCE_ERROR.

When running an extended UOW, the EISendOptions Identifier property is
used as the link between the different calls that make up the UOW. On the
first SendMessage of the UOW, the LotusScript program can either provide
its own, unique, Identifier or let the MQEI LSX generate a unique one on his
behalf. This same Identifier must be present on all SendMessage calls that
comprise the UOW. Failure to do this, or failure to provide a unique UOW
on the first SendMessage call, will result in an MQEI reason code of
EIRC_IDENTIFIER_ERROR.

It is possible to use a single EIService object to run several separate UOWs
in parallel. An example would be a query application, where three queries
needed to be made to the same DPL program but with different
parameters. Three SendMessage calls could be made one after the other.
The management of the Identifiers is the responsibility of the LotusScript
program.

Do not leave replies outstanding, even if the reply is of no interest to the
application. Each new UOW generates a unique CICS ECI message
qualifier, destroyed when a reply indicates the UOW has completed. Failure
to receive replies may exhaust the range of unique ECI message qualifiers.

Chapter 9: Programming for the CICS DPL direct service 181

Errors
If a failure occurs from ReceiveMessage when receiving a reply that is part
of an extended UOW, the normal action the program should take is to issue
a SendMessage call with an EISendOptions UnitOfWork property of
EIUOW_BACKOUT. This should backout any changes made to recoverable
resources on the CICS server.

The backout call is not necessary if it is known the UOW has completed,
indicated by MQEI reason codes EIRC_SERVICE_SYSABEND,
EIRC_CONNECTION_BROKEN, EIRC_UOW_ROLLED_BACK, and
EIRC_UOW_IN_DOUBT. The last of these indicates that the MQEI LSX can
not determine the UOW state, and that manual recovery may be required. If
a backout call is made, and the UOW has already been backed out, an
MQEI reason code of EIRC_CALL_SEQUENCE_ERROR is returned, which
can be ignored.

Security
If security is being used on the CICS server, there are two options for
performing authentication of users:

1. To specify the CICS userid and password via the /u and /p options of
the CICSCLI command when the CICS client is started, outside the
Notes environment.

2. To let the MQEI LSX pass the CICS userid and password automatically
to the CICS ECI on each SendMessage call.

For the first option,

CICSCLI /c=servername /u=userid /p=password

must be issued when the CICS client is started. The CICS server uses the
userid and password so specified. No other authentication is necessary and
the MQEI Security database is not required. This option can not be used if
you are connected directly to a CICS server with a built-in client.

Note If you are using a CICS client running on a Domino server, the CICS
userid is fixed for all users of all your Notes agents.

For the second option, the CICS userid and password are obtained from the
EIService UserId and Authenticator properties, and passed to the CICS ECI
on each SendMessage call. If authentication fails, or if the CICS userid does
not have sufficient authority to access resources used by the DPL program,
an MQEI reason code of EIRC_SECURITY_FAILURE is returned by the
ReceiveMessage call.

The MQEI Service definition SystemName property can be used by the
MQEI LSX to read an MQEI Security definition for the Notes user from the
MQEI Security database. This definition should contain the CICS userid

182 MQSeries Enterprise Integrator for Lotus Notes User's Guide

and password for the Notes user, and is used to set the EIService UserId
and Authenticator properties. Alternatively the LotusScript program can
prompt the user for this information and set EIService UserId and
Authenticator itself.

Data conversion
It is recommended that data conversion of COMMAREAs is performed by
the MQEI LSX, in which case CICS data conversion should be turned off.

This is achieved by specifying the CharacterSet and Encoding properties in
the MQEI Service definition. The outbound COMMAREA is converted to
the specified character set and numeric encoding from the local settings
specified in the MQEI initialization file (mqei.ini), and vice versa for the
inbound COMMAREA

Note If the DPL program call is function shipped to a different CICS server,
the CharacterSet and Encoding properties must be those of the CICS server
on which the DPL program actually runs.

Alternatively data conversion can be carried out on the CICS server, by
providing CICS DFHCNV macros in a CICS data conversion exit. If this
approach is adopted, any MQEI LSX data conversion can be turned off by
specifying a CharacterSet and an Encoding in the MQEI Service definition
that match those in the MQEI initialization file.

Chapter 9: Programming for the CICS DPL direct service 183

If you are familiar with the CICS ECI

This section may prove helpful if you are familiar with the CICS ECI.

Mapping of MQEI properties to a CICS DPL direct service
The following lists the properties of the EIService, EIMessage,
EISendOptions and EIReceiveOptions classes that are relevant to the CICS
ECI.

MQEI Class and Property ECI Equivalent
EIService AbendCode eci_abend_code (ECI_PARMS)
EIService ServiceStep eci_program_name (ECI_PARMS)
EIService ServiceContext eci_transid (ECI_PARMS)
EIService CharacterSet No equivalent
EIService ConnectionManager eci_system_name (ECI_PARMS)
EIService Encoding No equivalent
EIService SystemName No equivalent
EIService Userid eci_userid (ECI_PARMS)
EIService Authenticator eci_password (ECI_PARMS)
EISendOptions Identifier eci_message_qualifier (ECI_PARMS) Note 1
EISendOptions UnitOfWork eci_luw_token, eci_extend_mode

(ECI_PARMS)
EIReceiveOptions Identifier eci_message_qualifier (ECI_PARMS) Note 1
EIReceiveOptions WaitInterval eci_timeout (ECI_PARMS)

EIReceiveOptions WaitType eci_call_type (ECI_PARMS)

Note 1 : Because eci_message_qualifier is only two bytes long, an
algorithm is used to associate 24 byte Identifiers to eci_message_qualifiers.

The CICS ECI calls used are ECI_STATE_SYNC (for Connect), ECI_ASYNC
(for SendMessage), and various flavors of ECI_GET_REPLY (for
ReceiveMessage).

184 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 10 Programming for a CICS 3270 direct service

Whatever enterprise system your application communicates with, there are
some specific aspects to consider.

Here the mapping of the MQEI properties to CICS attributes is covered,
along with other aspects that you may need to consider when
communicating with a CICS 3270 application via the CICS client.

MQEI CICS 3270 direct support

Creating an MQEI Service definition with a service type of CICS 3270 direct
allows you to run CICS 3270 transactions on a CICS server. A CICS 3270
transaction is a CICS transaction that is normally invoked from a 3270 type
terminal, and is identified by a transid (transaction identifier) of up to four
characters (e.g. CESN).

The MQEI LSX uses a CICS client interface called the External Presentation
Interface (EPI) as the communication mechanism. The CICS EPI works by
allowing an application program, in this case the MQEI LSX, to emulate a
CICS terminal and send and receive 3270 data streams to and from CICS.
The CICS EPI allows access to most of the servers in the CICS family via a
CICS client. Also, some members of the CICS family can be accessed
without a CICS client as they have a built-in client. The Notes client or
Domino server using the MQEI LSX needs to reside on the same machine as
the CICS client (or CICS server with the built-in client).

Note A 3270 data stream is a data stream used to control the actions of,
send data to, and receive data from, a 3270 terminal. As the CICS EPI
emulates a 3270 terminal, it uses 3270 data streams to communicate with a
CICS Server. You do not need to understand the content of 3270 data
streams, only the CICS BMS maps from which they are derived.

For more information about the CICS EPI, see the IBM CICS Family:
Client/Server Programming manual.

For more information about CICS BMS maps, see the IBM CICS Application
Programming Guide.

Note The CICS 3270 direct service type is not supported under Windows
3.1 or UNIX systems.

Chapter 10: Programming for the 3270 direct service 185

The EIService object created from an MQEI Service definition of this type
would typically represent a suite of related transactions on the CICS server
(a CICS conversation). The LotusScript program is effectively mimicking
the actions of a CICS 3270 terminal user, and must therefore be sensitive to
the sorts of things that the CICS transaction expects the terminal user to do
(such as positioning the cursor and pressing function keys).

The EISendOptions class is used to define these features, as it controls how
a message is sent. Internally, the EIService object maintains an image of the
CICS terminal screen.

Creating an MQEI Service definition
The key properties when creating an MQEI Service definition for a CICS
3270 direct service are ConnectionManager, OutboundConnection and
ServiceStep.

The ConnectionManager property gives the name of the CICS server to
which connection will be made. It is the name of the CICS server as
defined in your CICS client initialization file ServerName property. If a
CICS server with a built-in client is being used, the ConnectionManager
property must always be set to 'CICSMRO' (this is a CICS restriction). If
the ConnectionManager property is left blank the default CICS server
for the CICS client is selected (this may not be supported with older
CICS clients).

The OutboundConnection property gives the name of the CICS model
terminal to use as a template for the terminal the MQEI LSX is
emulating. If the OutboundConnection property is left blank, the model
terminal defined in your CICS client initialization file ModelTerm
property is used if specified, otherwise the default model terminal for
the CICS server is used (note that this varies between servers).

The ServiceStep property gives the transid of the CICS transaction
itself. It is possible to invoke several different transactions during the
course of a conversation, so the ServiceStep property should initially be
set to the first transaction to run.

186 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Creating MQEI Message definitions
An MQEI Message definition for a CICS 3270 direct service corresponds
either to the start data entered along with a CICS transid on the CICS
command line, or to the data contained in a CICS BMS map. The source for
the MQEI Message definition would typically be a BMS mapset file
containing the definitions for one or more BMS maps.

If the MQEI Message definition is for start data, the message should consist
of just one field, being of data type STRING at row 1, column 1 with length
80.

If the MQEI Message definition is for a BMS map, only those fields that are
of interest to the LotusScript program need be defined. Each field is
character based, so must be of data type string, authenticator or
system_authenticator, and a row and column must be provided. Such
MQEI Message definitions can be created automatically from BMS map
source using the MQEI BMS map utility program.

For more information, see BMS map conversion utility later in this chapter.

Connecting to CICS
The EIService Connect method call initializes the MQEI LSX's use of the
CICS EPI if this is the first EIService to use the EPI, then uses the EPI to add
a terminal on the CICS server for the exclusive use of the EIService object.
The name of the CICS server is given by the EIService ConnectionManager
property. The name of the model terminal to use is given by the EIService
OutboundConnection property.

Chapter 10: Programming for the 3270 direct service 187

Sending a message
Each EIService SendMessage method call translates to a CICS EPI call either
to start a new transaction or to pass data to satisfy an outstanding EXEC
CICS RECEIVE or CONVERSE command issued by a running transaction.
When starting a new transaction, the transid to use may be implicit if in the
middle of a conversation, in which case it has been specified by the CICS
application either via EXEC CICS RETURN TRANSID, or via a protected
field on the BMS map, or the transid to use is taken from the EIService
ServiceStep property if at the start of a new conversation and the terminal
screen is completely empty.

See "Programming a conversation" later in this chapter.

Note The transaction need not actually run on the CICS server given by the
ConnectionManager property. The CICS definition for the transid may
specify it as remote in which case the transaction is routed to a different
CICS server using CICS transaction routing.

An EISendOptions object controls how the built 3270 data stream is sent to
CICS. The AttentionId property specifies the function key to be passed to
CICS along with the data from the EIMessage. The allowable values are:

EIAI_ENTER

EIAI_CLEAR

EIAI_PA1 to EIAI_PA3

EIAI_F1 to EIAI_F24

The default is EIAI_ENTER.

Note EIAI_CLEAR and EIAI_PA1 to EIAI_PA3 cause the EIMessage and
any transid to be ignored, and a 3270 data stream containing only the
function key to be sent to CICS.

The SelectedField property allows the screen cursor to be positioned at a
particular named field in the EIMessage. If no cursor position is specified,
the cursor is left where it is on the image of the screen kept by the EIService
object.

188 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Receiving a message
Each ReceiveMessage method call corresponds to receiving reply data
transmitted by an EXEC CICS SEND or CONVERSE command. The
EIMessage parameter's fields are completed from the received 3270 data
stream assuming they match. If the EIMessage does not match the data, an
MQEI reason code of EIRC_WRONG_MESSAGE is returned and a different
EIMessage should be tried.

For more information, see "Variant Messages" in Chapter 4.

The MQEI LSX detects a mismatch if the row and column properties of a
field in the EIMessage do not correspond to any field in the screen modeled
by the 3270 data stream. When trying different EIMessages it is advisable to
start with the most complicated BMS map first and work down to the
simplest BMS map last. This is because when matching the EIMessage to
the screen, the MQEI LSX allows the EIMessage to be a subset of the screen,
and it is therefore possible that a simple BMS map may match the screen
corresponding to a more complicated BMS map.

It is important to be aware that CICS itself can send a data stream as well as
the transaction. Examples of this are the error messages sent to the error
line if the transid of the transaction is not known, or if the transaction
abends. The location of the error line is usually the last row (typically row
24), although error messages that span lines will start on an earlier row
(both the examples mentioned above start on row 23, for example). Note
also that such error messages normally overlay the existing screen contents,
and do not erase the screen. If your EIMessage contains a field at row 23
column 1 or row 24 column 1 it is a good idea to examine it for the presence
of a CICS error message. If your EIMessage does not contain such fields, it
is a good idea to try and match an EIMessage that maps row 23 or row 24
to see if a CICS error message has been sent, before trying the real
EIMessage. See the CICS 3270 direct sample code for an example of the
former.

When calling ReceiveMessage to receive a reply, the EIReceiveOptions
WaitType property can be used to make the call block or not. Timeout is not
supported by the EPI, so the EIReceiveOptions WaitInterval property has
no effect, and a blocking call will wait indefinitely if there is no reply
outstanding. For this reason, use of blocking calls is not recommended, and
the program should instead poll for a reply, an MQEI reason code of
EIRC_NO_MSG_AVAILABLE being returned if the reply has not yet
arrived.

When ReceiveMessage is completing the EIMessage parameter, if a field in
the received 3270 data stream was transmitted with screen attributes, the
color, intensity, highlight and protection attributes of the field are set in the
Color, Intensity, HighLight and Protection properties of the corresponding

Chapter 10: Programming for the 3270 direct service 189

field in the EIMessage object. These may be interrogated by EIMessage
methods. This is useful, for example, where the CICS transaction has
highlighted any fields containing invalid input. The LotusScript program
could identify such fields and inform the user accordingly.

Note An attempt by the LotusScript program to set a value in a field that is
protected will return a reason code of EIRC_PROTECTED_FIELD.

Certain EXEC CICS SEND commands send control characters instead of
data. These should be received by specifying an EIMessage parameter of
Nothing on the ReceiveMessage call.

Disconnecting from CICS
An EIService Disconnect call, or destruction of the EIService object, deletes
the terminal on the CICS server.

Note An EIService Disconnect call will fail if there is a transaction still
running at the terminal or there are outstanding replies still to be received
from CICS. If the EIService is destroyed under these circumstances, any
outstanding replies are lost and it is no longer possible to communicate with
any transaction still running. An orphan terminal is effectively created on the
CICS server which will only be deleted when the last EIService that uses the
CICS EPI has disconnected.

190 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Programming a conversation
A CICS 3270 conversation can consist of running either a single transaction
or a suite of related transactions.

In CICS terms, this typically corresponds to the end user entering a transid
and any start data on the CICS command line to start a transaction, then the
transaction sending a screen of data to the end user which the end user
processes and sends back to CICS. There may be several such screens
involved. The conversation ends when the last screen of data is sent to the
end user. The LotusScript program must emulate this, by making an initial
SendMessage call to start a transaction, followed by a sequence of
ReceiveMessage and SendMessage pairs, and a final ReceiveMessage to get
the last screen.

The exact scenario depends on the model terminal being used, but typically
the terminal screen would be empty after the EIService Connect method
call. The LotusScript program is at the start of a conversation. The first
SendMessage method call will build a 3270 data stream from the transid
given by the ServiceStep property and any start data described by the
EIMessage parameter. The LotusScript program is now in conversation,
and must react in accordance with the wishes of the CICS transaction on the
CICS server. This would typically be a sequence of EIService
ReceiveMessage and SendMessage calls. When in conversation, the
EIMessage returned by a ReceiveMessage method call should be passed on
the subsequent SendMessage method call. This ensures that the 3270
modified data tags (MDTs) are correctly set and the correct datastream is
built.

During a SendMessage call, the transid is explicitly set in the 3270 data
stream from the EIService ServiceStep property only at the beginning of a
conversation and the image of the screen is empty. The LotusScript
program can change the ServiceStep property prior to making the
SendMessage call. A non-empty screen is taken to mean that a conversation
is still in progress. In this case the transid is implicitly known by CICS
either because EXEC CICS RETURN TRANSID was used by the CICS
transaction or because the transid is contained in a protected field in the
screen. In both cases the ServiceStep property is not used.

It is recommended that a SendMessage call to send just the CLEAR key is
performed at the end of each conversation. When CLEAR is sent at
conversation end in this manner the EIService internal image of the screen
is cleared, and CICS does not generate a reply, so a ReceiveMessage
method call is not necessary. Because the screen is empty, the next
SendMessage method call will take the transid from the ServiceStep
property (as discussed above) and start a new conversation. Failure to send
the CLEAR key in this manner may cause the MQEI LSX to think a

Chapter 10: Programming for the 3270 direct service 191

conversation is still in progress, and omit to explicitly set the transid from
the ServiceStep property.

When a SendMessage or ReceiveMessage method call is made, the MQEI
LSX validates that this is the correct action for the state of the conversation.
If the action is incorrect an MQEI reason code of
EIRC_CALL_SEQUENCE_ERROR is returned.

It is not possible to use a single EIService object to run several separate
conversations in parallel.

Errors
If an unexpected error occurs, the recommended action is to issue an
EIService Disconnect call ignoring any errors and delete the service. This
may leave an orphan terminal.

For more information, see "Disconnecting from CICS" earlier in this chapter.

Security
If security is being used on the CICS server, there are two options for
performing authentication of users.

The first is to specify the CICS userid and password via the /u and /p
options of the CICSCLI command when the CICS client is started
outside the Lotus Notes environment.

The second is to perform authentication explicitly from the LotusScript
program by running the CICS signon transaction CESN (or your local
equivalent). It is not possible for the MQEI LSX to do this
automatically.

The first option must be used when your CICS client is attached to a CICS
for MVS/ESA server. If the CONNECTION definition for the CICS
client-CICS server link on the CICS for MVS/ESA server specifies
ATTACHSEC(VERIFY), then CICSCLI /c=servername /u=userid
/p=password must be issued when the CICS client is started. The CICS
server uses the userid and password so specified. No other authentication
is necessary.

Note The use of CESN or any other CICS signon facilities is not allowed
when connected to CICS for MVS/ESA. The MQEI Security database is not
required, and the EIService UserId property and Authenticator properties are
not used. Note that if you are running the CICS client on a Domino server,
the CICS userid is fixed for all users of all your Notes agents.

The second option must be used when your CICS client is attached to any
other CICS server, or if you are connected directly to a CICS server with a
built-in client. You must provide a LotusScript program that runs the CESN

192 MQSeries Enterprise Integrator for Lotus Notes User's Guide

transaction or your local equivalent. The CICS 3270 direct sample code
shows how CESN can be run, and also provides examples of an MQEI
Service definition for the CESN transaction and an MQEI Message
definition for the CESN BMS map.

The MQEI Service definition SystemName property can be used by the
MQEI LSX to read an MQEI Security definition for the Notes user from the
MQEI Security database. This definition should contain the CICS userid
and password for the Notes user, and is used to set the EIService UserId
and Authenticator properties. Alternatively the LotusScript program can
prompt the user for this information and set EIService UserId and
Authenticator itself.

Once the EIService UserId and Authenticator have been set, it is the
responsibility of the LotusScript program to set the userid and password
fields of the EIMessage representing the CESN BMS map. The userid field
may be set by the program copying the EIService UserId property. The
password field will be set automatically by the MQEI LSX from the
EIService Authenticator property during SendMessage if it is defined with a
data type of System_Authenticator.

For more Information, See "Security" In Chapter 5.

If you use CESN to signon to CICS, you are signed off either when your
LotusScript program issues a Disconnect call or the EIService object is
destroyed, or when your LotusScript program runs the CICS signoff
transaction CESF or another instance of CESN (or your local equivalent)
from the same EIService object.

Data conversion
Data conversion of 3270 data streams is not performed by the MQEI LSX.
Because a 3270 data stream is self-defining, CICS automatically performs
any data conversion that may be necessary.

Unsupported CICS functions
EXEC CICS RECEIVE BUFFER, which results in a 3270 Read Buffer
command being received by the MQEI LSX, is not supported. Any CICS
transaction using this command must be modified if it is to work with the
MQEI LSX.

Transactions automatically started by CICS at the terminal using EXEC
CICS START TERMID, known as ATI transactions, are not supported.
When the terminal is added by the EIService Connect method call, ATI is
disabled by default. Any transactions started by CICS at the terminal in this
manner will be queued indefinitely and will never run.

Chapter 10: Programming for the 3270 direct service 193

If you are familiar with the CICS EPI

This section may prove helpful if you are familiar with the CICS EPI.

Mapping of MQEI properties to a CICS 3270 direct service
The following lists the properties of the EIService, EIMessage, EISendOptions and
EIReceiveOptions classes that are relevant to the CICS EPI.

MQEI Class and Property EPI Equivalent
EIService ServiceStep Transid (CICS_EpiStartTran)
EIService ConnectionManager System (CICS_EpiAddTerminal)
EIService OutboundConnection DevType (CICS_EpiAddTerminal)
EIService SystemName No equivalent
EIService Userid No equivalent
EIService Authenticator No equivalent
EISendOptions AttentionId AID (in 3270 datastream)
EISendOptions SelectedField Cursor Position (in 3270 datastream)
EIReceiveOptions WaitType Wait (CICS_EPIGetEvent)

The CICS EPI calls used are CICS_EpiInitialize, CICS_EpiAddTerminal,
CICS_EpiGetEvent, CICS_EpiReply, CICS_EpiStartTran, and
CICS_EpiDelTerminal.

194 MQSeries Enterprise Integrator for Lotus Notes User's Guide

BMS maps

About Basic Mapping Support (BMS)
Basic Mapping Support (BMS) is an application programming interface
between CICS programs and terminal devices (such as printers or displays).
Many CICS applications use BMS when communicating with 3270 display
terminals.

BMS works by taking data from a program and displaying it in a
predetermined format. This predetermined format is defined by a BMS
map in a BMS mapset file. BMS merges variable data supplied by the CICS
program with constant data (such as the position of the text, field labels and
default values for the fields). This constant data is contained within the
BMS map definition. From this information, BMS builds a 3270 data stream
for the terminal to which the CICS program is communicating.

BMS provides three macros for defining maps:

DFHMSD - Map set definition macro
The DFHMSD macro groups single maps into a map set. A BMS mapset file
can contain zero, one or several map definitions.

DFHMDI - Map definition macro
The DFHMDI macro defines a map within the map set defined by the
previous DFHMSD macro. A map contains zero or more fields.

DFHMDF - Field definition macro
The DFHMDF macro defines an individual field within a map defined by
the previous DFHMDI macro.

Chapter 10: Programming for the 3270 direct service 195

How the BMS map conversion utility works
The MQSeries Enterprise Integrator provides a utility program to
automatically create MQEI Message definitions from BMS maps:

1. The BMS map conversion utility reads the MQEI initialization file
(mqei.ini) and opens the specified MQEI Definition database.

2. The BMS map conversion utility scans the mapset file for a DFHMDI
statement, ignoring any other comments or statements it finds on the
way.

3. When the BMS map conversion utility finds a DFHMDI statement, it
extracts the map name from the statement label.

4. It then creates a new MQEI Message definition on the target MQEI
Definition database (that is defined in the mqei.ini file).

5. The BMS map conversion utility then scans down the file for DFHMDF
statements within the DFHMDI statement.

6. When the BMS map conversion utility finds a DFHMDF statement, it
extracts the field name from the statement label.

7. It then creates a Field definition on the target MQEI Definition database
(that is defined in the mqei.ini file).

Note Any statement other than a SPACE directive or a comment, including
macro directives, will terminate the scan for DFHMDF statements and end
the processing for the current map. The BMS map conversion utility will
resume scanning down the file for next DFHMDI statement as described in
step 1.

Ignored statements
If the BMS map conversion utility cannot find a label, it ignores the
DFHMDF statement. This is because the BMS map conversion utility
assumes that the field is of no interest to the MQEI programmer. It also
ignores any comments and SPACE directives that may be present in the
BMS mapset file.

Syntax checking
The BMS map conversion utility performs very limited syntax checking
when scanning the BMS mapset file. It is assumed that any mapset file
presented to the utility has been successfully processed by CICS
beforehand. If this is not the case, the results from the BMS map conversion
utility are unpredictable and any MQEI definitions generated are not
guaranteed to match the BMS maps from which they are derived.

196 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Before running the BMS map conversion utility
Before you use the BMS map conversion utility, you must ensure that:

The Notes executable directory is included in the PATH environment
variable.

The directory containing the code page files shipped with Notes is
included in the PATH environment variable. Notes code page files have
an extension of .cls.

On AIX, HP-UX, and Sun Solaris, the Notes data directory is included
in the the PATH environment variable.

On AIX, HP-UX, and Sun Solaris, the MQEI_INI_PATH,
MQEI_XLAT_PATH, and Notes_ExecDirectory environment variables
are correctly set (for other platforms these are set as necessary by the
installation program).

On AIX, HP-UX, and Sun Solaris, the Notes_ISOLATION environment
variable is set to 1 as described in the Lotus Notes Release Notes section
for UNIX Platforms and Multiple Notes Clients.

For example, using the Korn shell:
Notes_ISOLATION=1;export Notes_ISOLATION

Failure to do the above may result in Notes error or warning messages or
segmentation faults.

Chapter 10: Programming for the 3270 direct service 197

Running the BMS map conversion utility
To convert a BMS map file into an MQEI message definition follow the
instructions described below.

Note This is not available on Windows 3.1, Windows for Workgroups, and
WIN-OS/2.

Enter:

mqeibms [-r] [-?] mapname.bms

mqeibms starts the BMS map conversion utility.

The -r option specifies that an MQEI Message definition on the database,
with the same name as a map in the BMS map file, is to be replaced along
with all its associated Field definitions.

The -? option displays a line describing the syntax of the MQEIBMS
command.

Note If the -r option is not specified and an MQEI Message definition with
the same name as a map in the BMS map file is present in the MQEI
Definition database, an MQEI reason code of
EIRC_DEFN_ALREADY_EXISTS is returned and the definition is not
replaced.

Prompting for Notes password
When you run the MQEIBMS utility, you may be prompted to enter your
Lotus Notes password. If this happens the first time, it happens every time
you run MQEIBMS. Because MQEIBMS only deals with one mapset file at
a time this may be inconvenient if you are converting a number of mapsets.

You can avoid this problem by changing the settings of your Lotus Notes
client:

1. Make sure that your Notes client is running on the same workstation as
MQEIBMS.

2. From the Notes client, select File - Tools - User ID...

3. When prompted, enter your Notes password.

4. Select the box marked, "Share password with Notes add-ins".

198 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Reason codes
When you run MQEIBMS and an error occurs, an error message will be
displayed that contains an MQEI reason code.

These are explained in Chapter 11.

In the addition, if the reason code is EIRC_DEFN_DB_SYSERROR, a Notes
error code and accompanying diagnostic text (if available) is displayed.

After running the BMS map conversion utility
Having successfully created an MQEI Message definition, you must build
the MQEI message.

When an MQEI message has been built, it can be used when
communicating with a CICS 3270 direct service in the same way as any
other MQEI Message definition.

For more information, see "Building MQEI Message definitions" in Chapter
3.

Chapter 10: Programming for the 3270 direct service 199

200 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 11 Troubleshooting

This chapter explains:

How to check the level of code you are running

MQEI LSX dynamic loading

Data Conversion

How to use the trace facility

Reason codes

Chapter 11: Troubleshooting 201

Code level tool

You may be asked by the IBM/Lotus Service Team what level of code you
have installed.

To do this, run the 'mqeilev' utility program.

From the command prompt, change to the directory containing the MQEI
LSX library (eilsx.dll or libeilsx.*) or add the full path name and enter:

mqeilev yyyyy > xxxxx.xxx

where yyyyy is the name of the shared library (e.g. eilsx.dll)

and xxxxx.xxx is the name of the output file.

If you do not specify an output file, the detail is displayed on the
screen.

This is a sample extract of what you could see:

COPYRIGHT IBM CORP. 1996, 1997 ALL RIGHTS RESERVED, LICENSED
MATERIALS-PROPERTY OF IBM

@(!) ***** Code Level is 1.0.0 *****

@(#) lib/mqlsx/xmqtrca.c, mqlsx, lnk000, lnk000 L970401 1.60
97/04/01 12:04:08

@(#) lib/mqlsx/xmqxlat.c, mqlsx, lnk000, lnk000 L970401 1.40
97/04/01 12:04:13

@(#) lib/mqlsx/xmqfdca.c, mqlsx, lnk000, lnk000 L970327 1.32
97/03/05 16:09:24

@(#) lib/mqlsx/xmqutila.c, mqlsx, lnk000, lnk000 L970327 1.26
97/01/15 14:42:07

@(#) lib/mqea/gmqadyn0.c, mqlsx, lnk000, lnk000 L970327 1.14
97/03/13 15:12:43

@(#) lib/mqea/gmqadyn1.c, mqea, lnk000, lnk000 L970327 1.16
97/03/18 08:21:25

@(#) lib/mqlsx/xmqcsa.c, mqlsx, lnk000, lnk000 L970401 1.19
97/04/01 12:04:04

@(#) lib/mqea/gmqxbase.cpp, mqea, lnk000, lnk000 L970327 1.10
97/03/24 11:06:47

.......

.......

202 MQSeries Enterprise Integrator for Lotus Notes User's Guide

@(#) lib/mqea/gmqxlsx.cpp, mqea, lnk000 1.17
97/04/02 09:50:58

@(#) lib/imqi/imqobj.cpp, imqi, lnk000, lnk000 L970327
1.25.2.1 96/10/04 10:40:34

@(#) lib/imqi/imqpmo.cpp, imqi, lnk000, lnk000 L970327

@(#) lib/imqi/imqpro.cpp, imqi, lnk000, lnk000 L970327

@(#) lib/imqi/imqque.cpp, imqi, lnk000, lnk000 L970327

Chapter 11: Troubleshooting 203

Dynamic loading and the MQEI LSX

The shared libraries (for MQSeries or CICS) are dynamically loaded when
your application calls the EIService Connect method. If you have a problem
on the Connect call (typically returning the reason code
EIRC_DYNAMIC_LOAD_ERROR) the following information may help.

General
When you specify:

Uselsx "eilsx"

in your LotusScript program, Notes uses standard system services
(different on each platform) to locate your LSX.

For example, on Windows 95 it looks for an object called eilsx.dll in the
current working directory or on a directory in the search path (the exact
mechanism for establishing the search path differs according to the
platform).

See Lotus documentation for more information.

Tip One way of identifying whether or not your search path is in error is to
change the Uselsx to include the full path name.

The MQEI LSX generates at various points within its code, standard API
calls to MQSeries, CICS ECI, and CICS EPI (MQCONN, CICS_ExternalCall
etc.). These are "trapped" within the MQEI LSX code at entrypoints with the
same names as the MQSeries, CICS ECI, or CICS EPI entry points.

If this is the first call to either MQSeries or CICS within the application , the
MQEI LSX code tries to dynamically load the system object containing the
real MQSeries, CICS ECI, or CICS EPI code.

On Windows and OS/2 these objects are called DLLs (Dynamic Link
Library).

On Unix systems these objects are called 'shared libraries'.

If the necessary object is found, the MQEI LSX detects and remembers the
entry points of the real MQSeries, CICS ECI, and CICS EPI functions. The
"trapped" call is passed to the real function entry point.

After the initial call, subsequent calls to the service are "trapped" in the
MQEI LSX code and immediately passed to the remembered entry points.

204 MQSeries Enterprise Integrator for Lotus Notes User's Guide

The system routines called by the MQEI LSX to provide this functionality
are:

On Windows 3.1, Windows 95, and Windows NT
The mechanism used is LoadLibrary coupled with GetProcAddress to find
the appropriate dll (mqm.dll or mqic.dll for MQSeries, faacicnt.dll or
cclwin32.dll for CICS ECI / EPI) and determine the real entry addresses.
The search for the dlls instigated by the LoadLibrary call uses the normal
Windows mechanisms, i.e. looks first in the current working directory and
then in the libraries that are in your PATH.

Note If you override the dll to be loaded, by using the MQEI_xxx_LIB
environment variable, do not forget that this dll picks up other dlls, which
need to be on the PATH.

On OS/2
The mechanism used is DosLoadModule coupled with DosQueryProcAddr
to find the appropriate dll (mqm.dll or mqic.dll for MQSeries, faacic32.dll
or cclos232.dll for CICS ECI/EPI) and determine the real entry addresses.
The search for the dlls instigated by the DosLoadModule call uses the
normal OS/2 mechanisms, i.e. looks first in the current working directory
and then in the libraries that are in your LIBPATH.

On Unix Platforms
On the Unix platforms (AIX,Sun Solaris and HP-UX) the mechanism for
detecting and loading the MQSeries shared libraries is different to that on
non-Unix. This support depends upon the code in the MQEI LSX shared
libraries (libeilsx.a on AIX, libeilsx.so on Solaris, libeilsx.sl on HP) finding
and successfully loading a stub called either eilsxmqm or eilsxmqic. These
stubs are themselves shared libraries linked with the appropriate MQSeries
base or MQSeries client libraries supporting the MQ API calls. If these stubs
cannot be found and successfully loaded then
EIRC_DYNAMIC_LOAD_ERROR is produced.

Note The stubs are not LotusScript Extensions - they are not loadable via
Uselsx.

In order to find these stubs the MQEI LSX uses the standard system shared
library mechanisms on each platform.

On AIX the “load” mechanism is used.

On Sun Solaris “dlopen” coupled to “dlsym” is used.

On HP-UX “shl_load” and “shl_findsym” is used.

Chapter 11: Troubleshooting 205

The default on each platform is to first look for eilsxmqm and then (if
eilsxmqm cannot be found) look for eilsxmqic. This search order may be
over-ridden by use of the MQEI_MQ_LIB environment variable. The
primary intention of MQEI_MQ_LIB is to allow eilsxmqic to be used in
preference to eilsxmqm when both the MQ client (libmqic) and MQ server
libraries are available - however it can also be used if you encounter
problems with the eilsx being able to locate the stubs (such problems are
usually due to system setup problems).

Note The MQEI_MQ_LIB environment variable must be used on HP-UX.

As noted before the stubs are themselves linked with the standard
MQSeries API shared libraries and standard system libraries and therefore
require (just like any other MQSeries application) that the normal MQSeries
and system libaries are available. The normal method of ensuring that all
the required code is accessible (the stubs, the MQSeries libraries, the system
libraries) is by putting the shared libaries in the /lib or /usr/lib directories
directly or (more commonly) by putting soft links to these libraries into /lib
or /usr/lib. MQEI adds such soft links as part of the install process.

The use of the MQEI_xxx_LIB environment variable
There are 3 environment variables available, where xxx is set to MQ, ECI,
or EPI.

The use of these is primarily in a development environment. In a
production environment you would not normally need to set these as the
MQEI LSX finds the appropriate MQSeries and CICS shared libraries
automatically via the standard system dynamic load mechanisms (unless
you are running MQEI on HP-UX, when you must specify the library
explicitly).

They enable you to have multiple copies of the MQSeries and CICS
products installed (either at different levels, under test, or where you want
to develop more than one application) on the same hardware. Setting these
environment variables enables you to bypass the normal search routes.

You may also want to set the MQEI_MQ_LIB environment variable when
you want to force the call to MQSeries to use the MQSeries client even
though you have the MQSeries server dll in you system path:

For example (on Windows NT or OS/2):

set MQEI_MQ_LIB=C:\MQM\BINMQIC.DLL

206 MQSeries Enterprise Integrator for Lotus Notes User's Guide

EIRC_DYNAMIC_LOAD_ERROR
If the dynamic load fails (using the EIService Connect method), the reason
code returned to your LotusScript program is
EIRC_DYNAMIC_LOAD_ERROR. Look at the EIService SystemErrorText
property for the name of the dll that MQEI LSX failed to load.

MQEI databases not displaying text

If text is not displayed or is truncated within the MQEI databases, the
problem is related to the font size you have selected. Select a smaller font
size in either or both, Notes and your operating system.

Chapter 11: Troubleshooting 207

Data conversion

Different systems often have different rules on the interpretation of internal
data, which becomes an important factor in exchanging data between
systems. The MQEI LSX takes account of this, and via appropriate use of
the Encoding and CharacterSet values for the [Base] stanza in the mqei.ini
file and the EIService (in the MQEI definition database), converts your
messages for you.

Encoding translation (such as Big-Endian to Little-Endian) takes place
internally within the MQEI LSX code for those message fields defined with
a data type of long or short that require conversion.

For CharacterSet conversion the situation is more complicated due to the
proliferation of many different code pages even on the same system type.
For example one machine may be using code page 437 and another code
page 850 or code page 819. Many characters in these code sets are
compatible (for example, alphanumerics between the 437, 850, and 819 code
page are represented by the same code points), but some are not (typically
currency symbols and characters that are specific to a national language).

The conversion that happens within the MQEI LSX for a field with data
type of STRING (or indeed AUTHENTICATOR or
SYSTEM_AUTHENTICATOR) is best illustrated by this example, where the
mqei.ini file specifies:

[Base]

CharacterSet = Local

and the EIService specifies:

CharacterSet:500

Suppose the machine that the MQEI LSX is operating under is running
OS/2. When the EISession is created, because the CharacterSet in the [Base]
stanza of the mqei.ini file is Local, the MQEI LSX will determine the system
code page from the operating system. Typically for an OS/2 machine this
would be 850.

The EIService in this example would have a CharacterSet value of 500
(typical of an MVS system). When a SendMessage method for the EIService
is executed, any character based fields in the message would need
conversion from 850 (ASCII) representation into 500 (EBCDIC). The code
within the MQEI LSX tries to dynamically load a table for this conversion -
the table is 256 bytes in size and maps the 256 code points in code page 850
to those in code page 500, at the same time another table is loaded that
enables the reverse conversion.

208 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Additional Notes

On Windows NT (Japanese), when the operating system reports that the
code page is 932, the MQEI LSX treats this as code page 943. This allows
data originating in a Windows NT environment using 932(MS) to be
successfully converted to 932 (IBM) as used on AIX systems. This also
means that if you wish to send a message with conversion to an AIX system
supporting 932 then you need to set the character set to 932 in the Service
definition - you cannot let it default to local.

Your questions answered
1. How does the MQEI LSX locate these tables?

Answer: It uses the MQEI_XLAT_PATH environment variable.

2. What are these tables called?

Answer: The tables take the form aaaabbbb.tbl, where aaaa is the 4 hex
digit representation of the from code page and bbbb is that of the to code
page.

Thus the two tables associated with 500 (= X'01F4') to 850 (= X'0352') and
vice versa are 01F40352.tbl and 035201F4.tbl. The tables generally come in
pairs and generally support 'round trip conversion' which means that a
string converted from one code page to another code page going out, will
(if echoed back), be converted coming back to the exact same characters.

3. Are there any other files associated with this conversion?

Answer: Yes, one other. Its called mqeiccs.tbl and sits in the same place as
the other data conversion tables. As part of the MQEI LSX initialization this
file is loaded (xxxInitialize - the first thing you see in an MQEI trace) into
memory. It contains additional details needed to support a particular code
set, such things as whether it's ASCII or whether it's EBCDIC, and whether
the code page maps directly to another one. The basic rule is that if a code
page does not have an entry in this table it is not supported and conversion
will fail, giving rise to an EIRC_DATA_CONVERSION_ERROR.

Note The MQEI LSX only supplies a subset of the vast number of possible
conversions. Consult the file readme.ccs that can be found in the conv
directory of your install package for a list of this subset.

Chapter 11: Troubleshooting 209

4. What should I do if I get EIRC_DATA_CONVERSION_ERROR?

Answer: Firstly check that the MQEI_XLAT_PATH environment variable
has been set correctly and that the directory it points to contains a
mqeiccs.tbl and the necessary conversion tables for your particular
conversion. If the MQEI_XLAT_PATH is correct, check that the [Base] and
EIService CharacterSet values are correct.
If these are both set to Local and the problem is occurring on a
ReceiveMessage (for an MQSeries based service) , one possibility is that the
MQSeries system that sent the incoming message is using a character set
that is not in the ccsid.tbl. If these checks do not solve your problem then
you should start trace, probably with MQEI_TRACE_LEVEL set to 9, this
should provide trace showing the conversion that was attempted,
something like:

 -------------->EADriver :: convertString

 ! Converting from code page nnn to mmm

where nnn is the 'from' code page and mmm is the 'to' code page.

You should check that these values are what you expect them to be. Check
for their existence in both the ccsid.tbl and as a conversion table
aaaabbbb.tbl (where aaaa is the hex representation of nnn and bbbb that of
mmm).

For more information, refer to the trace for an entry similar to:

 ---->ObtainSystemCP

 ! Code page is xyz

where xyz is the code page of the Local System (which may be overridden
in the [Base] stanza of the mqei.ini file).

5. On Windows NT and Windows 95, I seem to be losing National
Language characters and currency symbols when sending and receiving
messages?

Answer: This arises due to an inconsistency between the character set used
by Notes (taken from the ACP) and that used by MQEI (taken from the
OEMCP). The suggested way to overcome this is to set the Character Set
value in your mqei.ini file to the same value as the ACP. You can determine
this value using the Windows registry editor and looking under key:

HKEY_LOCAL_MACHINE
\SYSTEM\CurrentControlSet\Control\Nls\CodePage\ACP

Typically it will be a value like 125x where x ranges from 0-7.

210 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Subsystem error logging

If the MQEI LSX raises an error that implies an MQSeries or CICS error,
there may be additional information on the MQSeries or CICS error logs.

For more information on diagnosing MQSeries errors, see the MQSeries
System Administration guide.

For more information about diagnosing CICS errors, see the CICS Problem
Determination guide for your system.

For more information about diagnosing IMS errors, see the IMS/ESA
Diagnosis Guide and Reference.

Chapter 11: Troubleshooting 211

Using trace

The MQEI LSX includes a trace facility to help the service organization
identify what is happening when you have a problem. It shows the paths
taken when you run your MQEI LSX script. Unless you have a problem,
you are recommended to run with tracing set off to avoid any unnecessary
overheads on your system resources.

The environment variables that you set to control trace:

MQEI_TRACE
Use this to turn tracing on and off.

MQEI_TRACE_PATH
Use this to point to the directory to hold the trace files.

MQEI_TRACE_LEVEL
Use this to set the level of detail you want recorded in the trace file.

You set these variables in one of two ways.

1. From a command prompt, from which you must subsequently start
Notes, as this is only effective locally.

2. By putting the information into your system startup file. This is
effective globally.

Select Main - Control Panel on Windows NT and Windows 95

Edit your autoexec.bat file on Windows 3.1, Windows for
Workgroups, and WIN-OS/2

Edit your config.sys file on OS/2

Edit your .profile file on UNIX systems

Tip When deciding where you want the trace files written, ensure that the
user has sufficient authority to write to, not just read from, the disk. (This is
particularly relevant on UNIX and Windows NT.)

If you have tracing switched on, it will slow down the running of the MQEI
LSX, but it will not affect the performance of your Notes, CICS, or
MQSeries environments. When you no longer need a trace file, it is your
responsibility to delete it.

You must stop and restart Notes for any change to the status of the
MQEI_TRACE variable to take effect.

Note The MQEI LSX trace environment variable is different to the trace
environment variable used within the MQSeries range of products. Within
the MQSeries range of products, the trace environment variable is used to
specify the name of the trace file. Within the MQEI LSX, the trace
environment variable turns tracing on. If you set the variable to a string of

212 MQSeries Enterprise Integrator for Lotus Notes User's Guide

characters, any string of characters, tracing will remain switched on. It is not
until you set the variable to null that tracing is turned off.

Trace filename and directory
The trace file name takes the form MQEInnnn.trc, where nnnn is the id of
the Notes process running at the time.

Commands on OS/2, WIN-OS/2, Windows 3.1 and Windows NT:
Command Effect

SET
MQEI_TRACE_PATH=drive:\directory

Sets the trace directory where the
trace file will be written

SET MQEI_TRACE_PATH= Removes the
MQEI_TRACE_PATH
environment variable, the trace file
is written to the current working
directory (when Notes is started)

SET MQEI_TRACE_PATH Displays the current setting of the
trace directory path on OS/2,
Windows for WorkGroups, and
Windows 3.1

ECHO %MQEI_TRACE_PATH% Displays the current setting of the
trace directory path

SET MQEI_TRACE=xxxxxxxx This sets tracing ON. You switch
tracing on by putting one or more
characters after the '=' sign
For example: SET
MQEI_TRACE=yes
or SET MQEI_TRACE=no
In both of these examples, tracing
will be set ON

SET MQEI_TRACE= Sets tracing OFF

SET MQEI_TRACE Displays the contents of the
environment variable on OS/2,
Windows 3.1 and Windows for
WorkGroups

ECHO %MQEI_TRACE% Displays the contents of the
environment variable

SET Displays the contents of all the
environment variables on OS/2,
Windows 3.1,Windows for
WorkGroups, and Windows NT

Chapter 11: Troubleshooting 213

Commands on AIX, HP-UX and Sun Solaris

Command Effect

export MQEI_TRACE_PATH=/directory Sets the trace directory where the
trace file will be written

unset MQEI_TRACE_PATH Removes the
MQEI_TRACE_PATH
environment variable, the trace file
is written to the current working
directory (when Notes is started)

echo $MQEI_TRACE_PATH Displays the current setting of the
trace directory path

export MQEI_TRACE=xxxxxxxx This sets tracing ON. You switch
tracing on by putting one or more
characters after the '=' sign
For example: export
MQEI_TRACE=yes
or export MQEI_TRACE=no
In both of these examples, tracing
will be set ON

unset MQEI_TRACE Sets tracing off

echo $MQEI_TRACE Displays the contents of the
environment variable

set Displays all the settings for all the
environment variables for the
session

Trace level
The environment variable MQEI_TRACE_LEVEL allows you to control
how much detail is recorded in the trace file. It can be set to any numeric
value greater than zero, although any value above nine does not provide
any more information.

In addition, you can suffix the value with a + (plus) or - (minus) sign. Using
the plus sign, the trace includes all control block dump information and all
informational messages. Using the minus sign includes only the entry and
exit points in the trace, i.e. no control block information or text is output to
the trace file.

The default value of MQEI_TRACE_LEVEL is 2.

214 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Example trace
The example trace below shows 'typical' trace output. It has been annotated
and edited in order to illustrate the key features you might want to look for.

The format of the trace output may differ slightly on different platforms
(this example is from Windows NT):

Trace for program d:\notes\NLNOTES.EXE(Enterprise Integrator)
 started at Tue Mar 11 09:09:59 1997

 The first line of the trace shows the start date and time,

 and the program that produced the trace. This is followed

 (see trace lines below) by information about the code level

 and the date the code was built on. These first few lines

 result from the trace initialization done by the eilsx code

 loaded as a result of the Uselsx "eilsx" statement in your

 LotusScript.

@(!) ***** Code Level is 1.0.0 *****

 ! BuildDate Mar 11 1997

 ! Trace Level is 2

 The above 3 lines of trace give the code level and the date

 that the code was built together with a trace level. The

 trace level defaults to 2 but may be overridden by use of

 the MQEI_TRACE_LEVEL environment variable that enables more

 or less trace data to be generated. With a trace level of

Chapter 11: Troubleshooting 215

 2 only the first 2 levels into the eilsx code is traced.

(00205)@09:09:59.560

 After 40 entries there is a time stamp. The number at the

 front of the timestamp (205 in this case) is the thread id.

 This timestamp may be useful in comparing this trace with

 traces from other sources (such as an MQSeries trace) or

 with traces from another machine (although you need to be

 careful to establish that the times on both machines are in

 step!)

 -->xxxInitialize

 Trace entries such as the one above show entry into a code

 function (In this case xxxInitialize). The number of --

 signs prior to the arrow (>) shows the depth within the

 code. Each entry line (having a >) should at some later

 point have an exit line (<) with the same number of --

 signs.

*

216 MQSeries Enterprise Integrator for Lotus Notes User's Guide

 ---->ObtainSystemCP

 ! Code page is 437

 <----ObtainSystemCP (rc= OK)

 <--xxxInitialize (rc= OK)

 The above shows the function exit point corresponding to

 the trace entry 5 lines above. The text within the
brackets

 (rc= OK) shows the return value from the function. In most

 cases (BUT NOT ALL!) OK shows that things are working as

 expected.

 -->LSX: MainEntryPoint

 ! LSX: Expecting LotusScript Interpreter Version 2.0

 <--LSX: MainEntryPoint (rc= OK)

 -->LSX: EALSX_MessageProc

 ! LSX: LSX_MSG_SETPATH received; library loaded from

 d:\notes\eilsx.DLL

 Entries in the trace beginning with ! are informational.

 They have often been inserted in the code by the
programmer

 to display useful information. In the case above for

 example the entry shows where Lotus Notes has loaded the

 eilsx dll from.

Chapter 11: Troubleshooting 217

 <--LSX: EALSX_MessageProc (rc= OK)

 -->LSX: EALSX_MessageProc

 ! LSX: LSX_MSG_INITIALIZE received

 ! LSX: SUCCESS on ClassRegistration of EISession

 ! LSX: SUCCESS on ClassRegistration of EIService

 ! LSX: SUCCESS on ClassRegistration of EIMessage

 ! LSX: SUCCESS on ClassRegistration of EISendOptions

 ! LSX: SUCCESS on ClassRegistration of EIReceiveOptions

 ---->RegisterEAConstants

 <----RegisterEAConstants (rc= OK)

 <--LSX: EALSX_MessageProc (rc= OK)

 -->LSX: Class entry point

 ! LSX: LSI_ADTMSG_CREATE received for class:EISession

 ! LSX: LotusScript >>> Set [X] = new EISession

 ! LSX: allocating unique EISession

 ! LSX: >>> MEM >>> new: 0x1a805c4

 ---->EASession::EASession()

 <----EASession::EASession() (rc= OK)

 <--LSX: Class entry point (rc= OK)

 -->LSX: ClassControl

 ! LSX: LSI_ADTMSG_ADDREF received for class:EISession
refCount = 1

 <--LSX: ClassControl (rc= OK)

 -->LSX: ClassControl

 ! LSX: LSI_ADTMSG_PROP_GET for class:EISession;
property:ReasonCode[2]

 ! LSX: LotusScript >>> [X] = EISession.reasonCode

 <--LSX: ClassControl (rc= OK)

 -->LSX: ClassControl

218 MQSeries Enterprise Integrator for Lotus Notes User's Guide

 ! LSX: LSI_ADTMSG_METHOD received for class:EISession;
method:CreateService[3]

 ! LSX: >>> MEM >>> new: 0x1a8066c

 ---->EAService::EAService

 ! >>> Adding EAService reference at 0x1a8066c >>>

 ! Defaulting to LOCAL encoding

 ! Security database not available...continuing

 <----EAService::EAService (rc= OK)

 ! LSX: LotusScript >>> Set [X] =
EISession.createService("MQServ") [0x1a8066c]

 ---->EAError :: translateCodes(const EA_LONG)

 <----EAError :: translateCodes(const EA_LONG) (rc= OK)

 <--LSX: ClassControl (rc= OK)

 The above 12 trace lines show the start and end of the

 trace entries you would see as a result of running a

 LotusScript line that used the createService method

 established by using the eilsx. These (LSX:ClassControl)

 entries are the ones that are output when Notes code calls

 eilsx code and as such can be used to determine what part

 of your LotusScript may have given rise to an error. Note

 there is a comment line (Set [x] =) that should help

 tie the LotusScript line into the trace output.

 **

 -->LSX: ClassControl

 ! LSX: LSI_ADTMSG_ADDREF received for class:EIService
refCount = 1

 <--LSX: ClassControl (rc= OK)

 -->LSX: ClassControl

 ! LSX: LSI_ADTMSG_EVENT_REG received for class:EIService
event = EIERROR

Chapter 11: Troubleshooting 219

 ! LSX: LotusScript >>> On Event EIERROR From
EIService Call [X]

 <--LSX: ClassControl (rc= OK)

 ..

 Lines removed for clarity

 ..

 -->LSX: ClassControl

 ! LSX: LSI_ADTMSG_DELETE received for class:EIService

 ---->EAService::~EAService

 ! >>> Removing EAService reference at 0x1a8066c >>>

(00205)@09:10:34.441

 <----EAService::~EAService (rc= OK)

 ! LSX: >>> MEM >>> delete: 0x1a8066c

 <--LSX: ClassControl (rc= OK)

 The above 8 trace lines show the start and end of the

 trace entries resulting from the deletion (after issuing a

 notes shut down) of the EIService created above.

 -->LSX: ClassControl

 ! LSX: LSI_ADTMSG_DELETE received for class:EISession ...
ignoring

 <--LSX: ClassControl (rc= OK)

 -->LSX: EALSX_MessageProc

 ! LSX: LSX_MSG_TERMINATE received

 ! LSX: Deleting EISession

 ---->EASession::~EASession

 <----EASession::~EASession (rc= OK)

 ! LSX: >>> MEM >>> delete: 0x1a805c4

220 MQSeries Enterprise Integrator for Lotus Notes User's Guide

 ---->xmqTermCommonServices

 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 ! Trace termination - closing trace file

 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

*

 The final lines from a normal trace run should look like

 the above. Note there is a trace entry into the function

 xmqTermCommonServices but no trace exit as this function

 shuts down trace.

*

In addition to the sort of trace entries shown above you can also obtain
trace entries showing more detail of the interface between the eilsx and the
various drivers (MQ, ECI and EPI). In order to obtain these then the
MQEI_TRACE_LEVEL environment variable needs to be set to an
appropriate value (8 or 9 recommended). Note this will increase quite
dramatically the amount of trace data produced and you will see entries of
the type:

 -->LSX: ClassControl

 ! LSX: LSI_ADTMSG_METHOD received for class:EIService;
method:Connect[2]

 ! LSX: LotusScript >>> Call EIService.connect()
[EIService = "MQServ"]

 ---->EAService::connect

 ------>EAError :: resetCodes()

 <------EAError :: resetCodes() (rc= OK)

 ------>EAMQNativeDriver::connect

 -------->EAMQDriver::connect

 ---------->EAMQDriver::connectToMQ

 ------------>ImqQueueManager::connect

 -------------->gmqadyn0:MQCONN

Chapter 11: Troubleshooting 221

 ! >>>Queue Manager Name...

 0000 66 72 65 64 64 79 00 00 00 00 00 00 00 00 00 00 :
freddy..........

 0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 :
................

 --- 1 lines identical to above ---

 ! gmqadyn0 : About to try and find a dynamic library

 ---------------->EstablishMQEPs

 <----------------EstablishMQEPs (rc= 1)

 ! gmqadyn0: About to go off to real MQCONN

 ! gmqadyn0: Back from real MQCONN

 ! <<<Queue Manager Name...

 0000 66 72 65 64 64 79 00 00 00 00 00 00 00 00 00 00 :
freddy..........

 0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 :
................

 --- 1 lines identical to above ---

 ! <<<HConn...

 0000 4C 2B B7 01 :
L+..

 ! <<<Completion Code...

 0000 00 00 00 00 :
....

 ! <<<Reason Code...

 0000 00 00 00 00 :
....

 <--------------gmqadyn0:MQCONN (rc= OK)

 <------------ImqQueueManager::connect (rc= OK)

 ! EAMQDriver::connectToMQ (MQCONN) - CC 0 , Reason 0

 ! ... for Queue Manager freddy .

 <----------EAMQDriver::connectToMQ (rc= OK)

 ! Outbound and inbound queues are the same

 ---------->EAMQDriver::openMQApplicationQ

 ------------>EAMQDriver :: openQueue

222 MQSeries Enterprise Integrator for Lotus Notes User's Guide

 -------------->ImqObject::open

 ---------------->gmqadyn0:MQOPEN

 ! >>>HConn...

 4C 2B B7 01 :
L+..

 ! >>>MQOD...

 0000 4F 44 20 20 01 00 00 00 01 00 00 00 53 59 53 54 :
OD SYST

 0010 45 4D 2E 44 45 46 41 55 4C 54 2E 4C 4F 43 41 4C :
EM.DEFAULT.LOCAL

 0020 2E 51 55 45 55 45 00 00 00 00 00 00 00 00 00 00 :
.QUEUE..........

 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 :
................

 --- 2 lines identical to above ---

 0060 00 00 00 00 00 00 00 00 00 00 00 00 41 4D 51 2E :
............AMQ.

 0070 2A 00 00 00 49 6D 71 4F 62 6A 65 63 74 3A 3A 63 :
*...ImqObject::c

 0080 6C 6F 73 65 00 00 00 00 49 6D 71 4F 62 6A 65 63 :
lose....ImqObjec

 0090 74 3A 3A 63 6C 6F 73 65 20 28 65 72 00 00 00 00 :
t::close (er....

 0100 00 00 00 00 00 00 00 00 :
........

 ! >>>Options...

 0000 11 20 00 00 : .
..

 ! >>>Hobj...

 0000 00 00 00 00 :
....

 ! <<<HConn...

 0000 4C 2B B7 01 :
L+..

 ! <<<MQOD...

Chapter 11: Troubleshooting 223

 0000 4F 44 20 20 01 00 00 00 01 00 00 00 53 59 53 54 :
OD SYST

 0010 45 4D 2E 44 45 46 41 55 4C 54 2E 4C 4F 43 41 4C :
EM.DEFAULT.LOCAL

 0020 2E 51 55 45 55 45 00 00 00 00 00 00 00 00 00 00 :
.QUEUE..........

 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 :
................

 --- 2 lines identical to above ---

 0060 00 00 00 00 00 00 00 00 00 00 00 00 41 4D 51 2E :
............AMQ.

 0070 2A 00 00 00 49 6D 71 4F 62 6A 65 63 74 3A 3A 63 :
*...ImqObject::c

 0080 6C 6F 73 65 00 00 00 00 49 6D 71 4F 62 6A 65 63 :
lose....ImqObjec

 0090 74 3A 3A 63 6C 6F 73 65 20 28 65 72 00 00 00 00 :
t::close (er....

 0100 00 00 00 00 00 00 00 00 :
........

 ! <<<Options...

 0000 11 20 00 00 : .
..

 ! <<<Hobj...

 0000 58 84 4B 00 :
X.K.

 ! <<<Completion Code...

 0000 00 00 00 00 :
....

 ! <<<Reason Code...

 0000 00 00 00 00 :
....

 <----------------gmqadyn0:MQOPEN (rc= OK)

 <--------------ImqObject::open (rc= OK)

 ! EAMQDriver::openQueue (MQOPEN) - CC 0 , Reason 0

 <------------EAMQDriver :: openQueue (rc= OK)

 <----------EAMQDriver::openMQApplicationQ (rc= OK)

224 MQSeries Enterprise Integrator for Lotus Notes User's Guide

 <--------EAMQDriver::connect (rc= OK)

 <------EAMQNativeDriver::connect (rc= OK)

(00265)@09:54:00.036

 ------>EAError :: translateCodes(const EA_LONG)

 -------->EAError :: resetCodes()

 <--------EAError :: resetCodes() (rc= OK)

 <------EAError :: translateCodes(const EA_LONG) (rc= OK)

 <----EAService::connect (rc= OK)

 <--LSX: ClassControl (rc= OK)

*

 The lines above show the trace entries associated with the

 use of the Connect method against a previously created
service.

 In this case it's a service using MQSeries and shows the

 dynamic loading of the mqm dll together with the data
blocks

 passing from the eilsx code into the MQ code. Similar
levels

 of data would be shown for ECI or EPI calls.

*

Chapter 11: Troubleshooting 225

Reason Codes

This lists the external reason codes provided by the MQEI LSX. An MQEI
LSX object's ReasonCode property is set when an error occurs, or to warn
of a potential error, accessing a method or property of the object concerned.

Reason codes may also be returned by the MQEI utility programs.

The ReasonCode property is dependent on the setting of the accompanying
CompletionCode property.

ReasonCode Explanation / Action

EIRC_NONE
(0)

Success. No action

The following reason codes can be encountered by your LotusScript
program.

226 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Reason codes 1 - 129

ReasonCode Explanation / Action

EIRC_NO_MEMORY
(105)

The MQEI LSX is unable to allocate
enough memory.
Method/Property:

Various
Action:Close any unwanted processes and
programs are retry the operation.

EIRC_NULL_POINTER
(107)

A string or object passed in an MQEI
method /property call is NULL where
this is not allowed.
Method/Property:

EIMessage methods
Action:Correct your LotusScript program,
make sure all objects and strings contain
valid data.

EIRC_UNEXPECTED_ERROR
(108)

An error has occurred within the MQEI
LSX.
Method/Property:

Various
Action:Contact your IBM/Lotus service
representative.

EIRC_INVALID_UNIT_OF_WORK
(110)

The UnitOfWork property in the
EISendOptions object is set to a value
other than one of those listed as legal
values.
Method/Property:

EISendOptions UnitOfWork

EIService SendMessage
Action:Set the UnitOfWork property to a
legal value.

EIRC_INVALID_RECEIVE_TYPE
(111)

The ReceiveType property in the
EIReceiveOptions object is set to a value
other than one of those listed as legal
values.
Method/Property:

EIReceiveOptionsReceiveType

EIService ReceiveMessage
Action:Set the ReceiveType property to a
legal value.

Chapter 11: Troubleshooting 227

ReasonCode Explanation / Action

EIRC_INVALID_WAIT_TYPE
(112)

The WaitType property in the
EIReceiveOptions object is set to a value
other than one of those listed as legal
values.
Method/Property:

EIReceiveOptionsWaitType

EIService ReceiveMessage
Action:Set the WaitType property to a
legal value.

EIRC_INVALID_WAIT_INTERVAL
(113)

The WaitInterval property in the
EIReceiveOptions object is set to a value
other than one of those listed as legal
values.
Method/Property:

EIReceiveOptions WaitInterval

EIService ReceiveMessageAction: Set the

WaitInterval to a positive numeric value or

EIWI_UNLIMITED.

EIRC_INVALID_PRIORITY
(115)

The value assigned to the Priority
property in the EISendOptions object is
invalid.
Method/Property:

EISendOptions Priority

EIService SendMessage

Action:Set the Priority to a positive
numeric value not exceeding EIService
MaxPriority or EIPRI_DEFAULT.

228 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_INVALID_DATATYPE
(116)

The MQEI LSX has detected an
unexpected data type for an EIMessage
field. An example of such an error would
be to assign a numeric value to an
EIMessage field which is defined in the
MQEI Definition database as data type
String.
This error can also occur when an
EIMessage is sent or received, and the
data type of a field in the EIMessage is not
one supported by the type of service. For
example Long, Short and Byte are not
supported by a CICS 3270 direct service as
all fields must be character based.
Method/Property:

EIMessage CreateMessage

EIMessage SetFieldValue

EIService SendMessage

EIService ReceiveMessage
Action:Ensure that the LotusScript
program is using variables of the correct
data type when assigning or accessing
EIMessage field values. Ensure that the
Field definitions for an EIMessage
destined for a CICS 3270 direct service all
have character based data types.

EIRC_INVALID_FIELD_NAME
(117)

The name of the EIMessage field specified
is either more than 32 characters in length
or contains invalid characters.
Valid characters in a name are: a-z, A-Z,
0-9, and underscore.
Method/Property:

EISession CreateMessage

Action:Change the name of the EIMessage
field to conform to the specified
standards. If this error was generated by a
utility program, this may involve
changing the file used as input to the
utility.

Chapter 11: Troubleshooting 229

ReasonCode Explanation / Action

EIRC_INVALID_OBJECT_NAME
(118)

The name of the MQEI object does not
conform to standards:
An EIMessage name must not exceed 16
characters
An EIService name must not exceed 16
characters
Valid characters in a name are: a-z, A-Z,
0-9, - (hyphen), $ (dollar), % (percentage),
* (asterisk), # (hash), & (ampersand),
@ (atsign), ? (question mark),
! (exclamation mark) and _ (underscore).
Method/Property:

EISession CreateService

EISession CreateMessage
Action:Change the name of the object to
conform to the standards.

EIRC_INVALID_LENGTH
(119)

The length specified for an EIMessage
field does not match its data type:
Data Type Long must be 4 bytes long
Data Type Short must be 2 bytes long
Data Type Byte must be 1 byte long.
Method/Property:

EISession CreateMessage
Action:Correct the field definition and
build the new message document.

EIRC_DEFN_ALREADY_EXISTS
(124)

The MQEI Message definition cannot be
written to the MQEI Definition database
because one with the same name already
exists. Note that the name of a definition
is not case sensitive.
Method/Property:

Used by utilities only

Action:Select the replace option if the
definitions are for the same message.
Otherwise either change the name of the
existing definition on the database, or the
label of the DFHMDI macro in the BMS
map source.

230 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_DEFN_NOT_FOUND
(125)

The definition requested from the MQEI
Definition database, to build an EIService
or EIMessage object, cannot be found.
Method/Property:

EISession CreateService

EISession CreateMessage

Action:Correct the name of the parameter
in the method call or create a definition on
the MQEI Definition database.

EIRC_DATA_OVERFLOW
(127)

A field in a message has been set outside
the range allowed by the data type of the
field.
Method/Property:

EIMessage Set properties

EIMessage SetFieldValue method
Action:Check the MQEI Definition
database for the data type of the field and
check your LotusScript is correct.

EIRC_FIELD_TRUNCATED
(128)

Warning. Your LotusScript program has
set a field in an EIMessage where the field
is defined to be shorter than the length of
the data supplied.
Method/Property:

EIMessage methods
Action:Ensure your LotusScript program
caters for the defined length of the field in
the EIMessage.

EIRC_INVALID_DB_NAME
(129)

The length of the name of the path,
together with the name of the MQEI
Definition database, or MQEI Security
database, is too long.
Method/Property:

new EISession
Action:Ensure that the length of the
database name plus the path does not
exceed 48 characters.

Chapter 11: Troubleshooting 231

Reason codes 130 - 999

ReasonCode Explanation / Action

EIRC_DEFN_DB_NOT_OPEN
(132)

The EIMessage or EIService object cannot
be created because the MQEI Definition
database is closed.
Method/Property:

EISession CreateService

EISession CreateMessage

Action: Your LotusScript program has
continued after an error during the
creation of the EISession object. Check
your LotusScript program. It is important
to check the CompletionCode and
ReasonCode properties of the EISession
and only continue when the EISession
object has been created successfully.
One common error giving rise to this
reason code is that your mqei.ini file
could not be opened. Check that your
MQEI_INI_PATH is correct and that there
is an mqei.ini file in this directory.

232 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_INVALID_CONNECTION
(134)

The value assigned to the
InboundConnection or
OutboundConnection property in the
EIService object is invalid. Alternatively,
the InboundConnection or
OutboundConnection was omitted, or
was not unique for those service types
that require separate inbound and
outbound connections.
This error can also arise when the
LotusScript program sends a message
with a message type of EIMT_REPLY, and
the inbound EIMT_REQUEST message to
which this is replying contained an
MQSeries reply to queue name that does
not match the EIService
OutboundConnection property.
Method/Property:

EISession CreateService

EIService Connect

EIService

SendMessage
Action:Ensure a valid string of the correct
length is specified in the MQEI Service
definition, held in the MQEI Definition
database. Ensure the connection names
are specified, and unique when necessary.
The maximum length for the EIService
you are using is held in the
ConnectionLength property in the
EIService object.
Ensure that a Native MQSeries service
running on your enterprise system does
not specify a reply to queue name that
differs from the EIService
OutboundConnection, when it sends a
message to the MQEI application.

Chapter 11: Troubleshooting 233

ReasonCode Explanation / Action

EIRC_INVALID_IDENTIFIER
(135)

 The value assigned to the Identifier
property in the EISendOptions or
EIReceiveOptions object is invalid.
Method/Property:

EISendOptions Identifier Property

EIReceiveOptions Identifier Property

EIService SendMessage

EIService ReceiveMessage

Action:Ensure a valid hexadecimal string
of the correct length is specified. The
maximum length for the EIService you are
using is held in the EIService
IdentifierLength property.

EIRC_INVALID_ATTENTION_ID
(136)

The value assigned to the AttentionId
property in the EISendOptions object is
not included in the legal values list.
Method/Property:

EISendOptions AttentionId

EIService SendMessage
Action:Set the AttentionId property to a
legal value.

EIRC_INVALID_SELECTED_FIELD
(137)

The value assigned to the SelectedField
property in the EISendOptions object
does not match any field name in the
message.
Method/Property:

EISendOptions SelectedField

EIService SendMessage
Action:Set the SelectedField property to
the name of a field in the message. If you
do not know the name of the field, but
you do know the position of the field, use
the EIMessage GetFieldName method to
obtain the name.

234 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_DEFN_DB_SYSERROR
(138)

An error was signalled by Notes when
opening, closing, reading from, or
writing to, the MQEI Definition database.
The error was such that MQEI does not or
is not able to translate it into a separate
MQEI reason code. More information on
the error can be found in the EISession
PrimarySystemErrorCode property and
SystemErrorText property.
Method/Property:

new EISession

EISession CreateService

EISession CreateMessage

Action:Establish the cause of the error
with the help of the SystemErrorText and
PrimarySystemErrorCode, correct the
error and retry the operation. The Notes
error codes are defined by the Lotus Notes
C API and each has an associated message
that is retrieved from Notes (using the
OSLOadString Notes C API function) by
the MQEI LSX, and recorded in
SystemErrorText and in the MQEI LSX
trace file.

EIRC_PROTECTED_FIELD
(139)

An attempt to set a value in an EIMessage
field has failed because the field is
protected. This occurs if the enterprise
system has designated fields as protected,
or if the field has a data type of
SYSTEM_AUTHENTICATOR.
Method/Property:

EIMessage SetFieldValue

EIService SendMessage

Action:Change your LotusScript program
so that it doesn't set protected fields. To
check if a field is protected use the
EIMessage GetProtection method. If
EIPRO_PROTECTED is returned, the field
is protected. Also ensure that where a
message maps to a terminal screen, the
EIMessage object sent is the same as the
EIMessage object that was last received to
ensure field protection designated by the
enterprise is honoured.

Chapter 11: Troubleshooting 235

ReasonCode Explanation / Action

EIRC_INVALID_SERVICE_TYPE
(140)

An invalid value is specified for the
ServiceType property in the EIService
object.
Method/Property:

EISession CreateService

Action:Correct the MQEI Service
definition in the MQEI Definition
database.

EIRC_NOT_SUPPORTED
(141)

There are several possible reasons for this.
An attempt was made to connect
to a connection manager that is
not at a sufficient level to support
the MQEI.

An attempt was made to create an
EIService object for a service type
that is not supported from the
environment you are running
Notes under. For example, CICS
3270 direct services are not
supported under Windows 3.1 or
UNIX systems, and CICS DPL
direct services are not supported
under UNIX systems.

It is not possible to create an
EIService object for a CICS 3270
direct service and an EIService
object for a CICS DPL direct
service at the same time in the
same Notes client or Domino 4.5
Server agent. This is a CICS
restriction.

A message was received that
makes use of one or more features
in the target service that are not
supported by the current version
of MQEI. An example of this is
receiving a Read Buffer message
from a CICS 3270 direct service.

236 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

Method/Property:
new EISession

EISession CreateService

EIService Connect

EIServiceReceiveMessage
Action:Depending on the cause, either
upgrade the connection manager to the
required level, modify the target service
so that it only uses features that are
supported by the MQEI. Ensure that the
correct service types are being specified.
Do not run CICS 3270 direct and CICS
DPL direct services in the same Notes
client or Domino Server agent at the same
time, or use a platform that supports the
type of service you are creating.

EIRC_INVALID_SERVICE_STEP
(142)

An invalid value was specified for the
EIService ServiceStep property.
Method/Property:

EISession CreateService

EIService ServiceStep

EIService SendMessage
Action:Ensure a valid string of the correct
length is specified in the MQEI Service
definition in the MQEI Definition
database, or in the LotusScript program.
The maximum length for the EIService in
question is given by the EIService
ServiceStepLength property. Additionally,
some drivers require that a ServiceStep
must always be present and a value of
EISS_NOT_APPLICABLE is not allowed.

EIRC_INVALID_MESSAGE_TYPE
(143)

The value assigned to the MessageType
property in the EISendOptions object is
not included in the legal values list.
Method/Property:

EISendOptions MessageType

EIService SendMessage
Action:Set the MessageType property to a
legal value.

Chapter 11: Troubleshooting 237

ReasonCode Explanation / Action

EIRC_INVALID_ENCODING
(144)

An invalid value was specified for the
system encoding in the MQEI
initialization file or for the EIService
Encoding property.
Method/Property:
new EISession

EISession CreateService
Action:Ensure a valid value is specified in
the mqei.ini file or in the MQEI Service
definition in the MQEI Definition
database.

EIRC_INVALID_ALIGNMENT
(145)

An invalid value was specified for the
Alignment property of an EIMessage
field.
Method/Property:

EISession CreateMessage
Action:Ensure a valid value is specified
for Alignment in the MQEI Definition
database and that the MQEI Message
definition concerned is rebuilt.

EIRC_INVALID_SEGMENT
(146)

The segment number specified for an
EIMessage field is invalid. The segment
number of the first field in the message
must be 1. The segment number of a
subsequent field must equal, or be exactly
1 greater than, that of the immediately
preceding field.
Method/Property:

EISession CreateMessage
Action:Ensure that the rules for segment
numbers are obeyed for all fields in the
message and that the MQEI Message
definition concerned is rebuilt.

EIRC_INI_OPEN_ERROR
(147)

An error occurred opening the MQEI
initialization file, mqei.ini
Method/Property:

new EISession
Action:Ensure that the mqei.ini file exists,
is not read protected, and is pointed at by
environment variable MQEI_INI_PATH.

238 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_INVALID_SERVICE_CONTEXT
(148)

An invalid value was specified for the
EIService ServiceContext property.
Method/Property:

EISession CreateService

EIService ServiceContext

EIService SendMessage
Action:Ensure a valid string of the correct
length is specified in the MQEI Service
definition in the MQEI Definition
database, or in the LotusScript program.
The maximum length for the EIService in
question is given by the EIService
ServiceContextLength property.

EIRC_INVALID_DELIVERY
(149)

The value assigned to the Delivery
property in the EISendOptions object is
either not included in the legal values list,
or is not valid for the outbound
connection being used.
Method/Property:

EISendOptions Delivery

EIService SendMessage

Action:Set the Delivery property to a legal
value that is acceptable to the outbound
connection being used. One cause of this
reason code is specifying a Delivery of
EIDEL_ASSURED for a message destined
for an MQSeries temporary dynamic
queue. Such a queue can not contain
assured delivery (that is, persistent)
messages.

Chapter 11: Troubleshooting 239

Reason codes 1000 - 13999

ReasonCode Explanation / Action

EIRC_INI_SECTION_NOT_FOUND
(1004)

An error has occurred locating a
mandatory section in the MQEI
initialization file (mqei.ini).
Method/Property:

new EISession
Action:Ensure the mqei.ini follows the
required syntax, all sections are
present, and all section names are
spelt correctly.

EIRC_INI_KEYWORD_NOT_FOUND
(1005)

An error has occurred locating a
mandatory keyword in the MQEI
initialization file (mqei.ini).
Method/Property:

new EISession
Action:Ensure the mqei.ini follows the
required syntax, all keywords are
present, and all keywords are spelt
correctly.

EIRC_INI_VALUE_NOT_SPECIFIED
(1006)

An error has occurred locating a
mandatory keyword value in the
MQEI initialization file (mqei.ini).
Method/Property:

new EISession
Action:Ensure the mqei.ini follows the
required syntax and all keyword
values are present.

EIRC_INVALID_DEFN_VALUE
(5004)

When reading the MQEI Definition
database to build an EIService or
EIMessage object, the requested
definition contained an invalid
property value.
Method/Property:

EISession CreateService

EISession CreateMessage
Action:Ensure that all values in the
appropriate MQEI Service definition,
MQEI Message definition and MQEI
Security definition are valid.

240 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_DEFN_PROPERTY_NOT_FOUND
(5009)

When reading the MQEI Definition
database to build an EIService or
EIMessage object, the requested
definition did not contain a required
property.
Method/Property:

EISession CreateService

EISession CreateMessage
Action:Ensure that all properties in
the appropriate MQEI Service, MQEI
Message, or MQEI Security definition
are present.

EIRC_INVALID_HAS_ATTRIBUTES
(5018)

An invalid value was specified for the
HasAttributes property of an
EIMessage field.
Method/Property:

EISession CreateMessage
Action:Ensure a valid value is
specified in the definition for the field
in the MQEI Definition database and
that the MQEI Message definition
concerned is rebuilt.

EIRC_INVALID_PAD_CHARACTER
(5019)

An invalid value was specified for the
PadCharacter property of an
EIMessage field.
Method/Property:

EISession CreateMessage
Action:Ensure a valid value is
specified in the definition for the field
in the MQEI Definition database and
that the MQEI Message definition
concerned is rebuilt.

EIRC_DEFN_DB_UNKNOWN
(5020)

The MQEI Definition database named
in the MQEI initialization file
(mqei.ini) is not known to Notes.
Method/Property:

new EISession
Action:Ensure that the database exists
and the name specified in the mqei.ini
file is correct.
Check that the name of any server
you need to access is correctly
specified in the mqei.ini file.

Chapter 11: Troubleshooting 241

ReasonCode Explanation / Action

EIRC_DEFN_DB_SECURITY_FAILURE
(5021)

The user is not authorized to access
the MQEI Definition database named
in the mqei.ini file.
Method/Property:

new EISession

EISession CreateService

Action:Ensure the user (if your MQEI
application runs under a Notes client)
or agent owner (if your MQEI
application runs under an agent on a
Domino server) has sufficient
authority to access the database,the
server, and the definitions on the
database.

EIRC_DUPLICATE_DEFN
(5022)

Two or more definitions with an
identical name were detected while
accessing the MQEI Definition
database. All definitions of the same
type must have a unique name.
Method/Property:

EISession CreateService

EISession CreateMessage

EIService SendMessage
Action:Ensure that each MQEI Service
definition within the MQEI Definition
database has a unique Service Name.
Ensure that each Message definition
within the MQEI Definition database
has a unique Message Name and that
all messages are rebuilt.

EIRC_DEFN_DB_INCOMPATIBLE
(5024)

The versions of the Notes MQEI
Definition database and MQEI
software you are using are not
compatible.
Method/Property:

EISession CreateService

EISession CreateMessage
Action:Update your database design
to the level that matches your MQEI
software.

242 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_DEFN_DB_UNAVAILABLE
(5025)

The MQEI Definition database server
is not responding.
Method/Property:

new EISession
Action:Ensure the database server is
started and can can be accessed from
the client.

EIRC_SEC_DB_NOT_OPEN
(13003)

The EIService object cannot be created
because the MQEI Security database is
closed.
Method/Property:

EISession CreateService

Action:Your LotusScript program has
continued after an error during the
creation of the EISession object. Check
your LotusScript program. It is
important to check the
CompletionCode and ReasonCode
properties of the EISession and only
continue when the EISession object
has been created successfully.

Chapter 11: Troubleshooting 243

ReasonCode Explanation / Action

EIRC_SEC_DB_SYSERROR
(13005)

An error was signalled by Notes when
opening, closing, or reading from the
MQEI Security database. The error
was such that MQEI does not or is not
able to translate it into a separate
MQEI reason code. More information
on the error can be found in the
EISession PrimarySystemErrorCode
property and SystemErrorText
property.
Method/Property:

new EISession

EISession CreateService
Action:Establish the cause of the error
with the help of SystemErrorText and
PrimarySystemErrorCode, correct the
error and retry the operation. The
Notes error codes are defined by the
Lotus Notes C API and each has an
associated message that is retrieved
from Notes (using the OSLOadString
Notes C API function) by the MQEI
LSX, and recorded in SystemErrorText
and an MQEI LSX trace file.

EIRC_SEC_DB_UNKNOWN
(13006)

The MQEI Security database named in
the MQEI initialization file (mqei.ini)
is not known to Notes.
Method/Property:

new EISession
Action:Ensure that the database exists
and the name specified in the mqei.ini
file is correct.
Check that the name of any server
you need to access is correctly
specified in the mqei.ini file.

244 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_SEC_DB_SECURITY_FAILURE
(13007)

The user is not authorized to access
the MQEI Security database named in
the mqei.ini file.
Method/Property:

new EISession

EISession CreateService

Action:Ensure the user (if your MQEI
application runs under a Notes client)
or agent owner (if your MQEI
application runs under an agent on a
Domino server) has sufficient
authority to access the database,
server and the definitions on the
database.
This error may also occur if
decryption of the MQEI Security
definition fails. Check the correct
Notes user.id file is being used.

EIRC_SEC_DB_INCOMPATIBLE
(13009)

The versions of the MQEI Security
database and MQEI software you are
using are not compatible.
Method/Property:

EISession CreateService
Action:Update your database design
to the level that matches your MQEI
software.

EIRC_SEC_DB_UNAVAILABLE
(13010)

The MQEI Security database server is
not responding.
Method/Property:

new EISession
Action: Ensure the database server is
started and can be accessed from the
client.

Chapter 11: Troubleshooting 245

Reason codes 14000 - 24999

ReasonCode Explanation / Action

EIRC_CONN_MANAGER_UNKNOWN
(16003)

The attempt to connect to the
connection manager failed. The
name in the EIService
ConnectionManager property is not
known to CICS or MQSeries.
Method/Property:

EIService Connect
Action:Ensure the MQEI Service
definition in the MQEI Definition
database includes the name of a
known MQSeries queue manager or
CICS server.

EIRC_CONN_MANAGER_UNAVAILABLE
(16004)

The attempt to connect to the
connection manager named in the
ConnectionManager property of the
EIService object has failed. The
connection manager is not currently
up and running.
Method/Property:

EIService Connect
Action:Ensure the appropriate
MQSeries or CICS system is up and
running.
If you are using an MQSeries client,
check the client is up and running,
and the queue manager is running.
If you are not using an MQSeries
client, check the queue manager is
running.
If you are using a CICS client, check
that the client is up and running and
that the CICS server is up and
running.
If you are not using a CICS client,
check the server is running.

246 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_SERVICE_SYSERROR
(16005)

An attempt to connect, disconnect,
send an EIMessage, or receive a
message has failed. The connection
manager has identified that there is
a problem. More information can be
found in the
PrimarySystemErrorCode property,
SecondarySystemErrorCode
property, and SystemErrorText
property of the object in which the
error occurred.
Method/Property:

EIService Connect

EIService Disconnect

EIService SendMessage

EIService ReceiveMessage
Action:For a CICS direct service
(where MQSeries is not used), refer
to the CICS Family Client/Server
Programming manual.
For CICS DPL direct,
PrimarySystemErrorCode will
contain a CICS ECI return code, and
SecondarySystemErrorCode will
contain an ECI_PARMS
eci_sys_return_code.
For CICS 3270 direct,
PrimarySystemErrorCode will
contain a CICS EPI return code, and
SecondarySystemErrorCode will
contain a CICS_EpiSysError_t
Cause.

Chapter 11: Troubleshooting 247

ReasonCode Explanation / Action

For an MQSeries service, refer to the
MQSeries Application Programming
Reference manual or
MQSeries-CICS/ESA DPL bridge
User Guide, as appropriate.
For Native MQSeries,
PrimarySystemErrorCode will
contain an MQSeries reason code,
and SecondarySystemErrorCode
will not be set.
For IMS via MQSeries,
PrimarySystemErrorCode will
contain an MQSeries reason code or
an IMS bridge specific MQSeries
feedback code, and
SecondarySystemErrorCode will not
be set.
For CICS DPL via MQSeries,
PrimarySystemErrorCode will
contain an MQSeries reason code or
a CICS DPL bridge specific return
code. If the latter,
SecondarySystemErrorCode will
contain either an MQSeries reason
code, a CICS DPL bridge specific
MQSeries feedback code, or a CICS
DFHRESP code, depending on the
error. Otherwise
SecondarySystemErrorCode will not
be set.

248 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_CALL_SEQUENCE_ERROR
(16006)

An attempt was made to send or
receive a message, or disconnect
from a service, but the operation is
not in the correct sequence for the
target service. There are several
possible reasons for this.

With certain services, eg,
CICS 3270 direct and CICS
DPL direct, messages must
be sent and received in a
particular sequence. Your
LotusScript program must
understand the order in
which messages are sent and
received by the service and
issue EIService SendMessage
and ReceiveMessage calls
accordingly.

For CICS 3270 direct, a
disconnect is not allowed
while unreceived messages
are outstanding or the target
CICS transaction is still
running.

A SendMessage that
specifies an EISendOptions
MessageType of
EIMT_REPLY must be
preceded by a
ReceiveMessage that
obtained a message with an
EIReceiveOptions
MessageType of
EIMT_REQUEST.

Chapter 11: Troubleshooting 249

ReasonCode Explanation / Action

A ReceiveMessage that
specifies an
EIReceiveOptions
ReceiveType of
EIRT_RECEIVE must
precede a ReceiveMessage
with an EIReceiveOptions
ReceiveType property of
EIRT_RETURN.

Method/Property:
EIService SendMessage

EIService ReceiveMessage

EIService Disconnect
Action:Correct your program,
ensuring the rules of the
conversation are followed, and that:
A ReceiveMessage with a
ReceiveType of EIRT_RECEIVE
always precedes one with
EIRT_RETURN.
A message with a MessageType of
EIMT_REQUEST must have been
received before a SendMessage
specifying a MessageType of
EIMT_REPLY can be issued.

EIRC_MESSAGE_TOO_LONG
(16007)

An attempt to send an EIMessage
has failed because the message is too
long for the connection. This may be
an MQSeries queue or queue
manager restriction, an IMS message
segment length restriction, or a CICS
commarea restriction.
Method/Property:

EIService SendMessage
Action:If possible, increase the size
of message allowed by the particular
connection. To do this on MQSeries,
change the attribute, on either or
both, for the queue or the queue
manager. Alternatively, reduce the
size of the message or split the
message to meet the size
restrictions.

250 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_WRONG_IDENTIFIER
(16008)

An attempt made to send or receive
an EIMessage has failed because
there is a problem with the
Identifier. The Identifier is used by
some types of services to link
messages that make up a
conversation. When the Identifier
supplied does not match the
conversation, where this can be
detected, this error occurs.
Method/Property:

EIService SendMessage

EIService ReceiveMessage
Action:Ensure the Identifier
returned in the EISendOptions after
the successful completion of the first
EIService SendMessage call in a
conversation is used on subsequent
SendMessage calls. Where specific
messages need to be received, use
the same Identifier in
EIReceiveOptions on the
ReceiveMessage calls.
If a single EISendOptions object is
being used for several concurrent
conversations, remember to reset the
Identifier property in the
EISendOptions at the start of each
conversation.

Chapter 11: Troubleshooting 251

ReasonCode Explanation / Action

EIRC_NO_MESSAGE_AVAILABLE
(16009)

Warning. Your LotusScript
program has tried to receive an
enterprise message, but there is no
message there. The target enterprise
system may not have sent the
message yet, or the target system
may have encountered an error or
be queuing work.
Method/Property:

EIService ReceiveMessage
Action:Delay for a short period of
time and retry the ReceiveMessage
call. Check for any problems with
the target system if the message still
does not arrive. Check that your
LotusScript program has specified
the correct EIReceiveOptions
properties, particularly the Identifier
property. Also check that any
message sent earlier had the correct
EISendOptions Identifier and
UnitofWork properties.

EIRC_SERVICE_SYSABEND
(16010)

A message received indicates the last
service step invoked terminated
with an abend. The abend code is
held in the EIService AbendCode
property. This applies to CICS DPL
direct, CICS DPL via MQSeries, and
CICS 3270 direct services only.
Method/Property:

EIService SendMessage

EIService ReceiveMessage

EIService Disconnect
Action:Establish the cause of the
abend. Refer to the Messages and
Codes manual for your CICS system
to lookup abend codes. Fix the error
and retry.

252 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_SERVICE_SECURITY_FAILURE
(16011)

You do not have sufficient authority.
The action causing the error is one of
connecting to a connection manager,
opening an inbound or outbound
connection, authentication on the
target system, or accessing resources
on the target system.
Method/Property:

EIService Connect

EIService SendMessage

EIService ReceiveMessage
Action:Ensure you have the
authority to connect to the
connection manager, open
connections and access resources on
the target system. Check your
UserId and Authenticator. They may
be wrong on the MQEI Security
database, or you may have entered
them incorrectly when you ran your
application.If you are using the
MQEI Security database, check the
correct definition exists. If your
MQEI application runs under a
Notes client, there should be a
definition with the EIService
SystemName of your Notes user
name in it. If your MQEI application
runs under an agent on a Domino
server, there should be a defintion
with the EIService SystemName and
the server's name.

EIRC_UOW_ROLLED_BACK
(16012)

The CICS server has been unable to
process an EIMessage sent via the
CICS DPL direct service. The CICS
server terminated abnormally or
could not commit the current unit of
work. The CICS system has backed
out all the changes to recoverable
resources.
Method/Property:

EIService ReceiveMessage
Action:Restart the CICS server and
retry.

Chapter 11: Troubleshooting 253

ReasonCode Explanation / Action

EIRC_UOW_IN_DOUBT
(16013)

The CICS server has been unable to
process an EIMessage sent via the
CICS DPL direct service. The CICS
server terminated abnormally in an
indoubt state. The MQEI is unable to
determine whether or not the
current unit of work has been
committed or backed out.
Method/Property:

EIService ReceiveMessage
Action:Contact your CICS System
programmer and initiate procedures
to resolve the indoubt situation
before restarting the CICS server. If
the unit of work was backed out,
retry after restarting the CICS server.

EIRC_UNRECOGNIZED_REPLY
(16018)

The MQEI has detected that the
message received is not part of the
current conversation. This is likely to
be caused where an inbound
connection is shared by several users
or applications and an incorrect
EIReceiveOptions Identifier
property has been specified, perhaps
set to EIID_NONE and you are
getting the first message on the
inbound connection, which is not
part of the conversation.
Method/Property:

EIService ReceiveMessage

Action:Ensure that where
connections are shared, a unique
Identifier is used for each
conversation that may be in
progress. Avoid the use of an
EIReceiveOptions Identifier of
EIID_NONE that will normally
return the first or highest priority
message on the inbound connection.
Instead specify the Identifier
returned in EISendOptions by the
EIService SendMessage call that
started the conversation.

254 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_DATA_CONVERSION_ERROR
(16019)

An error occurred converting
character data in the EIMessage
fields to the code page required. The
required code page could not be
located.
Method/Property:

EIService ReceiveMessage

EIService SendMessage
Action:Ensure the code page for the
system is present. If you do not have
the code page you need, contact
your IBM/Lotus service
representative.

EI_CONNECTION_DOWN
(16022)

The connection to the connection
manager is not available. It is no
longer possible to send a message,
receive a message, or disconnect
from the service.
Method/Property:

EIServiceSendMessage

EIServiceReceiveMessage

EIService Disconnect
Action:Check the inbound and
outbound connections, you may
need to restart the connection
manager. Retry the operation.

EIRC_CONNECTION_UNKNOWN
(16023)

The attempt to connect to the
connection manager failed. The
EIService InboundConnection or
OutboundConnection property does
not contain the name of a known
connection.
Method/Property:

EIService Connect

Action: Ensure the MQEI Service
definition in the MQEI Definition
database includes the names of
known MQSeries queues or CICS
terminal models.

Chapter 11: Troubleshooting 255

ReasonCode Explanation / Action

EIRC_WRONG_MESSAGE
(16026)

Warning. The received message does
not match the EIMessage object
passed as the parameter on the
EIService ReceiveMessage call.
Method/Property:

EIService ReceiveMessage
Action:If the message could be one
of several formats, retry the
ReceiveMessage call with an
alternative EIMessage object until a
match is made, ensuring
EIReceiveOptions ReceiveType is set
to EIRT_RETURN.
See Variant Messages for more
information.
Alternatively, check that the MQEI
Message definition on the database
is correct, paying particular
attention to field lengths and
positions.

EIRC_SERVICE_STEP_UNKNOWN
(16029)

A message sent to a service cannot
be processed. The program or
transaction specified by the
ServiceStep property in the EIService
object is not known to the target
system.
Method/Property:

EIService ReceiveMessage
Action:Ensure the ServiceStep
property is correct in the MQEI
Service definition in the MQEI
Definition database, or that your
LotusScript program is setting it
correctly. Ensure the program name
or transaction is known to the
system receiving the message.

256 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_WRONG_DATA_CONVERSION
(16048)

An incorrect value was supplied for
the EIService CharacterSet property
or Encoding property or both. The
MQEI LSX converted an outbound
message into the CharacterSet and
Encoding specified by the EIService
object, but upon receipt of the
message the enterprise service
detected that these were not the
CharacterSet and Encoding
expected.
Method/Property:

EIService ReceiveMessage
Action:Ensure the correct values are
specified for the Encoding and
CharacterSet properties of the
enterprise service in the MQEI
Definition database.

EIRC_WRONG_MESSAGE_SENT
(16049)

An attempt was made to send a
message to an enterprise service, but
the EIMessage parameter passed on
the SendMessage call was not
correct. This can occur for a CICS
3270 direct service when the
EIMessage parameter does not
match the internal image of the
terminal screen maintained by the
EIService object.
Method/Property:

EIService SendMessage

Action:Ensure the correct EIMessage
parameter is passed. If the terminal
screen is not empty, the EIMessage
should be that used on the last
ReceiveMessage call. If the
EIMessage being passed is that
intended, check that the
corresponding MQEI Message
definition is correct, paying
particular attention to field lengths
and positions.

Chapter 11: Troubleshooting 257

ReasonCode Explanation / Action

EIRC_INSUFFICIENT_DATA
(16051)

Warning. A message was received
that matches the EIMessage object
passed as a parameter on the
EIService ReceiveMessage call,
except that the length of the message
data is insufficient to fully complete
the last EIMessage field. All
EIMessage fields except the last are
fully completed, but the last field is
only partly completed from the
available data.
Method/Property:

EIService ReceiveMessage
Action:If the message you are
receiving is expected to contain a
varying length string at the end
where the length is unknown, this
reason code indicates that the
message has been successfully
received. It is your responsibility in
your LotusScript program to
interpret the last field in the
returned EIMessage object. Note this
warning can be avoided if you
define the last field in the message
as a variable length string instaed of
a fixed length string, in the MQEI
Definition database.
For more information, see "Varying
Length Messages" in Chapter 4.
If the message you are receiving has
a fixed format, then this reason code
probably indicates that the wrong
EIMessage object has been passed on
the ReceiveMessage call. You should
treat this reason code exactly as you
would treat
EIRC_WRONG_MESSAGE, namely
retry the ReceiveMessage call with a
alternative EIMessage object until a
match is made, ensuring that
EIReceiveOptions ReceiveType
property is set to EIRT_RETURN.

258 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_SERVICE_CONTEXT_UNKNOWN
(16053)

A message sent to a service can not
be processed. The service context
information specified by the
EIService ServiceContext property
is not understood by the target
system.
Method/Property:

EIService ReceiveMessage
Action:Ensure that the
ServiceContext property is correct in
the MQEI Service definition in the
MQEI Definition database, or that
your LotusScript program is setting
it correctly. Ensure the service
context information is known on the
system that receives the message.
For a service of type CICS DPL
direct or CICS DPL via MQSeries,
this involves checking that the CICS
transid specified by the
ServiceContext is defined on the
target CICS system.

Chapter 11: Troubleshooting 259

Reason codes 25000 - 45000

ReasonCode Explanation / Action

EIRC_BMS_INVALID_FILENAME
(25001)

When running the BMS map conversion
utility MQEIBMS, the BMS filename
specifed as a parameter did not have a
file extension of .bms
Method/Property

Used by utilities only
Action:Specify a BMS filename with an
extension of .bms when running the
MQEIBMS utility.

EIRC_BMS_NO_FILENAME
(25002)

When running the BMS map conversion
utility MQEIBMS, the BMS filename
parameter was omitted.
Method/Property

Used by utilities only
Action:Specify a BMS filename with an
extension of .bms when running the
MQEIBMS utility.

EIRC_BMS_OPEN_ERROR
(25003)

When running the BMS map conversion
utility MQEIBMS, an error occurred
opening the BMS file specified as a
parameter of the utility.
Method/Property

Used by utilities only
Action:Ensure the file exists in the
correct directory, and that the filename
is spelt correctly when you run the
MQEIBMS utility.

EIRC_BMS_UNNAMED_MESSAGE
(25007)

When running the BMS map conversion
utility MQEIBMS, a BMS map was
encountered that does not have a name.
This is because no label was specified
for the DFHMDI macro for the map in
question. An MQEI Message definition
can not be created as each MQEI
Message definition must have a unique
name, and the name is obtained from
the DFHMDI macro label.
Method/Property:

Used by utilities only
Action:Edit the BMS mapset file, locate
the DFHMDI macro for the map in
question, and supply a label.

260 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_INVALID_DB_TYPE
(41008)

An invalid database type was specified
for either the MQEI Definition database
or the MQEI Security database in the
MQEI initialization file (mqei.ini).
Method/Property:

new EISession
Action:Correct the mqei.ini file, using a
legal value for database type.

EIRC_INVALID_CHARACTER_SET
(41011)

An invalid value was specified for the
system character set in the MQEI
initialization file (mqei.ini) or for the
EIService CharacterSet property.
Method/Property:

new EISession

EISession CreateService
Action:.Ensure a valid value is specified
in the mqei.ini file or in the MQEI
Service definition in the MQEI
Definition database.

EIRC_CONNECTED
(42002)

Warning. An attempt to connect to a
service has been rejected because the
service is already connected. The
connect is ignored and your LotusScript
program continues.
Method/Property:

EIService Connect Method

Action:No action if you intended this to
happen, however you may have a logic
error in your LotusScript program.

Chapter 11: Troubleshooting 261

ReasonCode Explanation / Action

EIRC_NOT_CONNECTED
(42003)

A service is not connected and your
application has tried to send a message,
receive a message, or disconnect from a
service.
Method/Property:

EIService SendMessage

EIService ReceiveMessage

EIService Disconnect
Action:Check your LotusScript
program. An EIService Connect call
must be made and be successful before
your program can send or receive
messages, or disconnect from a service.
It is important to check
CompletionCode and ReasonCode
properties after the Connect call.

EIRC_INVALID_AUTHENTICATOR
(42006)

An invalid value was specified for the
EIService Authenticator property.
Method/Property:

EISession CreateService

EIService Authenticator

Action:Ensure a valid string of the
correct length is specified in the MQEI
Security definition in the MQEI Security
database, or in the LotusScript program.
The maximum length for the EIService
in question is given by the EIService
AuthenticatorLength property.

EIRC_INVALID_USERID
(42007)

An invalid value was specified for the
EIService UserId property.
Method/Property:

EISession CreateService

EIService UserId
Action:Ensure a valid string of the
correct length is specified in the MQEI
Security definition in the MQEI Security
database, or in the LotusScript program.
The maximum length for the EIService
in question is given by the EIService
UserIdLength property.

262 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_INVALID_SYSTEM_NAME
(42016)

An invalid value was specified for the
EIService SystemName property.
Method/Property:

EISession CreateService
Action:Ensure a valid string of the
correct length is specified in the MQEI
Service definition in the MQEI
Definition database. The maximum
length for the EIService in question is
given by the EIService
SystemNameLength property.

EIRC_INVALID_CONN_MANAGER
(42017)

An invalid value was specified for the
EIService ConnectionManager property.
Method/Property:

EISession CreateService
Action:Ensure a valid string of the
correct length is specified in the MQEI
Service definition in the MQEI
Definition database. The maximum
length for the EIService in question is
given by the EIService
ConnectionManagerLength property.

EIRC_DYNAMIC_LOAD_ERROR
(42019)

The MQEI LSX has tried to connect to a
service and been unable to load the
dynamic load library (or shared library)
required to support the type of service.
This error normally occurs due to a
system setup problem (such as default
system search path not being correct) or
by the search path over-ride
environment variable (MQEI_xxx_LIB,
where xxx is MQ,ECI or EPI) having
been incorrectly specified. The
SystemErrorText property of the
EIService will contain details on the
name of the library that could not be
found.
Method/Property:

EIService Connect Method
Action:Ensure that the necessary library
is available either via the normal search
path or via the MQEI_xxx_LIB
environment variable.

Chapter 11: Troubleshooting 263

ReasonCode Explanation / Action

EIRC_FIELD_NOT_FOUND
(43002)

The EIMessage field specified could not
be found.
Method/Property:

All EIMessage methods and properties
Action:Check the name of the
EIMessage field used in your
LotusScript program exists as a Field
definition for the message in the MQEI
Definition database. Check that the
MQEI Message definition has been built.

EIRC_DUPLICATE_FIELD
(43004)

The EIMessage has two fields that have
the same name.
Method/Property:

EISession CreateMessage
Action:Check the MQEI Message
definition. Note that the names of the
fields are case insensitive, e.g."FieldA" is
considered to be the same as "FIELDA".
Rename one of the offending fields.

EIRC_EMPTY_MESSAGE
(43010)

A field in an EIMessage cannot be
accessed because the EIMessage does
not contain any fields.
Method/Property:

All EIMessage methods and properties
Action:Check the FieldCount property
of an EIMessage before accessing the
fields in the message.

EIRC_INVALID_INDEX
(43017)

The index used to reference a field in a
EIMessage is either less than zero or
greater than the number of fields in the
EIMessage.
Method/Property:

EIMessage GetFieldName
Action:Check the FieldCount property
for the EIMessage and use a value in
this range in the GetFieldName call.

264 MQSeries Enterprise Integrator for Lotus Notes User's Guide

ReasonCode Explanation / Action

EIRC_INVALID_MESSAGE_FORMAT
(43021)

The value assigned to the Format
property in the EIMessage object is not
valid.
Method/Property:

EIMessage Format

Action:Ensure that a legal value, or a
user-defined string of not more than 8
characters, is specified in the MQEI
Message definition or in the LotusScript
program.

EIRC_LICENSE_EXPIRED
(99999)

You have an evaluation copy of MQEI
installed, and the evaluation period has
expired.
Method/Property:

new EISession
Action:
Obtain a fully licensed copy of MQEI.

Chapter 11: Troubleshooting 265

266 MQSeries Enterprise Integrator for Lotus Notes User's Guide

Chapter 12 MQEI LSX Reference

This chapter describes the classes of the MQSeries Enterprise Integrator
LotusScript Extension (MQEI LSX), developed for Lotus Notes Release 4.5.
The classes enable you to write Notes applications that can access other
applications running in your non-Notes environments, using MQSeries,
CICS, IMS, or MQSeries.

Constants
All constants used by the MQEI LSX are available to your LotusScript
program, displayed in the browser under Notes:Constants. There are
constants for every MQEI reason code and completion code, and for many
of the legal values of MQEI properties.

All MQEI reason codes start with EIRC_, for example
EIRC_CONNECTION_DOWN.

All MQEI completion codes start with EICC_, for example EICC_OK.

All constants associated with a legal value for a property start with EIx_
where x is a two or three character abbreviation for the property. For
example EIST_MQ, where ST is the abbreviation for ServiceType and in this
case the ServiceType is MQSeries.

Chapter 12: MQEI LSX Reference 267

Parameter passing
Parameters on method invocations are all passed by value, except where
that parameter is an object, in which case it is a reference that is passed.

The class definitions provided list the Data Type for each parameter or
property. If the LotusScript variable used is not of the required type, then
the value will be automatically converted to/from the required type -
providing such a conversion is possible. This follows standard LotusScript
conversion rules.

Many of the methods take fixed length string parameters, or return a fixed
length character string. The conversion rules are as follows:

If your program supplies a fixed length string of the wrong length, as
an input parameter or a return value, then the value is truncated or
padded as required.

If your program supplies a variable length string of the wrong length as
an input parameter, then the value is truncated or padded. Trailing
NULLS are the default padding character, you change it by modifying
the message format in the MQEI Definition database.

If your program supplies a variable length string of the wrong length as
a return value, then the string is adjusted to the required length (since
returning a value destroys the previous value in the string anyway).

Errors
Syntactic errors on parameter passing are detected by LotusScript at
compile time and runtime errors can be trapped using the LotusScript
function "On Error".

The MQEI LSX classes all contain two special read-only properties -
ReasonCode and CompletionCode. These can be read at any time.

An attempt to access any other property, or to issue any method call could
potentially generate an error.

If a property set or method invocation succeeds, the owning object's
ReasonCode and CompletionCode fields are set to EIRC_NONE and
EICC_OK respectively.

If the property access or method invocation does not succeed, appropriate
error or warning codes are set in these fields.

For more information, see "Error handling" in Chapter 4.

268 MQSeries Enterprise Integrator for Lotus Notes User's Guide

EISession Class

This is the root class for the MQEI LSX.

There must always be one and only one EISession object per LotusScript
instance. If you attempt to create another EISession object, you are returned
a reference to the original object. If you delete the EISession, the reference to
the object is deleted and you have no further access to it. However, the
object persists, so if you need to access it again, create a new object
reference.

If you are using multi-threaded Domino Web agents, however, a new
EISession object is created for each new thread.

The EISession object controls access to all the MQEI resources. It is
responsible for access to, and creation of the objects that are created by the
LotusScript instance:

 EIService

 EIMessage

 EIReceiveOptions

 EISendOptions

The EISession object is also responsible for opening and closing the MQEI
Definition database and the MQEI Security database.

When creating an EIService or EIMessage object, that object is 'tied' to the
corresponding enterprise service or message format definition on the MQEI
Definition database. This definition is used to initialize the properties of
that object with default values, some of which may be later overridden in a
LotusScript program.

The EISession reads an initialization file (mqei.ini) which must be present.
This is a simple text file that contains environment specific information such
as the name of the MQEI Definition database. The EISession finds the path
of the initialization file from the environment variable MQEI_INI_PATH.

Chapter 12: EISession Class 269

Properties:
CharacterSet property

CompletionCode property

DefinitionDBName property

PrimarySystemErrorCode property

ReasonCode property

SecondarySystemErrorCode property

SecurityDBName property

SystemErrorText property

Methods:
ClearErrorCodes method

CreateMessage method

CreateReceiveOptions method

CreateSendOptions method

CreateService method

LotusScript Events:
 EIError

 EIWarning

Creation:
New - creates a new EISession object reference.

270 MQSeries Enterprise Integrator for Lotus Notes User Guide

Reason codes:
EIRC_INVALID_DB_NAME

EIRC_DEFN_DB_SYSERROR

EIRC_NOT_SUPPORTED

EIRC_INI_OPEN_ERROR

EIRC_INI_SECTION_NOT_FOUND

EIRC_INI_KEYWORD_NOT_FOUND

EIRC_INI_VALUE_NOT_SPECIFIED

EIRC_DEFN_DB_UNKNOWN

EIRC_DEFN_DB_SECURITY_FAILURE

EIRC_SEC_DB_SYSERROR

EIRC_SEC_DB_UNKNOWN

EIRC_SEC_DB_SECURITY_FAILURE

EIRC_INVALID_DB_TYPE

EIRC_INVALID_ENCODING

EIRC_INVALID_CHARACTER_SET

Syntax:
Dim eisess As New EISession or

Set eisess = New EISession

Chapter 12: EISession Class 271

CharacterSet Property
Read-only. Specifies the character set (code page) of the local system on
which the MQEI LSX is running. The MQEI LSX automatically converts
character data to, or from, the indicated setting when data is received from,
or sent to, the enterprise service. The value is set from the mqei.ini file
when the EISession object is created.

Defined in:
EISession Class

Data Type:
Long

Syntax:
To get: characterset& = EISession.CharacterSet

CompletionCode Property
Read-only. Returns the MQEI LSX completion code set by the most recent
method or property access issued against the object. It is reset to EICC_OK
when a call, other than a property Get, is made successfully against the
object, or when the ClearErrorCodes method is called.

Defined in:
EISession Class

Data Type:
Long

Legal Values:
 EICC_OK

 EICC_WARNING

 EICC_FAILED

Syntax:
To get: completioncode& = EISession.CompletionCode

272 MQSeries Enterprise Integrator for Lotus Notes User Guide

DefinitionDBName Property
Read-only. Returns the name of the MQEI Definition database. The value
for this property is obtained from the mqei.ini file.

Defined in:
EISession Class

Data Type:
String of 48 characters

Syntax:
To get: definitiondbname$ = EISession.DefinitionDBName

PrimarySystemErrorCode Property
Read-only. Returns any primary external error code set by the most recent
method or property access issued against the object. It has a meaning only
when the CompletionCode property is set to EICC_FAILED and the
ReasonCode property is set to EIRC_DEFN_DB_SYSERROR or
EIRC_SEC_DB_SYSERROR, indicating an error occurred accessing the
MQEI Definition database or MQEI Security database.

An example of a PrimarySystemErrorCode is a Notes C API error code.

Defined in:
EISession Class

Data Type:
Long

Legal Values:
Refer to the appropriate Notes documentation, but note that a text
description may also be held in the SystemErrorText property .

Syntax:
To get: primarysystemerrorcode& = EISession.PrimarySystemErrorCode

Chapter 12: EISession Class 273

ReasonCode Property
Read-only. Returns the MQEI LSX reason code set by the most recent
method or property access issued against the object. It is reset to
EIRC_NONE when a call, other than a property Get, is made successfully
against the object, or when the ClearErrorCodes Method is called.

Defined in:
EISession Class

Data Type:
Long

Legal Values:
See the list of possible reason codes listed under Reason Codes in Chapter
11.

Syntax:
To get: reasoncode& = EISession.ReasonCode

SecondarySystemErrorCode Property
Read-only. Returns any secondary enterprise system error code set by the
most recent method or property access issued against any MQEI LSX
object. It has a meaning only when the PrimarySystemErrorCode property
is such that a secondary error code is relevant.

Defined in:
EISession Class

Data Type:
Long

Legal Values:
Refer to the appropriate Notes documentation.

Syntax:
To get: secondarysystemerrorcode& = EISession.SecondarySystemErrorCode

274 MQSeries Enterprise Integrator for Lotus Notes User Guide

SecurityDBName Property
Read-only. Returns the name of the MQEI Security database. The value for
this property is obtained from the mqei.ini file.

Defined in:
EISession Class

Data Type:
String of 48 characters

Syntax:
To get: securitydbname$ = EISession.SecurityDBName

SystemErrorText Property
Read-only. Returns any explanatory error text set by the most recent
method or property access issued against the object. It has a meaning only
when the CompletionCode property is set to EICC_FAILED and the
ReasonCode property is set to EIRC_DEFN_DB_SYSERROR or
EIRC_SEC_DB_SYSERROR, indicating an error occurred accessing the
MQEI Definition database or MQEI Security database.

Defined in:
EISession Class

Data Type:
String of varying length

Syntax:
To get: systemerrortext$ = EISession.SystemErrorText

ClearErrorCodes Method
Resets CompletionCode property to EICC_OK, ReasonCode property to
EIRC_NONE, and PrimarySystemErrorCode property and
SecondarySystemErrorCode property to zero, and clears SystemErrorText
property.

Defined in:
EISession Class

Syntax:
Call EISession.ClearErrorCodes

Chapter 12: EISession Class 275

CreateMessage Method
Creates a new EIMessage object based on an MQEI Message definition on
the MQEI Definition database. This is the only means by which an
EIMessage object can be created.

If the named definition cannot be found or there is an error reading the
MQEI Definition database, or there is insufficient memory, the object is not
created and ReasonCode and CompletionCode are set.

Note Events are only raised if you have an event handler registered.

Defined in:
EISession Class

Syntax:
Set message = EISession.CreateMessage(name$)

Parameter:
name$ String. The name of the message on the MQEI Definition database.

Reason codes:
EIRC_INVALID_FIELD_NAME

EIRC_INVALID_OBJECT_NAME

EIRC_INVALID_LENGTH

EIRC_DEFN_NOT_FOUND

EIRC_INVALID_DEFN_VALUE

EIRC_DEFN_DB_NOT_OPEN

EIRC_DEFN_DB_SYSERROR

EIRC_DEFN_PROPERTY_NOT_FOUND

EIRC_INVALID_HAS_ATTRIBUTES

EIRC_INVALID_PAD_CHARACTER

EIRC_DUPLICATE_FIELD

276 MQSeries Enterprise Integrator for Lotus Notes User Guide

CreateReceiveOptions Method
Creates a new EIReceiveOptions object and fills it with default values. This
is the only means by which an EIReceiveOptions object can be created.

If there is a problem, an event is raised, the ReasonCode and
CompletionCode are set and the object is not created.

Note Events are only raised if you have an event handler registered.

Defined in:
EISession Class

Syntax:
Set rcvoptions = EISession.CreateReceiveOptions

CreateSendOptions Method
Creates a new EISendOptions object and fills it with default values. This is
the only means by which an EISendOptions object can be created.

If there is a problem, an error event is raised, the ReasonCode and
CompletionCode are set and the object is not created.

Note Events are only raised if you have an event handler registered.

Defined in:
EISession Class

Syntax:
Set sendoptions = EISession.CreateSendOptions

Chapter 12: EISession Class 277

CreateService Method
Creates a new EIService object based on an MQEI Service definition on the
MQEI Definition database and, if one is being used, accesses the MQEI
Security database to obtain any userid and authenticator for the target
service.

This is the only means by which an EIService object can be created.

If the named definition can not be found or there is an error reading the
MQEI Definition database, or there is insufficient memory, an error event is
raised, the object is not created and ReasonCode and CompletionCode are
set.

Note Events are only raised if you have an event handler registered.

Defined in:
EISession Class

Syntax:
Set service = EISession.CreateService(name$)

Parameter:
name$ String. The name of the enterprise service on the MQEI Definition
database.

Reason codes:
EIRC_DEFN_NOT_FOUND

EIRC_INVALID_DEFN_VALUE

EIRC_DEFN_DB_NOT_OPEN

EIRC_INVALID_CONNECTION

EIRC_DEFN_DB_SYSERROR

EIRC_DUPLICATE_DEFN

EIRC_INVALID_SERVICE_STEP

EIRC_DEFN_PROPERTY_NOT_FOUND

EIRC_DEFN_DB_SECURITY_FAILURE

EIRC_SEC_DB_NOT_OPEN

EIRC_SEC_DB_SYSERROR

EIRC_SEC_DB_SECURITY_FAILURE

EIRC_INVALID_ENCODING

EIRC_INVALID_CHARACTER_SET

278 MQSeries Enterprise Integrator for Lotus Notes User Guide

EIRC_INVALID_SERVICE_TYPE

EIRC_INVALID_AUTHENTICATOR

EIRC_INVALID_USERID

EIRC_INVALID_SYSTEM_NAME

EIRC_INVALID_CONN_MANAGER

Chapter 12: EISession Class 279

EIService Class

This represents an enterprise service to which messages will be sent and
received.

An EIService allows your LotusScript program to communicate with a
non-Notes application or service residing on the same or a remote server.
The EIService provides a common API regardless of the nature of the
enterprise service involved.
An enterprise service can be:

Native MQSeries

IMS via MQSeries (using the MQSeries IMS bridge)

CICS DPL via MQSeries (using the MQSeries-CICS/ESA DPL bridge)

CICS DPL direct via CICS client

CICS 3270 direct via CICS client

An instance of an EIService corresponds to a single enterprise service,
however, a single service can consist of several programs or transactions.
The EIService is responsible for:

Establishing the connection to the enterprise system on which the
service resides

Performing any necessary authentication if supported

Transmitting EIMessage objects of the appropriate format and receiving
any replies

Performing any data conversion

Closing the connection

There is no limit on the number of messages that can be transmitted, this
depends entirely on the enterprise service.

Your LotusScript program controls how the EIMessage is sent and received
by using the EISendOptions Class and the EIReceiveOptions Class.

The EIService, EISendOptions and EIReceiveOptions classes provide the
transmission functionality of the MQEI API.

An EIService can only be created via the CreateService method of the
EISession object. This reads the MQEI Definition database which provides
the corresponding enterprise service definition that is used to assign values
to the EIService properties. You can override some of these properties at
run-time.

280 MQSeries Enterprise Integrator for Lotus Notes User Guide

Properties:
AbendCode property

Authenticator property

AuthenticatorLength property

CharacterSet property

CompletionCode property

ConnectionLength property

ConnectionManager property

ConnectionManagerLength property

IdentifierLength property

InboundConnection property

MaxPriority property

Name property

OutboundConnection property

PrimarySystemErrorCode property

ReasonCode property

SecondarySystemErrorCode property

ServiceStep property

ServiceStepLength property

ServiceType property

SystemErrorText property

SystemName property

SystemNameLength property

UserId property

UserIdLength property

Methods:
ClearErrorCodes method

Connect method

Disconnect method

ReceiveMessage method

SendMessage method

Chapter 12: EIService Class 281

LotusScript Events:
EIError

EIWarning

Creation:
Use the CreateService method from the EISession class.

Property Access:
When assigning values to properties, errors can occur. These cause an error
event to be raised if an event handler has been registered, the
CompletionCode property to be set to EICC_FAILED and an appropriate
value to be set in the ReasonCode property for the EIService object.

282 MQSeries Enterprise Integrator for Lotus Notes User Guide

AbendCode Property
Read-only. Returns the enterprise service abend code set by the most recent
method access issued against the object. It has a meaning only when the
CompletionCode property is set to EICC_FAILED and the ReasonCode
property is set to EIRC_SERVICE_SYSABEND, indicating an error occurred
communicating with the target enterprise service such that the executable
step abended.

An example of an AbendCode is a CICS transaction abend code, such as
'ASRA'.

Defined in:
EIService Class

Data Type:
String of maximum 4 characters

Legal Values:
Refer to the appropriate product documentation for the enterprise system
on which the error occurred.

Syntax:
To get: abendcode$ = EIService.AbendCode

Chapter 12: EIService Class 283

Authenticator Property
Write-only. Specifies the password or ticket for the userid given by the
UserId property. Its value is set from the MQEI Security definition for the
enterprise system, if a definition is available, when the EIService object is
created.

The value may be overwritten by a LotusScript program, either by
prompting the person running the application or by information from some
other source.

Any attempt to read the contents of this property returns the value
EIAUT_HIDDEN.

An example of an authenticator is a CICS or an IMS password.

Defined in:
EIService Class

Data Type:
String of varying length, maximum length given by the
AuthenticatorLength property .

Syntax:
To set: EIService.Authenticator = authenticator$

Reason codes:
EIRC_INVALID_AUTHENTICATOR

AuthenticatorLength Property
Read-only. Specifies the maximum length allowable for the Authenticator
property, if this property is relevant to the type of enterprise service,
otherwise EIAL_NOT_APPLICABLE.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: authenticatorlength& = EIService.AuthenticatorLength

284 MQSeries Enterprise Integrator for Lotus Notes User Guide

CharacterSet Property
Read-only. Specifies the character set (code page number) in which
character data is passed to the enterprise service. The MQEI LSX
automatically converts character data to the indicated setting when data is
sent to the enterprise service. When data is received from the enterprise
service, the MQEI LSX automatically converts character data from the
indicated setting if the received message does not contain its own character
set. If it does, its own character set is used.

The value is set from the MQEI Definition database when the EIService is
created.

Note No character set conversion is performed if ServiceType is CICS
3270 direct as this is done automatically by CICS.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: characterset& = EIService.CharacterSet

CompletionCode Property
Read-only. Returns the MQEI LSX completion code set by the most recent
method or property access issued against the object. It is reset to EICC_OK
when a call, other than a property Get, is made successfully against the
object, or when the ClearErrorCodes method is called.

Defined in:
EIService Class

Data Type:
Long

Legal Values:
 EICC_OK

 EICC_WARNING

 EICC_FAILED

Syntax:
To get: completioncode& = EIService.CompletionCode

Chapter 12: EIService Class 285

ConnectionLength Property
Read-only. Specifies the maximum length allowable for both the
InboundConnection property and OutboundConnection property, if one or
both of these properties are relevant to the type of enterprise service, or
EICL_NOT_APPLICABLE otherwise.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: connectionlength& = EIService.ConnectionLength

ConnectionManager Property
Read-only. Specifies the name of the connection manager being used to
communicate with the enterprise service. This value is set from the MQEI
Definition database when the EIService is created. If this property is not
relevant to the enterprise service, or a default connection manager is being
used, its value is EICM_NOT_APPLICABLE.

An example of a ConnectionManager is an MQSeries queue manager or the
name of a CICS server as known by a CICS client.

Defined in:
EIService Class

Data Type:
String of varying length, maximum length given by the
ConnectionManagerLength property

Syntax:
To get: connectionmanager$ = EIService.ConnectionManager

286 MQSeries Enterprise Integrator for Lotus Notes User Guide

ConnectionManagerLength Property
Read-only. Specifies the maximum length allowable for the
ConnectionManager property, if that property is relevant to the type of
enterprise service, or EICML_NOT_APPLICABLE otherwise.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: connectionmanagerlength& = EIService.ConnectionManagerLength

IdentifierLength Property
Read-only. Specifies the maximum length allowable for the Identifier
property of the EISendOptions class and for the Identifier property of the
EIReceiveOptions class, if the property is relevant to the type of enterprise
service, or EIIL_NOT_APPLICABLE otherwise.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: identifierlength& = EIService.IdentifierLength

Chapter 12: EIService Class 287

InboundConnection Property
Read-only. Specifies the name of the connection being used for transmission
of inbound messages, that is, from the enterprise service. This value is set
from the MQEI Definition database when the EIService is created. If this
property is not relevant to the enterprise service then its value is
EIIC_NOT_APPLICABLE.

An example of an InboundConnection is an MQSeries reply queue.

Defined in:
EIService Class

Data Type:
String of varying length, maximum length given by the ConnectionLength
property

Syntax:
To get: inboundconnection$ = EIService.InboundConnection

MaxPriority Property
Read-only. Specifies the maximum value allowable for the Priority property
of the EISendOptions class, if this property is relevant to the type of
enterprise service, or EIMP_NOT_APPLICABLE otherwise.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: maxpriority& = EIService.MaxPriority

288 MQSeries Enterprise Integrator for Lotus Notes User Guide

Name Property
Read-only. Returns the name of the enterprise service on the MQEI
Definition database that the object represents.

Defined in:
EIService Class

Data Type:
String of maximum 16 characters

Syntax:
To get: name$ = EIService.Name

OutboundConnection Property
Read-only. Specifies the name of the connection being used for transmission
of outbound messages, that is, to the enterprise service. This value is set
from the MQEI Definition database when the EIService is created. If this
property is not relevant to the enterprise service, or a default connection is
being used, its value is EIOC_NOT_APPLICABLE.

An example of an OutboundConnection is an MQSeries application queue,
or a CICS 3270 terminal model name.

Defined in:
EIService Class

Data Type:
String of varying length, maximum length given by the ConnectionLength
property

Syntax:
To get: outboundconnection$ = EIService.OutboundConnection

Chapter 12: EIService Class 289

PrimarySystemErrorCode Property
Read-only. Returns any primary enterprise system error code set by the
most recent method or property access issued against the object. It has a
meaning only when the CompletionCode property is set to EICC_FAILED
and the ReasonCode property is set to EIRC_SERVICE_SYSERROR,
indicating an error occurred communicating with the target enterprise
service.

An example of a PrimarySystemErrorCode is an MQSeries reason code, a
CICS ECI or EPI return code, an MQSeries IMS bridge feedback code, or an
MQSeries CICS/ESA DPL bridge return code.

Defined in:
EIService Class

Data Type:
Long

Legal Values:
Refer to the appropriate product documentation for the enterprise system
on which the error occurred.

Syntax:
To get: primarysystemerrorcode& = EIService.PrimarySystemErrorCode

ReasonCode Property
Read-only. Returns the MQEI LSX reason code set by the most recent
method or property access issued against the object. It is reset to
EIRC_NONE when a call, other than a property Get, is made successfully
against the object, or when the ClearErrorCodes Method is called.

Defined in:
EIService Class

Data Type:
Long

Legal Values:
See the list of possible reason codes listed under Reason codes in Chapter 11.

Syntax:
To get: reasoncode& = EIService.ReasonCode

290 MQSeries Enterprise Integrator for Lotus Notes User Guide

SecondarySystemErrorCode Property
Read-only. Returns any secondary enterprise system error code set by the
most recent method or property access issued against the object. It has a
meaning only when the PrimarySystemErrorCode property is such that a
secondary error code is relevant.

An example of a SecondarySystemErrorCode is a CICS ECI system return
code, a CICS EPI system error cause value, an MQSeries reason code, an
MQSeries CICS/ESA DPL bridge feedback code, or a CICS DFHRESP code.

Defined in:
EIService Class

Data Type:
Long

Legal Values:
Refer to the appropriate product documentation for the enterprise system
on which the error occurred.

Syntax:
To get: secondarysystemerrorcode& = EIService.SecondarySystemErrorCode

Chapter 12: EIService Class 291

ServiceStep Property
Read-write. Specifies the name of the next executable step of the enterprise
service, as known by the enterprise system. The value of the first step is set
from the MQEI Definition database when the EIService is created. If the
enterprise service comprises several such steps, this property must be
updated within your LotusScript program before each SendMessage
method call. If this property is not relevant to the enterprise service then its
value is EISS_NOT_APPLICABLE.

An example of a ServiceStep is an IMS trancode, a CICS program name, or
a CICS 3270 transid.

Defined in:
EIService Class

Data Type:
String of varying length, maximum length given by the ServiceStepLength
property

Syntax:
To get: servicestep$ = EIService.ServiceStep

To set: EIService.ServiceStep = servicestep$

Reason codes:
EIRC_INVALID_SERVICE_STEP

292 MQSeries Enterprise Integrator for Lotus Notes User Guide

ServiceContext Property
Read-write. Specifies, for the next executable step of the enterprise service,
the name of any context that the service step will execute with. The value of
the first service context is set from the Definition Database when the
EIService is created. If the enterprise service comprises several service
steps, and each service step requires a different service context, this
property must be updated before each SendMessage method call. This is
the responsibility of the programmer. If this property is not relevant to the
type of enterprise service, or no context is being used, then its value is
EISC_NOT_APPLICABLE.

An example of a service context is the CICS transid assigned to a
transaction running a CICS DPL program. In this case the ServiceStep is the
CICS DPL program name, and the ServiceContext is the CICS transid.
Another example of a service context is the name of a logical terminal
(LTERM) passed to an IMS transaction.

Defined in:
EIService Class

Data Type:
String of varying length, maximum length given by the
ServiceContextLength property

Syntax:
To get: servicecontext$ = EIService.ServiceContext

To set: EIService.ServiceContext = servicecontext$

ServiceContextLength Property
Read-only. Specifies the maximum length allowable for the ServiceContext
property, if that property is relevant to the type of enterprise service, or
EISCL_NOT_APPLICABLE otherwise.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: servicecontextlength& = EIService.ServiceContextLength

Chapter 12: EIService Class 293

ServiceStepLength Property
Read-only. Specifies the maximum length allowable for the ServiceStep
property , if that property is relevant to the type of enterprise service, or
EISSL_NOT_APPLICABLE otherwise.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: servicesteplength& = EIService.ServiceStepLength

ServiceType Property
Read-only. Specifies the type or style of enterprise service that this
EIService represents. This value is set from the MQEI Definition database
when the EIService is created.

Defined in:
EIService Class

Data Type:
Long

Legal Values:
 EIST_MQ

 EIST_IMS_VIA_MQ

 EIST_CICS_DPL_VIA_MQ

 EIST_CICS_DPL_DIRECT

 EIST_CICS_3270_DIRECT

Syntax:
To get: servicetype& = EIService.ServiceType

294 MQSeries Enterprise Integrator for Lotus Notes User Guide

SystemErrorText Property
Read-only. Returns any explanatory error text set by the most recent
method or property access issued against the object. It has a meaning only
when the CompletionCode property is set to EICC_FAILED and the
ReasonCode property is set to EIRC_SERVICE_SYSERROR or
EIRC_DYNAMIC_LOAD_ERROR, indicating an error occurred
communicating with the target enterprise service.

Defined in:
EIService Class

Data Type:
String of varying length

Syntax:
To get: systemerrortext$ = EISession.SystemErrorText

SystemName Property
Read-only. Specifies the name of the enterprise system upon which the
enterprise service resides and upon which authentication takes place.

This property is used solely to locate an MQEI Security definition in the
MQEI Security database. Its value is set from the MQEI Definition database
when the EIService is created. If this property is not relevant to the
enterprise service then its value is EISN_NOT_APPLICABLE.

Note The SystemName is used as the key to access the MQEI Security
database when the EIService is created in order to obtain any enterprise
userid and authenticator for the user of the service.
You are recommended to use a system name that is understood by those
who need to use it.

An example of a SystemName for CICS is a system name, applid or sysid.
An example of a SystemName for IMS is an applid.

Defined in:
EIService Class

Data Type:
String of any 8 characters.

Syntax:
To get: systemname$ = EIService.SystemName

Chapter 12: EIService Class 295

SystemNameLength Property
Read-only. Specifies the maximum length allowable for the SystemName
property, if that property is relevant to the type of enterprise service, or
EISNL_NOT_APPLICABLE otherwise. It is currently always set to 8.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: systemnamelength& = EIService.SystemNameLength

296 MQSeries Enterprise Integrator for Lotus Notes User Guide

UserId Property
Read-Write. Specifies the userid of the user as known by the enterprise
system on which the enterprise service resides.

Its value is set from the MQEI Security definition for the enterprise system
to which the connection is to be made, if a definition is available, when the
EIService object is created. The authenticator associated with the userid is
also held on the MQEI Security database.

If there is no MQEI Security definition, or no MQEI Security database is
being used, the value is EIUI_NOT_APPLICABLE.

The value may be overwritten by a LotusScript program either by
prompting the person running the application or by information from some
other source.

If the value is not EIUI_NOT_APPLICABLE, the userid and associated
authenticator are flowed along with the message by the SendMessage
method when appropriate.

An example of a UserId is an IMS userid or a CICS userid.

Defined in:
EIService Class

Data Type:
String of varying length, maximum length given by the UserIdLength
property

Syntax:
To get: userid$ = EIService.UserId

To set: EIService.UserId = userid$

Reason codes:
EIRC_INVALID_USER_ID

Chapter 12: EIService Class 297

UserIdLength Property
Read-only. Specifies the maximum length allowable for the UserId
property, if that property is relevant to the type of enterprise service, or
EIUIL_NOT_APPLICABLE otherwise.

Defined in:
EIService Class

Data Type:
Long

Syntax:
To get: useridlength& = EIService.UserIdLength

ClearErrorCodes Method
Resets CompletionCode property to EICC_OK, ReasonCode property to
EIRC_NONE, and PrimarySystemErrorCode property and
SecondarySystemErrorCode property to zero, and clears SystemErrorText
property for this object only.

Defined in:
EIService Class

Syntax:
Call EIService.ClearErrorCodes

298 MQSeries Enterprise Integrator for Lotus Notes User Guide

Connect Method
The Connect method makes a connection to the target enterprise system via
the specified connection manager. Exactly what takes place depends on the
enterprise service. Any required inbound and outbound connection
resources are opened.

This method must succeed before the SendMessage method and
ReceiveMessage method can be called.

If there is an error establishing the connection an error event is raised, and
ReasonCode and CompletionCode are set.

If the Connect method has already been called, a warning event is raised,
and ReasonCode and CompletionCode are set.

Note Events are only raised if you have an event handler registered.

Defined in:
EIService Class

Syntax:
Call EIService.Connect

Reason codes:
EIRC_CONN_MANAGER_UNAVAILABLE

EIRC_CONN_MANAGER_UNKNOWN

EIRC_CONNECTED

EIRC_CONNECTION_UNKNOWN

EIRC_DYNAMIC_LOAD_ERROR

EIRC_NOT_SUPPORTED

EIRC_SERVICE_SECURITY_FAILURE

EIRC_SERVICE_SYERROR

Chapter 12: EIService Class 299

Disconnect Method
The Disconnect method destroys the connection to the enterprise service.
This involves disconnecting from the connection manager, and closing any
connection resources.

If there is an error destroying the connection or the Connect method has not
yet been called, an error event is raised, and the ReasonCode and
CompletionCode are set for this object .

Note Events are only raised if you have an event handler registered.

Defined in:
EIService Class

Syntax:
Call EIService.Disconnect

Reason codes:
EIRC_CALL_SEQUENCE_ERROR

EIRC_CONNECTION_DOWN

EIRC_NOT_CONNECTED

EIRC_SERVICE_SYERROR

300 MQSeries Enterprise Integrator for Lotus Notes User Guide

ReceiveMessage Method
The ReceiveMessage method receives and returns a message, described by
the EIMessage parameter, from the enterprise service. The
EIReceiveOptions parameter controls exactly how the message is received
and returned. If no rcvoptions are included in the call to this method, the
default values are used.

The ReceiveMessage method can also be used when you do not want any
user data returned to the program by using the reserved keyword Nothing
instead of the message object reference. This is useful when receiving the
reply from a service that contains no user application data, such as a CICS
DPL commit or backout call, or when the contents of the received message
are not of any interest.

An error event is raised and ReasonCode and CompletionCode are set for
this object if there is an error receiving the message, the Connect method
has not yet been called, the EIMessage parameter does not match the
message data, or there is a data conversion problem.

If the ReceiveMessage method timed out or no message was available, a
warning event is raised, and ReasonCode and CompletionCode are set for
this object.

Note Events are only raised if you have an event handler registered.

Defined in:
EIService Class

Syntax:
Call EIService.ReceiveMessage(message, rcvoptions)

Call EIService.ReceiveMessage(message)

Call EIService.ReceiveMessage(Nothing, rcvoptions)

Call EIService.ReceiveMessage(Nothing)

Call EIService.ReceiveMessage()

Parameters:
message Optional. Object reference. The EIMessage to receive.

Nothing Optional. Null object reference. Used when no message is to be
returned.

rcvoptions Optional. Object reference. The EIReceiveOptions to control
how the message is received.

Chapter 12: EIService Class 301

Reason codes:
EIRC_CALL_SEQUENCE_ERROR

EIRC_CONNECTION_DOWN

EIRC_DATA_CONVERSION_ERROR

EIRC_INSUFFICIENT_DATA

EIRC_INVALID_DATATYPE

EIRC_INVALID_IDENTIFIER

EIRC_INVALID_PRIORITY

EIRC_INVALID_RECEIVE_TYPE

EIRC_INVALID_WAIT_INTERVAL

EIRC_INVALID_WAIT_TYPE

EIRC_NO_MESSAGE_AVAILABLE

EIRC_NOT_CONNECTED

EIRC_NOT_SUPPORTED

EIRC_NOT_SUPPORTED

EIRC_SERVICE_STEP_UNKNOWN

EIRC_SERVICE_SYSABEND

EIRC_SERVICE_SYSERROR

EIRC_UNRECOGNIZED

EIRC_UOW_IN_DOUBT

EIRC_UOW_ROLLED_BACK

EIRC_WRONG_DATA_CONVERSION

EIRC_WRONG_IDENTIFIER

EIRC_WRONG_MESSAGE

302 MQSeries Enterprise Integrator for Lotus Notes User Guide

SendMessage Method
The SendMessage method sends a message, described by the EIMessage
parameter, to the enterprise service. The EISendOptions parameter controls
exactly how the message is delivered. If no sendoptions are included in the
call to this method, the default values are used.

The SendMessage method can also be used when you do not want to send
any user data by using the reserved keyword Nothing instead of the
message object reference. This is useful for sending a message that contains
no user application data, such as a CICS DPL commit or backout call, or a
CICS 3270 start transaction call with no start data, for example.

If there is an error sending the message, or the Connect method has not yet
been called, or there is a data conversion problem, or there is a conflict of
send options, an error event is raised, and ReasonCode and
CompletionCode are set for this object.

Note Events are only raised if you have an event handler registered.

Defined in:
EIService Class

Syntax:
Call EIService.SendMessage(message, sendoptions)

Call EIService.SendMessage(message)

Call EIService.SendMessage(Nothing, sendoptions)

Call EIService.SendMessage(Nothing)

Call EIService.SendMessage()

Parameters:
message Optional. Object reference. The EIMessage to send.

Nothing Optional. Null object reference. Used when no user data is to
be sent.

sendoptions Optional. Object reference. The EISendOptions to control how
the message is sent.

Chapter 12: EIService Class 303

Reason codes:
EIRC_CALL_SEQUENCE_ERROR

EIRC_CONNECTION_DOWN

EIRC_DATA_CONVERSION_ERROR

EIRC_INVALID_ATTENTION_ID

EIRC_INVALID_DATATYPE

EIRC_INVALID_IDENTIFIER

EIRC_INVALID_MESSAGE_TYPE

EIRC_INVALID_SELECTED_FIELD

EIRC_INVALID_UOW

EIRC_MESSAGE_TOO_LONG

EIRC_NOT_CONNECTED

EIRC_PROTECTED_FIELD

EIRC_SERVICE_SECURITY_FAILURE

EIRC_SERVICE_SYSERROR

EIRC_WRONG_IDENTIFIER

EIRC_WRONG_MESSAGE_SENT

304 MQSeries Enterprise Integrator for Lotus Notes User Guide

EIMessage Class

An EIMessage object represents the message that you send to an enterprise
service, or receive from an enterprise service.

The EIMessage object allows your LotusScript program to build and
interpret the message on a field by field basis using field names. An
EIMessage object contains only user application data, not message headers
such as those required by MQSeries bridges, and as such are enterprise
service independent. This means, for example, that a given EIMessage
object could represent a message that is sent to more than one enterprise
service, assuming that the format of the user application data is the same.

An EIMessage might correspond to one of the following:

 MQSeries message data

 CICS DPL commarea

 CICS 3270 BMS map

 IMS transaction data

Each field in the message is represented by a property of the EIMessage
object, and may be accessed or assigned as follows:

 msg1.my_address="Home Farm"

 customer_address$=msg1.my_address

Your LotusScript program is unaware of the offset of the field in the actual
message as each field is accessed by name. When an EIMessage object is
initialized, it is dynamically mapped to the corresponding message format.
When your program references a field by name for the first time, the
EIMessage object registers the field name as a property of the object. The
property can then be examined or set in the normal manner.

If you do not know the name of the field you need to access, but you do
know its position in the message, you can use the GetFieldName method of
this class to extract the name of the field at the specified position prior to
accessing the field by name.

 Chapter 12: EIMessage Class 305

Properties:
CompletionCode Property

FieldCount property

Format property

Name property

ReasonCode property

Methods:
ClearErrorCodes method

GetColor method

GetDataType method

GetFieldName method

GetFieldValue method

GetHighLight method

GetIntensity method

GetLength method

GetProtection method

GetSegment method

SetFieldValue method

LotusScript Events:
 EIError

 EIWarning

Creation:
Use the CreateMessage method from the EISession class.

306 MQSeries Enterprise Integrator for Lotus Notes User Guide

Property Access:
As well as the properties listed , each user-defined field in the message is a
LotusScript expanded property. You access and assign values to these in
the same way as normal properties.
For example, a field called Person representing a person's name:

To get: person$ = EIMessage.Person or
person$=EIMessage.GetFieldValue("Person")

To set: EIMessage.Person = person$ or Call
EIMessage.SetFieldValue("Person",person$)

Further, attributes of the field may be accessed (but not assigned).
For example, the data type attribute of the Person field, would be accessed
as follows:

datatype% = EIMessage.GetDataType("Person")

The supported field attributes are:

 DataType

 Length

 Color

 Intensity

 HighLight

 Protection

 Segment

When accessing or assigning values to properties, errors can occur. If
appropriate event handlers are registered, an event is raised, the
CompletionCode property is set to EICC_FAILED and an appropriate value
is set in the ReasonCode property for the EIMessage object.

An attempt to read a field of data type EIDT_AUTHENTICATOR or
EIDT_SYSTEM_AUTHENTICATOR, meaning that the field contains a
password, will return the value EIAUT_HIDDEN.

An attempt to assign a value to a field of data type
EIDT_SYSTEM_AUTHENTICATOR will fail with reason code
EIRC_PROTECTED_FIELD and completion code of EICC_FAILED as a
field of this type is automatically set from the authenticator that is
extracted from the EIService object Authenticator property.

An attempt to assign a value to a field of data type
EIDT_AUTHENTICATOR will succeed. You are responsible for the value
put in any field of type EIDT_AUTHENTICATOR.

 Chapter 12: EIMessage Class 307

CompletionCode Property
Read-only. Returns the MQEI LSX completion code set by the most recent
method or property access issued against the object. It is reset to EICC_OK
when a call, other than a property Get, is made successfully against the
object, or when the ClearErrorCodes method is called.

Defined in:
EIMessage Class

Data Type:
Long

Legal Values:
 EICC_OK

 EICC_WARNING

 EICC_FAILED

Syntax:
To get: completioncode& = EIMessage.CompletionCode

FieldCount Property
Read-only. Returns the number of fields in the EIMessage object. For a
named EIMessage this value is set from the MQEI Definition database when
the EIMessage object is created.

Defined in:
EIMessage Class

Data Type:
Long

Syntax:
To get: count& = EIMessage.FieldCount

308 MQSeries Enterprise Integrator for Lotus Notes User Guide

Format Property
Read-write. This is used to indicate the format of the data within the
message to be sent. It is of use to enterprise services that can process
messages of different formats and need to understand the format that has
been sent to them.
The initial value of this property is EIFMT_NONE.

An example of a Format is an MQSeries message format, or an IMS MID or
MOD name.

Defined in:
EIMessage Class

Data Type:
String of 8 characters

Legal Values:
EIFMT_NONE meaning no format.

EIFMT_STRING meaning the message data is entirely characters.

User-defined, allowable characters A-Z, a-z, 0-9, _ (underscore)

Syntax:
To get: format$ = EIMessage.Format

To set: EIMessage.Format = format$

Reason codes:
EIRC_INVALID_MESSAGE_FORMAT

Name Property
Read-only. Returns the name of the message on the MQEI Definition
database that the object represents.

Defined in:
EIMessage Class

Data Type:
String of 16 characters

Syntax:
To get: name$ = EIMessage.Name

 Chapter 12: EIMessage Class 309

ReasonCode Property
Read-only. Returns the MQEI LSX reason code set by the most recent
method or property access issued against the object. It is reset to
EIRC_NONE when a call, other than a property Get, is made successfully
against the object, or when the ClearErrorCodes method is called.

Defined in:
EIMessage Class

Data Type:
Long

Legal Values:
See the list of possible reason codes listed under Reason codes in Chapter
11.

Syntax:
To get: reasoncode& = EIMessage.ReasonCode

ClearErrorCodes Method
Resets CompletionCode property to EICC_OK and ReasonCode property
to EIRC_NONE for this object.

Defined in:
EIMessage Class

Syntax:
Call EIMessage.ClearErrorCodes

310 MQSeries Enterprise Integrator for Lotus Notes User Guide

GetColor Method
For an EIMessage field that has screen attributes, returns the color attribute
of the specified field as a long. If the field does not have screen attributes,
EICOL_NOT_APPLICABLE is returned. If the color attribute is unknown at
the time of the method call, EICOL_UNKNOWN is returned.

If the field is unknown, an error event is raised, and ReasonCode and
CompletionCode are set for this object.

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Legal Values:
EICOL_NOT_APPLICABLE

EICOL_UNKNOWN

EICOL_BLACK

EICOL_BLUE

EICOL_DARK_BLUE

EICOL_GREEN

EICOL_GRAY

EICOL_NEUTRAL

EICOL_ORANGE

EICOL_PALE_GREEN

EICOL_PALE_TURQUOISE

EICOL_PINK

EICOL_PURPLE

EICOL_RED

EICOL_TURQUOISE

EICOL_WHITE

EICOL_YELLOW

Syntax:
color& = EIMessage.GetColor(fieldname$)

Parameter:
fieldname$ String. The name of a field in the message.

 Chapter 12: EIMessage Class 311

Reason codes:
EIRC_EMPTY_MESSAGE

EIRC_FIELD_NOT_FOUND

GetDataType Method
Returns the data type attribute of the specified EIMessage field as a long.

If the field is unknown, an error event is raised, and ReasonCode and
CompletionCode are set for this object.

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Legal Values:
EIDT_AUTHENTICATOR

EIDT_BYTE

EIDT_LONG

EIDT_SHORT

EIDT_STRING

EIDT_SYSTEM_AUTHENTICATOR

EIDT_VAR_STRING

Syntax:
datatype& = EIMessage.GetDataType(fieldname$)

Parameter:
fieldname$ String. The name of a field in the message.

Reason codes:
EIRC_EMPTY_MESSAGE

EIRC_FIELD_NOT_FOUND

312 MQSeries Enterprise Integrator for Lotus Notes User Guide

GetFieldName Method
Returns the name of the EIMessage field in the position passed to the
method.

If there is no field present at the index specified, an error event is raised,
and the ReasonCode and CompletionCode are set.

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Syntax:
fieldname$ = EIMessage.GetFieldName(index&)

Parameters:
index& Long. The index of the field in the message.

Reason codes:
EIRC_EMPTY_MESSAGE

EIRC_INVALID_INDEX

 Chapter 12: EIMessage Class 313

GetFieldValue Method
Returns the value of the EIMessage field. The value can be of data type
String, Long or Byte.

If the field is unknown, an error event is raised, and the ReasonCode and
CompletionCode are set.

For more information, see "Getting the value of a field in a message" in
Chapter 4.

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Syntax:
value = EIMessage.GetFieldValue(fieldname$)

Parameters:
fieldname$ String. The name of the field in the message.

value LotusScript string, variant, integer, long. The value of the
field.

Reason codes:
EIRC_EMPTY_MESSAGE

EIRC_FIELD_NOT_FOUND

EIRC_FIELD_TRUNCATED

314 MQSeries Enterprise Integrator for Lotus Notes User Guide

GetHighLight Method
For an EIMessage field that has screen attributes, returns the HighLight
attribute of the specified field as a long. If the field does not have screen
attributes, EIHIL_NOT_APPLICABLE is returned. If the HighLight
attribute is unknown at the time of the method call, EIHIL_UNKNOWN is
returned.

If the field is unknown, an error event is raised, and ReasonCode and
CompletionCode are set for this object.

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Legal Values:
 EIHL_NOT_APPLICABLE

 EIHL_UNKNOWN

 EIHL_OFF

 EIHL_BLINK

 EIHL_REVERSE

 EIHL_UNDERLINE

Syntax:
highlight& = EIMessage.GetHighLight(fieldname$)

Parameter:
fieldname$ String. The name of a field in the message.

Reason codes:
EIRC_EMPTY_MESSAGE

EIRC_FIELD_NOT_FOUND

 Chapter 12: EIMessage Class 315

GetIntensity Method
For an EIMessage field that has screen attributes, returns the intensity
attribute of the specified field as a long. If the field does not have screen
attributes, EIINT_NOT_APPLICABLE is returned. If the intensity attribute
is unknown at the time of the method call, EIINT_UNKNOWN is returned.

If the field is unknown, an error event is raised, and ReasonCode and
CompletionCode are set for this object.

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Legal Values:
 EIINT_NOT_APPLICABLE

 EIINT_UNKNOWN

 EIINT_BRIGHT

 EIINT_NORMAL

 EIINT_DARK

Syntax:
intensity& = EIMessage.GetIntensity(fieldname$)

Parameter:
fieldname$ String. The name of a field in the message.

Reason codes:
EIRC_EMPTY_MESSAGE

EIRC_FIELD_NOT_FOUND

316 MQSeries Enterprise Integrator for Lotus Notes User Guide

GetLength Method
If the data type is EIDT_VAR_STRING, returns the length of the current
contents of the field in bytes as a long.
If the data type is other than EIDT_VAR_STRING, returns the length
attribute of the specified EIMessage field in bytes as a long.

If the field is unknown, an error event is raised, and ReasonCode and
CompletionCode are set for this object.

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Syntax:
length& = EIMessage.GetLength(fieldname$)

Parameter:
fieldname$ String. The name of a field in the message.

Reason codes:
EIRC_EMPTY_MESSAGE

EIRC_FIELD_NOT_FOUND

 Chapter 12: EIMessage Class 317

GetProtection Method
For an EIMessage field that has screen attributes, returns the protection
attribute of the specified field as a long. If the field does not have screen
attributes, EIPRO_NOT_APPLICABLE is returned. If the protection
attribute is unknown at the time of the method call, EIPRO_UNKNOWN is
returned.

If the field is unknown, an error event is raised, and ReasonCode and
CompletionCode are set for this object.

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Legal Values:

 EIPRO_NOT_APPLICABLE

 EIPRO_UNKNOWN

 EIPRO_PROTECTED

 EIPRO_UNPROTECTED

Syntax:
protection& = EIMessage.GetProtection(fieldname$)

Parameter:
fieldname$ String. The name of a field in the message.

Reason codes:
EIRC_EMPTY_MESSAGE

EIRC_FIELD_NOT_FOUND

318 MQSeries Enterprise Integrator for Lotus Notes User Guide

GetSegment Method
Returns the segment attribute of the specified EIMessage field as a long.

If the field is unknown, an error event is raised, and ReasonCode and
CompletionCode are set for this object .

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Syntax:
segment& = EIMessage.GetSegment(fieldname$)

Parameter:
fieldname$ String. The name of a field in the message.

Reason codes:
EIRC_EMPTY_MESSAGE

EIRC_FIELD_NOT_FOUND

 Chapter 12: EIMessage Class 319

SetFieldValue Method
Sets the value of the EIMessage field.

If the field is unknown, an error event is raised, and ReasonCode and
CompletionCode are set.

For more information, see "Setting the value of a field in a message" in
Chapter 4.

Note Events are only raised if you have an event handler registered.

Defined in:
EIMessage Class

Syntax:
Call EIMessage.SetFieldValue(fieldname$, value)

Parameters:
fieldname$ String. The name of the field in the message.

value LotusScript string, variant, integer, or long. The new value of
the field.

Reason codes:
EIRC_DATA_OVERFLOW

EIRC_EMPTY_MESSAGE

EIRC_FIELD_NOT_FOUND

EIRC_FIELD_TRUNCATED

EIRC_INVALID_DATATYPE

EIRC_NULL_POINTER

EIRC_PROTECTED_FIELD

320 MQSeries Enterprise Integrator for Lotus Notes User Guide

EISendOptions Class

An EISendOptions object is used to control how an EIMessage object is sent
to an enterprise service, via the EIService. It gives you the flexibility to
specify options in your LotusScript program, such as message priority,
enterprise unit of work control, and so on.

An EISendOptions object can only be created using the CreateSendOptions
method of the EISession object.

Properties:
AttentionId property

CompletionCode property

Identifier property

MessageType property

Priority property

ReasonCode property

SelectedField property

UnitOfWork property

Methods:
ClearErrorCodes method

LotusScript Events:
EIError

EIWarning

Creation:
Use the CreateSendOptions method from the EISession class.

Property Access:
When assigning values to properties, errors can occur. These cause an error
event to be raised, the CompletionCode property to be set to EICC_FAILED
and an appropriate value to be set in the ReasonCode property for the
EISendOptions object.

Note Events are only raised if you have an event handler registered.

Chapter 12: EISendOptions Class 321

AttentionId Property
Read-write. This allows your LotusScript program to send an attention
identifier with the message. It is for use by enterprise services that support
transmission of attention identifiers. As such they can be used to govern the
actions of the enterprise service.
Examples of attention identifiers are the ENTER key, the CLEAR key and
function keys.
Its initial value is EIAI_ENTER.

An example of an AttentionId is a CICS 3270 AID.

Defined in:
EISendOptions Class

Data Type:
Long

Legal Values:
EIAI_F1 to EIAI_F24 (Function keys 1 through to 24) inclusive

EIAI_PA1, EIAI_PA2, EIAI_PA3

EIAI_ENTER

EIAI_CLEAR

Syntax:
To get: attentionid& = EISendOptions.AttentionId

To set: EISendOptions.AttentionId = attentionid&

Reason codes:
EIRC_INVALID_ATTENTION_ID

322 MQSeries Enterprise Integrator for Lotus Notes User Guide

CompletionCode Property
Read-only. Returns the MQEI LSX completion code set by the last method
or property access issued against the object. It is reset to EICC_OK when a
call, other than a property Get, is made successfully against the object, or
when the ClearErrorCodes method is called.

Defined in:
EISendOptions Class

Data Type:
Long

Legal Values:
 EICC_OK

 EICC_WARNING

 EICC_FAILED

Syntax:
To get: completioncode& = EISendOptions.CompletionCode

Chapter 12: EISendOptions Class 323

Delivery Property
Read-write. This may be used to specify a class of delivery for the message
to be sent. If the enterprise service in question supports different classes of
delivery, this property can be used for this purpose.

The initial value of this property is EIDEL_DEFAULT.

Defined in:
EISendOptions Class

Data Type:
Long

Legal Values:
EIDEL_EXPRESS
Delivery is optimized for speed but the message may be lost if the network
fails (non-persistent).

EIDEL_ASSURED
Delivery is slower but the message will survive network failures
(persistent).

EIDEL_DEFAULT
A default delivery is assigned that is enterprise service dependent.

Syntax:
To get: delivery& = EISendOptions.Delivery

To set: EISendOptions.Delivery = delivery&

324 MQSeries Enterprise Integrator for Lotus Notes User Guide

Identifier Property
Read-write. This is used to give an identity to the message to be sent. If the
enterprise service supports receiving messages selectively by identifier, and
assigning such an identifier to any associated reply, this property can be
used to provide such an identifier.
If the special value EIID_NONE is used, then a unique identifier is
generated automatically when the message is sent, and returned in this
property.
The initial value of this property is EIID_NONE.

The Identifier property is also used to indicate that a group of messages
belong to the same unit of work. See the UnitOfWork property.

An example of an Identifier is an MQSeries message identifier or a CICS
ECI message qualifier.

Defined in:
EISendOptions Class

Data Type:
String of hexadecimal digits representing ASCII characters, valid digits are
0-9 and A-F, maximum length given by the IdentifierLength property of the
associated EIService object.

Syntax:
To get: identifier$ = EISendOptions.Identifier

To set: EISendOptions.Identifier = identifier$

Reason codes:
EIRC_INVALID_IDENTIFIER

Chapter 12: EISendOptions Class 325

MessageType Property
Read-write. This property indicates the type of message to be sent. This is
of use to certain enterprise services that support processing several
different message types.
The initial value of this property is EIMT_REQUEST.

An example of a MessageType is an MQSeries message type.

Defined in:
EISendOptions Class

Data Type:
Long

Legal Values:
EIMT_DATAGRAM meaning no reply is required.

EIMT_REQUEST meaning a reply is required.

EIMT_REPLY meaning this is the reply to a request.

User-defined in the range EIMT_MIN to EIMT_MAX (65536 to
999999999).

Syntax:
To get: messagetype& = EISendOptions.MessageType

To set: EISendOptions.MessageType = messagetype&

Reason codes:
EIRC_INVALID_MESSAGE_TYPE

326 MQSeries Enterprise Integrator for Lotus Notes User Guide

Priority Property
Read-write. This is used to give a priority to the message to be sent. If the
enterprise service supports ordering of messages by priority, then this
property can be used for this purpose. If the special value EIPRI_DEFAULT
is used, then a default priority is assigned which is enterprise service
dependent. The initial value of this property is EIPRI_DEFAULT. The
range for this property is zero or greater, zero being the lowest priority.

An example of a Priority is an MQSeries message priority.

Defined in:
EISendOptions Class

Data Type:
Long

Syntax:
To get: priority& = EISendOptions.Priority

To set: EISendOptions.Priority = priority&

Reason codes:
EIRC_INVALID_PRIORITY

Chapter 12: EISendOptions Class 327

ReasonCode Property
Read-only. Returns the MQEI LSX reason code set by the last method or
property access issued against the object. It is reset to EIRC_NONE when a
call, other than a property Get, is made successfully against the object, or
when the ClearErrorCodes method is called.

Defined in:
EISendOptions Class

Data Type:
Long

Legal Values:
See the list of possible reason codes listed in Chapter 11.

Syntax:
To get: reasoncode& = EISendOptions.ReasonCode

328 MQSeries Enterprise Integrator for Lotus Notes User Guide

SelectedField Property
Read-write. This allows your LotusScript program to indicate to the
enterprise service that a particular named field in the message has been
selected. It is for use by enterprise services that support selection of fields in
this manner. An example of this is selecting one of several items in a list.
Its initial value is EISF_NONE indicating no field is selected.

An example of a selected field is positioning a CICS 3270 cursor.

Defined in:
EISendOptions Class

Data Type:
String of maximum 32 characters

Legal Values:
Must be the name of a field in the associated EIMessage object.

Syntax:
To get: selectedfield$ = EISendOptions.SelectedField

To set: EISendOptions.SelectedField = selectedfield$

Reason codes:
EIRC_INVALID_SELECTED_FIELD

Chapter 12: EISendOptions Class 329

UnitOfWork Property
Read-write. This is used to indicate the unit of work processing to be
performed by the enterprise service. It is of use to enterprise services where
units of work can be explicitly controlled.
The initial value of this property is EIUOW_ONLY.

If a value of EIUOW_FIRST is specified, the message identifier returned in
the Identifier property by the SendMessage method must be used on all
subsequent SendMessage calls for the same unit of work, that is, where one
of EIUOW_MIDDLE, EIUOW_LAST, EIUOW_COMMIT or
EIUOW_BACKOUT is specified.

An example of a unit of work is a series of invocations of CICS DPL
programs all running under the same CICS task, as can be achieved using
the CICS ECI or MQSeries CICS/ESA DPL bridge logical unit of work
facilities.

Note A Notes client or Domino server does not support transactional
concepts, so can not be used to coordinate units of work on distributed
systems. Each enterprise unit of work that your MQEI application
initiates runs independently of others.
This property always refers to a unit of work on the enterprise system. It
has no effect on local commit or backout of messages, such as that
provided by MQSeries. Control over local commit or backout is not
supported by the MQEI LSX.

Defined in:
EISendOptions Class

Data Type:
Long

Legal Values:
 EIUOW_ONLY meaning this message is an entire UOW and a
syncpoint will be taken.

 EIUOW_FIRST meaning this message is the first in a new UOW.

 EIUOW_MIDDLE meaning this message is in the middle of a UOW.

 EIUOW_LAST meaning this message is the last in a UOW and a
syncpoint will be taken.

 EIUOW_COMMIT meaning a syncpoint will be taken. Any EIMessage
is ignored.

 EIUOW_BACKOUT meaning the UOW is aborted and backed out.
Any EIMessage is ignored.

330 MQSeries Enterprise Integrator for Lotus Notes User Guide

Syntax:
To get: unitofwork& = EISendOptions.UnitOfWork

To set: EISendOptions.UnitOfWork = unitofwork&

Reason codes:
EIRC_INVALID_UNIT_OF_WORK

ClearErrorCodes Method
Resets CompletionCode property to EICC_OK and ReasonCode property to
EIRC_NONE for this object.

Defined in:
EISendOptions Class

Syntax:
Call EISendOptions.ClearErrorCodes

Chapter 12: EISendOptions Class 331

EIReceiveOptions Class

An EIReceiveOptions object is used to control how an EIMessage is
received from an enterprise service via the EIService and returned to the
LotusScript program. It gives you the flexibility to specify options in your
LotusScript program, such as whether to block or poll, whether to receive a
new message or just return the existing message in the MQEI LSX inbound
buffer, and so on.

An EIReceiveOptions object can only be created via the
CreateReceiveOptions Method of the EISession object.

Properties:
CompletionCode property

Format property

Identifier property

MessageType property

ReasonCode property

ReceiveType property

WaitInterval property

WaitType property

Methods:
ClearErrorCodes method

LotusScript Events:
 EIError

 EIWarning

Creation:
Use the CreateReceiveOptions method from the EISession class.

Property Access:
When assigning values to properties, errors can occur. These cause an error
event to be raised, the CompletionCode property to be set to EICC_FAILED
and an appropriate value to be set in the ReasonCode property for the
EIReceiveOptions object.

Note Events are only raised if you have an event handler registered.

332 MQSeries Enterprise Integrator for Lotus Notes User Guide

CompletionCode Property
Read-only. Returns the MQEI LSX completion code set by the last method
or property access issued against the object. It is reset to EICC_OK when a
call, other than a property Get, is made successfully against the object, or
when the ClearErrorCodes method is called.

Defined in:
EIReceiveOptions Class

Data Type:
Long

Legal Values:
 EICC_OK

 EICC_WARNING

 EICC_FAILED

Syntax:
To get: completioncode& = EIReceiveOptions.CompletionCode

Format Property
Read-only. This field is completed by the MQEI LSX after completion of a
ReceiveMessage method call. It is used to indicate the format of the data
within the message received. It can also be used to help identify the
message just received, if the exact nature of the message is unknown.

An example of a Format is an MQSeries message format or an IMS MOD
name.

Defined in:
EIReceiveOptions Class

Data Type:
String of 8 characters

Legal Values:
EIFMT_NONE meaning no format

EIFMT_STRING meaning the data is entirely characters

User defined

Syntax:
To get: format$ = EIReceiveOptions.Format

Chapter 12: EIReceiveOptions Class 333

Identifier Property
Read-write. This is used to specify that the receive call is to target a specific
message. If the enterprise service supports receiving inbound messages
selectively by identifier, this property can be used to provide such an
identifier. If the special value EIID_NONE is used, then the first message
that arrives is received and its identifier returned in this property.
The initial value of this property is EIID_NONE.

An example of an Identifier is an MQSeries correlation identifier.

Defined in:
EIReceiveOptions Class

Data Type:
String of hexadecimal digits representing ASCII characters, valid digits are
0-9 and A-F, maximum length given by the IdentifierLength property of the
associated EIService object.

Syntax:
To get: identifier$ = EIReceiveOptions.Identifier

To set: EIReceiveOptions.Identifier = identifier$

Reason codes:
EIRC_INVALID_IDENTIFIER

334 MQSeries Enterprise Integrator for Lotus Notes User Guide

MessageType Property
Read-only. This field is completed by the MQEI LSX after completion of an
EIService ReceiveMessage method call. It indicates the type of message just
received. It can be used to help identify the message just received and
govern the future action of the LotusScript program.

An example of a MessageType is an MQSeries message type.

Defined in:
EIReceiveOptions Class

Data Type:
Long

Legal Values:
EIMT_DATAGRAM meaning no reply is required

EIMT_REQUEST meaning a reply is required

EIMT_REPLY meaning this is the reply to a request

EIMT_REPORT meaning a message reporting on an expected or
unexpected occurrence

User-defined or enterprise system defined

Syntax:
To get: messagetype& = EIReceiveOptions.MessageType

ReasonCode Property
Read-only. Returns the MQEI LSX reason code set by the last method or
property access issued against the object. It is reset to EIRC_NONE when a
call, other than a property Get, is made successfully against the object, or
when the ClearErrorCodes method is called.

Defined in:
EIReceiveOptions Class

Data Type:
Long

Legal Values:
See the list of possible reason codes listed under Reason Codes in Chapter
11.

Syntax:
To get: reasoncode& = EIReceiveOptions.ReasonCode

Chapter 12: EIReceiveOptions Class 335

ReceiveType Property
Read-write. This indicates exactly what to receive and return to the
LotusScript program.
The options are:

EIRT_RECEIVE. Discard the last message received, and receive a new
message into the MQEI LSX inbound buffer. Return this new message
to the LotusScript program as an EIMessage object.

EIRT_RETURN. Return the message currently in the MQEI LSX
inbound buffer to the LotusScript program as an EIMessage object. This
is useful when processing variant messages.

The initial value of this property is EIRT_RECEIVE.

Defined in:
EIReceiveOptions Class

Data Type:
Long

Legal Values:
EIRT_RECEIVE

EIRT_RETURN

Syntax:
To get: receivetype& = EIReceiveOptions.ReceiveType

To set: EIReceiveOptions.ReceiveType = receivetype&

Reason codes:
EIRC_INVALID_RECEIVE_TYPE

336 MQSeries Enterprise Integrator for Lotus Notes User Guide

WaitInterval Property
Read-write. The maximum time in milliseconds that the receive call waits
for a suitable message to arrive. If no suitable message has arrived after this
time has elapsed, a warning with reason code
EIRC_NO_MESSAGE_AVAILABLE is raised. It is of use only when the
communication mechanism supports timeout, and the WaitType property
has the value EIWT_WAIT.
A special value EIWI_UNLIMITED may be specified which means an
unlimited wait is required.
The initial value of this property is 0 (EIWT_NO_WAIT).

An example of a WaitInterval is an MQSeries get message options wait
interval or a CICS ECI get reply call timeout.

Defined in:
EIReceiveOptions Class

Data Type:
Long

Syntax:
To get: waitinterval& = EIReceiveOptions.WaitInterval

To set: EIReceiveOptions.WaitInterval = waitinterval&

Reason codes:
EIRC_INVALID_WAIT_INTERVAL

Chapter 12: EIReceiveOptions Class 337

WaitType Property
Read-write. This indicates whether to wait for the time specified by the
WaitInterval property, or to return immediately without waiting, when
receiving a message. If no message is returned, either because no wait was
specified or the wait interval expired, an error is raised with reason code
EIRC_NO_MESSAGE_AVAILABLE.
The initial value of this property is EIWT_NO_WAIT.

An example of a WaitType is an MQSeries get message options wait type,
or the type of an CICS ECI get reply call, or the CICS EPI get event call wait
type.

Defined in:
EIReceiveOptions Class

Data Type:
Long

Legal Values:
 EIWT_WAIT meaning return after the specified wait interval with or
without the message.

 EIWT_NO_WAIT meaning return immediately with or without the
message.

Syntax:
To get: waittype& = EIReceiveOptions.WaitType

To set: EIReceiveOptions.WaitType = waittype&

Reason codes:
EIRC_INVALID_WAIT_TYPE

ClearErrorCodes Method
Resets CompletionCode property to EICC_OK and ReasonCode property to
EIRC_NONE for this object.

Defined in:
EIReceiveOptions Class

Syntax:
Call EIReceiveOptions.ClearErrorCodes

338 MQSeries Enterprise Integrator for Lotus Notes User Guide

Appendix A Sample using a Native MQSeries service

This sample demonstrates how you can use the MQEI LSX in conjunction
with a Notes database to interact with MQSeries.

For general information relating to all the MQEI samples, see "MQEI
Samples" in Chapter 4.

This appendix describes the sample that uses the Native MQSeries service:

Its design

Preparation required

How to run

How it works

For more information on programming for a Native MQSeries service, see
Chapter 6.

Appendix A:Sample using the Native MQSeries service 339

Design of the Native MQSeries sample

This sample allows you to send data from a Notes application and get a
reply (containing the same data) from an MQSeries environment.

In summary:

1. The Notes application creates a message by concatenating the text you
input with some system defined fields.

2. By clicking the OK button (Send Message), this message is passed to the
MQSeries environment.

3. By clicking the OK button again (Receive Message), the sample can
receive the message from the MQSeries environment.

4. A binary check is carried out to ensure that the message sent is the
same as the one received. The result is displayed in a Notes document.

To keep the sample as simple as possible, there is no enterprise program
processing the message. It is first put onto an MQSeries queue and then
retrieved from it. This demonstrates the use of MQEI with MQSeries
without needing to run another application to process the message.

Notes MQEI Samples database (mqeisamp.nsf)
This sample is implemented by the "MQ sample" form.

Notes MQEI Definition database (mqeidata.nsf)
The definitions used by this sample are:

MQServ (MQEI Service definition)
This is a Native MQSeries service.

Connection Manager - Not specified, assuming connection is to the
default MQSeries queue manager

Outbound Connection - An MQSeries queue named
MQEI.MQ.INOUTQ

Inbound Connection - An MQSeries queue named
MQEI.MQ.INOUTQ

The defaults are used for all the other fields of this service.

MQMsg (MQEI Message definition)
This message defines the structure of the MQSeries message sent from
and received by the sample.
It contains three STRING fields:

UserName (max 30 characters)

Date (max 8 characters)

340 MQSeries Enterprise Integrator for Lotus Notes User Guide

Message (max 30 characters)

MQEI MQSC command file (mqeisamp.tst)
The Native MQSeries section of this MQSC command file sets up the queue
that you need to run this sample.

Appendix A:Sample using the Native MQSeries service 341

Before you run the Native MQSeries sample

This sample will not run successfully until you have completed the
following:

Domino Server system

Lotus Notes
Add the MQEI Samples database (mqeisamp.nsf) to your workspace.

Ensure that the MQEI LSX is installed correctly.

Note The MQEI Security database is not used in this sample.

For more information on Getting Started, see Chapter 2.

MQSeries
Ensure a local default MQSeries queue manager is running.

Create the necessary MQSeries queue (MQEI.MQ.INOUTQ). You can
do this by running the MQEI MQSC command file (mqeisamp.tst) that
is supplied in the MQEI package.

Tip The MQEI MQSC command file (mqeisamp.tst) provided with the
MQEI package creates the channels and queues needed by all the
samples. Consider making a copy of this file and removing (or
commenting out) anything not needed by this sample. There are
instructions within the MQSC command file (mqeisamp.tst).

Note If you want to use a different MQSeries queue manager, add the
MQEI Definition database to your workspace and change the
Connection Manager in the MQServ MQEI Service definition to your
queue manager name.

For more information, see "MQEI Service definition" in Chapter 3.

342 MQSeries Enterprise Integrator for Lotus Notes User Guide

Running the Native MQSeries sample

1. Check that all the appropriate setup work has been completed. See
"Before you run the Native MQSeries sample" for details.

2. From your Notes workspace, open the MQEI Samples database.

3. From the navigator, select the "Native MQSeries" icon. An "MQSeries
Enterprise Integrator for Native MQSeries" sample document is
displayed on the screen.
The form has the following fields and button:

Name (field)

Date (field)

Message Data (field)

Message To Be Sent

Message Received

Message Comparison Result (field)

OK (button)

To send a message:
1. In the field "Message Data", enter a string of data that you want the

message to contain.

2. Tab to the next field.
As soon as you move the cursor from the text input field, "Message
Data" the message is created.

3. Click OK (Send Message) to send the message.

Note The first time you send a message there may be a delay while the
MQEI LSX connects to the queue manager.

Appendix A:Sample using the Native MQSeries service 343

To receive a message:
1. Click OK (Receive Message) to receive the message.

2. The message is retrieved from the queue and the contents are displayed
in the Message Received field.
If there are no messages on the queue, you get the message, "Your
LotusScript program has tried to get an EIMessage, but no message was
received. The target enterprise system may not have sent the message
yet, or the target system may have encountered an error."
To get the message back, you must keep the Native MQSeries sample
form open otherwise the sample does not allow you to retrieve the sent
message from the queue.

3. The message received is compared with the one sent and the result of
the binary comparison is displayed in the Message Comparison Result
field.

344 MQSeries Enterprise Integrator for Lotus Notes User Guide

How the Native MQSeries sample works

The sample expects you to send a message before you can receive it.

Steps:

1. When you click on the "Native MQSeries" icon, Notes creates a
document using the "MQ Sample" form.

2. Before the document is opened, the Notes application creates the MQEI
objects (EISession, EIMessage and EIService). It does this by invoking
the appropriate create method which causes the MQEI LSX to read the
MQEI Definition database for the details of the MQEI Service and
MQEI Message definitions used by this sample.

3. If the MQEI object creation is successful, the document is displayed.

4. You enter a string of data up to 30 characters.
When the cursor leaves the field on the Notes document, the Notes
application builds the message in the correct EIMessage format.

5. When you click the "Send Message" button, the Notes application issues
an MQEISendMessage that puts a message on the MQSeries queue (the
name of which is specified in the outbound connection name of the
MQEI Service definition).

Appendix A:Sample using the Native MQSeries service 345

6. When you click the "Receive Message" button, the MQEI gets the
message from the MQSeries queue (the name of which is specified in
the inbound connection name of the MQEI Service definition).

7. The Notes application compares the sent message with the received
message to see that any data conversion was successful.

8. The Notes application displays the received message and the results in
the document.

Note You should ensure that you receive all messages before closing the
document.
This is to prevent the existence of obsolete messages on the queue.

Error handling in the Native MQSeries sample

Error checking takes place throughout this sample, using both ON ERROR
routines and EVENT handlers.

For more information, see "Error handling" in Chapter 4.

346 MQSeries Enterprise Integrator for Lotus Notes User Guide

Appendix B Sample using an IMS via MQSeries service

This sample demonstrates how you can use the MQEI LSX in conjunction
with a Notes database to interact with IMS via the MQSeries IMS bridge,
and more specifically, how to issue an IMS command and handle its
multi-segment reply.

For general information relating to all the MQEI samples, see "MQEI
Samples" in Chapter 4.

This appendix describes the sample that uses the IMS via MQSeries service:

Its design

Preparation required

How to run

How it works

For more information on programming for an IMS via MQSeries service,
see Chapter 7.

Appendix B: Sample using the IMS service 347

Design of the IMS via MQSeries sample

This sample allows you to display information about an IMS transaction by
sending a message containing the /DISPLAY TRANSACTION command to
the IMS system.

In summary:

1. The Notes application creates a message containing an IMS /DISPLAY
TRANSACTION command by concatenating the text you input, with
some system defined fields.

2. By clicking the "Submit Command" action button, this message is
passed to the IMS environment via the MQSeries IMS bridge.

3. IMS processes the command.

4. IMS sends a reply back to the Notes application via MQSeries. The
sample application then receives the message and displays the results in
a document.

Notes MQEI Samples database (mqeisamp.nsf)
This sample is implemented by the "IMS Sample" form.

Notes MQEI Definition database (mqeidata.nsf)
The definitions used by this sample are:

IMSMQServ (MQEI Service definition)
This is an IMS via MQSeries service:

Connection Manager - Not specified assuming connection is to the
default MQSeries queue manager.

Outbound Connection - An MQSeries remote queue definition
named MQEI.IMS.OUTPUTQ for the IMS bridge queue

Inbound Connection - An MQSeries queue named
MQEI.IMS.INPUTQ

IMSMQMsg (MQEI Message definition)
This message defines the structure of the outbound message being sent
from the sample. It contains three STRING fields.

IMSMQRCDMsg1 (MQEI Message definition)
This message defines the structure of a valid return message from the
IMS sample. This message has 5 segments.

IMSMQRcdMsg2 (MQEI Message definition)
This message defines the structure of an invalid return message from
the IMS sample. This message has 3 segments.

348 MQSeries Enterprise Integrator for Lotus Notes User Guide

MQEI MQSC command file (mqeisamp.tst)
The IMS via MQSeries section of this file defines the queues you need to
run this sample.

MQEI MVS/ESA command file (mqeisamp.jcs)
This file contains the MQSeries for MVS/ESA resource definitions required
for this sample.

Appendix B: Sample using the IMS service 349

Before you run the IMS via MQSeries sample

This sample will not run successfully until you have completed the
following:

Domino Server system

Lotus Notes
Add the MQEI Samples database (mqeisamp.nsf) to your workspace.

Add the MQEI Security database (mqeisecu.nsf) to your workspace and
create an MQEI Security definition for the IMS system you want to use.

Add the MQEI Definition database (mqeidata.nsf) to your workspace
and modify the IMSMQServ MQEI Service definition and set the
System Name field to match the name of the MQEI Security definition
for your IMS system.

Ensure that the MQEI LSX is installed correctly.

For more information on Getting Started, see Chapter 2.

MQSeries
Ensure a local default MQSeries queue manager is running.

Create the necessary MQSeries queues (MQEI.IMS.INPUTQ (local) and
MQEI.IMS.OUTPUTQ (remote)). You can do this by running the MQEI
MQSC command file (mqeisamp.tst) that is supplied in the MQEI
package.

Tip The MQEI MQSC command file (mqeisamp.tst) provided with the
MQEI package creates the channels and queues needed by all the
samples. Consider making a copy of this file and removing (or
commenting out) anything not needed by this sample. There are
instructions within the MQSC command file (mqeisamp.tst).

Note If you want to use a different MQSeries queue manager, add the
MQEI Definition database to your workspace and change the
Connection Manager in the IMSMQServ MQEI Service definition to your
queue manager name.

For more information, see "MQEI Service definition" in Chapter 3.

350 MQSeries Enterprise Integrator for Lotus Notes User Guide

MVS system

MQSeries for MVS/ESA
Create the necessary MQSeries queue (MQEI.IMS.BRIDGE.QUEUE).
You can do this by running the MQEI MQSC command file
(mqeisamp.jcs) that is supplied in the MQEI package.

Tip The MQEI MQSC command file (mqeisamp.jcs) provided with the
MQEI package creates the channels and queues needed by all the
samples. Consider making a copy of this file and removing (or
commenting out) anything not needed by this sample. There are
instructions within the MQSC command file (mqeisamp.jcs).

For more information, see "MQEI Service definition" in Chapter 3.

IMS/ESA
Ensure that OTMA is started and that the IMS bridge is operational and
configured correctly.

Ensure you have a valid User ID and Authenticator (password) for
IMS.

If you are directly connected to MQSeries for MVS/ESA
It is assumed that you are running the sample where your MQSeries client
is not connected directly to MQSeries for MVS/ESA. For this reason the
command files supplied include definitions for remote queues and
channels.

If you are running with your Notes client or Domino Server with an
MQSeries client directly connected to an MQSeries for MVS/ESA server,
you only need to define an input and output queue to MQSeries:

Change the Outbound Connection of the IMSMQServ MQEI Service
definition to MQEI.IMS.BRIDGE.QUEUE

Delete the definition of the transmission queue and the channels from
the mqeisamp.jcs file.

Use the mqeisamp.jcs file only.

For information on system configuration, see "Possible system
configurations" in Chapter 2.

Appendix B: Sample using the IMS service 351

Running the IMS via MQSeries sample

Sending a message
1. Check that all the appropriate setup work has been completed. See

"Before you run the IMS via MQSeries sample" for details.

2. From your Notes workspace, open the MQEI Samples database.

3. Select the "IMS via MQSeries" button from the Notes Navigator.
If you have set everything up correctly, an IMS sample document
should appear.

4. Enter a valid transaction ID in the field labeled, "Please enter the
transaction to be displayed."

5. Press the "Submit Command" button.

6. The status bar gives you information about what is happening when
you run the sample.

Receiving a message
You don't have to do anything to receive a message back from IMS. This is
done automatically.

1. If everything was successful, IMS returns a message back to the Notes
application.

2. The Notes application displays the results of the IMS /DISPLAY
TRANSACTION command.

352 MQSeries Enterprise Integrator for Lotus Notes User Guide

How the IMS via MQSeries sample works

1. When you click on the "IMS via MQSeries" icon, Notes creates a
document using the "IMS Sample" form.

2. Before the document is opened, the Notes application creates the MQEI
objects (EISession, EIMessage and EIService). It does this by invoking
the appropriate create method which causes the MQEI LSX to read the
MQEI Definition database for the details of the MQEI Service and
MQEI Message definitions used by this sample.

3. If the MQEI object creation is successful, the document is displayed.

Appendix B: Sample using the IMS service 353

4. When you click on the button labeled, "Submit Command", the
LotusScript code behind the button generates an EIMessage containing
the /DISPLAY TRANSACTION command and issues an MQEI
SendMessage to put a request on the IMS bridge input queue.

Note In IMS, a command is always preceded by a forward slash (/).

5. The message, that contains the /DISPLAY TRANSACTION command,
is stored on the IMS bridge input queue until the IMS bridge (which
continually monitors all bridge queues) takes the message off the bridge
queue.

6. The IMS bridge receives the request message and passes it to the IMS
command processor which issues the command to IMS.

7. The IMS command processor generates a reply which is converted to a
message on the MQSeries reply-to queue by the MQ-IMS bridge.

8. The Notes application receives the reply message in an EIMessage by
issuing an MQEI Receive Message.

9. The Notes application displays information about the transaction in a
document.

Error handling in the IMS via MQSeries sample

The IMS via MQSeries sample application uses variant message handling. If
the expected (valid) message is not received (EIRC_WRONG_MESSAGE),
then the invalid reply message is checked. Only if this is not accepted does
the sample flag an error.

For more information, see "Variant Messages" in Chapter 4.

Error checking takes place throughout this sample, using both ON ERROR
routines and EVENT handlers. For more information, see "Error handling"
in Chapter 4.

354 MQSeries Enterprise Integrator for Lotus Notes User Guide

Appendix C Sample using a CICS DPL via MQSeries
service

This sample demonstrates how you can use the MQEI LSX in conjunction
with a Notes database to interact with CICS via the MQSeries-CICS/ESA
bridge.

For general information relating to all the MQEI samples, see "MQEI
Samples" in Chapter 4.

This appendix describes the sample that uses the CICS DPL via MQSeries
service:

Its design

Preparation required

How to run

How it works

For more information on programming for a CICS DPL via MQSeries
service, see Chapter 8.

Appendix C: Sample using a CICS DPL via MQSeries service 355

Design of the CICS DPL via MQSeries sample

This sample is a Notes application that browses file FILEA by running the
CICS sample program DFH$AXCS.

In summary:

1. The Notes application creates a message containing the name of the
CICS program to be run, DFH$AXCS.

2. By clicking the GO action button, this message is passed to CICS via the
MQSeries CICS/ESA bridge.

3. DFH$AXCS runs (reads FILEA), passes the data back to the MQSeries
CICS/ESA bridge, where a message is created and passed to the Notes
application.

4. The information in the message is displayed in a document.

5. This process repeats until every record in FILEA has been read and
displayed.

Note This sample only runs on CICS/ESA Version 4.1 and above (the
DFH$AXCS program is not available on CICS/ESA Version 3.3).

Notes MQEI Samples database (mqeisamp.nsf)
This sample is implemented by the "CICSDPLMQ Sample" form.

Notes MQEI Definition database (mqeidata.nsf)
The definitions used by this sample are:

CICSDPLMQServ (MQEI Service definition)
This is a CICS DPL via MQSeries service

Service Step - DFH$AXCS (this is the CICS program that the sample
requests to be run)

Connection Manager - Not specified, assuming connection is to the
default MQSeries queue manager

Outbound Connection - An MQSeries remote queue definition
named MQEI.CICS.DPL.OUTPUTQ for the MQSeries - CICS/ESA
bridge queue.

Inbound Connection - An MQSeries queue named
MQEI.CICS.DPL.INPUTQ

CICSDPLMsg (MQEI Message definition)
This defines a message that describes the commarea layout as expected
by the CICS program DFH$AXCS.
It contains four fields:

CallTypeCode

356 MQSeries Enterprise Integrator for Lotus Notes User Guide

TargetFileName

RidFieldID

RecordArea

MQEI MQSC command file (mqeisamp.tst)
The CICS DPL via MQSeries section of this file sets up the queues and
channels that you need to run this sample.

MQEI MVS/ESA command file (mqeisamp.jcs)
This file contains the MQSeries for MVS/ESA resource definitions required
for this sample.

Appendix C: Sample using a CICS DPL via MQSeries service 357

Before you run the CICS DPL via MQSeries sample

This sample will not run successfully until you have completed the
following:

Domino Server system

Lotus Notes
Add the MQEI Samples database (mqeisamp.nsf) to your workspace.

Ensure the MQEI LSX is installed correctly.

Note The security database is not used as it is assumed there is no
security associated with the DFH$AXCS program.
If there is:
- Add the MQEI Security database to your workspace and create an
MQEI Security definition for the CICS system you want to use.
- Add the MQEI Definition database (mqeidata.nsf) to your workspace
and modify the CICSDPLMQServ MQEI Service definition and set the
System Name field to match the name of the MQEI Security definition
for your CICS system.

MQSeries
Ensure a local default MQSeries queue manager is running.

Create the necessary MQSeries queues (MQEI.CICS.DPL.INPUTQ
(local) and MQEI.CICS.DPL.OUTPUTQ (remote definition)). You can
do this by running the MQEI MQSC command file (mqeisamp.tst) that
is supplied in the MQEI package.

Tip The MQEI MQSC command file (mqeisamp.tst) provided with the
MQEI package creates the channels and queues needed by all the
samples. Consider making a copy of this file and removing (or
commenting out) anything not needed by this sample. There are
instructions within the MQSC command file.

Note If you want to use a different MQSeries queue manager, add the
MQEI Definition database to your workspace and change the
Connection Manager in the CICSDPLMQServ MQEI Service definition to
your queue manager name.

358 MQSeries Enterprise Integrator for Lotus Notes User Guide

MVS system

MQSeries for MVS/ESA
Create the necessary MQSeries queue (MQEI.CICS.BRIDGE.QUEUE).
You can do this by running the MVS/ESA command file (mqeisamp.jcs)
that is supplied in the MQEI package.

Tip The MVS/ESA command file (mqeisamp.jcs) provided with the
MQEI package creates the channels and queues needed by all the
samples. Consider making a copy of this file and removing (or
commenting out) anything not needed by this sample. There are
instructions within the command file.

For more information, see "MQEI Service Definition" in Chapter 3.

If you are directly connected to MQSeries for MVS/ESA
It is assumed that you are running the sample where your MQSeries client
is not connected directly to MQSeries for MVS/ESA. For this reason the
command files supplied include definitions for remote queues and
channels.

If you are running with your Notes client or Domino Server with an
MQSeries client directly connected to an MQSeries for MVS/ESA server,
you only need to define an input and output queue to MQSeries:

Change the Outbound Connection of the CICSDPLMQServ MQEI
Service definition to MQEI.CICS.BRIDGE.INPUTQ

Delete the definition of the transmission queue and the channels from
the mqeisamp.jcs file.

Use the mqeisamp.jcs file only.

For information on system configuration, see "Possible system
configurations" in Chapter 2.

Appendix C: Sample using a CICS DPL via MQSeries service 359

Running the CICS DPL via MQSeries sample

1. Check all the appropriate setup work has been completed. See "Before
you run the CICS DPL via MQSeries sample" for details.

2. From your Notes workspace, open the MQEI Samples database.

3. From the navigator, select the "CICS DPL via MQSeries" icon. If you
have everything set up correctly, an "MQSeries Enterprise Integrator for
CICS DPL via MQSeries" sample document is displayed on the screen.

4. Click GO.

5. The status bar gives you information about what is happening when
you run the sample.

6. The Notes application displays the data returned by the DFH$AXCS
program.

360 MQSeries Enterprise Integrator for Lotus Notes User Guide

How the CICS DPL via MQSeries sample works

Steps:

1. When you click the "CICS DPL via MQSeries" icon, Notes creates a
document using the "CICSDPLMQ Sample" form.

2. Before the document is opened, the Notes application creates the MQEI
objects (EISession, EIMessage and EIService). It does this by invoking
the appropriate create method which causes the MQEI LSX to read the

Appendix C: Sample using a CICS DPL via MQSeries service 361

MQEI Definition database for details of the MQEI Service and MQEI
Message definitions used by this sample.

3. If the MQEI object creation is successful, the document is displayed.

4. The Notes application (via the MQEI LSX) sends a request message, to
run the CICS program DFH$AXCS, to the MQSeries queue
MQEI.CICS.DPL.OUTPUTQ (specified in the outbound connection
name of the service definition) and waits for a reply.

Note MQEI.CICS.DPL.OUTPUTQ is a remote queue definition for the
MQSeries - CICS/ESA bridge queue, MQEI.CICS.BRIDGE.QUEUE

5. The MQSeries - CICS/ESA bridge issues an EXEC CICS link call to run
the DFH$AXCS program to open the file called FILEA (named in the
MQSeries message).

6. The DFH$AXCS program attempts to open the FILEA file if it isn't
already open and returns the results to the MQSeries queue
MQEI.CICS.DPL.INPUTQ via the MQSeries CICS/ESA bridge.

7. The Notes application (via the MQEI LSX) receives the message and
displays an error message if the FILEA file is not open.

If the file is open:

8. The Notes application (via the MQEI LSX) sends a request message to
run DFH$AXCS to get the data from the next record in the file.

9. The bridge issues an EXEC CICS link call to run the DFH$AXCS
program.

10. The DFH$AXCS program runs, reads the next record in FILEA and
returns the data to the MQSeries - CICS/ESA bridge which puts a
message on the MQSeries queue MQEI.DPL.INPUTQ (specified in the
InboundConnection property).

11. The Notes application (via the MQEI LSX) gets the message from the
queue MQEI.CICS.DPL.INPUTQ. If the read was successful, the Notes
application displays the text read on the form. If the read was not
successful, the Notes application displays an error message.

12. The Notes application (via the MQEI LSX) continues sending further
request messages to run DFH$AXCS to get the data from the records in
the file, until the end-of-file or an error condition occurs.

Error handling in the CICS DPL via MQSeries sample

Error checking takes place throughout this sample, using both ON ERROR
routines and EVENT handlers.

For more information, see "Error handling" in Chapter 4.

362 MQSeries Enterprise Integrator for Lotus Notes User Guide

Appendix D Sample using a CICS DPL direct service

This sample demonstrates how you can use the MQEI LSX in conjunction
with a Notes database to interact with CICS via the CICS ECI interface.

For general information relating to all the MQEI samples, see "MQEI
Samples" in Chapter 4.

This appendix describes the sample that uses the CICS DPL direct service:

Its design

Preparation required

How to run

How it works

For more information on programming for a CICS DPL direct service, see
Chapter 9.

Restrictions
The following restrictions apply to this sample:

CICS DPL direct services are not supported when running the MQEI
LSX under AIX, HP-UX or Sun Solaris. The CICS DPL direct sample
must be run from OS/2, Windows 3.1, Windows 95 or Windows NT.

CICS 3270 direct services and CICS DPL direct services may not be
used from the same Notes client or Domino Server agent manager at
the same time. If you wish to run both CICS 3270 direct and CICS DPL
direct samples, you must restart your Notes client.

Appendix D: Sample using a CICS DPL direct service 363

Design of the CICS DPL direct sample

This sample is a Notes application that browses file FILEA by running the
CICS sample program DFH$AXCS.

In summary:

1. The Notes application creates a message containing the name of the
CICS program to be run, DFH$AXCS.

2. By clicking the GO action button, this message is passed to CICS via the
CICS ECI interface.

3. DFH$AXCS runs (reads FILEA), passes the data back to the CICS ECI
interface, where a message is created and passed to the Notes
application.

4. The information in the message is displayed in a document.

5. This process repeats until every record in FILEA has been read and
displayed.

Note This sample only runs on CICS/ESA Version 4.1 and above (the
DFH$AXCS program is not available on CICS/ESA Version 3.3).

Notes MQEI Samples database (mqeisamp.nsf)
This sample is implemented by the "CICSDPLD Sample" form.

Notes MQEI Definition database (mqeidata.nsf)
The definitions used by this sample are:

CICSDPLDServ (MQEI Service definition)
This is a CICS DPL direct service:

Service Step - DFH$AXCS (this is the CICS program that the sample
requests to be run)

Connection Manager - CICSSNA, the default name for a SNA
connected CICS server

CICSDPLMsg (MQEI Message definition)
This defines a message that describes the commarea layout as expected
by the CICS program DFH$AXCS.
It contains four fields:

CallTypeCode

TargetFileName

RidFieldID

RecordArea

364 MQSeries Enterprise Integrator for Lotus Notes User Guide

Before you run the CICS DPL direct sample

This sample will not run successfully until you have completed the
following:

Domino Server system

Lotus Notes
Add the MQEI Samples database (mqeisamp.nsf) to your workspace.

Ensure the MQEI LSX is installed correctly.

Note The security database is not used as it is assumed there is no
security associated with the DFH$AXCS program.
If there is:
- Add the MQEI Security database to your workspace and create an
MQEI Security definition for the CICS system you want to use.
- Add the MQEI Definition database (mqeidata.nsf) to your workspace
and modify the CICSDPLDServ MQEI Service definition and set the
System Name field to match the name of the MQEI Security definition
for your CICS system.

If the name of your CICS server defined in your CICS Client
initialization file is not CICSSNA:
- Add the MQEI Definition database (mqeidata.nsf) to your workspace
and change the Connection Manager in the CICSDPLDServ MQEI
Service definition to your server name.

CICS Client
A CICS Client must be available on your Domino Server system.

MVS system

CICS/ESA server
Make sure that the CICS/ESA FILEA sample is installed and the server
is up and running.

Turn off data conversion on CICS/ESA.

For information on system configuration, see "Possible system
configurations" in Chapter 2.

Appendix D: Sample using a CICS DPL direct service 365

Running the CICS DPL direct sample

1. Check all the appropriate setup work has been completed. See "Before
you run the CICS DPL direct sample " for details.

2. From your Notes workspace, select the MQEI Samples database icon.

3. From the navigator, select the "CICS DPL direct" icon. If you have
everything set up correctly, an "MQSeries Enterprise Integrator for
CICS DPL direct" sample document is displayed on the screen.

4. Click GO.

5. The status bar gives you information about what is happening when
you run the sample.

6. The Notes application displays the data returned by the DFH$AXCS
program.

366 MQSeries Enterprise Integrator for Lotus Notes User Guide

How the CICS DPL direct sample works

Steps.

1. When you click the "CICS DPL direct" icon, Notes creates a document
using the "CICSDPLD Sample" form.

2. Before the document is opened, the Notes application creates the MQEI
objects (EISession, EIMessage and EIService). It does this by invoking
the appropriate create method which causes the MQEI LSX to read the
MQEI Definition database for details of the MQEI Service and MQEI
Message definitions used by this sample.

3. If the MQEI object creation is successful, the document is displayed.

4. The Notes application (via the MQEI LSX) sends a request message, to
run the CICS program DFH$AXCS.

Appendix D: Sample using a CICS DPL direct service 367

5. A CICS mirror task issues an EXEC CICS link call to run the
DFH$AXCS program to open the file called FILEA.

6. The DFH$AXCS program attempts to open the FILEA file if it isn't
already open and returns the results to the Notes application.

7. The Notes application (via the MQEI LSX) receives the message and
displays an error message if the FILEA file is not open.

If the file is open:

8. The Notes application (via the MQEI LSX) sends a request message to
run DFH$AXCS to get the data from the next record in the file.

9. A mirror task issues an EXEC CICS link call to run the DFH$AXCS
program.

10. The DFH$AXCS program runs, reads the next record in FILEA and
returns the data in the record to the MQEI.

11. The Notes application displays the data on the document. If the read
was not successful, the Notes application displays an error message.

12. The Notes application (via the MQEI LSX) continues sending further
messages to run DFH$AXCS to get the data from the records in the file
until an end-of-file or error condition occurs.

Error handling in the CICS DPL direct sample

Error checking takes place throughout this sample, using both ON ERROR
routines and EVENT handlers.

For more information, see "Error handling" in Chapter 4.

368 MQSeries Enterprise Integrator for Lotus Notes User Guide

Appendix E Sample using a CICS 3270 direct service
(signon)

This sample demonstrates how you can use the MQEI LSX in conjunction
with a Notes database to interact with a CICS 3270 application via the CICS
EPI interface.

For general information relating to all the MQEI samples, see "MQEI
Samples" in Chapter 4.

This appendix describes the sample that uses the CICS 3270 direct service:

Its design

Preparation required

How to run

How it works

For more information on programming for the CICS 3270 direct service, see
Chapter 10.

Restrictions
The following restrictions apply to this sample:

CICS 3270 direct services are not supported when running the MQEI
LSX under AIX, HP-UX, Sun Solaris, Windows 3.1, or WIN-OS/2. The
CICS 3270 samples must be run from OS/2, Windows 95 or Windows
NT.

CICS 3270 direct services and CICS DPL direct services may not be
used from the same Notes client or Domino Server agent manager at
the same time. If you wish to run both CICS 3270 direct and CICS DPL
direct samples, you must restart your Notes client.

Appendix E: Sample using the CICS 3270 via MQSeries service 369

Design of the CICS 3270 signon sample

This sample allows you to signon to CICS or change your password, from a
Notes document.

In summary:

This sample application uses the CICS CESN transaction.

1. The Notes application uses the appropriate MQEI Message and Service
definitions depending upon the CICS system you select.

2. The Notes application creates a message from the text you input, and
some system defined fields.

3. By clicking an action button, data from this message is sent to CICS to
initiate the CESN transaction, either for "Signon" or to "Change
Password".

4. CICS sends a reply back to the Lotus Notes sample application which
displays the results in the document.

Notes MQEI Samples database (mqeisamp.nsf)
This sample is implemented by the "CICS 3270 Direct Sample: signon" form.

Notes MQEI Definition database (mqeidata.nsf)
The MQEI Service definitions used by this sample are:

CICS3270DServOS2 (MQEI Service definition)
This is a CICS 3270 direct service that is used to run CESN on CICS for
OS/2.

Service Step - CESN, the initial transaction to be run.

Connection Manager - CICSMRO, the name required to use a CICS
server via a built-in Client.

CICS3270DServOPN (MQEI Service definition)
This is a CICS 3270 direct service that will be used to run CESN on
CICS for Open Systems.

Service Step - CESN, the initial transaction to be run

Connection Manager - CICSTCP, the default name for a TCP/IP
connected CICS server using a separate CICS Client.

370 MQSeries Enterprise Integrator for Lotus Notes User Guide

The MQEI Message definitions used by this sample are:

CICS3270DMsgOS2 - CESN map on CICS for OS/2

CICS3270DMsgOPN - CESN map on CICS for Open Systems

CICS3270DMsgCLR - Single byte for screen clear

CICS3270DMsgL01 - General line 1 response message

CICS3270DMsgL23 - General line 23 response message

CICS3270DMsgL24 - General line 24 response message

Appendix E: Sample using the CICS 3270 via MQSeries service 371

Before you run the CICS 3270 signon sample

This sample will not run successfully until you have completed the
following:

Domino Server system

Lotus Notes
Add the MQEI Samples database (mqeisamp.nsf) to your workspace.

Note If you are accessing a CICS for OS/2 server via a separate Client
you need to add the MQEI Definition database to your workspace and
change the Connection Manager in the CICS3270DServOS2 MQEI
Service definition to the name of the CICS server defined in your CICS
Client initialization file.

Note If you are accessing a CICS for Open Systems server and are not
using server name CICSTCP, add the MQEI Definition database to your
workspace and change the Connection Manager in the
CICS3270DServOPN MQEI Service definition to the name of the CICS
server defined in your CICS Client initialization file.

Add the MQEI Definition database (mqeidata.nsf) to your workspace.

Note The use of the MQEI Security database is optional in this sample.
For more information, see "Running the CICS 3270 Signon sample" later
in this appendix.

Ensure the MQEI LSX is installed correctly.

CICS Client
A CICS Client is required.

Unless you are using a local server and its built-in client, you will need
a separate CICS Client which you should start using the /n option.
The /c option (providing your CICS userid and password) is allowed
but unnecessary since the sample Notes application allows you enter
your userid and password.

CICS Server system
Make sure that you have a valid User ID and Authenticator (password)
on your CICS Server and that the CICS Client and CICS Server are
running.

For more information on system configurations, see "Possible system
configurations" in Chapter 2.

372 MQSeries Enterprise Integrator for Lotus Notes User Guide

Running the CICS 3270 signon sample

Signon to CICS
1. Check that all the appropriate setup work has been completed. See

"Before you run the CICS 3270 signon sample" for details.

2. From your Notes workspace, open the MQEI Samples database
(mqeisamp.nsf).

3. In the navigator pane, click "CICS 3270 direct".
If you have set everything up correctly, a CICS 3270 Direct document
should appear.

4. Select the type of CICS system you want to signon to from the dialogue
list.
For example, CICS for OS/2.

5. Enter your User Id and password into the fields on the form.

Note Alternatively, you can create an entry in the MQEI Security
database, update the appropriate MQEI Service definition to reference it
and leave the User Id and password fields blank.

6. Click the button on the document labeled, "Signon".

7. The status bar gives you information about what is happening when
you run the sample.

8. The Notes application displays the results returned by the CICS CESN
transaction.

Change your password on CICS
1. Follow steps 1-5 as you would to signon to CICS.

2. Enter and verify your new password in the new password fields.

3. Click the button, labeled "Change password".

4. The status bar gives you information about what is happening when
you run the sample.

5. The Notes application displays the results returned by the CICS CESN
transaction.

Appendix E: Sample using the CICS 3270 via MQSeries service 373

How the CICS 3270 signon sample works

Steps (for signon):

1. When you click on the "CICS 3270 signon" icon, Notes creates a
document using the "CICS 3270 Direct Sample: signon" form.

2. Before the document is opened, the Notes application creates
non-system specific MQEI objects (EISession and EIMessage). It does
this by invoking the appropriate create method which causes the MQEI
LSX to read the MQEI Definition database for the details of the MQEI
Message definitions used by this sample.

3. If the MQEI object creation is successful, the document is displayed.

4. When you enter the type of CICS system you want to signon to from
the dialog list, the Notes application creates the appropriate EIService
and connects to it.

5. If you didn't setup security data for the service, you need to enter your
User Id and password. If you did, you can let the Notes application
copy the User Id and password from the EIService.

374 MQSeries Enterprise Integrator for Lotus Notes User Guide

Note The MQEI does this automatically for the password field because
it is defined in the message as a SYSTEM_AUTHENTICATOR field.

6. When you click on either of the two buttons, "Signon" or "Change
Password" the Notes application builds the message and sends a CESN
transaction to CICS via the EPI.

7. To allow the CESN transaction time to run, the Notes application waits
on a timer before attempting to receive a reply.

8. CESN returns an empty map to your Notes application.

9. When the timer pops, the Notes application receives the returned
(empty) map from CESN.

10. The Notes application fills in the blank fields in the empty map with
your User Id and password.

11. Your Notes application sends the populated map back to the CICS
system and again waits on a timer.

12. The CESN transaction attempts to signon.

If the signon was successful:

13. CESN terminates and returns a one-line confirmation message.

14. When the timer pops, the Notes application receives the reply and
displays the results in a message box.

If the signon was unsuccessful:

15. CESN returns a map containing an error message.

16. When the timer pops, the Notes application receives the reply and
displays the error message in a message box.

17. The Notes application sends 'F3' to terminate the transaction and again
waits on a timer.

18. CESN terminates and returns a one line termination message.

19. When the timer pops, the Notes application receives the reply and
displays the termination message in a message box.

Appendix E: Sample using the CICS 3270 via MQSeries service 375

Error handling in the CICS 3270 signon sample

The CICS 3270 signon sample application uses variant message handling. If
the expected (valid) message is not received (EIRC_WRONG_MESSAGE),
then the invalid reply message is checked. Only if this is not accepted does
the sample flag an error.

For more information, see "Variant Messages" in Chapter 4.

Error checking takes place throughout this sample, using both ON ERROR
routines and EVENT handlers.

For more information, see "Error handling" in Chapter 4.

376 MQSeries Enterprise Integrator for Lotus Notes User Guide

Appendix F Sample using a CICS 3270 direct service
(FILEA)

This sample demonstrates how you can use the MQEI LSX in conjunction
with a Notes database to interact with a CICS/ESA 3270 application via the
CICS EPI interface.

For general information relating to all the MQEI samples, see "MQEI
Samples" in Chapter 4.

This appendix describes the sample that uses the CICS 3270 direct service:

Its design

Preparation required

How to run

How it works

For more information on programming for the CICS 3270 direct service, see
Chapter 10.

Restrictions
The following restrictions apply to this sample:

CICS 3270 direct services are not supported when running the MQEI
LSX under AIX, HP-UX, Sun Solaris, Windows 3.1, or WIN-OS/2. The
CICS 3270 samples must be run from OS/2, Windows 95 or Windows
NT.

CICS 3270 direct services and CICS DPL direct services may not be
used from the same Notes client or Domino Server agent at the same
time. If you wish to run both CICS 3270 direct and CICS DPL direct
samples, you must restart your Notes client.

Appendix E: Sample using the CICS 3270 via MQSeries service 377

Design of the CICS 3270 FILEA sample

This sample runs the CICS sample transaction ABRW on a CICS/ESA
server. This CICS transaction browses FILEA (a file created by running the
CICS/ESA sample). The transaction outputs four records at a time to a 3270
screen. This sample uses the MQEI to intercept the 3270 output and display
it in a Notes document.

In summary:

This sample application uses the CICS AMNU and ABRW transactions.

1. When you click the "Start browse" button, the sample Notes application
sends a transaction start request (AMNU) to CICS.

2. CICS runs the AMNU transaction which sends an empty AMNU map
back to the Notes application.

3. The Notes application sends a transaction start request (ABRW) to
CICS.

4. ABRW runs and sends back a map containing the first four records
from FILEA.

5. The Notes application receives the data and displays it in the
document.

6. Clicking the "More..." button, 'F1' is sent to your CICS system
requesting the next four entries in the file.

7. Clicking the "End browse" button, 'Clear' is sent to your CICS system
which ends the ABRW transaction.

Notes MQEI Samples database (mqeisamp.nsf)
This sample is implemented by the "CICS 3270 direct sample: FILEA" form.

Notes MQEI Definition database (mqeidata.nsf)
The MQEI Service definitions used by this sample are:

CICS3270DServMVS
This is a CICS 3270 direct service.

Service Step - AMNU, the initial transaction to be run.

Connection Manager - CICSSNA, the default name for a SNA
connected CICS server.

The MQEI Message definitions used by this sample are:

CICS3270DMsgMVSA - CICS BMS map DFH$AGA for AMNU

CICS3270DMsgMVSC - CICS BMS map DFH$AGC for ABRW

CICS3270DMsgL23 - General line 23 response message

378 MQSeries Enterprise Integrator for Lotus Notes User Guide

Before you run the CICS 3270 FILEA sample

This sample will not run successfully until you have completed the
following:

Domino Server system

Lotus Notes
Add the MQEI Samples database (mqeisamp.nsf) to your workspace.

If you are not using Server name CICSSNA, add the MQEI Definition
database (mqeidata.nsf) to your workspace and change the
CICS3270DServMVS MQEI Service definition to the name of the CICS
server defined in your CICS client initialization file.

Note The MQEI Security database is not used.

Ensure the MQEI LSX is installed correctly.

CICS client
CICS Client must be available on your Domino Server system

If you have defined your client connection to CICS/ESA with
ATTACHSEC=LOCAL you should start your CICS client with the /n
option.

Otherwise, you must provide your userid and password for your CICS
client, using the /c option.
For example:

CICSCLI /c=servername /u=userid /p=password

For more information, see your CICS Clients Administration
documentation.

Note You must ensure that the Client has sufficient authority to run the
AMNU and ABRW transactions.

MVS system

CICS/ESA server
Make sure that the CICS/ESA FILEA sample is installed and the CICS/ESA
server is up and running.

For more information on system configurations, see "Possible system
configurations" in Chapter 2.

Appendix E: Sample using the CICS 3270 via MQSeries service 379

Running the CICS 3270 FILEA sample

1. Check all the appropriate setup work has been completed. See "Before
you run the CICS 3270 FILEA sample" for details.

2. From your Notes workspace, open the MQEI Samples database.

3. From the navigator, select the "CICS 3270 FILEA" icon.
An MQSeries Enterprise Integrator "CICS 3270 Direct Sample: FILEA"
document is displayed on the screen. This document has three buttons:

Start browse - starts the ABRW transaction on your CICS system and
gets the first four records from FILEA.

More... - gets the next four records from FILEA.

End browse - Stops the ABRW transaction on your CICS system.

4. Click "Start browse" to start browsing the CICS file and get the first four
records.
The Notes application will display the first four entries in the Notes
document.

5. Click "More..." to display the next four records from the CICS file.

Note You can continue to browse the CICS file by pressing the
"More..." button until you get to the end of the file.

6. Click "Stop browse" to stop the ABRW transaction.

380 MQSeries Enterprise Integrator for Lotus Notes User Guide

How the CICS 3270 FILEA sample works

Steps:

1. When you click on the "CICS 3270 FILEA" icon, Notes creates a
document using the "CICS 3270 Direct Sample: FILEA" form.

2. Before the document is opened, the Notes application creates the MQEI
objects (EISession, EIMessage and EIService). It does this by invoking
the appropriate create method which causes the MQEI LSX to read the
MQEI Definition database for the details of the MQEI Service and
MQEI Message definitions used by this sample.

3. If the MQEI object creation is successful, the document is displayed.

4. When you click the "Start browse" button, the Notes application
initiates the AMNU transaction on your CICS/ESA server. A Notes

Appendix E: Sample using the CICS 3270 via MQSeries service 381

timer is enabled here to allow the AMNU transaction to run before the
Notes application attempts to get a reply from it.

5. When the Notes timer pops, the Notes application attempts to receive a
response from CICS.

6. If it is successful, the sample Notes application receives the message
from CICS containing an empty AMNU map.

7. The sample Notes application populates the empty AMNU map with
the ABRW transaction ID and sends it to CICS to run the ABRW
transaction.

8. The Notes timer is again enabled to allow ABRW time to run before the
Notes application attempts to receive a reply.

9. When the Notes timer pops, the Notes application attempts to receive a
response from CICS.

10. If it is successful, the sample Notes application receives the message
from CICS containing the first four records in FILEA.

Note If no message arrived back from CICS, the Notes application will
retry once and will then ask you if you want to retry for another three
seconds.

11. The sample Notes application displays the first four records of FILEA
in the Notes document.

12. When you click the "More..." button, the Notes application continues
the conversation with your CICS/ESA server, sends 'F1' to CICS, and
waits on the timer.

13. On receipt of 'F1', ABRW retrieves the next four records from FILEA
and sends a map containing them back to the sample Notes application.

14. When the Notes timer pops, the Notes application attempts to receive
the response from CICS.

15. If it is successful, the sample Notes application receives the message
from CICS containing the next four records in FILEA.

Note If no message arrived back from CICS, your LotusScript
application will retry once and will then ask you if you want to retry for
another three seconds.

16. The Notes application displays the next four records of FILEA in the
Notes document.

17. When you click the "End browse" button, the Notes application ends
the ABRW transaction by sending 'CLEAR' and waiting on a timer.

18. ABRW sends back an empty AMNU map.

19. When the timer pops, the Notes application receives the AMNU map
and sends 'CLEAR' again to end the conversation.

382 MQSeries Enterprise Integrator for Lotus Notes User Guide

Error handling in the CICS 3270 FILEA sample

The CICS 3270 FILEA sample application uses variant message handling. If
the expected (valid) message is not received (EIRC_WRONG_MESSAGE),
then the invalid reply message is checked. Only if this is not accepted does
the sample flag an error.

For more information, see "Variant Messages" in Chapter 4.

Error checking takes place throughout this sample, using both ON ERROR
routines and EVENT handlers.

For more information, see "Error handling" in Chapter 4.

Appendix E: Sample using the CICS 3270 via MQSeries service 383

384 MQSeries Enterprise Integrator for Lotus Notes User Guide

Index

A
AbendCode Property, 283
After installation, 55
AIX - MQEI installation, 26
AttentionId Property, 322
Authenticator Property, 284

security, 137, 138
AuthenticatorLength Property,
284

B
Basic Mapping Support (BMS),
195
Before you install the
MQEI LSX, 14
BMS map conversion utility

after running it, 199
before you run it, 197
how it works, 196
how to run, 198

C
Categories view, 76
CharacterSet Property in
EIService Class, 285
CharacterSet Property in
EISession Class, 272
CICS 3270 direct service

connecting to CICS,
187
creating an MQEI
Service definition, 186
creating MQEI
Message definitions,
187

disconnecting from
CICS, 190
error handling, 192
mapping MQEI
properties, 194
programming a
conversation, 191
receiving a message,
189
sending a message, 188
support provided, 185
unsupported CICS
functions, 193

CICS 3270 FILEA sample
before you run it, 379
design, 378
error handling, 383
how it works, 381
restrictions, 377
running it, 380

CICS 3270 signon sample
before you run it, 372
design, 370
error handling, 376
how it works, 374
restrictions, 369
running it, 373

CICS DPL direct sample
before you run it, 365
design, 364
error handling, 368
how it works, 367
restrictions, 363
running it, 366

CICS DPL direct service
connecting to CICS,
178
creating an MQEI
Service definition, 178
creating MQEI
Message definitions,
178
data conversion, 183
disconnecting from
CICS, 180

error handling, 182
mapping MQEI
properties, 184
programming a
conversation, 181
receiving a message,
180
security, 182
sending a message, 179
support provided, 177

CICS DPL via MQSeries sample
before you run it, 358
design, 356
error handling, 362
how it works, 361
running it, 360

CICS DPL via MQSeries service
connecting to
MQSeries, 167
creating an MQEI
Service definition, 166
creating MQEI
Message definitions,
167
data conversion, 172
disconnecting from
MQSeries, 169
effect of Connect, 174
effect of SendMessage,
174
error handling, 170
mapping MQEI
properties, 173
programming a
conversation, 170
receiving a message,
169
security, 171
sending a message, 168
support provided, 165
unsupported MQSeries
functions, 171

CICS home page on the WWW,
11
CICS publications, 11

ClearErrorCodes Method in
EISendOptions Class, 331
ClearErrorCodes Method in
EIMessage Class, 310
ClearErrorCodes Method in
EIReceiveOptions Class, 338
ClearErrorCodes Method in
EIService Class, 298
ClearErrorCodes Method in
EISession Class, 275
Code level tool, 202
CompletionCode Property in
EIMessage Class, 308
CompletionCode Property in
EIReceiveOptions Class, 333
CompletionCode Property in
EISendOptions Class, 323
CompletionCode Property in
EIService Class, 285
CompletionCode Property in
EISession Class, 272
Components of the MQEI LSX,
4
Configuration options, 22
Connect Method, 299
ConnectionLength Property, 286
ConnectionManager Property,
286
ConnectionManagerLength
Property, 287
CreateMessage Method, 276
CreateReceiveOptions Method,
277
CreateSendOptions Method, 277
CreateService Method, 278

D
Data conversion

by the MQEI LSX, 125
CICS 3270 direct
service, 193
CICS DPL direct
specific, 183

CICS DPL via
MQSeries specific, 172
IMS via MQSeries
specific, 161
Native MQSeries
specific, 150
questions answered,
208

Data type
AUTHENTICATOR,
139
protecting fields, 139
SYSTEM_AUTHENTI
CATOR, 139

DefinitionDBName Property,
273
Delivery options, 324
Delivery Property, 324
DFHMDF macro, 195
DFHMDI macro, 195
DFHMSD macro, 195
Differences, 8

MQEI and MQLSX, 8,
9

Disconnect Method, 300
Disk space requirements, 14, 16

E
Editing your initialization file,
42
EILSX_ERROR, 127
EIMessage Class, 305

ClearErrorCodes
Method, 310
CompletionCode
Property, 308
FieldCount Property,
308
Format Property, 309
GetColor Method, 311
GetDataType Method,
312
GetFieldName Method,
313

GetFieldValue Method,
314
GetHighLight Method,
315
GetIntensity Method,
316
GetLength Method,
317
GetProtection Method,
318
GetSegment Method,
319
Name Property, 309
ReasonCode Property,
310
SetFieldValue Method,
320

EIMessage field
getting the value, 114
setting the value, 108

EIReceiveOptions Class, 332
ClearErrorCodes
Method, 338
CompletionCode
Property, 333
Format Property, 333
Identifier Property, 334
MessageType Property,
335
ReasonCode Property,
335
ReceiveType Property,
336
WaitInterval Property,
337
WaitType Property, 338

EISendOptions Class, 321
AttentionId Property,
322
ClearErrorCodes
Method, 331
CompletionCode
Property, 323
Delivery Property, 324
Identifier Property, 325

MessageType Property,
326
Priority Property, 327
ReasonCode Property,
328
SelectedField Property,
329
UnitOfWork Property,
330

EIService Class, 280
AbendCode Property,
283
Authenticator Property,
284
Authenticator Property
and security, 137, 138
AuthenticatorLength
Property, 284
CharacterSet Property,
285
ClearErrorCodes
Method, 298
CompletionCode
Property, 285
Connect Method, 299
ConnectionLength
Property, 286
ConnectionManager
Property, 286
ConnectionManagerLe
ngth Property, 287
Disconnect Method,
300
IdentifierLength
Property, 287
InboundConnection
Property, 288
MaxPriority Property,
288
Name Property, 289
OutboundConnection
Property, 289
PrimarySystemErrorCo
de Property, 290

ReasonCode Property,
290
ReceiveMessage
Method, 301
SecondarySystemError
Code Property, 291
SendMessage Method,
303
ServiceContext
Property, 293
ServiceContextLength
Property, 293
ServiceStep Property,
292
ServiceStepLength
Property, 294
ServiceType Property,
294
SystemErrorText
Property, 295
SystemName Property,
295
SystemNameLength
Property, 296
UserId Property, 297
UserId Property and
security, 137
UserIdLength Property,
298

EISession Class, 269
CharacterSet Property,
272
ClearErrorCodes
Method, 275
CompletionCode
Property, 272
CreateMessage
Method, 276
CreateReceiveOptions
Method, 277
CreateSendOptions
Method, 277
CreateService Method,
278

DefinitionDBName
Property, 273
error handling, 132
PrimarySystemErrorCo
de Property, 273
ReasonCode Property,
274
SecondarySystemError
Code Property, 274
SecurityDBName
Property, 275
SystemErrorText
Property, 275

Environment variables
general information, 24
MQEI_INI_PATH, 42,
269
MQEI_TRACE, 212
MQEI_TRACE_LEVE
L, 212
MQEI_TRACE_PATH,
212

Error handling, 126, 127, 128
EISession object, 132
subsystems, 211
writing your own event
routines, 129

Event handlers, 128
error handling within,
128, 129
writing routines, 129

Event handling, 133

F
Features of the MQEI, 2, 3
Field definitions

changing
, 88
changing, 88
changing by changing
the Field Type
information, 89
copying, 87
creating, 87

deleting, 88
introduction, 69
Moving position within
an MQEI Message
definition, 89
using, 86
viewing, 88

Field Type definitions
changing, 85
copying, 84
creating, 84
deleting, 85
introduction, 67
using, 83
viewing, 84

FieldCount Property, 308
First time use, 55

problem with dynamic
loading libraries, 204

Fixed length string, 108, 109
Format Property in EIMessage
Class, 309
Format Property in
EIReceiveOptions Class, 333

G
GetColor Method, 311
GetDataType Method, 312
GetFieldName Method, 313
GetFieldValue Method, 314
GetHighLight Method, 315
GetIntensity Method, 316
GetLength Method, 317
GetProtection Method, 318
GetSegment Method, 319
Getting fields in an EIMessage
by index, 118
Getting started, 55
Getting the value of a field in an
EIMessage, 114

H
HP-UX - MQEI installation, 29

I
IBM home page on the WWW,
12
Identifier Property in
EIReceiveOptions Class, 334
Identifier Property in
EISendOptions Class, 325
IdentifierLength Property, 287
IMS publications, 12
IMS via MQSeries sample

before you run it, 350
design, 348
error handling, 354
how it works, 353
running it, 352

IMS via MQSeries service
connecting to
MQSeries, 157
creating an MQEI
Service definition, 156
creating MQEI
Message definitions,
156
data conversion, 161
disconnecting from
MQSeries, 159
effect of the Connect
method, 163
effect of the
SendMessage method,
163
error handling, 159
mapping MQEI
properties, 162
programming a
conversation, 159
receiving a message,
158
security, 160
sending a message, 157
support provided, 155
unsupported MQSeries
functions, 159

variant messages, 119,
121

InboundConnection Property,
288
Information

related publications, 10
Initialization File, 269
Installation

AIX, 26
CICS requirements, 14,
15
HP-UX, 29
MQSeries
requirements, 14
OS/2, 31
Sun Solaris, 33
Windows 3.1, 38
Windows 95, 35
Windows for
Workgroups, 38
Windows NT, 35
Windows WIN OS/2,
38

Installing for the first time, 40
Installing on AIX, 26
Installing on HP-UX, 29
Installing on OS/2, 31
Installing on Sun Solaris, 33
Installing on WIN OS/2, 38
Installing on Windows 3.1, 38
Installing on Windows 95, 35
Installing on Windows for
Workgroups, 38
Installing on Windows NT, 35
Introduction to the MQEI, 2

L
Leaf-node queue manager, 14,
15
Lotus home page on the WWW,
12
LotusScript publications, 12

M
Mapping MQEI properties to
other services

CICS 3270 direct
service, 194
CICS DPL direct
service, 184
CICS DPL via
MQSeries service, 173
IMS via MQSeries
service, 162
Native MQSeries
service, 151

MaxPriority Property, 288
Message Subsets, 119
Messages using tags, 119
MessageType Property in
EIReceiveOptions Class, 335
MessageType Property in
EISendOptions Class, 326
MQEI_ECI_LIB, 24, 25
MQEI_EPI_LIB, 24, 25
MQEI_INI_PATH, 24, 42, 269
mqei.ini file, 42

example, 42, 48
setting up and editing,
42

MQEI_MQ_LIB, 24, 25
MQEI_TRACE, 24, 212
MQEI_TRACE_LEVEL, 24,
212
MQEI_TRACE_PATH, 24, 25,
212
MQEI_XLAT_PATH, 24, 25
MQEI applications, 102
MQEI Compared with MQLSX,
8
MQEI databases, 59

about, 60
applying service
upgrades to, 60, 61
displaying text, 207
general information, 60

location of, 60, 61
MQEI Definition database

categories view, 76
mqei.ini file, 42, 46
setting up, 64
when EIService object
created, 138

MQEI Definitions
about, 62
categories view, 76
overview, 63

MQEI environment variables,
24
MQEI LSX

application design, 101,
135
configuration options,
22
Constants, 267
disk space
requirements, 14, 16
dynamic loading
libraries, 204
introduction, 1
LotusScript example,
105
Objectives, 4
programming hints,
101
Reference information,
267
to use in your
LotusScript program,
103, 126

MQEI Message definition
building, 65, 66
categorizing, 76

MQEI Message definitions
categorizing, 80
changing, 79
copying, 78
creating, 78
deleting, 79
deleting built
definitions, 82

how to build, 80
introduction, 65
using, 77
viewing, 79
viewing built
definitions, 82

MQEI package, 14, 17
MQEI Samples, 103
MQEI Security database

changing a password,
140
introduction, 93
mqei.ini file, 42, 47
setting up, 94
when EIService object
created, 138

MQEI Security definitions
changing, 99
copying, 98
creating, 98
deleting, 99
introduction, 95
using, 97
viewing, 98

MQEI Service definitions
categorizing, 76, 92
changing, 92
copying, 91
creating, 91
deleting, 92
introduction, 73
using, 90
viewing, 91

MQEIBMS utility, 196
MQEILEV utility, 202
MQLSX Compared with MQEI,
8
MQSeries Enterprise Integrator
for Lotus Notes (MQEI), 8
MQSeries for Windows, 14, 15
MQSeries home page on the
WWW, 10
MQSeries link LotusScript
Extension (MQLSX), 8, 9

MQSeries LotusScript Class
descriptions, 267
MQSeries publications, 10

N
Name Property in EIMessage
Class, 309
Name Property in EIService
Class, 289
Native MQSeries sample

before you run it, 342
design, 340
error handling, 346
how it works, 345
running it, 343

Native MQSeries service
connecting to
MQSeries, 144
creating an MQEI
Service definition, 144
creating MQEI
Message definitions,
144
data conversion, 150
disconnecting from
MQSeries, 148
effect of the Connect
method, 152
effect of the
SendMessage method,
152
error handling, 148
mapping MQEI
properties, 151
programming a
conversation, 148
receiving a message,
147
security, 149
sending a message, 145
support provided, 143
unsupported MQSeries
functions, 148

variant messages, 119,
121

Notes agents, 126

O
OS/2 - MQEI installation, 31
OutboundConnection Property,
289

P
Passing parameters to the MQEI
LSX, 268
Passwords for enterprise systems

data type options, 139
options on setting, 137,
138
when they change, 140

Post-Installation Check
program, 52
Pre-installation, 14
PrimarySystemErrorCode
Property in EIService Class, 290
PrimarySystemErrorCode
Property in EISession Class, 273
Priority Property, 327
Programming a conversation

CICS 3270 direct
service, 191
CICS DPL direct
service, 181
CICS DPL via
MQSeries service, 170
IMS via MQSeries
service, 159
Native MQSeries
service, 148

R
Reason Codes

0 - 129, 226
1000 - 13999, 240
130 - 999, 232

14000 - 24999, 246
Reason codes

25000 - 45000, 260
ReasonCode Property in
EIMessage Class, 310
ReasonCode Property in
EIReceiveOptions Class, 335
ReasonCode Property in
EISendOptions Class, 328
ReasonCode Property in
EIService Class, 290
ReasonCode Property in
EISession Class, 274
ReceiveMessage Method, 301
ReceiveType Property, 336

S
Sample applications

CICS 3270 FILEA
sample, 377, 378, 379,
380, 381, 383
CICS 3270 signon
sample, 369, 370, 372,
373, 374, 376
CICS DPL direct
sample, 363, 364, 365,
366, 367, 368
CICS DPL via
MQSeries, 356, 358,
360, 361, 362
IMS via MQSeries,
348, 350, 352, 353, 354
Native MQSeries
sample, 340, 342, 343,
345, 346

SecondarySystemErrorCode
Property in EIService Class, 291
SecondarySystemErrorCode
Property in EISession Class, 274
Security

CICS 3270 direct
service, 192
CICS DPL direct
specific, 182

CICS DPL via
MQSeries specific, 171
general, 136
IMS via MQSeries
specific, 160
Native MQSeries
specific, 149
Notes agents, 141

SecurityDBName Property, 275
SelectedField Property, 329
SendMessage Method, 303
ServiceContext Property, 293
ServiceContextLength Property,
293
ServiceStep Property, 292
ServiceStepLength Property,
294
ServiceType Property, 294
SetFieldValue Method, 320
Setting the Authenticator
property, 137, 138
Setting the UserId and
Authenticator Properties, 138
Setting the value of a field in an
EIMessage, 108
Sun Solaris - MQEI installation,
33
SystemErrorText Property in
EIService Class, 295
SystemErrorText Property in
EISession Class, 275
SystemName Property, 295
SystemNameLength Property,
296

T
Trace file example, 212, 215
Trace utility, 212

U
Unit of Work

CICS 3270 direct
service, 191

CICS DPL direct
service, 181
CICS DPL via
MQSeries service, 170
IMS via MQSeries
service, 159
Native MQSeries
service, 148

Unit of work
controlling, 124

UnitOfWork Property, 330
Updating your MQEI
installation, 41
UserId Property, 297

security, 137
UserIdLength Property, 298

V
Variant messages, 119

message Subsets, 119
Varying length messages, 123
Varying length string, 108, 109

W
WaitInterval Property, 337
WaitType Property, 338
Warning events, 133
WIN-OS/2

leaf-node queue
manager, 14, 15
MQSeries for
Windows, 14, 15

WIN OS/2 - MQEI installation,
38
Windows 3.1

leaf-node queue
manager, 14, 15
MQEI installation, 38
MQSeries for
Windows, 14, 15

Windows 95
leaf-node queue
manager, 14, 15

MQEI installation, 35
MQSeries for
Windows, 14, 15

Windows for Workgroups
leaf-node queue
manager, 14, 15
MQEI installation, 38
MQSeries for
Windows, 14, 15

Windows NT - MQEI
installation, 35

Sending your comments to IBM

MQSeries Enterprise Integrator for Lotus Notes

User's Guide - Release 1.0

If you especially like or dislike anything about this book, please use one of
the methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions,
and on the accuracy, organization, subject matter, or completeness of this
book. Please limit your comments to the information in this book and the
way in which the information is presented.

To request additional publications, or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to
use or distribute your comments in any way it believes appropriate,
without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

By fax:
- From outside the U.K., after your international access code

use 44 1962 870229
- From within the UK., use 01962 870229

Electronically, use the appropriate network ID:
- IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink: WINVMD(IDRCF)
- Internet: idrcf@winvmd.vnet.ibm.com
- Lotus Notes: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

The publication title

The page number or topic to which your comment applies

Your name and address/telephone number/fax number/network ID.

