

MQSeries IBM

Clients

 GC33-1632-05

MQSeries IBM

Clients

 GC33-1632-05

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix, “Notices” on
page 151.

Sixth edition (February 1998)

This edition applies to the following products:

� MQSeries for AIX Version 5
� MQSeries for AT&T GIS UNIX Version 2 Release 2
� MQSeries for Digital OpenVMS Version 2 Release 2
� MQSeries for HP-UX Version 5
� MQSeries for MVS/ESA Version 1 Release 2
� MQSeries for OS/2 Warp Version 5

| � MQSeries for AS/400 Version 4 Release 2
� MQSeries for SINIX and DC/OSx Version 2 Release 2
� MQSeries for SunOS Version 2 Release 2
� MQSeries for Sun Solaris Version 5

| � MQSeries for Tandem NonStop Kernel Version 2.2
� MQSeries for Windows NT Version 5

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994,1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . vii
Terms used in this book . vii
What you need to know . vii
How to use this book . viii
MQSeries publications . viii

MQSeries cross-platform publications . viii
MQSeries platform-specific publications . x
MQSeries Level 1 product publications . xii
Softcopy books . xii

MQSeries information available on the Internet xiii
Related publications . xiii

Summary of changes . xv
| Changes for this edition . xv

Changes for the Fifth Edition . xv
Changes for the Fourth Edition . xv

Part 1. Overview and installation . 1

Chapter 1. Overview . 5
What is an MQSeries client? . 5
Why use MQSeries clients? . 6
How do I set up an MQSeries client? . 6

Chapter 2. Preparing for installation . 9
Hardware and software requirements . 9
Support for MQSeries clients . 9
How the client connects to the server . 11
Communications . 12
AIX client: hardware and software required . 14
AT&T GIS UNIX (NCR UNIX) client: hardware and software required 16
DOS client: hardware and software required . 17
Digital OpenVMS client: hardware and software required 18
HP-UX client: hardware and software required 19
OS/2 Warp client: hardware and software required 20
SINIX and DC/OSx client: hardware and software required 22
SunOS client: hardware and software required 24
Sun Solaris client: hardware and software required 25

| VM/ESA client: hardware and software required 26
Windows 3.1 client: hardware and software required 27
Windows 95 client: hardware and software required 28
Windows NT client: hardware and software required 29

Chapter 3. Installing MQSeries client components from Version 5
products . 31

Installing an MQSeries client and server system 31
Clients supplied with MQSeries Version 5 products 31
Components you can install . 32
Installing MQSeries clients on the same machine as the server 35

 Copyright IBM Corp. 1994,1998 iii

 Contents

Removing MQSeries clients . 35
Installing on AIX . 36
Installing on DOS . 39
Installing on HP-UX . 39
Installing on OS/2 Warp . 41
Installing on Sun Solaris . 43
Installing on Windows 3.1 . 45
Installing on Windows NT or Windows 95 . 47

Chapter 4. Installing MQSeries clients with non-Version 5 products . . . 51
MQSeries clients from IBM Transaction Processing SupportPacs 51
MQSeries clients from the MQSeries products 52
Installing the MQSeries server . 52
Installing MQSeries clients from MQSeries for Digital OpenVMS 54
Installing MQSeries clients from MQSeries for UNIX systems 58
Changing config.sys and autoexec.bat . 62

| MQSeries Client for VM/ESA Version 2 Release 3 63

Chapter 5. Verifying the installation . 65
How does it work? . 65
The installation used for the example . 65
Setting up the server (not MVS/ESA or AS/400) 66
Setting up the server (MVS/ESA) . 67
Setting up the server (AS/400) . 67
Setting up the MQSeries client . 68
Putting a message on the queue . 69
Getting the message from the queue . 70
Ending verification . 71

Part 2. System administration . 73

Chapter 6. Configuring communication links 75
Deciding which communication type to use . 75
Defining a TCP/IP connection . 77
Defining an LU 6.2 connection . 82
Defining a NetBIOS connection . 91
Defining an SPX connection . 93
Defining a DECnet connection . 96

Chapter 7. Using channels . 99
What is a channel? . 99
Connecting the MQSeries client and server - channel definitions 100
Creating one definition on the MQSeries client and the other on the server . 102
Creating both definitions on the server . 105
Migrating from MQSeries for OS/2 V2.0 and MQSeries for AIX V2.1 or V2.2 108
Creating a queue manager and starting MQSC on the server 108

Chapter 8. Using MQSeries environment variables 111
MQCCSID . 112
MQCHLLIB . 112
MQCHLTAB . 113
MQDATA (DOS, Windows 3.1, and Windows NT only) 113
MQNAME . 114

iv MQSeries Clients

 Contents

MQSERVER . 114
MQTRACE (DOS, Windows 3.1, VM/ESA) . 116
MQSWORKPATH (OS/2 only) . 116

Chapter 9. Setting up MQSeries client security 117
Authentication . 117
Access control . 118

Part 3. Application programming . 121

Chapter 10. Using the message queue interface (MQI) 123
Limiting the size of a message . 123
Choosing client or server coded character set identifier (CCSID) 123
Controlling application in a Windows 3.1 environment 124
Designing applications . 124
Using MQINQ . 124
Using syncpoint coordination . 124
Using MQCONNX . 125

Chapter 11. Building applications for MQSeries clients 127
Running applications in the MQSeries client environment 127
Triggering in the client environment . 128
Linking C applications with the MQSeries client code 130
Linking C++ applications with the MQSeries client code 132
Linking COBOL applications with the MQSeries client code 132
Linking PL/I applications with the MQSeries client code 133

Chapter 12. Running applications on MQSeries clients 135
Using MQSERVER . 136
Using DEFINE CHANNEL . 136
Role of the client channel definition table . 136
Examples of MQCONN calls . 137

Chapter 13. Solving problems . 141
MQSeries client fails to make a connection . 141
Stopping MQSeries clients . 141
Error messages with MQSeries clients . 142
How to read the error log and FFDCs for DOS and Windows 3.1 142
MQSeries environment variables . 143
Using trace on DOS and Windows 3.1 . 143
Using trace on OS/2, Windows NT, and Windows 95 144
Using trace on AIX and AT&T GIS UNIX . 145
Using trace on Digital OpenVMS, HP-UX, SINIX, DC/OSx, SunOS, and Sun

Solaris . 146
| Using trace on VM/ESA . 148

Part 4. Appendix . 149

Appendix. Notices . 151
Trademarks . 151

 Contents v

 Figures � Tables

Part 5. Glossary and index . 153

Glossary of terms and abbreviations . 155

Index . 159

 Figures

1. LU 6.2 communication setup panel - initiated end 89
2. Extract from a DOS client trace . 144

| 3. Extract from a VM/ESA client trace . 148

 Tables

1. Transmission protocols for MQI channels 12
2. Transmission protocols - combination of MQSeries client and server

platforms . 76
3. Settings on the MQSeries client OS/2 system for a server platform . . . 82
4. Settings on the MQSeries client Windows NT system for a server platform 84
5. Settings on the MQSeries client UNIX system for a server platform . . . 86
6. Settings on the MQSeries client SunOS system for a server platform . . 88

vi MQSeries Clients

 About this book

About this book

This book contains information about the MQSeries client and server environment.
It describes how to install an MQSeries client, how to configure the communication
links and how to set up MQSeries channels so that your MQSeries applications can
run on the client machine.

The MQSeries environment variables are described and there are chapters about
building and running your applications on an MQSeries client.

Most of the information you need to know about MQSeries clients is in this book.
Some of the reference material in the other MQSeries books includes information
about MQSeries clients. That reference material is not repeated here.

This book is intended for system administrators, for anyone who installs and
configures MQSeries products for the client-server environment and for application
programmers who write programs to make use of the Message Queue Interface
(MQI).

Terms used in this book
In this book, references to “UNIX systems” include:

 AIX
AT&T** GIS UNIX
(This platform has become NCR UNIX)

 HP-UX**
SINIX** and DC/OSx**

 SunOS**
 Sun Solaris**

References to MQSeries for “UNIX systems” include:

IBM MQSeries for AIX Version 5
IBM MQSeries for AT&T GIS UNIX Version 2.2
IBM MQSeries for HP-UX Version 5
IBM MQSeries for SINIX and DC/OSx** Version 2.2
IBM MQSeries for SunOS Version 2.2
IBM MQSeries for Sun Solaris Version 5

What you need to know
You should have:

� Experience in installing and configuring the system you use for the server:
| AS/400, Digital OpenVMS, MVS/ESA, OS/2, Tandem NonStop Kernel (NSK),

UNIX systems, or Windows NT

� Experience with any client platforms that you will be using, for example, DOS,
Windows 3.1, and Windows 95

� Understanding of the purpose of the Message Queue Interface (MQI)

� Experience of MQSeries programs in general, or familiarity with the content of
the other MQSeries publications

 Copyright IBM Corp. 1994,1998 vii

 MQSeries publications

How to use this book
Read Chapter 1, “Overview” on page 5 first as a brief introduction. There you will
see “How do I set up an MQSeries client?” on page 6 which gives you a list of
tasks that you may need to carry out, and this guides you through the rest of the
book.

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

� MQSeries for AIX V5.0
| � MQSeries for AS/400 V4R2

� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.0
� MQSeries for MVS/ESA V1.2
� MQSeries for OS/2 Warp V5.0
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for SunOS V2.2
� MQSeries for Sun Solaris V5.0

| � MQSeries for Tandem NonStop Kernel V2.2
� MQSeries Three Tier
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.0

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xii. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

viii MQSeries Clients

 MQSeries publications

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, the
dead-letter queue handler, and the MQSeries links for Lotus Notes**. It also
includes the syntax of the MQSeries control commands.

This book applies to the following MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
programmable command formats (PCFs), and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

 About this book ix

 MQSeries publications

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by V5.0 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and by MQSeries clients supplied with those
products and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
 � Windows 95

| MQSeries C++ is also supported by MQSeries for AS/400 V4R2.

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.0 Quick Beginnings, GC33-1867

| MQSeries for AS/400

| MQSeries for AS/400 Version 4 Release 2 Licensed Program Specifications,
| GC33-1958

| MQSeries for AS/400 Version 4 Release 2 Administration Guide, GC33-1956

| MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
| (RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2.2 System Management Guide,
GC33-1791

MQSeries for HP-UX

MQSeries for HP-UX V5.0 Quick Beginnings, GC33-1869

x MQSeries Clients

 MQSeries publications

MQSeries for MVS/ESA

MQSeries for MVS/ESA Version 1 Release 2 Licensed Program Specifications,
GC33-1350

MQSeries for MVS/ESA Version 1 Release 2 Program Directory

MQSeries for MVS/ESA Version 1 Release 2 System Management Guide,
SC33-0806

MQSeries for MVS/ESA Version 1 Release 2 Messages and Codes,
GC33-0819

MQSeries for MVS/ESA Version 1 Release 2 Problem Determination Guide,
GC33-0808

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.0 Quick Beginnings, GC33-1868

MQSeries link for R/3

MQSeries link for R/3 Version 1.0 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.0 Quick Beginnings, GC33-1870

| MQSeries for Tandem NonStop Kernel

| MQSeries for Tandem NonStop Kernel Version 2.2 System Management
| Guide, GC33-1893

MQSeries Three Tier

MQSeries Three Tier Administration Guide, SC33-1451
MQSeries Three Tier Reference Summary, SX33-6098
MQSeries Three Tier Application Design, SC33-1636
MQSeries Three Tier Application Programming, SC33-1452

MQSeries for Windows

MQSeries for Windows Version 2.0 User’s Guide, GC33-1822

MQSeries for Windows Version 2.1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.0 Quick Beginnings, GC33-1871

 About this book xi

 MQSeries publications

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for SCO UNIX Version 1.4 User’s Guide, SC33-1378

MQSeries for UnixWare Version 1.4.1 User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 4 Licensed Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 4 User’s Guide, SC33-1142

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
products, including all MQSeries V5.0 products. Books in PostScript format can be
printed on a PostScript printer or viewed with a suitable viewer.

 HTML format
The MQSeries documentation is provided in HTML format with these MQSeries
products:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

The MQSeries books are also available from the MQSeries product family Web
site:

| http://www.software.ibm.com/ts/mqseries/

xii MQSeries Clients

 MQSeries on the Internet � Related publications

Information Presentation Facility (IPF) format
In the OS/2 environment, the MQSeries documentation is supplied in IBM IPF
format on the MQSeries product CD-ROM.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

MQSeries information available on the Internet
MQSeries web site

The MQSeries product family Web site is at:

| http://www.software.ibm.com/ts/mqseries/

| By following links from this Web site you can:

| � Obtain latest information about the MQSeries product family.

| � Access the MQSeries books in HTML format.

| � Download MQSeries SupportPacs.

 Related publications
MQSeries Client for VM/ESA
VM/ESA VMS Application Development Guide, Version 2, Release 3.0 , SC24-5761

 About this book xiii

 Related publications

xiv MQSeries Clients

 Changes

Summary of changes

| Changes to the previous edition are marked in the left-hand margin with bars.

| Changes for this edition
| The following products are included:

| � MQSeries for AS/400 Version 4 Release 2
| � MQSeries for Tandem NonStop Kernel Version 2.2
| � MQSeries Client for VM/ESA Version 2 Release 3

Changes for the Fifth Edition
The MQSeries Version 5 products were included:

� MQSeries for AIX Version 5
� MQSeries for HP-UX Version 5
� MQSeries for OS/2 Warp Version 5
� MQSeries for Sun Solaris Version 5
� MQSeries for Windows NT Version 5

The following products were also included:

� MQSeries for Digital OpenVMS Version 2.2
� MQSeries for MVS/ESA Version 1 Release 2
� MQSeries for OS/400 Version 3 Release 7

Changes for the Fourth Edition
The following products were included:

� MQSeries for MVS/ESA Version 1 Release 1.4
� MQSeries for OS/400 Version 3 Release 2
� MQSeries for SINIX and DC/OSx Version 2.2
� MQSeries for SunOS Version 2.2
� MQSeries for Sun Solaris Version 2.2

 Copyright IBM Corp. 1994,1998 xv

 Changes

xvi MQSeries Clients

 Overview and installation

Part 1. Overview and installation

Chapter 1. Overview . 5
What is an MQSeries client? . 5
Why use MQSeries clients? . 6

What applications run on an MQSeries client? 6
How do I set up an MQSeries client? . 6

Chapter 2. Preparing for installation . 9
Hardware and software requirements . 9
Support for MQSeries clients . 9

MQSeries clients on other platforms . 11
How the client connects to the server . 11

Client and queue manager on the same machine 11
Clients on different platforms . 12

Communications . 12
Performance considerations . 13

AIX client: hardware and software required . 14
Programming requirements . 14
Compilers for MQSeries applications on AIX clients 14

AT&T GIS UNIX (NCR UNIX) client: hardware and software required 16
Programming requirements . 16
Compiler for MQSeries applications on AT&T GIS UNIX clients 16

DOS client: hardware and software required . 17
Programming requirements . 17
Compilers for MQSeries applications on DOS clients 17

Digital OpenVMS client: hardware and software required 18
Programming requirements . 18
Compilers for MQSeries applications on Digital OpenVMS clients 18

HP-UX client: hardware and software required 19
Programming requirements . 19
Compilers for MQSeries applications on HP-UX clients 19

OS/2 Warp client: hardware and software required 20
Programming requirements . 20
Compilers for MQSeries applications on OS/2 clients 20

SINIX and DC/OSx client: hardware and software required 22
Programming requirements . 22
Compilers for MQSeries applications on SINIX and DC/OSx clients 23

SunOS client: hardware and software required 24
Programming requirements . 24
Compilers for MQSeries applications on SunOS clients 24

Sun Solaris client: hardware and software required 25
Programming requirements . 25
Compilers for MQSeries applications on Sun Solaris clients 25

| VM/ESA client: hardware and software required 26
| Programming requirements . 26
| Compilers for MQSeries applications on VM/ESA clients 26

Windows 3.1 client: hardware and software required 27
Programming requirements . 27
Compilers for MQSeries applications on Windows 3.1 clients 27

Windows 95 client: hardware and software required 28
Programming requirements . 28

 Copyright IBM Corp. 1994,1998 1

 Overview and installation

Compilers for MQSeries applications on Windows 95 clients 28
Windows NT client: hardware and software required 29

Programming requirements . 29
Compilers for MQSeries applications on Windows NT clients 29

Chapter 3. Installing MQSeries client components from Version 5
products . 31

Installing an MQSeries client and server system 31
Clients supplied with MQSeries Version 5 products 31
Components you can install . 32

Components for UNIX platforms . 32
Components for OS/2 Warp and Windows NT 33
Components for Windows 95 . 34
Components for DOS and Windows 3.1 . 34

Installing MQSeries clients on the same machine as the server 35
Removing MQSeries clients . 35
Installing on AIX . 36

Before installation . 36
Creating the mqm user ID and group . 36
Easy installation . 37
Custom installation . 38
Removing an MQSeries client from AIX . 39

Installing on DOS . 39
| Using Setup . 39

Removing an MQSeries client from DOS . 39
Installing on HP-UX . 39

Before installation . 40
Installation . 40
Kernel configuration . 40
Translated messages . 41
Removing an MQSeries client from HP-UX 41

Installing on OS/2 Warp . 41
Installation . 41
Unattended installation . 43
Removing an MQSeries client from OS/2 . 43

Installing on Sun Solaris . 43
Before installation . 43
Installation . 44
Kernel configuration . 44
Translated messages . 45
Removing an MQSeries client from Sun Solaris 45

Installing on Windows 3.1 . 45
Installation . 45
Removing an MQSeries client from Windows 3.1 46

Installing on Windows NT or Windows 95 . 47
Installation . 47

| Silent install on Windows 95 and Windows NT 48
Removing an MQSeries client from Windows NT and Windows 95 49

Chapter 4. Installing MQSeries clients with non-Version 5 products . . . 51
MQSeries clients from IBM Transaction Processing SupportPacs 51
MQSeries clients from the MQSeries products 52

MQSeries client and server on the same platform 52
MQSeries client and server on different platforms 52

2 MQSeries Clients

 Overview and installation

Installing the MQSeries server . 52
MQSeries client files on the server . 53

Installing MQSeries clients from MQSeries for Digital OpenVMS 54
Installing an MQSeries client on Digital OpenVMS from Digital OpenVMS . 54
Installing an MQSeries client on OS/2 from Digital OpenVMS 55
Installing an MQSeries client on DOS from Digital OpenVMS 56
Installing an MQSeries client on Windows 3.1 from Digital OpenVMS 56

Installing MQSeries clients from MQSeries for UNIX systems 58
Installing an MQSeries client on a UNIX system from a UNIX system 58
Installing an MQSeries client on OS/2 from a UNIX system 59
Installing an MQSeries client on DOS from a UNIX system 61
Installing an MQSeries client on Windows 3.1 from a UNIX system 61

Changing config.sys and autoexec.bat . 62
Changing the OS/2 config.sys file . 62
Changing the autoexec.bat file for DOS and Windows 3.1 63

| MQSeries Client for VM/ESA Version 2 Release 3 63

Chapter 5. Verifying the installation . 65
How does it work? . 65
The installation used for the example . 65

What the example shows . 65
Setting up the server (not MVS/ESA or AS/400) 66
Setting up the server (MVS/ESA) . 67
Setting up the server (AS/400) . 67
Setting up the MQSeries client . 68

Defining a client-connection channel, using MQSERVER 68
Putting a message on the queue . 69

On the MQSeries client workstation (not Windows 3.1, or VM/ESA) 69
On the MQSeries client workstation (Windows 3.1) 69

| On the MQSeries client workstation (VM/ESA) 70
Getting the message from the queue . 70

On the MQSeries client workstation (not Windows 3.1, or VM/ESA) 70
On the MQSeries client workstation (Windows 3.1) 71

| On the MQSeries client workstation (VM/ESA) 71
Ending verification . 71

 Part 1. Overview and installation 3

 Overview and installation

4 MQSeries Clients

 Clients overview

 Chapter 1. Overview

What is an MQSeries client? What are the benefits of using MQSeries clients, and
how do I set up a client and server system? These questions are answered here.

What is an MQSeries client?
An MQSeries client is part of the MQSeries product that can be installed on its
own, on a separate machine from the Base product and Server. You can run an
MQSeries application on an MQSeries client and it can interact, by means of a
communications protocol, with one or more MQSeries servers and connect to their
queue managers.

These are the platforms that can be used. The combinations depend on which
MQSeries product you are using; see “Support for MQSeries clients” on page 9.
Other MQSeries clients are also available; see “MQSeries clients on other
platforms” on page 11.

MQSeries client MQSeries server
Digital OpenVMS Digital OpenVMS
OS/2 OS/2
UNIX systems UNIX systems

| VM/ESA Windows NT
Windows NT AS/400
Windows 3.1 MVS/ESA
Windows 95| Tandem NSK
DOS

MQSeries
queue manager

MQSeries
application

Client machine Server machine

MQSeries client
Communication link

An application that you want to run in the MQSeries client environment must first be
linked with the relevant client library. When the application issues an MQI call, the
MQSeries client code directs the request to a queue manager, where it is
processed and from where a reply is sent back to the MQSeries client.

The link between the application and the MQSeries client code is established
dynamically at runtime, except in the case of DOS, when it is a static link.

 Copyright IBM Corp. 1994,1998 5

 Clients overview

Why use MQSeries clients?
Using MQSeries clients is an efficient way of implementing MQSeries messaging
and queuing.

You can have an application that uses the MQI running on one machine and the
queue manager running on a different machine, either physical or virtual. The
benefits of doing this are:

� There is no need for a full MQSeries implementation on the client machine; for
example, it could be a DOS, a Windows 3.1, or a Windows 95 platform.

� Hardware requirements on the client system are reduced.

� System administration requirements are reduced.

� An MQSeries application running on a client can connect to multiple queue
managers on different systems.

� Alternative channels using different transmission protocols may be used.

What applications run on an MQSeries client?
The full MQI is supported in the client environment and this enables almost any
MQSeries application to be relinked to run on an MQSeries client. Link the
application on the MQSeries client to the MQIC library, rather than to the MQI
library. The exceptions are:

� An application that needs syncpoint coordination with other resource managers.

� Get(signal) on MVS/ESA is not supported.

Note: An application running on an MQSeries client may connect to more than
one queue manager concurrently, or use a queue manager name with an asterisk
(*) on an MQCONN or MQCONNX call (see Examples in Chapter 12, “Running
applications on MQSeries clients” on page 135). The application will have to be
changed if you want to link to the queue manager libraries instead of the client
libraries, as this function will not be available.

How do I set up an MQSeries client?
This book tells you how to set up and use an MQSeries client. You need to have
an MQSeries server already installed and working on another machine, for your
client to connect to. These are the tasks you need to carry out:

1. Check that you have a suitable platform for an MQSeries client and that the
hardware and software satisfy the requirements. See Chapter 2, “Preparing for
installation” on page 9 for information.

2. If your communication links are configured and connected, go on to the next
step, otherwise go to Chapter 6, “Configuring communication links” on
page 75.

3. Decide how you are going to install MQSeries on your client machine, and then
follow the instructions for your particular combination of client and server
platforms. See either Chapter 3, “Installing MQSeries client components from
Version 5 products” on page 31 or Chapter 4, “Installing MQSeries clients with
non-Version 5 products” on page 51.

6 MQSeries Clients

 Clients overview

4. Make sure that your installation is working. See Chapter 5, “Verifying the
installation” on page 65.

5. Now you have a verified MQSeries client installation, consider whether you
need to take any action on security. See Chapter 9, “Setting up MQSeries
client security” on page 117 for details.

6. Next set up the channels between MQSeries client and server that are required
by the MQSeries applications you want to run on the client. See Chapter 7,
“Using channels” on page 99 for the detailed steps to take. You may need to
use MQSeries environment variables to set up the channels. See Chapter 8,
“Using MQSeries environment variables” on page 111 for details.

7. MQSeries applications are fully described in the MQSeries Application
Programming Guide. There are some differences to consider when designing,
building and running applications in the MQSeries client environment. For
details see:

Chapter 10, “Using the message queue interface (MQI)” on page 123
Chapter 11, “Building applications for MQSeries clients” on page 127
Chapter 12, “Running applications on MQSeries clients” on page 135
Chapter 13, “Solving problems” on page 141

 Chapter 1. Overview 7

 Clients overview

8 MQSeries Clients

 Support for MQSeries clients

Chapter 2. Preparing for installation

This chapter details the platform support for clients, explains the communications
protocols used, and shows how MQSeries clients fit into your network. The
hardware and software requirements for each client platform are listed.

Hardware and software requirements
You can find hardware and software requirements for the client platforms as
follows:

Desktop clients

� DOS - page 17
� OS/2 Warp - page 20
� Windows 3.1 - page 27
� Windows 95 - page 28
� Windows NT - page 29

UNIX clients

� AIX - page 14
� AT&T GIS UNIX (NCR UNIX) - page 16
� HP-UX - page 19
� SINIX and DC/OSx - page 22
� SunOS - page 24
� Sun Solaris - page 25

Other clients

� Digital OpenVMS - page 18
| � VM/ESA - page 26

For your server platform hardware and software requirements, see the Quick
Beginnings book for your platform (MQSeries Version 5 products), the MQSeries for
MVS/ESA Program Directory, the MQSeries for AS/400 Administration Guide or the
System Management Guide (other products).

For capacity planning information, see the MQSeries Planning Guide.

Support for MQSeries clients
The platform support for MQSeries clients and servers is as follows. Any of the
MQSeries products listed is installed as a Base product and Server (Base product
and Distributed Queuing without CICS feature, and Client Attachment feature on
MQSeries for MVS/ESA). These MQSeries products can accept connections from
the MQSeries clients on the platforms listed, subject to differences in coded
character set identifier (CCSID) and communications protocol.

Note: If you are using previous versions of MQSeries products, make sure that
code conversion from the CCSID of your client is supported by the server. See the
Language support tables in the MQSeries Application Programming Reference.

 Copyright IBM Corp. 1994,1998 9

 Support for MQSeries clients

The MQSeries products covered by this book:

� Version 5 products:

– MQSeries for AIX Version 5
– MQSeries for HP-UX Version 5
– MQSeries for OS/2 Warp Version 5
– MQSeries for Sun Solaris Version 5
– MQSeries for Windows NT Version 5

� Non-Version 5 products:

| – MQSeries for AS/400 V4R2
– MQSeries for AT&T GIS UNIX Version 2.2
– MQSeries for Digital OpenVMS Version 2.2
– MQSeries for MVS/ESA Version 1 Release 2
– MQSeries for SINIX and DC/OSx Version 2.2
– MQSeries for SunOS Version 2.2

| – MQSeries for Tandem NonStop Kernel Version 2.2

can accept connections from MQSeries clients on:

 � AIX
� AT&T GIS UNIX

(this platform has become NCR UNIX)
 � Digital OpenVMS
 � DOS
 � HP-UX
 � OS/2
� SINIX and DC/OSx

 � SunOS
 � Sun Solaris

| � VM/ESA
 � Windows 3.1
 � Windows 95
 � Windows NT

Note: MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1
are not included in this book. The MQSeries for Windows products are the
MQSeries queue managers for the Microsoft Windows platforms. They are
designed to minimize system requirements for workstations with relatively modest
specifications. You cannot use an MQSeries for Windows queue manager as an
MQSeries client, nor can you use it to support its own MQSeries clients. For more
information see the MQSeries for Windows Version 2.0 User’s Guide and the
MQSeries for Windows Version 2.1 User’s Guide.

10 MQSeries Clients

 Support for MQSeries clients

Here is an example of an MQSeries client and server system:

MQSeries
application

Client machine Server machine

MQSeries client

AIXOS/2

MQSeries
for AIX

MQI channel

The MQI is available to applications running on the client platform; the queues and
other MQSeries objects are held on a queue manager that you have installed on a
server machine (for an explanation of MQI channel see “What is a channel?” on
page 99).

MQSeries clients on other platforms
The MQSeries clients included in this book are the ones supplied with the
MQSeries products listed in “Support for MQSeries clients” on page 9. Each

| MQSeries product (except MQSeries for AS/400, MQSeries for Tandem NonStop
| Kernel, and MQSeries for MVS/ESA) supplies files for clients on the same platform

as the server and for a number of other platforms. For details see “MQSeries for
Digital OpenVMS, and UNIX platforms” on page 53 and “Clients supplied with
MQSeries Version 5 products” on page 31.

Further MQSeries Clients are available through the Internet as Supportacs. See
“MQSeries information available on the Internet” on page xiii.

How the client connects to the server
An application running in the MQSeries client environment runs in synchronous
mode, as there must be an active connection between the client and server
machines.

The connection is made by an application issuing an MQCONN or MQCONNX call.
When the call succeeds, the MQI channel remains connected until the application
issues a MQDISC call. This is the case for every queue manager that an
application needs to connect to.

Client and queue manager on the same machine
You can also run an application in the MQSeries client environment where your
machine has a queue manager installed. In this situation you have the choice of
linking to the queue manager libraries or the client libraries, but remember that if
you link to the client libraries, you still need to define the channel connections. This
can be useful during the development phase of an application. You can test your
code on your own machine, with no dependency on others, and be confident that it
will still work when you move it to a full MQSeries environment.

 Chapter 2. Preparing for installation 11

 Communications

Clients on different platforms
Here is another example of an MQSeries client and server system. In this example
the server machine communicates with three MQSeries clients on different
platforms.

MQSeries
for HP-UX

Server machine

MQI channels

MQSeries client 1

MQSeries client 2

MQSeries client 3

OS/2

Windows
3.1

DOS

Other more complex environments are possible. An MQSeries client can connect
to more than one queue manager, for example.

 Communications
MQSeries clients use MQI channels to communicate with the server. A channel
definition must be created at both the MQSeries client and server ends of the
connection. How to do this is explained in “Connecting the MQSeries client and
server - channel definitions” on page 100.

The transmission protocols possible are shown in the following table:

See also Table 2 on page 76 for the possible combinations of MQSeries client and
server platforms, using these transmission protocols.

Table 1. Transmission protocols for MQI channels

Client platform LU 6.2 TCP/IP NetBIOS SPX DECnet

Digital OpenVMS √ √ √

DOS √ √ √

OS/2 √ √ √ √

UNIX platforms √ √

| VM/ESA| √| √

Windows 3.1 √ √ √

Windows 95 √ √ √

Windows NT √ √ √ √

12 MQSeries Clients

 Communications

An MQSeries application on an MQSeries client can use all the MQI calls in the
same way as when the queue manager is local. MQCONN or MQCONNX
associates the MQSeries application with the selected queue manager, creating a
connection handle. Other calls using that connection handle are then processed by
the connected queue manager. This MQSeries client communication is
synchronous, in contrast to communication between queue managers, which is
connection- and time-independent.

The transmission protocol is specified via the channel definition and does not affect
the application. For example, the same Windows 3.1 application can connect to
one queue manager over TCP/IP and to another queue manager over NetBIOS.

 Performance considerations
The transmission protocol you use may affect the performance of the MQSeries
client and server system.

For dial-up support over a slow phone line it may be advisable to use channel exits
to compress the data transmitted.

 Chapter 2. Preparing for installation 13

 Hardware and software, AIX

AIX client: hardware and software required
An MQSeries client can run on an IBM RISC System/6000, capable of running AIX
V4.1.4. Any other trademarked AIX system may be used, whether from IBM or
other vendors such as Bull, Zenith, or Motorola. There must be enough random
access memory (RAM) and disk storage for the programming prerequisites (below),
the MQSeries client code, the access methods, and the application programs.

 Programming requirements
The following are prerequisites for MQSeries applications running on an AIX client.

Minimum supported software levels are shown. Later levels, if any, will be
supported unless otherwise stated.

Connectivity

For TCP/IP connectivity:

� TCP/IP (in the operating system)

For SNA connectivity:

� IBM Communications Server for AIX, V4.0 (5765-652)

Workstation MQSeries clients

MQSeries client code for AIX workstations is distributed with the server code for all
MQSeries Version 5 products. Later levels of some listed products may be
required for AIX V4.2 and/or SP. Later levels of the operating system may be
required to support corequisite products. The MQSeries client code operates
under:

� AIX V4.1.4 (5765-393 or 5765-C34) or AIX Version 4.2 (5765-655 or 5765-C34)
or later.

Note: For V4.1, PTF U449790 is required if user data conversion of Greek,
Cyrillic, Eastern European, Turkish, Japanese, or Korean language text longer
than 2000 bytes is required.

For V4.2 level 4.2.1 should be used for the same languages.

Options, not prerequisites

� IBM Directory and Security Server for AIX (5765-639), V4 and later compatible
versions. This must be the U.S. Domestic version supporting DES encryption if
the user wishes to run the MQSeries-supplied DCE send, receive, or message
exits.

MQSeries DCE names and security modules are provided as part of the
MQSeries for AIX product.

Compilers for MQSeries applications on AIX clients
The following C compilers are supported:

� IBM C for AIX V3.1.4 (5765-423)
� IBM C Set++ for AIX V3.1 (5765-421)

The following COBOL compilers are supported:

14 MQSeries Clients

 Hardware and software, AIX

� IBM COBOL Set for AIX V1.0 (5765-548 28H2176/33H4408)
� Micro Focus** COBOL for UNIX Version 3.1 and v4.0

The following C++ compilers are supported:

� IBM C Set++ for AIX V3.1 (5765-421)

The following PL/I compilers are supported:

� IBM PL/I set for AIX V1.1

 Chapter 2. Preparing for installation 15

 Hardware and software, AT&T GIS UNIX (NCR UNIX)

AT&T GIS UNIX (NCR UNIX) client: hardware and software required
An MQSeries client can run on the following:

� Any AT&T GIS 34XX, 35XX, or 36XX system with minimum system disk space
of 20 MB

� Any LAN adapter

� Any communications hardware supporting SNA/LU 6.2 and/or TCP/IP

 Programming requirements
The following are prerequisites for MQSeries applications running on an AT&T GIS
UNIX client.

Minimum supported levels are shown. Later levels, if any, will be supported unless
otherwise stated.

Workstation MQSeries clients

MQSeries client code for AT&T GIS UNIX workstations is distributed with the server
code for all MQSeries Version 5 products. It operates under:

� AT&T GIS UNIX SVR4 MP-RAS Version 3.0, including TCP/IP
(this platform has become NCR UNIX SVR4 MP-RAS, R3.0)

� Appropriate LAN software, for example NFS to match TCP/IP

(if you who plan to use NFS, please contact your service representative to
obtain all available patches)

� AT&T GIS SNA Services Version 2.06 or later

Compiler for MQSeries applications on AT&T GIS UNIX clients
The following C compiler is supported:

� AT&T GIS High Performance C V1.0b

16 MQSeries Clients

 Hardware and software, DOS

DOS client: hardware and software required
An MQSeries client can run on DOS, on a personal computer. There must be
enough random access memory (RAM) and disk storage for the programming
prerequisites (below), the MQSeries client code, the access methods, and the
application programs.

 Programming requirements
The following are prerequisites for MQSeries applications running on a DOS client.

Minimum supported software levels are shown. Later levels, if any, will be
supported unless otherwise stated.

Connectivity

 � NetBIOS

� IBM TCP/IP V2.1.1 for DOS (87G7184 5621-219 (EMEA))

Workstation clients

MQSeries client code for DOS workstations is distributed with the server code for
| all MQSeries products (except MQSeries for AS/400, MQSeries for MVS/ESA, and
| MQSeries for Tandem NonStop Kernel). It operates under:

 � DOS 5.0

Options, not prerequisites

� IBM TCP/IP for DOS: NetBIOS, V2.1.1 (87G7186 5622-048 (EMEA))
� IBM TCP/IP for OS/2 V3.0 is part of the base operating system
� Internet Connection Corporate kit for Windows 3.1 and Windows 95, V5.0
� Novell Netware Client for DOS/Win, V1.20
� Novell Netware Client for OS/2, V2.10
� Novell LAN Workplace, V5.1
� FTP TCP for DOS

The DOS access kit allows clients access to TCP/IP via programs that run in a
DOS window under OS/2.

The Novell Netware Client for OS/2 allows clients access to SPX via programs that
run in a DOS window under OS/2.

Compilers for MQSeries applications on DOS clients
The following C compilers are supported:

� Microsoft C V7.0
� Microsoft Visual C++ V1.5

 Chapter 2. Preparing for installation 17

 Hardware and software, Digital OpenVMS

Digital OpenVMS client: hardware and software required
An MQSeries client can run on Digital OpenVMS on Digital VAX or AXP (Alpha)
systems with minimum system disk space of 700 blks (=350 KB) and minimum
memory of 8 MB.

Connectivity

Network protocols supported are SNA LU 6.2, TCP/IP, and DECnet.

� Digital SNA Domain Gateway for Synchronous or Channel Transport
� Digital SNA Peer Server
� Any communications hardware supporting TCP/IP or DECnet

 Programming requirements
The following are prerequisites for MQSeries applications running on a Digital
OpenVMS client.

| Minimum supported levels are shown. Later levels, if any, will be supported unless
| otherwise stated.

Connectivity

| � Digital SNA APPC LU6.2 Programming Interface v2.3
| � Digital DECnet SNA Gateway software v1.2A
| � Process Software TCPWare v5.2-3

� VAX/AXP: DECnet SNA APPC/LU 6.2 Version 2.2
� VAX/AXP: CISCO (formerly TGV) MultiNet Version 3.5 for OpenVMS
� AXP: TCP/IP Services for OpenVMS AXP Version 4.0

| � Digital TCP/IP services for OpenVMS (UCX) V4.1
� VAX: TCP/IP Services for OpenVMS VAX Version 3.3
� Attachmate Pathway for OpenVMS Version 2.5.1

Workstation MQSeries Clients

MQSeries client code for Digital OpenVMS workstations is distributed with the
server code for all MQSeries Version 5 products. It operates under:

� OpenVMS operating system Version 6.2

Options, not prerequisites

 � DCE

– Distributed Computing Environment for OpenVMS Version 1.3b

Compilers for MQSeries applications on Digital OpenVMS clients
The following COBOL compilers are supported:

� VAX: VAX COBOL Version 5.3
� AXP: DEC COBOL Version 2.2

The following C compilers are supported:

| � AXP/VAX: DEC C Version 5.2
| � AXP: DEC C++ Version 5.2

� VAX: DEC C++ Version 5.0

18 MQSeries Clients

 Hardware and software, HP-UX

HP-UX client: hardware and software required
An MQSeries client can run on HP-UX on any HP 9000 Series 700 or Series 800
with minimum system disk space of 20 MB.

 Programming requirements
The following are prerequisites for MQSeries applications running an HP-UX client.

Minimum supported levels are shown. Later levels, if any, will be supported unless
otherwise stated.

Connectivity

� TCP/IP (in the operating system)
 � HP SNAplus2

Workstation MQSeries clients

MQSeries client code for HP-UX workstations is distributed with the server code for
all MQSeries Version 5 products. It operates under:

� HP-UX Version 10.10, or later Version 10.

Options, not prerequisites

� The HP DCE/9000 version appropriate for the level of the HP-UX operating
system in use, providing this is compatible with DCE Version 1.4.1 as supplied
for HP-UX 10.10. This must be the U.S. Domestic version supporting DES
encryption if the user wishes to run the MQSeries-supplied DCE send, receive,
or message exits.

Note: On HP-UX 10.10, it is critical to apply HP service otherwise the HP
DCE product will not work. Patches are listed in the Release Note delivered
with the HP DCE software; however you are recommended to contact your
local HP support center to obtain an up-to-date list of the required patches.

MQSeries DCE names and security modules are provided as part of the
MQSeries for HP-UX product.

Compilers for MQSeries applications on HP-UX clients
The following COBOL compilers are supported:

� Micro Focus COBOL for UNIX Version 3.1
� COBOL Softbench Version 4.0

The following C compilers are supported:

� The compiler supplied with the operating system
� HP-UX ANSI compiler
� C Softbench Version 5.0
� HP C++ Version 3.1

The following C++ compilers are supported:

� HP C++ Version 3.1

 Chapter 2. Preparing for installation 19

 Hardware and software, OS/2 Warp

OS/2 Warp client: hardware and software required
An MQSeries client can run on OS/2 Warp, on a personal computer. There must
be enough random access memory (RAM) and disk storage for the programming
prerequisites (below), the MQSeries client code, the access methods, and the
application programs.

 Programming requirements
The following are prerequisites for MQSeries applications running an OS/2 client.

This is the minimum supported software level. Later levels, if any, will be
supported unless otherwise stated.

Workstation MQSeries clients

MQSeries client code for OS/2 Warp workstations is distributed with the server
code for all MQSeries Version 5 products. It operates under:

� OS/2 Warp V4.0 (84H1426)

Options, not prerequisites

� Communications Manager/2 V1.11 for OS/2 (this includes LU 6.2 and
NetBIOS) (79G0257/79G0258)

� IBM Communications Server for OS/2 V4.0 (84H1802)

� Novell Netware Client for OS/2, V1.20 (for direct IPX/SPX support)

� IBM Directory and Security Server for OS/2 Warp Version 4 or later compatible
versions. This must be the U.S. Domestic version supporting DES encryption if
the user wishes to run the MQSeries-supplied DCE send, receive, or message
exits.

� If used as a DCE server this software is known to run adequately in the
following environment:

– On a Pentium processor running 90 MHz or faster.
– On a machine with 64 MB or more of memory.
– Using OS/2 Warp Server V4.0 or later.

� MQSeries DCE names and security modules are provided as part of the
MQSeries for OS/2 Warp product.

Compilers for MQSeries applications on OS/2 clients
The following COBOL compilers are supported:

� IBM VisualAge COBOL for OS/2 V1.1 (28H2177, 5622-793 (EMEA))
� Micro Focus COBOL Compiler Version 3.0.54 and V4.0 (32 bit)

The following C compilers are supported:

� IBM C Set++ for OS/2 V2.1 (82G3732/82G3735, 5604-535 EMEA))
� IBM VisualAge C++ for OS/2 Version 3.0
� Borland C++ Compiler Version 2.0

The following C++ compilers are supported:

� IBM VisualAge C++ for OS/2 Version 3.0

20 MQSeries Clients

 Hardware and software, OS/2 Warp

The following PL/I compilers are supported:

� IBM PL/I for OS/2 Version 1.2
� IBM VisualAge for PL/I for OS/2

 Chapter 2. Preparing for installation 21

 Hardware and software, SINIX and DC/OSx

SINIX and DC/OSx client: hardware and software required
An MQSeries client can run on:

� SINIX: RM200, RM300, RM400, RM600 systems with minimum system disk
space of 30 MB. If DynaText books are installed, a minimum of 50 MB of
system disk space is needed.

� DC/OSx: MIServer, Nile systems with minimum system disk space of 30 MB.

� Any communications hardware supporting SNA/LU 6.2 or TCP/IP.

 Programming requirements
The following are prerequisites for MQSeries applications running on a SINIX and
DC/OSx client.

Minimum supported software levels are shown. Later levels, if any, will be
supported unless otherwise stated.

� SINIX operating system SINIX-N Version 5.42C10 (for RM200, RM300, RM400)
or SINIX-Y Version 5.42A40 (for RM600)

� DC/OSx operating system Version 1.1-cd079 or later

MQSeries Clients

Client code for SINIX and DC/OSx workstations is distributed with the server code
for all MQSeries Version 5 products.

Connectivity

 � SINIX: SNA

TRANSIT-SERVER 3.4 (SNA Communication Server Version)
TRANSIT-CLIENT 3.4 (SNA Comm. Client / Local Functions)
TRANSIT-CPIC 3.4 (SNA LU 6.2 Communication and CPI-C)

� SINIX: OpenNet TCP/IP

� DC/OSx: TCP/IP Version 1.0

� DC/OSx: SNA requires LU 6.2 SW version 1.3 and

– To support the ISC-2 (Intelligent Synchronous Controller) serial line:

- Comm Services V 1.2
- ISC with SNA engine V 1.3

– To support the ILC-T (Intelligent LAN Controller, Token ring) interface:

- Comm Services V 1.2
- Token Ring Mac interface V 1.3

– To support the SNA on the ESCON IBM Channel link:

- XVI/ESCON Driver 1.0

 � DCE

– SINIX: Version 1.03A00 or later

22 MQSeries Clients

 Hardware and software, SINIX and DC/OSx

Compilers for MQSeries applications on SINIX and DC/OSx clients
The following COBOL compilers are supported:

� SINIX: Micro Focus COBOL version 3.2
� DC/OSx: Micro Focus COBOL version 3.2

The following C compilers are supported:

� SINIX: C compiler (C-DS, MIPS) version 1.1
� DC/OSx: C4.0 compiler version 4.0.1

 Chapter 2. Preparing for installation 23

 Hardware and software, SunOS

SunOS client: hardware and software required
An MQSeries client can run only on the Sun SPARC hardware with a minimum
system disk space of 25 MB

Connectivity

� Any communications hardware supporting SNA/LU 6.2 and/or TCP/IP

 Programming requirements
The following are prerequisites for MQSeries applications running on a SunOS
client.

Minimum supported software levels are shown. Later levels, if any, will be
supported unless otherwise stated.

� SunOS UNIX Version 4.1.3 or later 4.1.x, to include TCP/IP

MQSeries Clients

Client code for SunOS workstations is distributed with the server code for all
MQSeries Version 5 products.

Connectivity

� SunLink SNA Peer-to-Peer Version 7.0
� TCP/IP as part of the base operating system

Compilers for MQSeries applications on SunOS clients
The following COBOL compiler is supported:

� Micro Focus COBOL Version 3.0

The following C compiler is supported:

� SparcCompiler C Version 3.0.1

24 MQSeries Clients

 Hardware and software, Sun Solaris

Sun Solaris client: hardware and software required
An MQSeries client can run only on:

� Sun SPARC desktop or server
� Sun UltraSPARC desktop or server

with a minimum system disk space of 25 MB. An additional 25 MB of disk space is
required if DynaText is to be installed.

Connectivity

� Any communications hardware supporting SNA/LU 6.2 and/or TCP/IP

 Programming requirements
The following are prerequisites for MQSeries applications running on a Sun Solaris
client.

Minimum supported software levels are shown. Later levels, if any, will be
supported unless otherwise stated.

� Sun Solaris V2.5.1 or later 2.X to include TCP/IP

It is recommended that the latest levels of all relevant patches to the base
operating system are installed.

MQSeries Clients

Client code for Sun Solaris workstations is distributed with the server code for all
MQSeries Version 5 products.

Connectivity

� SunLink SNA Peer-to-Peer Version 9.0 or later V9.X

� TCP/IP as part of the base operating system

� If token ring is to be used: SunLink Token Ring Interface /SBus, V3.0.2. This
requires patch 102463

Compilers for MQSeries applications on Sun Solaris clients
The following COBOL compiler is supported:

� Micro Focus COBOL for UNIX Version 3.2

The following C compiler is supported:

� SPARCompiler C Version 4.0

The following C++ compiler is supported:

� SPARCompiler C++ Version 4.1

 Chapter 2. Preparing for installation 25

 Hardware and software, VM/ESA

| VM/ESA client: hardware and software required
| An MQSeries client can run on any CMS system that supports the programming
| prerequisites below.

| Programming requirements
| The following are prerequisites for MQSeries applications running on a VM/ESA
| client.

| Minimum supported software levels are shown. Later levels, if any, will be
| supported unless otherwise stated.

| Connectivity

| � TCP/IP Release 2.4
| � VTAM LU 6.2

| MQSeries clients

| MQSeries client code for VM/ESA is distributed with the VM/ESA product. It
| operates under:

| � VM/ESA Version 2 Release 3
| � LE/370 Release 1.6

| Compilers for MQSeries applications on VM/ESA clients
| The following Assembler language compiler supported:

| � IBM Assembler

| The following COBOL compiler is supported:

| � IBM VS COBOL II

| The following C compiler is supported:

| � IBM C for VM Release 3.1

| The following PL/I compiler is supported:

| � IBM OS/PL/I Release 2.3

| The following Rexx compiler is supported:

| � IBM VM/ESA Rexx/VM

26 MQSeries Clients

 Hardware and software, Windows 3.1

Windows 3.1 client: hardware and software required
An MQSeries client can run on Windows 3.1, on a personal computer. There must
be enough random access memory (RAM) and disk storage for the programming
prerequisites (below), the MQSeries client code, the access methods, and the
application programs.

 Programming requirements
The following are prerequisites for MQSeries applications running on a Windows
3.1 client.

Minimum supported software levels are shown. Later levels, if any, will be
supported unless otherwise stated.

Connectivity

 � NetBIOS
� IBM TCP/IP V2.1.1 for DOS

 � SPX

Workstation clients

MQSeries client code for Windows 3.1 workstations is distributed with the server
code for all MQSeries products (except MQSeries for AS/400, MQSeries for

| MVS/ESA, and MQSeries for Tandem NonStop Kernel). It operates under:

 � Windows 3.1
� WIN-OS/2 environment under OS/2
� Windows 95 in 16-bit mode
� Windows for Workgroups

Options, not prerequisites

� TCP/IP for OS/2 V2.0. The base kit is required. The DOS access kit allows
clients access to TCP/IP via programs that run under WIN-OS/2.

� TCP/IP V2.1.1 for DOS/Windows

� Novell Netware client for DOS/Win31 V1.20

� Novell Netware client for OS/2 V2.1 (allows clients to access SPX via programs
that run under WIN-OS/2)

Compilers for MQSeries applications on Windows 3.1 clients
The following COBOL compilers are supported:

� Micro Focus COBOL for Windows Version 3.3

The following C compilers are supported:

� Microsoft C/C++ Version 7.0
� Microsoft Visual C++ for Windows Version 2.0

The following C++ compilers are supported:

� Microsoft Visual C++ Version 1.5

 Chapter 2. Preparing for installation 27

 Hardware and software, Windows 95

Windows 95 client: hardware and software required
An MQSeries client can run on Windows 95 on a personal computer. There must
be enough random access memory (RAM) and disk storage for the programming
prerequisites (below), the MQSeries client code, the access methods, and the
application programs.

 Programming requirements
The following are prerequisites for MQSeries applications running on a Windows 95
client.

Minimum supported software levels are shown. Later levels, if any, will be
supported unless otherwise stated.

Connectivity

� TCP/IP (in the operating system)
� SPX (in the operating system)
� NetBIOS (in the operating system)

Workstation MQSeries clients

MQSeries client code for Windows 95 workstations is distributed with the server
code for all MQSeries Version 5 products. It operates under:

 � Windows 95

Options, not prerequisites

� IBM DCE for Windows 95: V1.1 and later compatible versions. (This will
become IBM Directory and Security Server for Windows 95 in 1998).

| You cannot use the supplied DCE security exit (described in the book
| MQSeries Intercommunication) from an MQSeries client on Windows 95
| connected to an MQSeries for HP-UX server or an MQSeries for Sun Solaris
| server.

Compilers for MQSeries applications on Windows 95 clients
The following COBOL compilers are supported:

� Micro Focus COBOL Workbench Version 4.0

The following C compilers are supported:

� IBM VisualAge C++ for Windows Version 3.5 (33H4979)
� Microsoft Visual C++ for Windows 95/NT Version 4.0

The following C++ compilers are supported:

� IBM VisualAge C++ for Windows Version 3.5 (33H4979)
� Microsoft Visual C++ for Windows 95/NT Version 4.0 and Version 5.0

28 MQSeries Clients

 Hardware and software, Windows NT

Windows NT client: hardware and software required
An MQSeries client can run on Windows NT on any Intel** 486 processor based
IBM PC machine (or equivalent). There must be enough random access memory
(RAM) and disk storage for the programming prerequisites (below), the MQSeries
client code, the access methods, and the application programs.

 Programming requirements
The following are prerequisites for MQSeries applications running on a Windows
NT client.

Minimum supported software levels are shown. Later levels, if any, will be
supported unless otherwise stated.

Connectivity

� IBM Communications Server for Windows NT, V5.0 (4231747)
� IBM Personal Communications for Windows NT, V4.1
� Attachmate Extra! Personal Client, V6.1 & V6.2
� Microsoft SNA Server, V2.11 or V3
� TCP/IP, NetBIOS, and SPX are part of the base operating system
� OnNet SDK for Windows

 � FTP Software

Workstation MQSeries clients

MQSeries client code for Windows NT workstations is distributed with the server
code for all MQSeries Version 5 products. It operates under:

� Microsoft Windows NT V3.5.1 with service pack 5 applied to it, or Windows
NT V4, to include TCP/IP, NetBIOS, and SPX.

Compilers for MQSeries applications on Windows NT clients
The following COBOL compilers are supported:

� Micro Focus COBOL for Windows NT Version 3.1J
� Micro Focus COBOL for Windows NT Version 3.3

The following C compilers are supported:

� IBM VisualAge C++ Version 3.5 (33H4979)
� Microsoft Visual C++ for Windows 95/NT Version 4.0 and Version 5.0

The following C++ compilers are supported:

� IBM VisualAge C++ Version 3.5 (33H4979)
� Microsoft Visual C++ Version 4.0

The following PL/I compilers are supported:

� IBM PL/I for Windows V1.2,
� IBM VisualAge for PL/I for Windows

 Chapter 2. Preparing for installation 29

 Hardware and software, Windows NT

30 MQSeries Clients

 Installing clients (Version 5)

Chapter 3. Installing MQSeries client components from
Version 5 products

The MQSeries Version 5 products are:

� MQSeries for AIX Version 5
� MQSeries for HP-UX Version 5
� MQSeries for OS/2 Warp Version 5
� MQSeries for Sun Solaris Version 5
� MQSeries for Windows NT Version 5

MQSeries Version 5 products include an easy installation feature that helps you
install MQSeries clients quickly. If you are using another MQSeries product, see
Chapter 4, “Installing MQSeries clients with non-Version 5 products” on page 51.

Installing an MQSeries client and server system
You install the MQSeries client and server system from the two CD-ROMs supplied:

1. Install the MQSeries server on your server machine using the MQSeries Server
CD-ROM, as detailed in the Quick Beginnings book for your platform.

2. Install the MQSeries client components on your client machine, or on several
client machines, using the MQSeries Client CD-ROM, as explained in this
chapter.

See the step by step instructions for your client platform:

� “Installing on AIX” on page 36
� “Installing on DOS” on page 39
� “Installing on HP-UX” on page 39
� “Installing on OS/2 Warp” on page 41
� “Installing on Sun Solaris” on page 43
� “Installing on Windows 3.1” on page 45
� “Installing on Windows NT or Windows 95” on page 47

Clients supplied with MQSeries Version 5 products
Each MQSeries Version 5 product supplies software, including the easy installation
feature, for clients on the following platforms:

 � AIX
 � DOS
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows 3.1
 � Windows 95
 � Windows NT

Further MQSeries clients are available through the Internet, as described in
“MQSeries clients from IBM Transaction Processing SupportPacs” on page 51.
and “MQSeries information available on the Internet” on page xiii.

 Copyright IBM Corp. 1994,1998 31

 Client components

Components you can install
During the installation you will be given a choice of components that you can install
on your non-server machine. For details, see the list for your platform:

� “Components for UNIX platforms”
� “Components for OS/2 Warp and Windows NT” on page 33
� “Components for Windows 95” on page 34
� “Components for DOS and Windows 3.1” on page 34

Components for UNIX platforms
The components you can install on AIX, HP-UX, and Sun Solaris systems are:

MQSeries Client
The MQSeries client code for your UNIX platform.

Samples
Sample application programs.

Support for DCE in Samples
The DCE samples support. This should be installed if, and only if, you are
going to use DCE.

Runtime component
Support for external applications. This does not enable you to write your own
applications.

Base
Support to enable you to create and support your own applications. Requires
the runtime component to be installed.

MQSeries Client for Java
This allows Java applets running on your client machine to communicate with
MQSeries. It includes security exits for encryption and authentication of
messages sent across the Web by the MQSeries Client for Java. These exits

| consist of some Java classes. To use the client for Java you need to have
| Java runtime code on your machine, at the following (or later compatible)
| levels:

| AIX Java version 1.1.1
| HP-UX Java version 1.1.2
| Sun Solaris Java Version 1.1.1

For information about Java runtime see “MQSeries information available on
the Internet” on page xiii.

| On Sun Solaris, you require version 2.5.1 of the Solaris Operating System
| plus the following patches: 103566-08, 103600-13, 103640-08.

| On HP-UX, you require HP-UX Version 10.20.

Note: If it is possible on your platform, at installation time the global
CLASSPATH will either get updated if already present or created if not.

MQSeries Internet/ Java documentation
MQSeries Java Client and Internet Gateway documentation. This is supplied
in HTML format.

32 MQSeries Clients

 Client components

MQSeries Internet Gateway
| Provides access to MQSeries applications via HTML and CGI (only CGI on
| the Sun Solaris platform). The MQSeries Internet Gateway does not support
| NSAPI on the HP-UX platform.

Now go to “Installing on AIX” on page 36, “Installing on HP-UX” on page 39, or
“Installing on Sun Solaris” on page 43.

Components for OS/2 Warp and Windows NT
The components you can install on OS/2 Warp and Windows NT systems are:

MQSeries Client
The MQSeries client code for your platform.

MQSeries Toolkit
This includes:

 � Sample programs

� Header files that you can use when writing applications to run on the
client

MQSeries Client for Java
This allows Java applets running on your client machine to communicate with
MQSeries. It includes security exits for encryption and authentication of
messages sent across the Web by the MQSeries Client for Java. These exits
consist of some Java classes. To use the client for Java you need to have

| Java 1.1.1 (or later compatible version) runtime code on your machine. On
| Windows NT, you require Microsoft Windows NT Version 4. On OS/2 the
| MQSeries client for Java must be installed on an HPFS formatted drive. For

information about Java runtime see “MQSeries information available on the
Internet” on page xiii.

Note: If it is possible on your platform, at installation time the global
CLASSPATH will either get updated if already present or created if not.

MQSeries Internet/ Java documentation
MQSeries Java Client and Internet Gateway documentation. This is supplied
in HTML format.

MQSeries Internet Gateway
Provides access to MQSeries applications via HTML and CGI.

Now go to “Installing on OS/2 Warp” on page 41, or “Installing on Windows NT or
Windows 95” on page 47.

 Chapter 3. Installing MQSeries client components from Version 5 products 33

 Client components

Components for Windows 95
The components you can install on a Windows 95 system are:

MQSeries Client
The MQSeries client code for Windows 95.

MQSeries Toolkit
This includes:

 � Sample programs

� Header files that you can use when writing applications to run on the
client

Now go to “Installing on Windows NT or Windows 95” on page 47.

Components for DOS and Windows 3.1
The components you can install on DOS and Windows 3.1 systems are:

MQSeries Client
The MQSeries client code for your platform.

MQSeries Toolkit
This includes:

� Sample programs - some of these are required for verifying the
installation of the MQSeries client/server system

� Header files that you can use when writing applications to run on the
client

Now go to “Installing on DOS” on page 39, or “Installing on Windows 3.1” on
page 45.

34 MQSeries Clients

 Installing client on a server

Installing MQSeries clients on the same machine as the server
To install MQSeries client components on the server machine use the MQSeries
Server CD-ROM. Choose the client install option to install client components on
the server machine. Do not use the MQSeries Client CD-ROM.

Remember that you still need to define the MQI channels between the client and
the server, even when the two reside on the same machine. See Chapter 7,
“Using channels” on page 99 for details.

You may install client components from the MQSeries Client CD-ROM on a
machine and later want to install the MQSeries server on the same machine. If so,
you must first remove all the MQSeries client components from the machine. Then
use the MQSeries Server CD-ROM to install the server and the client. You cannot
install the server on a machine that already has client components installed from
the MQSeries Client CD-ROM.

Removing MQSeries clients
If you want to remove the MQSeries client files from your system, use the process
provided to do this efficiently. Details for each platform are given in the relevant
section of this chapter:

Removing an MQSeries client from:

� AIX (page 39)
� DOS (page 39)
� HP-UX (page 41)
� OS/2 (page 43)
� Sun Solaris (page 45)
� Windows NT, and Windows 95 (page 49)
� Windows 3.1 (page 46)

 Chapter 3. Installing MQSeries client components from Version 5 products 35

 Installing on AIX

Installing on AIX
To install an MQSeries client on an AIX system you use the MQSeries Client
CD-ROM supplied as part of the MQSeries product.

Note: If you plan to install an MQSeries client and server on the same machine,
see “Installing MQSeries clients on the same machine as the server” on page 35.

| If you have a previous version of the MQSeries client installed on your AIX system,
| you must uninstall the old version before installing the Version 5 MQSeries client.

 Before installation
Before you can install the MQSeries client on your AIX system, you:

� Must create a group with the name mqm.

� Must create a user ID with the name mqm.

� Are recommended to create and mount a /var/mqm file system, or /var/mqm,
/var/mqm/log, and /var/mqm/errors file systems.

If you create separate partitions, the following directories must be on a local
file system:

 – /var/mqm
 – /var/mqm/log
 – /var/mqm/objects

You can choose to NFS mount the /var/mqm/errors and /var/mqm/trace
directories to conserve space on your local system.

After installation, this user ID (mqm) owns the directories and files that contain the
resources associated with the product. This group and user must be defined for
any machine on which the MQSeries software is to be installed, whether the
machine is a client or a server machine.

For stand-alone machines, you can create the new user and group IDs locally. For
machines administered in a network information services (NIS) domain, you can
create the user and group IDs on the NIS master server machine.

Creating the mqm user ID and group
You can create the new IDs using the System Management Interface Tool (SMIT),
for which you require root authority. The procedure for this, if you use the SMIT
windows, is:

1. Create the mqm group. You can display the required window using this
sequence:

Security & Users
 Groups

Add a Group

You can take the default values for the attributes of the new group or change
them as required.

2. Create the new user, mqm. You can display the window for doing this using this
sequence:

Security & Users
 Users

Add a User

36 MQSeries Clients

 Installing on AIX

Set the primary group for this user to be mqm. You can take the default values
for the attributes of the new group or change them if you wish.

3. Add a password to the new user ID. You can display the window for doing this
using this sequence:

Security & Users
 Passwords

4. Add the newly created group mqm to an existing user ID. You can display the
window for doing this using this sequence:

Security & Users
 Users

Change / Show Characteristics of a User

When the window is displayed, enter the name of the user who is to have the
mqm group added. In the user details window, add mqm to the Group set field,
which is a comma-separated list of the groups to which the user belongs.

Note: Users need not have their primary group set to mqm. As long as mqm is in
their set of groups, they can use the commands. Users who are running
applications that use the queue manager only do not need mqm group
authority.

 Easy installation
1. Logon as root.

2. Insert the MQSeries Client CD-ROM into the CD-ROM drive.

 3. Type xinstallm -ez

The MQSeries Welcome window is displayed.

4. Make sure you are installing the correct client for your system, as displayed
in the Welcome window.

A window is then displayed where you can make some choices.

5. Choose the software source: CD-ROM.

6. For Which bundle of software would you like to install? choose:
Media-defined .

7. Click on Install/Update .

A bundle of software products is created:

 mqm.Client

See “Components for UNIX platforms” on page 32 for details of the
components.

8. Choose the mqm.Client bundle and click on Install/Update again.

A work in progress window gives information as the installation proceeds.

9. At the end of installation you can click on the View log button and scroll to the
bottom of the log to see the filesets that have been installed successfully.

Now go to Chapter 5, “Verifying the installation” on page 65.

 Chapter 3. Installing MQSeries client components from Version 5 products 37

 Installing on AIX

 Custom installation
You can use SMIT for a custom installation as follows:

1. Logon as root.

2. Go into SMIT and from the shell, type:

smitty

3. Select the device appropriate for your installation using this sequence of
windows:

Software Installation & Maintenance
Install and Update Software

Install/Update Selectable Software (Custom Install)
Install Software Products at Latest Level

Install New Software Products at Latest Level

You can use the alternative fastpath command instead:

smitty install_latest

Press the List button to display the Single Select List window.

Select:

/dev/cdð (CD-ROM Drive)

4. Press Do to display the parameters for Install Latest Level .

5. Press F4 to get a list of components to install.

6. Follow the SMIT instructions to select the components you want to install. See
“Components for UNIX platforms” on page 32 for details.

 7. Press Enter .

8. If you have a previous version of the product on your machine, change the
Auto Install prerequisite software to No and Overwrite existing version to
Yes.

9. Press Do to install.

Now go to Chapter 5, “Verifying the installation” on page 65.

Changing the national language
The easy installation and the custom installation default to the national language
that was specified when your operating system was installed.

It is possible to install the MQSeries client software so that the online help and
messages are in another national language. Use SMIT as follows to change to
another national language and then install (or reinstall) the MQSeries client using
SMIT as detailed above.

1. Select Install/Update From All Available Software.

2. Press F4 to see a choice of national languages.

3. You are strongly recommended to select the en_US national language as well
as any others that you want to install. If you do not do this and your locale
setting is not found in one of the message catalogs, no message catalogs will
be installed.

4. Press Do to install the chosen message catalog or catalogs.

38 MQSeries Clients

 Installing on DOS � Installing on HP-UX

To check the initial locale setting for your machine type:

 smitty mle_cc_cust_hdr

and press the space bar. If this is not one of the national languages provided by
MQSeries, you need to select a national language, otherwise you will not get a
message catalog installed on your system.

Removing an MQSeries client from AIX
Use SMIT as usual to remove all the MQSeries client files that were installed.

Installing on DOS
To install an MQSeries client on a DOS system you use the MQSeries Client
CD-ROM supplied as part of the MQSeries product.

| Using Setup
| 1. Insert the MQSeries Client CD-ROM into the CD-ROM drive.

| 2. Change to the DOS directory on the CD-ROM drive.

| 3. Copy the setup.exe file from the DOS directory to the directory where you want
| to install the MQSeries client, for example C:\mqmdos.

| 4. Change directory to C:\mqmdos and type the command:

| setup -d

| This results in a self-exploding file being run to generate a tree of
| sub-directories containing the DOS client. See “Components for DOS and
| Windows 3.1” on page 34 for details.

| 5. Edit the autoexec.bat file using a suitable editor. If the PATH statement exists,
| add the following to it:

| c:\mqmdos;c:\mqmdos\bin;c:\mqmdos\en_us

| If the PATH statement does not exist, add the following line to the autoexec.bat
| file.

| SET PATH=c:\mqmdos;c:\mqmdos\bin;c:\mqmdos\en_us

Now go to Chapter 5, “Verifying the installation” on page 65.

Removing an MQSeries client from DOS
Delete all the files in the directory where you installed the MQSeries client, and
then remove the directory.

Installing on HP-UX
To install an MQSeries client on an HP-UX system you use the MQSeries Client
CD-ROM supplied as part of the MQSeries product.

Note: If you plan to install an MQSeries client and server on the same machine,
see “Installing MQSeries clients on the same machine as the server” on page 35.

The MQSeries client is installed into the /opt/mqm. directory. This cannot be
changed.

 Chapter 3. Installing MQSeries client components from Version 5 products 39

 Installing on HP-UX

 Before installation
Before you can install an MQSeries client on your HP-UX system you:

� Must create a group with the name mqm.

� Must create a user ID with the name mqm.

� Are recommended to create and mount a /var/mqm file system, or /var/mqm,
/var/mqm/log, and /var/mqm/errors file systems.

If you create separate partitions, the following directories must be on a local
file system:

 – /var/mqm
 – /var/mqm/log
 – /var/mqm/objects

You can choose to NFS mount the /var/mqm/errors and /var/mqm/trace
directories to conserve space on your local system.

After installation, this user ID (mqm) owns the directories and files that contain the
resources associated with the product. This group and user must be defined for
any machine on which the MQSeries software is to be installed, whether the
machine is a client or a server machine.

For stand-alone machines, you can create the new user and group IDs locally. For
machines administered in a network information services (NIS) domain, you can
create the user and group IDs on the NIS master server machine.

 Installation
Use the HP-UX swinstall program, or use SAM, after mounting the CD-ROM. For
further details see the HP-UX Administration Guide. See also “Components for
UNIX platforms” on page 32.

| The component MQSeries Client for Java should be installed only if you have
| Java 1.1.2 (or later compatible) runtime code on your machine. Also you must use
| HP-UX Version 10.20.

| The depot to use is then in the HPUX1ð/MQS5ðð.ððð file under the mount point.

If the files on your CD-ROM appear in uppercase with a “;1” suffix, use this name
for the depot.

 Kernel configuration
See the MQSeries family homepage for a SupportPac that gives additional
performance information - see “MQSeries information available on the Internet” on
page xiii.

Now go to Chapter 5, “Verifying the installation” on page 65.

40 MQSeries Clients

 Installing on OS/2 Warp

 Translated messages
Messages in U.S. English are always available. If you require another of the
languages that is supported by MQSeries for HP-UX, you must ensure that your
NLSPATH environment variable includes the appropriate directory.

For example, to select messages in German use the following:

export LANG=de_De.iso88591
export NLSPATH=/usr/lib/nls/msg/%L/%N

Removing an MQSeries client from HP-UX
To remove an MQSeries client from your HP-UX system, use the swremove
command, or use SAM. You can then delete the /var/mqm directory tree.

Installing on OS/2 Warp
To install an MQSeries client on an OS/2 Warp system you use the MQSeries
Client CD-ROM supplied as part of the MQSeries product.

Note: If you plan to install an MQSeries client and server on the same machine,
see “Installing MQSeries clients on the same machine as the server” on page 35.

| If you currently have a manually installed MQSeries client on your OS/2 Warp
| system from a previous release of MQSeries, you must manually delete it before
| attempting to install the Version 5 client. You must not install the Version 5 client
| onto a system which currently has a Version 2 MQSeries Server installed.

You can install the version of the MQSeries client software specific to your national
language. This means that the installation program, online help and messages will
be in your national language.

 Installation
Online help is available by selecting the Help push button or by pressing PF1.

Before you start, make sure that you have at least 150 KB of free space on the
drive containing the operating system. This is required by the installation program.

1. Open an OS/2 window (or start a full-screen session).

2. Insert the CD-ROM and change to the CD-ROM drive. Access the drive and
directory containing the installation program if you are installing from a remote
drive:

3. At the command prompt, in the root directory, type INSTALL, then press Enter.

4. On the MQSeries Language Selection panel select the language of your
choice, and click on the OK button or press Enter.

The MQSeries Welcome panel is displayed. Make sure you are installing the
correct client for your system, OS/2 Warp, as displayed in the Welcome panel.

5. The install panel is then displayed. Select the Update CONFIG.SYS check box
if you want your CONFIG.SYS file updated automatically as part of the
installation process. Your original CONFIG.SYS file is renamed to
CONFIG.BAK and is stored in the same directory. If you do not select this
check box, a CONFIG.ADD file is generated. This file is a copy of
CONFIG.SYS with the necessary updates to the LIBPATH and PATH
statement. You can rename the CONFIG.ADD file to CONFIG.SYS.

 Chapter 3. Installing MQSeries client components from Version 5 products 41

 Installing on OS/2 Warp

6. Select the OK push button to continue. The Install - directories panel is
displayed.

7. The list box shows the installation options that you can select. When you
select one or more of these options, the Bytes needed field shows the amount
of disk space required for installation. See “Components for OS/2 Warp and
Windows NT” on page 33 for details.

| The component MQSeries Client for Java should be installed only if you have
| Java 1.1.1 (or later compatible) runtime code on your machine. Also this
| component must be installed on an HPFS formatted drive

8. If there is not enough space on your hard disk to install all the components,
select an option that uses less disk space. If there is too little space on your
hard disk for any of the MQSeries for OS/2 installation options, a dialog box
appears before the Install - directories panel. In this case, cancel the
installation by selecting the OK push button. Find out which of your existing
files you can archive or delete to make more space before proceeding further.

Use the push buttons as necessary:

� To display descriptions of the selected options, select Descriptions .
� To select all of the options, select Select all .
� To deselect all of the options, select Deselect all .

The Work and File Directory field allows you to specify a drive and directory
other than the default for the installation files (File directory) and for the working
files that may be created when you use the MQSeries client (Working
directory).

Select a drive from the list box if required. When you return to the Install -
directories panel, your selected drive is shown. Select the OK push button to
return to the Install - directories panel.

9. Select the Install push button to continue. The Install-progress panel is
displayed. The panel shows:

� The file currently being installed (source) and the drive and directory to
which it is being installed (target).

� A progress bar, indicating the percentage of files already unpacked and
installed.

� The elapsed time.

� The status; for example, unpacking, processing, or transferring.

If you select the Stop push button, you are asked whether you want to delete
the partial system you have installed. Select Yes to delete the files already
installed and return to the introductory panel. Then, select Start install from
the File menu to start the installation again.

10. A cyclic redundancy check (CRC) is performed on the installed software and
any errors are written to a log file. This is the file specified by the /L1
parameter of the INSTALL command by default. If /L1 is not specified, the log
file is MQMERR.LOG in the high-level directory chosen for installation.

Note: The log files must be on a local drive. If the product has been installed
on a remote drive, change the path of the log files in the mqs.ini file.

42 MQSeries Clients

 Installing on Sun Solaris

11. When installation is complete, the Installation and Maintenance panel is
displayed. Select OK. The introductory MQSeries for OS/2 panel is then
displayed. Leave the installation program by selecting the Exit push button.

12. When the installation process is complete, a folder is created on the OS/2
desktop, containing objects as follows:

 READ.ME
MQSeries Installation and Maintenance

 MQSeries Information

Note that the MQSeries client is a set of services and it does not have to be
explicitly run. Therefore the folder does not have an object called a “client”.

13. Remove the installation CD-ROM from the drive.

14. If your CONFIG.SYS file has been updated, shut down the system and restart.
If the CONFIG.SYS file was not updated, rename the CONFIG.ADD file to
CONFIG.SYS before shutting down the system. (CONFIG.ADD will be in the
same directory as CONFIG.SYS.)

Now go to Chapter 5, “Verifying the installation” on page 65.

 Unattended installation
It is possible to install MQSeries clients using an unattended installation method.
For details of this see the book MQSeries for OS/2 Warp V5.0 Quick Beginnings.

Removing an MQSeries client from OS/2
Use the MQSeries Installation and Maintenance icon in the MQSeries Client folder
on the desktop, and select Actions/Delete. All the MQSeries client files that were
there at the time of installation are deleted.

Installing on Sun Solaris
To install an MQSeries client on a Sun Solaris system you use the MQSeries Client
CD-ROM supplied as part of the MQSeries product.

Note: If you plan to install an MQSeries client and server on the same machine,
see “Installing MQSeries clients on the same machine as the server” on page 35.

The MQSeries product is installed into the /opt/mqm directory. This cannot be
changed.

 Before installation
Before you can install an MQSeries client on your Sun Solaris system you:

� Must create a group with the name mqm.

� Must create a user ID with the name mqm.

� Are recommended to create and mount a /var/mqm file system, or /var/mqm,
/var/mqm/log, and /var/mqm/errors file systems.

If you create separate partitions, the following directories must be on a local
file system:

 – /var/mqm
 – /var/mqm/log

 Chapter 3. Installing MQSeries client components from Version 5 products 43

 Installing on Sun Solaris

 – /var/mqm/objects

You can choose to NFS mount the /var/mqm/errors and /var/mqm/trace
directories to conserve space on your local system.

After installation, this user ID (mqm) owns the directories and files that contain the
resources associated with the product. This group and user must be defined for
any machine on which the MQSeries software is to be installed, whether the
machine is a client or a server machine.

For stand-alone machines, you can create the new user and group IDs locally. For
machines administered in a network information services (NIS) domain, you can
create the user and group IDs on the NIS master server machine.

 Installation
Carry out the following procedure:

1. Check whether Volume Manager is running on your system by typing the
following command:

/usr/bin/ps -ef | /bin/grep vold

| If it is running, the CD is mounted on /cdrom/mqclient automatically. If it is not
running, mount the CD by typing the following commands:

| mkdir -p /cdrom/mqclient
| mount -F hsfs -r /dev/dsk/cntndnsn /cdrom/mqclient

substituting cntndnsn with the name of your CD-ROM device.

2. Use the Sun Solaris pkgadd program, to install the MQSeries client software
by carrying out the following procedure:

| a. Type pkgadd -d /cdrom/mqclient/solaris/mqs5ðð.img.

b. You are prompted for a list of components to be installed. Select the ones
you require - if you want to install all the components, select all .

See “Components for UNIX platforms” on page 32 for details.

| The component MQSeries Client for Java should be installed only if you
| have Java 1.1.1 (or later compatible) runtime code on your machine. Also
| you require version 2.5.1 of the Solaris Operating System plus the following
| patches: 103566-08, 103600-13, 103640-08.

c. Press the Enter key.

For further information on using pkgadd to install software packages, see the Sun
Solaris documentation.

 Kernel configuration
See the MQSeries family homepage for a SupportPac that gives additional
performance information - see “MQSeries information available on the Internet” on
page xiii.

Now go to Chapter 5, “Verifying the installation” on page 65.

44 MQSeries Clients

 Installing on Windows 3.1

 Translated messages
Messages in U.S. English are always available. If you require another of the
languages that is supported by MQSeries for Sun Solaris, you must ensure that
your NLSPATH environment variable includes the appropriate directory.

For example:

export LANG=de
export NLSPATH=/usr/lib/locale/%L/LC_MESSAGES/%N

Removing an MQSeries client from Sun Solaris
If you have previously installed MQSeries on your system, you need to remove the
product using the pkgrm program.

If the product is present, but not installed correctly, you may need manually to
delete the files and directories contained in:

 /var/mqm
 /opt/mqm

Installing on Windows 3.1
To install an MQSeries client on a a Windows 3.1 system you use the MQSeries
Client CD-ROM supplied as part of the MQSeries product.

 Installation
1. Insert the MQSeries Client CD-ROM into the CD-ROM drive.

2. Open the directory WIN31.

| 3. Change to the appropriate language subdirectory for the language you wish to
| install:

| setupen - English
| setupfr - French
| setupde - German
| setupes - Spanish
| setupit - Italian
| setuppt - Portuguese Brazilian
| setupjp - Japanese
| setupko - Korean
| setupcn - Simplified Chinese
| setuptw - Traditional Chinese

 4. Run setup.exe

The MQSeries Welcome window is displayed.

5. Make sure you are installing the correct client for your system, Windows
3.1, as displayed in the Welcome window.

6. Select Destination Directory requires a destination directory into which the
MQSeries files will be installed.

You can change the default directory by selecting the browse button and
choosing a different drive and directory, then click on OK. Click on the Next
button or press Enter to continue.

 Chapter 3. Installing MQSeries client components from Version 5 products 45

 Installing on Windows 3.1

7. Choose MQSeries Components displays a list of components from which you
can select the ones you want to be installed. See “Components for DOS and
Windows 3.1” on page 34 for details.

To select a component, click in the square next to it so that a check mark
appears (just highlighting the line does not select it). The space needed for
each component is shown here, and the space available on the drive you have
selected. Click on the Next button or press Enter to continue.

8. Select Program Folder prompts you for a folder name to contain the MQSeries
objects. The default name is MQSeries Client for Windows 3.1. You can
rename the default or choose an existing folder.

9. Start Copying Files displays the selection you have made. Click on the Back
button if you want to return to change your choice.

Now click on the Next button or press Enter to start the file copying process.

The progress indicator shows what components are being copied and the
percentage of copying completed.

10. The next window presents you with the opportunity to view the README file. If
you do not want to view the README file at this point, it will be available in the
MQSeries client folder.

If you view the README file, close the window of the README to continue the
installation process.

11. The installation of the MQSeries client is now complete, and a window is
displayed giving you the option of restarting your computer now or leaving it
until later. It is recommended that you restart your computer now. Close all
the other applications that are running before continuing with this step.

Select Yes, I want to restart my computer now and click on the Finish
button to complete the setup.

12. When setup is complete, the MQSeries Client folder is added to the Program
Manager. Note that the MQSeries client is a set of services and it does not
have to be explicitly run, so the folder does not have an object called a “client”.

Running Setup again
You can run the installation again to add another component or to reinstall a
component. If you want to reinstall a component you must first remove it, see
“Removing an MQSeries client from Windows 3.1.”

If components are already installed and you cancel the reinstallation before any
files have been copied, you will see the message Setup is not complete. This
means that nothing has been done, so the installation remains as before.

Removing an MQSeries client from Windows 3.1
If you want to remove the MQSeries client files from your machine, use the process
provided to do this efficiently.

Run Uninstall from the MQSeries client folder. You are prompted before
continuing.

All the MQSeries client files that were created at installation time are removed by
the process.

46 MQSeries Clients

 Installing on Windows NT or 95

Installing on Windows NT or Windows 95
To install an MQSeries client on a Windows NT or a Windows 95 system you use
the MQSeries Client CD-ROM supplied as part of the MQSeries product.

Note: If you plan to install an MQSeries client and server on the same machine,
see “Installing MQSeries clients on the same machine as the server” on page 35.

| Note for Windows NT users: If you have the IBM Anti-Virus software installed on
| your Windows NT workstation/Server Version 4 and you install IBM MQSeries, the
| folders containing the MQSeries programs and sub-folders will not be created. The
| solution to this problem is to de-install IBM Anti-Virus software, install MQSeries
| and then re-instate IBM Anti-Virus software.

 Installation
1. Insert the MQSeries Client CD-ROM into the CD-ROM drive.

2. The installation automatically launches and an MQSeries Language Selection
window is displayed.

Note: If you have disabled auto-playing of CD-ROMs, run SETUP instead,
from the root directory.

This window presents you with a list of the National Languages that are
available.

3. On the MQSeries Language Selection window select the language of your
choice, and click on the Next button or press Enter.

The MQSeries Welcome window is displayed.

4. Make sure you are installing the correct client for your system, as displayed
in the Welcome window.

5. Select Destination Directory requires a destination directory into which the
MQSeries files will be installed.

You can change the default shown by selecting the browse button and
choosing a different drive and directory, then click on OK. Click on the Next
button or press Enter to continue.

6. Choose MQSeries Components displays a list of components from which you
can select the ones you want to be installed. See “Components for OS/2 Warp
and Windows NT” on page 33 or “Components for Windows 95” on page 34
for details.

| The component MQSeries Client for Java should be installed only if you have
| Java 1.1.1 (or later compatible) runtime code on your machine. Also on a
| Windows NT client you must use Microsoft Windows NT Version 4.

To select a component, click in the square next to it so that a check mark
appears (just highlighting the line does not select it). The space needed for
each component is shown here, and the space available on the drive you have
selected.

Click on the Next button or press Enter to continue.

7. Select Program Folder prompts you for a folder name to contain the MQSeries
objects. The default name is MQSeries Client for Windows NT (or 95). You
can rename the default or choose an existing folder.

 Chapter 3. Installing MQSeries client components from Version 5 products 47

 Installing on Windows NT or 95

8. Start Copying Files displays all the selections you have made. Click on the
Back button if you want to return to a previous window to change any of your
choices.

When you have checked your choices, Click on the Next button or press Enter
to start the file copying process.

The progress indicator shows which components are being copied and the
percentage of copying completed.

9. The next window presents you with the opportunity to view the README file. If
you do not want to view the README file at this point, it will be available in the
MQSeries client folder.

If you view the README file, close the window of the README to continue the
installation process.

10. The installation of the MQSeries client is now complete, and a window is
displayed giving you the option of restarting your computer now or leaving it
until later. It is recommended that you restart your computer now. Close all
the other applications that are running before continuing with this step.

Once this has been done, select Yes, I want to restart my computer now
and click on the Finish button to complete the setup.

11. When setup is complete, the MQSeries Client folder is added to the desktop, or
the location you specified. Note that the MQSeries client is a set of services
and it does not have to be explicitly run, so the folder does not have an object
called a “client”.

| Silent install on Windows 95 and Windows NT
| 1. Change to the required language subdirectory, for example f:\winnt\setupen
| (where f is your CD-ROM drive).

| 2. Run setup.exe with the -r option:

| setup.exe -r

| This does a recorded install of MQSeries to your machine. The process
| records this to file setup.iss in the subdirectory c:\WINNT (on Windows NT) or
| in the subdirectory c:\WINDOWS (on Windows 95).

| 3. This .iss file needs to be placed in the language subdirectory. For example
| copy all files from f:\winnt\ to s:\winnt\ and copy setup.iss to
| s:\winnt\setupen\setup.iss (where s is the shared resource).

| 4. On the machine you wish to silently install, connect to this shared resource.
| Then from s:\winnt\setupen run setup.exe with the -s option, for example:

| setup.exe -s

| This should now silently install the client to this machine.

Now go to Chapter 5, “Verifying the installation” on page 65.

48 MQSeries Clients

 Installing on Windows NT or 95

Running Setup again
You can run the installation again to add another component or to reinstall a
component. If you want to reinstall a component you must first remove it, as
described in “Removing an MQSeries client from Windows NT and Windows 95.”

If components are already installed and you cancel the reinstallation before any
files have been copied, you will see the message Setup is not complete. This
means that nothing has been done, so the installation remains as before.

Removing an MQSeries client from Windows NT and Windows 95
If you want to remove the MQSeries client files from your machine, use Settings/
Control Panel/ Add-Remove programs. First select MQSeries Client which
launches the uninstall program. Then select the components you want to remove
and click Remove .

If you choose to remove all MQSeries components and are then likely to reinstall
MQSeries, you should restart your computer to complete the uninstall process.
You cannot reinstall any components until you have restarted.

All the MQSeries client files that were created at installation time are removed by
the process.

 Chapter 3. Installing MQSeries client components from Version 5 products 49

 Installing on Windows NT or 95

50 MQSeries Clients

 Installing clients (non-Version 5)

Chapter 4. Installing MQSeries clients with non-Version 5
products

The MQSeries non-Version 5 products are:

| � MQSeries for AS/400 V4R2
� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for MVS/ESA V1.2
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for SunOS V2.2

| � MQSeries for Tandem NonStop Kernel V2.2
| � MQSeries Client for VM/ESA V2.3

If you are using an MQSeries Version 5 product, see Chapter 3, “Installing
MQSeries client components from Version 5 products” on page 31.

You install the MQSeries client and server system in two parts: one for the
MQSeries server on your server machine and one for the MQSeries client on your
client machine.

You can install the MQSeries client files from your MQSeries product, as explained
here, or from an IBM Transaction Processing SupportPac, see “MQSeries clients
from IBM Transaction Processing SupportPacs.”

| Note for AS/400, MVS/ESA, and Tandem NSK users: MQSeries for AS/400
| V4R2, MQSeries for MVS/ESA V1.2, and MQSeries for Tandem NonStop Kernel
| V2.2 can accept connections from MQSeries clients on other platforms. An
| MQSeries client cannot run on AS/400, MVS/ESA, or Tandem NSK and the files for

MQSeries clients are not supplied with these products.

If you want to connect MQSeries clients with these platforms, install the MQSeries
clients from another MQSeries product, or from an IBM Transaction Processing
SupportPac (see “MQSeries clients from IBM Transaction Processing
SupportPacs”).

| Note for VM/ESA users: You do not need the installation procedure detailed for
| the other platforms. See “MQSeries Client for VM/ESA Version 2 Release 3” on
| page 63.

MQSeries clients from IBM Transaction Processing SupportPacs
The MQSeries client files can be copied from the IBM Transaction Processing
SupportPacs for use as needed. See “MQSeries information available on the
Internet” on page xiii.

The IBM Transaction Processing SupportPacs library consists of material that
complements the family of CICS and MQSeries products marketed by IBM.

MQSeries client software is available at no charge and is subject to the IPLA and
License Information terms defined when requesting the MQSeries clients on the
Internet. You have the right to make as many copies of the MQSeries client as
necessary.

 Copyright IBM Corp. 1994,1998 51

 Installing the server

MQSeries clients from the MQSeries products
The way you install the MQSeries client files depends on whether your client
platform is the same as, or different from, the server platform.

MQSeries client and server on the same platform
If your MQSeries client platform is the same as your server platform, you can install
both of them in the normal way, directly from the media (diskette, CD-ROM, or
tape, according to your platform). For details see the System Management Guide
for your platform.

You can, instead, install the MQSeries client from a LAN server on which you have
already installed the Base product and server (not recommended for an MQSeries
client on Windows NT). Use FTP or a similar method to do this. For NetView
instructions, see the System Management Guide for your platform.

Full details of how to copy the required MQSeries client files to the client machine,
including the filenames and directories, are given in this chapter:

Installing MQSeries clients from:

� MQSeries for Digital OpenVMS (page 54)
� MQSeries for UNIX systems (page 58)

MQSeries client and server on different platforms
If your MQSeries client platform is different from your server platform, you may only
require the MQSeries product for the server platform. The MQSeries Version 2.2
products supply files for a group of desktop clients. These are in addition to the
files for the MQSeries client on the same platform as your server. The desktop
clients are for DOS, OS/2 and Windows 3.1.

You install MQSeries on the server machine in the normal way directly from the
media (diskette, CD-ROM or tape, according to your platform). You may also
install, at the same time, the MQSeries client files that you need for your other
platform or platforms.

Then you copy the required MQSeries client files to the build and run environment
on the client machine. Full details of how to do this, including the file names and
directories, are given in this chapter:

Installing MQSeries clients from:

� MQSeries for Digital OpenVMS (page 54)
� MQSeries for UNIX systems (page 58)

Installing the MQSeries server
Install the MQSeries Base Product and Server on the machine you want to use as
your MQSeries server. Full details are given in the System Management Guide for
your platform.

For MQSeries for MVS/ESA, install the MQSeries Base product and Distributed
Queuing without CICS feature, and Client Attachment feature, on the machine you
want to use as your MQSeries server. Customize it as required to provide

52 MQSeries Clients

 Installing the server

client-server support. Full details are given in the MQSeries for MVS/ESA Program
Directory.

MQSeries client files on the server
During the installation of the server you may be able to include MQSeries client
files for other platforms. This depends on your server platform, as follows.

MQSeries for Digital OpenVMS, and UNIX platforms
When you install MQSeries on Digital OpenVMS, or a UNIX system, the files for
some desktop clients are supplied: DOS, OS/2, and Windows 3.1. Also files for
MQSeries clients on the same platform as the server are supplied.

On the server, on the appropriate menu during the installation, you select the
MQSeries client or clients that you require. Then you continue with the installation
of the server. The MQSeries client files will be copied onto the server, ready for
you to copy onto your client machine, as described in this chapter.

MQSeries for AS/400, MVS/ESA, and Tandem NSK
| You can connect MQSeries clients on other platforms to MQSeries for AS/400
| V4R2, MQSeries for MVS/ESA V1.2, and MQSeries for Tandem NonStop Kernel
| V2.2. MQSeries clients cannot be run on these systems, so the files for MQSeries
| clients are not supplied with MQSeries for AS/400 V4R2, MQSeries for MVS/ESA
| V1.2, or MQSeries for Tandem NonStop Kernel V2.2.

If you have only these MQSeries products, and you want to install MQSeries clients
on other platforms, see “MQSeries clients from IBM Transaction Processing
SupportPacs” on page 51.

If you have another MQSeries product available, you may be able to install the
MQSeries client files you require from that product, as described in the following
sections of this chapter.

 Chapter 4. Installing MQSeries clients with non-Version 5 products 53

 Installing from Digital OpenVMS

Installing MQSeries clients from MQSeries for Digital OpenVMS
When you have included the MQSeries client files in the installation of your Digital
OpenVMS server machine, the files are located in these directories:

Digital OpenVMS files

SYS$LIBRARY .
SYS$SYSTEM .
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES]

OS/2 files

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.BIN]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.DLL]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.INC]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.LIB]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.MSG]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.SAMP.BIN]

DOS files

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.BIN]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.INC]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.LIB]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.MSG]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.SAMP]

Windows 3.1 files

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.BIN]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.DLL]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.INC]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.LIB]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.MSG]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.SAMP.BIN]

Note: This assumes that the logical name MQS_EXAMPLES is assigned to
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES]

Installing an MQSeries client on Digital OpenVMS from Digital
OpenVMS

If possible do this by installing the MQSeries client directly from the media supplied
with your MQSeries product. For details see MQSeries for Digital OpenVMS
System Management Guide.

You can, instead, use the following method:

1. Copy these files from the the Digital OpenVMS server to the Digital OpenVMS
client system, into the same directories as on the server system:

54 MQSeries Clients

 Installing from Digital OpenVMS

SYS$COMMON:[SYSEXE]DSPMQTRC.EXE
SYS$COMMON:[SYSEXE]ENDMQTRC.EXE
SYS$COMMON:[SYSEXE]RUNMQTRC.EXE
SYS$COMMON:[SYSEXE]STRMQTRC.EXE

SYS$COMMON:[SYSLIB]AMQCC62A.EXE
SYS$COMMON:[SYSLIB]AMQCCDCA.EXE
SYS$COMMON:[SYSLIB]AMQCCTCA.EXE
SYS$COMMON:[SYSLIB]AMQTRC.FMT
SYS$COMMON:[SYSLIB]MQIC.EXE
SYS$COMMON:[SYSLIB]MQICB.EXE
SYS$COMMON:[SYSLIB]MQMCS.EXE

2. Creat this directory on the Digital OpenVMS client system:

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES]

Copy into this directory all the files from the same directory on the Digital
OpenVMS server.

Installing an MQSeries client on OS/2 from Digital OpenVMS
1. Create this directory structure on the OS/2 system:

<drive>:\mqm\bin
<drive>:\mqm\dll
<drive>:\mqm\inc
<drive>:\mqm\lib
<drive>:\mqm\msg

2. Copy these files, from Digital OpenVMS, into the above directories on the OS/2
system:

<drive>:\mqm\bin

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.BIN]
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.SAMP.BIN]

<drive>:\mqm\dll

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.DLL]

<drive>:\mqm\inc

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.INC]

<drive>:\mqm\lib

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.LIB]

<drive>:\mqm\msg

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.MSG]

See Chapter 5, “Verifying the installation” on page 65 for how to use the
sample executables amqsputc.exe and amqsgetc.exe. Alternatively, you can
build these yourself from the corresponding source files amqsput0.c and
amqsget0.c.

3. Create an MQSeries configuration file (mqs.ini) in the <drive>:\mqm directory
and add the following stanza:

 Chapter 4. Installing MQSeries clients with non-Version 5 products 55

 Installing from Digital OpenVMS

AllQueueManagers:
 DefaultPrefix=<drive>:\mqm

4. Make the following changes to your config.sys file on the OS/2 system (for
details of how to make the changes, see “Changing the OS/2 config.sys file” on
page 62):

PATH: include <drive>:\mqm\bin
DPATH: include <drive>:\mqm\bin;c:\mqm\msg
LIBPATH: include <drive>:\mqm\dll
HELP: include <drive>:\mqm\bin
LIB: include <drive>:\mqm\lib

Reboot your system for these changes to take effect.

5. Now go to Chapter 5, “Verifying the installation” on page 65.

Installing an MQSeries client on DOS from Digital OpenVMS
1. Create a suitable directory on the DOS system.

2. Copy these files, from Digital OpenVMS
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT] into the directory you
have created on the DOS system:

 \.exe
 \.msg
 \.lib
 \.h

See Chapter 5, “Verifying the installation” on page 65 for how to use the
sample executables (included when you copy *.exe): amqsputc.exe and
amqsgetc.exe. Alternatively, you can build these yourself from the
corresponding source files amqsput0.c and amqsget0.c, in
<drive>:\mqm\tools\c\samples.

3. Make changes to the PATH statement and the DOS APPEND statement in
your autoexec.bat file to include the directory you have used (for details of how
to make the changes, see “Changing the autoexec.bat file for DOS and
Windows 3.1” on page 63).

4. Now go to Chapter 5, “Verifying the installation” on page 65.

Installing an MQSeries client on Windows 3.1 from Digital OpenVMS
Note: You can also install the Windows 3.1 client code on WIN-OS/2 under OS/2,
Windows NT, and Windows 95.

1. Create a suitable directory on the Windows 3.1 system.

2. Copy these files, from MQSeries for Digital OpenVMS
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.BIN] into the directory you
have created on the Windows 3.1 system:

 \.exe
 \.dll
 \.msg
 \.lib
 \.h files

See Chapter 5, “Verifying the installation” on page 65 for how to use the
sample executables (included when you copy *.exe): amqsputw.exe and

56 MQSeries Clients

 Installing from Digital OpenVMS

amqsgetw.exe. Alternatively, you can build these yourself from the
corresponding source files amqsputw.c and amqsgetw.c, in <drive>:\mqm\win.

3. Make changes to the PATH statement and the DOS APPEND statement in
your autoexec.bat file to include the directory you have used (for details of how
to make the changes, see “Changing the autoexec.bat file for DOS and
Windows 3.1” on page 63).

4. Now go to Chapter 5, “Verifying the installation” on page 65.

 Chapter 4. Installing MQSeries clients with non-Version 5 products 57

 Installing from UNIX systems

Installing MQSeries clients from MQSeries for UNIX systems
Installation directory for UNIX systems:
The name mqmtop is used to represent the name of the installation directory for
UNIX systems.

The name of the actual directory is:

When you have included the MQSeries client files in the installation of your UNIX
system server machine, the files are located in these directories:

UNIX system files

/mqmtop/xxx_client/bin
/mqmtop/xxx_client/inc
/mqmtop/xxx_client/lib
/mqmtop/xxx_client/msg
/mqmtop/xxx_client/samp/bin

Where xxx is an identifier for the name of the UNIX system
on your server machine.

OS/2 files

/mqmtop/os2_client/bin
/mqmtop/os2_client/dll
/mqmtop/os2_client/inc
/mqmtop/os2_client/lib
/mqmtop/os2_client/msg
/mqmtop/os2_client/samp/bin

DOS files

/mqmtop/dos_client/bin
/mqmtop/dos_client/lib
/mqmtop/dos_client/inc
/mqmtop/dos_client/msg
/mqmtop/dos_client/samp/bin

Windows 3.1 files

/mqmtop/win_client/bin
/mqmtop/win_client/dll
/mqmtop/win_client/inc
/mqmtop/win_client/lib
/mqmtop/win_client/msg
/mqmtop/win_client/samp/bin

MQSeries for SunOS /usr/mqm

MQSeries for AT&T GIS UNIX
MQSeries for SINIX and DC/OSx

/opt/mqm

Installing an MQSeries client on a UNIX system from a UNIX system
If possible do this by installing the MQSeries client directly from the media supplied
with your MQSeries product. For details see the System Management Guide for
your platform.

You can, instead, use the following method:

58 MQSeries Clients

 Installing from UNIX systems

1. Create this directory structure on the UNIX system:

/mqmtop/mqm/bin
/mqmtop/mqm/inc
/mqmtop/mqm/lib
/mqmtop/mqm/msg

2. Copy these files, from the server UNIX system, into the above directories on
the client UNIX system:

/mqmtop/mqm/bin
 /mqmtop/xxx_client/bin
 /mqmtop/xxx_client/samp/bin/amqsputc.exe
 /mqmtop/xxx_client/samp/bin/amqsgetc.exe

/mqmtop/mqm/inc
 /mqmtop/xxx_client/inc

/mqmtop/mqm/lib
 /mqmtop/xxx_client/lib

/mqmtop/mqm/msg
 /mqmtop/xxx_client/msg

See Chapter 5, “Verifying the installation” on page 65 for how to use the
sample executables amqsputc.exe and amqsgetc.exe. Alternatively, you can
build these yourself from the corresponding source files amqsput0.c and
amqsget0.c.

Note: For national language-specific directories, see the README file supplied
with MQSeries on the server platform.

3. Copy the file amq.cat from /mqmtop/mqm/msg into the default message catalog
directory for your system, or a directory referenced in your NLSPATH
environment variable.

For example:

On AT&T GIS UNIX /usr/lib/locale/C/LC_MESSAGES

4. Make a directory /var/mqm. Create an MQSeries configuration file (mqs.ini) in
the /var/mqm directory and add the following stanza:

AllQueueManagers:
 DefaultPrefix=/var/mqm

5. This step is optional:

Symbolically link the C header files from mqmtop/mqm/inc into /usr/include

Link the libraries from mqmtop/mqm/lib into /usr/lib

Link the programs from mqmtop/mqm/bin into /usr/bin

6. Now go to Chapter 5, “Verifying the installation” on page 65.

Installing an MQSeries client on OS/2 from a UNIX system
1. Create this directory structure on the OS/2 system:

 Chapter 4. Installing MQSeries clients with non-Version 5 products 59

 Installing from UNIX systems

<drive>:\mqm\bin
<drive>:\mqm\dll
<drive>:\mqm\inc
<drive>:\mqm\lib
<drive>:\mqm\msg
<drive>:\mqm\samp\bin

2. Copy these files, from MQSeries on the UNIX system, into the above
directories on the OS/2 system:

<drive>:\mqm\bin
 /mqmtop/os2_client/bin

<drive>:\mqm\dll
 /mqmtop/os2_client/dll

<drive>:\mqm\inc
 /mqmtop/os2_client/inc

<drive>:\mqm\lib
 /mqmtop/os2_client/lib

<drive>:\mqm\msg
 /mqmtop/os2_client/msg

<drive>:\mqm\samp\bin
 /mqmtop/os2_client/samp/bin/amqsputc.exe
 /mqmtop/os2_client/samp/bin/amqsgetc.exe

See Chapter 5, “Verifying the installation” on page 65 for how to use the
sample executables amqsputc.exe and amqsgetc.exe. Alternatively, you can
build these yourself from the corresponding source files amqsput0.c and
amqsget0.c.

Note: For national language-specific directories, see the README file supplied
with MQSeries on the server platform.

3. Create an MQSeries configuration file (mqs.ini) in the <drive>:\mqm directory
and add the following stanza:

AllQueueManagers:
 DefaultPrefix=<drive>:\mqm

4. Make the following changes to your config.sys file on the OS/2 system (for
details of how to make the changes, see “Changing the OS/2 config.sys file” on
page 62):

PATH: include <drive>:\mqm\bin
DPATH: include <drive>:\mqm\bin;c:\mqm\msg
LIBPATH: include <drive>:\mqm\dll
HELP: include <drive>:\mqm\bin
LIB: include <drive>:\mqm\lib
INCLUDE: include <drive>:\mqm\inc

5. Now go to Chapter 5, “Verifying the installation” on page 65.

60 MQSeries Clients

 Installing from UNIX systems

Installing an MQSeries client on DOS from a UNIX system
1. Copy these files, from MQSeries on the UNIX system into a suitable directory

on the DOS system:

/mqmtop/dos_client/bin
 \.exe

/mqmtop/dos_client/inc
 \.h

/mqmtop/dos_client/lib
 \.lib

/mqmtop/dos_client/msg
 \.msg

/mqmtop/dos_client/samp/bin/amqsputc.exe
/mqmtop/dos_client/samp/bin/amqsgetc.exe

See Chapter 5, “Verifying the installation” on page 65 for how to use the
sample executables amqsputc.exe and amqsgetc.exe. Alternatively, you can
build these yourself from the corresponding source files.

Note: For national language-specific directories, see the README file supplied
with MQSeries on the server platform.

2. Make changes to the PATH statement and the DOS APPEND statement in
your autoexec.bat file to include the directory you have used (for details of how
to make the changes, see “Changing the autoexec.bat file for DOS and
Windows 3.1” on page 63).

3. Now go to Chapter 5, “Verifying the installation” on page 65.

Installing an MQSeries client on Windows 3.1 from a UNIX system
Note: You can also install the Windows 3.1 client code on WIN-OS/2 under OS/2,
Windows NT, and Windows 95.

1. Copy these files, from MQSeries on the UNIX system into a suitable directory,
for example c:\mqm on the Windows system:

/mqmtop/win_client/bin
 \.exe

/mqmtop/win_client/dll
 \.dll

/mqmtop/win_client/lib
 \.lib

/mqmtop/win_client/msg
 \.msg

/mqmtop/win_client/inc/
 \.h
 \.hpp (Version 5 products)

/mqmtop/win_client/samp/bin/amqsputw.exe
/mqmtop/win_client/samp/bin/amqsgetw.exe
/mqmtop/win_client/samp/bin/imq\c.exe (Version 5 products)

 Chapter 4. Installing MQSeries clients with non-Version 5 products 61

 config.sys and autoexec.bat

See Chapter 5, “Verifying the installation” on page 65 for how to use the
sample executables amqsputw.exe and amqsgetw.exe. Alternatively, you can
build these yourself from the corresponding source files.

Note: For national language-specific directories, see the README file supplied
with MQSeries on the server platform.

2. Make changes to the PATH statement and the DOS APPEND statement in
your autoexec.bat file to include the directory you have used (for details of how
to make the changes, see “Changing the autoexec.bat file for DOS and
Windows 3.1” on page 63).

3. Now go to Chapter 5, “Verifying the installation” on page 65.

Changing config.sys and autoexec.bat
On OS/2, Windows 3.1, and DOS systems, you need to add some statements to
the files that the operating system uses when it starts up. The files are config.sys
and autoexec.bat. These statements define to the operating system the path or
paths to the MQSeries client directories.

The way you do this is explained in the following sections. See the section for your
operating system.

Changing the OS/2 config.sys file
Edit the config.sys file as follows:

1. Find the line that starts SET PATH=

2. Add to the end of the line, after a semicolon (;)
<drive>:\mqm\bin

3. Find the line that starts SET DPATH=

4. Add to the end of the line, after a semicolon (;)
<drive>:\mqm\bin; <drive>:\mqm\msg

5. Find the line that starts SET HELP=

6. Add to the end of the line, after a semicolon (;)
<drive>:\mqm\bin

7. Find the line that starts SET LIB=

8. Add to the end of the line, after a semicolon (;)
<drive>:\mqm\lib

9. Find the line that starts LIBPATH= if there is one,

10. Add to the end of the line, after a semicolon (;)
<drive>:\mqm\dll

11. If there is no LIBPATH= line, create a new line: LIBPATH=<drive>:\mqm\dll

You must restart your system before these changes will take effect.

62 MQSeries Clients

 Client for VM/ESA

Changing the autoexec.bat file for DOS and Windows 3.1
Edit the autoexec.bat file as follows:

1. Find the line that starts PATH

2. Add to the end of the line, after a semicolon (;)
<drive>:\<dir>
using the drive and directory that you created on your system for the MQSeries
client files.

3. If there is no PATH line, create a new line: PATH <drive>:\<dir>

4. Find the line that starts APPEND

5. Add to the end of the line, after a semicolon (;)
<drive>:\<dir>
using the drive and directory that you created on your system for the MQSeries
client files.

6. If there is no APPEND line, create a new line: APPEND <drive>:\<dir>

You must restart your system before these changes will take effect.

| MQSeries Client for VM/ESA Version 2 Release 3
| The MQSeries Client for VM/ESA V2.3 is supplied as part of the VM/ESA product.
| The client is installed as a component of CMS during the installation of CMS.

| The client code resides on MAINT 193 minidisk and can be accessed by linking to
| MAINT 193.

| To set up your client and server installation and to check that the communication
| link is working, see Chapter 5, “Verifying the installation” on page 65.

 Chapter 4. Installing MQSeries clients with non-Version 5 products 63

 Client for VM/ESA

64 MQSeries Clients

Chapter 5. Verifying the installation

You can verify your MQSeries client and server installation using the supplied
sample PUT and GET programs. These will verify that your installation has been
completed successfully and that the communication link is working.

How does it work?
Instructions are given on how to use the supplied sample PUT and GET programs
to verify that an MQSeries client has been installed correctly, by guiding you
through the following tasks:

1. Setting up the server
2. Setting up the MQSeries client
3. Putting a message on the queue
4. Getting the message from the queue

 5. Ending verification

The installation used for the example
These instructions assume that:

� The full MQSeries product has been installed on a server:

– The Base Product and Distributed Queuing without CICS, and the Client
Attachment feature on MVS/ESA.

– The full MQSeries for AS/400 product on AS/400 platforms.
– The Base Product and Server on other platforms.

� The MQSeries client software has been installed on another machine (or on the
same machine), including the transfer of the MQSeries client files, where
necessary.

The transmission protocol used in the example is TCP/IP. It is assumed that you
have TCP/IP configured on the server and the MQSeries client machines, and that
it has been initialized on both the machines. There are more details about this in
Chapter 6, “Configuring communication links” on page 75.

Note: Compiled samples amqsputc and amqsgetc (amqsputw and amqsgetw for
Windows 3.1) are included in the MQSeries client directories that you installed,
either directly or by copying the files across as described in “Installing the
MQSeries server” on page 52.

What the example shows
The following example shows how to create a queue manager called
queue.manager.1 (on platforms other than MVS/ESA), a local queue called
QUEUE1, and a server-connection channel called CHANNEL1 on the server. It
shows how to create the client-connection channel on the MQSeries client
workstation; and how to use the sample programs to put a message onto a queue,
and then get the message from the queue.

Note: MQSeries object definitions are case-sensitive. You must type the
examples exactly as shown.

 Copyright IBM Corp. 1994,1998 65

 Security
The example does not address any client security issues. See Chapter 9, “Setting
up MQSeries client security” on page 117 for details if you are concerned with
MQSeries client security issues.

Setting up the server (not MVS/ESA or AS/400)
Create a directory to hold working files, for example mqverify, and make this the
current directory. Then follow the steps below to set up the server workstation.

1. Create a default queue manager (called queue.manager.1) by entering the
following command at the command prompt:

crtmqm -q queue.manager.1

2. Start the queue manager by entering the following command:

strmqm

3. If you are using an MQSeries Version 5 product go on to the next step.

If you are using an MQSeries non-Version 5 product, define the default system
objects by entering the following command:

runmqsc queue.manager.1 <PATH/amqscoma.tst >defobj.out

where PATH depends on the platform you are using; see the System
Management Guide for your platform for the value of PATH. When this
command has completed examine the file defobj.out that is written to the
current directory, to confirm that all the default objects were created
successfully. The last line of this file should read:

ð commands cannot be processed

If there are commands that cannot be processed, you need to check your
server installation. See the System Management Guide for your server
platform.

4. Start MQSeries commands (MQSC) by entering the following command:

runmqsc

MQSC does not provide a prompt, but should respond with the message:

Starting MQSeries Commands

5. Create a local queue by entering the following command:

DEFINE QLOCAL(QUEUE1)

6. Create a server-connection channel by entering the following command:

DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(' ')

See “Access control” on page 118 for information about MCAUSER.

7. Stop MQSC by pressing Ctrl+D (on MQSeries Version 5 products type end) and
then Enter.

8. Configure the system to start channels

On OS/2 or Windows NT
Start a listener by entering the following command at the command prompt:

RUNMQLSR -t tcp -m queue.manager.1

66 MQSeries Clients

On UNIX systems
Configure the inetd daemon to start the MQI channels. See “TCP/IP on a
UNIX system server” on page 80 for details of how to do this.

On Digital OpenVMS
See the book MQSeries for Digital OpenVMS System Management Guide
for details of how to configure TCP/IP services to start channels.

Setting up the server (MVS/ESA)
Customize your MQSeries for MVS/ESA installation as described in the MQSeries
for MVS/ESA System Management Guide. This includes defining the default
system objects and enabling Distributed Queuing without CICS. You do not require
the Batch/TSO, CICS, or IMS adapters to run as servers for MQSeries applications
running on a client. However, depending on how you choose to issue commands,
you may need the Batch/TSO adapter and the operations and control panels to
perform administration for clients.

Now follow the steps below. You can use any of the valid command input methods
to issue the MQSeries commands (MQSC) shown.

1. Start the queue manager by entering the following command:

START QMGR

2. Create a local queue by entering the following command:

DEFINE QLOCAL(QUEUE1)

3. Create a server-connection channel by entering the following command:

DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(' ')

4. Start the channel initiator by entering the following command:

START CHINIT

5. Start the listener by entering the following command:

START LSTR TRPTYPE(TCP) PORT(port-number)

Setting up the server (AS/400)
These instructions assume that no queue manager or other MQSeries objects have
been defined. Follow these steps:

1. Create a queue manager by entering the following command:

CRTMQM MQMNAME('qmgr')

2. Start the queue manager by entering the following command:

STRMQM

3. Set up the default system objects

CALL QMQM/AMQSDEF4

4. Create a local queue

CRTMQMQ QNAME(QUEUE1) QTYPE(\LCL)

5. Create a server-connection channel

| CRTMQMCHL CHLNAME(CHANNEL1) CHLTYPE(\SVRCN) TRPTYPE(\TCP)
| MCAUSRID('QMQM')

 Chapter 5. Verifying the installation 67

| Note: QMQM is the Default User ID.

6. Start the listener

STRMQMLSR

Setting up the MQSeries client
When an MQSeries application is run on the MQSeries client, the information it
requires is the name of the MQI channel, the communication type, and the address
of the server to be used. You provide this by defining a client-connection channel.
The name used must be same as the name used for the server-connection channel
defined on the server. In this example the MQSERVER environment variable is
used to define the client-connection channel. This is the simplest way, although not
the only one.

Before starting, type ping server-address (where server-address is the TCP/IP
hostname of the server) to confirm that your MQSeries client and server TCP/IP
sessions have been initialized. You can use the network address, in the format
n.n.n.n, in the ping command instead of the hostname.

If the ping command fails, check that your TCP/IP software is correctly configured
and has been started.

Defining a client-connection channel, using MQSERVER
Create a client-connection channel by setting the MQSERVER environment
variable. (For more information, see Chapter 8, “Using MQSeries environment
variables” on page 111).

For OS/2, DOS, Windows 3.1, Windows 95, and Windows NT clients, enter the
following command:

SET MQSERVER=CHANNEL1/TCP/server-address(port)

For UNIX clients, enter the following command:

export MQSERVER=CHANNEL1/TCP/'server-address(port)'

| For VM/ESA clients, enter the following command:

| GLOBALV SELECT CENV SETLP MQSERVER SYSTEM.DEF.SVRCONN/TCP/server-address(port)

where server-address is the TCP/IP hostname of the server, (port) is optional
and is the TCP/IP port number the server is listening on. If you do not give a port
number MQSeries uses the one specified in the QM.INI file. If no value is specified
in the QM.INI file, MQSeries uses the port number identified in the TCP/IP services
file for the service name MQSeries. If this entry in the services file does not exist, a
default value of 1414 is used. It is important that the port number used by the
client and the port number used by the server listener program are the same.

68 MQSeries Clients

Putting a message on the queue
On the MQSeries client workstation, put a message on the queue using the

| amqsputc sample program (amqsputw on Windows 3.1, AMQSPUT0 on VM/ESA.):

On the MQSeries client workstation (not Windows 3.1, or VM/ESA)
� From a command prompt window, change to the directory containing the

| sample program amqsputc.exe. This is in the /samp/bin directory, or the \bin
| directory for some Version 5 products. Then enter the following command:

amqsputc QUEUE1 qmgr

where qmgr is the name of the queue manager on the server (queue.manager.1
in the non-MVS/ESA example above).

� The following message is displayed:

Sample AMQSPUTð start
target qname is QUEUE1

� Type some message text and then press Enter twice .

� The following message is displayed:

Sample AMQSPUTð end

� The message is now on the queue.

On the MQSeries client workstation (Windows 3.1)
This program has no visible interface. All messages are put in the output file, not
to stdout.

This program takes four parameters, all are required:

1. The name of the output file
2. The name of the input file
3. The name of the queue manager
4. The name of the target queue

Either of these two methods can be used:

� In the DOS prompt window, enter the program name followed by the
parameters. For example:

amqsputw outfile.out infile.in qmgr QUEUE1

Or

� To run AMQSPUTW from the Windows Program Manager, select the menu
item:

 – File/Run...

– On the Run dialog, enter the program name followed by the parameters.
For example:

amqsputw outfile.out infile.in qmgr QUEUE1

Where outfile.out is used to hold the messages generated when the program
runs.

 Chapter 5. Verifying the installation 69

infile.in contains the data to be put onto the target queue. Each line of data is
put as a message. infile.in must be an ASCII file.

qmgr is the name of the queue manager on the server (queue.manager.1 in the
non-MVS/ESA example above).

It is important always to look in the output file to see what has happened, as there
is no visible indication of success or failure when you run this program.

Note: The AMQSPUTC (or AMQSPUTW) sample program starts the channel
between the client and the server. When you have put the message on the queue,
the sample program ends and the channel between the client and server also ends
automatically.

| On the MQSeries client workstation (VM/ESA)
| The sample programs provided with MQSeries Client for VM/ESA V2.3 must be
| compiled on your system. For details see the VM/ESA CMS Application
| Development Guide.

| � Enter the following command:

| AMQSPUTð QUEUE1 qmgr

| where qmgr is the name of the queue manager on the server (queue.manager.1
| in the non-MVS/ESA example above).

| � The following message is displayed:

| Sample AMQSPUTð start
| target qname is QUEUE1

| � Type some message text and then press Enter twice .

| � The following message is displayed:

| Sample AMQSPUTð end

| � The message is now on the queue.

Getting the message from the queue
On the MQSeries client workstation, get a message from the queue using the

| amqsgetc sample program (amqsgetw on Windows 3.1, AMQSGET0 on VM/ESA.):

On the MQSeries client workstation (not Windows 3.1, or VM/ESA)
� Change to the directory containing the sample programs, and then enter the

following command:

amqsgetc QUEUE1 qmgr

Where qmgr is the name of the queue manager on the server
(queue.manager.1 in the non-MVS/ESA example above).

� The message on the queue is removed from the queue and displayed.

70 MQSeries Clients

On the MQSeries client workstation (Windows 3.1)
This program has no visible interface. All messages are put in the output file, not
to stdout.

This program takes three parameters, all are required:

1. The name of the output file
2. The name of the queue manager
3. The name of the target queue

Either of these two methods can be used:

� In the DOS prompt window, enter the program name followed by the
parameters. For example:

amqsgetw outfile.out qmgr QUEUE1

Or

� To run AMQSGETW from the Windows Program Manager, select the menu
item:

 – File/Run...

– On the Run dialog, enter the program name followed by the parameters.
For example:

amqsgetw outfile.out qmgr QUEUE1

where:

outfile.out is used to hold the messages generated when the program
runs.

qmgr is the name of the queue manager on the server (queue.manager.1 in
the non-MVS/ESA example above).

It is important always to look in the output file to see what has happened as there
is no visible indication of success or failure when you run this program.

| On the MQSeries client workstation (VM/ESA)
| The sample programs provided with MQSeries Client for VM/ESA V2.3 must be
| compiled on your system. For details see the VM/ESA CMS Application
| Development Guide.

| � Enter the following command:

| AMQSGETð QUEUE1 qmgr

| Where qmgr is the name of the queue manager on the server
| (queue.manager.1 in the non-MVS/ESA example above).

| � The message on the queue is removed from the queue and displayed.

 Ending verification
The verification process is now complete.

You can stop the queue manager on the server by typing:

endmqm queue.manager.1

 Chapter 5. Verifying the installation 71

or, on MVS/ESA: STOP CHINIT followed by STOP QMGR

If you want to delete the queue manager on the server (not MVS/ESA) type:

dltmqm queue.manager.1

72 MQSeries Clients

 System administration

 Part 2. System administration

Chapter 6. Configuring communication links 75
Deciding which communication type to use . 75
Defining a TCP/IP connection . 77

TCP/IP on an MQSeries client (any platform) 77
TCP/IP on an OS/2 server . 77
TCP/IP on a Windows NT server . 79
TCP/IP on a UNIX system server . 80
TCP/IP on an AS/400 server . 81
TCP/IP on an MVS/ESA server . 81
TCP/IP on a Digital OpenVMS server . 81

| TCP/IP on a Tandem NSK server . 81
Defining an LU 6.2 connection . 82

LU 6.2 on an OS/2 MQSeries client . 82
LU 6.2 on an OS/2 server . 83
LU 6.2 on a Windows NT MQSeries client . 84
LU 6.2 on a Windows NT server . 85
LU 6.2 on a UNIX system MQSeries client 85
LU 6.2 on a UNIX server . 87
LU 6.2 on a SunOS MQSeries client . 87
LU 6.2 on a SunOS server . 88
LU 6.2 on an AS/400 server . 89

| LU 6.2 on a Tandem NSK server . 90
LU 6.2 on an MVS/ESA server . 90
LU 6.2 on a Digital OpenVMS client . 90

Defining a NetBIOS connection . 91
NetBIOS on an MQSeries client (any suitable platform) 91
NetBIOS on an OS/2 server . 91
NetBIOS on a Windows NT server . 92

Defining an SPX connection . 93
SPX on an MQSeries client (any suitable platform) 93
SPX on an MQSeries server (OS/2 or Windows NT) 93
SPX and IPX parameters . 94

Defining a DECnet connection . 96
DECnet on an MQSeries client . 96
DECnet on an MQSeries server (Digital OpenVMS) 96

Chapter 7. Using channels . 99
What is a channel? . 99

Message channel types . 100
MQI channel types . 100

Connecting the MQSeries client and server - channel definitions 100
Defining your channels . 101
Automatic definition of channels by servers (V5 and AS/400) 101

Creating one definition on the MQSeries client and the other on the server . 102
On the server . 102
On the MQSeries client . 102

Creating both definitions on the server . 105
On the server . 105
On the MQSeries client . 107

Migrating from MQSeries for OS/2 V2.0 and MQSeries for AIX V2.1 or V2.2 108

 Copyright IBM Corp. 1994,1998 73

 System administration

Creating a queue manager and starting MQSC on the server 108
Start MQSeries commands (MQSC) . 109

Chapter 8. Using MQSeries environment variables 111
MQCCSID . 112
MQCHLLIB . 112
MQCHLTAB . 113
MQDATA (DOS, Windows 3.1, and Windows NT only) 113
MQNAME . 114
MQSERVER . 114

TCP/IP default port . 115
SPX default socket . 115
Examples of using MQSERVER . 115

MQTRACE (DOS, Windows 3.1, VM/ESA) . 116
MQSWORKPATH (OS/2 only) . 116

Chapter 9. Setting up MQSeries client security 117
Authentication . 117

User ID and password . 118
Access control . 118

74 MQSeries Clients

 Communication links

Chapter 6. Configuring communication links

This chapter tells you how to configure the MQSeries client and server
communication links, and how to enable the server to listen for communications
from the MQSeries client.

In MQSeries the logical communication links are called channels. You set up
channel definitions at each end of your link so that your MQSeries application on
the MQSeries client can communicate with the queue manager on the server.
There is a detailed description of how to do this in Chapter 7, “Using channels” on
page 99.

Before you define your MQI channels:

1. Decide on the form of communications you are going to use.

2. Define the connection at each end:

� Configure the connection.

� Record the values of the parameters that you will need for the channel
definitions later on.

� Enable the server to detect incoming network requests from your MQSeries
client. This involves starting a listener.

This chapter explains how to do these steps.

If you already know which communication type you are using , go straight to
the relevant section:

� “Defining a TCP/IP connection” on page 77
� “Defining an LU 6.2 connection” on page 82
� “Defining a NetBIOS connection” on page 91
� “Defining an SPX connection” on page 93
� “Defining a DECnet connection” on page 96

Deciding which communication type to use
There are five types of communication for MQSeries on different platforms:

 � TCP/IP
 � LU 6.2
 � NetBIOS
 � SPX
 � DECnet

When you define your MQI channels, each channel definition must specify a
Transmission protocol (Transport Type) attribute. A server is not restricted to one
protocol, so different channel definitions can specify different protocols. For
MQSeries clients, it may be useful to have alternate MQI channels using different
transmission protocols.

Your choice of transmission protocol also depends on your particular combination
of MQSeries client and server platforms. The possible combinations are shown in
the following table.

 Copyright IBM Corp. 1994,1998 75

 Communication links

Now go to the relevant section:

� “Defining a TCP/IP connection” on page 77
� “Defining an LU 6.2 connection” on page 82
� “Defining a NetBIOS connection” on page 91
� “Defining an SPX connection” on page 93
� “Defining a DECnet connection” on page 96

Table 2. Transmission protocols - combination of MQSeries client and server platforms

Transmission protocol MQSeries client MQSeries server

TCP/IP Digital OpenVMS
DOS
OS/2
UNIX systems

| VM/ESA
Windows 3.1
Windows 95
Windows NT

AS/400
Digital OpenVMS
MVS/ESA
OS/2

| Tandem NSK
UNIX systems
Windows NT

LU 6.2 Digital OpenVMS MVS/ESA

LU 6.2 OS/2
UNIX systems

| VM/ESA
Windows NT

AS/400
MVS/ESA
OS/2

| Tandem NSK
UNIX systems
Windows NT

NetBIOS DOS
OS/2
Windows 3.1
Windows 95
Windows NT

OS/2
Windows NT

SPX DOS
OS/2
Windows 3.1
Windows 95
Windows NT

OS/2
Windows NT

DECnet Digital OpenVMS Digital OpenVMS

76 MQSeries Clients

 TCP/IP connection

Defining a TCP/IP connection
The steps to take are detailed in the sections that follow:

On the MQSeries client
Initialize TCP/IP

On the server There are three things to do:

1. Decide on a port number.

The port to connect to will default to 1414. Port number 1414
is assigned by the Internet Assigned Numbers Authority to
MQSeries.

2. Initialize TCP/IP, and record the network address of the server
machine.

3. Configure files (or run a command) to specify the port number
and to run a listener program (non-MVS/ESA). On MVS/ESA,
start a channel initiator and a listener.

Note: For more detailed step-by-step examples, see the book MQSeries
Intercommunication.

TCP/IP on an MQSeries client (any platform)
Initialize TCP/IP.

The channel definitions that you create later will include the network address and
port number of the server to which the MQSeries client is sending.

TCP/IP on an OS/2 server
First initialize TCP/IP, and record the network address of the server machine
(displayed in a box as TCP/IP initializes).

Then there are two alternative methods; using INETD or using the Run Listener
(RUNMQLSR) command:

 Using INETD
First type:

SET ETC

This will return the path to the ETC subdirectory.

To use INETD to start MQI channels, configure files as follows, where in this case
the path is taken to be TCPIP: Note that this is case sensitive and the entries in the
two files must match.

� To TCPIP\ETC\SERVICES (or MPTN\ETC\SERVICES) add the line:

MQSeries 1414/tcp

where 1414, the default, is the port number required.

Alternatively, you may want to use another port, for example, port number
1822, in which case you add the line:

MQSeries 1822/tcp

� To TCPIP\ETC\INETD.LST, add the line:

 Chapter 6. Configuring communication links 77

 TCP/IP connection

MQSeries tcp C:\MQM\BIN\AMQCRSTA [-m QMName]

The part in square brackets is optional and is not required for the default queue
manager. If your MQSeries for OS/2 was not installed on the C drive, replace
the C: above with the correct drive letter.

It is possible to have more than one queue manager on the server machine. Add a
line to each of the two files, as above, for each queue manager. For example:

MQSeries1 1414/tcp
MQSeries2 1415/tcp

MQSeries1 tcp C:\MQM\BIN\AMQCRSTA -m QM1
MQSeries2 tcp C:\MQM\BIN\AMQCRSTA -m QM2

Now stop and then start the inetd program, before continuing.

Note: There can be a maximum of five outstanding connection requests queued at
a single TCP/IP port.

To avoid error messages being generated by this limitation, you can define multiple
ports, as described above, with only one queue manager, or with multiple queue
managers.

There is no limit on the number of clients, the limitation is on the number that
connect simultaneously. The system resources will, however, limit the number that
can be used. A maximum of 100 clients is a reasonable number to work with.

Using the Run Listener (RUNMQLSR) command
To run the Listener supplied with MQSeries for OS/2, that starts new MQI channels
as threads, use the RUNMQLSR command. For example:

RUNMQLSR -t tcp [-m QMNAME] [-p 1822]

The square brackets indicate optional parameters:

-m QMNAME is not required for the default queue manager.
-p 1822 is not required if the default port number 1414 is used.

It is possible to have more than one queue manager running on the server
machine. Start a listener program for each one, on different ports. For example:

RUNMQLSR -t tcp
RUNMQLSR -t tcp -m QM2 -p 1415

Note: There can be a maximum of five outstanding connection requests queued at
a single TCP/IP port.

To avoid error messages being generated by this limitation, you can define multiple
ports, as described above, with only one queue manager, or with multiple queue
managers.

78 MQSeries Clients

 TCP/IP connection

There is no limit on the number of clients, the limitation is on the number that
connect simultaneously. The system resources will, however, limit the number that
can be used. A maximum of 100 clients is a reasonable number to work with.

TCP/IP on a Windows NT server
TCP/IP is initialized automatically as a service during Windows NT startup, but first
define the port number as follows.

To the file c:\winnt\system32\drivers\etc\services, add the line:

MQSeries 1414/tcp

where 1414, the default, is the port number required.
(On some versions the path is c:\winnt35\system32\drivers\etc\services)

Alternatively, you may want to use another port, for example, port number 1822, in
which case you add the line:

MQSeries 1822/tcp

It is possible to have more than one queue manager on the server machine. Add a
line, as above, for each queue manager. For example:

MQSeries1 1414/tcp
MQSeries2 1415/tcp

Note: There can be a maximum of five outstanding connection requests queued at
a single TCP/IP port.

To avoid error messages being generated by this limitation, you can define multiple
ports, as described above, with only one queue manager, or with multiple queue
managers.

There is no limit on the number of connected clients, the limitation is on the number
that connect simultaneously.

Using the Run Listener (RUNMQLSR) command
To run the Listener supplied with MQSeries for Windows NT, that starts new MQI
channels as threads, use the RUNMQLSR command. For example:

RUNMQLSR -t tcp [-m QMNAME] [-p 1822]

The square brackets indicate optional parameters:

-m QMNAME is not required for the default queue manager.
-p 1822 is not required if the default port number 1414 is used.

It is possible to have more than one queue manager running on the server
machine. Start a listener program for each one, on different ports. For example:

RUNMQLSR -t tcp
RUNMQLSR -t tcp -m QM2 -p 1415

 Chapter 6. Configuring communication links 79

 TCP/IP connection

TCP/IP on a UNIX system server
Note: The name of the installation directory on your UNIX system is represented
here by mqmtop .

Configure the inetd daemon on the server, so that inetd will start the MQI
| channels. Log on as root and configure the following files:

1. Add a line in the /etc/services file:

MQSeries 1414/tcp

where 1414, the default, is the port number required. Alternatively, you may
want to use a different port, for example, port number 1822 in which case add
the line:

MQSeries 1822/tcp

2. Add a line (case sensitive) in the inetd.conf file to call the program amqcrsta:

MQSeries stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta [-m QM1]

where QM1 is the queue manager name, not required for the default queue
manager.

3. The updates are active after you issue the following commands from the root
user ID:

On AIX:

inetimp
refresh -s inetd

On other UNIX systems:

kill -1 <process number of inetd daemon>

It is possible to have more than one queue manager on the server machine. Add a
line to each of the two files, as above, for each queue manager. For example, in
/etc/services:

MQSeries1 1414/tcp
MQSeries2 1415/tcp

and in the inetd.conf file:

MQSeries1 stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta -m QM1
MQSeries2 stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta -m QM2

Note: There can be a maximum of five outstanding connection requests queued at
a single TCP/IP port.

To avoid error messages being generated by this limitation, you can define multiple
ports, as described above, with only one queue manager, or with multiple queue
managers.

There is no limit on the number of connected clients, the limitation is on the number
that connect simultaneously.

80 MQSeries Clients

 TCP/IP connection

TCP/IP on an AS/400 server
TCP/IP is normally initialized automatically as a service during AS/400 startup.

Use the Start Listener (STRMQMLSR) command to enable the MQSeries server to
receive incoming client connections.

By default, the MQSeries for AS/400 TCP/IP listener program uses port 1414.

TCP/IP on an MVS/ESA server
Set up communications for MQSeries for MVS/ESA to use TCP/IP channels, as
described in the book MQSeries Intercommunication. Then:

1. Start the channel initiator

START CHINIT

2. Start the listener

START LSTR TRPTYPE(TCP) PORT(port-number)

TCP/IP on a Digital OpenVMS server
Set up communications for MQSeries for Digital OpenVMS to use TCP/IP channels,
as described in the book MQSeries for Digital OpenVMS System Management
Guide.

See also the book MQSeries Intercommunication for details of how to configure
TCP/IP services on Digital OpenVMS.

| TCP/IP on a Tandem NSK server
| Set up communications for MQSeries for Tandem NSK to use TCP/IP channels, as
| described in the book MQSeries Intercommunication. Then start the listener to
| enable the MQSeries server to receive incoming client connections. There are a
| number of ways of doing this, described in the book. For example:

| runmqlsr -t tcp

| By default, the MQSeries for Tandem NSK listener program uses port 1414.

| See also the book MQSeries for Tandem NonStop Kernel System Management
| Guide for details of how to configure TCP/IP services on Tandem NSK.

 Chapter 6. Configuring communication links 81

 LU 6.2 connection

Defining an LU 6.2 connection
The steps to take are detailed in the sections that follow:

On the MQSeries client

 1. Configure SNA.

2. Set TpName and TpPath.

3. Establish a valid SNA session between the MQSeries client
and server machines.

On the server

1. Start a listener, or create a listening attachment
(non-MVS/ESA).

2. Start a channel initiator and a listener (MVS/ESA).

Note: For more detailed step-by-step examples, see the book MQSeries
Intercommunication.

LU 6.2 on an OS/2 MQSeries client
First configure SNA so that an LU 6.2 conversation can be established between the
MQSeries client machine and the server machine. See the book Multiplatform
APPC Configuration Guide. This is supplied online with some MQSeries products
as APPC Configuration Guide (Red Book) for information.

Set the Transaction Program name (TpName or TPNAME) as shown in the
following table:

Establish a valid session between the two machines. You can specify the local LU
that MQSeries for OS/2 will use, either by creating the MQSeries client
configuration file (QM.INI), or as an environment variable. An entry in the
configuration file takes precedence over the environment variable. For an
MQSeries client on OS/2 the QM.INI file is located in directory C:\MQM.

Table 3. Settings on the MQSeries client OS/2 system for a server platform

Server platform TPNAME

OS/2 As specified in the OS/2 Run Listener command on the
server, or defaulted from the OS/2 queue manager
configuration file on the server.

Windows NT As specified in the Windows NT Run Listener command,
or the invokable Transaction Program that was defined
using TpSetup on Windows NT.

SunOS As specified in the SunOS Run Listener command on the
server.

Other UNIX systems The same as the corresponding TpName in the side
information on the remote queue manager on the server.

AS/400 The same as the compare value in the routing entry on
the AS/400 system.

| Tandem NSK| As specified in the channel definition on the server.

MVS/ESA The same as the corresponding TpName in the side
information on the remote queue manager on the server.

82 MQSeries Clients

 LU 6.2 connection

In the QM.INI file, under the LU 6.2 section add the line:

LocalLU = Your_LU_Name

or specify the environment variable:

SET APPNLLU=Your_LU_Name

If nothing has been specified, your default LU will be used.

Find out the name of the partner LU alias, as defined in the MQSeries client
machine’s Communications Manager/2 profile. You will need this later, when you
define the MQI channels - it is the Connection name (CONNAME).

SECURITY PROGRAM is always used when MQSeries for OS/2 attempts to
establish an SNA session if a password and user ID are specified. Otherwise
SECURITY NONE is used.

LU 6.2 on an OS/2 server
Start the listener program with the RUNMQLSR command, giving the TpName to
listen on, or use Attach Manager in Communications Manager/2.

Using the RUNMQLSR command
Here is an example of a command to start the listener:

RUNMQLSR -t LU62 -n RECV [-m QMNAME]

where RECV is the TpName that is specified in the client channel definition at the
MQSeries client end (as the “TpName to start on the remote, or server, side)”. The
last part in square brackets is optional and is not required for the default queue
manager.

It is possible to have more than one queue manager running on the server
machine. Assign a different TpName to each queue manager, and then start a
listener program for each one. For example:

RUNMQLSR -t LU62 -m QM1 -n TpName1
RUNMQLSR -t LU62 -m QM2 -n TpName2

Using Communications Manager/2
You can use Attach Manager in Communications Manager/2 to start the listener
program. You must supply a Transaction program (TP) definition specifying:

 � TP name
� program path and file name
� program parameter string

You can do this using the panel configuration in Communications Manager/2, or
you can edit your NDF file directly (see the heading “Define Transaction Programs”
in the online APPC Configuration Guide (Red Book)).

 Chapter 6. Configuring communication links 83

 LU 6.2 connection

Panel configuration: These are the entries required on the TP definition panel:

Transaction Program (TP) name : AMQCRS6A
OS/2 program path and file name: c:/mqm/bin/amqcrs6a.exe
Program parameter string : -n AMQCRS6A

Note: The above is for the default queue manager, for other queue managers
include -m QMNAME in the Program parameter string.

NDF file configuration: Your node definitions file (.ndf) must contain a define_tp
command. The following example shows what to include:

define_tp
 tp_name(AMQCRS6A)
 filespec(c:/mqm/bin/amqcrs6a.exe)
 parm_string(-n AMQCRS6A)

Note: The above is for the default queue manager, for other queue managers
include -m QMNAME in the parm_string.

LU 6.2 on a Windows NT MQSeries client
First configure SNA to allow an LU 6.2 conversation to be established between the
MQSeries client machine and the server machine.

Set the Transaction Program name (TpName or TPNAME) as shown in the
following table:

Create a CPI-C Side Object (symbolic destination) and record this name to use
later in your channel definitions as the Connection name (CONNAME).

In the CPI-C Side Object enter the Partner LU Name at the receiving machine, the
TP Name and the Mode name. For example:

Partner LU Name OS2ROG2
Partner TP Name recv
Mode Name #INTER

Table 4. Settings on the MQSeries client Windows NT system for a server platform

Server platform TPNAME

OS/2 As specified in the OS/2 Run Listener command on the
server, or defaulted from the OS/2 queue manager
configuration file on the server.

Windows NT As specified in the Windows NT Run Listener command,
or the invokable Transaction Program that was defined
using TpSetup on Windows NT.

SunOS As specified in the SunOS Run Listener command on the
server.

Other UNIX systems The same as the corresponding TpName in the side
information on the remote queue manager on the server.

AS/400 The same as the compare value in the routing entry on
the AS/400 system.

| Tandem NSK| As specified in the channel definition on the server.

MVS/ESA The same as the corresponding TpName in the side
information on the remote queue manager on the server.

84 MQSeries Clients

 LU 6.2 connection

SECURITY PROGRAM is used, where supported by CPI-C, when MQSeries
attempts to establish an SNA session.

LU 6.2 on a Windows NT server
You can use either of these methods:

� Start the listener program with the RUNMQLSR command, giving the TpName
to listen on. This starts a thread to process each inbound client connection.

� Use one of the SNA servers listed (see page “Windows NT client: hardware
and software required” on page 29) to set up an invokable transaction program
(TP). Then invoke amqcrs6a as a separate process for each client connection.
The TpName should match that specified in the CPI-C side object information
referenced by CONNAME in the client-connection channel definition (see
Chapter 7, “Using channels” on page 99).

Using the RUNMQLSR command
Example of the command to start the listener:

RUNMQLSR -t LU62 -n RECV [-m QMNAME]

where RECV is the TpName that is specified at the MQSeries client end as the
“TpName to start on the remote side (server)”. The last part in square brackets is
optional and is not required for the default queue manager.

It is possible to have more than one queue manager running on the server
machine. Assign a different TpName to each queue manager, and then start a
listener program for each one. For example:

RUNMQLSR -t LU62 -m QM1 -n TpName1
RUNMQLSR -t LU62 -m QM2 -n TpName2

Using an SNA server
You can use TpSetup (from the SNA Server SDK) to define amqcrs6a as an
invokable TP, or set various registry values manually.

LU 6.2 on a UNIX system MQSeries client
(For SunOS see “LU 6.2 on a SunOS MQSeries client” on page 87.)

First configure SNA so that an LU 6.2 conversation can be established between the
MQSeries client machine and the server machine. See the online book APPC
Configuration Guide (Red Book) for information, or for Sun Solaris see the book
Sunlink P2P LU 6.2 Programmer’s Guide.

Set the Transaction Program name (TpName or TPNAME) as shown in the
following table:

 Chapter 6. Configuring communication links 85

 LU 6.2 connection

Create a CPI-C Side Object (symbolic destination) and record this name to use
later in your channel definitions as the Connection name (CONNAME).

On Sun Solaris, set the environment variable APPC_LOCAL_LU to refer to the
name of your Local LU.

On SINIX create a XSYMDEST entry in the TRANSIT KOGS file:

XSYMDEST sendMPð1,
 RLU = forties,
 MODE = MODE1,
 TP = recvMPð1,
 TP-TYP = USER,
 SEC-TYP = NONE

On DC/OSx create an entry in the /etc/opt/lu62/cpic_cfg file:

sendMPð1 <local LU name> <remote LU name> <mode name> <remote TP name>

On other UNIX systems, in the CPI-C Side Object enter the Partner LU Name at
the receiving machine, the TpName and the Mode Name. For example:

Partner LU Name OS2ROG2
Remote TP Name recv
Service Transaction Program no
Mode Name #INTER

SECURITY PROGRAM is used, where supported by CPI-C, when MQSeries
attempts to establish an SNA session.

Table 5. Settings on the MQSeries client UNIX system for a server platform

Server platform TPNAME

OS/2 As specified in the OS/2 Run Listener command on the
server, or defaulted from the OS/2 queue manager
configuration file on the server.

Windows NT As specified in the Windows NT Run Listener command,
or the invokable Transaction Program that was defined
using TpSetup on Windows NT.

SunOS As specified in the SunOS Run Listener command on the
server.

Other UNIX systems The same as the corresponding TpName in the side
information on the remote queue manager on the server.

AS/400 The same as the compare value in the routing entry on
the AS/400 system.

| Tandem NSK| As specified in the channel definition on the server.

MVS/ESA The same as the corresponding TpName in the side
information on the remote queue manager on the server.

86 MQSeries Clients

 LU 6.2 connection

LU 6.2 on a UNIX server
(For SunOS see “LU 6.2 on a SunOS server” on page 88.)

On the server create a TPN profile. In the TPN profile, enter the full path to the
executable and the Transaction program name. For example:

Full path to TPN executable /mqmtop/bin/amqcrs6a
Transaction Program name recv
User ID ð

On SINIX create an XTP entry in the TRANSIT KOGS file:

XTP recvMPð1,
 UID = guenther,
 TYP = USER,
 PATH = /home/guenther/recvMPð1.sh,
 SECURE = NO

The file /home/guenther/recvMP01.sh contains:

#!/bin/ksh
#
script to start the receiving side for the qmgr MPð1
#
exec /opt/mqm/bin/amqcrs6a -m <queue manager>

You cannot use LU 6.2 for an MQSeries server running on DC/OSx because the
DC/OSx SNA implementation does not support the ACCEPT verb (use TCP/IP
instead).

The User ID field may specify a user who is a member of the mqm group.

You may require to use a queue manager other than the default queue manager. If
so, define a command file that includes:

amqcrs6a -m Queue_Man_Name

and call the command file.

LU 6.2 on a SunOS MQSeries client
First configure SNA so that an LU 6.2 conversation can be established between the
MQSeries client machine and the server machine. See the online book APPC
Configuration Guide (Red Book) for information.

Set the Transaction Program name (TpName or TPNAME) as shown in the
following table:

 Chapter 6. Configuring communication links 87

 LU 6.2 connection

Establish a valid session between the two machines.

Find out the gateway name of the client machine. You will need this later, when
you define the MQI channels - it is the Connection name (CONNAME).

Table 6. Settings on the MQSeries client SunOS system for a server platform

Server platform TPNAME

OS/2 As specified in the OS/2 Run Listener command on the
server, or defaulted from the OS/2 queue manager
configuration file on the server.

Windows NT As specified in the Windows NT Run Listener command,
or the invokable Transaction Program that was defined
using TpSetup on Windows NT.

SunOS As specified in the SunOS Run Listener command on the
server.

Other UNIX systems The same as the corresponding TpName in the side
information on the remote queue manager on the server.

AS/400 The same as the compare value in the routing entry on
the AS/400 system.

| Tandem NSK| As specified in the channel definition on the server.

MVS/ESA The same as the corresponding TpName in the side
information on the remote queue manager on the server.

LU 6.2 on a SunOS server
Start the listener program with the RUNMQLSR command, giving the TpName to
listen on and the gateway name of the server machine.

Here is an example of a command to start the listener:

RUNMQLSR -t LU62 -n RECV -g GNAME1 [-m QMNAME]

where RECV is the TpName that is specified at the MQSeries client end as the
“TpName to start on the remote side (server)”, and GNAME1 is the gateway name of
the server machine. The last part in square brackets is optional and is not required
for the default queue manager.

It is possible to have more than one queue manager running on the server
machine. Assign a different TpName to each queue manager, and then start a
listener program for each one. For example:

RUNMQLSR -t LU62 -m QM1 -n TpName1 -g GNAME1
RUNMQLSR -t LU62 -m QM2 -n TpName2 -g GNAME1

88 MQSeries Clients

 LU 6.2 connection

LU 6.2 on an AS/400 server
Use ADDRTGE command to add a routing entry to a subsystem at the initiated end
to enable the initiating end to start the channel. The routing entry specifies the
program that is invoked when the channel starts.

Alternatively, create and start a new subsystem by using the Work with Subsystem
Descriptions (WRKSBSD) panel.

The ADDRTGE panel is shown in Figure 1.

à@ ð
Add Routing Entry (ADDRTGE)

 Type choices, press Enter.

 Subsystem description QSNADS Name
Library \LIBL Name, \LIBL, \CURLIB

 Routing entry sequence number . 1 1-9999
 Comparison data:

Compare value MQSERIES

Starting position 37 1-8ð
 Program to call AMQCRC6A Name, \RTGDTA

Library QMQM Name, \LIBL, \CURLIB
 Class \SBSD Name, \SBSD

Library \LIBL Name, \LIBL, \CURLIB
 Maximum active routing steps . . \NOMAX ð-1ððð, \NOMAX
 Storage pool identifier 1 1-1ð

 Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

á ñ

Figure 1. LU 6.2 communication setup panel - initiated end

Subsystem description
The name of your subsystem where this definition resides.
Use the AS/400 WRKSBSD command to view and update
the appropriate subsystem description for the routing entry.

Routing entry sequence number
A unique number in your subsystem to identify this
communication definition. It may be set to a number from 1
to 9999.

Comparison data: compare value
A text string to compare with that received when the session
is started by transaction program parameter. The value
can be any unique string. The character string is derived
from the Transaction program field of the sender CSI.

Comparison data: starting position
The character position in the string where the comparison is
to start.

Note: The starting position field is the character position in
the string for comparison, and this is always 37.

 Chapter 6. Configuring communication links 89

 LU 6.2 connection

Program to call The name of program that runs the inbound message
program to be called to start the session.

Note: AMQCRC6A is a program supplied with MQSeries for
AS/400 that sets up the environment and then calls
AMQCRS6A.

Class The name and library of the class used for the steps started
through this routing entry. The class defines the attributes of
the routing step’s running environment and specifies the job
priority. Specify an appropriate class entry. Use, for
example, the WRKCLS command to display existing classes
or to create a new class. Further information on managing
work requests from remote LU 6.2 systems is available in the
AS/400 Programming: Work Management Guide.

| LU 6.2 on a Tandem NSK server
| Set up communications for MQSeries for Tandem NSK to use LU 6.2 channels, as
| described in the book MQSeries Intercommunication and in the book MQSeries for
| Tandem NonStop Kernel System Management Guide.

| Make sure you have an AUTOSTART(ENABLED) channel with an LU 6.2
| responder process running if you are using SNAX or ICE.

LU 6.2 on an MVS/ESA server
Set up communications for MQSeries for MVS/ESA to use LU 6.2 channels, as
described in the book MQSeries Intercommunication. Then:

1. Start the channel initiator

START CHINIT

2. Start the listener

START LSTR TRPTYPE(LU62) LUNAME(lu-name)

LU 6.2 on a Digital OpenVMS client
On Digital OpenVMS, SNA LU 6.2 supports only PU 2.0. Therefore communication
can be to PU 5.0 only on an MVS/ESA server. If you want to communicate with a
server on a platform other than MVS/ESA, you must use another protocol. See
Table 2 on page 76.

First configure SNA so that an LU 6.2 conversation can be established between the
MQSeries client machine and the server machine. See the book MQSeries
Intercommunication for information.

Set the Transaction Program name (TpName or TPNAME) to the same as the
corresponding TpName in the side information on the remote queue manager on
the MVS/ESA server.

Establish a valid session between the two machines.

90 MQSeries Clients

 NetBIOS connection

Defining a NetBIOS connection
The steps to take are detailed in the sections that follow:

On the client
Define a local NetBIOS name for the client.

On the server

1. Define a local NetBIOS name for the server.

2. Start a listener program.

NetBIOS on an MQSeries client (any suitable platform)
Define a local NetBIOS name for the client.

The local NetBIOS name that the MQSeries processes use can be specified in two
ways on the MQSeries client. In order of precedence they are:

1. The MQNAME environment variable

SET MQNAME=Your_env_Name

2. A queue manager configuration file (QM.INI) parameter. The QM.INI file is
located as follows:

OS/2, Windows 95, Windows NT
<drive>:\<dir>\mqm

DOS, Windows 3.1, WIN-OS/2
The root directory of the drive where the MQSeries client is installed, or
where the MQDATA environment variable points.

The entry in QM.INI is:

NETBIOS:
LocalName = Your_env_Name

Note: For use with Novell NetBIOS emulation, or with NetBIOS on Windows NT,
each MQSeries process should use a different local NetBIOS name.

NetBIOS on an OS/2 server
Define a local NetBIOS name for the server.

The local NetBIOS name that the MQSeries processes use can be specified in
three ways on the server. In order of precedence they are:

1. The -l parameter on the RUNMQLSR command

2. The MQNAME environment variable

SET MQNAME=Your_env_Name

3. A queue manager configuration file (QM.INI) parameter. QM.INI is located in
\mqm\qmgrs\QueueManagerName

The entry in QM.INI is:

NETBIOS:
LocalName = Your_env_Name

Note: For use with Novell NetBIOS emulation each MQSeries process should use
a different local NetBIOS name.

 Chapter 6. Configuring communication links 91

 NetBIOS connection

Start a listener program
Start the listener program with the RUNMQLSR command, optionally giving the
local NetBIOS name (LOCALNAME) to listen on. For example:

RUNMQLSR -t netbios [-m QMNAME] [-s Sessions]
[-e NAMES] [-o COMMANDS] [-l LOCALNAME]

See the MQSeries Command Reference for details of the options on the
RUNMQLSR command.

Note: Both sending end (MQSeries client) and receiving end (server) must have a
local NetBIOS name defined. You are strongly advised to make sure that all
NetBIOS names used are unique in the network. If this is not done, unpredictable
results may occur.

NetBIOS on a Windows NT server
Define a local NetBIOS name for the server.

The local NetBIOS name that the MQSeries processes use can be specified in
three ways on the server. In order of precedence they are:

1. The -l parameter on the RUNMQLSR command. This defines the NetBIOS
station name to be used with that instance of RUNMQLSR.

2. The MQNAME environment variable

SET MQNAME=Your_env_Name

3. A queue manager configuration file (QM.INI) parameter. QM.INI is located in
\mqm\qmgrs\QueueManagerName

The entry in QM.INI is:

NETBIOS:
LocalName = Your_env_Name

Note: For use with NetBIOS on Windows NT each MQSeries process should use
a different local NetBIOS name; if you are running multiple MQSeries applications
simultaneously on the MQSeries client, they must use different NetBIOS names set
using the environment variable MQNAME.

Start a listener program
Start the listener program with the RUNMQLSR command, optionally giving the
local NetBIOS name (LOCALNAME) to listen on. For example:

RUNMQLSR -t netbios [-m QMNAME] [-s Sessions]
[-e NAMES] [-o COMMANDS] [-l LOCALNAME]

See the MQSeries Command Reference for details of the options on the
RUNMQLSR command.

Note: Both sending end (MQSeries client) and receiving end (server) must have a
local NetBIOS name defined.
You are strongly advised to make sure that all NetBIOS names used are unique in
the network. If this is not done, unpredictable results may occur.

92 MQSeries Clients

 SPX connection

Defining an SPX connection
The steps to take are detailed in the sections that follow:

On the client
No action is required until you create the channel definitions.

On the server

1. Decide on a socket number.

The socket to connect to defaults to 5E86. The default can be changed by
adding a socket parameter to the qm.ini file (see the book MQSeries
Intercommunication).

2. Determine the IPX/SPX network address and the node (LAN adapter
address) of the server machine.

3. Start a listener, specifying the chosen socket.

SPX on an MQSeries client (any suitable platform)
There is no action required now other than to make sure that SPX is running on
your client machine.

The channel definitions that you create later will include the SPX network address,
node address, and socket number of the server to which the MQSeries client is
sending.

SPX on an MQSeries server (OS/2 or Windows NT)
Find out and record the IPX/SPX network address of the server. Your network
administrator has this information.

Record the node (LAN adaptor address) of the server machine.

Using the Run Listener (RUNMQLSR) command
To run the listener supplied with MQSeries, which starts new MQI channels as
threads, use the RUNMQLSR command. For example:

RUNMQLSR -t spx [-m QMNAME] [-x 5E87]

The square brackets indicate optional parameters:

-m QMNAME is not required for the default queue manager.
-x 5E87 is not required if the default socket number 5E86 is used.

It is possible to have more than one queue manager running on the server
machine. Start a listener program for each one, on different socket numbers. For
example:

RUNMQLSR -t spx
RUNMQLSR -t spx -m QM2 -x 5E87

 Chapter 6. Configuring communication links 93

 SPX connection

SPX and IPX parameters
You may need to modify some of the default SPX or IPX parameters of your
environment to tune its use for MQSeries. In most cases the default settings will
be fine. The actual parameters, and the method of changing them vary according
to your platform and the provider of the SPX communications support. The
following describes some of these parameters, particularly where they could
influence the operation of MQSeries channels and client connections.

SPX on an OS/2 client
Please refer to the Novell Client for OS/2 documentation for full details of the use
and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

SPX

� sessions (default 16)

This specifies the total number of simultaneous SPX connections. Each
MQSeries channel, or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or client
connections you need to run.

� retry count (default = 12)

This controls the number of times an SPX session will resend
unacknowledged packets. MQSeries does not override this value.

� verify timeout, listen timeout, and abort timeout (milliseconds)

These timeouts adjust the Keepalive behaviour. If an SPX sending end does
not receive anything within the verify timeout, it sends a packet to the
receiving end. It then waits for the listen timeout for a response. If one is
still not received, another packet is sent and a response is expected within
the abort timeout period.

IPX

� sockets (range = 9 - 128, default 64)

This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

SPX on a DOS or Windows 3.1 client
Please refer to the Novell Client for DOS and Windows documentation, for full
details of the use and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

SPX

� connections (default 15)

This specifies the total number of simultaneous SPX connections. Each
MQSeries channel, or client connection uses one session. You may need to

94 MQSeries Clients

 SPX connection

increase this value depending on the number of MQSeries channels or client
connections you need to run.

IPX

� sockets (default = 20)

This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

 � retry count

This controls the number of times unacknowledged packets will be resent.
MQSeries does not override this value.

SPX on a Windows NT client
Please refer to the Microsoft documentation for full details of the use and setting of
the NWLink SPX and IPX parameters. The IPX/SPX paramters are in the following
paths in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

SPX on a Windows 95 client
Please refer to the Microsoft documentation for full details of the use and setting of
the SPX and IPX parameters. They are accessed by selecting Network option in
the control panel, then double clicking on "IPX/SPX Compatible Transport".

 Chapter 6. Configuring communication links 95

 DECnet connection

Defining a DECnet connection
The steps to take are detailed in the sections that follow:

On the client
No action is required until you create the channel definitions

On the server

1. Decide on an object number or task name
2. Determine the nodename of the server machine
3. Configure a DECnet object

DECnet on an MQSeries client
There is no action required now other than to make sure that DECnet is running on
your client machine.

The channel definitions that you create later will include the DECnet nodename and
object number, or task name, of the server to which the MQSeries client is sending.

DECnet on an MQSeries server (Digital OpenVMS)
Decide on an object number or task name.

Find out and record the nodename of the server. Your network administrator has
this information.

Receiving on DECnet Phase IV
To use DECnet Phase IV to start channels, you must configure a DECnet object as
follows:

1. Create a file which has the DCL command to start the DECnet receiver
program, amqcrsta.exe. Place this file in the SYS$MANAGER directory as
follows:

$ create sys$manager:mqrecvdecnet.com
$ mcr amqcrsta.exe [-m Queue_Man_Name] -t DECnet

 Ctrl-Z
 $

Note: If you have multiple queue managers you must make a new file and
DECnet object for each queue manager.

2. Create a DECnet object to start the receiving channel program automatically:

$ MCR NCP
NCP> define object MQSERIES
Object number (ð-255): ð
File name (filename):sys$manager:mqrecvdecnet.com
Privileges (List of VMS privileges):
Outgoing connect privileges (List of VMS privileges):
User ID (1-39 characters): mqm
Password (1-39 characters): mqseries

(note: you must supply the correct password for MQM)
Account (1-39 characters):
Proxy access (INCOMING, OUTGOING, BOTH, NONE, REQUIRED):
NCP> set known objects all
NCP> exit

96 MQSeries Clients

 DECnet connection

Note: The preceding example should be amended to use proxy user
identifiers rather than actual user identifiers. This will prevent any
unauthorized access to the database. Information on how to set up
proxy identifiers is given in the Digital DECnet for OpenVMS Networking
Manual.

3. Ensure that all known objects are set when DECnet is started.

Receiving on DECnet OSI
Configure for MQSeries channel objects:

1. Start the NCL configuration interface:

$ MC NCL
 NCL>

2. Create a session control application entity:

NCL> create session control application MARK
NCL> set sess con app MARK address {name=MARK{
NCL> set sess con app MARK image name -

 _ SYS$SPECIFIC:[MQS_SERVER]MARK.COM
NCL> set sess con app MARK user name "MQM"
NCL> set sess con app MARK node synonym true

NCL> show sess con app MARK all [characteristics]

Note that user-defined values are in uppercase.

3. Create the com file (MARK.COM above) as for DECnet Phase IV.

4. The log file for the object is net$server.log in the sys$login dir for the user
name specified for the application.

5. The MQSC configuration for conname, as for DECnet PhaseIV, is:

 NODE(APP_OR_OBJ_NAME)

 Chapter 6. Configuring communication links 97

 DECnet connection

98 MQSeries Clients

 Using channels

 Chapter 7. Using channels

This chapter begins with a description of what channels are and how they are
defined in an MQSeries client and server environment. Then it gives the steps you
can follow to define your channels.

Some information is given about migrating from previous versions of MQSeries for
OS/2 and AIX.

What is a channel?
A channel is a logical communication link. There are two different categories of
channel in MQSeries, with different channel types within these categories:

Message channel
This connects two queue managers via message channel agents (MCAs), and is
unidirectional. Its purpose is to transfer messages from one queue manager to
another. A channel definition exists at the sending end of the link and another at
the receiving end.

MQSeries
queue manager B

MQSeries
queue manager A

System A System B

MCA MCA

A to B

B to A

Message channels:

MQI channel
This connects an MQSeries client to a queue manager on a server machine. It is
bidirectional and is for the transfer of MQI calls and responses only (including
MQPUT calls that contain message data). A channel definition exists for each
end of the link, and there are different ways of creating and using the channel
definitions (see “Connecting the MQSeries client and server - channel definitions”
on page 100).

MQSeries
queue manager

MQSeries
application

Client machine Server machine

MQSeries client
MQI channel

channel name

 Copyright IBM Corp. 1994,1998 99

 Client and server channels

Channel definitions, of both categories described above, must include a channel
type as well as a channel name. You can choose to use different channel types
according to the application you are designing, but the same channel name must
be used at both ends of each combination.

Message channel types
These are not required in the MQSeries client and server environment. See the
book MQSeries Intercommunication for details.

MQI channel types
There are two channel types for MQI channel definitions. They define the
bi-directional MQI channel.

Client connection This type is for the MQSeries client.
Server connection This type is for the server running the queue manager, with

which the MQSeries application, running in an MQSeries
client environment, will communicate.

Connecting the MQSeries client and server - channel definitions
The connection between the MQSeries client and the queue manager on the server
is a bi-directional MQI channel that is established when you issue an MQCONN or
MQCONNX call. To create any new channel, you have to create two channel
definitions, one for each end of the connection, using the same channel name and
compatible channel types. In this case the channel types are server connection
and client connection.

MQSeries
queue manager

MQSeries
application

Client machine Server machine

MQSeries client
MQI channel

Server connection

Client connection

There are two different ways of creating the channel definitions and giving the
MQSeries application on the MQSeries client machine access to the channel.

These two methods are described in detail in this chapter:

1. Create one channel definition on the MQSeries client and the other on the
server.

This is the easier of the two methods, and applies to any combination of
MQSeries client and server platforms. Use it when you are getting started on
the system, or to test your set-up.

Create the server connection channel on the server machine, then use the
environment variable MQSERVER on the MQSeries client machine to define a

100 MQSeries Clients

 Client and server channels

simple client connection channel (see Chapter 8, “Using MQSeries environment
variables” on page 111).

2. Create both channel definitions on the server machine.

Use this method when you are setting up a number of channels and MQSeries
client machines at the same time.

Note for AS/400 users: MQSeries for AS/400 does not support this method.
You can use an MQSeries server on a different platform to set up the channels,
or you can use the first method above.

You can use the environment variables MQCHLLIB and MQCHLTAB on the
MQSeries client machine to access the MQSeries client channel definition table
(see “Client channel definition table” on page 106 and Chapter 8, “Using
MQSeries environment variables” on page 111).

Defining your channels
First start the queue manager on the server.

Then go to the section that describes the method you are going to use:

� “Creating one definition on the MQSeries client and the other on the server” on
page 102

� “Creating both definitions on the server” on page 105

Automatic definition of channels by servers (V5 and AS/400)
| The MQSeries Version 5 products and MQSeries for AS/400 V4R2 include a

feature that can automatically create a channel definition on the server if one does
not exist.

If an inbound attach request is received from a client and an appropriate
server-connection definition cannot be found in the channel definition table,
MQSeries creates a definition automatically and adds it to the channel definition
table. Automatic definitions are based on two default definitions supplied with
MQSeries: SYSTEM.AUTO.RECEIVER and SYSTEM.AUTO.SVRCONN. You
enable automatic definition of server-connection definitions by updating the queue
manager object using MQSC ALTER QMGR (or the PCF command Change Queue
Manager).

For more information about the automatic creation of channel definitions, see the
book MQSeries Intercommunication.

 Chapter 7. Using channels 101

 Defining channels

Creating one definition on the MQSeries client and the other on the
server

Use MQSeries commands (MQSC) to define the server connection channel on the
server, as follows. On MQSeries for AS/400 you can use MQSC and the CL
commands. You are limited to defining one simple channel on the MQSeries client
because MQSC is not available on a machine where MQSeries has been installed
as an MQSeries client only.

On the server
If your server platform is not MVS/ESA, you first create and start a queue manager
and then start MQSeries commands (MQSC). See “Creating a queue manager and
starting MQSC on the server” on page 108.

Define a channel
Define a channel with your chosen name and a channel type of server connection.
This channel definition is kept in the client channel definition table associated with
the queue manager running on the server (for details see “Client channel definition
table” on page 106).

For example:

DEFINE CHANNEL(CHAN1) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR('Server connection to Client_1')

MQI channel

Server connection

Server_1

MQSeries
queue manager

QM1

CHAN1

On the MQSeries client
You cannot use MQSC on the MQSeries client. However, when you require a
simple channel definition, without specifying all the attributes, you can use a single
environment variable, MQSERVER (see Chapter 8, “Using MQSeries environment
variables” on page 111).

A simple channel may be defined on OS/2, DOS, Windows 95, or Windows 3.1 as
follows:

SET MQSERVER=ChannelName/TransportType/ConnectionName

Or, for OS/2 using LU 6.2 only, as follows:

102 MQSeries Clients

 Defining channels

SET MQSERVER=ChannelName/LU62/ConnectionName/ModeName/TpName

A simple channel may be defined on UNIX systems as follows:

export MQSERVER=ChannelName/TransportType/ConnectionName

ChannelName must be the same name as defined on the server.

TransportType may be one of the following, depending on your MQSeries client
platform (see Table 1 on page 12):

The ConnectionName is the name of the server machine as defined to the
communications protocol (TransportType).

Note: On UNIX systems the TransportType is case sensitive and must be in
uppercase. An MQCONN or MQCONNX call will return 2058 if the TransportType
is not recognized

For OS/2, ModeName is the LU 6.2 mode name and TpName is the transaction
program name.

Note: #INTER should be the ModeName of choice for most occasions. You can
also specify Modename and TpName in your Communications Manager/2 profile.
ModeName and TpName are fully described in the book MQSeries
Intercommunication.

For example, on OS/2:

LU62 For LU 6.2
TCP For TCP/IP
NETBIOS For NetBIOS
SPX For SPX
DECNET For DECnet

SET MQSERVER=CHAN1/TCP/MCID66499

or, on a UNIX system:

export MQSERVER=CHAN1/TCP/MCID66499

Note: To change the TCP/IP port number, see “MQSERVER” on page 114.

 Chapter 7. Using channels 103

 Defining channels

MQSeries
application

MQI channel

Server connection

Client connection

Client_1 Server _1

CHAN1

Network address = MCID66499

MQSeries Client

MQSeries
queue manager

QM1

Some more examples of defining the simple channel on OS/2, DOS, Windows 3.1,
Windows 95, and Windows NT are:

SET MQSERVER=CHAN1/TCP/9.2ð.4.56
SET MQSERVER=CHAN1/NETBIOS/BOX643

Some examples of defining the simple channel on a UNIX system are:

export MQSERVER=CHAN1/TCP/9.2ð.4.56
export MQSERVER=CHAN1/LU62/BOX99/MODENAME1/TPNAME1

Where BOX99 is the LU 6.2 ConnectionName.

On the MQSeries client all MQCONN or MQCONNX requests then attempt to use
the channel you have defined.

Note: The MQSERVER environment variable takes priority over any client channel
definition pointed to by MQCHLLIB and MQCHLTAB.

Cancelling MQSERVER: To nullify MQSERVER and return to the client channel
definition table pointed to by MQCHLLIB and MQCHLTAB, enter, on OS/2, DOS, or
Windows NT:

SET MQSERVER=

or, on a UNIX system:

unset MQSERVER

104 MQSeries Clients

 Defining channels

Creating both definitions on the server
On the server machine use MQSeries commands (MQSC) to define the channel.
For more details about the MQSC, refer to the MQSeries Command Reference.

Note for AS/400 users: This method cannot be used on MQSeries for AS/400.

On the server
Define the server connection and then define the client connection.

If your server platform is not MVS/ESA, you first create and start a queue manager
and then start MQSeries commands (MQSC). See “Creating a queue manager and
starting MQSC on the server” on page 108.

Defining the server connection
On the server machine, define a channel with your chosen name and a channel
type of server connection.

For example:

DEFINE CHANNEL(CHAN2) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR('Server connection to Client_2')

This channel definition is kept in the channel definition table associated with the
queue manager running on the server. The channel definition table cannot be
created or updated manually. The MQSeries commands must be used as
described here.

MQI channel

Server connection

Server_2

CHAN2

MQSeries
queue manager

QM2

Defining the client connection
Also on the server machine, define a channel with the same name and a channel
type of client connection.

You must state the connection name (CONNAME). For TCP/IP this is the network
address of the server machine. It is a good idea to specify the queue manager
name (QMNAME) to which you want your MQSeries application, running in the
client environment, to connect. See Chapter 12, “Running applications on
MQSeries clients” on page 135.

For example:

 Chapter 7. Using channels 105

 Defining channels

DEFINE CHANNEL(CHAN2) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME(9.2ð.4.26) QMNAME(QM2) DESCR('Client connection to Server_2')

MQSeries
application

Client_2 Server_2

MQSeries client
MQI channel

Server connection

Client connection MQSeries
queue manager

QM2

CHAN2

Network address = 9.20.4.26

Client channel definition table
For non-MVS/ESA systems the channel definition described above is kept in the
client channel definition table associated with the queue manager running on the
server. This table is called AMQCLCHL.TAB and it is a binary file that cannot be
edited directly. You use DEFINE CHANNEL to add entries, or ALTER CHANNEL to alter
the attributes of a channel already in the client channel definition table.

AMQCLCHL.TAB is in the directory:

| For OS/2 and Windows NT
| \mqm\qmgrs\queuemanagername\@ipcc

| For Tandem NSK
| $volume.QMD.CCHDEFS

| Where QMD is the data subvolume of your queue manager.

For UNIX systems
/mqmtop/qmgrs/QUEUEMANAGERNAME/@ipcc

Note that QUEUEMANAGERNAME is case sensitive for UNIX systems.

For MVS/ESA systems
Kept with all other object definitions on pageset zero.

| Note for TandemNSK users: A conversion utility (CNVCLCHL) is provided to
| convert the client channel definition table from a Tandem structured file to an
| unstructured one. See the book MQSeries for Tandem NonStop Kernel System
| Management Guide for more details.

| Note for VM/ESA users: If you are connecting to an MQSeries client on a
| VM/ESA system there is a limit to the number of client connection channels you
| can define. The maximum number that can be held in the client channel definition
| table on your server, for a VM/ESA client is 18.

Do not delete AMQCLCHL.TAB: It contains default channel definitions that are
required when you define a channel. If you suspect that this has been deleted, for
example you get error messages when you try to define a new channel, check to
see that the file exists. If it has been deleted, define the default system objects

106 MQSeries Clients

 Defining channels

again as described in “Setting up the server (not MVS/ESA or AS/400)” on
page 66.

On the MQSeries client
On the MQSeries client machine, use the environment variables MQCHLLIB and
MQCHLTAB to allow the MQSeries application to access the client channel
definition table on the server (but not a server on AS/400 or MVS/ESA).

MQCHLLIB Specifies the path to the directory containing the channel definition
table. If not specified, the default used is DefaultPrefix from the
mqs.ini file.

Note: The channel definition table is not automatically created in the
DefaultPrefix directory. If you do not specify the MQCHLLIB
environment variable, copy to the DefaultPrefix directory, the
channel definition table that you want the client to use.

MQCHLTAB Specifies the name of the file to use. If not specified, the default
client channel definition table name (AMQCLCHL.TAB) is used.

For example, to set the environment variables on a UNIX system, type:

export MQCHLLIB=/var/mqm/qmgrs/QUEUEMANAGERNAME/@ipcc
export MQCHLTAB=AMQCLCHL.TAB

AMQCLCHL.TAB is the default.

In many cases the MQCHLLIB and MQCHLTAB variables might be used to point to
a client channel definition table on a file server that is used by many MQSeries
clients.

Alternatively, or if this is not possible, you can copy the client channel definition
table, AMQCLCHL.TAB (a binary file), onto the client machine and again use
MQCHLLIB and MQCHLTAB to specify where the client channel definition table is.

On MVS/ESA, use the COMMAND function of the CSQUTIL utility to make a client
channel definition file that can then be downloaded to the client machine using a
file-transfer program. For details see the book MQSeries for MVS/ESA System
Management Guide.

For example:

//CLIENT EXEC PGM=CSQUTIL,PARM='QM2'
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTCLNT DD DISP=OLD,DSN=MY.MQSERIES.CLIENTS
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
COMMAND DDNAME(CMDCHL) MAKECLNT(OUTCLNT) CCSID(437)
/\
//CMDCHL DD \
DISPLAY CHANNEL(\) ALL TYPE(CLNTCONN)
/\

 Chapter 7. Using channels 107

 Migrating from earlier versions

where thlqual is a high level qualifier for the MQSeries library data sets. The data
set for the client channel definition file (specified by DDname OUTCLNT in the
example) must have the format:

RECFM=U, LRECL=2ð48, BLKSIZE=2ð48

If you use FTP to copy the file, remember to type bin to set binary mode; do not
use the default ascii mode.

Notes:

1. The MQCHLLIB and MQCHLTAB environment variables are honored by the
MQSeries commands when defining client connection channels. Therefore, for
client connection channels only, you can use the MQCHLLIB and MQCHLTAB
environment variables to override the default name and location of the
generated client channel definition table.

2. The client channel definition pointed to by MQCHLLIB and MQCHLTAB may be
overridden by the MQSERVER environment variable.

Migrating from MQSeries for OS/2 V2.0 and MQSeries for AIX V2.1 or
V2.2

The internal format of the channel definition table has been changed in the
MQSeries for OS/2 Version 2.0.1 and MQSeries for AIX Version 2.2.1 products.

For MQSeries clients, you may have to re-create your client channel definition table
(by default, this is called AMQCLCHL.TAB). Earlier Version 2 clients can still
access your client channel definition table, provided none of the MQSeries client
definitions are changed by a queue manager created under MQSeries for OS/2
Version 2.0.1 or MQSeries for AIX Version 2.2.1.

If they are changed by a queue manager from one of these products, an MQSeries
client from previous levels of MQSeries for OS/2 or AIX will no longer be able to
read the file. You will receive a MQRC_Q_MGR_NOT_AVAILABLE return code
from your application, with an error message in the error log file of AMQ9517 - File
damaged. In this case, reinstall the MQSeries client code from an MQSeries for
OS/2 Version 2.0.1 or MQSeries for AIX Version 2.2.1 server machine. In the case
of a DOS MQSeries client, also relink your application.

Creating a queue manager and starting MQSC on the server
First create a queue manager, called QM1 for example:

crtmqm QM1

Start the queue manager:

strmqm QM1

If you are using one of the MQSeries Version 5 products, the default objects are
defined automatically when you create the queue manager. For other MQSeries

108 MQSeries Clients

 Migrating from earlier versions

products, define the default objects as explained in “Setting up the server (not
MVS/ESA or AS/400)” on page 66.

Start MQSeries commands (MQSC)
| On all platforms except AS/400, start MQSC by entering the following command:

runmqsc QM1

| On AS/400 use STRMQMMQSC and specify which file or member contains the runmqsc
| statements.

MQSC does not provide a prompt, but should respond with the message:

Starting MQSeries Commands

 Chapter 7. Using channels 109

 Migrating from earlier versions

110 MQSeries Clients

 Environment variables

Chapter 8. Using MQSeries environment variables

This chapter describes the environment variables that you can use with MQI
applications. They are available on all the MQSeries client platforms unless
otherwise stated.

Note for AS/400 and MVS/ESA users: MQSeries for AS/400 and MQSeries for
MVS/ESA users'. do not support any MQSeries environment variables. If you are
using either of these platforms as your server, see “MQCHLLIB” on page 112 for
information about the location of the client channel definition table. You can still
use the MQSeries environment variables on your client platform.

| Note for Tandem NSK users: MQSeries for Tandem NSK does not support any
| MQSeries environment variables. MQSeries for Tandem NSK does recognize
| TACL environment variables, or PARAMS. See the MQSeries for Tandem
| NonStop Kernel System Management Guide for details. You can still use the
| MQSeries environment variables on your client platform.

The MQSeries environment variables are:

 � MQCCSID
 � MQCHLLIB
 � MQCHLTAB
� MQDATA (DOS, Windows 3.1, and Windows NT only)

 � MQNAME
� MQ_PASSWORD (see Chapter 9)

 � MQSERVER
� MQSPREFIX (used on the server, see the MQSeries System Administration

book)
� MQTRACE (DOS, Windows 3.1, and VM/ESA only)
� MQ_USER_ID (see Chapter 9)
� MQSWORKPATH (OS/2 only)

MQSeries uses default values for those variables that you have not set. Update
your system profile to make a permanent change; issue the command from the
command line to make a change for this session only, or if you want one or more
variables to have a particular value dependent on the application that is running,
add commands to a command script file used by the application.

For each environment variable, use the command relevant to your platform to
display the current setting or to reset the value of a variable.

For example:

 Copyright IBM Corp. 1994,1998 111

 Environment variables

Command Effect

SET MQSERVER= Removes the variable from OS/2, DOS, Windows 3.1, Windows
95, and Windows NT environments

unset MQSERVER Removes the variable from UNIX systems environments

SET MQSERVER Displays the current setting on OS/2, DOS, Windows 3.1, and
Windows NT

echo
$MQSERVER

Displays the current setting on UNIX systems

set Displays all environment variables for the session

 MQCCSID
This specifies the coded character set number to be used and overrides the
machine’s configured CCSID.

The format of this command is:

For OS/2 and Windows NT
SET MQCCSID=number

For UNIX systems
export MQCCSID=number

| For VM/ESA
| GLOBALV SELECT CENV SETLP MQCCSID number

 MQCHLLIB
This holds the path to the directory containing the client channel definition table, on
the MQSeries client. If MQCHLLIB is not set, the path defaults to:

For OS/2, DOS, Windows 3.1, Windows 95, and Windows NT
Rootdrive:\mqm\

For UNIX systems
/var/mqm/

If you are using MQSeries for AS/400 or MVS/ESA as your server, the file must be
kept on the MQSeries client machine. For servers on other platforms, consider
keeping this file on the server, to make administration easier.

The format of this command is:

For OS/2, DOS, Windows 3.1, Windows 95 and Windows NT
SET MQCHLLIB=pathname

For UNIX systems
export MQCHLLIB=pathname

For example:

SET MQCHLLIB=C:\os2

112 MQSeries Clients

 Environment variables

 MQCHLTAB
This specifies the name of the client channel definition table. The default file name
is amqclchl.tab. This is found on the server machine, in the directory:

For OS/2, DOS, Windows 3.1, Windows 95, and Windows NT
\mqm\qmgrs\queuemanagername\@ipcc

For UNIX systems
/mqmtop /qmgrs/QUEUEMANAGERNAME/@ipcc

For Digital OpenVMS systems
mqs_root:[mqm.qmgrs.QM.$IPCC]

The format of this command is:

For OS/2, DOS, Windows 3.1, Windows 95, and Windows NT
SET MQCHLTAB=filename

For UNIX systems
export MQCHLTAB=filename

| For VM/ESA
| GLOBALV SELECT CENV SETLP MQCHLTAB filename

For example:

SET MQCHLTAB=ccdf1.tab

Note: If you change this environment variable on an MQSeries server, MQSeries
will not be able to find any client channel definition table you may have defined
before. You must then move your old client channel definition table to the new
location.

MQDATA (DOS, Windows 3.1, and Windows NT only)
This holds the path to the directory containing the trace, error and qm.ini files.
(The qm.ini file is needed for setting up NetBIOS.) The default is to root directory
of the C drive.

The format of this command is:

SET MQDATA=pathname

The trace and error files are:

AMQERR01.FDC For First Failure Data Capture messages.

AMQERR01.LOG For error messages.

An error message will always be added to the end of the log, so the files must be
deleted periodically to avoid the files getting too large. At the time a record needs
to be added to one of these files, if the file does not exist, it will be created.

These files are written in binary format. Use the RUNMQFMT command supplied
with MQSeries to reformat these files into a readable form.

 Chapter 8. Using MQSeries environment variables 113

 Environment variables

 MQNAME
This specifies the local NetBIOS name that the MQSeries processes can use. See
“Defining a NetBIOS connection” on page 91 for a full description and for the rules
of precedence on the client and the server.

The format of this command is:

For OS/2, DOS, Windows 3.1, Windows 95, and Windows NT
SET MQNAME=Your_env_Name

For example:

SET MQNAME=CLIENT1

The NetBIOS on some platforms requires a different name, set by MQNAME, for
each application if you are running multiple MQSeries applications simultaneously
on the MQSeries client.

 MQSERVER
This is used to define a minimal channel. It specifies the location of the MQSeries
server and the communication method to be used. Note that ConnectionName

| must be a fully qualified network name. When the MQSERVER environment
| variable is used to define a client channel a MAXMSGL of 4 MB is used, so larger
| messages cannot flow across this channel. For larger messages a CLNTCONN
| channel must be defined using DEFINE CHANNEL, on the server, with MAXMSGL
| set to a larger figure.

The format of this command is:

For OS/2, DOS, Windows 3.1, Windows 95, and Windows NT
SET MQSERVER=ChannelName/TransportType/ConnectionName

For OS/2 using LU 6.2
SET MQSERVER=ChannelName/LU62/ConnectionName/ModeName/TpName

For UNIX systems
export MQSERVER=ChannelName/TransportType/ConnectionName

For Digital OpenVMS systems using DECnet
define mqserver "ChannelName/decnet/nodename(object number)"

Or a symbol:
mqserver := "ChannelName/decnet/nodename(object number)"

| For VM/ESA systems using TCP/IP

| GLOBALV SELECT CENV SETLP MQSERVER ChannelName/TCP/ConnectionName

| For VM/ESA systems using LU 6.2

| GLOBALV SELECT CENV SETLP MQSERVER ChannelName/LU62/TpName/ModeName

114 MQSeries Clients

 Environment variables

TCP/IP default port
By default, for TCP/IP, MQSeries assumes that the channel will be connected to
port 1414. You can change this by:

� Adding the port number in brackets as the last part of the ConnectionName:

For OS/2, DOS, Windows 3.1, Windows 95, and Windows NT
SET MQSERVER=ChannelName/TransportType/ConnectionName(PortNumber)

For UNIX systems
export MQSERVER=ChannelName/TransportType/ConnectionName(PortNumber)

� Changing the qm.ini file by adding the port number to the protocol name, for
example:

TCP:
port=2ðð1

� Adding MQSeries to the services file as described in “Defining a TCP/IP
connection” on page 77.

SPX default socket
By default, for SPX, MQSeries assumes that the channel will be connected to
socket 5E86. You can change this by:

� Adding the socket number in brackets as the last part of the ConnectionName:

For OS/2, and Windows NT
SET MQSERVER=ChannelName/TransportType/ConnectionName(SocketNumber)

For SPX connections, specify the ConnectionName and socket in the form
network.node(socket). If the MQSeries client and server are on the same
network, the network need not be specified. If you are using the default socket,
the socket need not be specified.

� Changing the qm.ini file by adding the port number to the protocol name, for
example:

SPX:
socket=5E87

Examples of using MQSERVER
Examples on OS/2:

SET MQSERVER=CHAN1/TCP/9.2ð.4.56(2ðð1)
SET MQSERVER=CHAN1/NETBIOS/BOX643
SET MQSERVER=CHAN1/SPX/ððððð1.ð8ðð5A7161E5(5E88)

Examples on a UNIX system:

export MQSERVER=CHAN1/TCP/9.2ð.4.56(2ðð2)
export MQSERVER=CHAN1/LU62/BOX99/MODENAME1/TPNAME1

Examples on Digital OpenVMS:

 Chapter 8. Using MQSeries environment variables 115

 Environment variables

define mqserver "chan1 [DECNET] node(task)"
mqserver="chan1[TCP] 9.2ð.4.2(2ðð1)"

All MQCONN or MQCONNX requests then attempt to use the channel you have
defined.

Note: The MQSERVER environment variable takes priority over any client channel
definition pointed to by MQCHLLIB and MQCHLTAB, irrespective of any queue
manager name specified in an MQCONN or MQCONNX call.

MQTRACE (DOS, Windows 3.1, VM/ESA)
This sets tracing on and off, as required. The default is for tracing to be turned off.

The format of this command is:

For DOS and Windows 3.1
SET MQTRACE=filename,options

| For VM/ESA
| GLOBALV SELECT CENV SETLP MQTRACE filename/options

For example, to direct the communication flow trace entries to MQ.TRC file and
overwrite the previous trace file each time the program runs:

SET MQTRACE=MQ.TRC,cw

MQSWORKPATH (OS/2 only)
This specifies the path to the mqs.ini file and is used internally by MQSeries.

116 MQSeries Clients

 Security

Chapter 9. Setting up MQSeries client security

You must consider MQSeries client security, so that the client applications do not
have unrestricted access to resources on the server.

There are two aspects to security between a client application and its queue
manager server: authentication and access control.

 Authentication
There are three levels of security to consider, as shown in the following diagram.
MCA is a Message Channel Agent.

MQSeries server

MCA

Transport

SecuritySecurity

Transport

Security

MQSeries client

MCA

Security

Environment variables:

MQ_USER_ID

Client machine
Server machine

1

2

3

MQ_PASSWORD

 1. Transport level

This is the same as for two MQSeries queue managers (server to server) and
is described in the book MQSeries Intercommunication.

2. Channel security exits

The channel security exits for client to server communication can work in the
same way as for server to server communication. A protocol independent pair
of exits provide mutual authentication of both the client and the server. A full
description is given in the book MQSeries Intercommunication.

DCE security exits are supplied with MQSeries Version 5 products for clients on
AIX, HP-UX, OS/2, Sun Solaris, Windows 95, and Windows NT. For details
see the book MQSeries Intercommunication.

| You cannot use the supplied DCE security exit from an MQSeries client on
| Windows 95 connected to an MQSeries for HP-UX server or an MQSeries for
| Sun Solaris server.

If no security exits are provided, see “Access control” on page 118 for details.

 Copyright IBM Corp. 1994,1998 117

 Security

3. User ID and password passed to a channel security exit

In client to server communication, the channel security exits do not have to
operate as a pair. The exit on the MQSeries client side may be omitted. In
this case a user ID and password may be specified via environment variables.
These are passed to the channel security exit on the server for authentication.
In this case the authentication takes place on the server only and it is not
mutual.

If no security exits are provided, see “Access control” for details.

Note that the channel security exits are not available for an MQSeries client on
a DOS platform, so the environment variables are the only option for MQSeries
level authentication.

Setting these environment variables on an MQSeries client is explained below.

User ID and password
If a security exit is not defined on an MQSeries client, the values of two
environment variables MQ_USER_ID and MQ_PASSWORD will be transmitted to
the server and will be available to the server security exit in the Channel definition
when it is invoked. These values may be used to verify the identity of the
MQSeries client.

Set these variables, in the environment in which the MQSeries client is going to
run. Note that MYUSERID and MYPASSWORD must be in uppercase if the MQSeries
client is going to communicate with an MQSeries server on AS/400.

On OS/2, DOS, Windows 3.1, Windows 95, and Windows NT:

SET MQ_USER_ID=<MYUSERID>
SET MQ_PASSWORD=<MYPASSWORD>

On UNIX systems:

export MQ_USER_ID=<MYUSERID>
export MQ_PASSWORD=<MYPASSWORD>

 Access control
Access control in MQSeries is based upon the user identifier associated with the
process making MQI calls. For MQSeries clients, the process that issues the MQI
calls is the server Message Channel Agent. The user identifier used by the server
MCA is that contained in the MCAUserIdentifier field of the MQCD. The contents
of MCAUserIdentifier are determined by the following:

� Any values set by security exits

� MQ_USER_ID environment variable

� MCAUSER (in server-connection channel definition)

Depending upon the combination of settings of the above, MCAUserIdentifier is
set to the appropriate value. If security exits are provided, MCAUserIdentifier may
be set by the exit. Otherwise MCAUserIdentifier is determined as as shown in the
following table:

118 MQSeries Clients

 Security

Notes:

1. For Windows NT and UNIX servers, the MCAUSER from the channel definition
is changed to lowercase before being used. So MCA user identifiers with one
or more uppercase letters will not work if placed in the MCAUSER field of the
channel definition. They will work however if they are put in the client
environment variable MQ_USER_ID and MACUSER is blank.

2. For OS/2, no user ID is available from either Communications Manager/2 or
NetBIOS.

3. For TCP/IP on Windows NT the value used is the user ID of the person who
started the listener.

4. If no user ID is available from the SNA server entry for this transaction
program, MCAUser is set to the user ID associated with the incoming attach
request, if there is one. (This does not apply for an MCA started as a thread of
the MQSeries Listener, that adopts the user ID of the parent process.)

5. For MVS/ESA the channel user ID takes the value of MCAUserIdentifier as
determined above. See the MQSeries for MVS/ESA System Management
Guide for more information.

MQ client ID
MQ_USER_ID

Server channel
MCAUSER

Value Used Notes

Not Set
or Set

Set MCAUSER 1

Set Blanks MQ_USER_ID 1

Not Set Blanks For MVS/ESA : The value used is the
user ID assigned to the channel
initiator started task by the MVS/ESA
started procedures table.

| For AS/400 : Default User ID QMQM
TCP/IP (non-MVS/ESA) : User ID
from inetd.conf entry
SNA (non-MVS/ESA) : User ID from
SNA Server entry

2,3,4

Not Set
or Set

Not Set TCP/IP: User ID from inetd.conf
entry
SNA: User ID from SNA Server entry

2,3,4

 Chapter 9. Setting up MQSeries client security 119

 Security

120 MQSeries Clients

 Application programming

 Part 3. Application programming

Chapter 10. Using the message queue interface (MQI) 123
Limiting the size of a message . 123
Choosing client or server coded character set identifier (CCSID) 123
Controlling application in a Windows 3.1 environment 124
Designing applications . 124

Windows 3.1 environment . 124
Using MQINQ . 124
Using syncpoint coordination . 124

| MQSeries for Tandem NSK server . 125
Using MQCONNX . 125

Chapter 11. Building applications for MQSeries clients 127
Running applications in the MQSeries client environment 127
Triggering in the client environment . 128

Process definition . 128
Trigger monitor . 128
CICS applications (non-MVS/ESA) . 129
Channel exits . 129

Linking C applications with the MQSeries client code 130
| Running 16 and 32-bit Windows clients. 131

For DOS only . 132
Linking C++ applications with the MQSeries client code 132
Linking COBOL applications with the MQSeries client code 132
Linking PL/I applications with the MQSeries client code 133

Chapter 12. Running applications on MQSeries clients 135
Using MQSERVER . 136
Using DEFINE CHANNEL . 136
Role of the client channel definition table . 136

Multiple queue managers . 136
Examples of MQCONN calls . 137

What the Examples demonstrate . 138
Example 1. Queue manager name prefixed with an asterisk (*) 138
Example 2. Queue manager name specified 139
Example 3. Queue manager name is blank or an asterisk (*) 139

Chapter 13. Solving problems . 141
MQSeries client fails to make a connection . 141
Stopping MQSeries clients . 141
Error messages with MQSeries clients . 142

Digital OpenVMS, OS/2, Windows 95, Windows NT, and UNIX systems . 142
DOS and Windows 3.1 clients . 142

How to read the error log and FFDCs for DOS and Windows 3.1 142
MQSeries environment variables . 143
Using trace on DOS and Windows 3.1 . 143

Example DOS trace data . 144
Using trace on OS/2, Windows NT, and Windows 95 144

File names for trace files . 145
How to examine FFSTs . 145

Using trace on AIX and AT&T GIS UNIX . 145

 Copyright IBM Corp. 1994,1998 121

 Application programming

Using trace on Digital OpenVMS, HP-UX, SINIX, DC/OSx, SunOS, and Sun
Solaris . 146

File names for trace files . 147
How to examine FFSTs . 147

| Using trace on VM/ESA . 148
| Example VM/ESA trace data . 148

122 MQSeries Clients

 Using the MQI

Chapter 10. Using the message queue interface (MQI)

When you write your MQSeries application, you need to be aware of the
differences between running it in an MQSeries client environment and running it in
the full MQSeries queue manager environment.

This chapter explains the things to consider.

Limiting the size of a message
The maximum message length (MaxMsgLength) attribute of a queue manager is
the maximum length of a message that can be handled by that queue manager.
The default maximum message length supported depends on the platform you are
using. Details are given in the MQSeries Application Programming Guide.

You can find out the value of MaxMsgLength for a queue manager by using the
MQINQ call.

If the MaxMsgLength attribute is changed, no check is made that there are not
already queues, and even messages, with a length greater than the new value.
After a change to this attribute, applications and channels should be restarted in
order to ensure that the change has taken effect. It will then not be possible for
any new messages to be generated that exceed either the queue manager’s
MaxMsgLength or the queue's MaxMsgLength (unless queue manager
segmentation is allowed).

The maximum message length in a channel definition limits the size of a message
that you can transmit along a client connection. If an MQSeries application tries to
use the MQPUT call or the MQGET call with a message larger than this, an error
code is returned to the application.

Choosing client or server coded character set identifier (CCSID)
The data passed across the MQI from the application to the client stub should be in
the local CCSID (coded character set identifier), encoded for the MQSeries client.
If the connected queue manager requires the data to be converted, this will be
done by the client support code.

The client code will assume that the character data crossing the MQI in the client is
in the CCSID configured for that machine. For example, if this CCSID is an
unsupported CCSID or is not the required CCSID, it can be overridden with the
MQCCSID environment variable, for example:

SET MQCCSID=85ð

Or, on UNIX systems: export MQCCSID=85ð

Set this in the profile and all MQI data will be assumed to be in code page 850.

Note: This does not apply to application data in the message.

 Copyright IBM Corp. 1994,1998 123

 Using the MQI

Controlling application in a Windows 3.1 environment
A Windows 3.1 MQSeries client runs within a full Windows environment, not under
a DOS prompt.

Normally, when you issue a request from a non-MQSeries application, control is not
returned to that application until the request is fulfilled. This is because the
Windows 3.1 environment is a cooperative multi-tasking system.

However, the MQSeries client code overrides the locking of the machine and the
application to enable you to start up more applications, or work on something else
until the MQI call has been answered. Should the application attempt to issue a
further MQI call before the previous one has been answered, the application will get
a return code indicating that there is still a call in progress, and the second call will
fail.

 Designing applications
When designing an application, consider what controls you need to impose during
an MQI call to ensure that the MQSeries application processing is not disrupted.

Windows 3.1 environment
To cooperate fully in the Windows 3.1 multi-tasking environment, an MQI call
results in the client code executing a GetMessage loop on behalf of the application.
If an application has accelerator keys defined, these will not function until the MQI
call returns and control is returned to the GetMessage loop of the application.

Note: There is only one way that an ongoing MQI call can be cancelled - by the
application receiving a WM_QUIT message.

 Using MQINQ
Some values queried using MQINQ will be modified by the client code.

CCSID is set to the client CCSID, not that of the queue manager.

MaxMsgLength is reduced if it is restricted by the channel definition. This will
be the lower of:

� The value defined in the queue definition, or
� The value defined in the channel definition

Using syncpoint coordination
Within MQSeries, one of the roles of the queue manager is syncpoint control within
an application. If an application runs on an MQSeries client, then it can issue
MQCMIT and MQBACK, but the scope of the syncpoint control is limited to the MQI
resources.

Applications running in the full queue manager environment, on the server, can
coordinate multiple resources (for example databases) via a transaction monitor.
On the server you can use the Transaction Monitor supplied with the Version 5
MQSeries products, or another transaction monitor such as CICS. You cannot use

124 MQSeries Clients

a transaction monitor with a client application. The MQSeries verb MQBEGIN is
not valid in a client environment.

| MQSeries for Tandem NSK server
| When an MQSeries client connects to a queue manager on MQSeries for Tandem
| NSK V2.2:

| � Any MQGET, MQPUT, or MQPUT1 with an MQ*_SYNCPOINT option initiates a
| Tandem transaction, if one has not already been associated with the
| connection handle.

| � Any MQGET, MQPUT, or MQPUT1 with neither an MQ*_SYNCPOINT nor an
| MQ*_NO_SYNCPOINT option initiates a Tandem transaction, if one has not
| already been associated with the connection handle.

| � The MQCMIT call commits a Tandem transaction, if one is associated with the
| connection handle. The MQBACK call cancels the Tandem transaction, if one
| is associated with the connection handle.

| In all cases, if the Tandem BEGINTRANSACTION fails, a CompCode of
| MQCC_FAILED, and a Reason of MQRC_SYNCPOINT_NOT_AVAILABLE are
| returned to the caller.

 Using MQCONNX
MQCONNX can be used from a client but these options are ignored:

 MQCNO_STANDARD_BINDING
 MQCNO_FASTPATH_BINDING

MQCONN and MQCONNX on a client are equivalent calls. The actual call issued
at the server depends on the server level and the listener configuration.

 Chapter 10. Using the message queue interface (MQI) 125

126 MQSeries Clients

 MQSeries client environment

Chapter 11. Building applications for MQSeries clients

If an application is to run in a client environment you can write it in C, COBOL, or
C++ (C only, for DOS, Windows 3.1, and AT&T GIS UNIX). You can write the

| application in PL/I for AIX, OS/2, and Windows NT. You can use Java applets if
| you have installed the MQSeries client for Java on AIX, HP-UX, Sun Solaris, OS/2,
| and Windows NT. You must link your application to the relevant client library file.

This chapter lists points to consider when running an application in an MQSeries
client environment, and describes how to link your application code with the
MQSeries client code.

Note for C ++ users: If you are using an MQSeries client supplied with an
MQSeries Version 5 product you can write your applications to run on the client in

| C++. Programs that use the MQSeries C++ classes can be used successfully with
| MQSeries Version 5 or AS/400 V4R2 servers only. To see how to link your C++

applications and for full details of all aspects of using C++ see the book MQSeries
Using C++.

| Note for Java users: If you have installed the MQSeries client for Java, you can
| write Java applets that communicate with MQSeries. For full details, see the
| MQSeries Internet/ Java documentation. This is supplied as a client component
| that you can install, and is in HTML format. The client READ.ME file on the client
| CD-ROM tells you where to point your browser to read this documentation.

Running applications in the MQSeries client environment
You can run an MQSeries application both in a full MQSeries environment and in
an MQSeries client environment without changing your code, providing:

� It does not need to connect to more than one queue manager concurrently

� The queue manager name is not prefixed with an asterisk (*) on an MQCONN
or MQCONNX call

Note: The libraries you use at link-edit time determine the environment in which
your application must run.

When working in the MQSeries client environment, remember:

� Each application running in the MQSeries client environment has its own
connections to servers. It will have one connection to each server it requires, a
connection being established with each MQCONN or MQCONNX call the
application issues.

� An application sends and gets messages synchronously.

� All data conversion is done by the server, but see also “MQCCSID” on
page 112.

� Triggering, see “Triggering in the client environment” on page 128.

 Copyright IBM Corp. 1994,1998 127

 Triggering

Triggering in the client environment
Triggering is explained in detail in the MQSeries Application Programming Guide.

Messages sent by MQSeries applications running on MQSeries clients contribute to
triggering in exactly the same way as any other messages, and they can be used
to trigger programs on the server. The trigger monitor and the application to be
started must be on the same system.

 Process definition
You must define the PROCESS definition on the server, as this is associated with
the queue that has triggering set on.

The process object defines what is to be triggered. If the client and server are not
running on the same platform, any processes started by the trigger monitor must
define ApplType, otherwise the server takes its default definitions (that is, the type
of application that is normally associated with the server machine) and causes a
failure.

For example, if the trigger monitor is running on a Windows NT client and wants to
send a request to an OS/2 server, MQAT_WINDOWS_NT must be defined
otherwise OS/2 uses its default definitions (that is, MQAT_OS2) and the process
fails.

For a list of application types, see the MQSeries Application Programming
Reference manual.

| Client on Windows 95.
| The Windows 95 client runs in 32-bit mode. It is also possible to run the client for
| Windows 3.1 in 16-bit mode on a Windows 95 platform. If a trigger monitor is
| running on a Windows 95 client you must make sure that you define the correct
| ApplType:

| MQAT_WINDOWS
| Windows 3.1 client or 16-bit Windows application.

| MQAT_WINDOWS_NT
| Windows NT client or 32-bit Windows application.

 Trigger monitor
The trigger monitor provided by non-MVS/ESA MQSeries products runs in the
Digital OpenVMS, OS/2, Windows 3.1, Windows 95, Windows NT, and UNIX
systems MQSeries client environments. To run it, issue the command:

runmqtmc [-m QMgrName] [-q InitQ]

The default initiation queue is SYSTEM.DEFAULT.INITIATION.QUEUE on the
default queue manager. This is where the trigger monitor looks for trigger
messages. It then calls programs for the appropriate trigger messages. This
trigger monitor supports the default application type and is the same as runmqtrm
except that it links the client libraries.

The command string, built by the trigger monitor, is as follows:

128 MQSeries Clients

 Triggering

1. The applicid from the relevant PROCESS definition. This is the name of the
program to run, as it would be entered on the command line.

2. The MQTMC2 structure, enclosed in quotes, as got from the initiation queue. A
command string is invoked which has this string, exactly as provided, in
‘quotes’, in order that the system command will accept it as one parameter.

3. The envrdata from the relevant PROCESS definition.

The trigger monitor will not look to see if there is another message on the initiation
queue until the completion of the application it has just started. If the application
has a lot of processing to do, this may mean that the trigger monitor cannot keep
up with the number of trigger messages arriving. You have two options:

� Have more trigger monitors running

� Run the started applications in the background

If you choose to have more trigger monitors running, you can control the maximum
number of applications that can run at any one time. If you choose to run
applications in the background, MQSeries imposes no restriction on the number of
applications that can run.

To run the started application in the background on an OS/2 system, within the
applicid field you must prefix the name of your application with a start command;
for example, start amqsinq /B.

To run the started application in the background on a UNIX system, you must put
an & (ampersand) at the end of the envrdata of the PROCESS definition.

CICS applications (non-MVS/ESA)
A non-MVS/ESA CICS application program that issues an MQCONN or MQCONNX
call must be defined to CEDA as RESIDENT. To make the resident code as small
as possible, it may be worth linking to a separate program to issue the MQCONN
or MQCONNX call.

If the MQSERVER environment variable is used to define the client connection, it
must be specified in the CICSENV.CMD file.

MQSeries applications can be run in an MQSeries server environment or on an
MQSeries client without changing code. However, in an MQSeries server
environment, CICS can act as syncpoint coordinator, and you use EXEC CICS
SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK rather than MQCMIT and
MQBACK. If a CICS application is simply relinked as a client, syncpoint support is
lost. MQCMIT and MQBACK must be used for the application running on an
MQSeries client.

 Channel exits
The channel exits available to the MQSeries client environment, in OS/2, UNIX
systems, Windows 3.1, Windows 95, and Windows NT environments are:

 � Send exit
 � Receive exit
 � Security exit

| The channel exits are not available on DOS systems.

 Chapter 11. Building applications for MQSeries clients 129

 Linking applications

These exits are available at both the client and server ends of the channel.

Remember, exits are not available to your application if you are using the
MQSERVER environment variable. Exits are explained in the book MQSeries
Intercommunication.

The send and receive exit work together. There are several possible ways in which
you may choose to use them:

� Splitting and reassembling a message

� Compressing and decompressing data in a message

� Encrypting and decrypting user data

� Journaling each message sent and received

You can use the security exit to ensure that the MQSeries client and server
machines are correctly identified, as well as to control access to each machine.

Path to exits
This applies to MQSeries clients on AIX, HP-UX, OS/2, Sun Solaris, Windows NT,
and Windows 95 systems.

An mqs.ini file is added to your system during installation of the MQSeries client.
A default path for location of the channel exits on the client is defined in this file,
using the stanza:

 ClientExitPath:
 ExitsDefaultPath=<defaultprefix>/exits

Where <defaultprefix> is the value defined for your system in the DefaultPrefix
stanza of the mqs.ini file.

When a channel is initialized, after an MQCONN or MQCONNX call, the mqs.ini
file is searched. The ClientExitPath stanza is read and any channel exits that are
specified in the channel definition are loaded.

Linking C applications with the MQSeries client code
Having written your MQSeries application that you want to run on the MQSeries
client, you must link it to a queue manager. You can do this in two ways:

� Directly, in which case the queue manager must be on the same machine as
your application

� To a client library file, which gives you access to queue managers on the same
or on a different machine

MQSeries provides a client library file for each environment:

AIX
libmqic.a library for threaded applications, or

libmqic_r.a library for non-threaded applications.

AT&T GIS UNIX
libmqic.so and libmqmcs.so

If you want to use the programs on a machine that has only the MQSeries

130 MQSeries Clients

 Linking applications

client for AT&T GIS UNIX installed, you must recompile the programs to link
them with the client library:

$ /bin/cc -o <prog> <prog>.c -lmqic -lmqmcs -lmqzse -lnet \
-lnsl -lsocket -ldl

Digital OpenVMS
MQIC.EXE in SYS$SHARE

DOS
MQIC.LIB (see also “For DOS only” on page 132)

HP-UX
libmqic.sl

OS/2
MQIC.LIB

SINIX and DC/OSx
libmqic.so and libmqmcs.so

If you want to use the programs on a machine that has only the MQSeries
client for SINIX and DC/OSx installed, you must recompile the programs to
link them with the client library:

$cc -o <prog> <prog>.c -lmqic -lmqmcs -lmqmzse -lnsl \
-lsocket -ldl -lmproc -lext

For DC/OSx append -liconv to the above command line.

Sun Solaris
libmqic.so and libmqmcs.so

If you want to use the programs on a machine that has only the MQSeries
client for Sun Solaris installed, you must recompile the programs to link them
with the client library:

$ /opt/SUNWspro/bin/cc -o <prog> <prog> c -mt -lmqic \
-lmqmcs -lsocket -lc -lnsl -ldl

SunOS
libmqic.so and libmqmcs.so

Windows 3.1
MQIC.LIB

| Windows NT
| MQIC32.LIB

Windows 95
MQIC32.LIB

| Running 16 and 32-bit Windows clients.
| Previous versions of the MQSeries clients for Windows NT and Windows 95
| included a version of MQIC.DLL that was 32-bit. When client code that was
| compiled as 16-bit is run using this DLL, it fails due to a name clash caused by the
| file MQIC.DLL. This has been rectified by replacing MQIC.DLL with MQIC32.DLL.

| The file MQIC.DLL is no longer included in the 32-bit Windows client. If you have
| code linked with the MQIC.DLL you need to relink. If this is not possible, you can
| copy the MQIC32.DLL file to MQIC.DLL. Note that doing this will prevent you from
| running mixed 16 and 32-bit environments.

 Chapter 11. Building applications for MQSeries clients 131

 Linking applications

For DOS only
Your application must also be linked with at least three of the following libraries,
one for each protocol, indicating whether you do or do not require it.

MQICN NetBIOS required

MQICDN NetBIOS not required

MQICS SPX required

MQICDS SPX not required

MQICT TCP/IP required

MQICDT TCP/IP not required

SOCKETL Link to this from the DOS TCP/IP product (if using TCP/IP)

When compiling programs in these environments there are many options available.
For example, using Microsoft C7:

/Alfw /Gw /Zpl /J

with a stack size greater than 8 KB, preferably 16 KB.

Linking C ++ applications with the MQSeries client code
If you are using an MQSeries client supplied with an MQSeries Version 5 product

| you can write your applications to run on the client in C++. Programs that use the
| MQSeries C++ classes can be used successfully with MQSeries Version 5 or
| AS/400 V4R2 servers only. For how to link your C++ applications and for full

details of all aspects of using C++ see the book MQSeries Using C++.

Linking COBOL applications with the MQSeries client code
AIX

Link your COBOL application with the libmqicb.a library.

AT&T GIS UNIX
There is no COBOL support on AT&T GIS UNIX.

Digital OpenVMS
Link your COBOL application with the MQICB.EXE library in SYS$SHARE.

HP-UX
Link your COBOL application with the libmqicb.sl library.

If you are not using LU 6.2, consider linking to libsnastubs.a (in /opt/lib for
HP-UX) to fully resolve function names. The need to link to this library varies
with how you are using the -B flag during the linking stage. For more
information see the MQSeries Application Programming Guide.

OS/2
If you have an OS/2 COBOL application that you want to run in the client
environment, link your application code with the MQICCB16 library for 16-bit
COBOL, or the MQICCBB library for 32-bit COBOL.

As with any MQSeries application, you must compile it with the LITLINK
directive. The COBLIB library must appear before the DOSCALLS library in
the library list, and you need a stack size greater than 8 KB.

132 MQSeries Clients

 Linking applications

Additionally, your application needs a runtime stack size of at least 16 KB.
More may be required depending on your application. One way to set this is
to use the COBSW environment variable. For example:

set COBSW=/S16384

This stack size is sufficient to run the sample COBOL applications as clients.

SINIX and DC/OSx
If you have a COBOL application that you want to run in the client
environment, you must recompile the programs to link them with the client
library, libmqmcb.so:

cob -xU <prog>.cbl -lmqmcb -lmqm -mqmcs -mqmzse -lmproc

For DC/OSx append liconv to the above command line.

Note: -lmqmcb must come before -lmqm on the command line.

SunOS
Link your COBOL application with the libmqicb library.

If you want to use LU 6.2 do not link your application with the Sunlink 7.0
libp2p.a library. The required modules from libp2p.a are linked into the
MQSeries client library. Do not use the libsnastubs.a or the Sunlink 7.0
libp2p.a libraries. All modules required for SNA LU 6.2 connectivity are in the
MQSeries client library libmqicb.a.

Sun Solaris
Link your COBOL application with the libmqicb.so library.

Windows NT and Windows 95
If you have a Windows NT, or a Windows 95 COBOL application that you
want to run in the client environment, link your application code with the
MQICCBB library for 32-bit COBOL. MQSeries for Windows NT and the
MQSeries Windows 95 client do not support 16-bit COBOL.

Linking PL/I applications with the MQSeries client code
See the MQSeries Application Programming Guide for further details.

AIX
Link your PL/I application with:

� libmqic.a library for threaded applications, or

� libmqic_r.a library for non-threaded applications.

OS/2
Link your PL/I application with the MQIC.LIB library.

Windows NT
Link your PL/I application with the MQIC32.LIB library.

 Chapter 11. Building applications for MQSeries clients 133

 Linking applications

134 MQSeries Clients

 Client to queue manager

Chapter 12. Running applications on MQSeries clients

This chapter explains the various ways in which an application running in an
MQSeries client environment can connect to a queue manager. It covers the
relationship of the MQSERVER environment variable provided by MQSeries, and
the client channel definition table created by MQSeries.

When an application running in an MQSeries client environment issues an
MQCONN or MQCONNX call, the client code identifies how it is to make the
connection:

1. If the MQSERVER environment variable is set, the channel it defines will be
used.

2. If the MQCHLLIB and MQCHLTAB environment variables are set, the client
channel definition table they point to will be used.

3. Finally, if the environment variables are not set, the client code searches for a
channel definition table whose path and name are established from the
DefaultPrefix in the mqs.ini file. If this fails, the client code will use the paths:

OS/2 MQSWORKPATH\amqclchl.tab

Or, if MQSWORKPATH is not set:

bootdrive:\mqm\amqclchl.tab

UNIX systems /var/mqm/AMQCLCHL.TAB

Windows NT and Windows 95
bootdrive:\mqm\amqclchl.tab

Where bootdrive is obtained from the
Software\IBM\MQSeries\CurrentVersion registry entry
under HKEY_LOCAL_MACHINE. This value is established
when the MQSeries client software is installed. If it is not
found, a value of ‘C’ is used for bootdrive.

Digital OpenVMS mqs_root:[mqm]amqclchl.tab

Notes:

1. If the client code fails to find any of these, the MQCONN or MQCONNX call will
fail.

2. The channel name, established from either the first segment of the
MQSERVER variable or from the client channel definition table, must match the
SVRCONN channel name defined on the server for the MQCONN or
MQCONNX call to succeed.

3. If you receive a MQRC_Q_MGR_NOT_AVAILABLE return code from your
application with an error message in the error log file of AMQ9517 - File
damaged, see “Migrating from MQSeries for OS/2 V2.0 and MQSeries for AIX
V2.1 or V2.2” on page 108.

 Copyright IBM Corp. 1994,1998 135

 Client to queue manager

 Using MQSERVER
If you use the MQSERVER environment variable to define the channel between
your MQSeries client machine and a server machine, this is the only channel
available to your application, and no reference is made to the client channel
definition table. In this situation, the ‘listener’ program that you have running on the
server machine determines the queue manager to which your application will
connect. It will be the same queue manager as the listener program is connected
to.

If the MQCONN or MQCONNX request specifies a queue manager other than the
one the listener is connected to, or if TransportType is not recognized, the
MQCONN or MQCONNX request fails with return code
MQRC_Q_MGR_NAME_ERROR.

Using DEFINE CHANNEL
If you use the MQSC DEFINE CHANNEL command, the details you provide are
placed in the client channel definition table. It is this file that the client code
accesses, in channel name sequence, to determine the channel an application will
use.

The contents of the Name parameter of the MQCONN or MQCONNX call determines
which server the client connects to.

Role of the client channel definition table
The client channel definition table is created when you define the first of the
connections between an MQSeries client and a server. See “Connecting the
MQSeries client and server - channel definitions” on page 100 for more information
on what you have to define and how you do it.

Note: The same file may be used by more than one MQSeries client. You
change the name and location of this file using the MQCHLLIB and MQCHLTAB
MQSeries environment variables. See Chapter 8, “Using MQSeries environment
variables” on page 111 for details of these and all the other MQSeries environment
variables.

Multiple queue managers
You may choose to define connections to more than one server machine because:

� You need a backup system.

� You want to be able to move your queue managers without changing any
application code.

� You need to access multiple queue managers, and this requires the least
resource.

Note: Define your client-connection and server-connection channels on one queue
manager only, including those channels that connect to a second or third queue
manager. Do not define them on two queue managers and then try to merge the
two client channel definition tables; this cannot be done. Only one client channel
definition table can be accessed by the client.

136 MQSeries Clients

 Client to queue manager

Examples of MQCONN calls
Note: In these examples, the MQCONNX call could be used instead of the
MQCONN call.

In each of the following examples, the network is the same; there is a connection
defined to two servers from the same MQSeries client. There are two queue
managers running on the server machines, one named SALE and the other named
SALE_BACKUP.

......

......
MQCONN(SALE)
......

runmqlsr -t tcp -m SALE_BACKUP

MQCONN (SALE)

Server 2
(9.20.5.26)

Server 1
(9.20.4.26)

runmqlsr -t tcp -m SALE

MQCONN (SALE)

(listening program)

(call from MQI client)

(listening program)

(call from MQI client)

No match

Match

MQSeries client

Note:
May or may not be
the same machine
as Server 1

ALPHA

BETA

The definitions for the channels in these examples are:

SALE Definitions:

DEFINE CHANNEL(ALPHA) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR('Server connection to MQSeries client')

DEFINE CHANNEL(APLHA) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME(9.2ð.4.26) DESCR('MQSeries client connection to server 1') +
QMNAME(SALE)

DEFINE CHANNEL(BETA) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME(9.2ð.5.26) DESCR('MQSeries client connection to server 2') +
QMNAME(SALE)

 Chapter 12. Running applications on MQSeries clients 137

 Client to queue manager

SALE_BACKUP Definition:

DEFINE CHANNEL(BETA) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR('Server connection to MQSeries client')

The client channel definitions may be summarized as follows:

Name CHLTYPE TRPTYPE CONNAME QMNAME

ALPHA CLNTCONN TCP 9.20.4.26 SALE

BETA CLTCONN TCP 9.20.5.26 SALE

What the Examples demonstrate
Suppose the communication link to Server 1 is temporarily broken. The use of
multiple queue managers as a backup system is demonstrated.

Each example covers a different MQCONN call and gives an explanation of what
happens in the specific example presented, by applying the following rules:

1. MQSeries searches the client channel definition table, in channel name order ,
looking in the queue manager name (QMNAME) field for an entry
corresponding to the one given in the MQCONN call.

2. If a match is found the transmission protocol and the associated connection
name are extracted.

3. An attempt is made to start the channel to the machine, identified by the
connection name (CONNAME). If this is successful, the application will
continue. It requires:

� A listener to be running on the server

� The listener to be connected to the same queue manager as the one the
client wishes to connect to (if specified)

4. If the attempt to start the channel fails and there is more than one entry in the
client channel definition table (in this example there are two entries), the file is
searched for a further match. If a match is found, processing continues at step
1.

5. If no match is found, or there are no more entries in the client channel
definition table and the channel has failed to start, the application is unable to
connect. An appropriate reason code and completion code are returned in the
MQCONN call. The application can take action based on the reason and
completion codes returned.

Example 1. Queue manager name prefixed with an asterisk (*)
In this example the application is not concerned about which queue manager it
connects to. The application issues:

MQCONN (\SALE)

138 MQSeries Clients

 Client to queue manager

Following the rules, this is what will happen in this instance:

1. The client channel definition table is scanned (in channel name order) for the
queue manager name SALE, matching with the application MQCONN call.

2. The first channel definition found to match is ALPHA.

3. An attempt to start the channel is made – this is NOT successful because the
communication link is broken.

4. The client channel definition table is again scanned for the the queue manager
name SALE and the channel name BETA is found.

5. An attempt to start the channel is made – this is successful.

6. A check to see that a listener is running shows that there is one running. It is
not connected to the SALE queue manager, but because the MQI call parameter
has an asterisk (*) in front of it, no check is made. The application will be
connected to the SALE_BACKUP queue manager and will continue processing.

Example 2. Queue manager name specified
The application requires a connection to a specific queue manager, named SALE, as
seen in the MQI call:

MQCONN (SALE)

Following the rules, this is what will happen in this instance:

1. The client channel definition table is scanned (in channel name order) for the
queue manager name SALE, matching with the application MQCONN call.

2. The first channel definition found to match is ALPHA.

3. An attempt to start the channel is made – this is NOT successful because the
communication link is broken.

4. The client channel definition table is again scanned for the the queue manager
name SALE and the channel name BETA is found.

5. An attempt to start the channel is made – this is successful.

6. A check to see that a listener is running shows that there is one running, but it
is not connected to the SALE queue manager.

7. There are no further entries in the client channel definition table. The
application cannot continue and will receive error number 2059 - Queue
Manager unavailable.

Example 3. Queue manager name is blank or an asterisk (*)
In this example the application is not concerned about which queue manager it
connects to. This is treated in the same way as the previous example.

Note: If this application were running in an environment other than an MQSeries
client, and the name was blank, it would be attempting to connect to the default
queue manager. This is not the case when it is run from a client environment, as
there can be more than one default queue manager. The application issues:

MQCONN ("")
MQCONN (\)

Following the rules, this is what will happen in this instance:

 Chapter 12. Running applications on MQSeries clients 139

 Client to queue manager

1. The client channel definition table is scanned (in channel name order) for a
queue manager name that is blank, matching with the application MQCONN
call.

2. The entry for the channel name ALPHA. has a queue manager name in the
definition of SALE. This does not match the MQCONN call parameter, which
requires the queue manager name to be blank.

3. The next entry is for the channel name BETA.

4. The queue manager name in the definition is SALE. Once again, this does not
match the MQCONN call parameter, which requires the queue manager name
to be blank.

5. There are no further entries in the client channel definition table. The
application cannot continue and will receive error number 2058 - Queue
Manager name error.

140 MQSeries Clients

 Solving problems � Stopping a client

 Chapter 13. Solving problems

This chapter discusses the return codes, error logs, and error messages. It
examines some common problems when running applications in the MQSeries
client environment. Trace tools by platform are also covered.

An application running in the MQSeries client environment receives MQRC_*
reason codes in the same way as MQSeries server applications. However, there
are additional reason codes for error conditions associated with MQSeries clients.
For example:

� Remote machine not responding
� Communications line error
� Invalid machine address

The most common time for errors to occur is when an application issues an
MQCONN or MQCONNX and receives the response
MQRC_Q_MQR_NOT_AVAILABLE. Look in the client error log for a message
explaining the failure. There may also be errors logged at the server, depending on
the nature of the failure. Also, check that the application on the MQSeries client is
linked with the correct library file.

MQSeries client fails to make a connection
When the MQSeries client issues an MQCONN or MQCONNX call to a server,
socket and port information is exchanged between the MQSeries client and the
server. For any exchange of information to take place, there must be a program on
the server machine whose role is to ‘listen’ on the communications line for any
activity. If there is no program doing this, or there is one but it has problems of its
own, the MQCONN or MQCONNX call fails and the relevant reason code is
returned to the MQSeries application.

If the connection is successful, MQSeries protocol messages are then exchanged
and further checking takes place. It is not until all these checks are successful that
the MQCONN or MQCONNX call will succeed.

During the MQSeries protocol checking phase, some aspects are negotiated while
others cause the connection to fail.

For full details of the MQRC_* reason codes, see the MQSeries Application
Programming Reference.

Stopping MQSeries clients
Even though an MQSeries client has stopped, it is still possible for the process at
the server to be holding its queues open. The queues will be closed when the
communications layer detects that the partner has gone.

 Copyright IBM Corp. 1994,1998 141

 Error messages � DOS and Windows 3.1

Error messages with MQSeries clients
When an error occurs with an MQSeries client system, error messages are put into
the error files associated with the server, if possible. If the error cannot be placed
there, the MQSeries client code attempts to place the error message in an error log
in the root directory of the MQSeries client machine.

Digital OpenVMS, OS/2, Windows 95, Windows NT, and UNIX systems
Error messages for MQSeries clients on Digital OpenVMS OS/2, Windows 95,
Windows NT, and UNIX systems are placed in the error logs in the same way they
are for the respective MQSeries server systems. Typically these files appear in
/var/mqm/errors for UNIX systems, in /mqm/errors for OS/2, Windows 95, and
Windows NT systems, and in the MQS_ROOT:[MQM.ERRORS] directory for Digital
OpenVMS systems.

DOS and Windows 3.1 clients
The log file AMQERR01.LOG is held on C:\ unless the MQDATA environment
variable is used to override the default. See Chapter 8, “Using MQSeries
environment variables” on page 111 for details on how to use this and all other
MQSeries environment variables.

How to read the error log and FFDCs for DOS and Windows 3.1
RUNMQFMT reformats the trace, error, and FFDC files. Before running

| RUNMQFMT you must have access to the error message file, amq9.msg. You can
give RUNMQFMT access either by putting the file in the local directory or by adding
its location to the DOS APPEND statement.

RUNMQFMT has one optional parameter, the name of the file to be processed. If
you do not specify a filename and tracing is on, FORMAT TRACE/ERROR FILE
attempts to format the trace file; if tracing is not on, it attempts to format the error
file. The output is written to stdout to enable you to browse it; alternatively you
can redirect the output to a printer. The oldest message is listed first.

To print the output file: RUNMQFMT filename > printername

Note: The normal default ‘printer name’ is LPT1, which is the port assigned to a
printer. Alternatively, you can direct the output to a file, replacing the printer name
with the file name when you issue the command.

Your application program should handle any MQI reason codes to allow your
program to end in a controlled manner, as there is no MQI error handling within the
product.

There are three ways of using RUNMQFMT:

1. Specify the full path and name of the error log.

2. Specify the name of the error log, in which case the default path is used.

3. Enter only the command name, RUNMQFMT. The command assumes that the
error log is in the default location, unless this has been changed by the
MQDATA environment variable. If tracing is on, the trace is formatted; if tracing
is off, the error log is formatted.

142 MQSeries Clients

 Environment variables � Trace on DOS and Windows 3.1

MQSeries environment variables
For details of all the environment variables that can be used, see Chapter 8, “Using
MQSeries environment variables” on page 111.

MQSeries uses default values for those variables that you have not set. Issue the
command from the command line to make a change for your current session only;
or, if you want one or more variables to have a particular value dependent on the
application that is running, you can add SET commands to a command file (.cmd)
used by the application. Update your system profile to make a permanent change.

Using trace on DOS and Windows 3.1
Use the MQTRACE environment variable to set tracing on (see “MQTRACE (DOS,
Windows 3.1, VM/ESA)” on page 116). Specify the name of the file to which you
want all the trace entries to be put. You can further define the use of this file by
specifying flags:

c Trace the communications flow.

m Do not query the configuration of the machine your application is running on.
Use this option if exceptions occur when normal tracing is switched on.

w Write a new instance of the trace file for each program. If this is not set, the
trace entries continue to be added to a single trace file.

Note: If you are using this trace option on two or more applications at the
same time, you must specify a different trace filename for each of the
applications to guarantee that no trace entries are lost.

Figure 2 on page 144 shows an example.

 Chapter 13. Solving problems 143

 Trace on OS/2, Windows NT, and 95

Example DOS trace data
The following example shows an extract from a trace for a DOS MQSeries client:

Trace started on Mon Sep 19 1ð:48:42 1994
PS/2 Mod 8ð or 95 - DOS V2ð.1ð (Rev.2) RAM [BIOS Rev.5]
1ð:48:42 MQCONN
 rrxOpenChannelDef

rrxOpenChannelDef RC=ð OK
 rrxGetFirstChannelDef

rrxGetFirstChannelDef RC=ð OK
 rriInitSess
 rriAddStatusEntry

rriAddStatusEntry RC=ð OK
 rriInitExits

rriInitExits RC=ð OK
 ccxNetWorkInit
 ...

 ...
ccxQueryProcAddr RC=ð OK
cciLoadLibrary RC=ð OK
ccxNetWorkInit RC=ð OK

 ccxAllocConv
 cciNetbAllocConv

cciNetbAllocConv RC=ð OK
ccxAllocConv RC=ð OK

 ccxAllocMem
ccxAllocMem RC=ð OK

 ccxSend
 cciNetbSend

I 1ð:48:53 Outbound 72 bytes.
I 5453482ð ðððððð48 ð2ð1ð1ðð ðððððððð TSH....H........
I ðððððððð 22ð2ðððð 52ð3ðððð 49442ð2ðR...ID..
I ð225ðððð ðððððððð FEðFðððð ðððð4ððð
I ðððððððð 4F53325ð 4743312E 5352562ðOS2PGC1.SRV.
I 2ð2ð2ð2ð 2ð2ð2ð2ð

cciNetbSend RC=ð OK
ccxSend RC=ð OK

 ...

Figure 2. Extract from a DOS client trace

The entries in the box represent data sent or received over communications links.

Using trace on OS/2, Windows NT, and Windows 95
MQSeries for Windows NT and MQSeries for OS/2 use the following commands for
the MQSeries client trace facility:

strmqtrc to start early tracing
endmqtrc to end tracing

144 MQSeries Clients

 Trace on UNIX systems

An MQSeries client on Windows 95 uses the following commands for the MQSeries
client trace facility:

strmqtrc -t(TraceType) to start tracing
endmqtrc to end tracing

File names for trace files
Trace file names are constructed in the following way:

AMQppppp.TRC

where ppppp is the process ID (PID) of the process producing the trace.

Notes:

1. The value of the process id can contain fewer or more digits than shown in the
example.

2. There will be one trace file for each process running as part of the entity being
traced.

How to examine FFSTs
The files are produced already formatted and are in the \mqm\errors directory.

These are normally severe, unrecoverable errors and indicate either a configuration
problem with the system or an MQSeries internal error.

The files are named AMQnnnnn.mm.FDC, where:

nnnnn is the process id reporting the error
mm is a sequence number, normally 0

When a process creates an FFST it also sends a record to syslog. The record
contains the name of the FFST file to assist in automatic problem tracking.

The syslog entry is made at the “user.error” level.

The MQSeries trace utility is explained in detail in the book MQSeries System
Administration.

Using trace on AIX and AT&T GIS UNIX
MQSeries for AIX and MQSeries for AT&T GIS UNIX use the standard UNIX
system trace. Tracing is a two step process:

1. Gather the data.
2. Format the results.

MQSeries uses two trace hook identifiers:

X'30D' This event is recorded by MQSeries on entry to or exit from a
subroutine.

X'30E' This event is recorded by MQSeries to trace data such as that being
sent or received across a communications network.

 Chapter 13. Solving problems 145

 Trace on UNIX and other systems

Trace provides detailed execution tracing to help you to analyze problems. IBM
service support personnel may ask for a problem to be recreated with trace
enabled. The files produced by trace can be very large, so it is important to qualify
a trace, where possible. For example, you can optionally qualify a trace by time
and by component.

Activate a trace using the standard AIX trace command. For example:

trace -a -j3ðD,3ðE -o tracefile_name

The binary trace is run asynchronously and is stored in the specified file. When
you get the shell prompt, enter the command to start the operation to be traced,
prefixed by !. For example:

!trace -a -j3ðD,3ðE -o /u/userid/trace/first.dat

When you want to stop, type trcstop to end the trace. Then format the trace file
with the command:

trcrpt -t /usr/lpp/mqm/lib/amqtrc.fmt first.dat > report_name

report_name is the name of the file where you want to put the formatted trace
output.

Note: All MQSeries activity on the machine is traced while the trace is active. If
you have only an MQSeries client installed on your machine, only the activity of the
MQSeries client is traced.

The MQSeries trace utility is explained in detail in the MQSeries System
Administration book (for AIX) and the MQSeries for AT&T GIS UNIX System
Management Guide.

Using trace on Digital OpenVMS, HP-UX, SINIX, DC/OSx, SunOS, and
Sun Solaris

| MQSeries for Digital OpenVMS HP-UX, SINIX and DC/OSx, SunOS, and Sun
Solaris use the following commands for the MQSeries client trace facility:

| strmqtrc -e to start early tracing
| endmqtrc -e to end early tracing
| dspmqtrc <filename > to display a formatted trace file

| For more information about the trace commands, see the MQSeries System
| Administration book for Version 5 products, or the System Management Guide for
| your platform for non-Version 5 products.

The trace facility uses a number of files, which are:

� One file for each entity being traced, in which trace information is recorded

146 MQSeries Clients

 Trace on UNIX and other systems

� One additional file on each machine, to provide a reference for the shared
memory used to start and end tracing

� One file to identify the semaphore used when updating the shared memory

Files associated with trace are created in a fixed location in the file tree, which is
/var/mqm/trace.

| On Digital OpenVMS systems the files are in the MQS_ROOT:[MQM.ERRORS]
| directory.

All queue managers tracing, all early tracing and all @SYSTEM tracing takes place
to files in this directory.

Note: You can handle large trace files by mounting a temporary filesystem over
this directory.

File names for trace files
Trace file names are constructed in the following way:

AMQppppp.TRC

where ppppp is the process ID (PID) of the process producing the trace.

Notes:

1. The value of the process id can contain fewer or more digits than shown in the
example.

2. There will be one trace file for each process running as part of the entity being
traced.

How to examine FFSTs
Information that, on the OS/2 and AIX platforms, is normally recorded in FFST logs
is, on HP-UX, AT&T GIS UNIX, SINIX, DC/OSx, SunOS, and Sun Solaris recorded
in a file in the /var/mqm/errors directory.

These are normally severe, unrecoverable errors and indicate either a configuration
problem with the system or an MQSeries internal error.

The files are named AMQnnnnn.mm.FDC, where:

nnnnn is the process id reporting the error
mm is a sequence number, normally 0

When a process creates an FFST it also sends a record to syslog. The record
contains the name of the FFST file to assist in automatic problem tracking.

The syslog entry is made at the “user.error” level.

The MQSeries trace utility is explained in detail in the MQSeries System
Administration (MQSeries Version 5 products) and the relevant System
Management Guide for other platforms.

 Chapter 13. Solving problems 147

 Trace on VM/ESA

| Using trace on VM/ESA
| Use the MQTRACE environment variable to set the tracing on (see “MQSERVER”
| on page 114). Specify the name of the file to which you want all the trace entries
| to be put. Unlike MQTRACE for DOS and Windows, there are no optional flags
| that can be set. Setting the MQTRACE variable initiates a trace for all the
| functions of the MQSeries client for VM/ESA.

| Example VM/ESA trace data
| The following example shows an extract of a trace for a VM/ESA MQSeries client:

| MQSeries Trace started at 1ð/ð9/97 16:ð7:14
| < xcsInitialize (rc = OK)
| -> MQCONN
| --> rrxOpenChannelDef
| ---> xcsGetMem
| <-- xcsGetMem (rc = OK)
| <- rrxOpenChannelDef (rc = OK)
| --> rrxGetFirstChannelDef
| <- rrxGetFirstChannelDef (rc = OK)
| --> rriInitSess
| ---> xcsGetMem
| <-- xcsGetMem (rc = OK)
| ...

| ...
| ---> rriTermExits
| <-- rriTermExits (rc = OK)
| ---> rriDeleteStatusEntry
| ----> xcsFreeMem
| <--- xcsFreeMem (rc = OK)
| <-- rriDeleteStatusEntry (rc = OK)
| ---> xcsFreeMem
| <-- xcsFreeMem (rc = OK)
| <- rriFreeSess (rc = OK)
| < MQDISC

| Figure 3. Extract from a VM/ESA client trace

148 MQSeries Clients

 Appendix

 Part 4. Appendix

 Copyright IBM Corp. 1994,1998 149

 Appendix

150 MQSeries Clients

 Notices

 Appendix. Notices

The following paragraph does not apply to any country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM’s valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, MP151, IBM
United Kingdom Laboratories, Hursley Park, Winchester, Hampshire, England SO21
2JN. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594,
U.S.A.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX AS/400 BookManager
CICS ESCON FFST
First Failure Support
Technology

IBM IBMLink

IMS MQ MQSeries
MQSeries Three Tier MVS MVS/ESA
NetView PS/2 RACF
RISC System/6000 RS/6000 SupportPac
OS/2 OS/400 VisualAge
VM/ESA VSE/ESA WIN-OS/2
Workplace

 Copyright IBM Corp. 1994,1998 151

 Notices

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks
of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

152 MQSeries Clients

 Glossary and index

Part 5. Glossary and index

 Copyright IBM Corp. 1994,1998 153

 Glossary and index

154 MQSeries Clients

 adapter � Distributed Computing Environment (DCE)

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
adapter . An interface between MQSeries for MVS/ESA
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

C
CCSID. Coded character set identifier.

CDF. Channel definition file.

channel . See message channel.

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

CL. Control Language.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application . An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type . The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

coded character set identifier (CCSID) . The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an instruction that can be
carried out by the queue manager.

completion code . A return code indicating how an
MQI call has ended.

configuration file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a file that contains configuration information related
to, for example, logs, communications, or installable
services. Synonymous with .ini file. See also stanza.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier or token by which a
program accesses the queue manager to which it is
connected.

Control Language (CL) . In MQSeries for AS/400, a
language that can be used to issue commands, either
at the command line or by writing a CL program.

D
DCE. Distributed Computing Environment.

desktop clients . A group of MQSeries clients that run
on the smaller platforms such as DOS and Windows
3.1. Desktop clients are supplied with most of the
MQSeries products; the members of the group may be
different for the different products.

Distributed Computing Environment (DCE) .
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

 Copyright IBM Corp. 1994,1998 155

 environment variable � MQSeries commands (MQSC)

E
environment variable . One of a series of variables
that control the way your operating system runs and
what external devices it will recognize. You can define
these variables in your system profile or override them
temporarily with command-line commands.

F
FFST. First Failure Support Technology.

First Failure Support Technology (FFST) . Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

G
get . In message queuing, to use the MQGET call to
remove a message from a queue.

H
handle . See connection handle and object handle.

I
.ini file . See configuration file.

initiation queue . A local queue on which the queue
manager puts trigger messages.

L
listener . In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages.

log file . In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a

queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

M
MCA. Message channel agent.

message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises
two message channel agents (a sender and a receiver)
and a communication link. Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

messaging . See synchronous messaging and
asynchronous messaging.

MQI. Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC. MQSeries commands.

MQSeries . A family of IBM licensed programs that
provides message queuing services.

MQSeries client . Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI
calls from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

156 MQSeries Clients

 namelist � server channel

N
namelist . An MQSeries for MVS/ESA object that
contains a list of queue names.

O
object . In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist
(MVS/ESA only), or a storage class (MVS/ESA only).

object handle . The identifier or token by which a
program accesses the MQSeries object with which it is
working.

P
PCF. Programmable command format.

PCF command . See programmable command format.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel or a TCP/IP connection is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

programmable command format (PCF) . A type of
MQSeries message used by:

� User administration applications, to put PCF
commands onto the system command input queue
of a specified queue manager

� User administration applications, to get the results
of a PCF command from a specified queue
manager

� A queue manager, as a notification that an event
has occurred

Contrast with MQSC.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and

remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queuing . See message queuing.

R
reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

Registry . In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor . In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive . In Windows NT, the structure of the
data stored in the Registry.

remote queue . A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager that is not the one to which the program is
connected.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

resource . Any facility of the computing system or
operating system required by a job or task. In
MQSeries for MVS/ESA, examples of resources are
buffer pools, page sets, log data sets, queues, and
messages.

return codes . The collective name for completion
codes and reason codes.

S
server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

 Glossary of terms and abbreviations 157

 server connection channel type � utility

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

stanza . A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries
on UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

T
thread . In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging . See asynchronous
messaging.

trace . In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF).

triggering . In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger monitor . A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

U
utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

158 MQSeries Clients

 Index

 Index

Numerics
16-bit mode 128
32-bit mode 128

A
access control 117, 118
add routing entry 89
addrtge 89
AIX client

custom installation 38
hardware and software 14
installing 37

amqclchl.tab 113
AMQERR01.FDC 113
AMQERR01.LOG 113
amqsgetw 71
AMQSPUT0 sample program 70
AMQSPUTC sample program 69
amqsputw 69
application

design considerations 124
MQI considerations 124
syncpoint considerations 124
Windows 3.1 environment 124

application design
Windows 3.1 124

application programming 121
applications 127
applications on MQSeries clients 6

advantages of the MQSeries client 136
client channel definition table 135
connected to multiple queue managers 135
connected to multiple servers 135
connection to server 135
in different environments 127
MQSERVER 135

ApplType 128
AS/400

CL commands 102
AS/400 server 53
AT&T GIS UNIX

hardware and software 16
NCR UNIX client 16

authentication 117
automatic definition of channel 101
AUTOSTART 90

B
base product 52

benefits of using MQSeries clients 6
bibliography viii
BookManager xii
building applications 127

C
C applications

linking 130
C++

linking 127
using 127

C++ applications
linking 132

CCSID (coded character set identifer) 123
CEDA 129
channel 99

client connection 100, 136
message and MQI categories 99
server connection 100
what is it? 99

channel definition
automatic 101
client connection 100
for clients 102
maximum message length 123
server 104
server connection 100

channel exits 129
ClientExitPath 130
ExitsDefaultPath 130
path to exits 130

channel types 100
channels for communication 99
CICS applications (non-MVS/ESA)

CEDA 129
CICSENV.CMD file 129
environment specifics 129
MQSERVER 129

CL commands 102
class of routing entry 90
client

application 127
benefits 6
channel definition 102
coded character set identifier 123
communication protocols 12
control within Windows 3.1 124
desktop 52
DOS and Windows 3.1

error messages 142
environment specifics 127

 Copyright IBM Corp. 1994,1998 159

 Index

client (continued)
environment variables 111, 143
error log files 142
error messages 142
fails to connect to a server 141
installing from Digital OpenVMS 54
installing from MQSeries for Digital OpenVMS

to Digital OpenVMS 54
to DOS 56
to OS/2 55
to Windows 3.1 56

installing from MQSeries for UNIX systems
to DOS 61
to OS/2 59
to UNIX system 58
to Windows 3.1 61

installing on VM/ESA 63
MQCONN 135
MQCONNX 135
MQINQ values modified 124
platform support 9, 11
problem determination 141
security 118
server connection 135
setting up 6
stopped 141
syncpoint considerations 124
trigger monitor 128
use of MQI 123, 130
what it is 5

client (non-Version 5)
installing from MQSeries for UNIX systems 58

Client CD-ROM 31
client channel definition table 106

directory path 112
how it is used 136
name of 113
where to find it 113, 135

client communication method
name of 114

client connection channel 100
client definitions, migrating 108
client files

on the server 53
client library file 130
client on Windows 95. 128
client security 117
client to server connection 11, 100
ClientExitPath 130
clients

installing on DOS 39
installing on HP-UX 40
installing on OS/2 Warp 41
installing on Sun Solaris 44
installing on Windows 3.1 45
installing on Windows 95 47

clients (continued)
installing on Windows NT 47

clients (Version 5)
removing 35

clients available from Internet 11
clients overview 5
COBOL

link libraries 132
COBOL applications

linking 132
coded character set identifier (CCSID)

client or server 123
communication protocol

LU 6.2 75
NetBIOS 75
SPX 75
TCP/IP 75

communication type
deciding which one to use 75

communications 75, 99
MQSeries client

protocols overview 12
Communications Manager/2 83
components you can install 32
configuration, kernel 40, 44
configuring communications 75
connecting client to server 100

overview 12
connecting to queue managers 135
connection

client to server 11
Connections

DECnet 96
LU 6.2 82
NetBIOS 91
SPX 93
TCP/IP 77

create a client-connection channel
example 68

create a local queue
example 66
example (MVS/ESA) 67

create a queue manager
example 66

create a server-connection channel
example 66
example (MVS/ESA) 67

creating
groups 36, 40, 43
user ID 36, 40, 43

custom installation
AIX client 38

customize
example for MVS/ESA 67

160 MQSeries Clients

 Index

D
data compression 129
data conversion 127
data encryption 129
DC/OSx

hardware and software 22
DCE security exits 117
DECnet connections 96
DECnet on a client 96
DECnet on a server 96
DECnet Phase IV connection 96
define a client-connection channel

example 68
define the default objects

example 66
defining a DECnet connection 96
defining a NetBIOS connection 91
defining a SPX connection 93
defining a TCP/IP connection 77
defining an LU 6.2 connection 82
defining channels 99, 102, 105

on the MQSeries client 102, 107
on the server 102, 105
using MQSC 136

delete queue manager 71
desktop client 52
Digital OpenVMS

hardware and software 18
installing clients 54

Digital OpenVMS server 53
Digital OpenVMS systems

error messages 142
dltmqm 71
DOS

environment specifics 127
DOS client

hardware and software 17
installing 39

DOS MQSeries clients
error messages 142

DOS, Windows 3.1
turning tracing on and off 116

dspmqtrc trace command 146

E
ending verification

example 71
endmqm 71
endmqtrc trace command 144, 146
environment variables 111

change setting 111
client 143
COBSW 133
display current setting 111

environment variables (continued)
MQ_PASSWORD 118
MQ_USER_ID 118
MQCCSID 112
MQCHLLIB 112, 135
MQCHLTAB 113, 135
MQDATA 113, 142
MQNAME 114
MQSERVER 114, 135
MQSWORKPATH 116
MQTRACE 116
when connecting to a client 136
when creating channel definitions 100

error log
AMQERR01.LOG 113
reading 142

error logs 141
error messages 141
example

create a client-connection channel 68
create a local queue 66
create a local queue (MVS/ESA) 67
create a queue manager 66
create a server-connection channel 66
create a server-connection channel (MVS/ESA) 67
customize MVS/ESA 67
define a client-connection channel 68
define the default objects 66
ending verification 71
getting the message from the queue

on the MQSeries client (not Windows 3.1,
VM/ESA) 70

on the MQSeries client (VM/ESA) 71
on the MQSeries client (Windows 3.1) 71

installation verification 65
putting a message on the queue

on the MQSeries client (not Windows 3.1,
VM/ESA) 69

on the MQSeries client (VM/ESA) 70
on the MQSeries client (Windows 3.1) 69

set up inetd 66, 67
setting up the MQSeries client 68
setting up the server (AS/400) 67
setting up the server (MVS/ESA) 67
setting up the server (not MVS/ESA or AS/400) 66
start DQM (MVS/ESA) 67
start MQSC 66
start queue manager (MVS/ESA) 67
start the channel initiator (MVS/ESA) 67, 81, 90
start the Listener (MVS/ESA) 67, 81, 90
start the queue manager 66
stop MQSC 66

examples
trace data (DOS) 144

exits 129
receive 129

 Index 161

 Index

exits (continued)
security 118, 129
send 129

ExitsDefaultPath 130

F
FFDC (First Failure Data Capture), examining 142
FFST, examining 145, 147
First Failure Data Capture (FFDC)

look at message file 142
format trace and error files 142

MQDATA 113

G
gateway name 88
getting the message from the queue

example (not Windows 3.1, VM/ESA) 70
example (VM/ESA) 71
example (Windows 3.1) 71

glossary 155
groups, creating 36, 40, 43

H
hardware requirements

AIX client 14
AT&T GIS UNIX client 16
Digital OpenVMS client 18
DOS client 17
HP-UX client 19
OS/2 client 20
SINIX and DC/OSx client 22
Sun Solaris client 25
SunOS client 24
VM/ESA client 26
Windows 3.1 client 27
Windows 95 client 28
Windows NT client 29

how to set up MQSeries clients 6
HP-UX client

hardware and software 19
installing 40

HTML (Hypertext Markup Language) xii
Hypertext Markup Language (HTML) xii

I
Information Presentation Facility (IPF) xiii
installation

preparation 36
preparing 9
verifying 65

installation (non-Version 5)
Base product 51
clients 51

installation (non-Version 5) (continued)
preparing 51
server 51

installation (Version 5)
clients 31
components 32
server 31

installation directory 43
installation verification

example 65
installing

AIX client 37
client on Digital OpenVMS from Digital

OpenVMS 54
client on DOS from Digital OpenVMS 56
client on DOS from UNIX systems 61
client on OS/2 from Digital OpenVMS 55
client on OS/2 from UNIX systems 59
client on UNIX system from UNIX system 58
client on VM/ESA 63
client on Windows 3.1 from Digital OpenVMS 56
client on Windows 3.1 from UNIX systems 61
clients from Digital OpenVMS 54
clients from MQSeries products 52
clients from SupportPacs 51
clients on AIX 38
clients on DOS 39
clients on HP-UX 40
clients on OS/2 Warp 41
clients on Sun Solaris 44
clients on the server (Version 5) 35
clients on Windows 3.1 45
clients on Windows 95 47
clients on Windows NT 47
MQSeries server 52

installing (non-Version 5) 51
clients from MQSeries for UNIX systems 58

installing (Version 5) 31
Internet 51
Internet - clients available 11
IPF (Information Presentation Facility) xiii
IPX parameters 94

J
Java

using 127

K
kernel configuration 40, 44

L
library file, client 130

162 MQSeries Clients

 Index

linking with MQSeries client code
C applications 130
C++ applications 132
COBOL applications 132
PL/I applications 133

listener 75
listening on OS/2 83
listening on SunOS 88
listening on TCP/IP 77, 79, 80, 81
listening on Windows NT 85
local name definition 91, 92
log, error 142
LU 6.2 75
LU 6.2 connections 82
LU 6.2 on a client

Digital OpenVMS 90
OS/2 82
SunOS 87
UNIX systems 85
Windows NT systems 84

LU 6.2 on a server
AS/400 89
MVS/ESA 90
OS/2 83
SunOS 88
Tandem NSK 90
UNIX systems 87
Windows NT 85

M
maximum channels on VM/ESA 106
MCAUSER 118
MCAUserIdentifier 118
message

errors on Digital OpenVMS systems 142
errors on DOS and Windows 3.1 142
errors on OS/2 142
errors on UNIX systems 142
errors on Windows 95 142
errors on Windows NT 142
maximum length 123
translated 45

message channel 99
message, translated 41
migrating client definitions 108
migrating from MQSeries for AIX V2.1 or V2.2 108
migrating from MQSeries for OS/2 V2.0 108
MQ_USER_ID 118
MQBACK

clients 124
MQCCSID

what it does 112
MQCHLLIB

how it is used 135
what is does 112

MQCHLTAB
how it is used 135
what it does 113

MQCMIT
clients 124

MQCONN or MQCONNX failure 141
MQDATA 113
MQI

application in client environment 127
building applications for MQSeries clients 130
linking applications for MQSeries clients 130
use with MQSeries clients 123

MQI channel 99
MQI channel types 100
MQINQ

values modified by an MQSeries client 124
MQNAME

what it does 114
mqs.ini file 130

role in connecting a client 135
MQSeries applications 127
MQSeries client 5

benefits 6
platform support 9, 11
problem determination 141
setting up 6

MQSeries Client CD-ROM 31
MQSeries client files

on the server 53
MQSeries commands (MQSC) 102
MQSeries environment variables 111
MQSeries for Tandem NSK

syncpoint considerations 125
MQSeries for Windows 10
MQSeries publications viii
MQSeries server

installing 52
name of 114
platform support 9

MQSeries Server CD-ROM 31
MQSERVER 68, 135

how it is used 135
relationship with client channel definition table 136
what it does 114

MQSWORKPATH
what it does 116

MQTRACE 143
trace data (DOS) 144
what it does 116

multiple queue managers 83, 85, 88, 136
MVS/ESA server 53

N
national language support 41

 Index 163

 Index

NCR UNIX
hardware and software 16

NDF file configuration 84
NetBIOS 75
NetBIOS connections 91
NetBIOS name definition 91, 92
NetBIOS on a client 91
NetBIOS on a server

OS/2 91
Windows NT 92

NLSPATH environment variable 41

O
OS/2

error messages 142
OS/2 Warp client

hardware and software 20
installing 41

OS/400
CL commands 102

OS/400 server 53
overview 5
overview and installation 1

P
password 118
Path to exits 130
PL/I

link libraries 133
PL/I applications

linking 133
platform support 11
platforms for MQSeries clients 9

more available 11
platforms for MQSeries servers 9
PostScript format xii
preparing for installation 9
problem determination 141

clients 141
process definition 128
publications

MQSeries viii
putting a message on the queue

example (not Windows 3.1, VM/ESA) 69
example (VM/ESA) 70
example (Windows 3.1) 69

Q
queue manager

maximum message length 123
queue managers 135

R
receive exit 129
removing clients

Windows 3.1 46
Windows 95 49
Windows NT 49

return codes 141
routing entry class 90
RUNMQFMT 113, 142
runmqtmc 128

S
security 117
security exit 118, 129
security on client 118
send exit 129
server

installing 52
platform support 9

Server CD-ROM 31
server connection channel 100
server on AS/400 53
server on Digital OpenVMS 53
server on MVS/ESA 53
server on Tandem NSK 53
server to client connection 100
servers

channel definition 104
connecting to a client 135

set up inetd
example 66

setting up MQSeries clients 6
setting up the MQSeries client

example 68
setting up the server

example (AS/400) 67
example (MVS/ESA) 67
example (not MVS/ESA or AS/400) 66

simple channel definition 102
SINIX

hardware and software 22
softcopy books xii
software requirements

AIX client 14
AT&T GIS UNIX client 16
Digital OpenVMS client 18
DOS client 17
HP-UX client 19
NCR UNIX client 16
OS/2 client 20
SINIX and DC/OSx client 22
Sun Solaris client 25
SunOS client 24
VM/ESA client 26

164 MQSeries Clients

 Index

software requirements (continued)
Windows 3.1 client 27
Windows 95 client 28
Windows NT client 29

solving problems 141
SPX 75

default socket 115
SPX connections 93
SPX on a client

any platform 93
SPX on a server

OS/2 or Windows NT 93
SPX parameters 94

on DOS 94
on OS/2 94
on Windows 3.1 94
on Windows NT 95

start DQM
example (MVS/ESA) 67

start MQSC 109
example 66

start queue manager
example (MVS/ESA) 67

start the channel initiator
example (MVS/ESA) 67, 81, 90

start the Listener
example (MVS/ESA) 67, 81, 90

start the queue manager
example 66

starting channels 66
stop MQSC

example 66
stop queue manager 71
strmqtrc trace command 144, 146
Sun Solaris client

hardware and software 25
installing 44

SunOS
hardware and software 24

SupportPacs 51
syncpoint considerations 124
syncpoint coordination 129
system Administration 73
System Management Interface Tool (SMIT)

installing AIX client 38
using to create IDs 36

T
Tandem NSK 53
task list 6
TCP/IP 75

default port 115
TCP/IP connections 77
TCP/IP on a client 77

TCP/IP on a server
AS/400 81
Digital OpenVMS 81
MVS/ESA 81
OS/2 77
Tandem NSK 81
UNIX systems 80
Windows NT 79

terminology used in this book 155
TPNAME 82

Digital OpenVMS 90
OS/2 systems 82
UNIX systems 85, 87
Windows NT systems 84

trace
data example (DOS) 144
data example (VM/ESA) 148
DOS and Windows 143
using on AIX 145
using on AT&T GIS UNIX 145
using on DC/OSx 146
using on Digital OpenVMS 146
using on HP-UX 146
using on OS/2 144
using on SINIX 146
using on Sun Solaris 146
using on SunOS 146
using on VM/ESA 148
using on Windows 95 144
using on Windows NT 144

trace command
dspmqtrc 146
endmqtrc 144, 146
strmqtrc 144, 146

trace file
AMQERR01.FDC 113

Transaction Processing SupportPacs 51
translated messages 41, 45
transmission protocol

LU 6.2 75
NetBIOS 75
SPX 75
TCP/IP 75

trigger monitor for MQSeries clients 128
triggering

client trigger monitor 128

U
UNIX systems

error messages 142
UNIX systems (non-Version 5)

installing clients 58
user ID 118
user ID, creating 36, 40, 43

 Index 165

 Index

using channels 99
using MQSeries clients 6
using the MQI 123

V
verifying installation 65
VM/ESA

installing the client 63
maximum number of channels 106
turning tracing on and off 116

VM/ESA client
hardware and software 26

W
Web - clients available 11
Web page 51
WIN-OS/2 56, 61
Windows

MQSeries for 10
Windows 3.1

amqsgetw sample 71
amqsputw sample 69
application control 124
cancelling an MQI call 124
design consideration 124
environment specifics 127
error messages 142
multi-tasking 124
removing clients 46

Windows 3.1 client
call in progress 124
hardware and software 27
installing 45

Windows 95
client 128
error messages 142
removing clients 49

Windows 95 client
hardware and software 28
installing 47

Windows Help xiii
Windows NT

error messages 142
removing clients 49

Windows NT client
hardware and software 29
installing 47

WM_QUIT message
cancelling an MQI call in Windows 124

WRKCLS command 90
WRKSBS panel 89
WRKSBSD command 89

166 MQSeries Clients

Sending your comments to IBM
MQSeries

Clients

GC33-1632-05

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries

Clients

GC33-1632-05
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries

MQSeries Clients GC33-1632-05

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC33-1632-ð5

S
pine inform

ation:

I
B

M
M

Q
Series

C
lients

