
IBM
MQSeries® Integrator

6\VWHP�0DQDJHPHQW�*XLGH
Version 1.0

 SC34-5505-00

Note: Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 111.

First edition (January 1999)

This edition applies to IBM® MQSeries Integrator, Version 1.0 and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make
comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright New Era of Networks, Inc., 1998, 1999. All rights reserved.

© Copyright International Business Machines Corporation, 1999. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

&RQWHQWV
&KDSWHU����,QWURGXFWLRQ ������������������������������� �

Product Documentation Set ..2
Supported Platforms and Compilers ...3
Disk Space and Memory Requirements4

&KDSWHU����046HULHV�,QWHJUDWRU�2YHUYLHZ ��� �
MQSeries ..5
NEONFormatter..5
NEONRules ...6
MQSeries Integrator Rules Daemon ..6

&KDSWHU����)RUPDWWHU ����������������������������������� �
What is Formatter?..7

Fields and Input Controls ..8
Output Controls ...8
Formats ..9
Format Storage ..9
Parsing and Reformatting ...10

Formatter Configuration..11
The sqlsvses.cfg File ...11

Encrypting the sqlsvses.cfg file.....................................12
Modifying the location of the sqlsvses file12
Editing the sqlsvses.cfg file ...12
Implementing changes to the sqlsvses.cfg file13

Import/Export Formats ..14
NNFie ...14

Command Line Options for NNFie14
Operational Assumptions..15
Description...15
Import Syntax ..16
Export Syntax ..16
Remarks..16
Troubleshooting Import Failures..................................17

Testing Formats ..37
Formatter Test Executables ...37

The apitest Executable ...37
The msgtest Executable ...38
Configuration File ...39

&KDSWHU����5XOHV� ��������������������������������������� ��
Rules Configuration ...45

The sqlsvses.cfg File..45
Encrypting the sqlsvses.cfg File46
Modifying the Location of the sqlsvses File................46
MQSeries Integrator System Management Guide i

Editing the sqlsvses.cfg File ..46
Implementing Changes to the sqlsvses.cfg File47

System Enhancements for Rules ..48
Oracle ...48

Creating Users ..48
Granting Roles to Users ..48

Sybase/SQL Server ..49
Creating Login Accounts ..49
Assigning Users to a Database49
Defining User Groups ...50

Permissions for Rules and Subscriptions51
NNDBARuleOwnership ..51
Syntax ...51
Configuration File ...51
Operations..51
Error Conditions ...58

No Rules for Owner:...58
Invalid User: ..58

Import/Export Rules ...59
NNRie ..59

Syntax ...59
Operational Assumptions..59
Parameters..60
Import Syntax ..61
Export Syntax ..62
Remarks..62

Testing Rules ...63
Rules Test Programs ...63

MQSIputdata and MQSIgetdata63
ruletest ...67
NNRTrace Rules Debugging Utility69

&KDSWHU����7KH�046HULHV�,QWHJUDWRU�5XOHV
'DHPRQ ��� ��

Configuration Prior to Using
MQSeries Integrator Rules Daemon72

Queues ...72
Rules ...72
Formats ..73
Putqueue ..73

Using the MQSeries Integrator Rules Daemon75
MQSeries Integrator Rules Daemon Processing79

Message Processing ...79
Subscription Execution ..79

Reformat ...80
Failure Processing ..80
Message Routing ..80
ii MQSeries Integrator System Management Guide

Contents
Rules Caching..81
Sending a Reload Message ..81

Rules Daemon Security ..81
Rules Daemon Shutdown ..82

Sending a Shutdown Message82
Using Ctrl+c to Shut Down Rules82

MQSeries Integrator Rules Daemon Error Messages82
&KDSWHU����&RQVLVWHQF\�&KHFNHU����������������� ��

Starting the Consistency Checker from a Command Line....94
Rules..94
Formatter..94
Reports..95
Consistency Checker Reports: Rules..................................96
Consistency Checker Reports: Formatter100

$SSHQGL[�$��'DWD�7\SHV��������������������������� ���
$SSHQGL[�%��1RWLFHV��������������������������������� ���

Trademarks and Service Marks ..113
,QGH[��� ���
MQSeries Integrator System Management Guide iii

iv MQSeries Integrator System Management Guide

&KDSWHU��

,QWURGXFWLRQ

The MQSeries Integrator System Management Guide is for those persons
responsible for MQSeries Integrator administration. The System
Administrator should have an overall understanding of the MQSeries
Integrator product and how it works. It is assumed that the System
Administrator is responsible for MQSeries Integrator setup, configuration,
and testing. The System Administrator should be supported by a DBA, who
administers the databases interacting with MQSeries Integrator, and a
network administrator, who ensures that network communications are set up
to include MQSeries Integrator.

The information in this guide explains how to set up, run, and test
NEONFormatter and NEONRules, and how to configure the MQSeries Integrator
Rules daemon.
MQSeries Integrator System Management Guide 1

Chapter 1
3URGXFW�'RFXPHQWDWLRQ�6HW
The MQSeries Integrator documentation set includes:

n MQSeries Integrator Installation and Configuration Guide helps end
users and engineers install and configure MQSeries Integrator.

n MQSeries Integrator User’s Guide helps MQSeries Integrator users
understand and apply the program through its graphical user
interfaces (GUIs).

n MQSeries Integrator System Management Guide is for system
administrators and database administrators who work with
MQSeries Integrator on a day-to-day basis.

n MQSeries Integrator Application Development Guide assists
programmers in writing applications that use MQSeries Integrator
APIs.

n Programming References are intended for users who build and
maintain the links between MQSeries Integrator and other
applications. The documents include:

– MQSeries Integrator Programming Reference for NEONFormatter
is a reference to Formatter APIs for those who write applications
to translate messages from one format to another.

– MQSeries Integrator Programming Reference for NEONRules is a
reference to Rules APIs for those who write applications to
perform actions based on message contents.

1RWH1RWH
For information on message queuing, refer to the IBM MQSeries
documentation.
2 MQSeries Integrator System Management Guide

Introduction
6XSSRUWHG�3ODWIRUPV�DQG�
&RPSLOHUV

2SHUDWLQJ�6\VWHP '%06 &RPSLOHU

Windows NT 4.0 DB2 5.0
Oracle 7.3
Oracle 8
SQL Server 6.5
Sybase Client 11.1.1
Sybase Server 11.03, 11.5

Microsoft Visual C++
version 4.2

Solaris 2.5.1, 2.6 DB2 5.0
Oracle 7.3
Sybase Client 11.1.1
Sybase Server 11.03, 11.5

Sparcworks C++ compiler
version 4.0

HP-UX 10.20 DB2 5.0
Oracle 7.3
Oracle 8
Sybase Client 11.1.1
Sybase Server 11.03, 11.5

HP C++ version 10.34

AIX 4.2 DB2 5.0
Oracle 7.3
Sybase Client 11.1.1
Sybase Server 11.03, 11.5

IBM C Set ++ version 3.1.4
MQSeries Integrator System Management Guide 3

Chapter 1
'LVN�6SDFH�DQG�0HPRU\�
5HTXLUHPHQWV

Required disk space is a function of the number of queues, formats, and rules.
Recommended memory for satisfactory performance depends on message
rates, message sizes, and application-specific factors. For Windows NT/
SQLServer, the recommended memory is 128 MB; for other platforms, the
recommended memory is 256 MB.

2SHUDWLQJ�6\VWHP '%06 /LEUDULHV�	�([HFXWDEOHV

AIX 4.2 DB2 5.0
Oracle 7.3
Sybase 11.03
Sybase 11.5

144 MB
117 MB
130 MB
130 MB

HP-UX 10.20 DB2 5.0
Oracle 7.3
Oracle 8
Sybase 11.03
Sybase 11.5

169 MB
117 MB
117 MB
120 MB
120 MB

Solaris 2.5.1, 2.6 DB2 5.0
Oracle 7.3
Sybase 11.03
Sybase 11.5

166 MB
117 MB
120 MB
120 MB

Windows NT 4.0 DB2 5.0
Oracle 7.3
Oracle 8
SQLServer 6.5
Sybase 11.03
Sybase 11.5

125 MB
117 MB
117 MB
120 MB
120 MB
120 MB
4 MQSeries Integrator System Management Guide

&KDSWHU��

046HULHV�,QWHJUDWRU�2YHUYLHZ

MQSeries Integrator provides the flexibility and scalability that allows true
application integration. MQSeries Integrator consists of four components:

n MQSeries

n NEONFormatter

n NEONRules

n MQSeries Integrator Rules daemon

046HULHV

MQSeries is message-oriented middleware that is ideal for high-value
message handling and high-volume applications because it guarantees each
message is delivered only once, and it supports transactional messaging.
Messages are grouped into units of work and either all or none of the
messages in a unit of work are processed. MQSeries coordinates message
work with other transaction work, like database updates, so data integrity is
always maintained.

1(21)RUPDWWHU

NEONFormatter translates messages from one format to another.

NEONFormatter handles multiple message format types from multiple data
value sources with the ability to convert and parse messages. Messages can be
converted from any described format to any other described format (if fields
in input data formats are missing, you can set up defaults for those fields on
output). When a message is provided as input to Formatter, the message is
parsed and data values are returned. Formatter can handle virtually any
message format, including fixed (for example, COBOL records), delimited
(for example, C null delimited strings), and variable, tagged, delimited,
repetitive and recursive formats (for example, S.W.I.F.T. messages).

Defining message formats in Formatter’s database is done through the
graphical user interface (GUI). The GUI leads you through the definitions of
format components, for example, tags, delimiters, and patterns, to the
building of complete message definitions.
MQSeries Integrator System Management Guide 5

Chapter 2
1(215XOHV

NEONRules lets you develop rules for managing message destination IDs,
receiver locations, expected message formats, and any processes initiated
upon message delivery. The creation and dispatch of multiple messages to
multiple destinations from a single input message is supported, and different
formats and transport methods for each is allowed. The dynamic nature of
NEON’s Rules Engine means that rules can be effective immediately, staged
over time, or delayed, depending on how the reload messages are timed,
allowing flexibility in rapidly changing environments.

NEONRules can examine the value of any field or group of fields in a message
to make its determinations. It can aggregate conditions with the Boolean
AND and OR operators without architectural limits as to the number or
complexity of the expressions.

1RWH1RWH
For more in depth descriptions of the Formatter and Rules modules, refer to
the overviews in Chapter 3, Formatter and Chapter 4, Rules of the MQSeries
Integrator User’s Guide.

046HULHV�,QWHJUDWRU�5XOHV�'DHPRQ

The MQSeries Integrator Rules daemon combines MQSeries, Formatter, and
Rules in a generic server process. The MQSeries Integrator Rules daemon
processes messages from an MQSeries input queue, uses Formatter to parse
messages, uses Rules to determine what transformations to perform and
where to route the messages, and then puts the output messages on MQSeries
queues for delivery to applications.
6 MQSeries Integrator System Management Guide

&KDSWHU��

)RUPDWWHU

:KDW�LV�)RUPDWWHU"
NEONFormatter is packaged as a library of C++ objects that have public
functions that constitute the Application Programming Interface (API) or
Software Development Kit (SDK). Application developers develop
applications that invoke public Formatter functions to parse and reformat
messages.

Formatter has two main functions: parsing and reformatting.

n Parse means to parse an input message into individual fields.

n Reformat means to transform an input message into an output
message with a different format.

Formatter uses format definitions that describe how to parse an input
message and how to format an output message. Format definition data
resides in a relational database. Users build and modify format definitions
using one of two methods: the Formatter GUI tool or the Formatter
management API functions.

The Formatter GUI tool is a program with a graphical user interface that
allows users to populate screens with format definition data and store the
information in a relational database.

Formatter management API functions are a set of C functions that create
format definition data in a relational database. Users can write their own
applications that call the management API functions to build format
definitions.

Two executables, apitest and msgtest, are delivered with Formatter. These
two executables show how to invoke the public functions and serve as tools
for validating format definitions.The apitest executable parses an input
message and displays a hierarchical representation of the parse tree. The
msgtest executable reformats an input message into an output message.

NEONFormatter Consistency Checker checks the correctness of the format
definition data in the relational database. As users build and maintain format
definition data, they should run the consistency checker periodically to insure
the integrity of their data.

The NNFie tool is a command line tool that allows the user to export format
definitions from a database to an export file, and to import from the export
file into a database. NNFie can import data from a MQSeries Integrator 1.0
export file into a MQSeries Integrator 1.0 database. NNFie exports data from
a 1.0 database only.
MQSeries Integrator System Management Guide 7

Chapter 3
The Formatter GUI tool has its own import/export function as well. This
function uses an export file with a format different from the one used by
NNFie.

)LHOGV�DQG�,QSXW�&RQWUROV

Information contained within a structured input message can be broken into
individual fields using input controls. Input controls define how to parse an
individual field. Defined by a unique name and control information used to
define their beginning and end (input control), fields are cohesive parts of a
message representing some type of information.

Each field has an associated parse control describing how to identify the field
in the message. Input control information includes the data type for the field,
tags preceding and/or following the field, the length of the field, the number
of times the field repeats within a message, and literals. Repetition count
indicates how many times a certain field will appear in a message.

Formatter supports several data types including ASCII String, ASCII
Numeric, and Binary. See Data Types on page 107 for a complete list of
supported data types for this release.

Tags are sets of bits or characters explicitly defining a string of data. For
example, <DATE> and </DATE> might mark the beginning and end of a
date field in a message.

Literals are symbols used in programming languages such as numbers or
strings providing an actual value instead of representing possible values.
Literals may only contain ASCII values and are often used as delimiters to
separate fields in a message.

Regular Expressions (REs) are strings expressing rules for string pattern
matching. Within input parse controls, you can use REs to match ASCII field
data in input fields. Instead of searching for a defined literal, you can use a RE
to search for complex string patterns in field data. String-matching
capabilities implemented comply with the POSIX 1003.2 standard for regular
expressions.

1RWH1RWH
For more information on literals and regular expressions, refer to the
MQSeries Integrator Programming Reference for NEONFormatter.

2XWSXW�&RQWUROV�

For each field in an input message you want to appear in an output message
or use to affect a resulting field in an output message, you must have a
matching output format control. Output controls specify how to get a starting
value for the output field, what data type transformation to perform, and
what formatting operations to perform (for example, prefix, suffix, trim).
8 MQSeries Integrator System Management Guide

Formatter
Defined in much the same way as parse controls, output controls contain
additional information such as the type of mathematical operation, prefix and
suffix data, user exit routine, pad characters, and default value.

)RUPDWV�

Simple formats are defined by grouping fields (and their parse or output
format controls). Messages are described to Formatter using individual data
fields. However, there can be several layers of complexity in a format
definition before the actual field values within a message can be determined.

Formats may be one of two types: flat or compound. Flat formats only contain
fields and their input or output format controls. Compound formats contain
one or more formats, each of which can be either flat or compound.

Input formats (flat or compound) contain fields and their parse controls and
are used to parse messages so they can be reformatted according to output
formats (flat or compound).

Each format must be defined by the user. However, once a format is defined,
the format is available to be used during translation. You can use either the
Formatter GUI or Formatter Management APIs to define and configure
format descriptions.

Using Reformat(), Formatter can translate a message into a different message
using the descriptions for the input and output formats defined by the user.
During translation, Formatter uses parse() to break the message into
individual fields.

)RUPDW�6WRUDJH

Formatter uses user-defined format descriptions to recognize and parse input
messages and reformat output messages. Formatter uses these descriptions to
interpret the values in incoming messages and to construct outgoing
messages.

Possible transformations Formatter can handle include:

n Adding, removing, or rearranging data, literals, tags, and delimiters
(delimiters are logically cohesive sequences of characters forming a
field terminator or format terminator)

n Converting between data types

n Inserting literals into output

n Inserting headers and trailers (including control characters) around
any field

n Performing arithmetic operations on numeric data

n Executing user-written data translations functions

n Executing user-written callback functions for user-defined type input
field validation and other purposes
MQSeries Integrator System Management Guide 9

Chapter 3
3DUVLQJ�DQG�5HIRUPDWWLQJ�

Formatter can parse a message (using Formatter::Parse()), breaking a message
down into its individual fields specified in its input control. When a message
is parsed, the intermediate field results can be used.

Or, the parsed message can then be reformatted (using
Formatter::Reformat()) in a specified output message format. If the message
provided to Reformat() has not been pre-parsed using Parse(), Reformat()
calls Parse() before reformatting the message.

Message Formatting

Message

Message split into fields

Fields moved/
transformed and data

added/removed.

Output Message

Message
split into
individual

fileds.

Results.
10 MQSeries Integrator System Management Guide

Formatter
)RUPDWWHU�&RQILJXUDWLRQ
The sqlsvses.cfg file contains information used by Rules and Formatter.

1RWH1RWH
MQSeries Integrator does not use sqlsvses.cfg. The MQSeries Integrator Rules
daemon uses a parameter file called MQSIruleng.mpf. However, test
programs do use sqlsvses.cfg.

For more information on MQSIruleng, refer to MQSIruleng on page 75.

7KH�VTOVYVHV�FIJ�)LOH�

The sqlsvses.cfg file is the default configuration files and contains information
about the database and database server used for MQSeries Integrator
executables. This file is created automatically when the libraries are installed
and is located in the /bin subdirectory created during the installation process.
The password information in the sqlsvses.cfg file is exposed. An alternative is
to use the sqlsvses.crypt files.

1RWH1RWH
The sqlsvses.cfg file must be in the same directory as an application using
MQSeries Integrator components.

VTOVYVHV�FIJ�3DUDPHWHUV

1RWH1RWH
The character length for the parameters in the sqlsvses.cfg file is dependent
on your server platform and operating system. Line size in the sqlsvses.cfg
file is limited to 1024 bytes. Each parameter is separated by a colon.

3DUDPHWHU 'HVFULSWLRQ

session name Database session name to be used by MQSeries Integrator
executables or daemons. This can be any string as long as it is
unique within the file.

server name Server where the MQSeries Integrator database resides.

user name (user id) Database user name.

password Database password.

database name Database name where the MQSeries Integrator tables reside
(if applicable). This is not used for Oracle.
MQSeries Integrator System Management Guide 11

Chapter 3
(QFU\SWLQJ�WKH�VTOVYVHV�FIJ�ILOH

To use the encryption version of sqlsvses.cfg, run the NNCryptCfg executable
against the current sqlsvses.cfg file. A sqlsvses.crypt file is generated. The
sqlsvses.crypt file is searched for first. If both a .cfg file and a .crypt file exist
in the same directory, the .crypt file is used.

0RGLI\LQJ�WKH�ORFDWLRQ�RI�WKH�VTOVYVHV�ILOH

The default location of the sqlsvses file is the local directory where the
executable is invoked. However, the location can be modified and centralized
to another location by setting an environment variable.

Set an environment variable (NN_CONFIG_FILE_PATH) to look for the
encrypted file. The file name is sqlsvses.crypt, and the default configuration
file is not sqlsvses.crypt.

One copy of sqlsvses.cfg can be set up for all directories to point to,
eliminating the need for the file in every directory. For example:

setenv NN_CONFIG_FILE_PATH/home/smith

Or for ksh:

export NN_CONFIG_FILE_PATH=/home/smith

If the sqlsvses.crypt file is not found, then the sqlsvses.cfg file is used. If
neither file is found, an error condition occurs.

(GLWLQJ�WKH�VTOVYVHV�FIJ�ILOH�

To give MQSeries Integrator the database information it needs for
configuration, you must edit the sqlsvses.cfg file. This is an ASCII file that can
be edited using any text editor that can save the file in ASCII format.

Text lines in the sqlsvses.cfg file must follow this format:

<sessionname>:<servername>:<username>:<password>:
<databasename>

A sample text line in the sqlsvses.cfg file for SQL Server and Sybase servers is:

new_format_demo:demo_server:demo_user:demo_password:demo_
db:

For Oracle servers, <databasename> is not necessary. The end colon (:) must
be included in the text line, even if the < database name> parameter is not
specified. Oracle servers also use instance names instead of server names.

A sample text line in the sqlsvses.cfg file for an Oracle server is:

new_format_demo:demo_instance:demo_user:demo_password: :
12 MQSeries Integrator System Management Guide

Formatter
1RWH1RWH
If the <password> parameter is not specified, leave a blank space between
<username> and <databasename> or <instancename>.

,PSOHPHQWLQJ�FKDQJHV�WR�WKH�VTOVYVHV�FIJ�
ILOH�

To implement changes to the sqlsvses.cfg file, you must restart any
applications using MQSeries Integrator components.
MQSeries Integrator System Management Guide 13

Chapter 3
,PSRUW�([SRUW�)RUPDWV�

11)LH�

NNFie is a command line tool that allows the user to export format
definitions from a database to an export file, and to import from the export
file into a database. NNFie can import data from a MQSeries Integrator 1.0
export file into a MQSeries Integrator 1.0 database. NNFie exports data only
from a MQSeries Integrator 1.0 database. You cannot export formats from one
release of Formatter and import them into a different release of Formatter.

1RWH1RWH
File names (including absolute paths) for both import and export must be no
longer than 255 characters.

&RPPDQG�/LQH�2SWLRQV�IRU�11)LH

NNFie ((-C [<command file name>]|
(-i <import file name>|-e <export file name>
[-m <format name>+]
[-s <session name>]))

[] represents optional

() represents grouping

| represents XOR

+ represents one or more

<> means replace with user-provided data

3DUDPHWHUV

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-C [<command
file>]

Optional Alternate command file name; default file
is NNFie.cmd. If this option is provided,
NNFie reads command line options from a
file instead of the command line.

-i [<import file>] Mandatory for
Import

This parameter is required to import data
from the named file, and is mutually
exclusive with -e.

-e [<export file>] Mandatory for
Export

This parameter is required to import data
from the named file, and is mutually
exclusive with -i.

-s [<session
name>]

Optional Name of session in sqlsvses.cfg. Defaults
to nnfie.
14 MQSeries Integrator System Management Guide

Formatter
:$51,1*�

n Command line option -C allows you to put import/export command
options in a text file. You should not use names (for example, format
name or session name) in the text file. Also, do not escape the new
lines using backslashes such as -e <some file name>. Using
backslashes in a command line is not recommended

n If FTP is used with ASCII files to transport the f iles, parts of formats
may be missing.

2SHUDWLRQDO�$VVXPSWLRQV

n The file system supports long file names and can also accept the
command line syntax described here.

n The operating system supports the concept of standard input,
standard output, and standard error stream sources and sinks.

'HVFULSWLRQ

1RWH1RWH
NNFie, NNRie (page 59) and sqlsvses.cfg (page 11) must be in the same
directory as NNFie (on UNIX, NNFie.sh) or NNFie.3.0 (on UNIX,
NNFie.3.0.sh).

The Import/Export Utility (NNFie) is a script run that exports all components
of a given format. The export file for NNFie is not interchangeable with the
files created by the GUI.

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one format "f1" and another format "F1". In a case-insensitive
environment, you must make each item unique using something other than
case differences.

If importing components exported from a context-sensitive database into a
context-insensitive database, these differences will cause NNFie to fail during

-m [<message
type>]

Optional Specifies the message type to export. The
default behavior is to export all messages
types within the specified application
group.

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 15

Chapter 3
import if a conflict arises between two components named the same with
only case differences.

,PSRUW�6\QWD[

&DVH����,PSRUW�D�IRUPDW

$ NNFie -i [<file name>] [-s <session name>]

1RWH1RWH
If the format fails to import, an error message is generated and NNFie
outputs the data to NEONetferr.

([SRUW�6\QWD[

&DVH����([SRUW�DQ�HQWLUH�GDWDEDVH�

$ NNFie -e [<export file name>] [-s <session name>]

&DVH����([SRUW�D�VLQJOH�IRUPDW

$ NNFie -e [<export file name>] [-m <format name>] [-s
<session name>]

&DVH����([SRUW�PRUH�WKDQ�RQH�IRUPDW

$ NNFie -e [<export file name>] [-m <format name> <format
name> ...]] [-s <session name>]

1RWH1RWH
Exporting conditional branching rules outputs to <export file name> rules.

5HPDUNV

(QYLURQPHQWDO�'HSHQGHQFLHV

This utility requires the following:

1. Previously installed, supported RDBMS system.

2. Previously created Rules database schema.

3. Previously created Formatter database schema.

Export requires the following:

1. Formatter/Rules data in the database created via the Formatter/
Rules GUI or Formatter/Rules Management APIs.

2. Enough disk space to hold the output file.

Import requires that the target (MQSeries Integrator r.1.0) database has been
created.
16 MQSeries Integrator System Management Guide

Formatter
7URXEOHVKRRWLQJ�,PSRUW�)DLOXUHV

If NNFie fails to import from a given export file, view the NNFie.log to
determine the cause for import failure. Two types of errors can cause an
import to fail:

1. Conflict errors, i.e., data already exists in the database that conflicts
with imported data.

2. Non-conflict errors.

1RQ�&RQIOLFW�(UURU�0HVVDJH��QRW�FRPSRQHQW�VSHFLILF�

This error message should be complete without any specific component
information:

ERROR: <error message>

1RQ�&RQIOLFW�(UURU�0HVVDJH�IRU�D�6SHFLILF�)RUPDWWHU�(OHPHQW

This error message contains both formatter component identification and the
data that is being imported:

<Formatter element type>

"<name of the Formatter element>": I/E failed!

ERROR: <error message> [(Formatter management error code)]

<profile - contains all data items related to this Formatter element>

By viewing the data, you should be able to determine the incorrect or missing
data items, fix the data in the original database being exported, re-export the
data, and then import the newly exported data.

&RQIOLFW�(UURU�0HVVDJH�IRU�D�6SHFLILF�)RUPDWWHU�(OHPHQW

In this case, the data being imported conflicts with data already existing in the
database. View the data and either remove the conflicting data in the
destination database, or fix the data in the originating database, re-export the
data, and import the newly exported data.

<Formatter element type>

"<name of the Formatter element>": I/E failed!

ERROR: Import item conflicts with existing Formatter element with the
same name

<data item tag (e.g., optional indicator)> (existing = <value> | incoming
 = <value>)

11)LH�(UURU�0HVVDJHV

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH

-4001 NNFIEE_FILE_EXISTS Given file already
exists (so will not
replace it)

The specified export
file name already
exists.

Remove the file or
specify a different
export file name.
MQSeries Integrator System Management Guide 17

Chapter 3
-4002 NNFIEE_NO_IMPORT
_FILE

No import files by
the given name exist

The specified import
file name already
exists.

Check for the
existence of the file.

-4003 NNFIEE_FAILED_TO_
READ_FROM_
IMPORT_FILE

Failed to read from
the import file

The file cannot be
read.

Check for the
existence of the file
or possible access
problems.

 -4004 NNFIEE_FAILED_TO_
SEPARATE_INPUT_
DATA

Failed to separate
and fetch a piece of
the input data

The import file has
been corrupted.

Restore or recreate
the file.

-4005 NNFIEE_BAD_FILE_
STREAM

Bad file stream Unable to obtain the
required file stream.

Check for the
existence of the
import / export file

-4006 NNFIEE_NAME_
PROPERTY_
CONFLICT

Conflict with the
existing Formatter
element with the
same name

A format component
being imported
conflicts with an
existing component
of the same name.

If you import into a
populated format
database, you can
rename the existing
component and
import again, or
change the
incoming
component name
in the source
database and re-
export.

-4007 NNFIEE_INVALID_IE_
MODE

Invalid import/
export mode (valid:
EXPORT_BY_NAM
E, EXPORT_ALL,
IMPORT)

An invalid mode has
been specified on the
command line or in
the command file.

Check the
arguments passed
to NNFie for
correctness.

-4008 NNFIEE_
ATTEMPTING_TO_
REEXPORT

Attempting to re-
export an element
that has been
exported

A component has
been defined that
references itself.

Remove the
circular reference to
this component.

-4009 NNFIEE_FAILED_TO_
IMPORT_
COMPONENTS

Components have
not been imported

During import, one
or more of the
components
required did not
import. All
components that use
the failed
component will not
import.

Determine why the
component did not
import correctly.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
18 MQSeries Integrator System Management Guide

Formatter
-4010 NNFIEE_INVALID_
FORMATTER_
ELEMENT

Invalid Formatter
element type

An unknown format
component has been
found. The file was
exported from an
unsupported
version of MQSeries
Integrator or the file
is corrupt.

Check the version
of MQSeries
Integrator on the
source machine.
Recover or recreate
the export file.

-4011 NNFIEE_INVALID_
NNFIE_FILE

Invalid NNFie file -
make sure the file
was generated by
NNFie

The specified file is
incompatible.

Recreate or recover
the export file.

-4012 NNFIEE_INVALID_
VERSION_NO

Invalid NNFie
version number

The version number
found in the file is
not supported.

Recreate the file
using a supported
version of
MQSeries
Integrator.

-4013 NNFIEE_FAILED_TO_
INVENTORY

Failed to add to the
I/E inventory

NNFie was unable
to register the
component as
exported or
imported.

Rerun the import/
export.

-4014 NNFIEE_NO_
FORMATS_TO_
EXPORT

No formats to export The format database
does not contain any
valid formats to
export.

Create valid
formats.

-4015 NNFIEE_NOTHING_
TO_IMPORT

Nothing to import The import file does
not contain any
format information.

Create an export
file from a database
that contains
formats.

-4016 NNFIEE_FAILED_TO_
ENCRYPT

Encryption failed NNFie was unable
to encrypt the export
data successfully.

Rerun the export.

-4017 NNFIEE_FAILED_TO_
DECRYPT

Decryption failed NNFie was unable
to decrypt the
import file. This is
caused by file
corruption.

Recreate of recover
the export file.

-4018 NNFIEE_NNFIEERR_
ALREADY_EXISTS

NNFieerr already
exists

The error file
NNFie.err exists.

Remove the file
NNFie.err and
rerun.

-4019 NNFIEE_IE_FILE_
ALREADY_EXISTS

I/E file already
exists

The specified output
file already exists.

Use a new export
file name or move/
rename the existing
export file.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 19

Chapter 3
11)LH�)RUPDW�(UURU�0HVVDJHV

-4020 NNFIEE_FAILED_TO_
OPEN_DBMS_
SESSION

Failed to open
DBMS session

NNFie was unable
to connect to the
database specified in
the sqlsvses.cfg file.

Check the entry for
NNFie or the
session name
specified with the
 -s option in the
sqlsvses.cfg file for
correctness.

-4021 NNFIEE_FAILED_TO_
OPEN_FMGR

Failed to initialize
Formatter manager

NNFie was unable
to use the Format
manager library.

Check the
correctness of the
installation of
MQSeries
Integrator.

-4022 NNFIEE_INVALID_
CNTL_TYPE

Invalid control type An unknown format
control has been
found. The file was
exported from an
unsupported
version of MQSeries
Integrator or the file
is corrupt.

Check the version
of MQSeries
Integrator on the
source machine.
Recover or recreate
the export file.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH

-4201 NNFIEE_GetFormat GetFormat failed The flat or
compound format
was not accessible
in the database
through the Format
Management API
NNFMgrGet
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4202 NNFIEE_GetFirst
Format

GetFirstFormat failed The first flat or
compound format
was not accessible
in the database
through the Format
Management API
NNFMgrGetFirst
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
20 MQSeries Integrator System Management Guide

Formatter
-4203 NNFIEE_GETNEXT
FORMAT

GetNextFormat failed The next flat or
compound format
was not accessible
in the database
through the Format
Management API
NNFMgrGetNext
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4204 NNFIEE_GetFirst
FieldFromInput
FormatT

GetFirstFieldFrom
InputFormat failed

The first field
associated with a
flat input format
was not accessible
in the database
through the Format
Management API
NNFMgrGetFirst
FieldFromInput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4205 NNFIEE_GetNextField
FromInputFormat

GetNextFieldFrom
InputFormat failed

The next field
associated with a
flat input format
was not accessible
in the database
through the Format
Management API
NNFMgrGetNext
FieldFromInput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4206 NNFIEE_GetFirstField
FromOutputFormat

GetFirstFieldFrom
OutputFormat failed

The first field
associated with a
flat output format
was not accessible
in the database
through the Format
Management API
NNFMgrGetFirst
FieldFromOutput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4207 NNFIEE_GetNextField
FromOutputFormat

GetNextFieldFrom
OutputFormat failed

The next field
associated with a
flat output format
was not accessible
in the database
through the Format
Management API
NNFMgrGetNext
FieldFromOutput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 21

Chapter 3
 -4208 NNFIEE_GetFirstChild
Format

GetFirstChildFormat
failed

The first child
format of a
compound format
was not accessible
in the database
through the Format
Management API
NNFMgrGetFirst
ChildFormat.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4209 NNFIEE_GetNextChild
Format

GetNextChildFormat
failed

The next child
format of a
compound format
was not accessible
in the database
through the Format
Management API
NNFMgrGetNext
ChildFormat.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4210 NNFIEE_GetOutput
Control

GetOutputControl
failed

The specified
output control was
not accessible in the
database through
the Format
Management API
NNFMgrGet
OutputControl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4211 NNFIEE_GetFirst
OutputControl

GetFirstOutput
Control failed

The first output
control was not
accessible in the
database through
the Formatter
Management API
NNFMgrGetFirst
OutputControl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Formatter
Management API
error codes.

-4212 NNFIEE_GetNext
OutputControl

GetNextOutput
Control failed

The next output
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetNext
OutputControl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
22 MQSeries Integrator System Management Guide

Formatter
-4213 NNFIEE_GetParse
Control

GetParseControl
failed

The specified
parse/input
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetParse
Control.

Use the secondary
Formatter
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4214 NNFIEE_GetFirstParse
Control

GetFirstParseControl
failed

The first parse/
input control was
not accessible in the
database through
the Format
Management API
NNFMgrGetFirst
ParseControl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4215 NNFIEE_GetNextParse
Control

GetNextParseControl
failed

The next parse/
input control was
not accessible in the
database through
the Format
Management API
NNFMgrGetNext
ParseControl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4216 NNFIEE_GetDelimiter GetDelimiter failed The specified
delimiter was not
accessible in the
database through
the Format
Management API
NNFMgrGet
Delimiter.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4217 NNFIEE_GetFirst
Delimiter

GetFirstDelimiter
failed

The first delimiter
was not accessible
in the database
through the Format
Management API
NNFMgrGetFirstD
elimiter.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 23

Chapter 3
-4218 NNFIEE_GetNext
Delimiter

GetNextDelimiter
failed

The next delimiter
was not accessible
in the database
through the Format
Management API
NNFMgrGetNext
Delimiter.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4219 NNFIEE_GetField GetField failed The specified field
was not accessible
in the database
through the Format
Management API
NNFMgrGetField.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4220 NNFIEE_GetFirstField GetFirstField failed The first field was
not accessible in the
database through
the Format
Management API
NNFMgrGetFirst
Field.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4221 NNFIEE_GetNextField GetNextField failed The next field was
not accessible in the
database through
the Format
Management API
NNFMgrGetNext
Field.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4222 NNFIEE_Append
FormatToFormat

AppendFormatTo
Format failed

The attempt to
append one flat or
compound format
into a compound
format failed using
the Format
Management API
NNFMgrAppend
FormatToFormat.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
24 MQSeries Integrator System Management Guide

Formatter
-4223 NNFIEE_AppendField
ToInputFormat

AppendFieldToInput
Format failed

The attempt to
append a field to a
flat input format
failed using the
Format
Management API
NNFMgrAppend
FieldToInput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4224 NNFIEE_AppendField
ToOutputFormat

AppendFieldTo
OutputFormat failed

The attempt to
append a field to a
flat output format
failed using the
Format
Management API
NNFMgrAppend
FieldToOutput
Format.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4225 NNFIEE_AppendMath
Expression

AppendMath
Expression failed

The attempt to
append a math
expression detail
entry to an existing
math expression
control failed using
the Format
Management API
NNFMgrAppend
MathExpression.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4226 NNFIEE_Append
LookupEntry

AppendLookupEntry
failed

The attempt to
append a lookup
detail entry to an
existing lookup
control failed using
the Format
Management API
NNFMgrAppend
LookupEntry.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4227 NNFIEE_CreateFormat CreateFormat failed The attempt to
create a new input/
output flat or
compound format
failed using the
Format
Management API
NNFMgrCreateFor
mat.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 25

Chapter 3
-4228 NNFIEE_CreateParse
Control

CreateParseControl
failed

The attempt to
create a new parse/
input control failed
using the Format
Management API
NNFMgrCreate
ParseControl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4229 NNFIEE_CreateOutput
Control

CreateOutputControl
failed

The attempt to
create a new output
control failed using
the Format
Management API
NNFMgrCreate
OutputControl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4230 NNFIEE_Create
Delimiter

CreateDelimiter
failed

The attempt to
create a new
delimiter failed
using the Format
Management API
NNFMgrCreate
Delimiter.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4231 NNFIEE_CreateField CreateField failed The attempt to
create a new field
failed using the
Format
Management API
NNFMgrCreate
Field.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4232 NNFIEE_SERIOUS_
ERROR_POSSIBLY_
DB_RELATED

GetErrorNo returned
serious error number

General database
error encountered
using the Format
Management APIs.

See Format
Management API
error code -2604.

-4233 NNFIEE_GetDataType
Name

GetDataTypename
failed

The attempt to
retrieve the formal
name for the data
type code failed
due to an invalid
data type code
associated control.

Run the formatter
database
consistency
verification
program to verify
data type codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
26 MQSeries Integrator System Management Guide

Formatter
-4234 NNFIEE_GetDataType GetDataType failed The attempt to
retrieve the data
type code
associated with the
formal data type
name failed.

The NNFie import
file does not
contain the correct
formal data type
names. The NNFie
import file is
corrupt or has been
exported from a
damaged database.

-4235 NNFIEE_GetFirstUser
DefinedType

GetFirstUserDefined
Type failed

The first user-
defined type was
not accessible in the
database through
the Format
Management API
NNFMgrGetFirst
UserDefinedType.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4236 NNFIEE_GetNextUser
DefinedType

GetNextUserDefined
Type failed

The next user-
defined type was
not accessible in the
database through
the Format
Management API
NNFMgrGetNext
UserDefinedType.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4237 NNFIEE_CreateUser
DefinedType

CreateUserDefined
Type failed

The attempt to
create a new user-
defined type failed
using the Format
Management API
NNFMgrCreate
UserDefinedType.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4238 NNFIEE_GetFirst
Literal

GetFirstLiteral failed The first literal was
not accessible in the
database through
the Format
Management API
NNFMgrGetFirst
Literal.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 27

Chapter 3
-4239 NNFIEE_GetNext
Literal

GetNextLiteral failed The next literal was
not accessible in the
database through
the Format
Management API
NNFMgrGetNext
Literal.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4240 NNFIEE_GetLiteral GetLiteral failed The specified literal
was not accessible
in the database
through the Format
Management API
NNFMgrGet
Literal.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4241 NNFIEE_GetFirstOut
MstrCntl

GetFirstOutMstrCntl
failed

The first output
master control was
not accessible in the
database through
the Format
Management API
NNFMgrGetFirst
OutMstrCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4242 NNFIEE_GetFirst
DefaultCntl

GetFirstDefaultCntl
failed

The first default
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetFirst
DefaultCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4243 NNFIEE_GetFirstUser
ExitCntl

GetFirstUserExitCntl
failed

The first user exit
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetFirst
UserExitCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
28 MQSeries Integrator System Management Guide

Formatter
-4244 NNFIEE_GetFirstPre
PostFixCntl

GetFirstPrePostFix
Cntl failed

The first prefix/
postfix control was
not accessible in the
database through
the Format
Management API
NNFMgrGetFirst
PrePostFixCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4245 NNFIEE_GetFirst
SegmentFromMathExp
Cntl

GetFirstSegment
FromMathExpCntl
failed

The first segment of
the math
expression detail
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetFirst
SegmentFromMath
ExpCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4246 NNFIEE_Append
SegmentToMathExp
Cntl

AppendSegmentTo
MathExpCntl failed

The attempt to
append a math
expression detail
entry to an existing
math expression
failed using the
Format
Management API
NNFMgrAppend
SegmentMathExp
Cntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4247 NNFIEE_GetFirst
SubstituteCntl

GetFirstSubstitute
Cntl failed

The first substitute
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetFirst
SubstituteCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4248 NNFIEE_GetFirstSub
StringCntl

GetFirstSubString
Cntl failed

The first substring
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetFirst
SubStringCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 29

Chapter 3
-4249 NNFIEE_GetFirstTrim
Cntl

GetFirstTrimCntl
failed

The first trim
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetFirst
TrimCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4250 NNFIEE_GetFirst
CollectionCntl

GetFirstCollection
Cntl failed

The first output
collection control
was not accessible
in the database
through the Format
Management API
NNFMgrGetFirst
CollectionCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4251 NNFIEE_AppendCntl
ToCollectionCntl

AppendCntlTo
CollectionCntl failed

The attempt to
append an output
operation to an
output operation
control failed using
the Format
Management API
NNFMgrAppend
CntlToCollection
Cntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4252 NNFIEE_GetFirstCntl
FromCollection

GetFirstCntlFrom
Collection failed

The first output
operation
collection control
was not accessible
in the database
through the Format
Management API
NNFMgrGetFirst
CntlFrom
Collection.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4253 NNFIEE_GetFirst
LengthCntl

GetFirstLengthCntl
failed

The first length
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetFirst
LengthCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
30 MQSeries Integrator System Management Guide

Formatter
-4254 NNFIEE_GetFirstMath
ExpCntl

GetFirstMathExpCntl
failed

The first math
expression control
was not accessible
in the database
through the Format
Management API
NNFMgrGetFirst
MathExpCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4255 NNFIEE_GetNextOut
MstrCntl

GetNextOutMstrCntl
failed

The next output
master control was
not accessible in the
database through
the Format
Management API
NNFMgrGetNext
OutMstrCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4256 NNFIEE_GetOutMstr
Cntl

GetOutMstrCntl
failed

The specified
output master
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetOut
MstrCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4257 NNFIEE_GetNext
DefaultCntl

GetNextDefaultCntl
failed

The next default
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetNext
DefaultCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4258 NNFIEE_GetDefault
Cntl

GetDefaultCntl failed The specified
default control was
not accessible in the
database through
the Format
Management API
NNFMgrGet
DefaultCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 31

Chapter 3
-4259 NNFIEE_GetNextUser
ExitCntl

GetNextUserExitCntl
failed

The next user exit
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetNext
UserExitCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4260 NNFIEE_GetUserExit
Cntl

GetUserExitCntl
failed

The specified user
exit control was not
accessible in the
database through
the Format
Management API
NNFMgrGetUser
ExitCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4261 NNFIEE_GetNextPre
PostFixCntl

GetNextPrePostFix
Cntl failed

The next prefix/
postfix control was
not accessible in the
database through
the Format
Management API
NNFMgrGetNext
PrePostFixCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4262 NNFIEE_GetPrePostFix
Cntl

GetPrePostFixCntl
failed

The specified
prefix/postfix
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetPre
PostFixCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4263 NNFIEE_GetNext
SegmentFromMathExp
Cntl

GetNextSegment
FromMathExpCntl
failed

The next segment
of the math
expression detail
controls was not
accessible in the
database through
the Format
Management API
NNFMgrGetNext
SegmentFromMath
ExpCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
32 MQSeries Integrator System Management Guide

Formatter
-4264 NNFIEE_GetNext
SubstituteCntl

GetNextSubstitute
Cntl failed

The next substitute
control was not
accessible in the
database through
the Format
Management API
NNFMgrGet
SubstituteCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4265 NNFIEE_GetSubstitute
Cntl

GetSubstituteCntl
failed

The specified
substitute control
was not accessible
in the database
through the Format
Management API
NNFMgrGet
SubstituteCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4266 NNFIEE_GetNext
SubStringCntl

GetNextSubString
Cntl failed

The next substring
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetNext
SubStringCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4267 NNFIEE_GetSubString
Cntl

GetSubStringCntl
failed

The specified
substring control
was not accessible
in the database
through the Format
Management API
NNFMgrGet
SubStringCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4268 NNFIEE_GetNextTrim
Cntl

GetNextTrimCntl
failed

The next trim
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetNext
TrimCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 33

Chapter 3
-4269 NNFIEE_GetTrimCntl GetTrimCntl failed The specified trim
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetTrim
Cntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4270 NNFIEE_GetNextCntl
FromCollection

GetNextCntlFrom
Collection failed

The next output
operation
collection control
was not accessible
in the database
through the Format
Management API
NNFMgrGetCntl
FromCollection.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4271 NNFIEE_GetNext
LengthCntl

GetNextLengthCntl
failed

The next length
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetNext
LengthCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4272 NNFIEE_GetLength
Cntl

GetLengthCntl failed The specified
length control was
not accessible in the
database through
the Format
Management API
NNFMgrGet
LengthCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4273 NNFIEE_GetNextMath
ExpCntl

GetNextMathExp
Cntl failed

The next math
expression control
was not accessible
in the database
through the
Formatter
Management API
NNFMgrGetNext
MathExpCntl.

Use the secondary
Formatter
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
34 MQSeries Integrator System Management Guide

Formatter
-4274 NNFIEE_GetMathExp
Cntl

GetMathExpCntl
failed

The specified math
expression control
was not accessible
in the database
through the Format
Management API
NNFMgrGetMath
ExpCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4275 NNFIEE_GetNext
CollectionCntl

GetNextCollection
Cntl failed

The next output
collection control
was not accessible
in the database
through the Format
Management API
NNFMgrGetNext
CollectionCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4276 NNFIEE_GetCollection
Cntl

GetCollectionCntl
failed

The specified
output collection
control was not
accessible in the
database through
the Format
Management API
NNFMgrGet
CollectionCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4277 NNFIEE_GetUser
DefinedType

GetUserDefinedType
failed

The specified user-
defined type was
not accessible in the
database through
the Format
Management API
NNFMgrGetUser
DefinedType.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4278 NNFIEE_GetNextMath
Expression

GetNextMath
Expression failed

The next math
expression was not
accessible in the
database through
the Format
Management API
NNFMgrGetNext
MathExpression.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 35

Chapter 3
-4279 NNFIEE_GetNextLook
upEntry

GetNextLookupEntry
failed

The next lookup
entry control was
not accessible in the
database through
the Format
Management API
NNFMgrGetNext
LookupEntry.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4280 NNFIEE_GetNextEntry
FromSubstituteCntl

GetNextEntryFrom
SubstituteCntl failed

The next substitute
field segment from
the substitute
control was not
accessible in the
database through
the Format
Management API
NNFMgrGetNext
EntryFrom
SubstituteCntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4281 NNFIEE_AppendEntry
ToSubstituteCntl

AppendEntryTo
SubstituteCntl failed

The attempt to
create a substitute
field segment for
the substitute
control failed using
the Format
Management API
NNFMgrAppend
EntryToSubstitute
Cntl.

Use the secondary
Format
Management API
error code to
resolve the
problem. See the
Format
Management API
error codes.

-4500 Fatal internal error Processing could
not continue.

See previous error
messages for
further
information.

&RGH (UURU�1DPH (UURU�0HVVDJH (UURU�
([SODQDWLRQ

5HVSRQVH
36 MQSeries Integrator System Management Guide

Formatter
7HVWLQJ�)RUPDWV�

)RUPDWWHU�7HVW�([HFXWDEOHV�

Two testing executables are provided with Formatter: apitest and msgtest.
These executables show how to invoke the public functions and serve as tools
for validating format definition.

The apitest executable parses an input message and displays a hierarchical
representation of the parse tree. Run apitest to validate input formats and to
view how Formatter interpreted a message.

The msgtest executable reformats and input message into an output message.
Run msgtest to test input and output formats.

The source code for msgtest and apitest are included in the MQSeries
Integrator Programming Reference for NEONFormatter (see msgtest.cpp and
apitest.cpp). Refer to this source code for use of the Formatter API functions.

7KH�DSLWHVW�([HFXWDEOH�

The apitest executable outputs the structure and contents of a message parsed
by Formatter. The apitest executable does not test output; it focuses on the
input and parse aspects of Formatter.

The apitest command line parameters are:

Usage: apitest[-d[<filename>]]

-d :parse debug on

The -d [filename] parameter sets debugging mode to parse for this run of
apitest. [filename] specifies an optional file where debug information is
written. If [filename] is not specified, debug information is written to the
screen (STDOUT).

8VLQJ�DSLWHVW

To run apitest:

1. At the command line prompt, type apitest.

2. At the prompt, Enter the input file name:, type the name of
the file in this directory that contains the message to be parsed and
reformatted.

3. At the prompt, Enter the input format name:, type the name
of the input format that will be read from the NNF-FMT table in the
database identified in the sqlsvses.cfg file.
MQSeries Integrator System Management Guide 37

Chapter 3
7KH�PVJWHVW�([HFXWDEOH�

The msgtest executable uses input and output formats, delimiters, and other
control information read from the database to parse and reformat an input
message that is read from a file. The information needed by msgtest must be
placed in the database using the GUI or an executable that uses Formatter
Management APIs.

The msgtest command line parameters are:

Usage: msgtest[-li][-lo][-if][-nv][-d[<filename>][-dcp]
[-dcm][-dco]]

-li: loud input
-lo: loud output
-lf: loud formatted value
-nv: no validation
-d: debug on (debug parse only if -dcp and -dcm and

-dco not specified)
-dcp: debug parse on
-dcm: debug map on
-dco: debug output on

The -d [filename] parameter sets debugging mode to parse for this run of
msgtest. [filename] specifies an optional file where debug information is
written. If [filename] is not specified, debug information is written to the
screen (STDOUT).

8VLQJ�PVJWHVW

To run msgtest:

1. At the command line prompt, type msgtest.

2. At the prompt, Enter the input file name:, type the name of
the file in this directory that contains the message to be parsed and
reformatted.

3. At the prompt, Enter the output file name:, type the name of
the file that will contain the reformatted message.

4. At the prompt, Enter the input format name:, type the name
of the input format that will be read from the NNF-FMT table in the
database identified in the sqlsvses.cfg file.

5. At the prompt, Enter the output format name:, type the
name of the output format that will be read from the NNF_FMT table
in the database identified in $msgtest<myFormatterTest.txt>.

7LS
To run msgtest more than once using the same information, create a text file.

The following example shows msgtest command line parameters read from a
file on UNIX.

$ msgtest<myFormatterTest.txt>
38 MQSeries Integrator System Management Guide

Formatter
The myFormatterTest.txt file contains:

ascii_string <the input file name containing the message>

output_AS1 <the output file name that will contain the translated
 message>

AS_IF <the input format to be read from the database>

AS_NA1_OF <the output format to be read from the database>

&RQILJXUDWLRQ�)LOH

Before running Formatter test executables, verify that the sqlsvses.cfg file
includes the database name and server name information used to execute this
program. This file must also be in the same directory as the executable
program.

1RWH1RWH
For Formatter test executables, the session name to be entered in the
sqlsvses.cfg file is new_format_demo.

([DPSOH

new_format_demo:MyServerName:MyUserName:MyPasswordName:
MyDatabaseName
MQSeries Integrator System Management Guide 39

Chapter 3
40 MQSeries Integrator System Management Guide

&KDSWHU��

5XOHV�

Rules is a component of MQSeries Integrator. It is dependent on the
Formatter to parse messages for evaluation. Rules has two main functions:
evaluating messages against a set of rules and reacting to the evaluation
results.

n Evaluating messages means Formatter parses the message and then
perform comparisons against individual fields.

n Reacting to the evaluation results means to retrieve a list of rules that
hit (their evaluation criteria are true), as well as retrieving a list of
subscriptions (actions to perform with options used as parameters).

Rules enables you to evaluate a string of data (a message) and react to the
evaluation results. The following overview describes Rules components and
what types of APIs are available for rule processing.

Rules is packaged as a library of C++ objects that have public functions that
constitute the application programming interface (API) or Software
Development Kit (SDK). Application developers design applications that
invoke these functions to evaluate messages and retrieve the evaluation
results.

Rules uses rules definitions that describe how to parse a message using the
format parameters (specified in Formatter) against the rules defined for the
message. The rules definitions include subscriptions and the actions to
perform if the rule hits. Rules definition data resides in a relational database.
Users build and modify rule definitions using one of two methods: the Rules
GUI tool or Rules Management API functions.

The Rules GUI tool is a program that allows the user to populate screens with
rule definition data and store the information in a relational database.

Rules Management API functions are a set of C functions that create rule
definition data in a relational database. Users can write their own interfaces
that call the Management API functions to build rule definitions.

The major delivered executable for Rules is the MQSeries Integrator Rules
daemon (MQSIruleng). The MQSeries Integrator Rules daemon reads
messages off a queue, evaluates the messages, and, based on the results,
performs the required reformatting and routing.

The following test executables are delivered with Rules:

n MQSIputdata places a message on a queue with the needed queue
options for the MQSeries Integrator Rules daemon.

n MQSIgetdata retrieves all messages and options from a queue.

n NNRTrace evaluates a message against a single rule, displaying a
verbose view of each part of the evaluation criteria.

The Rules Consistency Checker utility checks the correctness of the rule
definition data in the relational database. As rule definition data is built and
MQSeries Integrator System Management Guide 41

Chapter 4
maintained, users should run the consistency checker periodically to insure
data integrity.

The NNRie tool delivered with Rules is a command line tool that allows the
user to export rule definitions from a database to a file, and to import the
exported file into a database. NNRie can import from a MQSeries Integrator
1.0 export file into a MQSeries Integrator 1.0 database. NNRie v1.0 exports
data only from a 1.0 database.

$SSOLFDWLRQ�*URXSV

Application groups are logical divisions of rule sets for different business
needs. You can define as many application groups as you need. For instance,
you might want rules for the accounting department and the application
development department separated into two groups. You could define
"Accounting" as one application group, "Application Development" as
another, and then associate rules with each group as appropriate.

0HVVDJH�7\SHV

Message types define the layout of a string of data. Each application group
can contain several message types, and a message type can be used with more
than one application group. Message types are defined by the user. When
using Formatter, a message type is the same as an input format name. This
format name is used by Formatter to parse input messages for Rules
evaluation.

5XOHV

When users create rules, they give each rule a rule name and associate the
rule name with an application group and message type. Each rule is uniquely
identified by its application group/message type/rule name triplet.

Each rule must have the following three items defined: evaluation criteria (an
expression containing arguments and operators), subscription information
(subscriptions, actions, and options), and permission information. Each of
these items is described below.

([SUHVVLRQV��$UJXPHQWV��%RROHDQ�2SHUDWRUV��
DQG�5XOHV�2SHUDWRUV

An expression (evaluation criteria) consists of a list of fields, associated
operators, and associated comparison data (either static values or other fields)
connected with Boolean operators. An argument consists of the combination
of a field name, Rules comparison operator, and static value or other field
name. Field names depend on the message type (input format name) and they
are defined using Formatter. Rules comparison operators are already defined
within Rules. Field comparisons can be made against static data or other field
values. Arguments are linked together with Boolean operators ‘&’ (AND) and
‘|’ (OR) and parentheses can be used to set the evaluation priority. For more
information on operators, refer to MQSeries Integrator Programming
Reference for NEONRules.
42 MQSeries Integrator System Management Guide

Rules
6XEVFULSWLRQV��$FWLRQV��DQG�2SWLRQV

When a rule evaluates to true, it is considered a "hit." If the rule does not
evaluate to true, it is considered a "no-hit." When a rule hits, Rules lets you
retrieve associated subscriptions to be taken by the application. These
subscriptions are the actions or commands, and the associated parameters or
options to execute them.

Subscriptions are lists of actions to take when a message evaluates to true.
Each rule must have at least one associated subscription. Subscriptions are
uniquely identified within an application group/message type pair by a user-
defined subscription name. Permissions must be defined for subscriptions in
the same way they are for rules. You can define as many subscriptions as you
need. Each action within a subscription is defined by action name and need
not be unique, since all actions are intended to be executed in sequence. A
single subscription can be shared by multiple rules when the same
subscription is associated with each of the rules. In this case, the shared
subscription would be retrieved only once no matter how many of its rules
hit.

An action has a list of one or more associated options. An option consists of
an option name-value pair. The user defines all action names and option
name-value pairs.

5XOHV�6XEVFULSWLRQ�3HUPLVVLRQV

Rule and Subscription permissions restrict user access to individual complete
rules or subscriptions or their components in the Rules database. The rule is
uniquely identified by its application group name, message type, and rule
name. A complete rule includes everything associated with it, including an
expression (arguments) and associated subscriptions. The subscription is
uniquely defined by its application group name, message type, and
subscription name. A complete subscription includes everything associated
with it including its actions and options. Permissions only apply to managing
rule and subscription contents, not rule evaluation.

The Rules component (rule or subscription) or subscription owner is the user
who created the component. When the rule or subscription is created, owner
information is determined by the software. Owners can update their own
permissions, create and update the PUBLIC user’s permissions, and change
ownership to another user.

Only read and update permissions are implemented. The owner is given both
read and update permission by default. All other users are grouped into a
public user group named PUBLIC and given read permissions by default.

1RWH1RWH
Owners can change their own permissions at any time from Read to Update
and back again, but they must have update permission to change a rule or
subscription contents. Read permission cannot be denied.
MQSeries Integrator System Management Guide 43

Chapter 4
$3,V�

Two types of APIs exist for Rules: Rules APIs and Rules Management APIs.

Use Rules APIs to evaluate rules and retrieve subscription, hit, and no-hit
information. Before you evaluate a rule, the rule must exist and you must use
CreateRulesEngine() to create a VRule object. After that, you can do as many
evaluations and subscription retrievals as needed. When you finish, destroy
the MQSeries Integrator Rules daemon object using DeleteRuleEngine().

Use Rules Management APIs to maintain rule information. Add, Read, and
Update APIs are implemented and available as well as APIs to delete an
entire rule or subscription and all associated information.
44 MQSeries Integrator System Management Guide

Rules
5XOHV�&RQILJXUDWLRQ�
The sqlsvses.cfg file contains information used by Rules and Formatter.

1RWH1RWH
MQSeries Integrator does not use sqlsvses.cfg. The MQSeries Integrator Rules
daemon uses a parameter file called MQSIruleng.mpf. However, test
programs do use sqlsvses.cfg.

For more information on MQSIruleng, refer to MQSIruleng on page 75.

7KH�VTOVYVHV�FIJ�)LOH

The sqlsvses.cfg file is the default configuration file and contains information
about the database and database server used for MQSeries Integrator
executables. This file is created automatically when the libraries are installed
and is located in the /bin subdirectory created during the installation process.
The password information in the sqlsvses.cfg file is exposed. An alternative is
to use the sqlsvses.crypt files.

1RWH1RWH
The sqlsvses.cfg file must be in the same directory as an application using
MQSeries Integrator components.

VTOVYVHV�FIJ�3DUDPHWHUV

1RWH1RWH
The character length for the parameters in the sqlsvses.cfg file is dependent
on your server platform and operating system. Line size in the sqlsvses.cfg
file is limited to 1024 bytes. Each parameter is separated by a colon (:).

3DUDPHWHU 'HVFULSWLRQ

session name Database session name to be used by MQSeries Integrator
executables or daemons. This can be any string as long as
it is unique within the file.

server name Server where the MQSeries Integrator database is resident.

user name (user id) Database user name.

password Database password.

database name Database name where the MQSeries Integrator tables are
resident (if applicable). This is not used for Oracle.
MQSeries Integrator System Management Guide 45

Chapter 4
(QFU\SWLQJ�WKH�VTOVYVHV�FIJ�)LOH

To use the encryption version of sqlsvses.cfg, run the NNCryptCfg executable
against the current sqlsvses.cfg file. A sqlsvses.crypt file is generated. The
sqlsvses.crypt file is searched for first. If both a .cfg file and a .crypt file exist
in the same directory, the .crypt file is used.

0RGLI\LQJ�WKH�/RFDWLRQ�RI�WKH�VTOVYVHV�)LOH

The default location of the sqlsvses file is the local directory where the
executable is invoked. However, the location can be modified and centralized
to another location by setting an environment variable.

Set an environment variable (NN_CONFIG_FILE_PATH) to look for the
encrypted file. The file name is sqlsvses.crypt, and the default configuration
file is not sqlsvses.crypt.

One copy of sqlsvses.cfg can be set up for all directories to point to,
eliminating the need for the file in every directory. For example:

setenv NN_CONFIG_FILE_PATH/home/smith

Or for ksh:

export NN_CONFIG_FILE_PATH=/home/smith

If the sqlsvses.crypt file is not found, then the sqlsvses.cfg file is used. If
neither file is found, an error condition occurs.

(GLWLQJ�WKH�VTOVYVHV�FIJ�)LOH�

To give MQSeries Integrator the database information it needs for
configuration, you must edit the sqlsvses.cfg file. This is an ASCII file that can
be edited using any text editor that can save the file in ASCII format.

Text lines in the sqlsvses.cfg file must follow this format:

<sessionname>:<servername>:<username>:<password>:
<databasename>

A sample text line in the sqlsvses.cfg file for SQL Server and Sybase servers is:

new_format_demo:demo_server:demo_user:demo_password:
demo_db:

For Oracle servers, <databasename> is not necessary. The end colon (:) must
be included in the text line, even if the < database name> parameter is not
specified. Oracle servers also use instance names instead of server names.

A sample text line in the sqlsvses.cfg file for an Oracle server is:

new_format_demo:demo_instance:demo_user:demo_password: :
46 MQSeries Integrator System Management Guide

Rules
1RWH1RWH
If the <password> parameter is not specified, leave a blank space between
<username> and <databasename> or <instancename>.

,PSOHPHQWLQJ�&KDQJHV�WR�WKH�VTOVYVHV�FIJ�
)LOH�

To implement the changes made to the sqlsvses.cfg file, restart any
applications using MQSeries Integrator components for changes to be
recognized by the system.

1RWH1RWH
Use the NNCryptCfg utility to encrypt the password in this file.
MQSeries Integrator System Management Guide 47

Chapter 4
6\VWHP�(QKDQFHPHQWV�IRU�5XOHV�

2UDFOH�

1RWH1RWH
To assign permissions to rules, you must create more than one user in your
database.

During installation, a role is created for MQSeries Integrator users:
NEONET_USER.

To access MQSeries Integrator databases, users must be created and
associated with the NEONET_USER role using the following procedures.

&UHDWLQJ�8VHUV�

After you install MQSeries Integrator, you must create user names or assign
MQSeries Integrator user roles in your database. User names identify
individual users to the database.

To create users, type the following command:

create user USERNAME identified by PASSWORD;

USERNAME and PASSWORD are required parameters.

*UDQWLQJ�5ROHV�WR�8VHUV�

Users must be given permissions to access the database data. You can either
grant permissions to an individual user or create roles with certain
permissions and associate users with specific roles. NEONET_USER is a role
created by the MQSeries Integrator installation process.

Grant NEONET_USER role access to created users using the grant command.
Syntax for grant is as follows:

grant NEONET_USER to USERNAME;

The NEONET_USER role is granted to the user identified by USERNAME.

1RWH1RWH
For rules permissions, all users must have only one role granted to them and
this role must be the same for all users.
48 MQSeries Integrator System Management Guide

Rules
6\EDVH�64/�6HUYHU�

The following procedures can be used with Sybase or Microsoft SQL Server.
The commands are run within the command line program isql. References to
SQL Server include both Sybase and SQL Server.

Except for changing passwords, these procedures are limited to either the
system administrator or database owner.

Users must have login accounts and a user name in each database they want
to access. Adding login accounts, database users, and object permissions can
be done by the system administrator, security officer, or database owner. A
single person can occupy one or more of these roles. Check with your
database administrator for information about your specific environment.

&UHDWLQJ�/RJLQ�$FFRXQWV�

Login accounts give users access to the SQL Server. They are created by the
system administrator or security officer in the isql command line program
using the sp_addlogin system procedure. Syntax for sp_addlogin is as
follows:

sp_addlogin loginName, password [, defdb [, deflang [,
full-name]]]

loginName and password are required parameters. defdb is used to specify a
default database for the user. deflang is the name of the default language to
use. full-name can be used to enter the full name of the user that owns this
account.

Login accounts only give access to the SQL Server. To access a database, a
login must be assigned to a user name to the databases the user wants to
access.

$VVLJQLQJ�8VHUV�WR�D�'DWDEDVH�

To use a database, the server login must be associated with a user name in the
database. Users can be added to a database by the database owner (DBO)
using the sp_adduser system procedure.

This procedure must be run from the database in which the user is to be
added.

The syntax for sp_adduser is as follows:

sp_adduser loginName [, nameInDB] [, group]

loginName is the user’s server login account. The nameInDB parameter is the
name for the user in the database. nameInDB defaults to the loginName if it is
not specified. group enables the DBO to add the user to an existing group in
MQSeries Integrator System Management Guide 49

Chapter 4
the database. If a group is not specified, the user is placed in the default
group, PUBLIC.

1RWH1RWH
For rules permissions, all users must be added as users, not as aliases, and
they must be members of the same user group.

'HILQLQJ�8VHU�*URXSV�

Each user added to the database must be granted permissions to access
objects within that database (unless they are the database owner). During
installation, a group is created for MQSeries Integrator users: NEONetUser.
To access MQSeries Integrator databases, users must be linked to the
MQSeries Integrator group.

Users can be added using either the sp_adduser or sp_changegroup system
procedures. The syntax for sp_adduser is discussed in the Assigning Users to a
Database section above.

The syntax for sp_changegroup is as follows:

sp_changegroup groupName, userName

groupName is the name of the group to which the user will be added.
userName is the database user name.
50 MQSeries Integrator System Management Guide

Rules
3HUPLVVLRQV�IRU�5XOHV�DQG�
6XEVFULSWLRQV

1RWH1RWH
You must first create users before you grant permissions. For more
information on creating users, refer to the System Enhancements section on
page 48.

11'%$5XOH2ZQHUVKLS

Permissions for Rules and Subscriptions should be managed through either
the Rules GUI or Rules Management APIs. However, a tool is provided for
System Administration. The NNRDBARuleOwnership utility allows the
MQSeries Integrator administrator to list and change the ownership of rules
and subscriptions. All rules and subscriptions owned by a specific user can be
changed to another user. When rule or subscription ownership is changed,
the owner’s permissions are transferred to the new owner and previous
permissions are overwritten.

6\QWD[

NNRDBARuleOwnership

&RQILJXUDWLRQ�)LOH

Before running this executable, verify that the sqlsvses.cfg file includes the
database name and server name information used to execute this program.
This file must also be in the same directory as the executable program. To use
the NNRDBARuleOwnership utility, edit the sqlsvses.cfg file to include
“rules” as the session name parameter so the utility will connect to the Rules
database.

2SHUDWLRQV

To use the utility, enter NNRDBARuleOwnership at the command line with
no parameters. The utility displays:

Function to perform:
1 List Rules Owned by a Certain Owner
2 Change All Rules owned by User A to be Owned By

User B
MQSeries Integrator System Management Guide 51

Chapter 4
3 List Subscriptions owned by a Certain User
4 Change All Subscriptions Owned by User A to be

Owned by User B
>

To list rules owned by a certain owner, enter 1 at the prompt (shown as >).
The utility displays:

User Name for Owner of Rules (All caps for ORACLE)
>

If you select “list rules owned” (number 1 at the prompt), then the utility lists
the application group name, message type name and rule name of all rules
owned by the specified user. If you select “change all rules” (number 2 at the
prompt), then the utility will not display this rule information.

To change rule ownership, enter 2 at the prompt. The utility displays:

User Name for Current Owner for Rules (All caps for
ORACLE)

>
User Name for New Owner of Rules (All caps for ORACLE)
>

To list the subscriptions owned by a certain user, enter 3 at the prompt. The
utility displays:

User Name for Owner of Subscriptions (All caps for
ORACLE)

A list is displayed showing the Application Group, Message Type, and
Subscription Name for all the subscriptions owned by the specified user.

To change subscription ownership, enter 4 at the prompt. The utility displays:

User Name of Current Owner of Subscription (All caps
ORACLE)

User Name for New Owner of Subscription (All caps for
ORACLE)

The owner of the subscription is changed.

([DPSOHV

The following examples demonstrate uses of NNRDBARuleOwnership.

Case 1: Listing all rules owned by REL30NEON:--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>1
User Name for Owner of Rules (All caps for ORACLE)
>REL30NEON

Application Group: doc1
Message Type: rp
52 MQSeries Integrator System Management Guide

Rules
Rule Name: d1

Application Group: doc1
Message Type: rp
Rule Name: d5

Application Group: doc2
Message Type: m1
Rule Name: d8

Case 2: Listing all rules owned by REL30TEST (not a valid user):--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>1
User Name for Owner of Rules (All caps for ORACLE)
>REL30TEST

Error No: -5509
Error Msg: Unable to find user in database

Case 3: Listing all rules owned by REL30NEONUSER2 (no rules owned by
user):--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>1
User Name for Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2

Error No: -5519
Error Msg: No permissions were found.

Case 4: Changing all rules owned by REL30NEON to be owned by
REL30NEONUSER2:--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>2
User Name for Current Owner of Rules (All caps for ORACLE)
>REL30NEON
User Name for New Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2

Case 5: Listing all rules owned by REL30NEONUSER2 (now rules are
owned by user):--

$NNRDBARuleOwnership
MQSeries Integrator System Management Guide 53

Chapter 4
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>1
User Name for Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2

Application Group: doc1
Message Type: rp
Rule Name: d1

Application Group: doc1
Message Type: rp
Rule Name: d5

Application Group: doc2
Message Type: m1
Rule Name: d8

Case 6: Changing all rules owned by REL30TEST to be owned by
REL30NEON (not a valid user):--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>2
User Name for Current Owner of Rules (All caps for ORACLE)
>REL30TEST
User Name for New Owner of Rules (All caps for ORACLE)
>REL30NEON

Error No: -5509
Error Msg: Unable to find user in database

Case 7: Changing all rules owned by REL30NEONUSER2 to be owned by
REL30TEST (not a valid user):--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>2
User Name for Current Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2
User Name for New Owner of Rules (All caps for ORACLE)
>REL30TEST

Error No: -5509
Error Msg: Unable to find user in database

Case 8: Changing all rules owned by REL30NEON to be owned by
REL30NEONUSER2 (no rules owned by current user):--
54 MQSeries Integrator System Management Guide

Rules
$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>2
User Name for Current Owner of Rules (All caps for ORACLE)
>REL30NEON
User Name for New Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2

Error No: -5519
Error Msg: No permissions were found

Case 9: Listing all subscriptions owned by REL40USER:--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 List All subscriptions Owned by User A to be Owned By
User B
99 Quit
>3
User Name for Owner of Subscriptions (All caps for
ORACLE)
>RELNEON

Application Group: a1
Message Type: rp
Subscription Name: s1

Application Group: a1
Message Type: rp
Subscription Name: s2

Application Group: a1
Message Type: rp
Subscription Name: s3

Case 10: Listing all subscriptions owned by REL40TEST (not a valid user):--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned
By User B
99 Quit
>3
User Name for Owner of Subscriptions (All caps for
ORACLE)
>REL40TEST
MQSeries Integrator System Management Guide 55

Chapter 4
Error No: -5509
Error Msg: Unable to find user in database

Case 11: Listing all subscriptions owned by REL40USER2 (No subscriptions
owned by this user):--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned
By User B
99 Quit
>3
User Name for Owner of Subscriptions (All caps for
ORACLE)
>REL40USER2

Error No: -5519
Error Msg: No permissions were found

Case 12: Changing all subscriptions owned by REL40USER1 to
REL40USER2:--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned
By User B
99 Quit
>4
User Name for Current Owner of Subscriptions (All caps
for ORACLE)
>REL40USER1
User Name for New Owner of Subscriptions (All caps for
ORACLE)
>REL40USER2

Error No: -5519
Error Msg: No permissions were found

Case 13: Listing all subscriptions owned by REL40USER2:--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned
By User B
56 MQSeries Integrator System Management Guide

Rules
99 Quit
>3
User Name for Owner of Subscriptions (All caps for
ORACLE)

Application Group: a1
Message Type: rp
Subscription Name: s1

Application Group: a1
Message Type: rp
Subscription Name: s2

Application Group: a1
Message Type: rp
Subscription Name: s3

Case 14: Changing all subscriptions owned by REL40USER2 to REL40TEST
(not a valid user):--

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned
By User B
99 Quit
>4
User Name for Current Owner of Subscriptions (All caps
for ORACLE)
>REL40USER2

User Name for New Owner of Subscriptions (All caps for
ORACLE)
>REL40TEST

Error No: -5509
Error Msg: Unable to find user in database

Case 15: Changing all subscriptions owned by REL40USER1 to
REL40USER240(no subscriptions owned by current user):--

$NNRDBARuleOwnership
Function to performFunction to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned
By User B
99 Quit
>4
User Name for Current Owner of Subscriptions (All caps
for ORACLE)
MQSeries Integrator System Management Guide 57

Chapter 4
>REL40USER1

User Name for New Owner of Subscriptions (All caps for
ORACLE)
>REL40USER2

Error No: -5519
Error Msg: No permissions were found

(UURU�&RQGLWLRQV

For other errors related to reading rules and subscriptions, refer to MQSeries
Integrator Programming Reference for NEONRules.

1R�5XOHV�IRU�2ZQHU�

Error No: -5519

Error Msg: No permissions were found

,QYDOLG�8VHU�

Error No: -5509

Error Msg: Unable to find user in database
58 MQSeries Integrator System Management Guide

Rules
,PSRUW�([SRUW�5XOHV�

115LH�

NNRie is a command line tool that allows the user to export rule definitions
from a database to a file and to import the exported file into a database.
NNRie can import from a MQSeries Integrator 1.0 export file into a MQSeries
Integrator 1.0 database. NNRIE v1.0 exports data only from a MQSeries
Integrator 1.0 database.

6\QWD[

NNRie ((-C [<command file name>] |
-V |
(-i <import file name>| -e <export file name>
[[[-a <appname> [...]] [-m <msgname>] [...]] [-r

<rulename>] [...]])
[-s <session>]
[-o]
[-c <database configuration file name>])))

1RWH1RWH
If there are no -a, -m, or -r options, export the entire database.

2SHUDWLRQDO�$VVXPSWLRQV

n The file system supports long file names and can accept the
command line syntax described here.

n The operating system supports the concept of standard input,
standard output, and standard error stream sources and sinks.
MQSeries Integrator System Management Guide 59

Chapter 4
3DUDPHWHUV

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-C [<command
file>]

Optional Alternate command file; default is
NNRie.cmd. If this option is provided,
NNRie reads command line options from
a file instead of a command line. If -C is
present, NNRie expects the other
parameters to be in the command file
named in the same format as the command
line, for example, -C [<file name>], -V OR
-i with the remaining information.

-V [version] Optional Shows program version information only,
and does no processing.

-i [<import file>] Mandatory for
Import

Indicates the program should import data
from the named file. This parameter is
required to import data, and is mutually
exclusive with -e. This parameter may be
followed by the name of a file that contains
the import data. The referenced file must
have been created with the NNRie -e
option. The default file name is
NNRie.exp.

-e [<export file>] Mandatory for
Export

Indicates the program should export to the
named file. This parameter is required to
export data, and is mutually exclusive
with -i. This parameter may be followed
by the name of a file to hold the export
data. The default file name is NNRie.exp.

-s <session
name>

Optional The session name corresponding to the
session identifier in the MQSeries
Integrator configuration file (See the -c
option below). The default session tag is
“nnrie”.

-o (overwrite
flag)

Optional The default behavior is off (do not
overwrite). If this parameter is present
during export, it indicates to overwrite the
export file. If this parameter is present
during import, and a rule or subscription
defined in the import file already exists in
the importing database, the old rule is
deleted if the user is the rule owner and
overwritten with the new definition. If the
user is not the rule owner, an error is noted
and the rule is replaced. If not overwriting
rules, any rule that cannot be processed
because it already exists in the importing
database is noted.
60 MQSeries Integrator System Management Guide

Rules
:$51,1*�
If FTP is used with ASCII files to transport the f iles, parts of formats may be
missing.

,PSRUW�6\QWD[

&DVH����,PSRUW�D�5XOH��$ NNRie -i [<file name>] [-s <session
name>]

-c <config file> Optional Indicates the name of the MQSeries
Integrator configuration file the program
should read to load its session data for
access to a database. The default
configuration file is “sqlsvses.cfg”.

-a <application
group>

Optional Identifies the application group to export.
If a value for this parameter is not
identified, all application groups are
exported. This parameter can be repeated
as many times as necessary to define
multiple application groups to export.

-m <message
type>

Optional Specifies the message type to export. This
parameter also requires the -a parameter
to be set. The default behavior is to export
all message types within the specified
application group. This parameter can be
repeated as many times as necessary to
define multiple message types within the
same application group.

-r <rule name> Optional Specifies the name of the rule to export.
This parameter also requires the -a and -m
parameters to be set. The default behavior
is to export all rules within the specified
application group and message type. This
parameter can be repeated as many times
as necessary to define multiple rules
within the same application group and
message type.

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 61

Chapter 4
([SRUW�6\QWD[

&DVH����([SRUW�DQ�HQWLUH�GDWDEDVH��$ NNRie.sh -e [<export file
name>] [-s <session name>]

&DVH����([SRUW�D�VLQJOH�DSSOLFDWLRQ�JURXS�� $ NNRie.sh -e [-a
<app group name>]

&DVH����([SRUW�D�PHVVDJH�W\SH�IRU�DQ�DSSOLFDWLRQ�JURXS��$
NNRie.sh -e [-a <app group name>][-m <msgtype name>]

&DVH����([SRUW�D�VLQJOH�UXOH��$ NNRie.sh -e [-a <app group
name>] [-m <msgtype name>] [-r <rule name>]

&DVH����([SRUW�PRUH�WKDQ�RQH�UXOH�� $ NNRie.sh -e [-a <app
group name>][-m <msgtype name>][-r <rule name> <rule
name>...]

Exporting conditional branching rules through NNFie.sh outputs to <export
file name> .rules.

5HPDUNV

If NNRie is entered with no parameters, NNRie shows a brief usage
reminder. If the -V parameter is used, only the version and copyright
information is displayed.

1RWH1RWH
The semantics of any file name are operating system dependent, and can be
specified as a base name, a fully qualified path and file name, or any other
legal specification allowed by the operating system or its shell utility. If
specified as a simple base name, the program will create or read the file
relative to the directory the user is in when the program was executed.

1RWH1RWH
Subscriptions are added to an Application Group/Message Type (Rule Set),
and then they can be associated with multiple rules in the same Application
Group/Message Type. The rule name is no longer used to identify
subscriptions, so data migration may require subscription names to be
generated for uniqueness. The user is prompted to generate the new
subscription names.
62 MQSeries Integrator System Management Guide

Rules
7HVWLQJ�5XOHV�

5XOHV�7HVW�3URJUDPV�

The MQSIputdata, MQSIgetdata, and ruletest programs are provided for
testing the MQSeries Integrator Rules daemon program. In addition, the
NNRTrace program is supplied to provide a debugging utility for Rules.
These test programs are explained in this section.

046,SXWGDWD�DQG�046,JHWGDWD�

The putdata program can be used to put data onto a MQSeries Integrator
Rules daemon queue in such a way that the daemon can evaluate the
message. The getdata program can be used to get or retrieve messages from a
MQSeries Integrator Rules daemon output queue.

1RWH1RWH
MQSIputdata and MQSIgetdata can be used with queues that are not related
to the MQSeries Integrator Rules daemon.

046,SXWGDWD

Syntax--

MQSIputdata.exe <parmfileName>

1RWH1RWH
The .exe extension in the preceding syntax appears only on Windows NT.

Description--

The MQSIputdata process reads a message from a file and puts the message
on the queue specified in the parameter file with OPT_APP_GRP and
OPT_MSG_TYPE.

This process sets the two options on the message that the MQSeries Integrator
Rules daemon expects, specifically the application group and message type.

Operational Assumptions--

n Queue Manager is up and running.

n Queues have been created.
MQSeries Integrator System Management Guide 63

Chapter 4
Parameters--

3XW�&RQWURO

3XW�0HVVDJH

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

inputFileName Optional inputFileName is the file containing
the message data.

queueName Mandatory Name of the queue where the
message will be put.

queueManagerName Optional Name of the queue manager that
owns the queue.

maxUserDataLength Optional Maximum message size.

messageCount Mandatory Number of messages to put.

showStatistics Optional Binary value indicating whether or
not statistical information should be
output. 1 indicates that the message
data should be output; 0 indicates that
the message data should not be
output.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

format Optional Populate the format field of the
message descriptor with the indicated
value.

expiry Optional Populate the expiry field of the
message descriptor with the indicated
value.

persistence Optional Populate the persistence field of the
message descriptor with the indicated
value.
Valid values:
MQPER_PERSISTENT = 1
MQPER_NOT_PERSISTENT = 0
MQPER_PERSISTENCE_AS_
Q_DEF = 2

messageType Optional Populate the messageType field of the
message descriptor with the indicated
value.
Valid values:
MQMT_REQUEST = 1
MQMT_REPLY = 2
MQMT_REPORT = 4
MQMT_DATAGRAM = 8
64 MQSeries Integrator System Management Guide

Rules
3XW�2SWLRQV

046,JHWGDWD

Syntax--

MQSIgetdata.exe <paramFileName>

1RWH1RWH
The .exe extension in the preceding syntax appears only on Windows NT.

Operational Assumptions--

n A complete and valid installation of MQSeries Integrator must exist
prior to running the MQSeries Integrator Rules daemon. The
database must also be running in a stable state prior to running the
MQSI getdata program.

n The MQSI getdata program expects that the queue name defined in
the command line exists, is enabled, and has messages on it.

Parameters--

*HW�&RQWURO

includeHeader Optional Specifies whether to include the RF
header with the inbound message. 1
indicates that the RF header should be
included; zero (0) indicates that the RF
header should not be included.

dataformat Optional Specifies how to populate the
MQRFH.format field. This parameter
is valid only if includeHeader = 1.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

OPT_APP_GRP Optional Application group associated with the
message.

OPT_MSG_
TYPE

Optional Message type associated with the message.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

outputFileName Mandatory Name of the file to contain messages.
getdata.output.

queueName Optional Name of the queue holding the
messages.

queueManagerName Optional Name of the queue manager that
owns the queue.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 65

Chapter 4
maxUserDataLength Optional Indicates the maximum message size
that the application can accept.

messageId Optional Identification of the message to get. If
this value and the correlID are not
defined, the application gets the next
available message from the queue.
This field uses an encoded hex
representation for the messageId.

correlId Optional Correlation ID of the message to get. If
this value and messageID are not
defined, the application gets the next
available message from the queue.
The correlID field uses an encoded
hex representation of a binary value.

messageCount Mandatory Maximum number of the messages to
get. The application runs until
messageCount messages have been
taken off the queue or until the queue
is empty.

getTimeout Optional The getTimeout value indicates the
maximum amount of time to wait for
a message to arrive before the
application reports that a queue is
empty. Upon such a report, the
application will exit. getTimeout
values are measured in milliseconds.

showStatistics Optional Shows statistics about messages taken
of the queue. 1 indicates that this
feature is enabled; zero (0) indicates
that this feature is disabled.

outputToFile Optional Indicates whether or not an output
should be sent to a file. 1 indicates that
output should not be sent to the file;
zero (0) indicates that the output
should be sent to stderr.

showDescriptor Optional Indicates whether or not the message
descriptor data should be output. 1
indicates that the message descriptor
data should be output; 0 indicates that
the message descriptor data should
not be output.

showData Optional Indicates whether or not the message
data should be output. 1 indicates that
the message data should be output;
zero (0) indicates that the message
data should not be output.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
66 MQSeries Integrator System Management Guide

Rules
UXOHWHVW�

The ruletest program reads a message from a file and evaluates the message
using the Rules APIs. This test program does not use Formatter to execute
subscriptions.

6\QWD[

ruletest -i <input file name> -m < message type> -a
<application group name> [-v] [-?]

'HVFULSWLRQ

The ruletest program reads a message from a file and evaluates the message
using the application group/message type defined on the command line.
After evaluation, subscriptions are retrieved as they would normally be
retrieved and output to the screen, but not executed.

This program does not execute subscriptions using Formatter.

2SHUDWLRQDO�$VVXPSWLRQV

n A complete and valid installation of MQSeries Integrator release 1.0
must exist prior to running the MQSeries Integrator Rules daemon.
The database must also be running in a stable state prior to running
the ruletest process.

n The ruletest program requires a connection to a database containing
both rules and formatter data. This data must reside within the same
database.

n The ruletest program uses Formatter to evaluate messages only; the
ruletest program does not execute actions.

n The ruletest program uses rules for evaluating and retrieving
subscriptions.

3DUDPHWHUV

rollback Optional Indicates whether or not the messages
should be rolled back after the get
operation. 1 indicates that the
messages should be rolled back; zero
(0) indicates that the messages should
not be rolled back.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-i <input filename> Mandatory The input file from which ruletest will
read. The file must reside in the
directory that the process is run from or
the fully qualified path must be
provided.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 67

Chapter 4
&RQILJXUDWLRQ�)LOH

Before running this executable, verify that the sqlsvses.cfg file includes the
database name and server name information used to execute this program.
The sqlsvses.cfg file must also be in the same directory as the executable
program.

The session name in the sqlsvses.cfg file is used by ruletest to locate the
appropriate line from which to retrieve connection data.

([DPSOH

rules: MyServerName : MyUserName : MyPassword :
MyDataBase

1RWH1RWH
Unless otherwise specified, the ruletest program expects a session name of
“rules” for rules and formatter data.

ruletest can be executed using two methods:

1. ruletest evaluates the message using the specified application group/
message type if the user enters the parameters listed at the command
line.

2. In addition, ruletest can be used interactively by providing no
command line parameters.

When ruletest is invoked without command line parameters, it prompts the
user for the input file name, application group, message type, verbosity, and
whether to reload or not. In interactive mode, ruletest loops through the
prompt, optional reload, and evaluation steps.

The optional reload step enables the user to choose whether to refresh the
rules data from the database before proceeding.

1RWH1RWH
If ruletest is run with no command line parameters, it prompts the user for
the required information.

-m <message type> Mandatory The ruletest program requires this
parameter to evaluate rules.

-a <application
group>

Mandatory The ruletest program requires this
parameter to evaluate rules.

-v (verbose) Optional The ruletest program logs to the screen if
this optional parameter is set. The
process defaults to no logging.

-? (usage) Optional The ruletest program will display all
usage parameters.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
68 MQSeries Integrator System Management Guide

Rules
1157UDFH�5XOHV�'HEXJJLQJ�8WLOLW\�

NNRTrace is a rules debugging utility for testing rules. This utility evaluates
the rule and message associated with the rule. When the utility completes
processing, it displays whether the rule will hit A hit indicates that this
message would cause the rule to hit. If the rule hits, the active actions that can
be performed by the rule are displayed. If no actions exist, the process fails
while evaluating the message.

To use NNRTrace, create an input file for the test procedure, or use the
getdata rules test program to retrieve the messages to be tested from a queue.

6\QWD[

NNRTrace -i <input file name> -a <application group> -m
<message type -r <rule name> [-s <session name>] [-o
<output file name>] [-v]

&RQILJXUDWLRQ�)LOH

Before running this executable, first verify that the sqlsvses.cfg file includes
the database name and server name information to be used to execute this
program. This file must also be in the same directory as the executable
program.
MQSeries Integrator System Management Guide 69

Chapter 4
3DUDPHWHUV

1RWH1RWH
If NNRTrace is run without any command line parameters, it prompts the
user for the required information.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-i <input filename> Mandatory The input file from which NNRTrace
will read from. The file must reside in
the directory that the process is run from
or the fully qualified path must be
provided.

-a <application
group>

Mandatory The NNRTrace program requires this
parameter to specify the rule.

-m <message type> Mandatory The NNRTrace program requires this
parameter to specify the rule.

-r <rule name> Mandatory The NNRTrace program requires this
parameter to specify the rule.

-s <rule session
name>

Optional The rules session name corresponding
to the session name in the sqlsvses.cfg
file. The session name defaults to
“rules.”

-o <output
filename>

Optional The output file to which results of the
NNRTrace program will be written. The
results are written to standard output by
default if this parameter is not specified.

-v (verbose) Optional The NNRTrace program logs to the
screen if this optional parameter is set.
The process defaults to no logging.
70 MQSeries Integrator System Management Guide

&KDSWHU��

7KH�046HULHV�,QWHJUDWRU�5XOHV
'DHPRQ

The MQSeries Integrator Rules daemon is a content-based rules evaluation
and routing engine used to move data from one place to another, depending
on the contents of the data. The MQSeries Integrator Rules daemon performs
rule evaluations against a specified message and attempts to execute actions
for rules that evaluate to true. MQSeries Integrator users can define rules
using the GUIs (these are explained in MQSeries Integrator User’s Guide) or by
using the Management APIs (these are explained in MQSeries Integrator
Programming Reference for NEONRules). Application programmers can use the
Rules APIs to interface database calls to execute rules (these functions are also
explained in MQSeries Integrator Programming Reference for NEONRules).
MQSeries Integrator System Management Guide 71

Chapter 5
&RQILJXUDWLRQ�3ULRU�WR�8VLQJ
046HULHV�,QWHJUDWRU�5XOHV�
'DHPRQ�

To successfully execute MQSeries Integrator, there must be a valid MQSeries
installation, all MQSeries queues must be created, and parameter files must
be created with database information.

To successfully execute the MQSeries Integrator Rules daemon, a complete
and valid installation of MQSeries Integrator must exist prior to using Rules.
In addition, rules and formats must be entered and saved before using the
MQSeries Integrator Rules daemon. Rules and formats are used by the
MQSeries Integrator Rules daemon as defined in this section.

4XHXHV�

The MQSeries Integrator Rules daemon uses input and output MQSeries
queues. Input queues are specified by name in the parameter file. Output
queues are: Failure queue, No Hit queue, and any queues specified by any
putqueue action. To create the queues, use the appropriate MQSeries
commands.

To have a message successfully evaluated by the MQSeries Integrator Rules
daemon, the input message should have these two options set:

OPT_APP_GRP
OPT_MSG_TYPE

If these options are not set, the MQSeries Integrator Rules daemon assigns
defaults. The defaults come from the MQSIruleng.mpf file (or the parameter
file name specified on the command line at startup).

OPT_APP_GRP assigns the message to an application group and must match
the application group name in the Rules GUI. The OPT_MSG_TYPE must
match the message type in rule definitions and the input format name in the
format definitions. These two message options allow the MQSeries Integrator
Rules daemon to evaluate the message against its rules and only its rules. If
the options are not set, the evaluation will not occur and failure processing
occurs.

5XOHV�

:$51,1*�
Unless Reload messages are used, the MQSeries Integrator Rules daemon is
not dynamic with respect to rule definition (this also includes subscription
definition). Reload is not supported in MQSeries Integrator 1.0. Only rules
72 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
defined prior to the MQSeries Integrator Rules daemon startup are used. Any
rules added or changed after the MQSeries Integrator Rules daemon startup
are not used until the Reload message is read.

)RUPDWV�

:$51,1*�
All MQSeries Integrator formats associated with any message put onto any
input queue must be entered and saved prior to putting that message onto the
input queue. All MQSeries Integrator formats needed during a reformat
action must be entered and saved prior to starting the MQSeries Integrator
Rules daemon.

1RWH1RWH
For information about entering rules and formats, refer to the MQSeries
Integrator User Guide and the Programming Reference documents. For
information on creating queues, refer to the MQSeries documentation.

3XWTXHXH

The Putqueue action takes a message and puts it onto a specified destination
MQSeries queue and sets the message type option as the message format type
specified. The Putqueue action requires a destination MQSeries queue name
and a message format type as options. The message format type must exist in
the MQSeries Integrator database. The PutQueue does not perform
formatting. If using Rules Management APIs to add the Putqueue action, the
action name should be putqueue with the option names:
OPT_TARGET_QUEUE and OPT_MSG_TYPE (with the case as specified).

For the MQSeries Integrator version of MQSeries Integrator, the Rules
daemon uses MQSeries to put to the output queues.

:$51,1*�
If a subscription does not include the putqueue action, messages will not be
put onto any queue and can be lost. The Rules Consistency Checker can be
run to determine which subscriptions do not have a Putqueue.

1RWH1RWH
While the reformat and putqueue subscription options are the only actions
that can be performed by the Rules Engine, the MQSeries Integrator Rules
APIs allow any number of actions and associated options. An application
programmer can use MQSeries Integrator APIs in conjunction with
independently generated code, in order to execute other types of actions. The
MQSeries Integrator System Management Guide 73

Chapter 5
size of your database and performance requirements are the only limitations
on the MQSeries Integrator Rules APIs.
74 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
8VLQJ�WKH�046HULHV�,QWHJUDWRU�
5XOHV�'DHPRQ

046,UXOHQJ�

6\QWD[

MQSIruleng -p <parameter file name>

3DUDPHWHUV

2SHUDWLRQV

/RJJLQJ

4XHXHV

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

AllocQuantum Optional Unit of memory allocation = 2048 bytes (by
default)

ExtendQuantum Optional Unit of extension of previously allocated
memory block = 1024 bytes (by default)

MaxBufferSize Optional Hard limit on growth of memory block =
1048576 bytes (by default). This parameter
can be changed in your configuration file.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

LogFileName Optional LogFileName contains the file
specification for the daemon log file. By
default, log messages are written to stdout.

LogLevel Optional Amount of detail entered in the LogFile.
Default = 0.
Values:
3-log only fatal
2-log errors and fatal errors
1-log warnings, errors, and fatals
0-log informationals, warning, errors, and
fatals

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

QueueManager
Name

Mandatory Name of the local MQSeries Queue
Manager.
MQSeries Integrator System Management Guide 75

Chapter 5
5XOHV�'DWDEDVH�&RQQHFWLRQV

MaxBackout
Count

Optional Indicates the number of replays before the
message is sent to a failure queue. This
value can be zero (0) to the maximum
imposed by MQSeries. Zero (0) is the
default value, and indicates that no replay
is allowed.

InputQueue
Name

Mandatory Name of queue used by the MQSeries
Integrator Rules daemon to process
inbound/input messages.

NoHitQueue
Name

Mandatory Name of queue used by the MQSeries
Integrator Rules daemon to place
messages that do not satisfy any of the
defined rules. A NoHitQueueName value
must be supplied by the user; no default
value.

FailureQueue
Name

Mandatory Name of queue used by the MQSeries
Integrator Rules daemon to place a
message in the event where a failure
occurred. A FailureQueueName value
must be supplied by the user; no default
value.

DefaultApp
Group

Mandatory Indicates the default application group. A
DefaultAppGroup value must be supplied
by the user; no default value.

DefaultMsgType Mandatory Indicates the message type value. A
DefaultMsgType value must be supplied
by the user; no default value.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

Server Name Mandatory The name of the server that you want to
connect to.

User ID Mandatory Your User ID.

Password Mandatory Your password.

Database
Instance

Mandatory The name of the database that you want to
connect to.

Database Type Mandatory Type the number of the database type:
SYBASE = 1
MSSQL=2
Oracle= 3
DB2=4
ODBC=5

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
76 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
5HPDUNV

MQSeries Integrator uses parameter files of the following structure:

[Group1]
field 1 = value 1
field 2 = value 2
.
.
.

[Group2]
field 1 = value 1
field 2 = value 2
.
.
.

[Group3]
field 1 = value 1
field 2 = value 2
.
.
.

([DPSOH

###
#
This is the parameter file for MQSIruleng.exe.
#
Comments must have a number sign(#) in the first
column.
#
Names must be separated from an equals sign by white
space, and the value also must be separated with white
space. No white space is allowed in the value string
itself, nor are trailing comments permitted.
#
Note that any values in this parameter file will
override defaults established by the daemon!
###

[Queues]

Parameters related to queues, MQSeries control, and
rules engine control

MQSeries queue manager name
QueueManagerName = ???

retry limit before replayed message is sent to failure
queue (zero indicates no replays allowed)
MaxBackoutCount = 0
MQSeries Integrator System Management Guide 77

Chapter 5
these three queue names are mandatory!
InputQueueName = ???
NoHitQueueName = ???
FailureQueueName = ???

rules default application group and message type values
(mandatory)
DefaultAppGroup = ???
DefaultMsgType = ???

[Logging]
Log file control..."LogFileName" is the file
specification for the log, and log levels are:
3 - log only fatal errors
2 - log errors, and fatal errors
1 - log warnings, errors, and fatals
0 - log informationals, warnings, errors, and fatals
LogFileName = mqsiruleng.log
LogLevel = 0

[Rules Database Connection]
#
NEONet connection information for the database (all
fields mandatory)
Note that "DatabaseInstance" is not required for use
with Oracle databases.
#
ServerName = ???
UserId = ???
Password = ???
DatabaseInstance = ???
#
DatabaseType is a numeric with these values:
SYBASE = 1
MSSQL = 2
ORACLE = 3
DB2 = 4
ODBC = 5
DatabaseType = ???
#
end of file!
#

78 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
046HULHV�,QWHJUDWRU�5XOHV�
'DHPRQ�3URFHVVLQJ�

The MQSeries Integrator Rules daemon is built on top of the Rules,
Formatter, and MQSeries APIs and performs the following procedures in this
order:

1. Message processing

2. Subscription execution

3. Failure processing

0HVVDJH�3URFHVVLQJ�

Message processing evaluates the message against the currently defined rule
set for the application group/message type pair. Formatter is called to
deconstruct (parse) the input message into component parts (fields). Rules
then evaluates these fields. If a message is successfully evaluated,
subscriptions are executed. (A subscription is a list of actions.)

If a failure occurs when rules are evaluated against a message, the transaction
is rolled back and the transaction end is defined. If a failure occurs during
message processing, failure processing begins.

Messages are evaluated against active rules only. If there are no active rules in
a rule set (application group/message type), the load will fail, and the
message will be sent to the Failure Queue. Only active subscriptions are
retrieved for hit rules. If there are no active subscriptions in a rule set, the load
will fail, and the message will be sent to the Failure Queue. If none of the hit
rules have active subscriptions, the first call of the get subscriptions returns
nothing, and the message is sent to the No Hit Queue.

6XEVFULSWLRQ�([HFXWLRQ�

After a message (field or fields) is successfully evaluated against its rules, all
subscriptions associated with those rules that evaluated to true are executed.
If a message is successfully evaluated, and no subscriptions are executed, i.e.,
no rules evaluate to true, the message is routed to the No Hit Queue.

If there is a failure at any time during subscription execution, the transaction
is rolled back, and the transaction end is defined. Once this rollback occurs,
failure processing begins.

The subscription actions that can be processed within the MQSeries
Integrator Rules daemon are Reformat and Put Queue. Other actions defined
require users to write their own daemon to process those actions. The
MQSeries Integrator Rules daemon does not execute generic actions.
MQSeries Integrator System Management Guide 79

Chapter 5
1RWH1RWH
The MQSeries Integrator Rules daemon shuts down under the following
conditions:

n Failure Queue inaccessible

n No Hit Queue inaccessible

n Queue Manager shutdown or inaccessible

n Commit or rollback failure

n Internal error (for example, failure to allocate memory)

n Input queue inaccessible (get is disabled)

5HIRUPDW

The Reformat action takes a message with an input format and reformats the
message to a message adhering to the specified output format. The Reformat
action requires both an input and an output format as options. Formatter
APIs are called to perform the reformat of messages. If you are using Rules
Management APIs to add the Reformat action, the action name should be
“reformat” with the option name: “INPUT_FORMAT” and
“TARGET_FORMAT” (in uppercase).

)DLOXUH�3URFHVVLQJ�

Failure processing occurs when message processing or subscription execution
fails. Failure processing also occurs if there are no active rules or subscription
for the application group/message type. Failed messages are routed to the
MQSeries Integrator Failure Queue specified in this process. Using the
MQSeries Integrator Rules daemon, you can write a process to manage the
messages in the Failure Queue.

0HVVDJH�5RXWLQJ�

Based on the outcome of the MQSeries Integrator Rules daemon procedures
(message processing, subscription execution and failure processing),
messages can be routed to the No Hit Queue, Failure Queue, or to queues
specified in a Put Queue action.

n If no subscription actions are successfully executed, messages are
routed to the No Hit Queue.

n If failures occur at any time during processing, the message is routed
to the Failure Queue.

n If errors occur during execution, all errors are routed to the Log File
only if logging is specified.
80 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
5XOHV�&DFKLQJ

When users change data within a rule or rule set specified by an Application
Group/Message Type pair, they must signal a running Rules Daemon
instance to load the changes into memory.

Notification messages are typically empty and have three options:
OPT_APP_GRP and OPT_MSG_TYPE set the application group and message
type indicating which rule set to reload, and OPT_RELOAD_RULE_SET set
to TRUE indicating to the Rules Daemon to reload the specified rule set.

6HQGLQJ�D�5HORDG�0HVVDJH

To send a reload message:

1. Modify the putdata parameter file: MQSIputdata.mpf.

2. Open your editor and go to the Put Option group in the
MQSIputdata.mpf parameter file.

3. Add the following line:

OPT_RELOAD_RULE_SET = TRUE

4. Exit the MQSIputdata.mpf parameter file.

5. To send the reload message, type:

MQSIputdata -p MQSIputdata.mpf

5XOHV�'DHPRQ�6HFXULW\

The MQSeries Integrator Rules daemon can publish messages using one of
two methods:

1. With the authority of the user who started the daemon

2. With the authority the publisher

If the first method is used, a message is delivered to a queue with the
credentials of whoever originally started the daemon. However, using this
method, the rules daemon can be used to put messages to queues that the
publisher would not ordinarily be able to access because of security reasons.

If the second method, publisher security, is used, the publish operation fails
if a messages is put to a queue that the publisher cannot access because of its
security. The message is instead sent to the Rules daemon failure queue.

By default, the Rules daemon uses method one, the security of the user who
started the daemon (CredentialsEnabled = 0). To enable method two,
publisher security, add the following line to the Rules daemon configuration
file:

CredentialsEnabled = 1
MQSeries Integrator System Management Guide 81

Chapter 5
5XOHV�'DHPRQ�6KXWGRZQ

6HQGLQJ�D�6KXWGRZQ�0HVVDJH

To send a shutdown message:

1. Add the following line to the Put Option group in the
MQSIputdata.mpf file:

OPT_SHUTDOWN = SHUTDOWN

2. To invoke putdata to send the shutdown message, type:

MQSIputdata -p MQSIputdata.mpf

8VLQJ�&WUO�F�WR�6KXW�'RZQ�5XOHV

If you run the Rules daemon interactively, you can exit Rules using Ctrl+c. If
you use Ctrl+c, a message is sent to the log, and Rules exits. If Ctrl+c is issued
during the processing of a message, the message is rolled back, and it will be
in the Failure queue when the Rules daemon is started again.

1RWH1RWH
Using Ctrl+c is the abrupt way to shut down Rules. It is better to send a
shutdown message, disable the rules input queue, or shut down the queue
manager to shutdown Rules. MQSeries connections are not shutdown using
Ctrl+c.

046HULHV�,QWHJUDWRU�5XOHV�
'DHPRQ�(UURU�0HVVDJHV

.H\�WR�0HVVDJH�6HYHULW\�&RGHV�

0 = Information

1 = Warning

2 = Error

3 = Fatal Error
82 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH

Informational Messages

10000 Received the input message
with application group:
<insert character string>
message type: <insert
character string>

0 None. This is an
information message.

10001 A putqueue action has
begun.

0 None. This is an
information message.

10002 Putting message to Failure
queue.

0 None. This is an
information message.

10003 Performing a reformat
operation.
Input Message Type: <insert
character string>
Output Message Type:
<insert character string>

0 None. This is an
information message.

10004 Message put to target queue
but not committed yet.
Target Queue Name: <insert
character string>

0 None. This is an
information message.

10005 Publish operation completed
successfully.

0 None. This is an
information message.

10006 Reformat operation
completed successfully.
Input Message Type: <insert
character string>
Output Message Type:
<insert character string>

0 None. This is an
information message.

10007 Rules evaluation succeeded.
Application Group: <insert
character string>
Message Type: <insert
character string>

0 None. This is an
information message.

10008 The Rules evaluation yielded
a subscription.
Application Group: <insert
character string>
Message Type: <insert
character string>

0 None. This is an
information message.

10009 Successfully created output
message group.
Input Message Type: <insert
character string>
Output Message Type:
<insert character string>

0 None. This is an
information message.

10010 Putting message to No Hit
queue.

0 None. This is an
information message.
MQSeries Integrator System Management Guide 83

Chapter 5
10011 A putqueue action has
completed.

0 None. This is an
information message.

10012 A shutdown has been
requested.

0 None. This is an
information message.

10013 Reload of a rule set
completed successfully.

0 None. This is an
information message.

10014 A special control message
was detected.

0 None. This is an
information message.

10015 User requested abort via
signal.

0 None. This is an
information message.

10016 Buffer extended. 0 None. This is an
information message.

Warning Messages

10020 No subscriptions found for
message with
application group: <insert
character string>
message type: <insert
character string>

1 Check the daemon’s No
Hit queue and verify
that no subscriptions
exist for that message.
This condition does not
necessarily represent
an error.

10021 A reformatted message
exceeded the daemon’s
maximum allowed message
buffer size.

1 Increase the
MaxBufferSize.

Error Messages

10030 Failed to create output
message group.
Input message type: <insert
character string>
Output message type: <insert
character string>
Formatter Error # : <insert
number>
Formatter Error Message:
<insert character string>

2 Refer to Formatter
documentation for
more information on
the Formatter error
described by this
message.

10031 Failed to open target queue.
Target queue name: <insert
character string>
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

2 Verify that the target
queue exists. Refer to
the MQSeries
documentation for
more information on
the MQSeries error
described by this
message.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
84 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10032 Failed to put message to
target queue.
Target queue name:<insert
character string>
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

2 Verify that the target
queue exists. Refer to
the MQSeries
documentation for
more information on
the MQSeries error
described by this
message.

10033 Output type missing for
subscription <insert
number>.

2 Verify that the output
format is specified for
this subscription.

10034 Input type missing for
subscription <insert
number>.

2 Verify that the input
format is specified for
this subscription.

10035 Failed to reformat message.
Input message type: <insert
character string>
Output message type: <insert
character string>
Formatter Error #: <insert
number>
Formatter Error Message:
<insert character string>

2 Refer to the Formatter
documentation for
more information on
the Formatter error
described by this
message.

10036 Rules evaluation failed.
Application group: <insert
character string>
Message type: <insert
character string>
Rules Error # : <insert
number>
Rules Error Message: <insert
character string>

2 Refer to the Rules
documentation for
more information on
the Rules error
described by this
message.

10037 Target queue not set for
putqueue action.

2 Verify that the
putqueue action in
your Rules
subscription has a
target queue defined.

10038 Request-reply messages not
supported. Message rejected.

2 Determine which
application is sending
request messages to the
MQSeries Integrator
Rules daemon and
change the message
type from request to
datagram.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
MQSeries Integrator System Management Guide 85

Chapter 5
10039 A corrupt message was
detected.

2 Determine which
application is sending
the corrupt message.
Verify that the
application is using the
method outlined in the
example programs to
construct the messages
it sends to the
MQSeries Integrator
Rules daemon.

10040 Cannot propagate RF header.
No RF header on input
message.

2 Either change the
publishing application
to send messages to the
MQSeries Integrator
Rules daemon with an
RF header, or change
the subscription so that
the
MQS_PROPAGATE
option is not set.

10041 No options found for
subscription.
Subscription Action: <insert
character string>
Subscription ID: <insert
number>

2 Verify that the
subscription is valid. A
subscription that
contains a putqueue
action should also
contain a target queue
option. A subscription
that contains a reformat
action should also
contain both an input
format option and a
target format option.

10042 Unknown action detected.
Action Name: <insert
character string>
Subscription ID: <insert
number>

2 Verify that the actions
specified for this
subscription are valid.
Valid actions are
putqueue and
reformat.

10043 Putqueue action failed:
Action Name: <insert
character string>
Subscription ID: <insert
number>

2 Check the log for
additional details about
this error.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
86 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10044 The input message exceeded
the backout count.
The message will be sent to
the failure queue.

2 Check the log for
additional details about
this error. This error is
preceded in the log by
another message
indicating why the
input message was
originally backed out.

10045 A message descriptor
extension was detected on
the input message.
The message will be sent to
the failure queue.

2 This error is caused by
a version 5 MQSeries
application sending
messages to an
MQSeries Integrator
Rules daemon built
with version 2 libraries.
If possible, upgrade the
version of your
MQSeries Integrator
Rules daemon.
Otherwise, stop
sending version 5
messages to the
MQSeries Integrator
Rules daemon.

10046 The Publish operation failed. 2 Check the log for
additional information
about this error.

10047 A corrupt message options
segment was detected.

2 Determine which
application is sending
the corrupt message.
Verify that the
application is using the
method outlined in the
example programs to
construct the messages
it sends to the
MQSeries Integrator
Rules daemon.

10048 The input message
conversion failed.

2 Check the Log file for
details.

10049 Reload of rule set failed. 2 Check the Log file for
details.

Fatal Error Messages

10060 Bad condition code detected. 3 Internal error. Contact
product support.

10061 Unrecognized output type in
failure message.
Message: <insert character
string>

3 Contact product
support.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
MQSeries Integrator System Management Guide 87

Chapter 5
10062 A Null Log File handle was
detected.

3 Internal error. Contact
product support.

10063 Failed to put message on
failure queue.
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

3 Verify that the failure
queue exists and is put
enabled. Refer to the
MQSeries
documentation for
more information
about the MQSeries
error described by this
message.

10064 Failed to put message on
nohit queue.
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

3 Verify that the queue
exists and is put
enabled. Refer to the
MQSeries
documentation for
more information
about this MQSeries
error.

10065 Failure queue not specified. 3 Verify that a failure
queue is defined by the
MQSeries Integrator
Rules daemon
configuration file.

10066 No input queues were
specified.

3 Verify that an input
queue is defined by the
MQSeries Integrator
Rules daemon
configuration file.

10067 No Hit queue not specified. 3 Verify that a No Hit
queue is defined by the
MQSeries Integrator
Rules daemon
configuration file.

10068 Unexpected argument:
<insert character string>

3 Verify the syntax of the
command used to run
the MQSeries
Integrator Rules
daemon.

10069 Error connecting to Queue
Manager.
Queue Manager Name:
<insert character string>
MQSeries Completion Code:
<insert number>
MQSeries Reason Code:
<insert number>

3 Verify that the queue
manager is running.
Refer to the
MQSeries
documentation for
more information
about this MQSeries
error.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
88 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10070 Queue Manager Shutdown
detected.

3 The MQSeries
Integrator Rules
daemon shuts down in
response to a queue
manager shutdown.
Restart the queue
manager and then
restart the MQSeries
Integrator Rules
daemon.

10071 Failed to commit publish
operation.
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

3 Refer to the MQSeries
documentation for
more information
about this MQSeries
error. Correct the
problem and restart the
MQSeries Integrator
Rules daemon.

10072 Failed to rollback publish
operation.
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

3 Refer to the MQSeries
documentation for
more information
about this MQSeries
error. Correct the
problem and restart the
MQSeries Integrator
Rules daemon.

10073 Failed to open rules session. 3 Check the log for
additional information
about this error. Make
sure that the rules
database exists and is
available to the
MQSeries Integrator
Rules daemon. Verify
that the database user
name and password
are valid.

10074 Failed to allocate memory.
File Name: <insert character
string>
Line Number: <insert
number>

3 Verify that buffer sizes
defined by the
MQSeries Integrator
configuration file do
not exceed system
limits. Adjust buffer
sizes and restart the
daemon.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
MQSeries Integrator System Management Guide 89

Chapter 5
10075 Message exceeded maximum
allowed size.
Received message size:
<insert number>
Maximum allowed size:
<insert number>

3 Increase the
MaxBufferSize
parameter in the
MQSeries Integrator
configuration file
to be greater than or
equal to the Received
message size given in
this error and then
restart the daemon.

10076 Error opening a queue.
Queue Name: <insert
character string>
MQSeries Completion Code:
<insert number>
MQSeries Reason Code:
<insert number>

3 Refer to the MQSeries
documentation for
more information
about this MQSeries
error. Correct the
problem and restart the
MQSeries Integrator
Rules daemon.

10077 Failed to get a message from
an input queue.
Input queue name: <insert
character string>
Completion Code: <insert
number>
Reason Code: <insert
number>

3 Refer to the MQSeries
documentation for
more information
about this MQSeries
error. Correct the
problem and restart the
MQSeries Integrator
Rules daemon.

10078 Could not create formatter
object. Error Number: <insert
number>

3 Check the log for
additional information.
Refer to the Formatter
documentation for
additional information
on causes of this error.

10079 Could not create rules object.
Error Number: <insert
number>

3 Refer to the rules
documentation for
additional information
on causes of this error.

10080 Could not access parameter
file. Parameter file name:
<insert character string>

3 Verify that the
MQSeries Integrator
Rules daemon
parameter file exists.

10081 The parameter file has an
invalid format.
Parameter file name: <insert
character string>

3 Verify that the
MQSeries Integrator
Rules daemon
parameter file has the
correct format.

10082 Failed to open rules session.
Error #: <insert number>
Error Message: <insert
character string>

3 Diagnose problem
based on Error # and
Error Message.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
90 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10083 Usage: <insert character
string> -p filename

3 Check the command
line invocation of the
MQSeries Integrator
Rules daemon.

10084 Default application group
and/or message type not
specified.

3 Define the
DefaultAppGroup and
DefaultMsgType
parameters in the Rules
daemon configuration
file.

10085 Failed to complete inquiry. 3 The MQSeries
Integrator Daemon was
unable to inquire about
the character set ID and
encoding used by the
Queue Manager.
Change the security in
the Queue Manager
object so that the user
who started the
MQSeries Integrator
Daemon has the right
to make an inquiry to
the Queue Manager
about its properties.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
MQSeries Integrator System Management Guide 91

Chapter 5
92 MQSeries Integrator System Management Guide

&KDSWHU��

&RQVLVWHQF\�&KHFNHU

MQSeries Integrator Consistency Checker provides a utility to check the
consistency of MQSeries Integrator components. The Consistency Checker
lists the objects as invalid that are out of synchronization because of a
recovery or bad migration (or for any other reason). It checks whether the
records have the corresponding features in the database. All formats and
rules in an inconsistent state generate a report indicating the problem. There
are no checks across databases; only the specified database is checked.

Most of the items checked verify the internal structure of the rules to confirm
that they were properly created; however, some checks verify that user-typed
data was correctly entered.
MQSeries Integrator System Management Guide 93

Chapter 6
6WDUWLQJ�WKH�&RQVLVWHQF\�
&KHFNHU�IURP�D�&RPPDQG�/LQH

The Consistency Checker Command Line is a UNIX/Korn Shell command.
You must have either Oracle SQLPlus, Sybase ISQL, or Informix DB Access
installed to run the Consistency Checker using UNIX/Korn Shell commands.

To run the Consistency Check in either Rules or Formatter, change to your
CD-ROM drive and access the /bin directory on the MQSeries Integrator CD-
ROM.

5XOHV

To run the Consistency Checker for Rules, type the following UNIX/Korn
Shell command:

rulecc.ksh <user id> <password> <server name> <database
name>

1RWH1RWH
The database name is not needed for Oracle.

1RWH1RWH
The file rulecc.sql must be in the same directory as rulecc.ksh, and the user
must be able to create new files to run the Consistency Checker.

)RUPDWWHU

To run the Consistency Checker for Formatter, type the following UNIX/
Korn Shell command:

formatcc.ksh <user id> <password> <server name> <database
name>
94 MQSeries Integrator System Management Guide

Consistency Checker
5HSRUWV

The Consistency Checker for Formatter and Rules generates a report similar
to the following:

5HSRUW�7LWOH

The report title describes the purpose of the report and each row in the data
represents one problem of the same type. For example, the Rules Consistency
Checker checks message types that are associated with specific application
groups to see if the application group actually exists (this is the third report in
the rulecc.ksh output). If an application group is missing, the offending
message type is output to the “Message Type” field. If there are no problems,
only the report title appears (and possibly a message that no rows were found
will be printed as well).

Example: Problem Output

The following example shows a test of the Consistency Checker for Rules
where data was forcibly corrupted.

Message types referring to nonexistent application group:

1RWH1RWH
For information on Starting the Consistency Checker Using the GUI on NT, see
Using MQSeries Integrator.

046115SXWT&&��5XOHV�3XWTXHXH�$FWLRQ�&RQVLVWHQF\�&KHFNHU��

This utility, used with both NT and UNIX, goes through all putqueue
(PutMessage) actions and checks that queue names specified in putqueue
actions exist. The utility lists queue names that do not exist.

Use MQSNNRputqCC from the command line on the machine hosting the
MQSeries Integrator Rules daemon and MQSeries queue manager

MQSNNRputqCC
Rules Putqueue Consistency Checker (MQSNNRputqCC)

usage: MQSNNRputqCC<rules session name> <queue session OR
queue manager name>

For IBM MQSeries, the second parameter is the queue manager name.

)LUVW�)LHOG�
1DPH

6HFRQG�)LHOG�
1DPH

QWK�)LHOG�1DPH

Field Value 1 Field Value 1 Field Value 1

Field Value 2 Field Value 2 Field Value 2

0HVVDJH�7\SH 0HVVDJH�,G $SSOLFDWLRQ�,G

CCFlat 1 50 150
MQSeries Integrator System Management Guide 95

Chapter 6
&RQVLVWHQF\�&KHFNHU�5HSRUWV��
5XOHV

The Rules Consistency Checker report provides the following information:

&RQVLVWHQF\�&KHFNHU�
5HSRUWV��5XOHV

([SODQDWLRQV

Message types in Rules that do not
match a Format in Formatter

The message type does not correspond to
any input format in the Formatter. The
format may have been deleted in
Formatter. Do not use Rules in this
Message Type.

Rules Unique Sequence Generator
with no match on Message Type

These message type/application group
pairs do not have the capability to generate
unique identifiers for new rules,
arguments, subscriptions, or actions. It
should be okay to use the database as long
as those message types are not used.

Message types in Rules that do not
match a Format in Formatter

The message type does not correspond to
any input format in the Formatter. The
format may have been deleted in
Formatter. Do not use Rules in this
Message Type.

Rules that refer to nonexistent
message types

The associated application group/
message type pair does not exist for the
rule. You cannot access these rules.

Operations that refer to nonexistent
message types

The application group/message type pair
does not exist for the argument
(operation). You cannot access these rules.

Arguments that refer to nonexistent
rules

The rule does not exist for the argument.
This may cause load failures.

Arguments that refer to nonexistent
operators

The operator does not exist for the
argument. This will cause evaluation
failure.

Arguments that refer to nonexistent
operations

The argument’s operation does not exist.
This may cause load or evaluation failure.

Subscription actions that refer to
nonexistent subscriptions

The subscription does not exist for the
action. This may cause load failure.

Subscription Master that refers to
nonexistent subscriptions in
Subscription List

The subscription does not exist in the
subscription list. This may cause load
failure.

Subscriptions that refer to nonexistent
rules

The rule does not exist for the
subscription. This may cause load failure.

Subscriptions in the subscription list
that refer to nonexistent message
types

The message type/application group pair
does not exist for the subscription. You
cannot access this subscription.
96 MQSeries Integrator System Management Guide

Consistency Checker
 Rules that have Argument Count of
Zero

A rule must always have at least one
argument associated with it. This report
identifies any rules that have a zero (0)
argument count. This may cause load or
evaluation failure.

Number of Arguments in a Rule does
not match the Argument Count
indicated for the Rule

The arguments listed in the Argument
table do not match the number of
arguments in the Rule table. This rule will
not work correctly.

Subscription Action (Reformat) Input
Format does not exist in the Formatter

The input format entered in a reformat
action does not match an input format
name in the Formatter. This may cause the
daemon to fail reformatting a message.

Subscription Action (Reformat)
Target Format does not exist in the
Formatter Tables

The target format entered in a reformat
action does not match an output format
name in the Formatter. This may cause the
daemon to fail reformatting a message.

Fields Names in Arguments that refer
to nonexistent fields in Formatter

A field name was entered in an argument
and the field name is not a valid field in the
Formatter. Evaluation may fail or not hit.

Field Names in Arguments that refer
to nonexistent Flat Fields in Formatter

A field name was entered in an argument
and the field name is not a valid field in the
flat input format referred to by the
Message Type of the rule. Evaluation may
fail or not hit. (NOTE: Currently, the Rules
Consistency Checker does not check fields
in compound formats.)

Field Name2 (Comparison Value) in
Arguments that refer to nonexistent
fields in Formatter

A field name was entered in an argument
as a comparison value and the field name
is not a valid field in the Formatter.
Evaluation may fail or not hit.

 Field Name2 (Comparison Value) in
Arguments that refer to nonexistent
Flat Fields in Formatter

A field name was entered in an argument
as a comparison value and the field name
is not a valid field in the flat input format
referred to by the Message Type of the
rule. Evaluation may fail or not hit.
(NOTE: Currently, the Rules Consistency
Checker does not check fields in
compound formats.)

Subscriptions with No Actions All subscriptions must have at least one
action. This report displays subscriptions
with no actions. This may cause evaluation
failure.

Rules with No Active Subscriptions All rules must have at least one
subscription. This report displays rules
with no subscriptions. This may cause
evaluation failure.

&RQVLVWHQF\�&KHFNHU�
5HSRUWV��5XOHV

([SODQDWLRQV
MQSeries Integrator System Management Guide 97

Chapter 6
WARNING: Rules that may not put
message on a queue

When running the MQSeries Integrator
Rules daemon, subscriptions for rules that
hit probably should end with a ‘Put
Message’ action to route the message. This
may not be needed if users provide their
own daemon and ‘generic’ actions.

Boolean Operators that refer to
nonexistent rules

The rule does not exist for the argument.
This may cause load failures.

Arguments that refer to nonexistent
Boolean operators

Boolean operator does not exist for the
argument. This will cause load failures.

Boolean operators that have an
Argument Count of Zero

A Boolean operator must always have at
least two (2) child arguments and/or
Boolean operators. This may cause load or
evaluation failure.

Number of arguments in a Boolean
AND Term does not match the
Argument Count indicated for the
Boolean Operator

A Boolean AND operator needs the same
number of children arguments and/or
Boolean operators as is indicated. This will
cause evaluation to work incorrectly.

Number of Arguments in a Boolean
OR Term is Incorrect

If the expression uses OR, it should have a
specific argument count of I. A Boolean
OR operator needs a certain number of
children arguments and/or Boolean
operators as is indicated. This will cause
evaluation to work incorrectly.

Boolean operators that refer to
nonexistent parent Boolean operators

Children Boolean operators must refer to
an existing parent Boolean operator. This
may cause load or evaluation failure.

Boolean operators that recurse more
than 5 times and maybe infinitely

This expression has many nested
expressions, which is okay. However, it
can also mean that the expression has a
circular reference, which will cause the
evaluation failure.

Arguments with static values with
invalid lengths

The argument length must be between 0
and 64. This situation may cause load
failure or it can cause the rule to never
evaluate to true.

3HUPLVVLRQ�&KHFNV

Unique Sequence Generator invalid
for Permission Users

The system cannot add additional users
for permissions because it cannot generate
a unique identifier.

Hierarchy definitions that are not
complete for Rule/Subscription
Permissions

The hierarchy definitions must be
complete during the installation of Rules
with Permissions.

Unique Sequence Generator invalid
for Rules/Subscription for
Permissions

The system cannot add a new Rule/
Subscription permission because it cannot
generate a unique identifier.

&RQVLVWHQF\�&KHFNHU�
5HSRUWV��5XOHV

([SODQDWLRQV
98 MQSeries Integrator System Management Guide

Consistency Checker
Permissions that do not exist in the
hierarchy

Rule/Subscription permissions must refer
to valid hierarchy information.

Permissions that are not complete Rule/Subscription permissions must
include Node, Application Group,
Message Type, and Rule/Subscription
Name to be complete.

Permissions that refer to nonexistent
Nodes

Rule/Subscription permissions must refer
to the current node.

Permissions that refer to nonexistent
Application Groups

Rule/Subscription permissions must refer
to a valid application group.

Permissions that refer to nonexistent
Message Types

Rule/Subscription permissions must refer
to a valid message type/format name.

Permissions that refer to nonexistent
Rules

Rule permissions must refer to a valid rule
name.

Permissions granted to nonexistent
Subscriptions

Subscription permissions must refer to a
valid subscription name.

Permissions granted to nonexistent
Users

Rules permissions need both a valid user
and rule subscription to be complete.

Permissions granted to nonexistent
Item

Rule/Subscription permissions must refer
to a valid item name.

Permission Access and/or Grants that
are not valid for Rules

Current valid Rule permission names are:
‘Owner,’ ‘Read,’ and ‘Update.’ Permission
values can be: ‘Granted’ or ‘DenyAll.’

Permission Access and/or Grants that
are not valid for Subscription

Current valid Subscription permission
names are: ‘Owner,’ ‘Read,’ and ‘Update.’
Permission values can be: ‘Granted’ or
‘DenyAll.’

Rules with multiple owners Rules can only have one owner. If
‘PUBLIC’ is the rule owner, every user has
de facto ownership.

Subscription with multiple owners Subscription can only have one owner. If
‘PUBLIC’ is the rule owner, every user has
de facto ownership.

Rules with no Owners Each rule must have a single owner. A rule
with ‘PUBLIC’ as its owner is basically
owned by everyone.

Subscription with no Owners Each Subscription must have a single
owner. A subscription with ‘PUBLIC’ as its
owner is basically owned by everyone.

Users that have no NEONet Rules
Data Access

Users for permissions must both have
access to the database instance and be in
the MQSeries Integrator user group
(unless your system is set up in a different
way).

&RQVLVWHQF\�&KHFNHU�
5HSRUWV��5XOHV

([SODQDWLRQV
MQSeries Integrator System Management Guide 99

Chapter 6
&RQVLVWHQF\�&KHFNHU�5HSRUWV��
)RUPDWWHU�

The Formatter Consistency Checker report provides the following
information:

&RQVLVWHQF\�&KHFNHU�5HSRUWV��
)RUPDWWHU

([SODQDWLRQV

Input format fields that refer to
nonexistent input controls

Choose valid input parse controls for
the fields.

Input format fields that refer to
nonexistent fields

Choose valid fields to insert into flat
input formats.

Input format fields that refer to
nonexistent flat formats

A deleted input format has not been
properly removed, there should be no
impact.

Incomplete input format fields that refer to
field NONE and/or input control NONE

Choose fields other than "NONE" to
insert into input flat format.
Choose input parse controls other
than "NONE" for input fields.

Output format fields that refer to
nonexistent flat formats

A deleted output format has not been
properly removed. There should be
no impact.

Output format fields that refer to
nonexistent output controls

Choose valid output format controls
for the fields.

Output format fields that refer to
nonexistent fields

Choose valid fields to insert into flat
output formats.

Output format fields that refer to
nonexistent input fields

Choose valid mapped input fields to
insert into flat output formats.

Incomplete output format fields that refer
to field NONE and/or output control
NONE

Choose fields other than "NONE" to
insert into output flat format.
Choose output format controls other
than "NONE" for output fields.

Output format fields that refer to
nonexistent access modes

Choose valid access modes for fields
in flat output formats.

User defined data type name/value pairs
that refer to nonexistent input controls

A deleted input user-validation has
not been properly removed. There
should be no impact.

User defined data type name/value pairs
with invalid types

Database integrity is compromised.

Flat formats that refer to nonexistent
format delimiters

Choose valid delimiters for flat
formats.
100 MQSeries Integrator System Management Guide

Consistency Checker
Flat formats that refer to nonexistent
formats

A deleted flat format has not been
deleted correctly. Database integrity
may be compromised.

Flat formats that refer to nonexistent
decompositions

Choose valid decomposition (ordered
or unordered) for flat formats.

Flat formats that refer to nonexistent
terminations

Choose valid termination types for
flat formats.

Flat input formats that have no fields Insert at least one field into format.

Flat output formats that have no fields Insert at least one field into format.

Compound formats that have no
component formats

Insert at least one component format
into compound format.

Compound format components that refer
to nonexistent parent formats

Deletion of compound format may
not have occurred successfully.
Database integrity may be
compromised.

Compound format components that refer
to nonexistent repeat delimiters

Choose valid literals for repeat
delimiters for component formats.

Compound format components that refer
to nonexistent component formats

Choose valid component formats to
insert into compound formats.

Compound format components that refer
to nonexistent repeat fields

Choose valid fields for "Field contains
repeat count" repeat termination.

 Input compound format components that
refer to nonexistent repeat terminations

Choose valid repeat termination types
for component formats.

Output compound format components
that refer to nonexistent repeat
terminations

Choose valid repeat termination types
for component formats.

 Input controls that refer to nonexistent
length delimiters

Choose valid literals for length
delimiters of input parse controls.

 Input controls that refer to nonexistent
data delimiters

Choose valid literals for data
delimiters of input parse controls.

 Input controls that refer to nonexistent tag
delimiters

Choose valid literals for tag delimiters
of input parse controls.

Input controls that refer to nonexistent
data types

Choose valid data types for data
portion of input parse control.

 Input controls that refer to nonexistent tag
data types

Choose valid data types for tag
portion of input parse control.

 Input controls that refer to nonexistent
length data types

Choose valid data types for length
portion of input parse control.

Input controls that have invalid default
date and time format strings

Date and time data type refers to a
date/time format string that is not the
legitimate default.

&RQVLVWHQF\�&KHFNHU�5HSRUWV��
)RUPDWWHU

([SODQDWLRQV
MQSeries Integrator System Management Guide 101

Chapter 6
Input controls that have invalid default
time format strings

Time data type refers to a time format
string that is not the legitimate
default.

 Input controls that have invalid default
date format strings

Date data type refers to a time format
string that is not the legitimate
default.

Input controls that refer to nonexistent
custom date/time format strings

Choose valid custom date/time
format strings for input parse
controls.

Input controls that refer to nonexistent
input control types

Choose valid types for input parse
controls.

Input controls that refer to nonexistent
data termination types

Choose valid data termination types
for input parse controls.

Input controls that refer to nonexistent tag
termination types

Choose valid tag termination types
for input parse controls.

Input controls that refer to nonexistent
length termination types

Choose valid length termination
types for input parse controls.

Input controls that refer to nonexistent tag
or literal values

Choose valid literals for input parse
controls that are literals or that have a
tag value.

Input controls that refer to nonexistent
length locations

Choose valid length locations for
input parse controls.

Input controls of data type endian 2 with
data lengths not equal to 2

These are fixed length controls that
should have a length of 2.

Input controls of data type endian 4 with
data lengths not equal to 4

These are fixed length controls that
should have a length of 4.

Input controls of length data type endian 2
with length lengths not equal to 2

These are fixed length controls that
should have a length of 2.

Input controls of length data type endian 4
with length lengths not equal to 4

These are fixed length controls that
should have a length of 4.

Input controls of data type default date
and time with data lengths not equal to
length of default date and time format
string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type default time
with data lengths not equal to length of
default time format string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type default date
with data lengths not equal to length of
default time format string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type custom date/
time with data lengths not equal to length
of custom date/time format string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

&RQVLVWHQF\�&KHFNHU�5HSRUWV��
)RUPDWWHU

([SODQDWLRQV
102 MQSeries Integrator System Management Guide

Consistency Checker
Output controls that refer to nonexistent
data types

Choose valid data types for data
portion of output format controls.

Output controls that refer to nonexistent
tag data types

Choose valid data types for tag
portion of output format controls.

Output controls that refer to nonexistent
length data types

Choose valid data types for length
portion of output format controls.

Output controls that refer to nonexistent
calculation operations

Choose valid calculation operations
for output format controls.

Output controls that refer to nonexistent
output control types

Choose valid types for output format
controls.

Output controls that refer to nonexistent
output operations

Choose valid output operations for
output format controls.

Output controls that refer to nonexistent
field comparison values

Choose valid literals for output
format controls of type "Input field
value =".

Output controls that refer to nonexistent
tag or literal values

Choose valid literals for output
format controls of type "Literal" or
"Data Field Tag Search".

Output controls that have invalid default
date and time format strings

Date and time data type refers to a
date/time format string that is not the
legitimate default.

Output controls that have invalid default
time format strings

Time data type refers to a time format
string that is not the legitimate
default.

Output controls that have invalid default
date format strings

Date data type refers to a date format
string that is not the legitimate
default.

Output controls that refer to nonexistent
custom date/time format strings

Custom date/time data type refers to
a custom date/time format string that
is not the legitimate default.

Output operations that refer to nonexistent
operation types

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
substitute operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
prefix/suffix operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
default operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
length operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
substring operations

Database integrity is compromised.
Delete operation and re-enter it.

&RQVLVWHQF\�&KHFNHU�5HSRUWV��
)RUPDWWHU

([SODQDWLRQV
MQSeries Integrator System Management Guide 103

Chapter 6
Output operations that refer to nonexistent
case operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
user exit operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
math expression operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
justify operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
collection operations

Database integrity is compromised.
Delete collection and re-enter it.

Collection type output operations that
have no collection components

Choose at least one component
operation to insert into a collection.

Output operations that refer to nonexistent
trim operations

Database integrity is compromised.
Delete operation and re-enter it.

Substitute operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Substitute operations that refer to
nonexistent input values

Choose valid literals for substitute
input value.

Substitute operations that refer to
nonexistent output values

Choose valid literals for substitute
output value.

Substitute operations that refer to
nonexistent output data types

Choose valid data types for substitute
output value.

Collection operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Collection operation components that
refer to nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Code table entries that refer to nonexistent
user defined data types

Extraneous data in the database.
Database integrity may be
compromised.

User defined data types with invalid data
type identifiers

Extraneous data in the database.
Database integrity may be
compromised.

User defined data types that refer to
nonexistent data types

Extraneous data in the database.
Database integrity may be
compromised.

User defined data types that refer to
nonexistent native data types

Choose valid base data types for user
defined data types.

&RQVLVWHQF\�&KHFNHU�5HSRUWV��
)RUPDWWHU

([SODQDWLRQV
104 MQSeries Integrator System Management Guide

Consistency Checker
Trim operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Trim operations that refer to nonexistent
trim characters

Choose valid literals for trim
character.

Trim operations that refer to nonexistent
trim choices

Choose valid type for trim operation.

Prefix/suffix operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Prefix/suffix operations that refer to
nonexistent prefixes or suffixes

Choose valid literals for prefixes or
suffixes.

Prefix/suffix operations that refer to
nonexistent prefix/suffix choice

Choose valid choice for prefix/suffix
operation.

Exit operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Default operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Default operations that refer to
nonexistent padding characters

Choose valid literals to use as default.

Length operations that refer to nonexistent
output operations

Database integrity is compromised.

Length operations that refer to nonexistent
padding characters

Choose valid literals for padding
character.

Math expression operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Math expression operations that refer to
nonexistent rounding modes

Choose valid rounding modes for
math expressions.

Math expression components that refer to
nonexistent math expression operations

Extraneous data in the database.
Database integrity may be
compromised.

Case operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Case operations that refer to nonexistent
case choices

Choose valid choices for case
operations.

Justify operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

&RQVLVWHQF\�&KHFNHU�5HSRUWV��
)RUPDWWHU

([SODQDWLRQV
MQSeries Integrator System Management Guide 105

Chapter 6
Justify operations that refer to nonexistent
justify choices

Choose valid choices for justify
operations.

Substring operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

 Substring operations that have invalid
substring parameters

Choose a substring start position >= 0
and a substring length > 0.

 Input parse controls with 2-digit year
date/time format strings with invalid year
cutoff values

Enter a valid year cutoff value (0 to 99
inclusive) for year cutoff value.

&RQVLVWHQF\�&KHFNHU�5HSRUWV��
)RUPDWWHU

([SODQDWLRQV
106 MQSeries Integrator System Management Guide

Data Types
$SSHQGL[�$

'DWD�7\SHV

The following table both lists and describes supported data types.

Data Type Field Value Description

Not Applicable No data type is assumed.

 String A string of standard ASCII characters. Note that non-printable characters are
valid as long as they are in the ASCII character set. (EBCDIC characters
outside the valid ASCII String range are not valid ASCII String characters.
During a reformat from ASCII to EBCDIC if a character being converted is not
in the EBCDIC character set the conversion results in a EBCDIC space
(hexadecimal 40)).

Numeric A string of standard ASCII numeric characters.

Binary Data The Binary data type is used to parse any value and transform that value to
an ASCII representation of the value internally in the Formatter. The internal
representation takes each byte of the input value and converts it to a readable
form. An example of this is parsing a byte whose value is (hexadecimal) 0x9C
and transforming that to the internal ASCII representation of 9C, which is the
hexadecimal value 0x3943. If this value is used in an output format with the
output control’s data type set to String, the value placed in the message is
ASCII 0x9C. If this value is again placed in an output message with the data
type Binary, the ASCII value is not printable and occupies one byte with the
value of (hexadecimal) 0x9C.
Conversely, an input value of ASCII 3B7A parsed with the String data type
can be output using the Binary data type. The output value is (hexadecimal)
0x37BA and occupies 2 bytes in the output message. Valid characters that can
be converted to Binary from the String data type are 0 through 9 and A
through F. All other characters are invalid.

EBCDIC Data A string of characters encoded using the EBCDIC (Extended Binary Coded
Decimal Interchange Code) encoding used on larger IBM computers. During
a reformat from EBCDIC to ASCII, if a character being converted is not in the
EBCDIC character set, the conversion results in a space (hexadecimal 20).

IBM Packed Integer Data type on larger IBM computers used to represent integers in compact
form. Each byte represents two decimal digits, one in each nibble of the byte.
The final nibble is always a hexadecimal F. For example, the number 1234 is
stored as a 3-byte value: 01 23 4F (the number pairs show the hexadecimal
values of the nibbles of each byte). The number 12345 is stored as a 3-byte
value: 12 34 5F. There is no accounting for the sign of a number, so all
numbers are assumed to be positive.
MQSeries Integrator System Management Guide 107

Notices
IBM Signed Packed
Integer

Data type on larger IBM computers used to represent integers in compact
form. This data type takes into account the sign (positive or negative) of a
number. Each byte represents two decimal digits, one in each nibble of the
byte. The final nibble is a hexadecimal C if the number is positive, and a
hexadecimal D if the number is negative.
An example of how to generate a default value for an IBM Packed Integer is:
Data Type: IBM Signed Packed Decimal
Default Value: -12345 (default value in ASCII)
Data Length: (Null - use the numbers in this field.)
The control is optional and there is no corresponding field in the input
message, so Formatter uses the default value, converts it to IBM Signed
Packed Decimal, and generates the following output: 12 34 5D. Each pair of
numbers represents the two nibbles of a byte. The result is three bytes long.

IBM Zoned Integer Data type on larger IBM computers used to represent integers. Each decimal
digit is represented by a byte. The left nibble of the byte is a hexadecimal F.
The right nibble is the hexadecimal value of the digit. For example, 1234 is
represented as F1 F2 F3 F4 (the number pairs show the hexadecimal values of
the nibbles of each byte).

IBM Signed Zoned Integer Data type on larger IBM computers used to represent integers. Each decimal
digit is represented by a byte. The left nibble of each byte, except the last byte,
is a hexadecimal F. The left nibble of the last byte is a hexadecimal C if the
number is positive, and a hexadecimal D if the number is negative. The right
nibble of each byte is the hexadecimal value of the digit. For example, 1234 is
represented as F1 F2 F3 C4 (the number pairs show the hexadecimal values
of the nibbles of each byte). -1234 is represented as F1 F2 F3 D4.

Little Endian 2 Two-byte integer where the bytes are ordered with the rightmost byte being
the high order or most significant byte. For example, the hexadecimal
number 0x0102 is stored as 02 01 (where the number pairs show the
hexadecimal values of the nibbles of a byte).

Little Swap Endian 2 Two-byte integer where the two bytes are swapped with respect to a Little
Endian 2 value. For example, the hexadecimal number 0x0102 is stored as 01
02.

Little Endian 4 Four-byte integer where the bytes are ordered with the rightmost byte being
the high order or most significant byte. For example, the hexadecimal
number 0x01020304 is stored as 04 03 02 01 (where the number pairs show the
hexadecimal values of the nibbles of a byte).

Little Swap Endian 4 Four-byte integer where the two bytes of each word are swapped with
respect to a Little Endian 4 value. For example, the hexadecimal number
0x01020304 is stored as 03 04 01 02.

Big Endian 2 Two-byte integer where the bytes are ordered with the leftmost byte being
the high order or most significant byte. For example, the hexadecimal
number 0x0102 is stored as 01 02 (where the number pairs show the
hexadecimal values of the nibbles of a byte).

Big Swap Endian 2 Two-byte integer where the two bytes are swapped with respect to a Big
Endian 2 value. For example, the hexadecimal number 0x0102 is stored as 02
01.

Data Type Field Value Description
MQSeries Integrator System Management Guide 108

Big Endian 4 Four-byte integer where the bytes are ordered with the leftmost byte being
the high order or most significant byte. For example, the hexadecimal
number 0x01020304 is stored as 01 02 03 04 (where the number pairs show the
hexadecimal values of the nibbles of a byte).

Big Swap Endian 4 Four-byte integer where the two bytes of each word are swapped with
respect to a Big Endian 4 value. For example, the hexadecimal number
0x01020304 is stored as 02 01 04 03.

Decimal, International Data type where every third number left of the decimal point is preceded by
a period. The decimal point is represented by a comma. Numbers right of the
decimal point represent a fraction of one unit. For example, the number
12345.678 is represented as 12.345,678. Decimal international data types can
contain negative values.

Decimal, U.S. Data type where every third number left of the decimal point is preceded by
a comma. The decimal point is represented by a period. Numbers right of the
decimal point represent a fraction of one unit. For example, the number
12345.678 is represented as 12,345.678. Decimal US data types can contain
negative values.

Unsigned Little Endian 2 Like Little Endian 2, except that the value is interpreted as an unsigned value.

Unsigned Little Swap
Endian 2

Like Little Swap Endian 2, except that the value is interpreted as an unsigned
value.

Unsigned Little Endian 4 Like Little Endian 4, except that the value is interpreted as an unsigned value.

Unsigned Little Swap
Endian 4

Like Little Swap Endian 4, except that the value is interpreted as an unsigned
value.

Unsigned Big Endian 2 Like Big Endian 2, except that the value is interpreted as an unsigned value.

Unsigned Big Swap
Endian 2

Like Big Swap Endian 2, except that the value is interpreted as an unsigned
value.

Unsigned Big Endian 4 Like Big Endian 4, except that the value is interpreted as an unsigned value.

Unsigned Big Swap
Endian 4

Like Big Swap Endian 4, except that the value is interpreted as an unsigned
value.

Date and Time* Based on the international ISO-8601:1988 standard datetime notation:
YYYYMMDDhhmmss. See the first paragraph of each of the Date and Time
type descriptions for details on representing Date and Time components.
Combined dates and times may be represented in any of the following list of
base data types. For some data types, a minimum of 8 bytes is required. The
list includes: Numeric, String, and EBCDIC.

Time* Based on the international ISO-8601:1988 standard time notation: hhmmss
where hh represents the number of complete hours that have passed since
midnight (between 00 and 23), mm is the number of minutes passed since the
start of the hour (between 00 and 59), and ss is the number of seconds since
the start of the minute (between 00 and 59). Times are represented in 24-hour
format.
Times may be represented in any of the following list of base data types. For
some data types, a minimum of 4 bytes is required. The list includes:
Numeric, String, and EBCDIC.

Data Type Field Value Description
MQSeries Integrator System Management Guide 109

Notices
Date* Based on the international ISO-8601:1988 standard date notation:
YYYYMMDD where YYYY represents the year in the usual Gregorian
calendar, MM is the month between 01 (January) and 12 (December), and DD
is the day of the month with a value between 01 and 31.Dates may be
represented in any of the following list of base data types. For some data
types, a minimum of 4 bytes is required. The list includes: Numeric, String
and EBCDIC.

Custom Date and Time* Custom Date and Time enables users to specify different formats of dates,
times, and combined dates and times.
Date/Time formats may include:
1) Variations in year (2- or 4-digit year representation: YY or YYYY).
2) Variations in month –use of a month number (01-12) or three-letter
abbreviation (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV,
DEC).
3) Variations in the day of the month – use of a day of the month number (01-
31).
4) Variations in hour – 12-hour or 24-hour representation, with or without a
meridian indicator (AM or PM.)
5) Custom date/time formats are available in the Format drop-down list.
Custom date/time formats must have a base data type of Numeric, String, or
EBCDIC.

Data Type Field Value Description
MQSeries Integrator System Management Guide 110

Notices
$SSHQGL[�%

1RWLFHV

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
MQSeries Integrator System Management Guide 111

Appendix B
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.
112 MQSeries Integrator System Management Guide

Notices
7UDGHPDUNV�DQG�6HUYLFH�0DUNV
The following, which appear in this book or other MQSeries Integrator books,
are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

MQSeries
AIX
DB2
IBM

NEONFormatter and NEONRules are trademarks of New Era of Networks, Inc.
in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service
marks of others.
MQSeries Integrator System Management Guide 113

Appendix B
114 MQSeries Integrator System Management Guide

,QGH[

$
actions 43
AND operator 42
APIs 7, 41, 44
apitest 7, 37
application groups 42
arguments 42
assigning users to a database 49

%
Boolean operators

AND 42
OR 42

&
caching Rules 81
command line options

NNFie 14
compound formats 9
configuration files

sqlsvses.cfg 11, 45
configuring

NEONFormatter 11
NEONRules 45
prior to using MQSeries Integrator Rules Daemon 72

Consistency Checker 7, 41, 93
Formatter 94
MQSNNRputqCC 95
Reports 95
Rules 94
starting from command line 94

Consistency Checker reports
Formatter 100
Rules 96

'
debugging utility (Rules) 69
defining formats 9
defining user groups 50
documentation set 2

(
editing sqlsvses.cfg 12, 46
encrypting sqlsvses.cfg 12, 46
environment variables 12, 46
error conditions 58
executing subscriptions 79
export formats 14
Export Rules 59
expressions 42

)
failure processing 80

fields 8
flat formats 9
format definitions 7
formats 73

defining 9
export 14
import 14
NNFie 14
storing 9
testing 37

Formatter 5
apitest 7, 37
apitest executable 37
compound formats 9
configuring 11
Consistency Checker 7, 94
Consistency Checker reports 100
defining formats 9
encrypting sqlsvses.cfg 12
export formats 14
fields 8
flat formats 9
format definitions 7
format storage 9
Formatter GUI 7
Formatter Management API functions 7
import formats 14
input controls 8
msgtest 7, 37
msgtest executable 38
output controls 8
parsing messages 7, 10
reformatting messages 7, 10
sqlsvses.cfg 11
test executables 37
testing formats 37

,
implementing changes to sqlsvses.cfg 13, 47
import formats 14
Import Rules 59
input controls 8
introduction 1

/
literals 8
login accounts 49

0
Management APIs 44
message types 42
messages

evaluating 41
parsing 10
processing 79
MQSeries Integrator System Management Guide 115

reformatting 10, 80
routing 80

MQSeries Integrator
configuring prior to use 72
executing subscriptions 79
failure processing 80
formats 73
introduction 1
message processing 79
message routing 80
MQSeries queues 72
overview 5
Reformat action 80
Reload messages 72
Rules 72
subscriptions 79

MQSeries Integrator Rules daemon 65, 71
error messages 82
processing 79
using 75

MQSeries queues 72
MQSIgetdata 41, 65
MQSIputdata 41, 63
MQSIruleng 41, 75
MQSNNRputqCC 95
msgtest 7, 37, 38

1
NEONFormatter 5
NEONRules 6
NNCryptCfg 12, 47
NNFie 14

command line options 14
exporting format definitions 7
troubleshooting failures 17

NNRDBARuleOwnership 51
NNRie 42, 59
NNRTrace 41, 69

2
operators 42
options 43
OR operator 42
Oracle system enhancements 48

creating users 48
granting roles to users 48

output controls 8
overview 5

3
parsing messages 7, 10
permissions 43

error conditions 58
NNRDBARuleOwnership 51

processing messages 79
PutQueue 73

5
Reformat action 80
reformatting messages 7, 10, 80
Reload messages 72

repetition count 8
routing messages 80
Rules 6

actions 43
APIs 41
application groups 42
arguments 42
associating 42
Boolean operators 42
caching 81
configuring 45
Consistency Checker 41, 94
Consistency Checker reports 96
Consistency Checker Utility 95
debugging utility 69
editing sqlsvses.cfg 46
encrypting sqlsvses.cfg 46
error conditions 58
evaluating messages 41
exporting rule definitions 42
expressions 42
implementing changes to sqlsvses.cfg 47
Import/Export Rules 59
importing exported files 42
Management APIs 44
message types 42
MQSeries Integrator Rules daemon 41
MQSIgetdata 41, 65
MQSIputdata 41
MQSIruleng 41
naming rules 42
NNRDBARuleOwnership 51
NNRie 42, 59
NNRTrace 41
operators 42
options 43
Oracle system enhancements 48
permissions 51
retrieving subscriptions 41
rule names 42
Rules APIs 44
Rules Management APIs 41
ruletest 41
SIGRELOD 81
sqlsvses.cfg 45
Subscription permissions 43
subscription permissions 43
subscriptions 43, 51
Sybase/SQL Server system enhancements 49
system enhancements 48
testing 69
testing rules 63

Rules Engine Daemon
configuring 72

Rules Engine executable 73
Rules Engine processing 73
ruletest 41, 67

6
SIGRELOD 81
SQL Server system enhancements 49
sqlsvses.cfg

configuring 11, 45
default location 12, 46
116 MQSeries Integrator System Management Guide

Index
editing 12, 46
encrypting 12, 46
implementing changes 13, 47
setting environment variable 12, 46

sqlsvses.crypt 12, 46
starting Consistency Checker 94
storing formats 9
subscription

executing 79
Subscriptions 43
subscriptions 41, 43
Sybase/SQL Server system enhancements 49
Sybase/SQL system enhancements

assigning users to a database 49
creating login accounts 49
defining user groups 50

system enhancements 48
Oracle 48
Sybase/SQL Server 49

7
tags 8
test executables 37
testing formats 37
testing MQSeries Integrator Rules daemon 63
testing rules 69

MQSIputdata 63
NNRTrace 69
ruletest 67

troubleshooting import failures 17

8
users

assigning to a database 49
creating 48
defining groups 50
granting roles 48

using MQSeries Integrator Rules daemon 75
MQSeries Integrator System Management Guide 117

118 MQSeries Integrator System Management Guide

Sending your comments to IBM

MQSeries Integrator

System Management Guide

SC34-5505-00

If you especially like or dislike anything about this book, please use one of the methods listed below to send
your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization,
subject matter, or completeness of this book. Please limit your comments to the information in this book only
and the way in which the information is presented.

To request additional publications or make comments about the functions of IBM products or systems, you
should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in
any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

n By fax:

– From outside the U.K., use your international access code
followed by 44 1962 870229

– From within the U.K., use 01962 870229

Electronically, use the appropriate network ID:

n IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

n IBMLink: HURSLEY(IDRCF)

n Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

n The publication number and title

n The page number or topic number to which your comment applies

n Your name/address/telephone number/fax number/network ID

IBM

 SC34-5505-00

	Contents
	Introduction
	Product Documentation Set
	Supported Platforms and Compilers
	Disk Space and Memory Requirements

	MQSeries Integrator Overview
	MQSeries
	NEONFormatter
	NEONRules
	MQSeries Integrator Rules Daemon

	Formatter
	What is Formatter?
	Fields and Input Controls
	Output Controls
	Formats
	Format Storage
	Parsing and Reformatting

	Formatter Configuration
	The sqlsvses.cfg File
	Encrypting the sqlsvses.cfg file
	Modifying the location of the sqlsvses file
	Editing the sqlsvses.cfg file
	Implementing changes to the sqlsvses.cfg file

	Import/Export Formats
	NNFie
	Command Line Options for NNFie
	Operational Assumptions
	Description
	Import Syntax
	Export Syntax
	Remarks
	Troubleshooting Import Failures

	Testing Formats
	Formatter Test Executables
	The apitest Executable
	The msgtest Executable
	Configuration File

	Rules
	Rules Configuration
	The sqlsvses.cfg File
	Encrypting the sqlsvses.cfg File
	Modifying the Location of the sqlsvses File
	Editing the sqlsvses.cfg File
	Implementing Changes to the sqlsvses.cfg File

	System Enhancements for Rules
	Oracle
	Creating Users
	Granting Roles to Users

	Sybase/SQL Server
	Creating Login Accounts
	Assigning Users to a Database
	Defining User Groups

	Permissions for Rules and Subscriptions
	NNDBARuleOwnership
	Syntax
	Configuration File
	Operations
	Error Conditions
	No Rules for Owner:
	Invalid User:

	Import/Export Rules
	NNRie
	Syntax
	Operational Assumptions
	Parameters
	Import Syntax
	Export Syntax
	Remarks

	Testing Rules
	Rules Test Programs
	MQSIputdata and MQSIgetdata
	ruletest
	NNRTrace Rules Debugging Utility

	The MQSeries Integrator Rules Daemon
	Configuration Prior to Using MQSeries Integrator Rules Daemon
	Queues
	Rules
	Formats
	Putqueue

	Using the MQSeries Integrator Rules Daemon
	MQSeries Integrator Rules Daemon Processing
	Message Processing
	Subscription Execution
	Reformat

	Failure Processing
	Message Routing
	Rules Caching
	Sending a Reload Message

	Rules Daemon Security
	Rules Daemon Shutdown
	Sending a Shutdown Message
	Using Ctrl+c to Shut Down Rules

	MQSeries Integrator Rules Daemon Error Messages

	Consistency Checker
	Starting the Consistency Checker from a Command Line
	Rules
	Formatter
	Reports
	Consistency Checker Reports: Rules
	Consistency Checker Reports: Formatter

	Data Types
	Notices
	Trademarks and Service Marks

	Index

