
MQSeries® Adapter Kernel for Multiplatforms

Quick Beginnings
Version 1 Release 1

GC34-5855-06

���

MQSeries® Adapter Kernel for Multiplatforms

Quick Beginnings
Version 1 Release 1

GC34-5855-06

���

Note: Before using this information and the product it supports, read the information in “Notices” on page 115.

Seventh Edition (January 2002)

This edition applies to version 1, release 1, modification level 1 of IBM MQSeries Adapter Kernel for Multiplatforms
(product number 5648-D75) and to all subsequent releases and modifications until otherwise indicated in new
editions.

This edition replaces GC34-5855-05.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Welcome to the MQSeries Adapter
Kernel Quick Beginnings ix
Who should use this information ix
Related information ix

Conventions xi

Summary of changes xiii

Chapter 1. About MQSeries Adapter
Offering 1
Build time and run time 2

About the kernel 3
How the kernel works 7
Components of the kernel run time 7
Message and message format 9
Routing and delivery 10
Run-time flow 10

Source side of the kernel 11
Target side of the kernel 14
Transactional capabilities 20
Tracing 21

Using MQSeries Adapter Kernel with WebSphere
Business Integrator and WebSphere Application
Server 21

JMS Listener 21
National language support 22

Chapter 2. Planning to install the kernel 23
Hardware 23
Software 24
Prerequisites for OS/400 installation 25

Using remote AWT 25
Using an attached client 26

Components of the kernel 27

Chapter 3. Installing the kernel 29
Preparing for installation 29
Installing the kernel 30
Completing the post-installation 32
Verifying the installation 34

Verification procedure 35
Common verification problems 36
Optional verification 37

Using silent installation 38
Upgrading the kernel 39
Removing the kernel 40

Chapter 4. Using the kernel 43

Preparing for production 43
Configuring the kernel 44

Overview of configuration 44
Files involved in startup and configuration . . . 48
The setup file. 48
The configuration file 49

Using the configuration checker utility 68
Configuring MQSeries and MQSeries Integrator . . 69
Performance recommendations 69
Using the start and stop command-line utilities . . 70

Creating an administration model queue . . . 70
Starting the kernel 71

Stopping the kernel. 72
Maintaining the kernel 74
Diagnosing problems 74

Version number 75
Exception messages. 75
Trace messages 76
Utilities. 76

Creating MQSeries queues 76

Chapter 5. Using MQSeries Adapter
Kernel APIs. 77

Chapter 6. Obtaining additional
information 79
Available on the Internet 79
References 79

Appendix A. Communications modes 81
Using JMS object storage 83

Appendix B. Validated configurations 85

Appendix C. Message headers 87
MQSeries Adapter Kernel message descriptor
header 87
MQSeries message descriptor header 88
MQSeries without MQSeries Integrator 89
MQSeries Integrator version 1 header 90
MQSeries Integrator version 2 header 91

Appendix D. Sample of the
configuration file 93
Sample of a minimum configuration file 97

Appendix E. Sample of the setup file 99

Appendix F. Using a J2EE connector
in an MQAK microflow 101
Preparing the software environment 101
Creating a Java proxy bean to use the SAP
connector. 101

© Copyright IBM Corp. 2000, 2002 iii

Build the Java proxy beans 101
Create the command bean 104
Promote properties that must be visible in
MQAB 107
Export the package 108

Creating an MQAO adapter to use the Bean . . . 108
Import the command bean 108
Create a new class type 109
Define a new microflow type 110
Create Java service adapter 111
Generate Java service adapter 112
Compile the adapter code 113

Using the adapter in MQAK 113
Preparing the adapter’s environment 113
Starting the service adapter. 114

Notices 115
Trademarks 116

Glossary 119

Index 123

iv MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Figures

1. Overview of MQSeries Adapter Offering . . . 4
2. Marshal, send, route, and trace a message —

overview 11
3. Applications connected by data flows in a

simple configuration 45
4. Applications connected by different

communications transports in a simple
configuration 46

5. Conversion of data 46
6. Flow of data 47
7. Flow of data related to configuration 48
8. High-level structure of the configuration file 51

© Copyright IBM Corp. 2000, 2002 v

vi MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Tables

1. Conventions used in this book xi
2. Common configuration: Sending a message

from an MQSeries server to another MQSeries
server 59

3. Common configuration: Sending a message
from an MQSeries server to an MQSeries
server via a remote queue manager 60

4. Common configuration: Sending a message
from an MQSeries client that is using a host
server to an MQSeries server. 60

5. Common configuration: MQSeries server
receiving a message 61

6. Common configuration: MQSeries client that is
using a host server receiving a message . . . 62

7. Common configuration: Sending a message via
JMS 63

8. Common configuration: Receiving a message
via JMS 63

9. Communications modes and supporting Java
classes 81

10. Communications modes and formatter
interfaces 82

11. Formatter interfaces, formatter class names,
and purposes 82

12. LMS classes and transactional support . . . 82
13. MQSeries Adapter Kernel header 87
14. MQSeries header. 88
15. MQSeries Integrator version 1 header — RFH1 90
16. MQSeries Integrator version 2 header — RFH2 91

© Copyright IBM Corp. 2000, 2002 vii

viii MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Welcome to the MQSeries Adapter Kernel Quick Beginnings

This document describes the MQSeries® Adapter Kernel and explains how to plan
for, install, and use it.

To make the kernel ready to use, perform the following general steps:
1. Read “Chapter 1. About MQSeries Adapter Offering” on page 1.
2. Prepare for installation. See “Preparing for installation” on page 29 for details.
3. Install the kernel. See “Installing the kernel” on page 30 for details.
4. Verify the installation. See “Verifying the installation” on page 34 for details.
5. Configure the kernel. See “Configuring the kernel” on page 44 for details.
6. If desired, configure optional software to work with the kernel. See

“Configuring MQSeries and MQSeries Integrator” on page 69 for details.
7. Build your adapters by using the MQSeries Adapter Builder, then test and

deploy them. See the MQSeries Adapter Builder documentation for details.
8. Start the kernel. See “Starting the kernel” on page 71 for details.

To use this information, you also need to know about prerequisite and optional
products. See “Chapter 2. Planning to install the kernel” on page 23. See also
“References” on page 79.

Who should use this information
This information is for those who need to plan for, install, or use the MQSeries
Adapter Kernel.

Related information
For additional information, see the following:
v The readme.txt file. This file potentially contains information that became

available after this book was completed. Before installation, the readme.txt file is
located in the root directory of the product CD-ROM. After installation, the
readme.txt file is located in the root directory of the MQSeries Adapter Kernel
installation.

v The Problem Determination Guide, form number GC34-5897, which describes tools,
including trace, for solving specific problems with the MQSeries Adapter Kernel.
The Problem Determination Guide is available in the MQSeries Adapter Kernel
Information Center, which is installed with the product.

v The online application programming interface (API) documentation that is
provided in the MQSeries Adapter Kernel Information Center. This information
is provided only as an aid to understanding how the kernel functions and as an
aid to diagnostics. See “Chapter 5. Using MQSeries Adapter Kernel APIs” on
page 77.

v MQSeries Adapter Builder information, including books and help system.
v The MQSeries product family Web site at www.ibm.com/software/ts/mqseries/.

By following links from this Web site you can:
– Obtain the latest information about the MQSeries product family, including

MQSeries Adapter Offering.

© Copyright IBM Corp. 2000, 2002 ix

http://www.ibm.com/software/ts/mqseries/

– Access MQSeries books in HTML and PDF formats, potentially including a
more recent edition of this book.

– Download MQSeries SupportPacs.

x MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Conventions

MQSeries Adapter Kernel documentation uses the following typographical and
keying conventions.

Table 1. Conventions used in this book

Convention Meaning

Bold Indicates command names. When referring to graphical user interfaces (GUIs),
indicates menus, menu items, labels, and buttons.

Monospace Indicates text you must enter at a command prompt and values you must use literally,
such as file names, paths, and elements of programming languages such as functions,
classes, and methods. Monospace also indicates screen text and code examples.

Italics Indicates variable values you must provide (for example, you supply the name of a file
for fileName). Italics also indicates emphasis and the titles of books.

% Represents the UNIX® command-shell prompt for a command that does not require
root privileges.

Represents the UNIX command-shell prompt for a command that requires root
privileges.

C:\> Represents the command prompts on Windows
®

systems.

> When used to describe a menu, shows a series of menu selections. For example, “Click
File > New” means “From the File menu, click the New command.”

Entering commands When instructed to “enter” or “issue” a command, type the command and then press
Return. For example, the instruction “Enter the ls command” means type ls at a
command prompt and then press Return.

[] Enclose optional items in syntax descriptions.

{ } Enclose lists from which you must choose an item in syntax descriptions.

| Separates items in a list of choices enclosed in braces ({ }) in syntax descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the preceding item one or
more times. Ellipses in examples indicate that information was omitted from the
example for the sake of brevity.

Note: The term Epic appears in some values and names in the kernel software and
in this book. With regard to the MQSeries Adapter Offering, this term has
no significance in itself.

© Copyright IBM Corp. 2000, 2002 xi

xii MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Summary of changes

The seventh edition (the current edition) includes the following additions and
changes from the sixth edition:
v MQSeries Adapter Kernel now provides national language support for both, Java

and C adapters.
v MQSeries Adapter Kernel now supports OS/400 version 5.1. See “Software” on

page 24.
v MQSeries Adapter Kernel now supports JDK 1.3 on all platforms. For OS/400,

version 5.1 is required.
v MQSeries Adapter Kernel now supports MQSeries Integrator processing for the

communication mode MQRFH2. See “XML elements used in the configuration
file” on page 51 for details.

v MQSeries Adapter Kernel now provides a configuration checker utility. See
“Using the configuration checker utility” on page 68 for details.

v MQSeries Adapter Kernel now contains a command-line utility for stopping an
adapter daemon. Therefore, the new parameter -q qid is introduced for the start
utility. See “Using the start and stop command-line utilities” on page 70 for
details.

v New messages have been added.
v How to use a J2EE connector for MQSeries Adapter Kernel microflow is

described in “Appendix F. Using a J2EE connector in an MQAK microflow” on
page 101.

The sixth edition includes the following additions and changes from the fifth
edition:
v Update to the discussion of run-time flow to reflect several changes. See

“Run-time flow” on page 10.
v Information on using MQSeries Adapter Kernel with WebSphere® Business

Integrator. See “Using MQSeries Adapter Kernel with WebSphere Business
Integrator and WebSphere Application Server” on page 21 for details.

v Information on the level of national language support provided with different
kinds of adapters. See “National language support” on page 22 for details.

v Clarification of installation instructions. See “Installing the kernel” on page 30.
v Information on silent installation. See “Using silent installation” on page 38 for

details.
v A conceptual overview of configuration to assist with configuring the kernel. See

“Overview of configuration” on page 44 for details.
v Information on new header values. See “MQSeries Adapter Kernel message

descriptor header” on page 87 for details.

The fifth edition included the following additions and changes from the fourth
edition:
v Information on using the kernel on the Windows® 2000, OS/400®, HP-UX, and

Solaris platforms. Support for these platforms was new in MQSeries Adapter
Kernel version 1.1. The kernel was previously available only on Windows NT®

and AIX®.
v Updates of all installation instructions to reflect MQSeries Adapter Kernel

version 1.1.

© Copyright IBM Corp. 2000, 2002 xiii

v Information on using the aqmconfig.xml file to configure MQSeries Adapter
Kernel. The kernel was previously configured with the aqmconfig.properties
file. See “The configuration file” on page 49 for details.

v Information on the new MQ and JMS (Java Message Service) communication
modes. See “Appendix A. Communications modes” on page 81 for details.

v Information on tracing was moved from this document to the new Problem
Determination Guide document. See the Problem Determination Guide for detailed
information.

xiv MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 1. About MQSeries Adapter Offering

IBM MQSeries Adapter Kernel is part of a set of application-integration products
that together are called IBM MQSeries Adapter Offering. MQSeries Adapter
Offering works with MQSeries messaging and other messaging services to enable
you to reduce the risk, complexity, and cost of managing the point-to-point
integration of your business processes.

In point-to-point integration, each application communicates individually with each
of the other applications. Each interface is different and there are many different
interfaces. A change in one application typically requires changes to many
interfaces. As the number of applications increases, the cost of point-to-point
integration rapidly increases. Integrating each new application typically requires
more work than integrating the previous one.

With MQSeries Adapter Offering, you can migrate from using point-to-point
integration to using one-to-any integration. There are many benefits of one-to-any
integration, including the following:
v All applications can use one common interface.
v Data from a source application, in the form of a message, is routed to one or more

target applications.
v A change in one application typically affects only that one interface.
v Using a common interface that is application neutral—for example, an industry

standard such as extensible markup language (XML)—can be even more cost
effective. More applications can be supported with less effort.

v As the number of applications increases, one-to-any integration becomes even
more cost effective. Adding each new application typically does not require
significant changes to the interfaces of all the other applications.

v Integration work can be automated and can be based on templates.

MQSeries Adapter Offering can be deployed without changing applications or
business processes at all. Typically, all integration work is performed in MQSeries
Adapter Offering, thus reducing the need to write custom code.

In MQSeries Adapter Offering, the interface to or from one application is provided
by an adapter. All applications need at least one adapter to provide the interface
between the application environment and the messaging environment. Each
adapter is specific to an application and to a message type.

MQSeries Adapter Kernel can optionally be deployed with MQSeries Integrator to
perform brokering and message transformation. MQSeries Adapter Offering can be
complemented by service offerings from IBM and others.

Example uses of adapters include the following:
v Add a sales order.
v Synchronize a customer record.
v Synchronize an inventory record.
v Synchronize an item.
v Synchronize a sales order.

© Copyright IBM Corp. 2000, 2002 1

Build time and run time
MQSeries Adapter Offering consists of two primary components, the Adapter
Builder (also called the builder) and the Adapter Kernel (also called the kernel).
This section describes these components, as well as the adapters that are built and
run by the Adapter Offering.

adapter

Software that provides an interface to or from an application. Adapters are
built by using MQSeries Adapter Builder. Typically, each adapter is built to
be specific to one message type that is sent from or to an application.
Adapters themselves are not part of MQSeries Adapter Offering.

An adapter consists of C or Java™ source code that compiles to a shared
library. When the adapters and the MQSeries Adapter Kernel run together,
they perform the run-time functionality of the MQSeries Adapter Offering.

Depending on how it is modeled in the MQSeries Adapter Builder, the
adapter can contain a wide variety of functionalities such as control flow;
data flow; sequential navigation; conditional branching, including decision
and iteration; data typing; storage of data context; transformation of data
elements; transactional control; logical operations; and custom code.

Adapters can be reused.

There are two primary types of adapters:
v Source adapters, for applications that send data.
v Target adapters, for applications that receive data.

Sending one type of message from one application to a second application
typically requires one source adapter and one target adapter. If the second
application must send one type of message to the first application, another
source adapter and another target adapter are required. Thus, to send one
type of message from the first application to the second application and
then to send another type of message from the second application back to
the first application, four adapters are typically deployed.

A separate adapter is required for each message type.

A third type of adapter, the Java service session bean adapter, is used
when IBM WebSphere Application Server and enterprise beans are used on
the target side of the kernel. WebSphere Application Server’s
implementation of the Sun Microsystems Enterprise JavaBeans (EJB)
specification enables the use of Java service session bean adapters and
other enterprise beans. See “Using MQSeries Adapter Kernel with
WebSphere Business Integrator and WebSphere Application Server” on
page 21 and the MQSeries Adapter Builder documentation for more
information.

MQSeries Adapter Builder
A graphical user interface (GUI) that enables you to build an adapter for
virtually any application. The user interface is similar to MQSeries
Integrator’s user interface. For more information, see the MQSeries Adapter
Builder Information Center.

MQSeries Adapter Kernel
A set of application programming interfaces (APIs), several executable
programs in C and Java, and several configuration files. The kernel enables
the deployment and execution of adapters. In addition to directly

2 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

supporting adapters, the kernel performs related functions, including
simple routing of messages. It also provides infrastructure services such as
message construction, transactional control, tracing, and interfacing with
MQSeries or other messaging software.

The kernel is installed on each computer on which a source adapter or a
target adapter runs.

With MQSeries Adapter Offering, business processes and each application can
remain isolated from the specifics of middleware, message details, and other
applications. A common interface for messaging enables the addition of new
applications without changing existing applications or business processes.

MQSeries Adapter Kernel can be deployed in two tiers. One tier is the source side
of the run time; the other tier is the target side of the run time. Two-tier
deployment provides efficient operation and low administrative overhead. A third
tier for routing and delivery is not required to reside between the two sides of the
run time. However, MQSeries Integrator can optionally be added to perform
brokering, such as complex routing, data transformation, and data mediation.

Except where specified, the rest of this document pertains only to MQSeries
Adapter Kernel. For detailed information about the MQSeries Adapter Builder, see
that product’s Information Center.

About the kernel
At its simplest, the run time—that is, the kernel and the adapters that you
build—has the following purposes:
1. To transfer data from a source application to a target application.
2. To convert the source application’s data to a message, typically in an

application-neutral format, that is routed through the kernel, by using
MQSeries or other messaging software.

3. To route the message to the target application.
4. To determine how to get the data to the target application.
5. To convert the data from the format of the message that is routed through the

kernel through an adapter to the target application’s format.

In this section, the kernel’s functionality is discussed at a high level. The
functionality is discussed in greater detail in “Run-time flow” on page 10.

There are two sides of the kernel:
v The source side, which begins when the message is received from the source

application and ends when the message is put onto a message queue.
v The target side, which begins when the message is retrieved from the message

queue and ends when the message is sent to the target.

Each side typically resides on a different computer, but they can both reside on the
same computer.

See Figure 1 on page 4. It depicts the following sequence.

Source side of the kernel

1. On the source side of the kernel, the source application sends the data in its
source application format, by using an application-specific interface, to a source

Chapter 1. About MQSeries Adapter Offering 3

adapter that was built in the MQSeries Adapter Builder. A different source
adapter is required for each message type, for example, for “add a sales order”
or for “synchronize a customer record.”
The application-specific interface must be developed outside of the MQSeries
Adapter Offering. The exact nature of the application-specific interface depends
on the characteristics of the source application or target application. Examples
include API calls and user exits, file reads and writes, database triggers, and
message queues.
Note that the source adapter is run in the source application’s process. Any
daemon or server that contains the source adapter needs to be running for the
source adapter to function.

2. The source adapter performs its function according to how it was built. A
typical function is the transformation of data elements, that is, mapping
elements from the source application format to an integration-messaging format
for body data. The body data and additional metadata representing control
values are put into a kernel message-holder object.

3. When the source adapter passes the message-holder object to the kernel by
using the native adapter, control values in the message-holder object
(message-control values) are used by the kernel to control the marshaling of the
message-holder object into a communications message format and routing of
the communications messages.
If the message does not contain certain message-control values, the kernel can
use defaults or message-control values obtained from the configuration file. For
definitions of message-control values, see “Message-control values” on page 12.

4. The kernel performs its functions, including message marshaling, simple routing,
and, optionally, tracing. See “Message and message format” on page 9, “Routing
and delivery” on page 10, and “Tracing” on page 21.

Delivery from source side to target side of the kernel

5. The kernel, by using its native adapter, puts the message on the appropriate
message queue.
There are two send methods used on the source side:
v sendMsg, which sends the message and returns immediately. The sendMsg

method can also be used with the begin, commit, and rollback methods to

Figure 1. Overview of MQSeries Adapter Offering.

4 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

send messages transactionally; that is, messages can be sent if (and only if)
other operations complete successfully. See “Transactional capabilities” on
page 20 for more information.

v sendRequestResponse, which sends the message and waits for a response.
The sendRequestResponse method cannot be issued transactionally.
Note that a third method, sendResponse, is used on the target side of the
kernel when the sender requests a response.

MQSeries or other messaging software transports the message. See “Role of
MQSeries or other messaging software” on page 6. Note that the messaging
software must already be configured to support MQSeries Adapter Offering.

Optionally, if MQSeries Integrator has been configured in the kernel as the
destination, MQSeries Integrator can perform brokering functions. See “Role of
MQSeries Integrator” on page 6. If the final destination, a message queue, has
been configured in MQSeries Integrator’s rules or message flows, then
MQSeries Integrator sends the message to the message queue.

The message arrives on the appropriate message queue.

Target side of the kernel

6. On the target side of the kernel, there are two potential delivery models for the
interface between the run time and the target application.
v The most common model is push, in which the kernel is responsible for

initiating and managing delivery of the message to the target application.
The push model typically does not require changing the target application
to support MQSeries Adapter Offering.

v In the pull model, the target application is responsible for managing the
reception of the message. The pull model requires changing the target
application to support MQSeries Adapter Offering. The target application
must manage the kernel’s interface to the target application.

In the push model, note that on the target side, the kernel’s processes must be
started by the user beforehand to get and deliver the message. See “Starting
the kernel” on page 71.

In the push model, the kernel gets the message off the message queue. It
performs tracing if tracing is enabled. It continues to route the message by
selecting the appropriate target adapter. In general, a different target adapter
is required for each message type.

7. The kernel delivers the message to the appropriate target adapter. The target
adapter performs the functionality that was built into it. A typical function is
mapping elements from the integration-messaging format to elements in the
target application format.
Target adapters can be hosted either by an MQSeries Adapter Kernel adapter
daemon or by WebSphere Application Server. See “Using MQSeries Adapter
Kernel with WebSphere Business Integrator and WebSphere Application
Server” on page 21 for a discussion of the latter.

8. The target adapter sends the data to the target application in the target
application format by using an application-specific interface developed outside
of MQSeries Adapter Offering.

9. When the target adapter has delivered its message, the message is committed
from the message queue. This removes the message from the queue.

Chapter 1. About MQSeries Adapter Offering 5

10. If the source adapter has set a message-control value to request an
acknowledgment, the kernel delivers either an acknowledgment of message
delivery or target adapter output to the source adapter by using the
sendResponse method.

11. In case of error, the kernel puts the original message on the error queue. If the
kernel cannot put the original message on the error queue, the commit does
not occur.

Role of MQSeries or other messaging software
MQSeries Adapter Offering’s communication messages are transported over
message queues. Message queues are provided by messaging software such as
MQSeries or the Java Message Service (JMS). Messages transported by MQSeries
Adapter Offering use the following types of queues:
v Receive queues, in the terminology of MQSeries Adapter Offering. These are used

as the main input queues to receive messages. There can be multiple receive
queues per target application.

v Error queues, in the terminology of MQSeries Adapter Offering. These are used
when a message that is obtained from a receive queue cannot be processed.

v As an option, reply queues. These are used with the sendRequestResponse
method.

MQSeries Adapter Offering uses certain MQSeries capabilities, such as the
following message types:
v Datagrams, used by the sendMsg method.
v Request, used by the sendRequestResponse method.
v Reply, used by the sendRequestResponse method and the sendResponse method.

MQSeries can optionally act as an application-specific interface.

See “Appendix B. Validated configurations” on page 85 for a list of validated
configurations of MQSeries and MQSeries Adapter Offering. See “Software” on
page 24 for a list of supported versions of MQSeries and other software.

Role of MQSeries Integrator
MQSeries Integrator can optionally be deployed with MQSeries Adapter Kernel. It
can be used to meet several potential requirements for brokering:
v Complex routing, that is, routing based on the content of the message header or

message body. The routing can change dynamically as the content of the
message body changes. See “Routing and delivery” on page 10 for information
about complex routing and simple routing.

v Data transformation, that is, changing to a different document type.
v Data mediation, that is, changing the content of the message body. For example,

if the source application provides the value each in a field but the target
application expects that field’s value to be ea, data mediation replaces the
provided value with the expected value.

You can use MQSeries Integrator to perform most of the routing in your site; you
can also use less of the MQSeries Adapter Kernel’s routing functionality.

See “Appendix B. Validated configurations” on page 85 for a list of validated
configurations of MQSeries Integrator and MQSeries Adapter Offering. See
“Software” on page 24 for a list of supported versions of MQSeries Integrator and
other software.

6 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

How the kernel works
The following items are discussed in this section:
v “Components of the kernel run time”
v “Message and message format” on page 9
v “Routing and delivery” on page 10
v “Run-time flow” on page 10

Components of the kernel run time
When the adapters that you build, the custom code that you develop, and
MQSeries Adapter Kernel run together, they provide the functionality of MQSeries
Adapter Offering.

The major components of the kernel run time are as follows:

source adapter
Software that is built for a specific application (typically by using
MQSeries Adapter Builder) to convert data from that application into an
integration messaging format (body data). Source adapters typically run on
the same machine as the source application, either within the application’s
process or as a separate process. Examples of source data include files, C
structures, and Java objects. An example of an integration messaging
format is XML, typically following an industry standard such as OAG or
RosettaNet.

message holder
A container for metadata used by the kernel to encapsulate the integration
message and other control data used by the kernel. Examples of metadata
include application identifiers (logical identifiers) of the source and target
applications, the category of the message (for example, OAG), the type of
the message (for instance, ″Purchase Order″), and the communications
message (body data) being sent or received.

native adapter
Software used for sending and receiving message-holder objects. When
sending messages, the native adapter provides simple data routing and the
ability to support one or more communications transport mechanisms.
Simple data routing is based on metadata in the message-holder object
such as the category of message and type of message. Messages can be
sent asynchronously or synchronously. If the underlying communication
transport mechanism supports transactional messaging, messages can be
sent under single-phase transactional control. Transactional support is
limited to the capabilities of the transport mechanism used. The
message-holder object is marshaled into the communications message
format used by the transport mechanism. When a communications
message is received, the native adapter unmarshals the message back into
the message-holder object.

adapter daemon
A process that instantiates adapter workers. After it is started, the adapter
daemon remains active. For each target application, there can be one
adapter daemon for each application receive queue.

Chapter 1. About MQSeries Adapter Offering 7

adapter worker
A process that delivers each message to the appropriate target adapter.
Each worker manages one native adapter. The adapter daemon creates and
starts the workers.

Having multiple workers enables multithreaded message delivery to target
adapters. Each worker, along with its native adapter, can handle one
thread. If there is only one worker, then the delivery of messages to the
target adapter, and hence to the target application, is single threaded.

In addition to managing a native adapter, the worker also performs the
following tasks:
v It instantiates the trace client, if tracing is enabled.
v It instantiates the logon class that is appropriate for each target

application.
v It selects the target adapter based on the body type and body category

of the message.
v It sends the message to the selected target adapter.
v If it cannot perform a commit, it performs a rollback, sets a flag for all

other workers under that adapter daemon, and shuts itself and its native
adapter down. This indicates that the message has a problem. Shutting
down all workers prevents other workers from reprocessing the same
problem message with the same result.

v When it recognizes the flag set by another worker to shut down, it shuts
itself and its native adapter down.

target adapter
Software that is built for a specific application (typically by using
MQSeries Adapter Builder) to convert data from an integration messaging
format (body data) to the data types required by a target application. The
target adapter invokes the necessary APIs on the target application to
deliver the message. Target adapters run on the same machine as the
application or application client.

Java service session bean adapter
A type of Java-language EJB adapter that is hosted in an EJB server such as
WebSphere Application Server.

configuration component
Data used for resolving logical identifiers into objects such as queue
names. The configuration data can be specified either in a file or in the
WebSphere Business Integrator product’s LDAP structure. The data
controls the following aspects of the kernel’s configuration:
v Marshaling and routing of messages
v Verifying installation
v Communications mode
v Tracing

See “The configuration file” on page 49 for a full description of the
configuration file. See the WebSphere Business Integrator documentation
for information on configuring that product to work with the kernel.

tracing component
Software that writes trace messages. Most of the kernel’s components use
the tracing component. See “Tracing” on page 21 for an overview of tracing
and the Problem Determination Guide for details about trace.

8 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Message and message format
In MQSeries and MQSeries Adapter Offering, a message is a collection of data that
is sent by one program and intended for another program. The format of the
message at any time depends on the message’s location in the message flow at that
particular time. MQSeries Adapter Kernel specifies three types of messages, as
follows:
v Integration message—A message consisting of data from a source application

converted into an another format such as XML for sending to a target
application. The integration message is inserted into the message-holder object
as the message’s body data. XML is a standard for the representation of data.
When the format is XML, the format is defined by a Document Type Definition
(DTD). A DTD is one or more files that contain a formal definition of a
document—in this case, of the message body. Although it is strongly
recommended, the message body is not required to be in an application-neutral
format. The format of the message body can be proprietary or otherwise
specialized; however, this type of format is not recommended.
Business Object Documents (BODs) can be used by MQSeries Adapter Offering to
define message bodies in its integration messages. A BOD is a representation of
a standard business process that flows within an organization or between
organizations. Examples are “add purchase order,” “show product availability,”
and “add sales order.” BODs are defined in XML by the Open Applications
Group (OAG). Use of BODs is recommended but is not required.

v message-holder object—An object containing the integration message and
additional header metadata representing control values that are specific to
MQSeries Adapter Kernel. The source adapter creates the message-holder object,
sets appropriate control information, and, if there is an integration message to be
sent, sets the body data. Target adapters receive message-holder objects, get the
body data, and convert the body data to data that is specific to the target
application. Source adapters and target adapters are created by using MQSeries
Adapter Builder.

v Communications message—Any communications transport-specific information
plus the message-holder object, converted into a messaging format specific to the
communications transport being used. Some communications transports support
more than one messaging format. Typically, the kernel header metadata values
combined with the communications message are considered to be application
data by the communications transport. For more information, see “Appendix A.
Communications modes” on page 81. Examples for MQSeries transport consist of
the MQSeries-specific message header plus the marshaled message-holder object.
Specific MQSeries formats include the following:
– The MQSeries message header that is added by MQSeries
– If MQSeries Integrator is used, the version-specific message header:

- The MQSeries Integrator version 1 message header, if MQSeries Integrator
version 1.1 is used

- The MQSeries Integrator version 2 message header, if MQSeries Integrator
version 2 is used

– The kernel-specific header metadata representing control values
– The integration message (body data)

See “Appendix C. Message headers” on page 87 for a list of relevant fields used
in MQSeries Adapter Offering’s message headers and their descriptions.

Chapter 1. About MQSeries Adapter Offering 9

Routing and delivery
The kernel routes each message from the source adapter and delivers it to the
appropriate target adapter. Routing is performed in two stages:
1. The source side of the kernel puts the message on the appropriate message

queue.
2. The target side of the kernel gets the message from the message queue and

invokes the appropriate target adapter.

Routing is determined by several factors:
v Message queues. On the most basic level, message queues must be configured to

support MQSeries Adapter Offering’s routing.
v The message-control values in the message. They include the source logical

identifier, destination logical identifier, respond-to logical identifier, body
category, body type, transaction identifier, message identifier, acknowledgment
requested, and time stamps. See “Message-control values” on page 12 for details.
The destination logical identifier in the message can override the kernel’s
configuration file. Routing can change dynamically as these message-control
values in each message header change. However, the content of the message
body data (integration message) cannot determine the routing.

v The message-control values in the kernel’s configuration file. The file can specify
destination logical identifiers, queue names, and associated target adapters.
Determine and modify the configuration by editing this file. See “The
configuration file” on page 49 for additional information.

v Optionally, MQSeries Integrator, which can be used to broker messages,
including complex routing. The routing can change dynamically as the content
of the message body changes. See “Role of MQSeries Integrator” on page 6. In
contrast, by itself MQSeries Adapter Offering can perform only simple routing.
Simple routing is based on a combination of message-control values in the
message and associated message-control values in the configuration file. It is not
based on the content of the message body.

The kernel can be requested to acknowledge message delivery. This is an
application-level acknowledgment.

Run-time flow
This section discusses the run-time flow in detail—how the kernel sends, routes,
traces, and delivers a message in a typical production environment. See Figure 2 on
page 11 for a diagram of the run-time flow.

10 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Source side of the kernel
This section discusses the run-time flow on the source side of the kernel; that is,
how data is moved from source application through a source adapter and onto a
communications transport. “Target side of the kernel” on page 14 discusses how
data is moved from the communications transport to the target.
1. By using an application-specific interface, the source adapter acquires a

message from the source application. Typically, the source adapter is invoked
by the application-specific interface.

2. The source adapter performs the functionality that was built into it in
MQSeries Adapter Builder. Typically, it transforms the data in the source
application format into an application-neutral integration format (for the
message body).
As part of its functionality, the source adapter puts several message-control
values into the MQSeries Adapter Kernel header; it uses these values to

Figure 2. Marshal, send, route, and trace a message — overview.

Chapter 1. About MQSeries Adapter Offering 11

envelop the message. The first five message-control values determine
marshaling and routing, and the last value determines acknowledgment.

message-control values

source logical identifier
Logical identifier of the source application. It is always required in the
message.

destination logical identifier
Logical identifier of the target application. If it is not present in the
message, default values in the configuration file are used instead. In
the configuration file, multiple destination logical identifiers can be
used in place of values that are not contained in the message.

respond-to logical identifier
The logical identifier of the application to which replies are to be sent
if a reply is requested. It defaults to the source logical identifier in the
message.

body category
Represents the message’s application type—for example, OAG or
RosettaNet. It is always required in the message.

body type
Represents the specific purpose of the message—for example, “add
sales order” or “synchronize inventory”. It is always required in the
message.

acknowledgment requested
Determines whether the source application requests a reply. The reply
can be either of the following forms:
v Reply data from the target application
v An OAG Confirm BOD message

Note: The Confirm BOD message is predefined by the OAG. Its
body category is OAG and its body type is CONFIRM_BOD_003. It
can also contain data.

This reply is an application-level acknowledgment.

When the kernel uses the sendRequestResponse method to send the
message, only the first reply received by the sendRequestResponse
method is used. If the original message is sent to multiple destinations
and requests a reply (which is not recommended), only the first reply
is sent back to the source application.

The default is no acknowledgment; thus, no reply is requested or sent.
3. The source adapter initializes the native adapter and passes it the following:

v The logical identifier of the application under which the source adapter is
running.

v The message-holder object, which contains the message-control values and
the message body data.

4. The native adapter looks in the configuration file to determine whether trace
is enabled for that source logical identifier. If trace is enabled, the native
adapter instantiates a trace client.

5. The trace client looks in the configuration file to determine which trace level
to use and to obtain other values. The trace client uses the trace level to filter

12 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

out trace messages. See “Tracing” on page 21 for an overview of tracing and
the Problem Determination Guide for detailed information about tracing.

6. The native adapter looks in the message-holder object for a destination logical
identifier. If present, it is used.
v If the destination logical identifier is not present, the native adapter looks

up the default destination logical identifier in the configuration file, based
on the source logical identifier, body category, and body type.

v Based on the source logical identifier, the native adapter performs a
multistage lookup of body category and body type values in the
configuration file, in the following order:
a. For specific body category and body type values.
b. For a specific body category value and a default body type value.
c. For a default body category value and a specific body type value.
d. For default body category and body type values.

Note: The kernel uses this multistage lookup each time it looks up values
in the configuration file.

7. For each destination logical identifier determined in the previous step, the
native adapter looks up the communications mode, based on the destination
logical identifier, body category, and body type. The following communication
modes are supported:

MQPP The kernel transports messages by using MQSeries base
services.

MQRFH1 The kernel transports messages by using MQSeries and
brokers messages by using MQSeries Integrator version 1.1.

MQRFH2 The kernel transports messages by using MQSeries and
brokers messages by using MQSeries Integrator version 2.

MQBD The kernel transports messages by using MQSeries base
services but sends and receives body data only.

MQ The kernel transports messages by using MQSeries.

JMS The kernel transports messages by using the Java Message
Service (JMS).

FILE The kernel puts messages into a file and gets them from a file.
This mode is provided for diagnostic purposes only.

In each communications mode, the message structure is different. See
“Message and message format” on page 9. For more information about
communications modes, see “Appendix A. Communications modes” on
page 81.

Note: If MQSeries Integrator is used, the final destination to which MQSeries
Integrator sends the message must use the same communications mode
as MQSeries Integrator to receive messages.

8. Based on the communications mode, the native adapter instantiates a subclass
within itself to handle the message. The subclass is called the logical message
service. Each communication mode has a different logical message service
subclass.
The native adapter passes the destination logical identifiers, body category,
and body type to the logical message service.

Chapter 1. About MQSeries Adapter Offering 13

9. The logical message service subclass finds the parameters that it needs to send
the message. For example, if the communications mode is MQPP, parameters
include the format and the names of the receive, reply, and error queues.
Based on the destination logical identifiers, body category, and body type that
are passed to it, the logical message service performs a multistage lookup in
the configuration file:
a. For specific body category and body type values.
b. For a specific body category value and a default body type value.
c. For a default body category value and a specific body type value.
d. For default body category and body type values.

At this point, the logical message service has all the information that it needs to
route and to marshal the message.
10. The logical message service performs the following tasks:

v Marshals the message as appropriate for the communications mode and
format. Each communications mode uses a default format if the format is
not otherwise specified. For example, if the communications mode is
MQRFH2, the logical message service creates appropriate headers and
structures the message for transporting by using MQSeries and brokering
by using MQSeries Integrator version 2.

v Sends the message. For example, if the communications mode is MQRFH2,
it puts the message on the appropriate MQSeries message queue.

11. There are two methods that can be used to send the message:
v If the native adapter uses the sendMsg method to send the message, the

native adapter does not wait for a response.
v If the native adapter uses the sendRequestResponse method to send the

message, the logical message service waits for the reply. The native adapter,
by using the logical message service, monitors the reply queue for the
receive timeout period that is set in the configuration file.
The receive timeout period is based on the source application identifier,
body category, and body type.
– If an acknowledgment is received, the native adapter returns the

message.
– If an acknowledgment is not received within the receive timeout period,

the native adapter does not return a message.
12. MQSeries or other messaging software transports the message according to

how it is configured. Optionally, MQSeries Integrator performs brokering
services. See “Role of MQSeries Integrator” on page 6.

13. When the source adapter no longer needs the native adapter, it closes the
native adapter to free resources.

Target side of the kernel
This section discusses using stand-alone MQSeries Adapter Kernel to receive and
process messages on the target side, and provides a high-level description of using
the kernel with WebSphere Application Server. See “Using MQSeries Adapter
Kernel with WebSphere Business Integrator and WebSphere Application Server” on
page 21 for a discussion of using the kernel with JMS, WebSphere Business
Integrator’s JMS Listener component, and WebSphere Application Server on the
target side of the kernel. This section describes the push model of delivery, in
which the kernel is responsible for initiating and managing delivery of the message
to the target application. See “delivery models” on page 119 for a short description
of the models.

14 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Overview of the adapter worker
This section describes the structure and behavior of MQSeries Adapter Kernel
adapter workers. One of the assumptions of the MQSeries Adapter Kernel
architecture is that target applications do not actively participate in integration data
flows with other applications; that is, that applications normally do not actively
poll for messages to process. In this case, message data needs to be actively pushed
to the target application. Adapter workers push message data to an application or
other service by selecting and invoking a range of service interface types.

MQSeries Adapter Kernel can host adapter workers that run in either a stand-alone
daemon (adapter daemon) or an Enterprise JavaBeans application server (currently,
IBM WebSphere Application Server Advanced Edition). Messages arrive at the
adapter worker by different means, depending on which type of target
environment is used. If a stand-alone adapter daemon is used, it hosts one or more
stand-alone adapter workers that use the native adapter to receive messages. If an
EJB server is used, the JMS Listener component receives messages and passes them
to a worker message bean (sometimes referred to as a message-driven-bean
adapter worker).

Regardless of the target environment used, after the adapter worker receives the
message, it then forwards the message to the appropriate target adapter. The target
adapter then performs the necessary work to deliver the message to the target
application. Target adapters are created to work with specific target applications.
The adapter daemon, application server, stand-alone adapter worker, and worker
message bean are not specific to any given source or target application.

The adapter worker handles two types of target adapter interfaces: Enterprise
Access Builder (EAB) command adapters and EJB service session beans. Each
adapter type includes a handler that sets up the appropriate environment, accesses
any additional configuration information required for the adapter, and performs
other low-level tasks required for the adapter’s operation. The handler that is used
depends on the adapter type listed in the configuration file. The two types of
handlers perform the following additional tasks:
v The EAB handler obtains a logon class, which is used for providing connection

information to the target adapter, and initializes the IBM Common Connector
Framework (CCF) run time. The logon class is passed the target application’s
logical identifier, which it uses to obtain the application-specific logon
information.

v The EJB handler obtains a Java Naming and Directory Interface™ (JNDI)
connection, then obtains the service session bean’s remote interface and other
information required to access the service session bean.

The basic process flow of an adapter worker within a stand-alone adapter daemon
is as follows:
1. On startup, the adapter daemon instantiates one or more stand-alone adapter

workers, according to the information provided in the kernel’s configuration
file. The application’s logical identifier and optional body category and body
type values are passed to the adapter daemon. The body category and body
type values are used to obtain additional configuration values.

2. Each stand-alone adapter worker performs the following tasks:
a. The adapter worker instantiates a native adapter and starts receiving

messages. Each message is received under transactional control and
returned to the adapter worker as a message-holder object.

Chapter 1. About MQSeries Adapter Offering 15

b. For each message received, the adapter worker retrieves the target adapter
command type for processing the message from the configuration file, and
obtains the appropriate handler for that command type.

c. The handler obtains from the configuration file any additional information it
needs to instantiate the target adapter instance. It instantiates the target
adapter and passes the message to it.

d. If the message is processed successfully (that is, with no exceptions, errors,
or bad return data), the message is committed from the incoming message
queue. If the message is not processed successfully, it is put onto an error
queue. If the message is not processed successfully and cannot be put onto
an error queue, then the message is rolled back and all workers are shut
down.

The basic process flow of an adapter worker within WebSphere Application Server
is as follows:
1. A JMS Listener process operating with WebSphere Application Server

Advanced Edition’s EJB server receives a JMS message. It then obtains a worker
message bean to process the message. The application’s logical identifier and
optional body category and body type values are part of the worker message
bean’s environment. The body category and body type values are used to
obtain additional configuration values.

2. Each worker message bean performs the following tasks:
a. The worker message bean instantiates a native adapter and uses the

receiveMsg method on the native adapter, passing it the JMS message. The
native adapter converts the JMS message into a message object and returns
the message-holder object.

b. For each message-holder object received, the adapter worker retrieves the
target adapter command type for processing the message-holder object from
the configuration file, and obtains the appropriate handler for that
command type.

c. The handler obtains from the configuration file any additional information it
needs to instantiate the target adapter instance. It instantiates the target
adapter and passes the message-holder object to it.

d. If the message-holder object is processed successfully (that is, with no
exceptions, errors, or bad return data), the message is committed from the
incoming message queue. If the message-holder object is not processed
successfully, it is put onto an error queue. If the message is not processed
successfully and cannot be put onto an error queue, then the message is
rolled back and all workers are shut down.

The run-time flow on the target side with an adapter daemon and a stand-alone
adapter worker is as follows:
1. There is one adapter daemon for each target application’s receive queue. The

adapter daemon is started.
At its startup, it is given a name that serves as an application identifier.
Typically, each adapter daemon’s name is based on the destination logical
identifier—that is, the logical identifier of the target application. For example, if
the adapter daemon is servicing a target application whose destination logical
identifier is ABC, the adapter daemon’s name is ABCdaemon.
Other parameters that can be passed to the adapter daemon at startup include
body category and body type. The native adapter uses them later to determine
the communications mode and the receive queue for incoming messages.

16 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

See “Starting the kernel” on page 71 for instructions for starting the adapter
daemon.

2. When it starts, the adapter daemon looks in the configuration file to determine
whether trace is enabled for that adapter daemon name. If trace is enabled, the
adapter daemon instantiates a trace client.
See the Problem Determination Guide for details on trace.

3. When it starts, the adapter daemon instantiates the first worker and passes it
the adapter daemon’s name and the message’s body category and body type.

4. The first worker looks in the configuration file to determine whether trace is
enabled for that adapter daemon name. If trace is enabled, the first worker
instantiates a trace client, and the trace client looks in the configuration file to
determine the trace level. See the Problem Determination Guide for a list of valid
trace levels.

5. The first worker looks in the configuration file, based on the adapter daemon’s
application identifier, for the values that indicate the minimum number of
workers that are to be instantiated and started.
The first worker also looks up the dependency application identifier. The
dependency application identifier is the name of the application that the
worker services. It is later passed to the native adapter.

6. The adapter daemon queries the first worker for the minimum number of
workers.

7. The adapter daemon starts the first worker, then instantiates and starts the
minimum number of workers.
The purpose of having multiple workers is to enable multithreaded message
delivery to target adapters. Each worker, along with its native adapter, can
handle one thread. If there is only one worker, then the delivery of messages to
the target adapter, and hence to the target application, is single threaded.
On AIX systems, two scheduling policies are available for threads:
process-based scheduling and system-based scheduling. In process-based
scheduling (the default), all user threads are mapped to a pool of
operating-system (OS) kernel threads and run on a pool of virtual processors.
In system-based scheduling, each user thread is mapped to a single OS kernel
thread and runs on a single virtual processor. If you are using C source
adapters that are called from C executable files on AIX, you must use
system-based scheduling. For information on setting the thread-scheduling
policy on AIX, see Step 6 on page 33.
Note that only process-based scheduling is supported on Windows systems,
HP-UX, Solaris, and OS/400.

The other workers also perform the following steps that the first worker performs:
8. Each worker instantiates its associated native adapter. There is one native

adapter associated with each worker. The dependency application identifier,
body category, and body type are passed to the native adapter. The native
adapter uses these three values to determine the communication mode and, by
using the logical message service, the format and the receive queue for
incoming messages. This process is similar to the process used for sending
messages.

9. The native adapter gets the communications message from the receive queue
under commit control and converts it into a message-holder object. It removes
all headers specific to the communications transport except for the native
kernel header.

Chapter 1. About MQSeries Adapter Offering 17

10. The native adapter passes the message-holder object to the worker, which
reads the body category, body type, and requested acknowledgment value
from the message’s native kernel header.
Based on the dependency application identifier, body category, and body type,
the worker performs a multistage lookup in the configuration file for the
target command type to invoke, in the following order:
a. For specific body category and body type values.
b. For a specific body category value and a default body type value.
c. For a default body category value and a specific body type value.
d. For default body category and body type values.

Based on the target command type, the worker determines the appropriate
target adapter type handler, a Java class that processes that particular adapter
type. It instantiates that particular target adapter.

11. There are two kinds of adapter type handlers: EAB command target adapter
handlers and EJB service session bean target adapter handlers. The different
kinds of adapter handlers work as follows:

Note: The EJB service session bean target adapter handler is supported with
WebSphere Business Integrator running with WebSphere Application
Server on the Windows NT platform, and on AIX.

v If an EAB command target adapter handler is invoked, it initiates the
Common Connector Framework (CCF) environment, sets a logon class with
a name obtained from the configuration file, and invokes the EAB target
adapter with the name obtained from the configuration file.

v An EJB service session bean target adapter must interact with WebSphere
Business Integrator and WebSphere Application Server to obtain the
appropriate configuration information and invoke the EJB service session
bean. See “Using MQSeries Adapter Kernel with WebSphere Business
Integrator and WebSphere Application Server” on page 21 for a discussion
of using the kernel with JMS, WebSphere Business Integrator’s JMS Listener
component, and WebSphere Application Server on the target side of the
kernel.

12. Each adapter type has a different interface and required supporting classes, as
follows:
v An EAB target adapter command has three methods to call; these methods

run in the following order:
a. The set message input method, which sets the message to process into the

target adapter.
b. The execute method, which processes the message that was put into the

target adapter by using the set message input method, then waits.
1) The target adapter performs the functionality that was built into it

by using MQSeries Adapter Builder. Typically, it transforms the data
from the integration message into the target application format. It
maps element to element.

2) The target adapter, by using an application-specific interface, sends
the message to the target application.

3) Depending on the nature of the target application, the target
application sends or does not send a reply back to the target adapter.

c. The get message output method, which gets the reply from the target
adapter. The reply can indicate simply that the target application
received the message; it can also contain data.

18 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v An EJB service session bean calls one method, which requires a
TerminalDataContainer object. The data returned by the method is
considered to be the reply data and must be a TerminalDataContainer type
object.

13. If the target adapter command does not throw an exception or if it does not
have a Confirm BOD reply (which can indicate an error), the worker commits
the received message from the receive queue by using the native adapter.

14. If an acknowledgment was requested, the worker calls the sendResponse
method on the native adapter.
v If the target adapter created a reply, it puts the respond-to logical identifier

of the original message into the destination logical identifier field of the
reply message.

v If the target adapter did not create a reply, then the worker creates a
Confirm BOD reply message containing the completion status.
– If there are no errors, the completion status is success.
– If there are errors, the completion status is set to an error condition.

15. The reply is sent.
a. The worker sends the reply message, if one has been created, to the native

adapter.
b. The native adapter puts the reply message into the reply queue.
c. The native adapter sends the reply message, depending on the original

message it received:
v If it was an MQSeries request message, then the native adapter obtains

the queue information for the reply from the MQSeries request message.
This queue information overrides the destination logical identifier in the
message.

v If it was not an MQSeries request message, then the native adapter uses
the sendMsg method to send the reply.

16. In case of exception or a Confirm BOD reply message with an error status, the
worker logs an exception message into an exception file called
EpicSystemExceptionFilennnnnnnn.log that resides in the same directory as
the adapter daemon, where nnnnnnnn is the number of the log file. In
addition, if the WebSphere Business Integrator classes are installed, these
classes send an exception to the WebSphere Business Integrator Solution
Management component. See “Exception messages” on page 75.

17. In case of exception or a Confirm BOD reply message with an error status, the
worker directs the native adapter to put the original message on the error
queue. The name of the error queue is obtained from the configuration file
based on the dependency logical identifier, body category, and body type of
the original message.
Based on the dependency application identifier, body category, and body type,
the worker performs a multistage lookup in the configuration file in the
following order:
a. For specific body category and body type values.
b. For a specific body category value and a default body type value.
c. For a default body category value and a specific body type value.
d. For default body category and body type values.
v If the native adapter is able to put the error message on the error queue, the

native adapter is directed to commit the message from the receive queue.
v If the native adapter is not able to put the error message on the error

queue, the following occurs:

Chapter 1. About MQSeries Adapter Offering 19

a. The worker directs the native adapter to roll back, that is, not to
commit.

b. The worker sets a flag that directs all workers under that adapter
daemon to shut down. This signifies that the message has a problem.
Shutting down all workers prevents other workers from reprocessing the
same problem message with the same result.

c. If an out-of-memory error occurs, the exception is treated in the same
way as all other exceptions except that the worker sets a flag for itself to
stop when it has completed processing the current message. This makes
more memory available for other workers.

18. When the native adapter notifies the worker that the work is done, the worker
checks two flags:
v Whether this worker is to stop. This can be caused by a Java out-of-memory

condition.
v Whether all workers are to stop, caused as described in the previous step.

19. If either flag is set, the worker stops. If neither flag is set, the worker
processes the next message. The worker requests that the native adapter
receive a message.

20. If a reply message is put onto the reply queue or if an error message is put
onto the error queue, the following occurs:
a. MQSeries or other messaging software delivers it back to the source side

of the kernel.
b. If the source adapter called its native adapter’s sendRequestResponse

method, then the kernel retrieves the message from the reply queue and
returns it to the source adapter. If the source adapter called the sendMsg
method, then the kernel puts the message into the source application’s
receive queue.

Transactional capabilities
A transaction is a set of operations that must be executed as an indivisible unit of
work. If all operations that constitute a transaction are successful, the transaction is
committed; that is, all of the operations are performed. If one or more of the
operations that constitute a transaction fail, the transaction is rolled back; that is,
none of the operations are performed. By using MQSeries Adapter Kernel’s
transactional capabilities, a source adapter can perform a series of operations as a
single unit, with the assurance that all operations succeed if the transaction is
committed or that no operations occur if the transaction is rolled back.

Transactional capabilities can be built into adapters by using the MQSeries Adapter
Builder or by using the begin, rollback, and commit methods on the
EpicNativeAdapter class of the kernel’s Java API. If a transactional method is called
in an illegal context (for instance, calling the commit method without first having
called the begin method, or calling the begin method within the scope of another
transaction), the kernel disregards the call and issues a warning to trace. See
“Chapter 5. Using MQSeries Adapter Kernel APIs” on page 77 for information on
using the API.

Limitations
The following limitations are associated with the kernel’s transactional capabilities:
v Transactions are not supported with the sendRequestResponse method.
v Nested transactions (that is, transactions that are called within other

transactions) are not supported.

20 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v Transactions are not supported by all communications modes; see “Appendix A.
Communications modes” on page 81 for details.

Tracing
A trace message contains the state of processing a message at a certain point
within the kernel. You can use trace messages to help diagnose problems with the
kernel or with your adapters. The MQSeries Adapter Kernel Problem Determination
Guide discusses using trace with the kernel.

Using MQSeries Adapter Kernel with WebSphere Business Integrator
and WebSphere Application Server

This section discusses the use of MQSeries Adapter Kernel with the WebSphere
Business Integrator and WebSphere Application Server products. For additional
details, see the WebSphere Business Integrator documentation.

JMS Listener
WebSphere Business Integrator provides a component called the JMS Listener that
works with MQSeries Adapter Kernel and WebSphere Application Server
Advanced Edition to provide an alternative way of delivering messages to target
applications. The JMS Listener runs inside WebSphere Application Server’s
Enterprise JavaBeans (EJB) server. This section provides an overview of the JMS
Listener’s functionality. For additional information, including details on
configuring WebSphere Business Integrator and the JMS Listener, see the
WebSphere Business Integrator documentation. See “Configuring the kernel” on
page 44 for information on configuring MQSeries Adapter Kernel to recognize the
JMS Listener as a target. Using the JMS Listener as a target is equivalent to
sending a message to an adapter daemon.

Before the JMS Listener can be used, you must deploy an MQSeries Adapter
Kernel message bean adapter worker and either Java service session bean adapters
or EAB adapters for the target side of the kernel. Perform these tasks by using
MQSeries Adapter Builder. In a WebSphere Business Integrator environment, the
operation of the kernel within WebSphere Application Server is similar to its
operation with a stand-alone adapter daemon, except that the JMS Listener receives
the message on behalf of the adapter worker and invokes the appropriate adapter
worker. In a stand-alone MQSeries Adapter Kernel environment, the adapter
daemon starts adapter workers, which in turn receive messages directly.

The sequence of events when MQSeries Adapter Kernel works with the JMS
Listener is as follows:
1. The JMS Listener, monitoring a JMS queue, receives a JMS message object,

either from an EJB client or a non-EJB application.
2. The JMS Listener instantiates a worker message bean and passes the message

object to it. The worker message bean is an instance of a session bean, a type of
enterprise bean that encapsulates temporary data associated with a specific
client.

3. The worker message bean converts the JMS message object into an MQSeries
Adapter Kernel message-holder object.

4. Based on the message’s header values, the kernel invokes either an EAB
adapter or an EJB adapter. If the adapter type to be invoked is an EAB adapter,
the data flow is as in the stand-alone case. If the adapter type to be invoked is
an EJB adapter, an EJB handler is called and performs the following tasks:

Chapter 1. About MQSeries Adapter Offering 21

v It determines the correct service session bean (home interface) to invoke, the
appropriate method to call, and the method’s input parameter type for the
TerminalDataContainer object.

v It converts the application data contained within the message-holder object to
the appropriate TerminalDataContainer data structure for the service session
bean by using a Mapper class. The TerminalDataContainer object contains the
message-holder object’s metadata plus the application objects. In many cases,
the application object is the message-holder object’s body data XML
document string.

v It invokes the service session bean, passing the TerminalDataContainer object
to the appropriate method on the service session bean. The service session
bean, which is part of the Java service adapter, is the target of the message.

5. If a reply was requested, the worker message bean converts the reply
TerminalDataContainer object to a message-holder object and sends the reply
by using the native adapter.

6. If an error occurs, the worker message bean puts the message-holder object
onto an error queue by using the native adapter.

National language support
MQSeries Adapter Kernel provides national language support for both, Java and C
adapters.

22 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 2. Planning to install the kernel

This chapter lists the prerequisites for and components of the MQSeries Adapter
Kernel.

For latest details, see the MQSeries product family Web site at:
www.ibm.com/software/ts/mqseries/

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:

www.ibm.com/software/ts/mqseries/platforms/supported.html

Hardware
MQSeries Adapter Kernel runs on the following hardware:
v An IBM PC (or compatible) machine running Windows NT 4.0, Service Pack 5 or

later, or Windows 2000, Service Pack 1.
v An IBM RS/6000® machine running AIX version 4.3.2 or 4.3.3.
v An HP Series 9000 machine running HP-UX version 11.0.
v A Sun SPARC or UltraSPARC machine running Solaris version 8.
v An IBM AS/400® or iSeries machine running OS/400 version 4.4, 4.5, or 5.1.

Note: The installation of MQSeries Adapter Kernel on OS/400 requires a
Windows system to interface with the AS/400 machine. See “Prerequisites
for OS/400 installation” on page 25 for details.

MQSeries Adapter Kernel requires a minimum of approximately 25 MB of disk
space for product code and data.

Ensure that sufficient disk space is available to hold the adapters. Their size is
dependent on the size of the data structures, the complexity of mappings, and the
custom code used. Some examples of different adapter sizes on Windows systems
follow. Your site’s adapters can require more or less disk space. Each example
represents adapter source, compiled adapter code, API source, and compiled API
code in MB or KB.
v Source adapter for adding a sales order: 1.89 MB
v Target adapter for synchronizing a customer record: 389 KB
v Target adapter for synchronizing an inventory record: 161 KB
v Target adapter for synchronizing an item: 249 KB
v Target adapter for synchronizing a sales order: 579 KB

In addition, allow a minimum of 20 MB for working space for the kernel and
adapters. Working space requirements can vary based on a number of factors, such
as the number and size of queues and the size of trace files.

© Copyright IBM Corp. 2000, 2002 23

http://www.ibm.com/software/ts/mqseries/
http://www.ibm.com/software/ts/mqseries/platforms/supported.html

Software
This section lists the software that is supported for use with MQSeries Adapter
Kernel. Supported levels are shown. See “Appendix B. Validated configurations” on
page 85. Note that C compilers are required on development systems but not on
production systems. The C compilers listed here were successfully tested with
MQSeries Adapter Kernel; other C compilers can potentially work correctly with
the kernel but are not officially supported.

For Windows systems:
v Microsoft Windows NT version 4.0, Service Pack 5 or later; or Microsoft

Windows 2000, Service Pack 1. To determine the version and service pack of
Microsoft Windows, open Windows Explorer, then click Help > About
Windows.

v Microsoft Visual C++ 6.0 Compiler.
v MQSeries version 5.2 with SupportPac MA88.
v IBM Java Development Kit (JDK) version 1.2.2 or 1.3.

Note: MQSeries Adapter Kernel supports JDK version 1.3 on all platforms. For
the OS/400 operating system, version 5.1 is required.

For AIX:
v AIX operating system version 4.3.2 or 4.3.3.
v VisualAge® C++ for AIX version 5.0.
v MQSeries version 5.2 with SupportPac MA88.
v Java Development Kit version 1.2.2. JDK 1.3 is not supported.
v X Window System (X11R5 or higher). This is required for installation but not at

run time.

For HP-UX:
v HP-UX operating system version 11.0.
v HP-UX C/ANSI C Compiler. See the readme.txt file for details.
v MQSeries version 5.2 with SupportPac MA88.
v Java Development Kit version 1.2.2. JDK 1.3 is not supported.
v X Window System (X11R5 or higher). This is required for installation but not at

run time.

For Solaris:
v Solaris operating environment version 8.
v Sun Workshop Compilers C/C++. See the readme.txt file for details.
v MQSeries version 5.2 with SupportPac MA88.
v Java Development Kit version 1.2.2. JDK 1.3 is not supported.
v X Window System (X11R5 or higher). This is required for installation but not at

run time.

For OS/400:
v OS/400 operating system version 4.4, 4.5, or 5.1 including the following

programs:
– Java Toolkit and Java Developer Kit version 1.2.2. JDK 1.3 is supported for

OS/400 operating system version 5.1. The Java Toolkit and Java Developer Kit
are shipped as licensed program number 5769–JV1. See “Prerequisites for

24 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

OS/400 installation” for additional details about versions of the Java
Developer Kit required for installing MQSeries Adapter Kernel on an AS/400
system.

– The Host Servers option, which is shipped as licensed program number
5769–SS1, option 12.

– Qshell Interpreter, which is shipped as licensed program number 5769–SS1,
option 30.

– TCP/IP, which is shipped as licensed program number 5769–TC1.
– Integrated Language Environment C for AS/400, which is shipped as licensed

program number 5769–CX2.
v MQSeries version 5.2 with SupportPac MA88.

See “Prerequisites for OS/400 installation” for additional requirements for
installing MQSeries Adapter Kernel on OS/400.

The following products are supported with MQSeries Adapter Kernel:
v MQSeries version 5.2 with SupportPac MA88

Note: If MQSeries is not used, another messaging software product such as an
implementation of the Java Message Service (JMS) must be used.

v MQSeries Integrator version 1.1
v MQSeries Integrator version 2

See “Appendix B. Validated configurations” on page 85 for a list of validated
MQSeries Adapter Kernel, MQSeries, and MQSeries Integrator configurations.

Prerequisites for OS/400 installation
This section describes the prerequisites for installing MQSeries Adapter Kernel on
an AS/400 or iSeries system. See Step 3 on page 31 for detailed instructions on
installing MQSeries Adapter Kernel on an AS/400 system. Because AS/400
terminals do not natively support Java graphics, a graphics-enabled workstation
such as a Windows system is required to run the kernel’s Java-based GUI
installation program. The workstation can interface with the AS/400 system in one
of the following ways:
v Through remote AWT, in which all graphics are processed on the AS/400 system

and displayed on the workstation. This is described in more detail in “Using
remote AWT”.

v As an attached client, in which the workstation processes and displays the
graphics. This is described in more detail in “Using an attached client” on
page 26.

This section assumes that you are using a Windows system as the graphics-enabled
workstation.

Using remote AWT
When remote AWT is used, Java graphics processing is done on the AS/400
system, and graphics are displayed on a client workstation that is attached to the
AS/400 system. This section describes the requirements that must be met to install
MQSeries Adapter Kernel on an AS/400 system by using remote AWT.

The following programs must be installed with OS/400:
v Java Toolkit and Java Developer Kit version 1.2.2. For OS/400 operating system

version 5.1 you can also use JDK 1.3. The Java Toolkit and Java Developer Kit

Chapter 2. Planning to install the kernel 25

are shipped as licensed program number 5769–JV1. Remote AWT capabilities on
OS/400 are provided by the Java Developer Kit.

v TCP/IP, which is shipped as licensed program number 5769–TC1. For more
information about TCP/IP, see the AS/400 TCP/IP Fastpath Setup Information and
AS/400 TCP/IP Configuration documents, which are available from the AS/400
library at www.ibm.com/servers/eserver/iseries/library/.

Requirements for the workstation are as follows:
v An IBM PC machine (or compatible) running Windows 95, Windows 98,

Windows NT, or Windows 2000.
v A TCP/IP connection to the AS/400 system.
v JDK 1.2.2 or higher.

To set up and start remote AWT, perform the following steps:
1. Ensure that JDK 1.2.2 or higher is installed on the workstation.
2. Ensure that a TCP/IP connection exists between the AS/400 system and the

workstation.
3. Copy the RAWTGui.jar file from the /QIBM/ProdData/Java400/jdk12 directory on

the AS/400 system to a directory on the workstation.
4. On the workstation, change to the directory where you copied the RAWTGui.jar

file and start remote AWT by entering the following command:
java -jar RAWTGui.jar

Note: Because of the resource-intensive nature of processing Java graphics on an
AS/400 system, using remote AWT can potentially take much longer than
using an attached client to install MQSeries Adapter Kernel.

For more information on remote AWT, see the AS/400 library at
www.ibm.com/servers/eserver/iseries/library/.

Using an attached client
When an attached client is used to install MQSeries Adapter Kernel on an AS/400
system, Java graphics processing is done on the client workstation, not on the
AS/400 system. This section describes the requirements that must be met to install
MQSeries Adapter Kernel on an AS/400 system by using an attached client.

The following programs must be installed with OS/400:
v Java Toolkit and Java Developer Kit version 1.2.2. For OS/400 operating system

version 5.1 you can also install JDK 1.3. The Java Toolkit and Java Developer Kit
are shipped as licensed program number 5769–JV1.

v The Host Servers option, which is shipped as licensed program number
5769–SS1, option 12.

v TCP/IP, which is shipped as licensed program number 5769–TC1.

Requirements for the workstation are as follows:
v An IBM PC machine (or compatible) running Windows NT 4.0, Service Pack 5,

or Windows 2000, Service Pack 1.
v A TCP/IP connection to the AS/400 system.
v JDK 1.2.2 or higher.

26 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

http://www.ibm.com/servers/eserver/iseries/library/
http://www.ibm.com/servers/eserver/iseries/library/

Components of the kernel
After installation, MQSeries Adapter Kernel resides in its root directory. It contains
subdirectories that in turn can contain other directories. The root and its
subdirectories are listed, along with a summary of the files that are most relevant
to installation and configuration.

root The default name is C:\Program Files\MQAK on Windows systems,
/usr/lpp/mqak on AIX, /MQAK on HP-UX, /opt/MQAK on Solaris, and
/QIBM/ProdData/mqak on OS/400. It contains the following:
v All other MQSeries Adapter Kernel directories.
v The aqmsetenv.bat (Windows systems) or aqmsetenv.sh (UNIX) file,

which changes system environment variables after installation, if desired.
v The readme.txt file.
v The aqmuninstall.bat (Windows systems) or aqmuninstall.sh (UNIX)

file.

bin Contains the following:
v Class libraries and shared libraries.
v Adapters that are provided as part of the kernel, for verification

use only.
v The aqmversion.bat (Windows systems) or aqmversion.sh (UNIX

and OS/400) file, a script that is run to display the version
number of the kernel.

v The aqmcrtmsg.bat (Windows systems) or aqmcrtmsg.sh (UNIX
and OS/400) file, a script that is run to create an XML file used
to validate the configuration file before it is put into production.

v The aqmsndmsg.bat (Windows systems) or aqmsndmsg.sh (UNIX
and OS/400) file, a script that is run to validate the
configuration file before it is put into production.

v The aqmstrad.bat (Windows systems) or aqmstrad.sh (UNIX and
OS/400) file, a script that is run to start the adapter daemon.

v The aqmstpad.bat (Windows systems) or aqmstpad.sh (UNIX
and OS/400) file, a script that is run to stop the adapter daemon.

v The aqmstrtd.bat (Windows systems) or aqmstrtd.sh (UNIX and
OS/400) file, a script that is run to start the trace server.

v The aqmchk.bat file, (Windows systems) or aqmchk.sh (UNIX and
OS/400) file, a script that is run to start the configuration
checker utility.

documentation
Contains the product documentation, including the Information
Center.

runtimefiles
Contains kernel run-time files.

samples

Contains the following:
v Samples of adapters and associated configuration and utility

files. You can experiment with and learn from them.
v The mqak_model_q.mqsc. You can use this sample file for

creating a model queue that is necessary for using the stop
command-line utility.

Chapter 2. Planning to install the kernel 27

Note: The kernel is intended to be used with adapters built by
using the MQSeries Adapter Builder. The kernel is not
intended to be used by calls to the kernel APIs from custom
code alone. The adapter samples are provided only as an aid
to understanding how the kernel functions and in
diagnostics.

v Adapter samples.
v The kernel’s setup file, aqmsetup, with values that support the

samples of adapters. See “The setup file” on page 48 for a
discussion of this file.

v The kernel’s configuration file, aqmconfig.xml, with values that
support the samples of adapters, including sample trace values.
See “The configuration file” on page 49 for a discussion of this
file.

toolkit
Contains a software development toolkit (SDK) consisting of the
following:
v Header files.
v Library files used during compilation under Windows systems.

uninstall
Contains files used to uninstall the kernel.

verification
Contains the following files that support verification of the
installation of the kernel:
v The aqmverifyinstall.bat (Windows systems) or

aqmverifyinstall.sh (UNIX and OS/400) file, a script that is
run to verify installation of the kernel on one computer.

v The aqmcreateq.bat (Windows systems) or aqmcreateq.sh (UNIX
and OS/400) file, a script that creates MQSeries queues for
verification. See “Creating MQSeries queues” on page 76.

v The aqmconfig.xml file. See “The configuration file” on page 49
for a discussion of this file.

v The aqmsetup file. See “The setup file” on page 48 for a
discussion of this file.

v The aqminstalltest.xml file.

28 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 3. Installing the kernel

This chapter discusses the steps necessary to install and verify MQSeries Adapter
Kernel. Installation consists of the following general steps:
Step 1. Prepare for installation. See “Preparing for installation” for details.
Step 2. Install the kernel. See “Installing the kernel” on page 30 for details.
Step 3. Complete several post-installation steps. See “Completing the

post-installation” on page 32 for details.
Step 4. Verify the installation. See “Verifying the installation” on page 34 for

details.

This chapter also discusses the following topics:
v Using silent installation to install MQSeries Adapter Kernel. See “Using silent

installation” on page 38 for details.
v Upgrading MQSeries Adapter Kernel from an earlier version. See “Upgrading

the kernel” on page 39 for details.
v Removing an installation of MQSeries Adapter Kernel. See “Removing the

kernel” on page 40 for details.

After installing the kernel, perform the following additional tasks to prepare it for
use:
1. Configure the kernel. See “Configuring the kernel” on page 44 for details.
2. Configure messaging software and optional software. See “Configuring

MQSeries and MQSeries Integrator” on page 69 for details.
3. Build your adapters by using MQSeries Adapter Builder, then test and deploy

them.
4. Start the kernel. See “Starting the kernel” on page 71 for details.

Preparing for installation
You must have administrator or root authority to install MQSeries Adapter Kernel.
You must have permission to create and access files in the location where you
install MQSeries Adapter Kernel and the location where you put the two kernel
configuration files. You must have the current directory in your executable path.
Ensure that all user IDs that run the kernel have read, write, and execute
permissions.

You must have authority to perform MQSeries operations such as creating queue
managers and creating and accessing queues. These operations are performed in
different ways on different platforms. Refer to the MQSeries Administration Guide
for your platform for more information.

The user identifier that starts the kernel’s processes must be in the mqm group.
There are two kinds of kernel processes:
v Adapter daemon, one for each target application served by the computer
v Trace server (optional)

© Copyright IBM Corp. 2000, 2002 29

Note that the source adapter is run in the source application’s process. Any
daemon or server that contains the source adapter needs to be started for the
source adapter to run.

You must install and configure the kernel to run the adapters that you have built.
However, you do not have to install the kernel to install the MQSeries Adapter
Builder or to use it to build your adapters.

Perform the following steps before beginning installation:
v Read the readme.txt file on the CD-ROM or local area network. It potentially

contains important information that became available after this book was
completed. It is located in the root installation directory.

v Visit the MQSeries Web site at www.ibm.com/software/ts/mqseries/. It
potentially contains important information that became available after this book
was published, potentially including a new edition of this book.

v If you are upgrading from a previous version of MQSeries Adapter Kernel, see
“Upgrading the kernel” on page 39 for instructions.

v Ensure that the hardware and software prerequisites are met. See “Hardware” on
page 23 and “Software” on page 24 for details. MQSeries must be installed and
running before you can verify installation of MQSeries Adapter Kernel. Ensure
that MQSeries Java support is installed and configured.

Installing the kernel
To install MQSeries Adapter Kernel on a Windows system (Windows NT or
Windows 2000), on a UNIX platform (AIX, HP-UX, or Solaris), or on OS/400,
perform the following operating system-specific steps:

On Windows systems:

Step 1. Start the installation program as follows:
v If you are installing from a local area network, change to the directory

that contains the MQSeries Adapter Kernel installation files and run the
install.bat file.

v If you are installing from CD-ROM, insert the MQSeries Adapter Kernel
CD-ROM into the CD-ROM drive. If autorun is enabled, the installation
program starts automatically; if autorun is not enabled, run the
install.bat file in the root directory of the CD-ROM to start the
installation program.

Note: On Windows systems, you do not have to copy the install.bat file
to another location before you run it. During the installation
process, you are asked to choose where to install MQSeries Adapter
Kernel.

Step 2. Follow the prompts provided by the installation program. Note that if you
choose to install MQSeries Adapter Kernel in a location other than the
default (on Windows systems, C:\Program Files\MQAK), you must specify
the installation directory as a fully qualified path name, not as a relative
path name.

On UNIX:

Step 1. Start the installation program as follows:

30 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

http://www.ibm.com/software/ts/mqseries/

v If you are installing from a local area network, change to the directory
that contains the MQSeries Adapter Kernel installation files and run the
install.sh script.

v If you are installing from CD-ROM, insert the MQSeries Adapter Kernel
CD-ROM into the CD-ROM drive and, if necessary, mount the CD-ROM
drive according to your operating system documentation. Run the
install.sh script in the root directory of the CD-ROM.

Step 2. Follow the prompts provided by the installation program. Note that if you
choose to install MQSeries Adapter Kernel in a location other than the
default, you must specify the installation directory as a fully qualified
path name, not as a relative path name. The default installation directories
on UNIX are as follows:
v AIX: /usr/lpp/mqak
v HP-UX: /MQAK
v Solaris: /opt/MQAK

On OS/400:

Step 1. Ensure that all prerequisites listed in “Hardware” on page 23, “OS/400
software prerequisites” on page 24, and “Prerequisites for OS/400
installation” on page 25 are met. Note that installing MQSeries Adapter
Kernel on OS/400 uses an InstallShield-based program that requires the
use of a workstation interfacing with the AS/400 system; see
“Prerequisites for OS/400 installation” on page 25 for details.

Step 2. Create a user profile named MQAKSRV on the AS/400 system by using
the CRTUSRPRF command at a Control Language (CL) prompt.

Step 3. Depending on whether you are using remote AWT or an attached client
workstation to perform the installation, perform the following steps:
v If you are using remote AWT to perform the installation, perform the

following steps:
a. Ensure that remote AWT is set up and running. See “Using remote

AWT” on page 25 for details.
b. Ensure that the installAS400.jar file is accessible to the AS/400

system. The file must be either in the integrated file system (IFS) or
on a device attached to the AS/400 system. If the file is on an
attached device, use the Create Link (CRTLINK) command to create
a symbolic link to the file.

c. To improve the performance of the installation process, run the
Create Java Program (CRTJVAPGM) command against the
installAS400.jar file.

d. Run the Run Java (RUNJVA) command as follows, where n.n.n.n
represents the TCP/IP address of the workstation that is running
remote AWT:
RUNJVA CLASS(run)
CLASSPATH('/installAS400.jar')
PROP((os400.class.path.rawt 1) (RmtAwtServer 'n.n.n.n')
(java.version 1.2))

v If you are using an attached client workstation to perform the
installation, perform the following steps:
a. Ensure that the requirements specified in “Using an attached client”

on page 26 are met.

Chapter 3. Installing the kernel 31

b. Ensure that the Host Servers option is installed and running on the
AS/400 machine. You can start Host Servers by using the Start Host
Servers (STRHOSTSVR) command at a CL prompt.

c. Ensure that TCP/IP is installed and running on the AS/400 machine.
You can start TCP/IP by using the Start TCP/IP (STRTCP)
command at a CL prompt.

d. On the workstation, open a command prompt and change to the
AS400 directory of the MQSeries Adapter Kernel installation media
(either local area network or CD-ROM).

e. Enter the following command:
java -classpath installAS400.jar; run -os400

f. The installation program begins and displays the Signon to AS/400
panel. Enter the TCP/IP address of the AS/400 machine in the
System: field and your user ID and password in the corresponding
fields. Do not check the Default User checkbox. Click Next.

Step 4. Follow the prompts provided by the installation program. Depending on
the speed of your network and machines, the installation process can take
up to one hour to complete. A progress bar displayed on the workstation
indicates the status of the installation.
Note that on OS/400, MQSeries Adapter Kernel is always installed in the
/QIBM/ProdData/mqak directory in the root of the integrated file system
(IFS).

Step 5. Set the CLASSPATH, PATH, and QIBM_MULTI_THREADED environment
variables as follows:
v Add the /QIBM/ProdData/mqak/bin directory to the CLASSPATH

environment variable.
v Add the /QIBM/ProdData/mqak/bin directory to the PATH environment

variable.
v Set the QIBM_MULTI_THREADED environment variable to Y.

Step 6. Add the library MQAK to the QSYS.LIB library list.

Kernel installation is complete. As installed, the kernel is configured to support
verification, not to support production at your particular site. Verify the installation
by performing the steps listed in “Verifying the installation” on page 34. After you
have verified the installation, follow the steps in “Completing the post-installation”
to set environment variables and move several configuration files to support
production at your site.

Install the kernel on other computers as required.

Completing the post-installation
After installing the kernel, perform the following steps:
Step 1. Decide where to put the aqmsetup and aqmconfig.xml files, which are used

to configure the kernel. For more information on these files, see
“Configuring the kernel” on page 44.
CAUTION:
If you do not create your own configuration files but instead use the
configuration files that are provided in the samples directory for
production, installing a new version of the kernel overwrites them and
destroys your production configuration.

32 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Step 2. Create a directory for the two configuration files. They do not need to be
located in the same directory, but this is recommended for simplicity.
Locating them outside the directory where you installed MQSeries
Adapter Kernel leaves fewer directories if the kernel is uninstalled at a
later time. The uninstall process leaves directories that contain anything
other than the original MQSeries Adapter Kernel files.

Step 3. Copy the aqmsetup and aqmconfig.xml files from the samples directory to
your desired location. You can put them on a network drive or other
central location that is accessible by many computers to make updating
them and backing them up easier.
If you rename the aqmconfig.xml file, the kernel does not operate correctly.
You can rename the aqmsetup file, provided that you set an environment
variable to point correctly to it in Step 5.

Step 4. Using a text editor, edit the aqmsetup file to point to the desired directory
of the aqmconfig.xml file. Use a fully qualified path name (not a relative
path name) as the location of the directory. Do not include the file name
itself in the path. An example follows:
Location of configuration file aqmconfig.xml.
AQMCONFIG=C:\Program Files\MQAK\Data\

Even if your desired location for the aqmconfig.xml file is the same
directory where the aqmsetup file resides, you must enter the fully
qualified path name here. Save and close the aqmsetup file.

Step 5. Set the AQMSETUPFILE environment variable to point to the location of
the aqmsetup file (for instance, C:\Program Files\MQAK\Data\aqmsetup on
Windows systems, /MQAK/data/aqmsetup on UNIX, or
/home/user_name/aqmsetup on OS/400). Note that on OS/400, the
aqmsetup file must always be located in the current user’s home IFS
directory (that is, /home/user_name).
If the kernel is installed on a network drive, perform this step for each
computer that accesses it.

Step 6. If you are using AIX and plan to use native C-language source adapters
that are called from a C program, set the AIXTHREAD_SCOPE
environment variable to the value S. To set this environment variable in
the Bourne shell or the Korn shell, enter the following command:
export AIXTHREAD_SCOPE=S

To set this environment variable in the C shell, enter the following
command:
setenv AIXTHREAD_SCOPE S

To have the AIXTHREAD_SCOPE variable set automatically when you log
in to AIX, add this command to your .profile file (if you use the Bourne
shell or the Korn shell) or .cshrc file (if you use the C shell).

See Step 7 on page 17 for additional information about scheduling policies.
Step 7. If necessary, set the THREADS_FLAG environment variable. You must set

this variable only if all of the following conditions are true:
v Solaris is the operating system being used.
v The version of the Java Development Kit (JDK) being used is 1.2.2.
v MQSeries is being used to transport messages.
v Your source and target adapters are written in C.

Chapter 3. Installing the kernel 33

If all of these conditions are true, set the THREADS_FLAG environment
variable to native. To set this environment variable in the Bourne shell or
the Korn shell, enter the following command:
export THREADS_FLAG=native

To set this environment variable in the C shell, enter the following
command:
setenv THREADS_FLAG native

To have the THREADS_FLAG variable set automatically when you log in
to Solaris, add this command to your .profile file (if you use the Bourne
shell or the Korn shell) or .cshrc file (if you use the C shell).

After completing the post-installation steps, perform the following tasks to prepare
the kernel for use:
1. Prepare for production. See “Preparing for production” on page 43.
2. Edit the configuration file. See “Configuring the kernel” on page 44 for details.
3. Configure MQSeries and optional software. See “Configuring MQSeries and

MQSeries Integrator” on page 69.
4. For production systems, take into account “Performance recommendations” on

page 69.
5. Start the kernel. See “Starting the kernel” on page 71.
6. Set up a kernel maintenance plan. See “Maintaining the kernel” on page 74.

Verifying the installation
After you install the kernel, verify that it was installed correctly by running a
verification script. The script sends a test message from a source application by
using a source adapter, then to MQSeries by using the kernel. It then uses the
kernel to receive the message from MQSeries and then invoke a target adapter. All
of these processes are run on a single computer.

In this verification, the source application is an MQSeries queue named TEST1. The
target application is another MQSeries queue named TEST2.

The verification performs the following tasks:
v Verifies that the kernel, with the supplied source adapter and the target adapter,

marshaled and routed the test message correctly, using MQSeries as the
messaging software, end-to-end within the computer.

v Verifies the aqmconfig.xml and aqmsetup files that are provided at installation.
They determine the kernel configuration. See “Configuring the kernel” on
page 44 for information on these files.

You can validate the configuration file before putting it into production. See
“Validating the configuration file” on page 66.

The installation verification scripts that are provided with MQSeries Adapter
Kernel assume that MQSeries is installed and configured on the machine where the
scripts are to be run. If you are using messaging software other than MQSeries,
you can edit the installation verification scripts to support your messaging
software as follows:
1. Change to the kernel installation’s verification directory.

34 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

2. Open the aqmconfig.xml file in a text editor and change the line
<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr> to
<epicmqppqueuemgr>queue_manager_name</epicmqppqueuemgr>, where
queue_manager_name is the name of your queue manager.

3. Edit the aqmverifyinstall file as follows:
v If you are performing installation verification on a Windows system, open

the aqmverifyinstall.bat file in a text editor and change the line aqmcreateq
TEST2 to aqmcreateq TEST2 queue_manager_name, where queue_manager_name
is the name of your queue manager.

v If you are performing installation verification on UNIX or OS/400, open the
aqmverifyinstall.sh file in a text editor and change the line aqmcreateq.sh
TEST2 to aqmcreateq.sh TEST2 queue_manager_name, where
queue_manager_name is the name of your queue manager.

This verification uses some components, such as a target adapter name
com.ibm.epic.adapters.eak.test.InstallVerificationTest, that are not part of
the kernel. They are supplied with the kernel only for the purpose of verifying
installation.

When verification is complete, the verification adapter daemon is stopped.

Tracing is not enabled during verification.

Verification procedure
Step 1. Verification creates and uses three MQSeries queues. If these queues have

messages in them before you perform verification, verification fails. Clear
the messages in the following queues:
v TEST2AIQ
v TEST2AEQ
v TEST2RPL

Step 2. Ensure that you are authorized to install and verify the kernel. See
“Preparing for installation” on page 29.

Step 3. Start the verification as follows:
v On Windows systems, double-click the aqmverifyinstall.bat file in the

verification directory. Alternatively, open a command prompt, change
to the verification directory, and run aqmverifyinstall.bat.

v On UNIX, open a terminal, change to the verification directory, and
run the aqmverifyinstall.sh file.

v On OS/400, perform the following steps:
a. Start a qsh session by entering the STRQSH command.
b. Copy the /QIBM/ProdData/mqak/verification/aqmsetup file to your

home directory (/home/user_name).
c. Change to the /QIBM/ProdData/mqak/verification directory.
d. Run the aqmverifyinstall.sh file.

The aqmverifyinstall file contains comments about how it functions.
Step 4. The message Installation Verification Test completed successfully

indicates success. Close the verification window, if necessary.
Step 5. In case of failure, examine the verification window and the log file,

EpicSystemExceptionFilennnnnnnn.log, to determine the error.
Step 6. See “Common verification problems” on page 36 for common problems

that can be encountered during verification and for potential responses.

Chapter 3. Installing the kernel 35

Step 7. If desired, perform optional verification. See “Optional verification” on
page 37 for details.

Step 8. Return to the installation procedure and configure the kernel to support
operation in your particular site. Go to Step 1 on page 32.

Common verification problems
This section lists common problems that can be found during verification, along
with potential solutions. Important information in the exception messages is
highlighted in bold.

Problem: The aqmsetup file was not found.
Response: Make sure the AQMSETUPFILE environment variable is set to
the location of the aqmsetup file in the verification directory.
Exception message:
com.ibm.epic.adapters.eak.nativeadapter.EpicNativeAdapter::main: caught
throwable with message <AQM0002: com.ibm.epic.adapters.eak.common.
AdapterDirectory::getProperties():
Received exception <com.ibm.epic.adapters.eak.common.AdapterException>
Message information: <AQM0002: com.ibm.epic.adapters.eak.common.
AdapterCfg::readConfig(String):
Received exception <java.io.FileNotFoundException> Message information:
<C:\aqmsetup> Additional program information <>.>
Additional program information <Error Reading Configuration File
[File or Keys in file may not exist]>.>

Problem: The aqmconfig.xml file was not found.
Response: Edit the aqmsetup file in the verification directory and make
sure the AQMCONFIG= entry points to the verification directory. Use a fully
qualified path name. Also ensure that the aqmconfig.xml file is located in the
verification directory.
Exception message:
com.ibm.epic.adapters.eak.common.AdapterException: MessageID <AQM0002>
<AQM0002: com.ibm.epic.adapters.eak.common.AdapterDirectory::
getProperties(): Received exception
<java.io.FileNotFoundException> Message information:
<AQMCONFIG.xml> Additional program information <>.>

Problem: The queue on which to put the message did not exist.
Response: Use MQSeries to ensure that the queue named in the exception
message (TEST2AIQ when installation is being verified) exists and can
accept messages. See “Creating MQSeries queues” on page 76.
Exception message:
com.ibm.epic.adapters.eak.nativeadapter.EpicNativeAdapter::main: caught
throwable with message
<AQM0107: com.ibm.epic.adapters.eak.nativeadapter.LMSMQbase::
createMQOutputQueue(String):
Received MQException creating queue, QManager name <DEFAULT>
Queue name <TEST2AIQ>:
completion code <2> reason code <2085>.>

Problem: The target adapter was not found.
Response: Ensure that the target adapter specified in the message exists:
com.ibm.epic.adapters.eak.test.InstallVerificationTest. Ensure that the
CLASSPATH environment variable includes the kernel’s bin directory.

36 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Exception message:
com.ibm.epic.adapters.eak.adapterdaemon.EpicAdapterWorker::sendException
(Throwable, String):Thread-2:
Message <<TEST2> <2000.05.18.09.41.43.781> <<Processing Messages.>
<com.ibm.epic.adapters.eak.common.AdapterException: MessageID <AQM0002>
<AQM0002: com.ibm.epic.adapters.eak.adapterdaemon.EpicAdapterWorker:
:instantiateClass(String, Class[], Object[]): Received exception
<java.lang.ClassNotFoundException> Message information:
<com.ibm.epic.adapters.eak.test.InstallVerificationTest>
Additional program information <[Cannot obtain Class for class name
<com.ibm.epic.adapters.eak.test.InstallVerificationTest>]>.>>>>

Problem: An adapter was not found to load for delivery of the message. The
destination logical identifier does not have an entry in the aqmconfig.xml
file for the body type and body category specified in the message on the
queue.
Response: During verification, the most likely cause of this exception
message is the existence of messages on a queue named TEST2AIQ prior to
verification. Clear all messages from the TEST2AIQ queue and retry
verification. The only entry for a command class name for application TEST2
in the aqmconfig.xml file in the verification directory is for a body type of
TESTBOD and a body category of OAG.
Exception message:
com.ibm.epic.adapters.eak.adapterdaemon.EpicAdapterWorker::sendException
(Throwable, String):Thread-2: Message <<TEST2> <2000.05.18.10.28.43.105>
<<Processing Messages.> <com.ibm.epic.adapters.eak.common.
AdapterException:
MessageID <AQM0401> <AQM0401: com.ibm.epic.adapters.eak.
adapterdaemon.EpicAdapterWorker::processMessage(EpicMessage):
Cannot obtain Command class name to load for a received message.>>>>

Problem: The verification queue manager was not started.
Response: Ensure that the default MQSeries queue manager was started
successfully.
Exception message:
com.ibm.epic.adapters.eak.common.AdapterException: Message ID <AQM0104>
<AQM0104: com.ibm.epic.adapters.eak.nativeAdapter.queueCollection::
constructor(String,String,boolean,String,String,int):
Received MQException creating QManager connection for
QManager name <QMGRNAME>
MQ Message information: completion code <2> reason code <2059>.>

Problem: A general MQSeries error occurred.
Response: Ensure that MQSeries is installed and configured correctly and is
running on the machine. Examine the MQException reason code and use the
MQSeries Messages document to determine the cause of the reason code.
Exception message:
Received MQException "ACTION ATTEMPTED." Message information:
completion code <completion_code> reason code <reason_code>

Optional verification
After you verify that the kernel was installed correctly on the first computer, you
can optionally perform the following steps:
1. Verify that the kernel is installed correctly on a second computer, using the

same verification.

Chapter 3. Installing the kernel 37

2. Verify that you can send a test message from a source adapter on one computer
to a target adapter on another computer. Manually configure and perform this
verification. If you choose to develop this verification by modifying the original
verification files that are provided with the kernel, retain a copy of the original
verification files for backup purposes.

Using silent installation
MQSeries Adapter Kernel can be installed on all platforms by using silent
installation. Silent installation enables you to bypass the MQSeries Adapter Kernel
installation program, where you must manually select the installation options you
want. Silent installation is useful when you want to install the default
configuration on multiple machines.

To install the kernel silently, perform the following operating system-specific steps:

On Windows systems:

Step 1. Open a command prompt and change to the directory that contains the
MQSeries Adapter Kernel installation files.

Step 2. Enter the following command:
java -cp install.jar run -P product.installLocation="install_location"
-silent

where install_location is the desired installation location (for instance,
D:\mqak).

On UNIX:

Step 1. At a terminal, change to the directory that contains the MQSeries Adapter
Kernel installation files. If you are installing from CD-ROM, insert the
MQSeries Adapter Kernel CD-ROM into the CD-ROM drive and, if
necessary, mount the CD-ROM drive according to your operating system
documentation.

Step 2. Enter the following command:
java -cp install.jar run -P product.installLocation="install_location"
-silent

where install_location is the desired installation location (for instance,
/opt/mqak).

On OS/400:

If you are not using an attached client to access the AS/400 machine, perform the
following steps:
Step 1. Ensure that the installAS400.jar file is accessible to the AS/400 system.

The file must be either in the integrated file system (IFS) or on a device
attached to the AS/400 system. If the file is on an attached device, use the
Create Link (CRTLINK) command to create a symbolic link to the file.

Step 2. To improve the performance of the installation process, run the Create
Java Program (CRTJVAPGM) command against the installAS400.jar file.

Step 3. Depending on whether you are using a CL prompt or a qsh session, enter
one of the following commands:
v If you are using a CL prompt, enter the following command:

38 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

RUNJVA CLASS(run)
CLASSPATH('/installAS400.jar')
PROP((java.version 1.2)) PARM('-silent')

v If you are using a qsh session, enter the following command:
java -Djava.version=1.2 -classpath installAS400.jar run -silent

If you are using an attached client to interface with the AS/400 system, perform
the following steps:
Step 1. Ensure that the requirements specified in “Using an attached client” on

page 26 are met.
Step 2. Ensure that the Host Servers option is installed and running on the

AS/400 machine. You can start Host Servers by using the Start Host
Servers (STRHOSTSVR) command at a Control Language (CL) prompt.

Step 3. Ensure that TCP/IP is installed and running on the AS/400 machine. You
can start TCP/IP by using the Start TCP/IP (STRTCP) command at a CL
prompt.

Step 4. On the workstation, open a command prompt and change to the AS400
directory of the MQSeries Adapter Kernel installation media (either local
area network or CD-ROM).

Step 5. Enter the following command:
java -cp installAS400.jar run -silent -os400 machine_name user_ID
password

where machine_name is the TCP/IP address of the AS/400 system, user_ID
is your user ID, and password is your password.

Upgrading the kernel
If you have installed MQSeries Adapter Kernel version 1.0, either with or without
the Corrective Service Diskette (CSD), or MQSeries Adapter Kernel version 1.1
with an earlier modification level, perform the following steps before installing
MQSeries Adapter Kernel version 1.1 with the current modification level:
Step 1. Back up the aqmsetup and aqmconfig (aqmconfig.properties or

aqmconfig.xml) files to a location outside of the MQSeries Adapter Kernel
installation directory.

Step 2. If an MQSeries Adapter Kernel CSD is installed, uninstall it as follows:
v On Windows NT, use one of the following methods:

– From the Windows NT Start menu, click Programs > MQSeries
Adapter Kernel > Remove CSD.

– Use the Add/Remove Programs utility in the Control Panel.
– Run the aqmuninstallCSD.bat file in the kernel’s root directory.
– Open a command prompt, change to the kernel’s root directory, and

enter the following command:
java uninstallCSD

v On AIX, change to the kernel’s root directory and enter one of the
following commands:
aqmuninstallCSD.sh

java uninstallCSD

Step 3. Uninstall MQSeries Adapter Kernel as follows:
v On Windows NT, use one of the following methods:

Chapter 3. Installing the kernel 39

– From the Windows NT Start menu, click Programs > MQSeries
Adapter Kernel > Uninstall MQSeries Adapter Kernel.

– Use the Add/Remove Programs utility in the Control Panel.
– Run the aqmuninstall.bat file in the kernel’s root directory.
– Open a command prompt, change to the kernel’s root directory, and

enter the following command:
java uninstall

v On AIX, change to the kernel’s root directory and enter one of the
following commands:
aqmuninstall.sh

java uninstall

Step 4. Install MQSeries Adapter Kernel version 1.1. See “Installing the kernel” on
page 30 for details.

Step 5. Restore the aqmsetup and aqmconfig files to their previous locations in the
MQSeries Adapter Kernel installation directory. If necessary, convert the
aqmconfig.properties file to an aqmconfig.xml file. For more information
on the aqmconfig.xml file, see “The configuration file” on page 49.

Removing the kernel
There are several ways to remove the kernel. Note that the uninstall process does
not remove any files or directories created after the kernel was installed. This
includes all log files and data files copied by the user.
v On Windows systems, use one of the following methods:

– From the Start menu, click Programs > IBM MQSeries Adapter Kernel >
Uninstall MQSeries Adapter Kernel.

– Use the Add/Remove Programs utility in the Control Panel.
– Run the aqmuninstall.bat file in the kernel’s root directory.
– To uninstall the kernel silently (that is, without having the uninstallation

program prompt you for details or confirmation), open a command prompt,
change to the kernel’s installation directory, and enter the following
command:
java -cp uninstall.jar run -silent

v On UNIX, change to the kernel’s root directory and enter the following
command:
aqmuninstall.sh

To uninstall the kernel silently (that is, without having the uninstallation
program prompt you for details or confirmation), change to the kernel’s root
directory and enter the following command:
java -cp uninstall.jar run -silent

v On OS/400, use one of the following methods to uninstall the kernel.
– If you are using remote AWT to uninstall the kernel, perform the following

steps:
Step 1. Ensure that remote AWT is set up and running. See “Using remote

AWT” on page 25 for details.
Step 2. To improve the performance of the uninstallation process, run the

Create Java Program (CRTJVAPGM) command against the
/QIBM/ProdData/mqak/uninstall/uninstall.jar file.

40 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Step 3. Run the Run Java (RUNJVA) command as follows, where n.n.n.n
represents the TCP/IP address of the workstation that is running
remote AWT:
RUNJVA CLASS(run)
CLASSPATH('/QIBM/ProdData/mqak/uninstall/uninstall.jar')
PROP((os400.class.path.rawt 1) (RmtAwtServer 'n.n.n.n')
(java.version 1.2))

– If you are using an attached client workstation to uninstall the kernel,
perform the following steps:
Step 1. Ensure that the requirements specified in “Using an attached client”

on page 26 are met.
Step 2. Ensure that the Host Servers option is installed and running on the

AS/400 machine. You can start Host Servers by using the Start Host
Servers (STRHOSTSVR) command at a Control Language (CL)
prompt.

Step 3. Ensure that TCP/IP is installed and running on the AS/400 machine.
You can start TCP/IP by using the Start TCP/IP (STRTCP) command
at a CL prompt.

Step 4. Copy the uninstall.jar and uninstall.dat files from the
/QIBM/ProdData/mqak/uninstall directory on the AS/400 system to a
directory on the client workstation.

Step 5. Enter the following command:
java -classpath uninstall.jar; run -os400

To uninstall the kernel silently (that is, without having the
uninstallation program prompt you for details or confirmation), enter
the following command:
java -cp uninstall.jar run -silent -os400 machine_name user_ID
password

where machine_name is the TCP/IP address of the AS/400 system,
user_ID is your user ID, and password is your password.

– If you are working directly on the AS/400 system at a CL prompt or qsh
session and want to uninstall the kernel silently (that is, without having the
uninstallation program prompt you for details or confirmation), enter one of
the following commands:
- At a CL prompt:

RUNJVA CLASS(run)
CLASSPATH('/uninstall.jar')
PROP((java.version 1.2)) PARM('-silent')

- At a qsh session:
java -Djava.version=1.2 -classpath uninstall.jar run -silent

Chapter 3. Installing the kernel 41

42 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 4. Using the kernel

This chapter contains the following information about using the kernel:
v “Preparing for production”
v “Configuring the kernel” on page 44
v “Configuring MQSeries and MQSeries Integrator” on page 69
v “Starting the kernel” on page 71
v “Stopping the kernel” on page 72
v “Maintaining the kernel” on page 74
v “Diagnosing problems” on page 74

Preparing for production
Before putting the kernel into production, perform the following tasks:
1. Design the overall system architecture, including MQSeries Adapter Offering,

MQSeries or other messaging software, and optionally MQSeries Integrator,
based on your site’s requirements and conditions. Typically, the architecture is
unique to each site.

2. Build the required source adapters and target adapters by using MQSeries
Adapter Builder, then test and deploy them.

3. Develop application-specific interfaces outside of MQSeries Adapter Offering
for the following purposes:
v To enable the source adapter to acquire the application data from the source

application
v To enable the target application to acquire the message data from the target

adapter

The exact nature of the application-specific interface depends on the
characteristics of the source application and of the target application. Some
examples of application-specific interfaces include:
v API calls and user exits
v File reads and writes
v Database triggers
v Message queues

4. Configure the kernel to support the run-time flow: sending, routing, tracing,
and delivering messages. See “Configuring the kernel” on page 44 for
information on configuring the kernel.

5. Configure MQSeries or other messaging software and, optionally, MQSeries
Integrator to support your overall system architecture. See “Configuring
MQSeries and MQSeries Integrator” on page 69.

6. If required, develop Java logon classes to support message delivery. They are
specific to each target application. They are needed only if the target adapter
requires information for logging on and connecting to the application.

7. Test the whole system—that is, MQSeries Adapter Kernel with your source
adapters and target adapters, your application-specific interfaces, and your
custom code—before putting the system into production.

8. Deploy the system in the production environment.

© Copyright IBM Corp. 2000, 2002 43

9. Turn on the kernel by starting one or more adapter daemons and, optionally,
trace servers. Ensure that the source application is started. If the source adapter
is run in the source application’s process, the source adapter is automatically
started with the source application; no extra steps are needed to start the source
adapter. Any daemon or server that contains the source adapter needs to be
started. See “Starting the kernel” on page 71.

Configuring the kernel
This section discusses configuring the kernel for use in your environment.
“Overview of configuration” provides a conceptual overview of kernel
configuration. “Files involved in startup and configuration” on page 48 discusses
the various files that together define an MQSeries Adapter Kernel configuration.
“The setup file” on page 48 discusses the aqmsetup file, which defines several of the
kernel’s initial settings. “The configuration file” on page 49 discusses the
aqmconfig.xml file, which provides the kernel with specific configuration
information such as the names of source and target applications, source and target
adapters, queues and queue managers, communication modes, and logging and
tracing specifications.

Overview of configuration
This section provides a conceptual overview of kernel configuration. It is important
to understand the kernel’s run-time flow before configuring the kernel. This section
discusses the run-time flow at a simplified level. See “Run-time flow” on page 10
for detailed information on the run-time flow.

At the most basic level, the configuration of MQSeries Adapter Kernel is driven by
the data that flows between applications. Configuration must also take the
following factors into account:
v The applications that receive the data.
v The adapters that are required on the source side, and the target adapters,

adapter daemons, and workers that are required on the target side.
v The communications modes, marshaling formats, and transport mechanisms that

are used.

Data structures and data format are different for each application in the
configuration. For example, if a configuration includes two applications, A and B,
that each send purchase-order data to application C, the data from application A is
likely to be in a different format and have different tag meanings from application
B’s data. To prevent application C from needing to recognize and parse the two
different data flows from the two different applications, each application’s data is
converted into an integration message that is in an integration-neutral format.
Normally the integration-neutral format is an industry standard based on XML.
The only data format that application C needs to be able to recognize and parse is
the integration-neutral format.

Figure 3 on page 45 shows the flow of data from applications A and B to
applications C and D. Following the figure is an explanation of the various data
flows it depicts.

44 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

In Figure 3, purchase-order data from application A flows to applications C and D,
purchase-order data from application B also flows to applications C and D, and
bill-of-material data from application B flows only to application D. In each case,
data is converted to an industry-standard format before being sent to the target
applications. In the case of purchase-order data coming from applications A and B,
the data is converted to a standard XML format representing purchase-order data.
In the case of bill-of-material data coming from application B, the data is converted
to a standard XML format representing bill-of-material data.

A communications transport such as MQSeries or an implementation of the Java
Message Service (JMS) is used to send the data to the target application or
applications. The integration message is converted into the marshaling format
required by the specific communications transport, then delivered to the
communications transport (for example, an MQSeries queue). Each target
application can use a different communications transport and marshaling format to
receive messages. For instance, application C can use MQSeries to receive messages
and application D can use JMS, as shown in Figure 4 on page 46. In this case, all
integration messages going to application C (that is, the purchase-order data from
applications A and B) are converted to an MQSeries marshaling format, and all
integration messages going to application D (that is, purchase-order data from
applications A and B as well as bill-of-material data from application B) are
converted to a JMS marshaling format. MQSeries Adapter Kernel uses the
following mechanisms to perform these conversions:
v A source adapter is used to convert application data to an integration message.

Source adapters are created in MQSeries Adapter Builder.
v The native adapter is used to convert the integration message into a

communications message. The native adapter uses the logical message service (LMS)
to convert the message for transportation by the communications transport; the
LMS is specific to the communications transport being used. The LMS then uses
a formatter to marshal the message onto the transport.

Figure 3. Applications connected by data flows in a simple configuration

Chapter 4. Using the kernel 45

The flow of data from application to integration message to communications
message is shown in Figure 5 and Figure 6 on page 47. When a communications
message is received at the target, the conversions are reversed: the native adapter
converts the communications message back into the integration message; then, if
necessary, the target adapter converts the integration message into the data format
required by the target application.

Figure 4. Applications connected by different communications transports in a simple
configuration

Figure 5. Conversion of data

46 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Each point that the data passes through must be represented in the kernel’s
configuration file. There are three logical configuration requirements that are
divided by application identifier (source or target). An application identifier can be
for either a source application or a target application, depending on whether
messages are going into the application (target) or coming from the application
(source). The configuration file must include the following types of information:
v Communications

– Where the data needs to go
– The communications transport to use
– The communications marshaling method (formatter) to use
– The underlying communications requirements, such as an MQSeries queue

manager and MQSeries queue names, or a JMS queue connection factory and
JMS queue names

v Adapters (only for the target side)
– The adapters that are required to process the data
– The type of adapters used (EAB or EJB)
– Additional information for the specific adapter type used
– For stand-alone MQSeries Adapter Kernel, the adapter daemon and worker

information
v Other

– Tracing specifications
– Logging specifications

The flow of data as it relates to the different parts of the configuration is shown in
Figure 7 on page 48.

Figure 6. Flow of data

Chapter 4. Using the kernel 47

See “Syntax and organization of the configuration file” on page 50 for details on
mapping these configuration requirements to XML elements in the aqmconfig.xml
file, which controls these aspects of the kernel’s configuration. “Common
configurations” on page 59 lists several common configurations.

Files involved in startup and configuration
Configuration of the kernel is determined by several customizable files. By using a
standard text editor, edit the files to configure the kernel for your site. The
following files are involved in configuring the kernel:
v The aqmsetenv.bat (Windows systems) or aqmsetenv.sh (UNIX) file, which sets

environment variables. Edit this file to change system environment variables
after installation, if desired. Environment variables set by this file include PATH,
CLASSPATH, and LIBPATH. These variables are set automatically by the
installation program on Windows systems. To set these variables automatically
when you log in to UNIX, add the values specified in the aqmsetenv.sh file to
your .profile file (if you use the Bourne shell or the Korn shell) or .cshrc file
(if you use the C shell).
For information on setting the appropriate environment variables on OS/400, see
Step 5 on page 32.

v The aqmsetup file, which provides several initial setup values for the kernel. See
“The setup file” for more information.

v The aqmconfig.xml file, which configures the kernel. See “The configuration file”
on page 49 for additional information. This file contains most of the values that

configure the kernel.
v The aqmcreateq.bat (Windows systems) or aqmcreateq.sh (UNIX and OS/400)

file, which is a script that creates MQSeries queues. See “Creating MQSeries
queues” on page 76.

All of these files include comments that can help you edit them.

It is recommended that you back up these files. For additional information, see
“Maintaining the kernel” on page 74.

The setup file
The setup file, aqmsetup, controls several of the kernel’s initial settings, including
the following:
v The location of the configuration file. See “The configuration file” on page 49.
v The location of XML DTDs, if not in the current directory.

Figure 7. Flow of data related to configuration

48 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v Java Native Interface (JNI) environment variables for the C interface, for
changing the amount of memory used. This applies when a C executable
module starts a process and a Java virtual machine is instantiated by that
process. Memory use can be controlled in this case by uncommenting and
modifying the following lines in the aqmsetup file:
#AQM_JNI_NATIVESTACKSIZE=1048576
#AQM_JNI_JAVASTACKSIZE=4194304
#AQM_JNI_MINHEAPSIZE=16777216
#AQM_JNI_MAXHEAPSIZE=268435426

All sizes are in bytes.

A sample aqmsetup file is provided in “Appendix E. Sample of the setup file” on
page 99 and is also included in the samples directory of the MQSeries Adapter
Kernel installation.

If necessary, edit the setup file when MQSeries Adapter Kernel is first installed.
After installation, edit the file only if the kernel encounters a Java out-of-memory
problem, as discussed in the previous list.

The configuration file
This section discusses the aqmconfig.xml file, which determines the kernel’s
configuration. “Syntax and organization of the configuration file” on page 50
provides information on the structure of the configuration file. “Editing the
configuration file” on page 65 provides best-practice suggestions for editing the
configuration file.

Configuration of MQSeries Adapter Kernel is determined by an XML file named
aqmconfig.xml. A sample configuration file is included in “Appendix D. Sample of
the configuration file” on page 93 and is also included in the samples directory of
the MQSeries Adapter Kernel installation.

The values specified in the configuration file control the following elements of the
kernel:
v Source logical identifiers
v Destination logical identifiers
v Adapter daemons and worker information on the target side
v Trace clients
v Trace servers
v Marshaling and routing of messages, determined by the following specifications:

– The names of receive queues, error queues, and reply queues
– One or more default destinations to which messages are to be sent
– The name of the MQSeries queue manager or JMS queue connection factory

that gets or sends the message
– The timeout for receiving messages or replies
– The target adapter class on the target side of the kernel that processes each

message
– Additional information specific to the target adapter
– The minimum number of workers on the target side (if running stand-alone

MQSeries Adapter Kernel)
– Enabling and disabling trace, and control of trace level
– Enabling and disabling audit logging

Chapter 4. Using the kernel 49

v Communications mode

Syntax and organization of the configuration file
Because the configuration of MQSeries Adapter Kernel is based on the Lightweight
Directory Access Protocol (LDAP), the structure of the configuration file mirrors
LDAP. The top-level XML element, Epic, represents the top level of the LDAP
directory, and subordinate LDAP objects are represented by XML elements nested
within the top-level element. Some of the XML elements have required attributes
that represent LDAP information. Values are added to the configuration either as
the contents of elements or as attributes of elements. An example of a
configuration value assigned as the content of an element is <epictracelevel>-
1</epictracelevel>, which assigns the value -1 (all possible messages) to the
epictracelevel element. An example of a configuration value assigned as an
attribute of an element is <ePICTraceHandler
epictracehandler="com.ibm.logging.ConsoleHandler">, which assigns the
com.ibm.logging.ConsoleHandler class to be used as the trace handler.

The following is a list and description of the high-level elements used in the
configuration file. “XML elements used in the configuration file” on page 51 lists
and describes the full set of elements used in the configuration file. See the sample
configuration file for examples of how the different elements are used in context.
v Epic—The required top-level element for the aqmconfig.xml file.
v ePICApplications—The required child of the Epic element.
v ePICApplication—The required child of the ePICApplications element. It lists

and defines the applications to be serviced by the kernel; one fully defined
ePICApplication element (including child elements) is required for each
application.

v AdapterRouting—An optional child of the ePICApplication element. It defines
the queue manager and related information.

v ePICBodyCategory—The required child of the AdapterRouting element. It sets the
body category for messages to be routed by the kernel.

v ePICBodyType—The required child of the ePICBodyCategory element. It sets the
body type of messages to be routed by the kernel. It contains definitions for
items such as message destinations, communications modes for receiving
messages, and message formatters.

v ePICAdapterDaemonExtensions—An optional child of the ePICApplication
element representing an adapter daemon. It contains information related to
adapter daemons, including application identifiers and number of adapter
workers.

v ePICTraceExtensions—An optional child of the ePICApplication element
representing a trace client application or trace server element. It defines
information related to tracing.

Figure 8 on page 51 shows the high-level structure of the configuration file. This is
not a working example of a configuration file; it is simply meant to demonstrate
the relationships and dependencies among the high-level elements. See
“Appendix D. Sample of the configuration file” on page 93 for a complete example.

50 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

The following is a list and description of the full set of elements used in the
configuration file. If an element is noted as having a default value, the kernel uses
that value if an element of the configuration requires a value that is not explicitly
specified.

XML elements used in the configuration file

Epic Top-level element for the configuration file.

Child elements:

<?xml version="1.0" encoding="UTF-8"?>
<Epic o="ePIC">

<ePICApplications o="ePICApplications">
<!-- The following <ePICApplication> tag configures the kernel to work with
an application named APP1. -->
<ePICApplication epicappid="APP1">

<!-- Tags here specify logging and trace information for the APP1
application. -->
<AdapterRouting cn="epicadapterrouting">

<!-- Tags here specify the queue manager and its attributes. -->
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<!-- Tags here specify the details of transporting and processing messages
from APP1. -->

</epicBodyType>
</ePICBodyCategory>

</AdapterRouting>
</ePICApplication>
<!-- The following <ePICApplication> tag starts an adapter daemon for the
APP1 application. -->
<ePICApplication epicappid="APP1Daemon">

<!-- Specifications for the APP1Daemon adapter daemon, which works with
the APP1 application. -->
<ePICAdapterDaemonExtensions cn="epicappextensions">

<epicdepappid>APP1</epicdepappid>
<epicminworkers>1</epicminworkers>

</ePICAdapterDaemonExtensions>
</ePICApplication>
<!-- The following <ePICApplication> tag configures the kernel to work with
an application named APP2. -->
<ePICApplication epicappid="APP2">

<!-- Tags here specify logging and trace information for the APP2
application. -->
<AdapterRouting cn="epicadapterrouting">

<!-- Tags here specify the queue manager and its attributes. -->
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<!-- Tags here specify the details of transporting and processing messages
from APP2. -->

<epicrfh2messageset>true</epicrfh2messageset>
</epicBodyType>

</ePICBodyCategory>
</AdapterRouting>

</ePICApplication>
<!-- The following <ePICApplication> tag configures a trace client named
TraceClient. -->
<ePICApplication epicappid="TraceClient">

<ePICTraceExtensions cn="epicappextensions">
<!-- Tags here specify attributes of the trace client. -->

</ePICTraceExtensions>
</ePICApplication>

</ePICApplications>
</Epic>

Figure 8. High-level structure of the configuration file

Chapter 4. Using the kernel 51

v context

v ePICApplications (required)

Attributes: o="ePIC" (required)

context
Specifies the root of the Java Naming and Directory Interface (JNDI) file
system context (FSContext) when Java Message Service (JMS) objects are
used. The default is the current directory. Required if JMS is used. See
“Using JMS object storage” on page 83 for information about using JMS
objects with MQSeries Adapter Kernel.

Child elements: None

Attributes: None

ePICApplications
Contains information about the applications serviced by the kernel.

Child elements: ePICApplication (required)

Attributes: o="ePICApplications" (required)

ePICApplication
Specifies information about an application serviced by the kernel.

Child elements:
v epiclogging

v epictrace

v epictracelevel

v epictraceclientid

v epiclogoninfoclassname

v AdapterRouting

v ePICTraceExtensions

v ePICAdapterDaemonExtensions

Attributes: epicappid="application_ID", where application_ID is a valid
application identifier (required)

epiclogging
Determines whether to perform audit logging. Audit logging requires the
WebSphere Business Integrator product. The default is false.

Child elements: None

Attributes: None

epictrace
Determines whether to use tracing. The default is false.

Child elements: None

Attributes: None

epictracelevel
Sets the level of tracing, using the constants specified by the
com.ibm.logging.IRecordType class. The default is 0 (no messages). See the
Problem Determination Guide for details about tracing and for a full list of
valid trace levels.

Child elements: None

52 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Attributes: None

epictraceclientid
Specifies the name of the trace client application. The default is
TraceClient.

Child elements: None

Attributes: None

epiclogoninfoclassname
Specifies the name of a logon class used to connect to the application when
using an EAB adapter. The default is
com.ibm.epic.adapters.eak.adapterdaemon.EpicLogonDefault.

Child elements: None

Attributes: None

AdapterRouting
Contains information about message types and the routing of messages.

Child elements:
v epicmqppqueuemgr

v epicuseremotequeuemanagertosend

v epicmqppqueuemgrhostname

v epicmqppqueuemgrportnumber

v epicmqppqueuemgrchannelname

v epicjmsconnectionfactoryname

v ePICBodyCategory (required)

Attributes: cn="epicadapterrouting" (required)

epicmqppqueuemgr
If MQSeries is being used as the transport mechanism, specifies the name
of the queue manager to be used. If not specified or if specified as DEFAULT,
the default queue manager is used.

Child elements: None

Attributes: None

epicuseremotequeuemanagertosend
If MQSeries is being used as the transport mechanism, specifies whether to
use a remote queue manager to send messages. The default is false.

Child elements: None

Attributes: None

epicmqppqueuemgrhostname
If MQSeries is being used as the transport mechanism, specifies the
TCP/IP host name of the machine on which the queue manager resides.
Required only if MQSeries Client is being used.

Child elements: None

Attributes: None

epicmqppqueuemgrportnumber
If MQSeries is being used as the transport mechanism, specifies the port
number of the server process of the queue manager. The default is 1414
(the MQSeries default). Required only if MQSeries Client is being used.

Chapter 4. Using the kernel 53

Child elements: None

Attributes: None

epicmqppqueuemgrchannelname
If MQSeries is being used as the transport mechanism, specifies the
channel name of the queue manager server. Required only if MQSeries
Client is being used.

Child elements: None

Attributes: None

epicjmsconnectionfactoryname
If JMS is being used as the transport mechanism, specifies the JMS
Connection factory name. The value must be specified as
attribute=object, where attribute is the LDAP attribute and object is the
JMS Connection object. The object is expected to be stored under the
AdapterRouting element. For instance, for a JMS connection object named
QCFTEST1 with an LDAP attribute of cn, the value specified by this element
is cn=QCFTEST1.

Child elements: None

Attributes: None

ePICBodyCategory
Specifies the body category of messages being sent.

Child elements: ePICBodyType (required)

Attributes: epicbodycategory=body_category, where body_category specifies
the body category of messages being sent (required)

ePICBodyType
Specifies the body type of messages being sent.

Child elements:
v epiccommandclassname

v epiccommandtype

v epiccommandejbmapper

v epiccommandejbmethod

v epiccommandejbmethodparmtype

v epiccommandejburl

v epiccommandejbinitialcontext

v epicdestids

v epicreceivemode

v epicmessageformatter

v epicreceivetimeout

v epicreceivemqppqueue

v epicerrormqppqueue

v epicreplymqppqueue

v epicjmsreceivequeuename

v epicjmserrorqueuename

v epicjmsreplyqueuename

v epicreceivefiledir

v epiccommitfiledir

54 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v epicerrorfiledir

Attributes: epicbodytype=body_type, where body_type specifies the body
type of messages being sent (required)

epicrfh2messageset
Enables the <mcd> folder (message content descriptor) processing for
MQSeries Integrator if set to ″true″. The default value is ″false″. This
setting is optional and only relevant if the epicreceivemode is MQRFH2.
Note that you cannot use this setting within LDAP. For a description of the
<mcd folder, see “MQSeries Integrator version 2 header” on page 91. For
further details, refer to the MQSeries Integrator documentation.

epiccommandclassname
Specifies the name of an EAB target adapter or EJB command that is
invoked to process messages. Required if an adapter daemon or
WebSphere Application Server is being used to receive messages.

Child elements: None

Attributes: None

epiccommandtype
Specifies the type of the target adapter. Possible values include MQAKEAB
and MQAKEJB. MQAKEAB specifies a standard MQSeries Adapter Kernel EAB
target adapter; MQAKEJB specifies that enterprise beans are used on the
target side of the kernel in WebSphere Application Server. The default is
MQAKEAB. A value of MQAKEJB is required when the target adapter is an
enterprise bean.

Child elements: None

Attributes: None

epiccommandejbmapper
Specifies the name of the TDCMapper class used to map input data. The
default is TDCGenericMapper. Required when the target adapter is an
enterprise bean.

Child elements: None

Attributes: None

epiccommandejbmethod
Specifies the name of the method to invoke on an enterprise bean. The
method must accept a TerminalDataContainer object as input and return a
TerminalDataContainer object. The default is execute. Required when the
target adapter is an enterprise bean.

Child elements: None

Attributes: None

epiccommandejbmethodparmtype
Specifies the class name of the object that is being used as the parameter
for the method being invoked on the enterprise bean. The default is the
class name of the object returned by TDCMapper. Required when the target
adapter is an enterprise bean.

Child elements: None

Attributes: None

Chapter 4. Using the kernel 55

epiccommandejburl
Specifies the uniform resource locator (URL) of a deployed enterprise bean,
in the form IIOP://host_name:port, where host_name is the host name of
the EJB server and port is the port at which the name server listens (by
default, 900). The default is IIOP:///. Required when the target adapter is
an enterprise bean.

Child elements: None

Attributes: None

epiccommandejbinitialcontext
Specifies the name of the initial context factory used to look up the home
name of the enterprise bean. The default is
com.ibm.ejs.ns.jndi.CNInitialContextFactory. Required when the target
adapter is an enterprise bean.

Child elements: None

Attributes: None

epicdestids
Specifies the identifiers of one or more applications to be used as message
destinations. Required if the application is sending messages and the
destination logical ID is set to NONE.

Child elements: None

Attributes: None

epicreceivemode
Specifies the communications mode to be used. See “Appendix A.
Communications modes” on page 81 for a list and explanation of valid
communications modes. Required if the application is receiving messages.

Child elements: None

Attributes: None

epicmessageformatter
Specifies the message formatter to use, dependent on the value of
epicreceivemode and on the transport method used. See Table 10 on
page 82 and Table 11 on page 82 for details on message formatters and
transport methods.

Child elements: None

Attributes: None

epicreceivetimeout
Specifies, in milliseconds, the length of time the receiver waits for
messages before it times out. The default is 0. A value of -1 specifies no
timeout (wait indefinitely).

Child elements: None

Attributes: None

epicreceivemqppqueue
Specifies the name of the queue from which to receive messages. Required
when the epicreceivemode element specifies an MQSeries communications
mode. See “Appendix A. Communications modes” on page 81 for a list of
MQSeries communications modes.

Child elements: None

56 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Attributes: None

epicerrormqppqueue
Specifies the name of the queue on which to put error messages. Required
if error-message queueing is being used and the epicreceivemode element
specifies an MQSeries communications mode. See “Appendix A.
Communications modes” on page 81 for a list of MQSeries communications
modes.

Child elements: None

Attributes: None

epicreplymqppqueue
Specifies the name of the queue from which to receive reply messages.
Required if reply requests are being used and the epicreceivemode element
specifies an MQSeries communications mode. See “Appendix A.
Communications modes” on page 81 for a list of MQSeries communications
modes.

Child elements: None

Attributes: None

epicjmsreceivequeuename
Specifies the name of the queue from which to receive messages. Required
for the JMS communication mode. The object is expected to be stored
under the ePICBodyType element. The value must be specified as
attribute=object, where attribute is the LDAP attribute and object is the
name of the JMS queue object. For instance, for a JMS object named
TEST1AIQ with an LDAP attribute of cn, the value specified by this element
is cn=TEST1AIQ.

Child elements: None

Attributes: None

epicjmserrorqueuename
Specifies the name of the queue on which to put error messages. Required
if error-message queueing is being used with the JMS communications
mode. The object is expected to be stored under the ePICBodyType element.
The value must be specified as attribute=object, where attribute is the
LDAP attribute and object is the name of the JMS queue object. For
instance, for a JMS object named TEST1AEQ with an LDAP attribute of cn,
the value specified by this element is cn=TEST1AEQ.

Child elements: None

Attributes: None

epicjmsreplyqueuename
Specifies the name of the queue from which to receive reply messages.
Required if reply requests are being used with the JMS communications
mode. The object is expected to be stored under the ePICBodyType element.
The value must be specified as attribute=object, where attribute is the
LDAP attribute and object is the name of the JMS queue object. For
instance, for a JMS object named TEST1RPL with an LDAP attribute of cn,
the value specified by this element is cn=TEST1RPL.

Child elements: None

Attributes: None

Chapter 4. Using the kernel 57

epicreceivefiledir
Specifies the name of the directory from which to receive messages.
Required for the FILE communications mode.

Child elements: None

Attributes: None

epiccommitfiledir
Specifies the name of the directory in which to hold received messages
until they are committed. Required for the FILE communications mode
when messages are being received.

Child elements: None

Attributes: None

epicerrorfiledir
Specifies the name of the directory into which to put error messages.
Required if error-message queueing is being used with the FILE
communications mode.

Child elements: None

Attributes: None

ePICAdapterDaemonExtensions
Contains information about adapter daemon extensions.

Child elements:
v epicdepappid

v epicminworkers

Attributes: cn="epicappextensions" (required)

ePICTraceExtensions
Contains information about trace extensions. See the Problem Determination
Guide for a full discussion of this element and its children.

Child elements:
v epicdepappid

v epictracesyncoperation

v epictracemessagefile

v epictracehandler

v ePICTraceHandler

Attributes: cn="epicappextensions" (required)

epicdepappid
Specifies the identifier of the application that the adapter daemon is
servicing. It defaults to the application ID with which the adapter daemon
was started.

Child elements: None

Attributes: None

epicminworkers
Specifies the number of adapter workers started by the adapter daemon.
The default is 1.

Child elements: None

58 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Attributes: None

Common configurations
This section lists the configuration values for several common configuration
scenarios, including values for sending and receiving messages by using various
communications transports. When a message is sent, configuration values are
obtained from both the source side and the target side; when a message is
received, configuration values are obtained only from the target side. The source
and target are represented by their respective logical identifiers. These examples
assume that the source and target are on two different machines. If the target
application identifier is not already set, it is determined from the value of the
epicdestids element in the source’s configuration.

Note: The configuration scenarios list the element configuration values that are
applicable and that can be set. Refer to the element’s listing in “XML
elements used in the configuration file” on page 51 for any defaults that
apply to that element.

MQSeries common configurations: This section provides common configurations
when MQSeries is used as the communications transport. The epicreceivemode
element specifies an MQSeries communications mode (for example, MQPP or
MQRFH2). The following scenarios are listed:
v Table 2 shows configuration elements that need to be set when sending a

message from an MQSeries server to an MQSeries server.
v Table 3 on page 60 shows configuration elements that need to be set when

sending a message from an MQSeries server that is using a remote queue
manager to an MQSeries server.

v Table 4 on page 60 shows configuration elements that need to be set when
sending a message from an MQSeries client that is using a host server to an
MQSeries server.

v Table 5 on page 61 shows configuration elements that need to be set when
receiving a message on an MQSeries server.

v Table 6 on page 62 shows configuration elements that need to be set when
receiving a message on an MQSeries client that is using a host server.

Table 2. Common configuration: Sending a message from an MQSeries server to another
MQSeries server

Source configuration Target configuration

The epicreceivemode element specifies an
MQSeries communications mode.

The epicmqppqueuemgr element specifies the
name of the queue manager. This queue
manager must exist on the source
application’s machine.

The epicreceivemqppqueue element specifies
the name of the receive queue. This queue
must be an MQSeries remote queue on the
target application’s machine or part of an
MQSeries cluster.

Chapter 4. Using the kernel 59

Table 2. Common configuration: Sending a message from an MQSeries server to another
MQSeries server (continued)

Source configuration Target configuration

The epicreplymqppqueue element specifies
the name of the reply queue. This queue
must be an MQSeries local queue on the
sender’s machine or part of an MQSeries
cluster. Used only for synchronous requests
and replies.

The epicmessageformatter element specifies
the name of the formatter to use.

The epicreceivetimeout element specifies
the time the receiver waits for a reply before
it times out.

Table 3. Common configuration: Sending a message from an MQSeries server to an
MQSeries server via a remote queue manager

Source configuration Target configuration

The epicreceivemode element specifies an
MQSeries communications mode.

The epicmqppqueuemgr element specifies the
name of the queue manager. This queue
manager must exist on the source
application’s machine.

The epicmqppqueuemgr element specifies the
name of the queue manager. This queue
manager must exist on the target
application’s machine. The name must be
specified; a default value cannot be used.

The epicremotequeuemanagertosend element
specifies that a remote queue manager is
being used to send messages.

The epicreceivemqppqueue element specifies
the name of the receive queue. This queue
must be an MQSeries local queue on the
target application’s machine or part of an
MQSeries cluster.

The epicreplymqppqueue element specifies
the name of the reply queue. This queue
must be an MQSeries local queue on the
sender’s machine or part of an MQSeries
cluster. Used only for synchronous requests
and replies.

The epicmessageformatter element specifies
the name of the formatter to use.

The epicreceivetimeout element specifies
the time the receiver waits for a reply before
it times out.

Table 4. Common configuration: Sending a message from an MQSeries client that is using a
host server to an MQSeries server

Source configuration Target configuration

The epicreceivemode element specifies an
MQSeries communications mode.

60 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Table 4. Common configuration: Sending a message from an MQSeries client that is using a
host server to an MQSeries server (continued)

Source configuration Target configuration

The epicmqppqueuemgr element specifies the
name of the queue manager. This queue
manager must exist on the sender client’s
host machine.

The epicmqppqueuemgrhostname element
specifies the host name of the MQSeries
server machine.

The epicmqppqueuemgrportnumber element
specifies the port number of the server
process of the queue manager on the server
machine.

The epicmqppqueuemgrchannelnumber element
specifies the channel number of the queue
manager server.

The epicreceivemqppqueue element specifies
the name of the receive queue. This queue
must be an MQSeries remote queue on the
target application’s machine or part of an
MQSeries cluster.

The epicreplymqppqueue element specifies
the name of the reply queue. This queue
must be an MQSeries local queue on the
sender client’s host machine or part of an
MQSeries cluster. Used only for synchronous
requests and replies.

The epicmessageformatter element specifies
the name of the formatter to use.

The epicreceivetimeout element specifies
the time the receiver waits for a reply before
it times out.

Table 5. Common configuration: MQSeries server receiving a message

Source configuration Target configuration

Not applicable. The epicreceivemode element specifies an
MQSeries communications mode.

The epicmqppqueuemgr element specifies the
name of the queue manager. This queue
manager must exist on the target
application’s machine.

The epicreceivemqppqueue element specifies
the name of the receive queue. This queue
must be an MQSeries local queue on the
target’s machine.

The epicerrormqppqueue element specifies
the name of the error queue. This queue
must be an MQSeries local queue on the
target’s machine or part of a cluster.
Required only if using an adapter worker.

The epicmessageformatter element specifies
the name of the formatter to use.

Chapter 4. Using the kernel 61

Table 5. Common configuration: MQSeries server receiving a message (continued)

Source configuration Target configuration

The epicreceivetimeout element specifies
the time the receiver waits for a message to
receive before it times out.

Table 6. Common configuration: MQSeries client that is using a host server receiving a
message

Source configuration Target configuration

Not applicable. The epicreceivemode element specifies an
MQSeries communications mode.

The epicmqppqueuemgr element specifies the
name of the queue manager. This queue
manager must exist on the receiver’s client
host machine.

The epicmqppqueuemgrhostname element
specifies the host name of the MQSeries
server machine.

The epicmqppqueuemgrportnumber element
specifies the port number of the server
process of the queue process on the server
machine.

The epicmqppqueuemgrchannelnumber element
specifies the channel number of the queue
manager server.

The epicreceivemqppqueue element specifies
the name of the receive queue. This queue
must be an MQSeries local queue on the
receiver’s client host machine.

The epicerrormqppqueue element specifies
the name of the error queue. This queue
must be an MQSeries local queue on the
receiver’s client host machine or part of a
cluster. Required only if using an adapter
worker.

The epicmessageformatter element specifies
the name of the formatter to use.

The epicreceivetimeout element specifies
the time the receiver waits for a message to
receive before it times out.

JMS common configurations: This section provides common configurations when
JMS is used as the communications transport. The epicreceivemode element
specifies JMS.

If the MQSeries JMS implementation is being used, the appropriate MQSeries
objects must exist. For example, a JMS queue connection factory must be related to
a queue manager on an MQSeries server, and a JMS queue must be related to an
MQSeries queue. MQSeries objects do not need to be listed in the configuration,
but the supporting MQSeries objects must exist.

The following scenarios are listed:

62 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v Table 7 shows configuration elements that need to be set when sending a
message via JMS.

v Table 8 shows configuration elements that need to be set when receiving a
message via JMS.

Table 7. Common configuration: Sending a message via JMS

Source configuration Target configuration

The epicreceivemode element specifies JMS
communications mode.

The epicjmsconnectionfactoryname element
specifies the name of the JMS queue
connection factory. The referenced object
must exist in the configuration.

The epicjmsreceivequeuename element
specifies the name of the JMS receive queue.
The referenced object must exist in the
configuration.

The epicjmsreplyqueuename element
specifies the name of the JMS reply queue.
The referenced object must exist in the
configuration. Used only for synchronous
requests and replies.

The epicmessageformatter element specifies
the name of the formatter to use.

The epicreceivetimeout element specifies
the time the receiver waits for a reply before
it times out.

Table 8. Common configuration: Receiving a message via JMS

Source configuration Target configuration

Not applicable. The epicreceivemode element specifies JMS
communications mode.

The epicjmsconnectionfactoryname element
specifies the name of the JMS queue
connection factory. The referenced object
must exist in the configuration.

The epicjmsreceivequeuename specifies the
name of the JMS receive queue. The
referenced object must exist in the
configuration.

The epicjmserrorqueuename element
specifies the name of the JMS error queue.
The referenced object must exist in the
configuration.

The epicmessageformatter element specifies
the name of the formatter to use.

The epicreceivetimeout element specifies
the time the receiver waits for a message to
receive before it times out.

Adapter common configurations: This section provides common configurations
when an adapter is invoked on the target side. Different configuration values are

Chapter 4. Using the kernel 63

used depending on whether the target is an Enterprise Access Builder (EAB) target
adapter (specified by an epiccommandtype value of MQAKEAB) or an EJB service
session bean target adapter (specified by an epiccommandtype value of MQAKEJB).

Note: EJB service session bean target adapters are supported only in WebSphere
Application Server.

For an epiccommandtype value of MQAKEAB, specify values for the following
additional elements:
v epiclogoninfoclassname

v epiccommandclassname

For an epiccommandtype value of MQAKEJB, specify values for the following
additional elements:
v epiccommandclassname

v epiccommandejbmethod

v epiccommandejbmethodparmtype

v epiccommandejburl

v epiccommandejbinitialcontext

v epiccommandejbmapper

Adding adapter information to the configuration
When a new adapter is added to the kernel configuration, several specifications, at
a minimum, must be added to the configuration file. For an example of a
minimum configuration file, see the aqmconfig.minimum.xml file. This file is shown
in “Appendix D. Sample of the configuration file” on page 93 and is also included
in the samples directory of the MQSeries Adapter Kernel installation.

The following specifications represent the minimum amount of information that
must be added to the configuration when a new adapter is added:
v Source adapter (sending messages):

– The identifier of the application under which the source adapter is running.
– The default queue manager. If MQSeries is used as the transport mechanism

and is installed and running on the same machine as the source adapter, you
do not need to specifically configure the queue manager.

– Destination logical identifiers for messages. If all messages go to the same
destination, then use a body category of DEFAULT and a body type of
DEFAULT.

– A receive queue for each destination logical identifier to which the source
adapter is sending messages.

v Target adapter (receiving messages):
– The identifier of the application under which the target adapter is running.
– The default queue manager. If MQSeries is used as the transport mechanism

and is installed and running on the same machine as the source adapter, you
do not need to specifically configure the queue manager.

– The receive mode for MQSeries. Typically this is the same for all messages; if
so, use a body category of DEFAULT and a body type of DEFAULT.

– The receive queue. If this is the same for all messages, then use a body
category of DEFAULT and a body type of DEFAULT.

64 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

– The error queue, in case an error occurs when the target adapter processes the
message. Typically this is the same for all messages; if so, use a body category
of DEFAULT and a body type of DEFAULT.

– The target adapter class name to invoke when a message is received. This is
specific to body category and body type.

– Receive timeout value. It is recommended that an appropriate value be set to
prevent high CPU usage. Typically this is the same for all messages; if so, use
a body category of DEFAULT and a body type of DEFAULT.

For additional target adapters, the same information can be sufficient if the same
receive queue is being used. If this is the case, the only information that needs to
be specified differently is the target adapter class name to invoke for the specific
body category and body type.

v Trace specifications:
– Whether trace is on or off.
– The trace level.
– Additional trace specifications, including trace destination, for source adapters

and target adapters. By default, trace is displayed in the command prompt
window or terminal where the kernel was started.

Editing the configuration file
Use a text editor or a dedicated XML editor to edit the configuration file. A DTD
file named aqmconfig.dtd is provided in the samples directory of the kernel
installation for users of XML editors. An XML editor called Xeena can be
downloaded from the IBM alphaWorks Web site at www.alphaworks.ibm.com. The
following recommendations apply to editing the configuration file:
v Before you begin editing the configuration file, gather all the pertinent

information about your desired configuration. This includes the names of
applications and queues that are involved in the configuration, the types of
messages being exchanged, the communications mode or modes being used, and
information about trace programs and other extensions.

v Copy the sample aqmconfig.xml file from the samples directory to your desired
location. Do not rename the copy of the configuration file. Edit the copy.

v Use comments to identify different sections of the configuration file and to
document the specific values used in your configuration (for instance,
application identifiers, message queue names, and timeout values). In XML,
comments start with the characters <!-- and end with the characters -->.
Comments can span multiple lines, as in the following example:
<!--

Comment text
-->

Note that XML does not permit comments inside other comments.
v Organize the configuration file according to the application identifiers. Keep the

entries for each application identifier together.
v If you are not using a dedicated XML editor, use a text editor that preserves the

line endings and does not break lines when the file is saved. Examples of this
kind of text editor are Notepad on Windows systems and vi or Emacs on UNIX.

v Remember that XML is case sensitive; be extremely careful to use the correct
case for all tag (element) names and attributes. Using an incorrect case in the
tagging can invalidate the configuration file. Using a dedicated XML editor can
help prevent case errors.

Chapter 4. Using the kernel 65

http://www.alphaworks.ibm.com/

v If you want to use default values for body category and body type and the
values are not already defaulted, you must configure the value DEFAULT for
each value in the configuration file. If you do not, the kernel does not use any
default values.

v Validate the configuration file before putting it into production. See “Validating
the configuration file”.

v The changes to the configuration file take effect the next time a kernel process
starts. If a process is running when the configuration file is changed, the process
must be stopped and then restarted for the changes to take effect. Be extremely
careful if you edit the configuration file that is currently in production.

v Back up the configuration file each time you edit it.

Validating the configuration file
After the configuration file is edited and before it is put into production, it is
recommended that you validate it. To validate the configuration file, perform the
following general steps:
1. Create a configuration file validation directory within which to validate and set

up the test.
2. Create a validation XML message.
3. Set up message queues to support the validation test.
4. Set up and then execute a configuration file validation test that sends a

message and that receives a message.
5. Examine the results of the test to determine whether the configuration file is

correct.

The utility that helps to create a validation XML message and the configuration file
validation test are both provided as part of the kernel.

The configuration file validation test invokes the sendMsg method and sends a
validation XML message from a native adapter on the source side of the kernel to
an adapter daemon on the target side of the kernel. A source adapter and a target
adapter are not required. However, if a target adapter is in place, you can also test
sending the message to the target application.

The procedure follows.

Note: Several scripts are provided as a convenience for use in the procedure. If
desired, copy the scripts and then edit the copies to make your own
versions. If you are using OS/400, note that the UNIX versions of the scripts
can be run in a qsh session. You can start a qsh session by entering the Start
QSH (STRQSH) command at a Control Language (CL) prompt.

Step 1. Open a command prompt window.
Step 2. Create a configuration file validation directory. Copy the configuration

file and the setup file into it.
Step 3. Change to the validation directory.
Step 4. Enter the following command to create the validation XML message:

v aqmcrtmsg.bat (Windows systems)
v aqmcrtmsg.sh (UNIX and OS/400)

Step 5. A list of options is displayed. Select an option and press Enter. Enter a
value for each. The order in which values are entered is not important.
Examples of options are set sourcelogicalid, set msgtype, and set

66 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

bodycategory. You must enter values for options 20, 21, 22, and 23. You
can use options 24 or 241 to provide message body data. Other values
are not required.

Step 6. Enter option 1 to create the validation XML file. The validation XML file
is created in the current directory and is named EpicMessagenn.xml,
where nn is the number of the XML file.

Step 7. Enter option 0 to exit from the validation utility.
Step 8. Set up the appropriate message queues to support the validation.
Step 9. Set the AQMSETUPFILE environment variable to point temporarily to

the setup file in the validation directory:
v At a command prompt on Windows systems, enter the following:

set AQMSETUPFILE=E:\run_time_files\aqmsetup

where E:\ represents the correct drive and run_time_files is the
validation directory.

v On UNIX and OS/400, enter the following command. The command
example assumes that you are using Korn shell; if you are using a
different shell, change the command accordingly.
export AQMSETUPFILE=root_directory/run_time_files/aqmsetup

where root_directory is the kernel’s installation directory and
run_time_files is the validation directory. On OS/400, the aqmsetup file
must always be located in your IFS home directory (/home/user_name).

If necessary, edit the setup file in the validation directory to point to the
configuration file that is being validated.

Step 10. Choose which of the following to test:
v Only the source side of the kernel.
v Whether the message can be routed all the way to the target

application. This test requires a target adapter to be in place already.
v Tracing.

First test the source side, then test the target side. Turn off the adapter
daemon to test only the source side. Turn on the adapter daemon to test
the target side as well. If a target adapter is not in place already, you can
still test whether the adapter daemon processes the message up to the
point when it attempts to invoke the command for the appropriate target
adapter. It is recommended that you enable tracing, especially if a target
adapter is not already in place.

Step 11. Execute the validation test. From any directory, enter the following
command:
v On Windows systems:

aqmsndmsg.bat -a source_logical_identifier -f XML_message_file

v On UNIX and OS/400:
aqmsndmsg.sh -a source_logical_identifier -f XML_message_file

where:

source_logical_identifier
indicates the source logical identifier. This value must match the
value of the source logical identifier entered for option 20 in Step
5 on page 66.

Chapter 4. Using the kernel 67

XML_message_file
indicates the XML message file.

Note: A list of all options for this test can be displayed by entering the
following command:

On Windows systems:
aqmsndmsg.bat -?

On UNIX and OS/400:
aqmsndmsg.sh -?

Note that the -? works only on the Korn shell; if you use another
UNIX shell (such as the Bourne shell or the C shell), use the
backslash character before the question mark (that is, -\?).

Step 12. Examine the results. The validation message contains the correct body
category, body type, and data.
v If you are testing only the source side of the kernel (that is, if the

adapter daemon has not been started), examine the queue to which the
message was to be routed.
– If you see your validation message on that queue, those entries in

the configuration file are validated.
– If you do not see your validation message on that queue, check the

exception file. If tracing is enabled, check the trace messages.
v If you are testing the target side of the kernel and a target adapter is

in place, check the target application.
– If your validation message is received by the target application,

those entries in the configuration file are validated.
– If your validation message is not received by the target application,

check the exception file. If tracing is enabled, check the trace
messages.

v If you are testing the target side of the kernel and no target adapter is
in place, check the error queue for the validation message and the
exception file for an exception message. If tracing is enabled, check the
trace messages.
– If you see your validation message on the error queue and an

exception message, those entries in the configuration file are
validated.

– If you do not see your validation message on the error queue, check
the exception file. If tracing is enabled, check the trace messages.

Step 13. If necessary, modify the configuration file and validate it again.

Using the configuration checker utility
The MQSeries Adapter Kernel provides a configuration checker utility that checks
the active configuration of the kernel, as well as LDAP configurations for:
v Syntactical correctness
v Completeness
v Availability of configured MQ resources
v Availability of configured JMS objects

The configuration checker utility performs the following steps:

68 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

1. It checks the setup file as specified via the AQMSETUPFILE environment
variable.

2. It scans the configuration that is specified in the setup file. The configuration
contains a set of epicApplication specifications. The utility checks those
epicApplications first that are used for adapter communications. These
applications have an epicBodyCategory and an epicBodyType specified. In the
output file of the configuration checker these specifications are referred to as
″fully qualified″ applications. The EpicApplications that do not have specified
an epicBodyCategory or an epicBodyType are checked only if they are
referenced by a fully qualified application.

3. It checks all settings of each fully qualified applications, for example, trace
settings, log settings, dependent ApplIDs, or communication settings.

4. It checks each application that is referenced by a fully qualified application for
existence and consistency, for example the TraceClient.

5. It checks each application that is referenced indirectly by a fully qualified
application for existence and constistency..

6. It checks each resource that is needed for an accessible application for existence
and accessibility as, for example, MQ queues or JMS queue objects.

To invoke the configuration checker utility open a command prompt and enter the
following command: aqmchk [-q].

If you specify -q, the utility runs in quiet mode, that is, only error messages are
displayed or the message informing you that the checking process finished
successfully. If you do not specify -q, the utility reports all steps that are
performed on the screen, including the results of the checking process.
Independent from the -q option, the utility writes all results of the checking
process to the aqmchk.log file, which is located in the directory that you are
currently using.

Configuring MQSeries and MQSeries Integrator
Configure MQSeries and optional software such as MQSeries Integrator to support
the kernel as follows:

In MQSeries:
v Several queues are used for verifying the installation. If you use these queues for

your test or production environments, clear them to verify installation. See
“Verification procedure” on page 35 for the queues used for verifying
installation.

v Set up queues to support the transport of messages according to the routing
scheme that you have designed.

v When creating queues, set the MAX_QUEUE_DEPTH environment variable to
the maximum queue depth allowed.

In MQSeries Integrator, set up input and output queues in rules (version 1.1) or in
message flows (version 2) that correspond to the queues that are configured in the
configuration file.

Performance recommendations
The following performance recommendations apply specifically to MQSeries
Adapter Kernel:

Chapter 4. Using the kernel 69

v When XML DTDs are parsed, ensure that the DTD files reside in the same
directory as the process that parses them. This reduces the effort required by the
process to find the DTDs.

v When large messages are being sent and received, using message type RFH2
results in better performance than using message type XML.

See the MQSeries documentation for general recommendations for improving
performance.

Using the start and stop command-line utilities
When an adapter daemon process is started, the required number of adapter
daemon worker threads is started according to the specification in the kernel’s
configuration file. If you use the command-line utility for starting the adapter
daemon aqmstrad, you can use a temporary administration queue. The adapter
daemon creates the temporary queue according to the administration model queue,
and then listens to this queue and waits for a stop request. You must create an
administration model queue before the adapter deamon can create a temporary
administration queue.

In addition to the start utility, MQSeries Adapter Kernel provides a utility for
stopping an adapter daemon, called aqmstpad. The following sections describe
how to start and stop an adapter daemon by using the command-line utilities, and
how to create an administration model queue.

Creating an administration model queue
Before the adapter deamon can create a temporary administration queue, you must
create an administration model queue. You can use the script input file
mqak_model_q.mqsc to create an administration model queue. It is defined as
follows:
DEFINE QMODEL (MQAK.ADMIN.QUEUE) +
DESCR('The MQAK administration model queue (to stop AdapterDaemons).') +
PUT(ENABLED) +
GET(ENABLED) +
DEFTYPE(TEMPDYN) +
DEFSOPT(SHARED) +
DEFPSIST(NO) +
SHARE +
USAGE(NORMAL);

This script input file is located in the samples directory of the MQSeries Adapter
kernel installation.

You must have administration rights to create an administration model queue. To
execute the script, open a command prompt and change to the samples directory
of the kernel. Then, enter the following command:

runmqsc [QueueManager Name] < mqak_model_q.mqsc

where [QueueManager Name] is the name of the queue manager you have
configured in the configuration file of the kernel. If you have configured more than
one queue manager, you must specify an administration queue for each queue
manager that is configured.

70 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Starting the kernel
To start the kernel, start the following items:
v Adapter daemon for each target application
v Trace server (optional)

Note that if the source adapter is run in the source application’s process, the source
adapter is automatically started with the source application; no extra steps are
needed to start the source adapter. Any daemon or server that contains source
adapters needs to be started. You do not start source adapters directly.

Start each adapter daemon and trace server by performing the following steps:

Note: Several scripts are provided as a convenience for use in the procedure. If
desired, copy the scripts and then edit the copies to make your own
versions. If you are using OS/400, note that the UNIX versions of the scripts
can be run in a qsh session. You can start a qsh session by entering the Start
QSH (STRQSH) command at a Control Language (CL) prompt.

Step 1. Start MQSeries or other messaging software and optional software, such
as MQSeries Integrator.

Step 2. Start any associated software that your site requires—for example,
applications (outside the kernel) to read trace messages from queues.

Step 3. Open a command prompt. For each adapter daemon, enter the following
command:
v On Windows systems:

aqmstrad.bat -a application_identifier [-bc body_category
-bt body_type] [-noretry] [-timing] [-q qid]

v On UNIX and OS/400:
aqmstrad.sh -a application_identifier [-bc body_category
-bt body_type] [-noretry] [-timing] [-q qid]

where

-a application_identifier
Identifies the destination logical identifier that the adapter daemon
serves.

-bc body_category
Specifies the body category that the adapter daemon worker uses
for determining the communications mode and the related
information for receiving messages. If no value is provided, the
adapter daemon uses the value DEFAULT.

-bt body_type
Specifies the body type that the adapter daemon worker uses for
determining the communications mode and related information for
receiving messages. If no value is provided, the adapter daemon
uses the value DEFAULT.

-noretry
Specifies that the worker stops automatically when there are no
more messages. If -noretry is not specified, then the worker
continually polls the queue for messages and the adapter daemon
must be stopped manually.

Chapter 4. Using the kernel 71

-timing
Allows a timing test to run. The default is not to allow timing
tests.

-q qid
Specifies the name of a temporary administration queue that is
used for stopping the adapter daemon. This parameter requires a
value for the [epicreceivetimout] parameter in the kernel’s
configuration file, and an existing administration queue. If
[-noretry] is specified, -q is ignored. For further details, refer to
“Stopping the kernel”.

Note: If you need to modify Java startup parameters, edit the
aqmstrad.bat (Windows systems) or aqmstrad.sh (UNIX and
OS/400) file. See the comments inside the file for details.

Step 4. For each trace server, enter the following command:
v On Windows systems:

aqmstrtd.bat -how -a source_application_identifier

v On UNIX and OS/400:
aqmstrtd.sh -how -a source_application_identifier

where:

-how
Indicates how the trace messages are to be received. Possible
values include the following:
– socket

– ena, that is, native adapter

-a source_application_identifier
Source application identifier. If no value is provided, the default
value TraceServer in the configuration file is used.

See the Problem Determination Guide for more information about trace
servers.

Step 5. After an adapter daemon or trace server is started, a process window
remains open until you stop the adapter daemon. The process window
can display exceptions. See “Exception messages” on page 75.

Stopping the kernel
To stop the kernel, stop each of the adapter daemons and trace servers. If the
adapter daemon has been started with the -q option, you can use the aqmstpad
command-line utility to stop an adapter daemon. To stop a trace server, you must
use Ctrl+C. If you did not set the -q option when the adapter daemon was started,
also use Ctrl+C to stop the adapter daemon.

The aqmstpad utility communicates with the administration queue that was
created for the current application when the adapter daemon was started. It uses
the unique identifier of the -q parameter to identify the corresponding
administration queue.

To stop the the kernel by using the aqmstpad utility, perform the following steps:
Step 1. Open a command prompt. For each adapter daemon, enter the following

command:
v On Windows systems:

aqmstpad.bat -a application_identifier -q qid

72 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

v On UNIX and OS/400:
aqmstpad.sh -a application_identifier -q qid

where

-a application_identifier
Identifies the destination logical identifier that the adapter daemon
serves.

-q qid
Specifies the unique name of a temporary administration queue
that has been created when the adapter daemon was started and is
now used to stop the adapter daemon.

Step 2. For each trace server, enter the following command:
v On Windows systems: Go to the command prompt from which the trace

server was started and press Ctrl+C.
v On UNIX and OS/400: Go to the terminal from which the trace server

was started and press Ctrl+C.

See the Problem Determination Guide for more information about trace
servers.

List of available messages for the start and stop command-line
utilities
This section lists the messages that are displayed if an error occurs when using the
start and stop utilities. A message consists of the following parts:
v The message number (for example, AQM4003, where AQM is the product code

for the MQSeries Adapter Kernel)
v The message text, which gives you a short description of the error that has

occurred.
v The message description, which gives you additional information about the

message.

AQM4000:
The request to stop the AdapterDaemon for application ID <applID>
completed successfully. The used administration queue is <qid>.

Description: The appropriate administration queue has been identified and
the request to stop completed successfully.

AQM4001:
The request to stop the AdapterDaemon for application ID <applID> and
administration queue <qid> failed.

Description: There are several possible reasons why the request failed:
1. An administration queue with the name <qid> does not exist.
2. The function cannot access the involved queue manager for the

specified application.
3. The function cannot modify the queue.

AQM4002:
The AdapterDaemon could not process the administration queue
parameter <qid>.

Description: There are several possible reasons why the request failed:
1. The administration model queue was not created correctly. See

“Creating an administration model queue” on page 70.
2. An internal error occurred while processing the administration queue.

Chapter 4. Using the kernel 73

AQM4003:
Usage: com.ibm.epic.adapters.eak.util.Aqmutil::main(): Aqmutil <-a
ApplicationID> <-q AdminQueueName>, where a is the daemon’s
application ID for configuraton information, and q is the administration
queue name.

Description: The usage message describes how to enter the Aqmutil
command that is used by the stop command-line utility aqmstpad.

AQM4004:
No <epicreceivetimeout> value was found for ApplicationID <applID>,
bodyType <bt>, and bodyCategory <bc>. The AdapterDaemon did not
start successfully.

Description: The <epicreceivetimeout> value was not found in the
configuration for the specified parameter values. If you set the -q option, a
timeout value must be set in the configuration file. The AdapterDaemon
failed to start.

Note: The Problem Determination Guide contains a description of all available
messages.

Maintaining the kernel
Set up a kernel maintenance plan. It is recommended that you periodically back up
the following items:
v The configuration as specified in the following files:

– aqmconfig.xml

– aqmsetup

v Adapters that you have built and their associated files

Backing up or periodically deleting the contents of trace and other files used by
the kernel to support its own processing is not required. Back up these files if
desired. If trace messages are being routed to a single file instead of to multiple
files, the single trace file can become very large. If the tracing level is set to capture
a high level of detail (for instance, all trace messages or information messages),
consider deleting the trace files periodically.

Diagnosing problems
You can use exception messages, trace messages, and the MQSeries error queue to
help diagnose problems. The MQSeries Adapter Kernel produces exception
messages and, if trace is enabled, trace messages. See the Problem Determination
Guide for information on how to diagnose problems in an MQSeries Adapter
Kernel environment.

To understand exception messages and trace messages, you must understand how
the kernel works. The kernel uses an error queue to handle some errors. See “How
the kernel works” on page 7.

You can identify the message that caused exception messages and trace messages
by the combination of the unique message identifier and unique transaction
identifier.

There is no identifier that enables you to definitively identify the same message in
both the error queue and the kernel. However, you can manually correlate a

74 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

message on the error queue with the corresponding exception message, trace
message, or both. You can compare one or more of the following:
v Approximate time stamp
v Queue for the source logical identifier
v Queue for the destination logical identifier
v Body category
v Body type
v Unique message identifier
v Unique transaction identifier

If they match, then you probably have correlated the message on the error queue
with the corresponding exception message or trace message.

Version number
Run aqmversion.bat (Windows systems) or aqmversion.sh (UNIX and OS/400) in
the bin directory to display the version number of the kernel.

Exception messages
The kernel produces the following types of exception messages:
v The native adapter on the source side of the kernel throws exceptions to the

source adapter. See the MQSeries Adapter Builder documentation for how the
source adapter handles these exceptions.

v The native adapter on the target side of the kernel throws exceptions to the
worker that manages the native adapter.

v The worker writes exceptions to the EpicSystemExceptionFilennnnnnnn.log file,
which resides in the same directory as the worker.

v The adapter daemon writes exception messages to an exception file called
EpicSystemExceptionFilennnnnnnn.log that resides in the same directory as the
adapter daemon. Because the adapter daemon and its workers reside in the
same directory, they all write to the same exception file. The adapter daemon
also writes exception messages to the console (that is, the command prompt or
the terminal that was used to start it, if it was started from a window).

The kernel’s trace exception messages are different from MQSeries exception
messages. The following is an example of an exception message from the kernel:
2000.10.26 19:38:20.929 com.ibm.epic.adapters.eak.nativeadapter.LMSMQ
Thread Name=main receiveRequest(ENAService) ePIC TEST2
TYPE_ERROR_EXC AQM5004: Received exception <com.ibm.epic.adapters.eak.common.
AdapterException> Message information: <AQM0114: com.ibm.epic.adapters.eak.
nativeadapter.MQNMRFH2Formatter::convertMessage(MQMessage): Expecting a message
with an MQHRF2 format and received a message with format <MQSTR >.>
for <unmarshall Message()> having invalid data <(null)>

The values in an exception message depend on the nature of the message,
potentially including the following items:
v Time stamp
v Source logical identifier
v Destination logical identifier
v Body category
v Body type
v Unique message identifier

Chapter 4. Using the kernel 75

v Unique transaction identifier
v Exception information

See “Common verification problems” on page 36 for common problems that you
can encounter during verification of installation and for potential responses.

Trace messages
The kernel can be configured to produce trace messages. For information on
tracing, see the Problem Determination Guide.

Utilities

Creating MQSeries queues
You can use batch files or shell scripts to automate the creation of MQSeries
queues. Run aqmcreateq.bat (Windows systems) or aqmcreateq.sh (UNIX and
OS/400), using the application name as a parameter. These files create the
following queues for each application:
v Receive queue, called application_nameAIQ.
v Error queue, called application_nameAEQ.
v Reply queue, called application_ nameRPL.

76 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 5. Using MQSeries Adapter Kernel APIs

The kernel includes APIs that are used for functions such as sending and receiving
messages, creating and parsing XML, and managing the kernel configuration.
These APIs are used by adapters created by using the MQSeries Adapter Builder.
The MQSeries Adapter Kernel Information Center includes associated online API
documentation in Javadoc HTML format.

The kernel is intended to be used with adapters built by the user by using the
MQSeries Adapter Builder. The kernel is not intended to be used by calls to the
kernel APIs from custom code alone. The online API documentation is provided
only as an aid to understanding how the kernel functions and an aid to
diagnostics.

The kernel online API documentation is located in the documentation directory.

© Copyright IBM Corp. 2000, 2002 77

78 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Chapter 6. Obtaining additional information

There are several sources of information that can be useful when you are using
MQSeries Adapter Offering. For additional information on MQSeries Adapter
Kernel, see the Problem Determination Guide document, available from the MQSeries
Adapter Kernel Information Center that is installed with the product. The Problem
Determination Guide provides information on solving specific problems that can
arise when using the kernel. For information on MQSeries Adapter Builder, see
that product’s Information Center and online help system.

Available on the Internet
The MQSeries product family Web site is at www.ibm.com/software/ts/mqseries/.
By following links from this Web site, you can:
v Obtain latest information about the MQSeries product family, including

MQSeries Adapter Offering.
v Access MQSeries books in HTML and PDF formats, potentially including a more

recent edition of this book. The direct link to the MQSeries library page is
www.ibm.com/software/ts/mqseries/library/manualsa/.

v Download MQSeries SupportPacs.

For information on using MQSeries on OS/400, see the OS/400 library at
www.ibm.com/servers/eserver/iseries/library/. Also see the OS/400–specific
books available from the MQSeries library Web site at
www.ibm.com/software/ts/mqseries/library/manualsa/.

References
The following reference material discusses topics covered in this document:
v The Open Applications Group Web site at www.openapplications.org/
v The Extensible Markup Language (XML) 1.0 W3C Recommendation at

www.w3.org/TR/1998/Rec-xml-19980210

These are not IBM Web sites.

© Copyright IBM Corp. 2000, 2002 79

http://www.ibm.com/software/ts/mqseries/
http://www.ibm.com/software/ts/mqseries/library/manualsa/
http://www.ibm.com/servers/eserver/iseries/library/
http://www.ibm.com/software/ts/mqseries/library/manualsa/
http://www.openapplications.org/
http://www.w3.org/TR/1998/Rec-xml-19980210

80 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix A. Communications modes

This appendix provides information on the communications modes supported by
MQSeries Adapter Kernel and on the Java classes that are used to support them.
Some of the communications modes are provided as convenience modes with
default formatters. See Table 10 on page 82 for the default formatters that are used
with the convenience modes.

The following communications modes are supported:

MQPP The kernel transports messages by using MQSeries base services.
This is a convenience mode.

MQRFH1 The kernel transports messages by using MQSeries and brokers
messages by using MQSeries Integrator version 1.1. This is a
convenience mode.

MQRFH2 The kernel transports messages by using MQSeries and brokers
messages by using MQSeries Integrator version 2. This is a
convenience mode.

MQBD The kernel transports messages by using MQSeries base services
but sends and receives body data only. This is a convenience mode.
The following characteristics are unique to this mode:
v It can send only body data, not message header values.
v It can receive messages that contain only body data. It uses the

following default message header values for received messages:
– SourceLogicalApplicationID—The value in the ENAService

object used in the receive method call.
– BodyCategory—The value in the ENAService object used in the

receive method call.
– BodyType—The value in the ENAService object used in the

receive method call.
– Acknowledgment—If the received MQMessage is an MQSeries

REQUEST, then Acknowledgment is set to 1.
– BodyData—The message data received from MQSeries.

All other header values use the normal defaults.

MQ The kernel transports messages by using MQSeries base services.

JMS The kernel transports messages by using the Java Message Service
(JMS). See “Using JMS object storage” on page 83 for information
on using JMS objects with MQSeries Adapter Kernel.

FILE The kernel puts messages into a file and gets them from a file. This
mode is provided for diagnostic purposes only.

Table 9 on page 82 lists the communications modes and the Java classes that
support them. All Java classes are from the Java package
com.ibm.epic.adapters.eak.nativeadapter. Note that any Java class that supports
the logical message service (LMS) can be specified as a communications mode; in
this case, the class itself is used to support communication.

© Copyright IBM Corp. 2000, 2002 81

Table 9. Communications modes and supporting Java classes

Communications mode Java class Notes

MQPP LMSMQBindingMQPP Requires installation of
MQSeries.

MQRFH1 LMSMQBindingMQRFH1 Requires installation of
MQSeries.

MQRFH2 LMSMQBindingMQRFH2 Requires installation of
MQSeries.

MQBD LMSMQMQBD Requires installation of
MQSeries.

MQ LMSMQBinding Requires installation of
MQSeries.

JMS LMSJMS Requires installation of JMS.

FILE LMSFile None.

Table 10 lists the communications modes and their associated formatter interfaces.
Table 11 cross-references formatter interfaces, formatter class names, and their uses.
All formatters are from the Java package
com.ibm.epic.adapters.eak.nativeadapter. Note that any formatter class can be
specified for the communication mode; in this case, the specified formatter class is
used as the formatter.

Table 10. Communications modes and formatter interfaces

Communications mode Formatter interface Default formatter

MQPP MQFormatterInterface MQNMXMLFormatter

MQRFH1 MQFormatterInterface MQNMRFH1Formatter

MQRFH2 MQFormatterInterface MQNMRFH2Formatter

MQBD MQFormatterInterface MQNMBDFormatter

MQ MQFormatterInterface MQNMXMLFormatter

JMS JMSFormatterInterface JMSNMRFH2Formatter

FILE StringFormatterInterface NMXMLFormatter

Table 11. Formatter interfaces, formatter class names, and purposes

Formatter interface Formatter class name Purpose

MQFormatterInterface MQNMXMLFormatter EpicMessage as XML

MQNMRFH1Formatter EpicMessage as RFH1

MQNMRFH2Formatter EpicMessage as RFH2

MQNMDBFormatter Body data only

JMSFormatterInterface JMSNMXMLFormatter EpicMessage as XML

JMSNMRFH2Formatter EpicMessage as RFH2

JMSNMBDFormatter Body data only

StringFormatterInterface NMXMLFormatter EpicMessage as XML

Table 12 on page 83 lists the supported LMS classes and their degree of
transactional support. See “Transactional capabilities” on page 20 for information
about using transactions with MQSeries Adapter Kernel.

82 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Table 12. LMS classes and transactional support

LMS class Transactional support

LMSMQBindingMQPP Single phase

LMSMQBindingMQRFH1 Single phase

LMSMQBindingMQRFH2 Single phase

LMSMQMQBD Single phase

LMSMQBinding Single phase

LMSJMS Single phase

LMSFILE No support

Using JMS object storage
The names of JMS objects are stored by using the FSContext file implementation of
JNDI, which comes as part of the MQSeries JMS SupportPac. The context
(directory structure) that the kernel uses for FSContext follows the LDAP hierarchy
by using the distinguishing attribute with the associated value for the directory
name. For example, for the LDAP hierarchy o=ePIC, o=ePICApplications,
epicappid=TEST1, the directory structure is o-ePIC/o-ePICApplications/epicappid-
TEST1.

To create the context and objects, use the JMS Admin tool that is provided with the
JMS installation. The basic steps are defining a context, then changing the context.
Changing the context moves you into the context. Create the JMS objects in the
appropriate places. Following are example commands for creating the context
structure and JMS objects. In this example, the application ID is TEST1.
#
aqmjmscreatesample.scp 1.00 09Mar01
Used for MQSeries Adapter Kernel
Sample AQM JMS Configuration.
#
Copyright (c) 2001 International Business Machines. All Rights Reserved.
#
This configuration file is as an example only.
#
IBM MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS
SAMPLE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.
#
CopyrightVersion 1.0
#
#
This is a script to use with the JMS administration (JMSAdmin) tool
which comes with MQSeries Support pac MA88.
This tool requires the JMSAdmin.config to be set to use either
FSCONTEXT (file) or LDAP. This script is setup to work with
FSCONTEXT, but will work with LDAP with the following changes:
- Change the "-" signs to "=". Example: define ctx(o-ePIC)
becomes define ctx(o=ePIC)
- In LDAP the contexts have to already be defined using the
LDAP administration tool. For example you do not need
to "define ctx(o=ePIC) but only change into it with the
"change ctx(o-ePIC)" command.
- There are some notes in the following script which highlight
differences when using LDAP.
#
#

Appendix A. Communications modes 83

Example usage: MQSeries root\java\bin\jmsadmin.bat < aqmjmscreatesample.scp
#
Some helpful commands:
"display ctx" will display the context's of the context you are
currently in.
"=UP" means return to the parent context. Example: change ctx(=UP)
"=INIT" means return to root context. In this example one directory level
above o-ePIC. Example: change ctx(=INIT)
"define xxx" is for creating either a context or object.
"change xxx" is for changing/moving into the context.
#
Always required.
define ctx(o-ePIC)
change ctx(o-ePIC)
Always required.
define ctx(o-ePICApplications)
change ctx(o-ePICApplications)
Application id is TEST1, requires a context.
define ctx(epicappid-TEST1)
change ctx(epicappid-TEST1)
Always required.
define ctx(cn-epicadapterrouting)
change ctx(cn-epicadapterrouting)
This will hold the JMS QueueConnectionFactory object.
Note: These two steps are not required for LDAP.
define ctx(cn-QCFTEST1)
change ctx(cn-QCFTEST1)
Create the JMS QueueConnectionFactory object whose name is QCFTEST1
Using MQSeries in server (bindings) mode.
define qcf(QCFTEST1) qmgr(yourQManagerName) tran(BIND)
change ctx(=UP)
BodyCategory is DEFAULT
define ctx(epicbodycategory-DEFAULT)
change ctx(epicbodycategory-DEFAULT)
BodyType is DEFAULT
define ctx(epicbodytype-DEFAULT)
change ctx(epicbodytype-DEFAULT)
This will hold the JMS Queue object whose name is TEST1AIQ.
Note: These two steps are not required for LDAP.
define ctx(cn-TEST1AIQ)
change ctx(cn-TEST1AIQ)
Create the JMS Queue object whose name is TEST1AIQ
q(JMS Q Object Name) queue(MQSeries Queue name)
define q(TEST1AIQ) queue(TEST1AIQ)
Can move up and define other contexts and JMS objects.
Quit the administration tool.
end

84 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix B. Validated configurations

There are many potential configurations and combinations of MQSeries, MQSeries
Adapter Offering, and MQSeries Integrator. Each of these members of the
MQSeries product family is rich in features and configurations. Further, you can
combine functionalities in MQSeries, MQSeries Adapter Offering, and MQSeries
Integrator. Some functionality in one member of the MQSeries product family can
partially overlap with functionality provided by other members of the family. You
must determine how to use and combine the different message routing and
delivery functionalities in MQSeries, MQSeries Adapter Offering, and MQSeries
Integrator.

The following configurations of MQSeries, MQSeries Adapter Offering, and
MQSeries Integrator have been validated as of the time of publication. Refer to the
MQSeries Web site for the latest validated configurations.

MQSeries Adapter Kernel:

v Sending a message with acknowledgment requested and without
acknowledgment requested.

v Using the MQSeries or JMS communications modes. For vlaid
communications modes, see “Appendix A. Communications modes” on
page 81.

v Message routing and delivery:
– Sending a message from one source adapter to one target adapter
– Sending a message from one source adapter to multiple target

adapters
– Multithreaded message delivery, that is, multiple workers
– With destination logical identifier set to NONE in the message, so

that the kernel’s configuration file is used to determine the
destination logical identifier based on body category, body type, and
source logical identifier

– Push model of delivery
– With tracing enabled

Note: See “Appendix C. Message headers” on page 87. It contains the
MQSeries Adapter Kernel message header fields that the kernel
populates and processes.

v With the prerequisites shown in “Hardware” on page 23 and “Software”
on page 24.

v Using the configuration file, not LDAP, to define the configuration.

MQSeries:

v Not using MQSeries clusters.

Note: See “Appendix C. Message headers” on page 87. It contains the
MQSeries Adapter Kernel message header fields that the kernel
populates and processes.

MQSeries Integrator:

© Copyright IBM Corp. 2000, 2002 85

v MQSeries Adapter Kernel and MQSeries can route and deliver the
message to MQSeries Integrator. See MQSeries Integrator information to
determine its capabilities to broker these messages.

v Sending messages from the source side of the kernel, through MQSeries
and MQSeries Integrator version 2, and routing directly to the target
side of the kernel. Within MQSeries Integrator, the message flow is
configured to route statically. All messages arriving on the MQInput
node of the flow are routed directly to a specific MQOutput queue.

Note: See “Appendix C. Message headers” on page 87. It contains the
MQSeries Adapter Kernel message header fields that the kernel
populates and processes.

86 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix C. Message headers

MQSeries Adapter Offering uses several message headers. See “Message and
message format” on page 9 for which headers are used under which circumstances.

This appendix lists and describes the message header fields.

MQSeries Adapter Kernel message descriptor header
Header values used by MQSeries Adapter Kernel. These values are placed in
message-holder objects. The Propagated in replies? column lists whether or not the
value is propagated back to the source application in a reply message when the
source application requests a reply. Some values are used only with WebSphere
Business Integrator.

Table 13. MQSeries Adapter Kernel header

Header name Propagated in replies? Meaning or usage

UniqueID No Unique identifier for each
message.

TransactionID Yes Transaction identifier shared
by each message and its
reply, if any. Equivalent to an
Extricity PublicProcessID or
a DataInterchange (DI)
ApplicationID.

MessageType No Used for gateway and
log/trace/exception
messages.

SourceLogicalID No Logical identifier of the
source application.
Equivalent to reserved names
in DI, Partner Agreement
Manager (PAM), and
Business Flow Manager
(BFM).

DestinationLogicalID No Logical identifier of the
target application. For DI
and PAM, the default value
is none, but can be
overridden.

RespondToLogicalID Yes Used for responses.

CorrelationID No Reserved use.

GroupStatus No Reserved use.

ProcessingCategory No Reserved use.

QosPolicy No Reserved use.

DeliveryCategory No Reserved use.

AckRequested No Determines whether or not
the source application
requests a reply message.

PublicationTopic No Reserved use.

© Copyright IBM Corp. 2000, 2002 87

Table 13. MQSeries Adapter Kernel header (continued)

Header name Propagated in replies? Meaning or usage

SessionID No Reserved use.

EncryptionStatus No Determines type of body
encryption and signature.

TimeStampCreated No Time and date when the
message was created.

TimeStampExpired No Time and date after which
the message is no longer
meaningful. A value of -1
means no expiration.

Size No Reserved use.

BodyType No Represents the specific
purpose of the message.

BodyCategory No Represents the message’s
application type.

BodySecondaryType No Reserved use.

UserArea No General area for user data.

RelatedSubjectID No Used for interprocess
correlation.

ExternalID No Identifier of the current
owner (for example, a user
or trading partner) outside
the application environment.

InternalID No Identifier of the current
owner (for example, a user
or trading partner) inside the
application environment.

BodySignature No Reserved use.

TransportCorrelationID Yes Reserved use.

MQSeries message descriptor header
Content of fields is determined by MQSeries. MQSeries Adapter Offering puts
messages onto queues as determined by message-control values. See
“Message-control values” on page 12 for details.

Table 14. MQSeries header

Section or field Meaning or usage

Revision Fixed.

UniqueID Each message has a unique identifier.

TransactionID A message and its reply share the same transaction
identifier.

MessageType Reserved use.

SourceLogicalID Logical identifier of the source application.

DestinationLogicalID Logical identifier of the target application.

RespondToLogicalID A logical identifier to which the reply message is to
be sent.

88 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Table 14. MQSeries header (continued)

CorrelationID Reserved use.

GroupStatus Reserved use.

ProcessingCategory Reserved use.

QosPolicy Reserved use.

DeliveryCategory Reserved use.

AckRequested Determines whether the source application requests a
reply or not.

PublicationTopic Reserved use.

SessionID Reserved use.

EncryptionStatus Reserved use.

TimeStampCreated Time and date when the message was created.

TimeStampExpired Time and date after which the message is no longer
meaningful.

Size Reserved use.

BodyCategory Represents the message’s application type, for
example, OAG or RosettaNet.

BodyType Represents the specific purpose of the message, for
example, add sales order or synchronize inventory.

BodySecondaryType Reserved.

UserArea General area for user data.

BodyData Message body data.

MQSeries without MQSeries Integrator
The kernel header values and the body data are put into an XML document. The
following is an example of the DTD that describes the XML document:
<!ELEMENT EPICHEADER (HEADER, EPICBODY,USERAREA*)>
<!ELEMENT HEADER (#PCDATA)>
<!ATTLIST HEADER Revision CDATA #FIXED "001">
<!ATTLIST HEADER UniqueID CDATA #REQUIRED>
<!ATTLIST HEADER TransactionID CDATA #REQUIRED>
<!ATTLIST HEADER MessageType CDATA #REQUIRED>
<!ATTLIST HEADER SourceLogicalID CDATA #REQUIRED>
<!ATTLIST HEADER DestinationLogicalID CDATA #REQUIRED>
<!ATTLIST HEADER RespondToLogicalID CDATA #IMPLIED>
<!ATTLIST HEADER CorrelationID CDATA #IMPLIED>
<!ATTLIST HEADER GroupStatus CDATA #IMPLIED>
<!ATTLIST HEADER ProcessingCategory CDATA #IMPLIED>
<!ATTLIST HEADER QosPolicy CDATA #IMPLIED>
<!ATTLIST HEADER DeliveryCategory CDATA #IMPLIED>
<!ATTLIST HEADER AckRequested CDATA #IMPLIED>
<!ATTLIST HEADER PublicationTopic CDATA #IMPLIED>
<!ATTLIST HEADER SessionID CDATA #IMPLIED>
<!ATTLIST HEADER EncryptionStatus CDATA #IMPLIED>
<!ATTLIST HEADER TimeStampCreated CDATA #REQUIRED>
<!ATTLIST HEADER TimeStampExpired CDATA #REQUIRED>
<!ATTLIST HEADER Size CDATA #IMPLIED>
<!ELEMENT EPICBODY (#PCDATA)> <!-- The data will be escaped -->
<!ATTLIST EPICBODY Size CDATA #IMPLIED>
<!ATTLIST EPICBODY BodyType CDATA #REQUIRED>

Appendix C. Message headers 89

<!ATTLIST EPICBODY BodyCategory CDATA #REQUIRED>
<!ATTLIST EPICBODY BodySecondaryType CDATA #IMPLIED>
<!ELEMENT USERAREA (#PCDATA) >

MQSeries Integrator version 1 header
MQSeries Integrator version 1 header, RFH1, consists of the following items:
1. Fixed portion
2. Neon header
3. Data section, which contains the kernel header and message body data

Table 15. MQSeries Integrator version 1 header — RFH1

Section or field Meaning or usage

Fixed portion Used as specified in MQSeries Integrator version 1.1.

Neon header Follows Neon header format.

OPT_APP_GRP SourceLogicalId value. Taken from the kernel header.

OPT_MSG_TYPE BodyCategory+BodyType. Derived from the kernel
header.

Example: If the BodyCategory is OAG and the
BodyType is SyncItem, then the value is
OAG+SyncItem.

Data section Consists of the kernel header values followed by the
message body data.

Kernel header Kernel header is enclosed within the tags
<EPICHEADER>header</EPICHEADER>.

Kernel header values are in XML syntax. Only
attributes with values are present. The actual data is
not on separate lines. Example of the format of a
value: <MessageType>value</MessageType>.

MessageType Reserved use.

SourceLogicalID Logical identifier of the source application.

DestinationLogicalID Logical identifier of the target application.

RespondToLogicalID Logical identifier to which the reply message is to be
sent.

TimeStampCreated Time and date when the message was created.

TimeStampExpired Time and date after which the message is no longer
meaningful.

TransactionID A message and its reply share the same transaction
identifier.

UniqueID Each message has a unique identifier.

AckRequested Determines whether the source application requests a
reply.

ProcessingCategory Reserved.

BodyCategory Represents the message’s application type, for
example, OAG or RosettaNet.

BodyType Represents the specific purpose of the message, for
example, add sales order or synchronize inventory.

BodySecondaryType Reserved.

90 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Table 15. MQSeries Integrator version 1 header — RFH1 (continued)

UserArea User integration specific application data.

MsgHeaderVersion Kernel header version (reserved).

CorrelationID User integration specific.

GroupStatus User integration specific.

QosPolicy Reserved.

DeliveryCategory Reserved.

PublicationTopic Reserved.

SessionID Reserved.

EncryptionStatus Reserved.

Message body data Message body data.

MQSeries Integrator version 2 header
MQSeries Integrator version 2 header, RFH2, consists of the following items:
1. Fixed portion
2. <mcd> folder — message content descriptor
3. <msd> folder — message service domain
4. <usr> folder — application (user) defined properties
5. Data section, which contains the kernel header and message body data

Table 16. MQSeries Integrator version 2 header — RFH2

Section or field Meaning or usage

Fixed portion Used as specified in MQSeries Integrator version 2.

<mcd> Contains elements that describe the structure of the
message data. Follow the MQSeries Integrator version
2 rules.

<msd> Identifies how to handle a message. Possible values:
XML or mrm.

<fmt> Identifies the message format. If <msd> is XML, the
format is XML. If <msd> is mrm, the format is xwf.
“XML elements used in the configuration file” on
page 51 describes how to enable the
<epicrfh2messageset> tag.

<set> Identifies the message set. For both, XML and mrm,
the identifier is bodyCategory. Follow the MQSeries
Integrator version 2 rules.

<type> Identifies the message type. For both, XML and mrm,
the identifier is bodyType. Follow the MQSeries
Integrator version 2 rules.

<usr> folder — application (user)
defined properties

Consists of the kernel header values.

Kernel header Only attributes with values are present. The actual
data is not on separate lines.

SourceLogicalID Logical identifier of the source application.

DestinationLogicalID Logical identifier of the target application.

MessageType Reserved use.

Appendix C. Message headers 91

Table 16. MQSeries Integrator version 2 header — RFH2 (continued)

RespondToLogicalID A logical identifier to which the reply message is to
be sent.

TimeStampCreated Time and date when the message was created.

TimeStampExpired Time and date after which the message is no longer
meaningful.

TransactionID A message and its reply share the same transaction
identifier.

UniqueID Each message has a unique identifier.

ProcessingCategory Reserved.

BodyCategory Represents the message’s application type, for
example, OAG or RosettaNet.

BodyType Represents the specific purpose of the message, for
example, add sales order or synchronize inventory.

BodySecondaryType Reserved.

AckRequested Determines whether the source application requests a
reply.

UserArea User integration specific application data.

MsgHeaderVersion Kernel header version (reserved).

CorrelationID User integration specific.

GroupStatus User integration specific.

QosPolicy Reserved.

DeliveryCategory Reserved.

PublicationTopic Reserved.

SessionID Reserved.

EncryptionStatus Reserved.

Data section Message body data.

92 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix D. Sample of the configuration file

This section lists the version of the aqmconfig.xml file that was current at the time
of this publication. “Sample of a minimum configuration file” on page 97 lists the
version of the aqmconfig.minimum.xml file that was current at the time of this
publication. See the aqmconfig.xml and aqmconfig.minimum.xml files in the kernel
installation’s samples directory for the most recent version; the examples listed here
are potentially out of date.

See “The configuration file” on page 49 for information on interpreting and editing
the configuration file.

Several application identifiers are included in this example configuration file. A set
of entries is listed under each application identifier. The sample configuration file
contains the following application identifiers:
v TEST1
v TEST1Daemon
v TEST2
v TEST3
v TraceClient
v TraceServer
<?xml version="1.0" encoding="UTF-8"?>
<!-- aqmconfig.xml 1.01 09Mar01 -->
<!-- Used for MQSeries Adapter Kernel -->
<!-- Sample AQM Configuration. -->
<!-- -->
<!-- Copyright (c) 2001 International Business Machines. All Rights Reserved. -->
<!-- -->
<!-- This configuration file is as an example only. -->
<!-- -->
<!-- IBM MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS -->
<!-- SAMPLE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE -->
<!-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR -->
<!-- PURPOSE, OR NON-INFRINGEMENT. -->
<!-- -->
<!-- CopyrightVersion 1.0 -->
<!-- -->

<Epic o="ePIC">
<!-- If getObject is called this indicates the top level directory -->
<!-- where the JNDI file system context will retrieve objects from. -->
<!-- This defaults to the current directory if this key is not present. -->
<!-- All applications share this context root. -->
<context>file:///epic/configContext</context>
<!-- Example using a drive letter 'c' -->
<!--
<context>file://c:/E/runtimefiles</context>
-->
<ePICApplications o="ePICApplications">

<!-- The following is for sample Test Application ID: TEST1 with a -->
<!-- sample AdapterDaemon named TEST1Daemon -->
<ePICApplication epicappid="TEST1">

<!-- Audit Logging on/off. Requires WebSphere Business Integrator product. -->
<!-- If no entry defaults to false. -->

<epiclogging>false</epiclogging>
<!-- Tracing on/off. If no entry defaults to false. -->

<epictrace>false</epictrace>
<!-- Trace levels - Uses the jlog com.ibm.logging.IRecordType constants, -->
<!-- common constants: -->
<!-- 0=TYPE_NONE (No messages), 1=TYPE_INFO, 512=TYPE_ERROR_EXC (Exceptions), -->
<!-- 513=TYPE_INFO | TYPE_ERROR_EXC, -1=TYPE_ALL (All possible messages). -->
<!-- No entry defaults to TYPE_NONE -->

<epictracelevel>-1</epictracelevel>
<!-- Name of the Trace application id. Will be used for -->
<!-- trace configuration information. Defaults to TraceClient -->

<epictraceclientid>TraceClient</epictraceclientid>
<!-- When processing messages into the application. -->
<!-- LogonInfo class name used for connecting to an application. -->

© Copyright IBM Corp. 2000, 2002 93

<!-- Will be used by the AdapterDaemon. If no entry will default -->
<!-- to com.ibm.epic.adapters.eak.adapterdaemon.EpicLogonDefault. -->
<epiclogoninfoclassname>com.ibm.epic.adapters.eak.adapterdaemon.EpicLogonDefault
</epiclogoninfoclassname>

<AdapterRouting cn="epicadapterrouting">
<!-- MQSeries Q Manager for this application use, no entry -->
<!-- uses the default Q Manager. A value of DEFAULT means -->
<!-- use the default Q Manager. -->
<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<!-- Use the remote Q Manager for sending messages. Remote queue -->
<!-- definitions are not required. true - use remote Q Manager, -->
<!-- false - do not use remote Q Manager. No entry defaults to false -->
<epicuseremotequeuemanagertosend>false</epicuseremotequeuemanagertosend>
<!-- MQSeries Client hostname for where the MQSeries server -->
<!-- resides for TEST1. Required if using MQSeries Client -->
<!--
<epicmqppqueuemgrhostname>localhost</epicmqppqueuemgrhostname>

-->
<!-- MQSeries Client port to use for where the MQSeries server -->
<!-- resides for TEST1. No entry defaults to MQSeries default -->
<!--
<epicmqppqueuemgrportnumber>1414</epicmqppqueuemgrportnumber>

-->
<!-- MQSeries Client channel name to use for the MQSeries server, required -->
<!--
<epicmqppqueuemgrchannelname>xyz</epicmqppqueuemgrchannelname>

-->
<!-- JMS example for TEST1. Refers to the JMS Connection factory name. -->
<!-- Requires the attribute describing the object plus the attributes value. -->
<!-- For JMS the attribute is 'cn'. -->
<!--
<epicjmsconnectionfactoryname>cn=QCFTEST1</epicjmsconnectionfactoryname>

-->
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<!-- Contains the Command selection criteria when processing -->
<!-- a message into an application. Will be used by the -->
<!-- AdapterDaemon - Command to invoke. -->

<epiccommandclassname>com.ibm.epic.adapters.eak.samples.SampleCAdapterWrapper
</epiccommandclassname>

<!-- Represents the type of command the "epiccommandclassname" -->
<!-- represents. MQAKEAB is the EAB style interface. MQAKEJB -->
<!-- is an EJB Service Session Bean. No entry defaults to MQAKEAB -->

<epiccommandtype>MQAKEAB</epiccommandtype>
<!-- If the "epiccommandtype" is "MQAKEJB" this entry is the -->
<!-- method name to invoke. No entry defaults to "execute". -->

<epiccommandejbmethod>execute</epiccommandejbmethod>
<!-- If the "epiccommandtype" is "MQAKEJB" this entry is the -->
<!-- parameter type for the method specified by "epiccommandejbmethod". -->
<!-- This will be the same datatype returned by the -->
<!-- TerminalDataContainerMapper. No entry defaults -->
<!-- to "com.ibm.mqao.mqak.ejbclient.TDCGenericMapper". -->

<epiccommandejbmethodparmtype>com.ibm.mqao.mqak.ejbclient.TDCGenericMapper
</epiccommandejbmethodparmtype>

<!-- If the "epiccommandtype" is "MQAKEJB" this entry is the -->
<!-- URL where the EJB specified in "epiccommandclassname" -->
<!-- has been deployed in the form "IIOP://hostname:900/". -->
<!-- No entry defaults to "IIOP:///". -->

<epiccommandejburl>IIOP:///</epiccommandejburl>
<!-- If the "epiccommandtype" is "MQAKEJB" this entry is the -->
<!-- name of the Initial Context Factory used to to lookup the -->
<!-- home name for the EJB specified in "epiccommandclassname". -->
<!-- No entry defaults to "com.ibm.ejs.ns.jndi.CNInitialContextFactory". -->

<epiccommandejbinitialcontext>com.ibm.ejs.ns.jndi.CNInitialContextFactory
</epiccommandejbinitialcontext>

<!-- If the "epiccommandtype" is "MQAKEJB" this entry is the -->
<!-- name of the Mapper the Worker uses for creating the -->
<!-- "epiccommandejbmethodparmtype" object passed in to the -->
<!-- "epiccommandejbmethod" in to the "epiccommandclassname". -->
<!-- No entry defaults to "com.ibm.mqao.mqak.ejbclient.TDCGenericMapper". -->

<epiccommandejbmapper>com.ibm.mqao.mqak.ejbclient.TDCGenericMapper
</epiccommandejbmapper>

<!-- Default destinations to send messages to. -->
<!-- Single destination. -->

<epicdestids>TEST2</epicdestids>
<!-- Multiple destinations. -->

<!--
<epicdestids>

<Value>TEST2</Value>
<Value>TEST3</Value>

</epicdestids>
-->
<!-- Receive transport communications mode this application -->
<!-- wants for receiving messages. -->
<!-- For MQSeries normal mode use MQPP. -->
<!-- For MQSeries using an RFH1 header format use MQRFH1, -->
<!-- when using MQSeries Integrator V1 -->
<!-- For MQSeries using an RFH2 header format use MQRFH2, -->

94 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

<!-- when using MQSeries Integrator V2 -->
<!-- For file normal mode use FILE. -->
<epicreceivemode>MQPP</epicreceivemode>
<!-- How to format the message for the receive mode. -->
<!-- Entry is the class name of the formatter which -->
<!-- must be for the receive mode -->
<!-- Receive modes MQPP, MQRFH1, MQRFH2, FILE have -->
<!-- default receive modes -->
<epicmessageformatter>com.ibm.epic.adapters.eak.nativeadapter.MQNMBDFormatter
</epicmessageformatter>

<!-- JMS formatter for mode for MQSeries provider implementation -->
<!--

<epicmessageformatter>com.ibm.epic.adapters.eak.nativeadapter.JMSNMRFH2Formatter
</epicmessageformatter>

-->
<!-- Receive Time out in milliseconds ie. 1000 = 1 second, -->
<!-- -1 means never ending. No entry defaults to 0 -->
<!-- milliseconds. Used when receiving messages. -->

<epicreceivetimeout>30000</epicreceivetimeout>
<!-- MQSeries queue for this application to receive messages -->
<!-- from for receive modes MQPP, MQRFH1, MQRFH2 -->

<epicreceivemqppqueue>TEST1AIQ</epicreceivemqppqueue>
<!-- MQSeries queue required by the AdapterWorker when -->
<!-- errors encountered processing a message -->
<!-- for receive modes MQPP, MQRFH1, MQRFH2 -->

<epicerrormqppqueue>TEST1AEQ</epicerrormqppqueue>
<!-- MQSeries reply queue required for synchronous request/replies -->
<!-- for receive modes MQPP, MQRFH1, MQRFH2 -->

<epicreplymqppqueue>TEST1RPL</epicreplymqppqueue>
<!-- JMS receive mode, refers to the JMS queue object name for -->
<!-- this application to receive messages from. -->

<!-- Requires the attribute describing the object plus the attribute's value. -->
<!-- For JMS the attribute is 'cn'. -->
<epicjmsreceivequeuename>cn=TEST1AIQ</epicjmsreceivequeuename>

<!-- JMS receive mode, refers to the JMS queue object name for -->
<!-- errors required by the AdapterWorker when errors -->
<!-- encountered processing a message. -->

<!-- Requires the attribute describing the object plus the attribute's value. -->
<!-- For JMS the attribute is 'cn'. -->
<epicjmserrorqueuename>cn=TEST1AEQ</epicjmserrorqueuename>

<!-- JMS receive mode, refers to the JMS queue object name for -->
<!-- the reply queue, required for synchronous request/replies -->

<!-- Requires the attribute describing the object plus the attribute's value. -->
<!-- For JMS the attribute is 'cn'. -->
<epicjmsreplyqueuename>cn=TEST1RPL</epicjmsreplyqueuename>

<!-- In FILE receive mode, directory for this application to receive messages from -->
<epicreceivefiledir>./TEST1AID</epicreceivefiledir>

<!-- In FILE receive mode, interim directory for this application to -->
<!-- hold received messages until committed. -->

<epiccommitfiledir>./TEST1ACD</epiccommitfiledir>
<!-- In FILE receive mode, directory for this application to put error messages -->
<!-- File receive mode, directory required by the AdapterWorker when -->
<!-- errors encountered processing a message -->

<epicerrorfiledir>./TEST1AED</epicerrorfiledir>
</ePICBodyType>

</ePICBodyCategory>
</AdapterRouting>

</ePICApplication>
<!-- The following is for sample AdapterDaemon 'TEST1Daemon' -->
<!-- for the 'TEST1' application -->
<ePICApplication epicappid="TEST1Daemon">

<epictrace>false</epictrace>
<epictracelevel>-1</epictracelevel>
<ePICAdapterDaemonExtensions cn="epicappextensions">

<!-- Dependency appid, if no entry then will default -->
<!-- to the application id of the daemon. -->

<epicdepappid>TEST1</epicdepappid>
<!-- Minimum number of workers the AdapterDaemon will start. -->
<!-- No entry defaults to 1. -->

<epicminworkers>1</epicminworkers>
</ePICAdapterDaemonExtensions>

</ePICApplication>
<!-- The following is for Test Application ID: TEST2 -->
<!-- Refer to TEST1 for explanations and possible additional entries. -->
<ePICApplication epicappid="TEST2">

<epictrace>true</epictrace>
<epictracelevel>512</epictracelevel>
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<epiccommandclassname>com.ibm.epic.adapters.eak.test.InstallVerificationTest
</epiccommandclassname>
<epicreceivemode>MQPP</epicreceivemode>
<epicreceivemqppqueue>TEST2AIQ</epicreceivemqppqueue>
<epicerrormqppqueue>TEST2AEQ</epicerrormqppqueue>
<epicreplymqppqueue>TEST2RPL</epicreplymqppqueue>

</ePICBodyType>

Appendix D. Sample of the configuration file 95

</ePICBodyCategory>
</AdapterRouting>

</ePICApplication>
<!-- The following is for Test Application ID: TEST3 -->
<!-- Refer to TEST1 for explanations and possible additional entries. -->
<ePICApplication epicappid="TEST3">

<AdapterRouting cn="epicadapterrouting">
<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<epicdestids>TEST1</epicdestids>
<epicreceivemode>MQPP</epicreceivemode>
<epicreceivemqppqueue>TEST3AIQ</epicreceivemqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
</ePICApplication>

<!-- The following is for sample Trace Client Application ID: TraceClient -->
<!-- Contains the TraceClient configuration information for doing tracing. -->
<!-- This is the application id value in the 'epictraceclientid' element -->
<!-- configured for the application wanting to do tracing -->

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

<!-- Dependency Trace Server application id used for SocketHandler -->
<!-- and ENAHandler (uses MQSeries), defaults to TraceServer -->

<epicdepappid>TraceServer</epicdepappid>
<!-- Write messages synchronously (true) or asynchronously (false), -->
<!-- defaults to false (write messages asynchronously). This is -->
<!-- used when giving the messages to the handlers. -->
<epictracesyncoperation>false</epictracesyncoperation>

<!-- Default Trace message file to use if none passed in to the -->
<!-- writeTrace method call. Defaults to this file if not indicated -->

<epictracemessagefile>com.ibm.epic.trace.client.TraceMessage</epictracemessagefile>
<!-- Handlers to load. Handlers do the actual processing of the -->
<!-- Trace message. If the default trace client id 'TraceClient' -->
<!-- is used then the handler defaults to the -->
<!-- com.ibm.logging.ConsoleHandler. If the default trace client -->
<!-- id 'TraceClient' is not used, the handler has to be specified. -->
<!-- A Single Trace Handler -->

<epictracehandler>com.ibm.logging.ConsoleHandler</epictracehandler>
<!-- Multiple Trace Handlers -->
<!--

<epictracehandler>
<Value>com.ibm.logging.ConsoleHandler</Value>
<Value>com.ibm.logging.SocketHandler</Value>

</epictracehandler>
-->

<!-- Handler definitions. Available definitions depend on the -->
<!-- handler. Formatters are used for formatting the trace message.-->
<ePICTraceHandler epictracehandler="com.ibm.logging.ConsoleHandler">

<!-- ConsoleHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.EpicTraceFormatter</epictraceformatter>

</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.FileHandler">

<!-- FileHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.EpicTraceFormatter</epictraceformatter>
<!-- Trace filename to use, defaults to trc.log in the current directory. -->
<epictracefilename>trc.log</epictracefilename>

</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.epic.trace.client.ENAHandler">

<!-- ENAHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.EpicXMLFormatter</epictraceformatter>

</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.SocketHandler">

<!-- SocketHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.EpicXMLFormatter</epictraceformatter>

</ePICTraceHandler>
</ePICTraceExtensions>

</ePICApplication>
<!-- The following is for sample Trace Server Application ID: TraceServer -->
<!-- Contains the TraceServer configuration information. -->
<!-- This is the application id pointed to by the trace client -->
<!-- epicdepappid value. Definitions are similar to TraceClient example. -->

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<epicreceivemode>MQPP</epicreceivemode>
<epicreceivemqppqueue>TraceServerAIQ</epicreceivemqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

<!-- Write messages synchronously/asynchronously (true/false (default)). -->
<epictracesyncoperation>false</epictracesyncoperation>

<!-- Trace message file. Defaults to this file if not indicated -->
<epictracemessagefile>com.ibm.epic.trace.server.TraceServerMessage</epictracemessagefile>

96 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

<!-- Handlers to load, for multiple handlers see TraceClient example. -->
<!-- If the default trace server id 'TraceServer' is used then the handler -->
<!-- defaults to the com.ibm.logging.MultiFileHandler. -->
<!-- Note: Do not use SocketHandler or ENAHandler for the trace server. -->
<epictracehandler>com.ibm.logging.MultiFileHandler</epictracehandler>

<!-- Handler definitions for com.ibm.logging.SocketHandler -->
<!-- Formatter to use, defaults to this formatter if none provided.-->

<ePICTraceHandler epictracehandler="com.ibm.logging.SocketHandler">
<!-- Entries when using socket handler from the TraceClient and -->
<!-- starting the Trace Server in socket receive mode. -->
<!-- SocketHandler host machine, defaults to localhost -->

<epictracesocketserverhost>localhost</epictracesocketserverhost>
<!-- SocketHandler port number, defaults to 8181 -->

<epictraceportnumber>8181</epictraceportnumber>
</ePICTraceHandler>

<!-- Formatter to use, defaults to this formatter if none provided. -->
<ePICTraceHandler epictracehandler="com.ibm.logging.ConsoleHandler">

<!-- ConsoleHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.ReFormatter</epictraceformatter>

</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.MultiFileHandler">

<!-- MultiFileHandler formatter to use, defaults to this formatter if none provided. -->
<epictraceformatter>com.ibm.epic.trace.client.ReFormatter</epictraceformatter>

<!-- MultiFileHandler trace base filename to use, defaults to trc.log in the -->
<!-- current directory. The actual filename will be for this -->
<!-- example trcx.log, where x is a numeric number starting at -->
<!-- 0 and going up to the number of trace files specified. -->

<epictracefilename>trc.log</epictracefilename>
<!-- MultiFileHandler number of trace files, defaults to 3 -->

<epictracefilenumber>3</epictracefilenumber>
<!-- MultiFileHandler file size in number of bytes, defaults to -->

<epictracefilesize>1000000</epictracefilesize>
</ePICTraceHandler>

</ePICTraceExtensions>
</ePICApplication>

</ePICApplications>

Sample of a minimum configuration file
This section provides an example of a minimum configuration file for use with
MQSeries Adapter Kernel. See “Adding adapter information to the configuration”
on page 64 for information about the minimum configuration file.
<?xml version="1.0" encoding="UTF-8"?>
<!-- aqmconfig.minimum.xml 1.00 00/11/07 -->
<!-- Used for MQSeries Adapter Kernel -->
<!-- Sample AQM Configuration showing a minimum configuration for the -->
<!-- following conditions: -->
<!-- 1) Going from applicationid TEST1 to TEST2. TEST1 is not receiving -->
<!-- messages. -->
<!-- 2) TEST2 has no special application requirements. -->
<!-- 3) TEST2 is using 1 worker. -->
<!-- 4) Using MQSeries with the default QManager installed on each machine. -->
<!-- and using default format. -->
<!-- 5) No specific body category and body type being used. -->
<!-- 6) Using default tracing to the console. -->
<!-- -->
<!-- -->
<!-- -->
<!-- Copyright (c) 2000 International Business Machines. All Rights Reserved. -->
<!-- -->
<!-- This configuration file is as an example only. -->
<!-- -->
<!-- IBM MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS -->
<!-- SAMPLE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE -->
<!-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR -->
<!-- PURPOSE, OR NON-INFRINGEMENT. -->
<!-- -->
<!-- CopyrightVersion 1.0 -->
<!-- -->

<Epic o="ePIC">
<ePICApplications o="ePICApplications">

<!-- The following is for sample Test Application ID: TEST1 -->
<ePICApplication epicappid="TEST1">

<!-- Tracing on/off. If no entry defaults to false. -->
<epictrace>false</epictrace>

<!-- Trace levels - 512=TYPE_ERROR_EXC (Exceptions),-1=TYPE_ALL (All possible messages). -->
<epictracelevel>0</epictracelevel>
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<!-- Default destinations to send messages to. -->

<epicdestids>TEST2</epicdestids>
</ePICBodyType>

Appendix D. Sample of the configuration file 97

</ePICBodyCategory>
</AdapterRouting>

</ePICApplication>
<!-- The following is for Test Application ID: TEST2 -->
<ePICApplication epicappid="TEST2">

<epictrace>false</epictrace>
<epictracelevel>512</epictracelevel>
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<!-- AdapterDaemon - Command to invoke. -->

<epiccommandclassname>com.ibm.epic.adapters.eak.samples.SampleCAdapterWrapper
</epiccommandclassname>
<epicreceivemode>MQ</epicreceivemode>

<!-- Receive Time out in milliseconds ie. 1000 = 1 second, -->
<!-- -1 means never ending. No entry defaults to 0. -->
<!-- milliseconds. Used when receiving messages. -->

<epicreceivetimeout>30000</epicreceivetimeout>
<epicreceivemqppqueue>TEST2AIQ</epicreceivemqppqueue>
<epicerrormqppqueue>TEST2AEQ</epicerrormqppqueue>
<epicreplymqppqueue>TEST2RPL</epicreplymqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
</ePICApplication>

</ePICApplications>
</Epic>

98 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix E. Sample of the setup file

The following is an example of the aqmsetup file, which defines several of the
kernel’s initial configuration values, including several environment variables. See
“The setup file” on page 48 for additional information about this file. The aqmsetup
file is located in the samples directory of the kernel’s root installation directory.
#
aqmsetup 1.01 01/03/27
Sample AQM Adapter runtime parameter configuration file entries.
#
Copyright (c) 2001 International Business Machines. All Rights Reserved.
#
This configuration file is as an example only.
#
IBM MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS
SAMPLE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.
#
CopyrightVersion 1.0
#
#
Pound (#) signs are comments.
#
##
#
Use Websphere Business Integrator(WSI) product 5724-A78 LDAP
Directory Services or configuration file. No entry defaults to
true (use configuration file). To use the WSI directory service
set the value to false. Refer to the WSI documentation for
specifics on using the directory service.
#AdapterDirectoryUseFileFlag=true
When using Websphere Business Integrator(WSI) product 5724-A78 LDAP
Directory Services this additional entry is required. Refer to the
WSI documentation for specifics on using the directory service.
#DirectoryServices=ChangeToDestDir/samples/DirectoryServices.properties
Location of configuration file aqmconfig.xml when not using
the Websphere Business Integrator(WSI) product 5724-A78 LDAP
Directory Services.
No entry defaults to current directory.
#AQMConfig=ChangeToDestDir/samples
#
##
##
XML DTD Catalogs and Directories - where to locate DTD's if not
in the current directory.
Format: XML_DTD_DIRECTORY_x=ddd where x is a numeric suffix to
be incremented for each key and ddd is the directory.
The numeric suffix's must start with 1 and be contiguous.
##
XML_DTD_DIRECTORY_1=ChangeToDestDir/runtimefiles/oag
#XML_DTD_DIRECTORY_2=ChangeToDestDir/runtimefiles
#
##
Java JNI Environment Variables for C Interface for increasing
the amount of memory used. This applies to when a C module
is instantiating a JVM. When a C Interface is being called
from within JAVA the JVM is already established.
##
The stack memory is used for holding local function, function
parameters, local variable references.
Native stack is used for non-Java calls from within Java such

© Copyright IBM Corp. 2000, 2002 99

as to C code. Stack size in bytes to use.
Default is 128 kilobytes on NT.
#AQM_JNI_NATIVESTACKSIZE=1048576
Java stack is for Java method calls and local variables.
Stack size in bytes to use.
Default is 400 kilobytes on NT.
#AQM_JNI_JAVASTACKSIZE=4194304
The heap memory is used for storing instantiated Java objects
Minimum heap size in bytes to start with.
Default is 1 megabyte on NT.
#AQM_JNI_MINHEAPSIZE=16777216
Maximum heap size in bytes which can be used.
Default is 16 megabytes on NT.
#AQM_JNI_MAXHEAPSIZE=268435426
#
##
Designate end of configuration file
##
*ENDCFG

100 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Appendix F. Using a J2EE connector in an MQAK microflow

This appendix illustrates how to use a J2EE connector in an MQSeries Adapter
Kernel microflow in a non-managed scenario. In the following, the mySAP.com
J2EE connector is used as an example.
1. “Preparing the software environment”
2. “Creating a Java proxy bean to use the SAP connector”
3. “Creating an MQAO adapter to use the Bean” on page 108
4. “Using the adapter in MQAK” on page 113

Preparing the software environment
To prepare the software environment, perform the following:
1. Install Visual Age for Java V4.0
2. Install Connector for SAP R/3
3. Install EAB 4.0 Beta for J2EE Connectors

Note: This includes J2EE Connector for SAP R/3 and EAB 4.0 for J2EE.
4. In Visual Age for Java, add the following features:

a. Access Builder for SAP R/3 Libraries
b. Connector for SAP R/3

5. Install MQSeries Adapter Builder
6. Install MQSeries Adapter Kernel
7. Install mySAP.com connector
8. Read the MQSeries Adapter Kernel readme’s advice about the xml4j.jar file.
9. Install Java™ 1.3

Creating a Java proxy bean to use the SAP connector
To create a bean that uses SAP connector via the Common Client Interface (CCI),
perform the following steps:
1. “Build the Java proxy beans”
2. “Create the command bean” on page 104
3. “Promote properties that must be visible in MQAB” on page 107
4. “Export the package” on page 108

Build the Java proxy beans
In Visual Age for Java (VAJ):
1. Create an empty package.

© Copyright IBM Corp. 2000, 2002 101

2. Select the Package, right-click, select Tools / ″Access Builder for SAP R/3″.

3. In the Access Builder select File / Open...

4. Select ″I45″ with the option ″RFC information″ checked.

5. Click Continue to load the RFC information.

102 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

6. In the ″RFC List″ select the RFCs you need.

7. Select Options / Generation to display the generation options screen and select
the option ″RFC proxy for J2EE connector for SAP R/3″.

Appendix F. Using a J2EE connector in an MQAK microflow 103

8. Build the proxy beans for the selected RFCs.

Create the command bean
1. In VAJ, select Package, right-click, select Tools / Enterprise Access Builder /

Create Command to start the appropriate Smart Guide.
2. The Project and Package names should be OK. Give the class a name of your

choice. Check the ″Edit when finished″ box and press the ″Browse″ button to
set the Connection Information Class Name.

104 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

3. Select ″ConnectionFactoryConfiguration″ and press the ″OK″ button.

4. Using ″Browse″, for the InteractionSpec Class Name select the
SAPInteractionSpec, package com.ibm.connector2.sap, then ″OK″.

5. Click ″Next″ to get to the ″Add Input/Output Beans″ panel.
6. Uncheck the ″Implements lByteBuffer″ checkbox and click the ″Browse″ button.

In the pop-up window, select BAPI_COMPANYCODE_GETDETAIL and your package
name. Click ″OK″ to add them to the Class name field. Select ″Use input bean
type as output bean type″ and click the ″Finish″ button to start the command
editor.

Appendix F. Using a J2EE connector in an MQAK microflow 105

7. In the command editor:
a. Select ″Connector″ in the top left pane, ″...ConnectionFactoryConfiguration″

in the top right pane ″ConnectionSpec″ in the Property column of the
bottom pane and ″com.ibm.connector2.sap.SAPConnectionSpec″ in the Value
column of the bottom pane.

106 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

b. Expand the ConnectionSpec entry and set the appropriate values to connect
to your SAP R/3 system.

c. For the ″managedConnectionFactory″ parameter select
″com.ibm.connector2.sap.SAPManagedConnectionFactory″.

d. Expand the tree and enter hostName and systemNo appropriately.
e. Select ″Command″ / ″Save″ to end the command editor.

8. To use the test client to verify what you have done so far, select the created
command, right click and select Tools/Enterprise Access Builder/Launch Test
Client.

Promote properties that must be visible in MQAB
Using the Command Editor, promote the properties that must be visible in MQAB.
In this sample, companycodeAddress, companycodeDetail, and companycodeid
should be made visible for Input and Output.

Appendix F. Using a J2EE connector in an MQAK microflow 107

Export the package
1. Select Package, right-click, select Export.
2. Select ″Directory″ as export destination.
3. Select a directory; only the class files need to be exported.

4. Click the ″Select referenced types and resources″ button.
5. Click ″Finish″.

Creating an MQAO adapter to use the Bean
To import the command bean into the adapter builder to get the interfaces, define
a microflow, and create an MQAO adapter, perform the following steps:
1. “Import the command bean”
2. “Create a new class type” on page 109
3. “Define a new microflow type” on page 110
4. “Create Java service adapter” on page 111
5. “Generate Java service adapter” on page 112
6. “Compile the adapter code” on page 113

Import the command bean
To import the command bean message set, perform the following in the MQSeries
Adapter Builder Control Center:
1. On the ″Message Sets″ tab, select ″Message Sets″, right click, select ″Import to

New Message Set″, then ″Java Bean″.

108 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

2. From the directory, just created during Export from VAJ, select the command
bean class file.

3. On the ″Search Directories″ panel, add the ″eab/runtime35″ subdirectory of
your VAJ installation to the search path.

4. In the ″Java Bean Import″ window, check the ″Properties″ box, select the
methods to be used using the ″Add ->″ button, and click the ″Finish″ button.

5. If you exported the package using ″Select referenced types...″, only
″vaj\eab\runtime35″ has to be added to the classpath.

Create a new class type
To create a new class type, using the command bean’s message set, perform the
following in the MQSeries Adapter Builder Control Center:
1. On the ″Adapters″ tab, select ″Class Types″, then ″Create″, then ″Class Type...″.

Appendix F. Using a J2EE connector in an MQAK microflow 109

2. Select the message set that you just created and select from the available
transaction types.

3. On the ″Transaction Category″ tab, select which of the available methods will
be exposed as Terminals.

4. Name the class type and click the ″Finish″ button.

Define a new microflow type
To create and define a new microflow type, perform the following in the MQSeries
Adapter Builder Control Center:
1. On the ″Adapters″ tab, select ″Microflow Types″, then ″Create″, then

″Microflow Type...″.

110 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

2. Enter a name and description for your microflow type.
3. Drag Input and Output terminals, and the previously created class type from

the tree view on the left to the workspace window.

4. Connect ″Input Terminal1″ to the ″setCompanyCodeid()_Request″ input
Terminal of ″myClassType1″, add a map to this connection and set the arg_0
property to an existing ″CompanyCodeid″, for example 1000.

5. Connect the ″setCompanycodeid()_Resp″ output terminal to the
″execute()_Request″ input terminal.

6. Connect the ″execute()_Resp″ output terminal to the
″getCompanycodeDetail()_Request″ input terminal.

7. Connect the ″getCompanycodeDetail()_Resp″ output terminal to ″Output
Terminal1″ and map the return structures.

Create Java service adapter
To create the Java service adapter for your new microflow type, perform the
following in the MQSeries Adapter Builder Control Center:
1. On the ″Adapters″ tab, select ″Java Service Adapters″, right click, select ″Create″

– ″Java Service Adapters...″.

Appendix F. Using a J2EE connector in an MQAK microflow 111

2. Enter a name for the Service Adapter.

3. Select your microflow from the list of ″Available Microflows″, and add it to the
″Selected Microflows″ list.

4. Click the ″Finish″ button.

Generate Java service adapter
To generate the Java service adapter, perform the following in the MQSeries
Adapter Builder Control Center:
1. Expand the ″Java Service Adapters″ folder.
2. Select the Service Adapter that you named in step 2, right-clisk on it.
3. Select ″Generate″, then ″Adapter in Java″.

4. Enter a name for the adapter, and select the option ″Generate MQAK
Command Interface ...″.

112 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

5. Click ″Next″ and skip the ″Import Panel″.
6. Specify the destination path, bean name, and package name.

7. Click ″Finish″ to generate the adapter code.

Compile the adapter code
To compile the adapter code that you have just generated, perform the following
from a command prompt:
1. Make sure that the following are in the CLASSPATH:

v MQAOJFramework.jar

v The directory where the Java Service adapter was created in step 6.
v The directory where you exported the package in step 3 on page 108.

2. Change to the ″message″ subdirectory of the directory where you generated the
Java Service adapter in step 6, then enter the command:
javac *.java

3. Change to the ″mymicroflow″ subdirectory, then enter the command again:
javac *.java

Using the adapter in MQAK
To deploy the adapter bean, perform the steps described in:
1. “Preparing the adapter’s environment”
2. “Starting the service adapter” on page 114

Preparing the adapter’s environment
To configure the environment for the command shell or prompt where the target
adapter will be run:
1. Verify that the following are defined in the classpath:

v The ″bin″ subdirectory of MQAK.
v The MQAB file MQAOJFramework.jar.

Appendix F. Using a J2EE connector in an MQAK microflow 113

v The directory where you exported the package in step 3 on page 108.
v For non-managed execution, add the Connector for SAP R/3 files: ccf2.jar,

conn4sap.jar, and ivjsap35.jar.
2. Add the following to the path variable:

v The VAJ ″eab\bin\″ subdirectory.
v The MQAK ″bin″ subdirectory.

3. Set the environment variable ″aqmsetupfile″ to point to a suitable setup file.
4. If necessary, modify the adapter configuration file ″aqmconfig.xml″.

Starting the service adapter
To run the service adapter bean, using the command prompt you prepared in
“Preparing the adapter’s environment” on page 113, enter the command:
aqmstrad -a AdapterName -noretry

Where AdapterName is the name that you gave the adapter in 4 on page 112.

Your adapter should now work as designed.

114 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2000, 2002 115

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX OS/400
AS/400 RISC System/6000
IBM RS/6000
MQSeries WebSphere
iSeries VisualAge

Lotus and LotusScript are trademarks of Lotus Development Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United States and other
countries.

116 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Other company, product, and service names may be trademarks or service marks
of others.

Notices 117

118 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Glossary

The glossary contains key terms and their meanings as used in MQSeries Adapter Kernel documentation.

If a particular concept or term appears in one section only, it is potentially not included in the glossary. It
can, however, potentially be found in the “Index” on page 123.

The glossary does not include terms for other IBM products such as MQSeries.

adapter. The output of MQSeries Adapter Builder.
Typically, the user builds each adapter to be specific to
one message type that is sent from or to an application.
Thus, the adapters themselves are not part of MQSeries
Adapter Offering. An adapter consists of C or Java
source code that compiles to a shared library. When the
adapters and MQSeries Adapter Kernel run together,
they perform the run-time functionality of MQSeries
Adapter Offering. Depending on how it was modeled
by the user in MQSeries Adapter Builder, the adapter
can contain a wide variety of functionalities such as
control flow; data flow; sequential navigation;
conditional branching, including decision and iteration;
data typing; storing data context; transformation of
data elements; transactional control; logical operations;
and custom code. You can reuse adapters that you have
created.

See “message type” on page 120, “source application”
on page 121, and “target application” on page 121.

adapter daemon. Executable software that is part of
the kernel. The adapter daemon is used only in the
push delivery model. Its purpose is to instantiate the
workers. After it is started, the adapter daemon
remains active. For each target application, there can be
one or more adapter daemons.

In some cases, the adapter daemon performs the role of
a target application. It performs the required
functionality, for example, using a target adapter to
send an e-mail message or to write a record to a file.

aqmconfig.xml file. See “configuration file”.

aqmsetup file. See “setup file” on page 121.

application logical identifier. An identifier that
represents the application with which an adapter
(either a source adapter or a target adapter) is
associated. See “source logical identifier” on page 121
and “target logical identifier” on page 121.

application-neutral format. See “integration message”
on page 120.

application-specific interface. An interface that is
developed outside of MQSeries Adapter Offering for
one of the following purposes:

v To enable the source adapter to acquire a message
from the source application.

v To enable the target application to acquire a message
from the target adapter.

BOD. Business Object Document. A representation of
a standard business process that flows within an
organization or between organizations. Examples are
add purchase order, show product availability, and add
sales order. BODs are defined by the OAG using XML.
See “OAG” on page 120 and “XML” on page 122.

BODs can be used by MQSeries Adapter Offering to
define message bodies in its integration messages.

body category. Data contained in a message that
represents the message’s application type, for example,
OAG or RosettaNet. It belongs to the set of
message-control values. See “message-control values”
on page 120.

Body category also helps specify the message type. See
“message type” on page 120.

body type. Data contained in a message that
represents the specific purpose of the message, for
example, add sales order or synchronize inventory. It
belongs to the set of message-control values. See
“message-control values” on page 120.

Body type also helps specify the message type. See
“message type” on page 120.

configuration file. The aqmconfig.xml file, which
contains most of the kernel’s configuration values. See
“The configuration file” on page 49 for details.

communications message. Any communications
transport-specific information plus the message-holder
object, converted into a messaging format specific to
the communications transport being used.

communications mode. The mode used by the kernel
to transport the message and to perform broker
services.

destination logical identifier. A value that represents
the target application. It is used, along with other
message-control values, by the kernel to route messages
and to marshal messages. See “message-control values”
on page 120.

© Copyright IBM Corp. 2000, 2002 119

delivery models. There are two models by which the
kernel interfaces to the target application. These two
models are:

push The kernel is responsible for initiating and
managing delivery of the message to the target
application. This model typically does not
require changing the target application to
support MQSeries Adapter Offering.

pull The target application is responsible for
managing the delivery of the message. This
model requires changing the target application
to support MQSeries Adapter Offering. The
target application must manage the kernel’s
interface to the target application.

dependency application identifier. The name of the
application that the worker services. The worker gets
the dependency application identifier from the
configuration file based on the adapter daemon’s name.

DTD. Document Type Definition. In XML, usually a
file (or several files used together) that contains a
formal definition of a particular type of document. It
specifies the names that can be used for elements
within the DTD, where elements are allowed to occur
within the DTD, and how the elements fit together. In
MQSeries Adapter Offering, you can use DTDs to
define message bodies. See “XML” on page 122 and
“integration message”.

error queue. In the terminology of MQSeries Adapter
Offering, a message queue that is used when a message
that is obtained from a receive queue cannot be
processed.

integration message. A message consisting of
application data in an application-neutral format for
integration. An example is an XML document that the
source adapter transforms from the source application’s
format to XML.

Java service adapter. A type of Java-language adapter
that, in a JMS Listener environment, provides the
functions of an adapter daemon, worker, and target
adapter.

JMS Listener. A component provided by the
WebSphere Business Integrator product that enables
tight integration between MQSeries Adapter Kernel and
WebSphere Application Server Advanced Edition.

kernel. Synonymous with MQSeries Adapter Kernel.

logical message service. A component used by the
native adapter to convert messages for transportation
by the communications transport.

logon class. A Java class that is specific to each target
application and that can be used to help deliver the
message to the target application. The logon class is
required only when the target adapter must log on to
the target application before delivering the message.

Each logon class is written by the user. The worker
instantiates the logon class. The logon class looks in the
configuration file to find the values that the target
adapter needs to support the application specific
interface to the target application. Typically, those
values are logon parameters. Thus, the values are made
available to the target adapter.

A dummy logon class that does nothing is provided
with the kernel.

message. In MQSeries, including MQSeries Adapter
Offering, a collection of data that is sent by one
program and intended for another program.

message-control values. A collective term for a set of
values in the messages (body and headers) and in the
configuration file that kernel uses to control the
marshaling and routing of messages, and that each
adapter uses to control, in part, how it performs its
functionality.

message-holder object. A container for metadata used
by the kernel to encapsulate an integration message
and other control data.

message type. A message that is specified by a unique
combination of body category and body type. See
“body category” on page 119 and “body type” on
page 119.

MQSeries Adapter Builder. Software that enables a
user to build an adapter for virtually any application
by using a graphical user interface (GUI).

MQSeries Adapter Kernel. A set of APIs and several
executable programs, in C and Java, and several
configuration files. The kernel works with and supports
adapters. See “adapter” on page 119. In addition to
directly supporting adapters, the kernel performs
related functions, among the most important: routing of
messages and infrastructure services such as message
construction, tracing, and interfacing with MQSeries or
other messaging software.

MQSeries Adapter Offering. A set of application
integration products that consists of MQSeries Adapter
Builder and MQSeries Adapter Kernel.

MQSeries Adapter Kernel native adapter.
Synonymous with native adapter.

native adapter. Software used for sending and
receiving message-holder objects.

OAG. Open Applications Group. A nonprofit industry
consortium comprising many prominent stakeholders
in the business software component interoperability
arena. The OAG defines Business Object Documents
(BODs).

pull model of delivery. See “delivery models” on
page 119.

120 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

push model of delivery. See “delivery models” on
page 119.

receive queue. In the terminology of MQSeries
Adapter Offering, a message queue that is used as the
main input queue, to receive messages. There can be
multiple receive queues per target application, but only
one receive queue for each combination of application
identifier, body category, and body type.

reply queue. A message queue that is used to receive
replies. It is used with the kernel’s
sendRequestResponse method.

respond-to logical identifier. The logical identifier of
the application to which replies are to be sent when a
reply is requested. It defaults to the source logical
identifier in the message.

setup file. A file that contains several of the kernel’s
initial settings. The default name of the file is aqmsetup.

source adapter. An adapter that performs the
following tasks:

v Accepts or otherwise acquires structured data from a
source application (typically by using an
application-specific interface that is developed
outside the adapter).

v Processes the structured data according to how the
adapter had been modeled.

v Transforms the structured data into an integration
message format.

v by using the kernel, puts the message onto a
message queue, for delivery to one or more target
adapters and thence to the target application.

For each message type, there is one source adapter.
Typically, a source application can send multiple
message types; therefore, in most cases, a source
application is supported by multiple source adapters.

See “adapter” on page 119.

source application. A program that is required to send
data over a computer network to a program (known as
the target application) that typically resides on another
computer.

source logical identifier. A value that represents the
source application. It is used, along with other
message-control values, by the kernel to route messages
and to marshal messages. See “message-control values”
on page 120, “application logical identifier” on
page 119, and “target logical identifier”.

source side of the kernel. The part of the kernel
functionality that begins when the message is received
from the source adapter and that ends when the
message is put onto a message queue.

target adapter. An adapter that performs the
following tasks:

v Receives a message (from the kernel and MQSeries
or other messaging software) that had been sent by a
source adapter.

v Processes the integration message according to how
the adapter had been modeled.

v Transforms the integration message into an
application-specific formatted message that the target
application can receive.

v Sends the message to the target application by using
an application-specific interface.

v Lets the worker know when it has completed
sending the message to the target application, to
enable the worker to send an acknowledgment.

If the target application can receive the integration
message, then a target adapter is potentially not
required.

For each message type, there is one target adapter.
Typically, a target application can accept multiple
message types; in most cases, therefore, a target
application is supported by multiple target adapters.
See “adapter” on page 119.

target application. A program that is required to
receive data over a computer network from a program
(known as the source application) that typically resides
on another computer.

target logical identifier. A value that represents the
target application associated with a target adapter. See
“target logical identifier” and “application logical
identifier” on page 119.

target side of the kernel. The part of the kernel
functionality that begins when the message is gotten
from a message queue and that ends when the message
is sent to the target adapter.

trace client. A component of the kernel that writes
trace messages.

trace messages. Messages that contain the state of
processing a message at a certain point within the
kernel. You can use trace messages to help diagnose
problems with the kernel or with your adapters.

See “tracing”.

tracing. A collection of processes that the kernel uses
to write trace messages. See “trace messages”.

transaction. A set of operations that must be executed
as an indivisible unit of work. If all operations that
comprise a transaction are successful, the transaction is
committed; that is, all of the operations are performed.
If one or more of the operations that comprise a
transaction fail, the transaction is rolled back; that is,
none of the operations are performed.

Glossary 121

WebSphere Application Server Advanced Edition. A
software product from IBM that enables the use of the
Sun Microsystems Enterprise JavaBeans (EJB)
specification. WebSphere Application Server Advanced
Edition includes an EJB server, in which enterprise
beans can run. Enterprise beans encapsulate the
business logic and data used and shared by EJB clients.
There are two types of enterprise beans: session beans,
which encapsulate short-lived, client-specific tasks and
objects; and entity beans, which encapsulate persistent
data. A type of session bean called a worker message
bean can be used on the target side of MQSeries
Adapter Kernel.

worker. Software that is part of the kernel. The
worker is used only in the push delivery model. The
adapter daemon starts and creates the workers. Each
worker manages one native adapter. The worker
delivers each message to the appropriate target adapter.

worker message bean. An enterprise bean that
performs the function of a worker when WebSphere
Application Server is used on the target side of the
kernel.

XML. Extensible Markup Language. A W3C standard
for the representation of data.

122 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Index

A
adapter

compiling 113
creating 111
environment 113
examples 1
functionality 2
generating 112
starting 114
types 2
using 113

adapter daemon
about 7
name 16
started 16

adapter worker
about 7

AIX
software prerequisites 24

application-specific interface
about 3
examples 3

aqmconfig.xml file
about 49
editing 65
location 32
name 33
sample 93

aqmcreateq file 48
using 76

aqmcrtmsg file
using 66

aqmsetenv file 48
aqmsetup file

editing 48
environment variable 33
location 32
name 33

aqmsndmsg file
using 67

aqmstpad file
using 72

aqmstrad file
using 71

aqmstrtd file
using 72

aqmverifyinstall file
using 35

aqmversion file
using 75

authority
prerequisite 29

B
bean

creating 104
Java proxy 101

BOD
about 9

BOD (continued)
example 9

Business Object Documents 9

C
class type, creating 109
command bean, creating 104
communications message

definition 9
communications mode

during run time flow 13
list 13

configuration
overview 44
receive timeout period 14
trace level 12

configuration component
about 8

configuration file
about 49
adding information 64
editing 65
high-level elements 50
organization 50
sample 93
syntax 50
validating 66
XML elements 51

connector, J2EE 101
connector for SAP R/3 101

D
data mediation

high level 6
data transformation

high level 6
default values

body category 13
body type 13

dependency application identifier
about 17

disk space requirements 23
DTD

about 9

E
environment variables

AIXTHREAD_SCOPE 33
at installation 33
setting on OS/400 32
temporarily setting for validation 67
THREADS_FLAG 33

environment variables file 48
Epic

meaning xi
Epic.Message.createReplyMsg 19

exception file
EpicSystemExceptionFile.log 19

F
file

list 27
locations 27

H
hardware prerequisites 23
HP-UX

software prerequisites 24

I
Information Center

MQSeries Adapter Kernel 79
installation 30

procedures 29
integration message

definition 9

J
J2EE connector 101
Java

out of memory condition 20
startup parameters 72

Java logon classes 43
Java proxy bean 101
Java service adapter

about 8
compiling 113
creating 111
environment 113
generating 112
starting 114
using 113

K
kernel

delivery models 5
intended use 28
marshaling 4
routing 4
sides of 3

L
logical message service

during run time flow 13

M
maintenance plan 74

© Copyright IBM Corp. 2000, 2002 123

MAX_QUEUE_DEPTH
setting 69

memory utilization
C language 48
Java 48

message
about 9
acknowledgment 6, 12
application-neutral 9
body 9
Confirm BOD message 12
message-control values 4, 10
object 12

message-control values
details 11

message delivery
multithreaded 8
single-threaded 8

message headers 87
message holder

about 7
message-holder object

definition 9
message types

adapter 2
datagram 6
reply 6
request 6

methods
relation to queues 6
sendMsg 4, 12, 14, 19
sendRequestResponse 4, 12, 14
sendResponse 4
target adapter 18

microflow
defining a new type 110
selecting 112
using a J2EE connector 101

MQSeries
commit control 17
queue 6
role 6
validated configurations 85

MQSeries Adapter Builder
about 11

MQSeries Adapter Kernel
Information Center 79

MQSeries Adapter Offering
benefits 1
components 2
service offerings 1
sources of information 79
tiers 3

MQSeries Integrator
relationship with communication

mode 13
role of 6
validated configurations 85

mySAP.com 101

N
native adapter

about 7

O
one-phase commit 20
Open Applications Group

about 9
OS/400

installation prerequisites 25
setting environment variables 32
software prerequisites 24

P
prerequisites

hardware 23
software 24

procedures
high level ix

proxy bean, Java 101

Q
queue

error 6
obtaining for reply messages 19
receive 6
reply 6

queueing
commit 5

R
receive queue

target side of kernel 17
routing

complex 6
determined by 10
message-control values 10
simple 10
stages 10

run-time flow
detailed 10
overview 3

S
SAP R/3, connector for 101
scheduling policies 33
scheduling policy

threads 17
SDK

definition 28
service adapter, Java

compiling 113
creating 111
environment 113
generating 112
starting 114
using 113

setup file
editing 48

software prerequisites 24
AIX 24
HP-UX 24
OS/400 24
Solaris 24
Windows 24

Solaris
software prerequisites 24

source adapter
about 7
functionality 4

source application
format 3

T
target adapter

about 8
command 18
Epic.Message.createReplyMsg 19
functionality 5

threads
scheduling policy 17

trace
during run time flow 12
trace enabled 12

tracing
about 21
starting 72

tracing component
about 8

transactional capabilities 20

V
validating configuration file

XML message 66
verification problems

aqmconfig.xml file 36
aqmsetup file 36
environment variable 36
MQSeries error 37
queue manager 37
queues 36
target adapter 36, 37

Visual Age for Java 101

W
Web sites

MQSeries 23
MQSeries product family 79
MQSeries SupportPacs ix
Open Applications Group 79
publications ix
related information ix
XML 79

Windows
software prerequisites 24

worker
flags 20
instantiation 17
minimum number 17

X
XML

about 9
XML elements

configuration file 51

124 MQSeries® Adapter Kernel for Multiplatforms: Quick Beginnings

Readers’ Comments — We’d Like to Hear from You

MQSeries® Adapter Kernel for Multiplatforms
Quick Beginnings
Version 1 Release 1

Publication No. GC34-5855-06

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GC34-5855-06

GC34-5855-06

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Str. 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5855-06

	Contents
	Figures
	Tables
	Welcome to the MQSeries Adapter Kernel Quick Beginnings
	Who should use this information
	Related information

	Conventions
	Summary of changes
	Chapter 1. About MQSeries Adapter Offering
	Build time and run time
	About the kernel
	Role of MQSeries or other messaging software
	Role of MQSeries Integrator

	How the kernel works
	Components of the kernel run time
	Message and message format
	Routing and delivery
	Run-time flow
	Source side of the kernel
	Target side of the kernel
	Overview of the adapter worker

	Transactional capabilities
	Limitations

	Tracing

	Using MQSeries Adapter Kernel with WebSphere Business Integrator and WebSphere Application Server
	JMS Listener

	National language support

	Chapter 2. Planning to install the kernel
	Hardware
	Software
	Prerequisites for OS/400 installation
	Using remote AWT
	Using an attached client

	Components of the kernel

	Chapter 3. Installing the kernel
	Preparing for installation
	Installing the kernel
	Completing the post-installation
	Verifying the installation
	Verification procedure
	Common verification problems
	Optional verification

	Using silent installation
	Upgrading the kernel
	Removing the kernel

	Chapter 4. Using the kernel
	Preparing for production
	Configuring the kernel
	Overview of configuration
	Files involved in startup and configuration
	The setup file
	The configuration file
	Syntax and organization of the configuration file
	Common configurations
	Adding adapter information to the configuration
	Editing the configuration file
	Validating the configuration file

	Using the configuration checker utility
	Configuring MQSeries and MQSeries Integrator
	Performance recommendations
	Using the start and stop command-line utilities
	Creating an administration model queue

	Starting the kernel
	Stopping the kernel
	List of available messages for the start and stop command-line utilities

	Maintaining the kernel
	Diagnosing problems
	Version number

	Exception messages
	Trace messages
	Utilities
	Creating MQSeries queues

	Chapter 5. Using MQSeries Adapter Kernel APIs
	Chapter 6. Obtaining additional information
	Available on the Internet
	References

	Appendix A. Communications modes
	Using JMS object storage

	Appendix B. Validated configurations
	Appendix C. Message headers
	MQSeries Adapter Kernel message descriptor header
	MQSeries message descriptor header
	MQSeries without MQSeries Integrator
	MQSeries Integrator version 1 header
	MQSeries Integrator version 2 header

	Appendix D. Sample of the configuration file
	Sample of a minimum configuration file

	Appendix E. Sample of the setup file
	Appendix F. Using a J2EE connector in an MQAK microflow
	Preparing the software environment
	Creating a Java proxy bean to use the SAP connector
	Build the Java proxy beans
	Create the command bean
	Promote properties that must be visible in MQAB
	Export the package

	Creating an MQAO adapter to use the Bean
	Import the command bean
	Create a new class type
	Define a new microflow type
	Create Java service adapter
	Generate Java service adapter
	Compile the adapter code

	Using the adapter in MQAK
	Preparing the adapter's environment
	Starting the service adapter

	Notices
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

