

IBM
046HULHV��,QWHJUDWRU

3URJUDPPLQJ�5HIHUHQFH�IRU�
1(215XOHV
9HUVLRQ����

 SC34-5506-01

Note: Before using this information, and the product it supports, be sure to read the general
information under Notices on page 327.

Second edition (June 1999)
This edition applies to IBM® MQSeries Integrator, Version 1.1 and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your
locality. Publications are not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to
make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright New Era of Networks, Inc., 1998, 1999. All rights reserved.

© Copyright International Business Machines Corporation, 1999. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

&RQWHQWV

&KDSWHU����,QWURGXFWLRQ ������������������������������������
Product Documentation Set ...6
Summary of Changes ..7
Supported Platforms and Compilers ..8
Disk Space and Memory Requirements ...9

MQSeries Integrator Disk Space Requirements ...9
Year 2000 Readiness Disclosure...10

&KDSWHU����5XOHV�2YHUYLHZ�������������������������������
NEONRules Components ..11

Application Groups..11
Message Types ..11
Rules ...12

Suggested Flow of Calls for Rules Evaluation...21
Thread-Safe Rule Evaluation ..23

APIs and Header Files...27
Libraries...36

&KDSWHU����5XOHV�$3,V ��������������������������������������
Class/Type Definitions...39
VRule Supporting Functions..46
VRule Member Functions...52

Rules Error Handling...81
&KDSWHU����5XOHV�0DQDJHPHQW�$3,V �����������������

Rules Management API Structures ...87
Overall Rules Management APIs and Macros ..89
Application Group Management APIs...92

Application Group Management API Structures ..93
Application Group Management API Functions...97

Message Type Management APIs ...111
Message Type Management API Structures...112
Message Type Management API Functions ...115

Rule Management APIs ..127
MQSeries Integrator Programming Reference for NEONRules iii

Rule Management API Structures..127
Rule Management API Functions ..135

Permissions APIs ...151
Permission Management API Structures ..151
Overall Permission Macro...156
Permission API Functions ...157

Operator Management APIs ..169
Operator Management API Structures..169
Operator Management API Functions ..170

Expression Management APIs ...174
Expression Management API Structures ..175
Expression Management API Functions ...178

Argument Management APIs ..184
Argument Management API Structures ...185
Argument Management API Functions ..190

Subscription Management APIs ..194
Subscription Management API Structures ...195
Subscription Management API Functions ..203

Action Management APIs...227
Action Management API Structures ..228
Action Management API Functions...234

Option Management APIs..249
Option Management API Structures ...250
Option Management API Functions ..256

Rules Management Error Handling..271
&KDSWHU����5XOHV�(UURU�0HVVDJHV���������������������
$SSHQGL[�$��2SHUDWRU�7\SHV����������������������������
$SSHQGL[�%��1RWLFHV ��

Trademarks and Service Marks ...329
,QGH[��
iv MQSeries Integrator Programming Reference for NEONRules

&KDSWHU��

,QWURGXFWLRQ

The MQSeries Integrator Programming Reference for NEONRules provides
descriptions and examples for each function in Rules and Rules Management
APIs.

This document is divided into two main sections: Rules APIs and Rules
Management APIs.
MQSeries Integrator Programming Reference for NEONRules 5

Chapter 1
3URGXFW�'RFXPHQWDWLRQ�6HW

The MQSeries Integrator documentation set includes:

n MQSeries Integrator Installation and Configuration Guide helps
end-users and engineers to install and configure MQSeries Integrator
Version 1.1.

n MQSeries Integrator User’s Guide helps users understand and apply
the program through its graphical user interfaces (GUIs).

n System Management is intended for system administrators and
database administrators who work with MQSeries Integrator on a
day-to-day basis.

n MQSeries Integrator Programming References are intended for those
users who build and maintain the links between MQSeries Integrator
and other applications. These documents include:

– Programming Reference for NEONFormatter is a reference to
NEONFormatter APIs for those who write applications to translate
messages from one format to another.

– Programming Reference for NEONRules is a reference to
NEONRules APIs for those who write applications to perform
actions based on message contents.

– Application Development Guide assists programmers in writing
applications that use MQSeries Integrator APIs.

1RWH�
For information on message queuing, refer to the IBM MQSeries
documentation.
6 MQSeries Integrator Programming Reference for NEONRules

Introduction
6XPPDU\�RI�&KDQJHV

This document is a major revision in support of the functional changes
introduced with Version 1.1. This revision also includes maintenance and
editorial changes.

Chapter 4: Rules Management APIs has been updated to include the following
new APIs:

n NNRMgrGetFirstApp

n NNRMgrGetNextApp

n NNRMgrDuplicateApp

n NNRMgrDeleteEntireApp

n NNRMgrGetFirstMsg

n NNRMgrGetNextMsg

n NNRMgrDeleteEntireMsg

n NNRMgrDuplicateRule

n NNRMgrDeleteAction

n NNRMgrDeleteOption

n NNRMgrUpdateUserPerm

Chapter 4: Rules Management APIs also includes modifications to the following
APIs:

n NNRExpData structure

n NNRMgrAddExpression

n NNRMgrUpdateExpression

n NNRMgrReadExpression

Chapter 5: Rules Error Messages on page 273 has been updated to include
enhanced error handling. Error messages now include contextual
information.
MQSeries Integrator Programming Reference for NEONRules 7

Chapter 1
6XSSRUWHG�3ODWIRUPV�DQG�&RPSLOHUV

2SHUDWLQJ�6\VWHP '%06 &RPSLOHU

AIX 4.2, 4.3 DB2 5.0
DB2 5.2
Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

IBM C Set ++ version 3 or later

HP-UX 10.20 DB2 5.0
DB2 5.2
Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

HP C++ version 10.40 (HP-UX 10.20)

Solaris 2.5.1, 2.6 DB2 5.0
DB2 5.2
Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

Sparcworks C++ compiler
version 4.2

Windows NT 4.0 DB2 5.0
DB2 5.2
Oracle 7.3.4
Oracle 8.0.5
SQL Server 6.5
Sybase 11.5
Sybase 11.9

Microsoft Visual C++ version 6.0
8 MQSeries Integrator Programming Reference for NEONRules

Introduction
'LVN�6SDFH�DQG�0HPRU\�
5HTXLUHPHQWV�

Required disk space is dependent on the number of queues, formats, and
rules. Recommended memory for satisfactory performance depends on
message rates, message sizes, and application-specific factors. For Windows
NT/SQLServer, the recommended memory is 128 MB; for other platforms,
the recommended memory is 256 MB.

046HULHV�,QWHJUDWRU�'LVN�6SDFH�
5HTXLUHPHQWV

For Solaris, the /var/tmp file system requires at least 250 MB of free space to
unpack the MQSeries and MQSeries Integrator products.

The minimum database allocation requires 20 MB.

MQSeries Integrator binaries require 150 MB.

MQSeries base code and server require a minimum of 25-30 MB of disk space
to be available for the product code and data.

MQSeries documentation requires 50 MB of disk space (HTML files — 35 MB,
PDF files — 15 MB).

The GUI requires 40 MB.
MQSeries Integrator Programming Reference for NEONRules 9

Chapter 1
<HDU������5HDGLQHVV�'LVFORVXUH

MQSeries Integrator, when used in accordance with its associated
documentation, is capable of correctly processing, providing, and/or
receiving date information within and between the twentieth and twenty-first
centuries, provided that all products (for example, hardware, software, and
firmware) used with this IBM program properly exchange accurate date
information with it.

Customers should contact third party owners or vendors regarding the
readiness status of their products.

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:
http://www.software.ibm.com/ts/mqseries/platforms/supported.html.

For the latest IBM statement regarding Year 2000 readiness, refer to:
http://www.ibm.com/ibm/year2000/.
10 MQSeries Integrator Programming Reference for NEONRules

//www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.ibm.com/ibm/year2000/

&KDSWHU��

5XOHV�2YHUYLHZ

NEONRules enables you to evaluate a string of data (message) and react to the
evaluation results. The following overview describes NEONRules components
and the types of APIs available for rule processing.

NEON5XOHV�&RPSRQHQWV

NEONRules components consist of the following:

n Application groups

n Message types

n Rules

$SSOLFDWLRQ�*URXSV
Application groups are logical divisions of rule sets for different business
needs. You can define as many application groups as you need. For example,
you might want rules for the accounting department and the application
development department separated into two groups. You might define
Accounting as one application group, Application Development as another,
and then associate rules with each group as appropriate.

0HVVDJH�7\SHV
Message types define the layout of a string of data. Each application group
can contain several message types, and a message type can be used with more
than one application group. Message types are defined by the user. When
using NEONFormatter, a message type is the same as an input format name.
MQSeries Integrator Programming Reference for NEONRules 11

Chapter 2
This format name is used by NEONFormatter to parse input messages for rules
evaluation.

5XOHV
To create rules, users give each rule a rule name and associate the rule name
with an application group and message type. Each rule is uniquely identified
by its application group/message type/rule name triplet.

Each rule must define the following items:

n Expressions: evaluation criteria containing arguments and operators

n Subscription information: subscriptions, actions, and options

n Permission information

([SUHVVLRQV
The evaluation criteria is an expression that consists of fields, associated
operators, and associated comparison data, connected with Boolean
operators. An argument is a combination of a field name, Rules comparison
operator, and comparison data that is either a static value or other field name.
Field names depend on the message type or input format name, and are
defined using NEONFormatter. Rules comparison operators are defined within
Rules. Field comparisons can be made against static data or other field values.
Arguments are linked together with Boolean operators, AND (&) and OR (|),
and parentheses can be used to control the evaluation priority.

$UJXPHQWV

An argument is the smallest component of a rule that can be evaluated. This
consists of a field name, a Rules comparison operator and another field name
(field to field comparisons), a static value (static comparisons), or nothing
(existence operators).

The predefined Rules operators contain a type in uppercase characters and an
operator, concatenated with no spaces, for example, STRING=. See
Appendix B: Operator Types on page 317.

There must be at least one space between the field name and the Rules
operator and between the Rules operator and the comparison value. The
12 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
EXIST and NOT_EXIST operators must be followed by a least one space
before a parenthesis or a Boolean operator.

Data types of comparison values are only checked for DATE, TIME,
DATETIME, INT, FLOAT, and STRING operators.

If the field name or static comparison value contains spaces, quotes, or
parentheses, the item must be enclosed in quotes (either single or double--
whatever the value does NOT contain). A value cannot have both single and
double quotes. If the Rules operator is a DATE, TIME, or DATETIME
operator, the static comparison value must have a four-digit year. For Rules
Management APIs, the value must be in ISO-8601:1988 standard format
(YYMMDDhhmmss) with the TIME or DATE portions padded with zeros (0)
if the operator is DATE or TIME, respectively.

)LHOG�1DPHV

A field name is defined by the user when an input format is defined. A rule
message type is the input format that must contain the field or contain a
nested format that contains that field. If the field name contains spaces,
quotes, or parentheses, the name must be enclosed in quotes (either single or
double -- whatever the name does not have). A field name cannot contain
both single and double quotes. Field names are not checked for validity.

For a more detailed explanation of a field, see the Programming Reference for
NEONFormatter APIs.

5XOHV�&RPSDULVRQ�2SHUDWRUV

An operator is defined by type and associated symbol. See Appendix B :
Operator Types on page 317.

Rules comparison operators are defined to be field existence, field non-
existence, and the following operators: <,<=,>,>=,<>,= for INT (whole
number), FLOAT (decimal number), DATE, TIME, DATETIME, and STRING
fields. Field-to-field comparisons, for example, comparing field1 to field2,
MQSeries Integrator Programming Reference for NEONRules 13

Chapter 2
and case-sensitive string comparisons, for example, where "a" does not equal
"A", are also possible.

1RWH�
Use EXIST_TRIM operators and STRING_TRIM operators to trim trailing
blanks prior to evaluating or comparing fields. The EXIST and STRING
operators will not trim trailing blanks.

([LVWHQFH�2SHUDWRUV

Existence operators enable a user to determine if a field exists and is not
empty in a message. Integer, string, float, date, time, and datetime operators
evaluate a message field against a static value using the operator symbol.
Field-to-field operators compare two groups of data (fields) within the
message.

Operators, except for NOT_EXIST and NOT_EXIST_TRIM, will not hit if a
field does not exist or is empty.

Existence operators determine if a field exists or is empty in a message.
Existence operators have a TRIM option that trims trailing blanks prior to
determining whether a field exists or is empty, thus making a string of blanks
a nonexistent field.

,QWHJHU�2SHUDWRUV

Integer operators compare numeric values. For static value comparisons, the
comparison value must be a whole number (which can preceded by ‘+’ or ‘-’).
If the message field is not numeric, its value is assumed to be zero (0), so a
rule might hit in this case.

INT comparison values are valid if there are whole numbers in the integer
range for the platform used, which is usually from -2.1 billion to 2.1 billion.
Non-numeric characters are not allowed except for a plus sign (+) or minus
sign (-) as the first character. Do not use a decimal point.

6WULQJ�2SHUDWRUV

String operators compare strings of characters. Case-sensitive operators
evaluate the characters ‘a’ and ‘A’ differently. Rules can work differently on
different platforms. For example, on an EBCDIC machine, the order of
characters is: ‘a’- ‘z’ < ‘A’- ‘Z’ < ‘0’ - ‘9’. In ASCII, the order of characters is: ‘0’
14 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
- ‘9’ < ‘A’ - ‘Z’ < ‘a’ - ‘z’. String operators (including field to field, case
sensitive, and field to field case sensitive operators) can have a TRIM option
that trims trailing blanks prior to comparing fields. For the TRIM operators,
trailing blanks are truncated from message fields and comparison values.
Therefore, a field containing a string of trailing blanks is considered empty.

STRING comparison values are valid if they are composed of NULL-
terminated strings with a maximum of 64 characters.

)ORDW�2SHUDWRUV

Float operators compare decimal (real) numeric values. For static value
comparison, the comparison value must be a numeric value (which can be
preceded by ‘+’ or ‘-’) and contain a decimal point (‘.’). When comparing float
values, ‘1.5’ does not always equal ‘1.5’ because of real number precision.

FLOAT comparison values are valid if there is a whole number in the integer
range for the platform used. The range is usually from -2.1 billion to 2.1
billion, and a decimal mantissa being a whole number with the maximum of
32 digits. Non-numeric characters not are allowed except for a plus sign (+) or
minus sign (-) as the first character. A decimal point must be used.

1(215XOHV�'DWH��7LPH��DQG�'DWH7LPH�2SHUDWRUV

The International ISO-8601:1988 standard date notation is used as the
standard format. This format specifies numeric representations of date and
time. The standard date notation is YYYYMMDD, where YYYY is the year in
the usual Gregorian calendar, MM is the month of the year between 01
(January) and 12 (December), and DD is the day of the month between 01 and
31. The standard time notation is hhmmss where hh is the number of
complete hours that have passed since midnight between 00 and 23, mm is
the number of complete minutes that have passed since the start of the hour
between 00 and 59, and ss is the number of seconds since the start of the
minute between 00 and 59.

Static Date, Time, or DateTime comparison values are valid if they comply
with the ISO-8601:1988 standard notation. Date, Time, and DateTime static
values appearing in expressions must be specified in the
YYYYMMDDhhmmss format. Consequently, Date values must have the Time
component (hhmmss) padded with zeros, and Time values must have the
Date component (YYYYMMDD) padded with zeros.
MQSeries Integrator Programming Reference for NEONRules 15

Chapter 2
The NEONRules Date, Time, and DateTime operators are used to create and
evaluate the rule arguments that perform Date, Time, and DateTime
comparisons. Rules performs comparisons between unmatched Date, Time,
and DateTime types based on the operator used in the argument. The Date
operators compare the date portion (YYYYMMDD), the Time operators, the
time portion (hhmmss) and DateTime operators, the entire value
(YYYYMMDDhhmmss).

In the following example, an argument using a DATE operator compares a
Date against a DateTime:

 F1 DATE=F2, where F1 is a Date and F2 is a DateTime

The value of the first field (F1) is compared against only the Date portion of
the second field (F2).

1RWH�
The visual representation of dates in the GUI does not adhere to the standard
DateTime format, for example, YYYYMMDD and hhmmss. However, the
Management APIs must receive Date, Time, and DateTime values in the
standard DateTime format.

6SHFLI\LQJ�D�<HDU�&XWRII�9DOXH

The internal application functions of MQSeries Integrator use DateTime
information for archiving, time stamping, logging, and so on. These functions
use the standard C++ class libraries and use four-digit notation or Universal
Coordinated Time (UTC for time stamps.These functions are Y2K compliant,
given that the underlying hardware is compliant. The function and libraries
used with MQSeries Integrator include the logic for correct processing of leap
year before, during, and after 1/1/2000.

Within the message handling and processing functionality, date information
can be embedded and reformatted. MQSeries Integrator provides Date and
DateTime comparison, parsing, and reformatting functions. Date and
DateTime parsing and reformatting and supported Date and DateTime rules
facilities are Y2K compliant for accepting input and providing output date
information. Default Date and DateTime formats use four-digit years and are
Y2K compliant. MQSeries Integrator also supports two-digit years as custom
field definitions. These custom formats are Y2K compliant if used as
described in the following paragraphs.
16 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
MQSeries Integrator products provide the facility to resolve the century
ambiguity through a Year Cutoff Number for Input field data definitions, or
Input Controls, using Custom Date and Time and Custom Date definitions,
which include a two-digit year notation, such as MM/DD/Y HH:MM:SS or
MM/DD/YY. You must specify a Year Cutoff Number from 0 to 100
(inclusive). Using this cutoff number, NEONFormatter converts a two-digit
year (YY) to a four-digit year (YYYY).

The Year Cutoff algorithm is as follows:

n year value >= cutoff value -> 19XX

n year value < cutoff value -> 20XX

With this method, any year 00 to 100 is converted to either 19XX or 20XX.

The following are some examples of how NEONFormatter interprets the Year
Cutoff number:

n If you specify the Year Cutoff number as 50, all two-digit input dates
from 50 to 99 are designated as 1950 to 1999 output dates; all two-
digit input dates from 00 to 49 are designated as 2000 to 2049 output
dates.

n If you specify the cutoff date as 75, all two-digit input dates from 75
to 99 are designated as 1975 to 1999 output dates; all two-digit input
dates from 00 to 74 are designated as 2000 to 2074 output dates.

You can use the NEONFormatter API or the NEONFormatter GUI to define date-
related formats. Both facilities use the same underlying libraries and both are
Y2K compliant.

1(21)RUPDWWHU�$3,

For an input control that specifies a data type of custom date or date-time
with a two-digit year format string, you must specify a Year Cutoff value
(regardless of the output Date or DateTime string). NEONFormatter uses this
value to convert the two-digit year date value to a four-digit year date value.
When NEONFormatter does the conversion, it compares the year value of the
input data to the specified year Cutoff value and assigns the century
designation as required. For example, based on the comparison,
NEONFormatter converts the year value "XX" to "20XX" (21st century year) or
"19XX" (20th century year) as appropriate.
MQSeries Integrator Programming Reference for NEONRules 17

Chapter 2
1(21)RUPDWWHU�*8,

In the NEONFormatter GUI, you must specify a Year Cutoff value for all input
formats with a two-digit year date string. The GUI provides a field for this
and defaults the field to a Year Cutoff of ’101’, which is an invalid number.
You must enter a valid Year Cutoff value to continue.

%RROHDQ�2SHUDWRUV

A Boolean expression is a single argument or more than one argument
connected by Boolean operators. Boolean algebra defines the AND operator
as having higher precedence than the OR operator if no parentheses are
present. Parentheses change the order of evaluation from the standard
Boolean operator precedence. The implementation of Rules Boolean
expressions complies with this algebraic definition.

For example, the following rule is defined:

F1 INT= 1| F2 INT= 2 & F3 INT= 3

The Rules evaluation API evaluates the expression as if parentheses were
added around the second set of values:

F1 INT= 1 | (F2 INT= 2 & F3 INT= 3).

Arguments in the innermost set of parentheses are evaluated first regardless
of the Boolean operator for the arguments. The evaluation then progresses
outward until the whole expression is evaluated.

1RWH�
All arguments must be active. Therefore, all inactive arguments must be
activated or deleted during the database upgrade. NNRie automatically
deletes inactive rules.

*URXSLQJ�$UJXPHQWV

Arguments can be grouped in parentheses based on Boolean algebraic
definitions:

1. Parentheses can surround a single complete argument.

(F1 INT= 1).
18 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
2. Parentheses can surround two or more arguments separated by a
Boolean AND (&) or OR (|).

(F1 INT= 1 & F2 INT= 2)

3. Parentheses must be balanced and in accordance with definitions 1
and 2.

4. Parentheses can be nested within other parentheses in accordance
with definitions 1, 2, and 3.

((F1 INT= 1 | F2 INT= 2) & F3 INT= 3)

3HUPLVVLRQV
Rule and Subscription permissions restrict user access to individual complete
rules or subscriptions or their components in the NEONRules database.
Permissions only apply to managing rule and subscription contents, not rule
evaluation.

A rule is uniquely identified by its application group name, message type,
and rule name. A complete rule includes everything associated with it,
including an expression (arguments) and subscriptions.

A subscription is uniquely defined by its application group name, message
type, and subscription name. A complete subscription includes everything
associated with it including its actions and options.

The Rules component owner or subscription owner is the user who created
the component. When the rule or subscription is created, owner information
is determined by the software. Owners can update their own permissions,
create and update the PUBLIC user’s permissions, and change ownership to
another user.

Only read and update permissions are implemented. The owner is given both
read and update permission by default. All other users are grouped into a
public user group named PUBLIC and given read permissions by default.

1RWH�
Owners can change their own permissions at any time from read to update
and back again, but they must have update permissions to change a rule or
subscription contents. Read permission cannot be denied.
MQSeries Integrator Programming Reference for NEONRules 19

Chapter 2
6XEVFULSWLRQV��$FWLRQV��DQG�2SWLRQV
When a rule evaluates to true, it is considered a hit. If the rule does not
evaluate to true, it is considered a no-hit. When a rule hits, NEONRules lets you
retrieve associated subscriptions to be taken by the application. These
subscriptions are the actions or commands and the associated parameters or
options used to execute them.

Subscriptions are lists of actions to take when a message evaluates to true.
Each rule must have at least one associated subscription. Subscriptions are
uniquely identified within an application group/message type pair by a user-
defined subscription name. Permissions must be defined for subscriptions as
for rules. You can define as many subscriptions as you need. Each action
within a subscription is defined by action name and need not be unique since
all actions are intended to be executed in sequence. A single subscription can
be shared by multiple rules where the same subscription is associated with
each of the rules. In this case, the shared subscription would be retrieved only
once no matter how many of its rules hit.

An action has a list of one or more associated options. An option consists of
an option name-value pair. The user defines all action names and option
name-value pairs.
20 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
6XJJHVWHG�)ORZ�RI�&DOOV�IRU�5XOHV�
(YDOXDWLRQ

Using eval(), Rules evaluates rules by taking in a text message and the
definitions of the rule set (application group/message type).

Start

Open a
DMBS

Session

Create the
Rules

Engine

Another
Message?

Return

No

Evaluate
Message

No Error

Print
Error

Return

False

Yes

Get
Subscription

Another
Subscription?

Get Option

Another
Option?

True

Yes

No

Process
Option

Yes

No

Process
Action
MQSeries Integrator Programming Reference for NEONRules 21

Chapter 2
The user then retrieves the list of user actions with their parameters (options)
that should be performed based on the rules that evaluated true for the
message. These actions and options are retrieved by calling getsubscription()
and getopt() in nested loops.

Open the DBMS Session:

DbmsSession *RulesSession =
 OpenDbmsSession(RulesSessionName, DBIdentifier);

Create the Rules engine:

VRule *rules = CreateRulesEngine(RulesSession);

For each Message

Evaluate Message against the Rule Set::

if (!rules->eval(appname, msgname, msg, msglen))

Get the error message and print it:

Print (rules->GetErrorMessage())
else

For each Subscription

while ((pAct = rules->getsubscription()))

1RWH�
This gets the next action associated with this subscription and removes it
from the list of subscriptions to execute. You must differentiate between
subscription boundaries by performing any initialization associated with a
new subscription prior to getting the next subscription, including saving the
SubId field from the SUBSCRIPTION structure. This SubId field should be
compared to the saved SubId field to determine when a new subscription has
been reached each time an action is retrieved .

Now, the SUBSCRIPTION structure is populated.

For each Option

while ((popt = rules->getopt()))
22 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
1RWH�
This gets all of the options associated with this subscription. Looping
terminates when the next option is NULL.

The OPTIONPAIR structure is populated each time the getopt function is
called and is overwritten the next time getopt is called. The user must save or
process the options associated with a given action prior to retrieving the next
option.

7KUHDG�6DIH�5XOH�(YDOXDWLRQ
When a function is thread-safe, that function can be called by one or more
threads without adversely affecting the data in each thread. Functions
executing in multiple threads synchronize themselves as appropriate behind
the scenes.

Global resources for a process, such as globally allocated memory and files,
get shared by all threads for that process. Access to those resources must be
regulated to keep them in a consistent state when routines in the library are
entered by different threads at the same time.

(YDOXDWLQJ�0HVVDJHV�LQ�D�1RQ�7KUHDGHG�
(QYLURQPHQW
The preceding Suggested Flow of Calls for Rules Evaluation section describes
how to evaluate and retrieve results for messages run against a set of rules in
a non-threaded environment.

The general algorithm resembles the following pseudocode:

Instantiate an instance of the DBMSSession class to open a
 database session.
Instantiate an instance of the Rules Engine, passing it the
 DbmsSession instance.
When you want to do evaluations...
 Retrieve the message, application group, and message type
 for evaluation.
 Evaluate the message against the rules described by the
 application group/message type pair
MQSeries Integrator Programming Reference for NEONRules 23

Chapter 2
 If the evaluation succeeds,
 [You can call gethitrule() and getnohitrule() in separate
 lists to retrieve lists of rules here.]

 While there are subscriptions to retrieve...
 [Do something based on the actions for this
 subscription.]

 While there are options for an action...
 [Do something with the options for this action.]
 end While

 end While

 Else
 Get the error that occurred.
 [Continue doing evaluations.]

end While
Destroy the instance of the Rules Engine.
Close the database session.

(YDOXDWLQJ�0HVVDJHV�LQ�D�0XOWL�7KUHDGHG�
(QYLURQPHQW
To evaluate messages concurrently, thread-safe NEONRules APIs can be called
in a multi-threaded environment. Only the Rules daemon and NEONFormatter
APIs are thread-safe.

However, note that one thread cannot call any of the following APIs to
retrieve the results of an evaluation done by another thread, since each thread
only has access to its own evaluation results:

n gethitrule()

n getnohitrule()

n getsubscription()

n getoption()

n GetErrorNo()

n GetErrorMessage()
24 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
The general algorithm in a multi-threaded environment resembles the
following pseudocode:

7KUHDG�$
Instantiate an instance of the DbmsSession class to open a
 database session.
Instantiate an instance of the Rules Engine, passing it the
 DbmsSession instance.

7KUHDGV�$��%��DQG�&�DOO�GR�WKH�VDPH
To do evaluations:

 Retrieve the message, application group, and message type
 for evaluation.
 Evaluate the message against the rules described by the
 application group/message type pair

 If the evaluation succeeds,
 [You can call gethitrule() and getnohitrule() in separate
 lists to retrieve lists of rules here.]

 While there are subscriptions to retrieve,
 [Do something based on the actions for this
 subscription.]

 While there are options for an action,
 [Do something with the options for this action.]
 end While

 end While

 Else
 Get the error that occurred.
 [Continue doing evaluations.]

end While
MQSeries Integrator Programming Reference for NEONRules 25

Chapter 2
7KUHDGV�%�DQG�&
[When done evaluating messages in threads B and C, destroy the
 threads.]
Call VRule::ThreadCleanup()
[Exit thread]

7KUHDG�$
Destroy the instance of the Rules Engine.
Close the database session.
26 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
$3,V�DQG�+HDGHU�)LOHV

Two types of APIs exist for NEONRules: Rules APIs and Rules Management
APIs.

Use Rules APIs to evaluate rules and retrieve subscription, hit, and no-hit
information. Before you evaluate a rule, the rule must exist and you must use
CreateRulesEngine() to create a VRule object. After that, you can do as many
evaluations and subscription retrievals as needed. When you finish, destroy
the Rules daemon object using DeleteRuleEngine().

Use Rules Management APIs to maintain rule information. Add, Read, and
Update APIs are implemented and available as well as APIs to delete an
entire rule or subscription and all their associated information.

The APIs are made up of classes of objects that have member functions:

+HDGHU�)LOHV

2EMHFW�&ODVV +HDGHU�)LOH 'HVFULSWLRQ

VRule vrule.h Rules Processing APIs

NNRMgr nnrmgr.h Rules Management APIs

— ruleuser.h Evaluation structures

— nnrmerr.h Rules Management errors

— rerror.h Rules error handling
MQSeries Integrator Programming Reference for NEONRules 27

Chapter 2
95XOH�6XSSRUWLQJ�)XQFWLRQV

95XOH�0HPEHU�)XQFWLRQV

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV

VRule * CreateRulesEngine (DbmsSession *Session)

VRule * CreateRulesEngine (DbmsSession* Session,
int alert=1,
char *logfile=NULL)

void DeleteRuleEngine (VRule * pEngine)

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV

int eval (char *AppName,
char *MsgName,
char *msg,
int msglen,
int log=0)

RULE* gethitrule None

RULE* getnohitrule None

SUBSCRIPTION* getsubscription None

Formatter getformatterobject None

OPTIONPAIR* getopt None

void ThreadCleanup None

char * getlog None

int LoadRuleSet (char *AppGrp,
char*MsgType,
int LoadNow=0)
28 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
5XOHV�(UURU�+DQGOLQJ�)XQFWLRQV

5XOHV�0DQDJHPHQW�)XQFWLRQV�DQG�0DFURV

int LoadRuleComponent (char *AppGrp,
char*MsgType,
NNRComponentTypes
ComponentType,
char* ComponentType,
int LoadNow=0)

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV

char* GetErrorNo None

char* GetErrorMessage None

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV

NNRMgr * NNRMgrInit (DbmsSession *session)

void NNRMgrClose (NNRMgr *pMgr)

N/A NNR_CLEAR (_p)

N/A NN_CLEAR (_p)

const long NNRMgrAddApp (NNRMgr *pMgr,
const NNRApp *pRApp,
const NNRAppData *pRAppData)

const long NNRMgrReadApp (NNRMgr *pMgr,
const NNRApp *pRApp,
NNRAppData *const pRAppData)

const long NNRMgrGetFirst
App

(NNRMgr *pMgr,
NNRAppReadData *const
RAppData)

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV
MQSeries Integrator Programming Reference for NEONRules 29

Chapter 2
const long NNRMgrGetNext
App

(NNRMgr *pMgr,
NNRAppReadData *const
RAppData)

const long NNRMgrDuplicate
App

(NNRMgr *pMgr,
const NNRApp* pRApp,
const char* NewAppName)

const long NNRMgrUpdateApp (NNRMgr *pMgr,
const NNRApp *pRApp,
const NNRAppUpdate
*pRAppUpdate)

const long NNRMgrDelete
EntireApp

(NNRMgr *pMgr,
const NNRApp *pRApp)

const long NNRMgrAddMsg (NNRMgr *pMgr,
const NNRMsg *pRMsg,
const NNRMsgData *pRMsgData)

const long NNRMgrReadMsg (NNRMgr *pMgr,
const NNRMsg *pRMsg,
NNRMsgData *const pRMsgData)

const long NNRMgrGetFirst
Msg

(NNRMgr *pMgr,
const NNRMsg *pRMsg,
NNRMsgReadData *const
pRMsgData)

const long NNRMgrGetNext
Msg

(NNRMgr *pMgr,
NNRMsgReadData *const
pRMsgData)

const long NNRMgrDuplicate
Msg

(NNRMgr *pMgr,
const NNRMsg *pRMsg,
const char *NewAppName)

const long NNRMgrDelete
EntireMsg

(NNRMgr *pMgr,
const NNRMsg *pRMsg)

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV
30 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
const long NNRMgrAddRule (NNRMgr *pMgr,
const NNRRule *pRRule,
const NNRRuleData *pRRuleData)

const long NNRMgrReadRule (NNRMgr *pMgr,
const NNRRule *pRRule,
NNRRuleData* const pRRuleData)

const long NNRMgrGetFirst
Rule

(NNRMgr *pMgr,
const NNRRule *pRRule,
NNRRuleReadData * const
pRRuleData)

const long NNRMgrGetNext
Rule

(NNRMgr *pMgr,
NNRRuleReadData * const
pRRuleData)

const long NNRMgrDuplicate
Rule

(NNRMgr *pMgr,
const NNRRule *pRRule,
const char *NewRuleName)

const long NNRMgrUpdateRule (NNRMgr *pMgr,
const NNRRule *pRule,
const NNRRuleUpdate
*pRRuleUpdate)

const long NNRMgrDelete
EntireRule

(NNRMgr *pMgr,
const NNRRule *pRRule)

const long NNRMgrGetFirst
Perm

(NNRMgr *pRMgr,
const NNRComponent *
pRComponent,
NNUserPermissionData const *
pPermissionData)

const long NNRMgrGetNext
Perm

(NNRMgr *pRMgr,
NNUserPermissionData const *
pPermissionData)

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV
MQSeries Integrator Programming Reference for NEONRules 31

Chapter 2
const long NNRMgrUpdate
UserPerm

(NNRMgr *pRMgr,
const NNRComponent *
pRComponent,
const NNPermissionData *
pPermission Data)

const long NNRMgrChange
Owner

(NNRMgr *pRMgr,
const NNRComponent *
pRComponent,
char *pNewOwner)

const long NNRMgrUpdate
OwnerPerm

(NNRMgr *pRMgr,
const NNRComponent *
pRComponent,
const NNPermissionData *
pPermission Data)

const long NNRMgrUpdate
PublicPerm

(NNRMgr *pRMgr const
NNRComponent * pRComponent,
const NNPermission Data *
pPermission Update)

const long NNRMgrGetFirst
Operator

(NNRMgr *pMgr,
NNROperator * const pOperator)

const long NNRMgrGetNext
Operator

(NNRMgr *pMgr,
NNROperator * const pOperator)

const long NNRMgrAdd
Expression

(NNRMgr *pMgr,
const NNRExp * pRExp,
NNRExpData * pRExpData)

const long NNRMgrRead
Expression

(NNRMgr *pMgr,
const NNRExp * pRExp,
NNRExpData * pRExpData)

const long NNRMgrUpdate
Expression

(NNRMgr *pMgr,
const NNRExp *pRExp,
const NNRExpData *pRExpData)

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV
32 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
const long NNRMgrGetFirst
Argument

(NNRMgr *pMgr,
const NNRArg * pRArg,
NNRArgData * const pRArgData)

const long NNRMgrGetNext
Argument

(NNRMgr *pMgr,
NNRArgData * const pRArgData)

const long NNRMgrAdd
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
const NNRSubsData *pRSubsData)

const long NNRMgrRead
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
NNRSubsData * const pRSubsData)

const long NNRMgrGetFirst
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
NNRSubsReadData * const
pRSubsReadData)

const long NNRMgrGetNext
Subscription

(NNRMgr *pMgr,
NNRSubsReadData * const
pRSubsReadData)

const long NNRMgrDuplicate
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
const char * const pNewSubsName)

const long NNRMgrUpdate
Subscription

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
const NNRSubsUpdate
*pRSubsUpdate)

const long NNRMgrDelete
SubscriptionFrom
Rule

(NNRMgr *pMgr,
const NNRRule * pRRule,
const char * SubsName)

const long NNRMgrDelete
EntireSubscription

(NNRMgr *pMgr,
const NNRRule * pRRule)

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV
MQSeries Integrator Programming Reference for NEONRules 33

Chapter 2
const long NNRMgrGetFirst
RuleUsingSubs

(NNRMgr *pMgr,
const NNRSubs *pRSubs,
char* const pRuleName)

const long NNRMgrGetNext
RuleUsingSubs

(NNRMgr *pMgr,
char* const pRuleName)

const long NNRMgrAddAction (NNRMgr *pMgr,
const NNRAction *pRAction,
const NNRActionData
*pRActionData,
int *pActionId)

const long NNRMgrGetFirst
Action

(NNRMgr *pMgr,
const NNRAction * pRAction,
NNRActionReadData * const
pRActionData)

const long NNRMgrGetNext
Action

(NNRMgr *pMgr,
NNRActionReadData * const
pRActionData)

const long NNRMgrResequence
Action

(NNRMgr *pMgr,
const NNRAction *pRAction,
int oldPosition,
int newPosition)

const long NNRMgrUpdate
Action

(NNRMgr *pMgr,
const NNRAction *pRAction,
const NNRActionUpdate
*pRActionUpdate,
int position)

const long NNRMgrDelete
Action

(NNRMgr *pMgr,
const NNRAction *pRAction,
int position)

const long NNRMgrAddOption (NNRMgr *pMGR,
const NNROption *pROption,
const NNROptionData
*pROptionData)

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV
34 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
5XOHV�0DQDJHPHQW�(UURU�+DQGOLQJ�)XQFWLRQV

const long NNRMgrGetFirst
Option

(NNRMgr *pMgr,
const NNROption * pROption,
NNROptionReadData * const
pROptionData)

const long NNRMgrGetNext
Option

(NNRMgr *pMgr,
NNROptionReadData * const
pROptionData)

const long NNRMgrResequence
Option

(NNRMgr *pMgr,
const NNROption *pROption,
int oldPosition,
int newPosition)

const long NNRMgrUpdate
Option

(NNRMgr *pMgr,
const NNROption *pROption,
const NNROptionUpdate
*pROptionUpdate,
int position)

const long NNRMgrDelete
Option

(NNRMgr *pMgr,
const NNROption *pROption,
int Position)

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV

const int NNRGetErrorNo NNRMgr *pRMgr

const char* NNRGetErrorMessage NNRMgr *pRMgr

5HWXUQ�7\SH)XQFWLRQ $UJXPHQWV
MQSeries Integrator Programming Reference for NEONRules 35

Chapter 2
/LEUDULHV

NEONRules APIs must be linked with the following libraries:

/LQN�/LEUDULHV�IRU�5XOHV�$3,V

1RWHV�

n Library file extensions are .so or .sl for UNIX, .DLL for NT, and .a for
AIX. NT library names are not preceded by lib.

n For MQSeries Integrator, link with libnnmqs.so.1 and
libnnMQSruleng.so.1.

n THREAD SAFETY: For multi-threading, you must also link with the
appropriate thread library matching the MQSeries Integrator release.
For example, link with the thread library for UI threads, pthread for
POSIX threads, and so on.

81,;�/LEUDU\ 'HVFULSWLRQ

libnnrulesfmt.so NEONRules and NEONFormatter library

libnnfmgr.so NEONRules Manager library

libnncmpntmgr.so NEONRules Permission Management library

libnntools.so MQSeries Integrator generic tool set

libnnaim.so High-Level MQSeries Integrator library

libnnsql.so MQSeries Integrator SQL Object Interface library

libnnses.so MQSeries Integrator session-specific library

libnnsesdbold.so MQSeries Integrator session-specific library

— System/compiler-specific libraries

— Database dependent libraries
36 MQSeries Integrator Programming Reference for NEONRules

Rules Overview
n For MQSeries, link with libnnmqs.so, libnnsesmqs.so, and
libnnsesdboldboth.so.

n You must use libnnfmgr.so and libnncmpntmgr.so when using
libnnrmgr.so.
MQSeries Integrator Programming Reference for NEONRules 37

Chapter 2
38 MQSeries Integrator Programming Reference for NEONRules

&KDSWHU��

5XOHV�$3,V

This chapter details NEONRules Supporting and Member Functions.

&ODVV�7\SH�'HILQLWLRQV

95XOH

A VRule object is a Virtual Rules Engine instance. This class provides a
standard interface for handling Rules API calls and allows the user to
perform all rule evaluation and subscription retrieval. A VRule object is
created using CreateRulesEngine() and deleted by DeleteRuleEngine().

6\QWD[

class VRule {
 public:
 VRule(){}
 virtual ~VRule();
 virtual int GetErrorNo() = 0;
 virtual int eval (char * AppName,

char * MsgName,
 char * msg,
 int msglen,

int log=0) = 0;
 virtual int eval (char * MsgName,

Formatter * formatter,
int log=0) = 0;

 virtual char * getaction() = 0;
 virtual SUBSCRIPTION * getsubscription() = 0;
 virtual OPTIONPAIR * getopt() = 0;
MQSeries Integrator Programming Reference for NEONRules 39

Chapter 3
 virtual RULE * gethitrule() = 0;
 virtual RULE * getnohitrule() = 0;
 virtual char * getlog() = 0;
 virtual char * GetErrorMessage() = 0;
 virtual void ThreadCleanup() = 0;
 virtual int LoadRuleSet(char* AppGrp,

 char* MsgType,
 int LoadNow = 0) = 0;

 virtual Formatter *getFormatterobject() = 0;
};
40 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
68%6&5,37,21

Each rule has an associated list of subscriptions, and each subscription has an
associated list of one or more actions. The list of actions for a subscription is a
list of SUBSCRIPTION structures.

When stepping through the list of actions for a specific subscription, the
presence of a new subscription identifier (SubId) signifies that a new
subscription has been reached and that the action is the first associated with
the new subscription.

6\QWD[

struct SUBSCRIPTION{
 long SubId;
 char * action;
 char *SubName;
};

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

SubId long Subscription sequence identifier

action char* Action name

SubName char* Subscription name
MQSeries Integrator Programming Reference for NEONRules 41

Chapter 3
([DPSOH

The following code fragment illustrates stepping through a list of actions:

while ((p=rules->getsubscription()){
 if (strcmp(p->action,"my_fun1") == 0){
 my_fun1();
 }else if (strcmp(p->action,"my_fun2") == 0){
 my_fun2();
 }else{
 //perform logging or exception handling
 }
}

42 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
237,213$,5

Each rule has an associated list of subscriptions and each subscription has a
list of one or more actions. Actions are intended to be executed in sequence,
and each action may have one or more associated option name-value pairs.

Option name-value pairs are OPTIONPAIR structures. An option pair can be
unique to an action. A NULL OPTIONPAIR in a subscription option list
signifies the end of the options for that subscription action.

6\QWD[

struct OPTIONPAIR{
 int Sequence;
 char * Name;
 char * Value;
};

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

Sequence int Sequence identifier

Name char* Option name

Value char* Option value
MQSeries Integrator Programming Reference for NEONRules 43

Chapter 3
([DPSOH

The following code segment illustrates walking through a list of options.
Note that the presence of a NULL popt signifies the end of the list of options.

while ((popt=rules->getopt()){
 if (strcmp(popt->Name,"Command_Argument1") == 0){
 pCommand_Argument1 = strdup(popt->Value);
 }
 else if (strcmp(popt->Name,"Command_Argument2") == 0){
 pCommand_Argument2 = strdup(popt->Value);
 }
}
if (pCommand_Argument1 && pCommand_Argument2){
 my_fun1(pCommand_Argument1,pCommand_Argument2);
}
else {
 //error handling for missing options to my call

}

44 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
58/(

gethitrule() and getnohitrule() return records of rule information contained in
a RULE structure.

6\QWD[

struct RULE{
 int RuleId;
 char *RuleName;
};

3DUDPHWHUV

([DPSOH

The following code fragment describes how to walk through a list of rules
that did not hit and a list of rules that hit. It should be noted that these APIs
are called after the Rules eval() API.

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule())){
 cout << " " << r->RuleName << endl;
}
cout << "HIT RULES" << endl;
while ((r = rules->gethitrule())){
 cout << " " << r->RuleName << endl;
}

1DPH 7\SH 'HVFULSWLRQ

RuleId int Rule identifier

RuleName char* Rule name
MQSeries Integrator Programming Reference for NEONRules 45

Chapter 3
95XOH�6XSSRUWLQJ�)XQFWLRQV

To use NEONRules APIs, you must include the following header files located in
the MQSeries Integrator include directory:

n dbtypes.h

n ses.h

n sqlapi.h

n rerror.h

n ruleuser.h

n vrule.h

Link with the following libraries (UNIX) in the MQSeries Integrator library
directory:

n libnnrulesfmt.so

n libnnrmrg.so

1RWH�
THREAD SAFETY: For multithreading, you must also link with the
appropriate thread library matching the MQSeries Integrator release. For
example, link with the thread library for UI threads, pthread for POSIX
threads, and so on.
46 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
&UHDWH5XOHV(QJLQH

1RWH�
THREAD SAFETY: For multi-threaded applications, OpenDbmsSession() and
CreateRulesEngine() should only be called by the main thread. The VRule
pointer returned by CreateRulesEngine() should then be passed to separate
threads so that each thread can perform evaluations in parallel.

DeleteRuleEngine() should be called by the main thread only after ALL
threads are done with evaluations.

6\QWD[��

VRule* CreateRulesEngine(DbmsSession* Session);

'HVFULSWLRQ

CreateRulesEngine() creates a VRule object for the MQSeries Integrator
session provided in the session parameter. By default, errors are sent through
the NNAlert mechanism. See Failure Processing in System Management.

3DUDPHWHUV

6\QWD[��

VRule* CreateRulesEngine(DbmsSession* Session,
 int alert=1,
 char *logfile=NULL);

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

Session DbmsSession * Input Name of the open MQSeries
Integrator session.
MQSeries Integrator Programming Reference for NEONRules 47

Chapter 3
'HVFULSWLRQ

CreateRulesEngine() creates a VRule object for the MQSeries Integrator
session provided in the session parameter and enables the user to specify
whether alerts should be sent to the NNAlert mechanism or to a log file.

3DUDPHWHUV

5HPDUNV

CreateRulesEngine() must be called prior to rules processing and prior to
calling DeleteRuleEngine().

5HWXUQ�9DOXH

Returns a VRule object if successful; NULL on failure. All error handling of a
failed call to CreateRulesEngine() must be done by the code that calls this
API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

Session DbmsSession * Input Name of the open MQSeries
Integrator session. See
OpenDbmsSession() in the
MQSeries Integrator Application
Development Guide.

alert int Input True(1)/False zero(0) option
determining whether or not to send
errors through the alert mechanism.
Defaults to True (1).

logfile char * Input Errors are logged to the logfile
instead of sending them through
the NNAlert mechanism. Only
valid if alert is True (1). Defaults to
no file (NULL).
48 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
([DPSOH��

DbmsSession *session = OpenDbmsSession("fred", DbType);
if (!session || !session->Ok()){
 cout << "Failed to open rules database session" << endl;
 exit(1);
}
VRule *rule = CreateRulesEngine(session);
if (!rule)

 cout << "Error no rules engine created" << end1;

([DPSOH��

DbmsSession *session = OpenDbmsSession("fred", DbType);
if (!session || !session->Ok()){
 cout << "Failed to open rules database session" << endl;
 exit(1);
}
VRule *rule = CreateRulesEngine(session,1,"rerrlog.log");
if (!rule)
 cout << "Error no rules engine created" < end1;

6HH�$OVR

DeleteRuleEngine
MQSeries Integrator Programming Reference for NEONRules 49

Chapter 3
'HOHWH5XOH(QJLQH

6\QWD[

void DeleteRuleEngine(VRule * pEngine);

3DUDPHWHUV

5HPDUNV

DeleteRuleEngine() must be called after CreateRulesEngine() and after all
Rules processing is complete.

5HWXUQ�9DOXH

None

There are no error handling functions for DeleteRuleEngine().

([DPSOH

DbmsSession *session = OpenDbmsSession("fred", DbType);
if (!session || !session->Ok()) {
 cout << "Failed to open session" << endl;
 exit(1);
}
Vrule *rule = CreateRulesEngine(session);
if (!rule) {
 cout << "Unable to create rules object" << endl;
 exit(2);
}
char MessageString[65];
memset(MyMessageString, 0, 65);
strcpy(MyMessageString, "Field1|Field2,Field3");
if (!rule->eval("MyAppGroup", "MyMessageType",

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pEngine VRule* Input Name of the open VRule object.
50 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
 MyMessageString,
 strlen(MyMessageString))){
 cout << "Failure" << endl;
 exit(3);
}
if (rule){
 DeleteRuleEngine(rule);
}
if (session){
 CloseDbmsSession(session);
}

6HH�$OVR

CreateRulesEngine
MQSeries Integrator Programming Reference for NEONRules 51

Chapter 3
95XOH�0HPEHU�)XQFWLRQV

HYDO

Using the application group and message type, eval(), retrieves all associated
active rules, parses the message into fields, and evaluates those fields based
on evaluation criteria.

6\QWD[

int VRule::eval(char* AppName,
 char* MsgName,
 char* msg,
 int msglen,
 int log=0);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

AppName char* Input Application Group Name. This should
be the Application Group in which the
user defined rules for evaluating this
message. This string should not be
empty.

MsgName char* Input Type of message to be evaluated. If
NEONFormatter is used, message type is
the input format name. This name
should be the message type in which the
user defined rules for evaluating this
message. This string should not be
empty.
52 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
5HPDUNV

eval() should be called after CreateRulesEngine() and before
DeleteRuleEngine(). In addition, eval() should be called prior to returning
subscriptions or hit/no-hit rules.

1RWH�
THREAD SAFETY: For multi-threaded applications, be sure to retrieve
subscriptions, actions, and options from the same thread as the one that called
eval().

5HWXUQ�9DOXH

Returns 1 if the rules evaluate completely, regardless of the outcome; zero (0)
if the evaluation fails.

Note that a successful evaluation does not imply that a rule fired, only that all
rules associated with the application group and message type were evaluated
against the message completely.

msg char* Input String containing the message to be
evaluated. This message should be in
the format expected by the message
type. The string should not be empty.

msglen int Input Message length, in bytes, of the message
to be evaluated. msglen should be
greater than zero (0).

log int Input For increased logging capability in a
future release, log defaults to zero (0) for
now.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 53

Chapter 3
Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

1RWH�
If this is the first eval() call for the specified Application Group/Message
Type, all the rules and subscriptions for this rule set will be read into cache.
Subsequent calls to eval() will not reload the data unless LoadRuleSet() or
LoadRuleComponent() were called previously with LoadNow set to FALSE.
Modifications to the data will only be reflected if one of the Load APIs is
called prior to the eval() API. See LoadRuleSet on page 71 or
LoadRuleComponent on page 74 for more information.

([DPSOH

if (!rules->eval(appname, msgname, msg, msglen)){
 cout << "Failure" << endl;
} else {
 cout << "Success" << endl;
}

6HH�$OVR

CreateRulesEngine

DeleteRuleEngine

getaction

getsubscription

gethitrule

getnohitrule

GetErrorNo

GetRerror

GetErrorMessage

LoadRuleSet

LoadRuleComponent
54 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
JHWKLWUXOH

gethitrule() retrieves one hit rule from the hit rules list created by eval(),
placing it in a RULE structure. When stepping through the hit rules list using
gethitrule(), a NULL indicates the end of the list.

6\QWD[

RULE *VRule::gethitrule();

3DUDPHWHUV

None

5HPDUNV

Call gethitrule() after the eval() function, which should follow a call to
CreateRulesEngine() but precede a call to DeleteRuleEngine(). You must call
gethitrule() before getsubscription() or getopt() because these functions
change the hit rules list. gethitrule() will not work after getsubscription() is
called.

1RWH�
THREAD SAFETY: For multi-threaded applications, be sure to call
gethitrule() from the same thread as the one that called eval().

5HWXUQ�9DOXH

Returns a pointer to a single RULE structure with a number and name
indicating which rule was hit. When the return value is NULL, the list of hit
rules has been exhausted. The rules are not returned in any specific order.

1RWH�
Each time this API is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.
MQSeries Integrator Programming Reference for NEONRules 55

Chapter 3
([DPSOH

The following code fragment describes how to walk through a list of rules
that did not hit and a list of rules that hit. It should be noted that these APIs
are called after the Rules eval() API.

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule())){
 cout << " " << r->RuleName << endl;
}
cout << "HIT RULES" << endl;
while ((r = rules->gethitrule())){
 cout << " " << r->RuleName << endl;
}

6HH�$OVR

getnohitrule

eval
56 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
JHWQRKLWUXOH

getnohitrule() retrieves one no-hit rule from the no-hit rules list created by
eval(), placing it in a RULE structure. Only active rules are retrieved. When
stepping through the no-hit rules list using getnohitrule(), a NULL indicates
the end of the list.

6\QWD[

RULE *VRule::getnohitrule();

3DUDPHWHUV

None

5HPDUNV

getnohitrule() should be called after the eval() function, which should follow
a call to CreateRulesEngine() but precede a call to DeleteRuleEngine().
getnohitrule() must be called before getsubscription() or getopt() because
these functions change the hit rules list. getnohitrule() will not work after
getsubscription() is called.

1RWH�
THREAD SAFETY: For multi-threaded applications, be sure to call
getnohitrule() from the same thread as the one that called eval().

5HWXUQ�9DOXH

Returns a pointer to a single RULE structure with a number and name
indicating which rule was not hit. When the return value is NULL, the list of
no hit rules has been exhausted. The rules are not returned in any specific
order.

1RWH�
Each time this API is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.
MQSeries Integrator Programming Reference for NEONRules 57

Chapter 3
([DPSOH

The following code fragment describes how to walk through a list of rules
that did not hit and a list of rules that hit. These APIs are called after the Rules
eval() API.

RULE *r;
cout << "NO HIT RULES" << endl;
while ((r=rules->getnohitrule())){
 cout << " " << r->RuleName << endl;
}
cout << "HIT RULES" << endl;
while ((r = rules->gethitrule())){
 cout << " " << r->RuleName << endl;
}

6HH�$OVR

gethitrule

eval
58 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
JHWVXEVFULSWLRQ

getsubscription() gets an action within a subscription associated with a rule
that evaluated true, retrieving the subscription identifier, subscription name,
and action name. When using this API within a loop, a change in the SubId
(subscription sequence) of the SUBSCRIPTION structure signifies the end of
one subscription and the beginning of the next.

6\QWD[

SUBSCRIPTION* VRule::getsubscription();

3DUDPHWHUV

None

5HPDUNV

getsubscription() should be called after the eval() function, which should
follow a call to CreateRulesEngine() but before a call to DeleteRuleEngine().
getaction() should not be called after getsubscription() because it has the same
functionality. getopt() should be called to retrieve the action options.

1RWH�
THREAD SAFETY: For multi-threaded applications, be sure to call
getsubscription() from the same thread as the one that called eval().
MQSeries Integrator Programming Reference for NEONRules 59

Chapter 3
5HWXUQ�9DOXH

Returns a pointer to a single subscription action with a number indicating
which subscription it belongs to, strictly for the purposes of checking the
current subscription. If previous subscriptions have been retrieved, a different
Subscription Identifier indicates that the action is for a new subscription. The
subscription name and action name are also retrieved for the user. When the
return value is NULL, the list of subscriptions has been exhausted. The
subscriptions are not returned in any specific order.

1RWH�
Each time this API is called, the returned subscription is removed from the
subscription list for the hit rules.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

([DPSOH

The following code fragment illustrates walking through a list of actions:

OldSubId = NULL;
int ActionCount = 0;
char * Actionlist[MY_ACTIONS_MAX];
while ((p=rules->getsubscription())){
 if ((p->SubId != OldSubId) || (!OldSubId)){
 //this is the first action of the new subscription
 OldSubId = p->SubId;
 myfun(ActionList,ActionCount);
 cleanup(ActionList,ActionCount);
 ActionCount = 0;
 }
 Actionlist[ActionCount] = strdup (p->action);
 ActionCount++;
 //the options should be checked here if options are
 //relevant to the action. Options only have meaning if
 //the applications programmer has written code to
handle
 //options within the program
}

60 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
6HH�$OVR

getaction

getopt
MQSeries Integrator Programming Reference for NEONRules 61

Chapter 3
JHWDFWLRQ

getaction() returns action names for rules that evaluate to true.

6\QWD[

char * VRule::getaction();

3DUDPHWHUV

None

5HPDUNV

1RWH�
THREAD SAFETY: For multi-threaded applications, be sure to call getaction()
from the same thread as the one that called eval().

5HWXUQ�9DOXH

Returns a pointer to a string containing the action name. Each time this API is
called, the returned action is removed from the list. When the return value is
NULL, the list of actions has been exhausted.

getsubscription() serves the same function as getaction(). Both functions
return the Subscription Identification and name, so subscription boundaries
can be determined. Use getsubscription() instead of getaction().

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

([DPSOH

DbmsSession *session = OpenDbmsSession("fred", DbType);
if (!session || !session->Ok()) {
 cout << "Failed to open session" << endl;
 exit(1);
}
Vrule *rule = CreateRulesEngine(session);
if (!rule) {
 cout << "Unable to create rules object" << endl;
62 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
 exit(2);
}
char MessageString[65];
memset(MyMessageString, 0, 65);
strcpy(MyMessageString, "Field1|Field2,Field3");
if (!rule->eval("MyAppGroup",
 "MyMessageType",
 MyMessageString,
 strlen(MyMessageString))){
 cout << "Failure" << endl;
 exit(3);
}
char *actionname = rule->getaction();
 cout << "Action: " << actionname << endl;
 DeleteRuleEngine(rule)
 CloseDbmsSession(session);

6HH�$OVR

getopt

getsubscription
MQSeries Integrator Programming Reference for NEONRules 63

Chapter 3
JHWRSW

Each subscription can contain several actions, each of which can contain
several options. getopt() gets an option within an action, retrieving the option
sequence number, option name, and option value. When this API is used
within a loop to retrieve all options for an action, a NULL option signifies the
end of the options for that subscription.

6\QWD[

OPTIONPAIR *VRule::getopt();

3DUDPHWHUV

None

5HPDUNV

getopt() should be called after the CreateRulesEngine(), eval() and
getsubscription() functions have been called and before DeleteRuleEngine().

1RWH�
THREAD SAFETY: For multi-threaded applications, be sure to call getopt()
from the same thread as the one that called eval().

5HWXUQ�9DOXH

Returns a pointer to a single name-value option pair composed of an option
name and option value. Each time this function is called, the option is
removed from the list. When the return value is NULL, the list of options for
the subscription action has been exhausted.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.
64 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
([DPSOH

The following code fragment illustrates walking through a list of options for a
subscription action. This action finds the occurrences of a word in a file using
the UNIX grep command as the action:

SUBSCRIPTION *psubscription;
OPTIONPAIR *poptionpair;
char string_to_find[MAX_LENGTH_STRING_TO_FIND];

VRule * rules = CreateRulesEngine(session);
 if (!rules){
 cout << "ERROR" << endl;
 exit(2);
 }
 if (psubscription=rules->getsubscription()) {
 if (!strcmp(psubscription->action, "UNIX_GREP_COMMAND"))
{
 strcpy(action_string, psubscription->action);
 strcat(action_string, " ");
 while ((poptionpair=rules->getopt()){
 if (!strcmp(poptionpair->Name, "WORD_TO_FIND"))
{
 strcat(string_to_find, poptionpair->Value);
 strcat(action_string, " ");
 } else if (!strcmp(poptionpair->Name, "FILENAME")) {
 strcat(filename, poptionpair->Value)
 }
 }
 }
}
// Now execute ’grep word filename’
system(action_string);
DeleteRuleEngine(rule);

6HH�$OVR

getaction

getsubscription
MQSeries Integrator Programming Reference for NEONRules 65

Chapter 3
JHWORJ

getlog() retrieves a list of Rules error messages and returns the list in a string
format. This string usually contains more information than
GetErrorMessage() because it saves more than just the last API error.

6\QWD[

char * VRule::getlog();

3DUDPHWHUV

None

5HWXUQ�9DOXH

Returns a pointer to a character string containing error messages; NULL if
there are no errors.

Use GetErrorNo() to retrieve the number for the last error that occurred.

([DPSOH

Vrule *rule = CreateRulesEngine(session);
if (!rule) {
 cout << "Unable to create rules object" << endl;
 exit(2);
}
if (rule->GetErrorNo()){
 cerr << "Unable to create rules engine" << endl;
 cerr << rule->getlog() << endl;
 exit(3);
}

66 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
7KUHDG&OHDQXS�

ThreadCleanup() removes data from a specific thread prior to exiting the
thread. For example, if you are using UI threads, ThreadCleanup() is used
prior to a thread_exit() call. This function is usually called for a specific thread
immediately before it is destroyed.

6\QWD[

void VRule::ThreadCleanup();

3DUDPHWHUV

None

5HWXUQ�9DOXH

Returns a 1 if an error occurs; zero (0) if there are no errors.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

([DPSOH

struct ThreadRuleArgs
{
public:
 VRule * rules;
};

main () // called by the main thread
 DbmsSession * session = OpenDbmsSes"sion("rules",DBTYPE);
 if (!session || !session->Ok()){
 cout << "Failed to open rules database session"" << endl;
 exit_thread(1);
 }

 VRule * rules = CreateRulesEngine(session, 0);

 thread_handle* threads = new thread_handle[thread_number];

 ThreadRuleArgs RuleArgs;
MQSeries Integrator Programming Reference for NEONRules 67

Chapter 3

 RuleArgs.rules = rules;

 int i;

 for (i = 0; i < thread_number; ++i)
 {
#if defined (THREAD_POSIX)
 pthread_create(&threads[i], 0, run_test, &RuleArgs);
#elif defined (THREAD_NT)
 threads[i] = CreateThread(0, 0, run_test, &RuleArgs, 0,
 0);
#elif defined (THREAD_UI) // UI
 thr_create(0, 0, run_test, &RuleArgs, 0, &threads[i]);
#endif
 }

 // wait for threads to complete

 void * result = NULL;

#if defined (THREAD_NT)
 WaitForMultipleObjects(thread_number, threads, TRUE,
 INFINITE);
#else
 for (i = 0; i < thread_number; ++i)
 {
#if defined (THREAD_POSIX)
 pthread_join(threads[i], &result);
#elif defined (THREAD_UI) // UI
 thr_join(threads[i], NULL, &result);
#endif
 }
#endif

 DeleteRuleEngine(rules);
 CloseDbmsSession(session);

 exit_thread(0);
}

thread_result run_test(thread_arg arg)
68 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
{
 ThreadRuleArgs * RuleArgs = (ThreadRuleArgs *) arg;
 VRule * rules = RuleArgs->rules;

 // get msg, msglen, AppGrp, MsgType, open outfile
 // - if take from input mutex_lock as needed

 if (!rules->eval(AppGrp, MsgType, msg, pos)){
 outfile << "Fail, errno = " << rules->GetErrorNo();
 outfile << " - " << rules->GetErrorMessage() << endl;
 } else{

 outfile << "\n\nNO HIT RULES - Rule Name (Id) " <<
endl;
 while ((r=rules->getnohitrule())) {
 outfile << " " << setw(32) <<
 setiosflags(ios::left) << r->RuleName <<

 "(" << r->RuleId << ")" << endl;
 }

 outfile << "\n\nHIT RULES - Rule Name (Id)" <<
endl;
 while ((r = rules->gethitrule())){
 outfile << " " << setw(32) <<
 setiosflags(ios::left) << r->RuleName <<

 "(" << r->RuleId << ")" << endl;
 }

 outfile << "\n\nACTIONS" << endl;
 while ((p=rules->getsubscription())){
 outfile << " Action(Id): " <<
 p->action <<
 "(" << p->SubId << ")" << endl;
 while ((popt=rules->getopt())){
 outfile << " " << popt->Sequence << " : ";
 outfile << popt->Name << " - ";
 outfile << popt->Value << endl;
 }
 }
 outfile << endl;
 }
 }
MQSeries Integrator Programming Reference for NEONRules 69

Chapter 3
 rules->ThreadCleanup();

#ifndef WIN32
 return 0;
#endif

}

70 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
/RDG5XOH6HW

Using the application group and message type, LoadRuleSet() sets a flag
indicating that the system should clear any current rule set information
(identified by an Application Group/Message Type pair) and load the rule set
indicated by the AppName and MsgName parameters.

:$51,1*�
LoadRuleSet() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). It can be called before
VRule::eval(). However, it should never be called after an eval() and before
getsubscription(), getopt(), gethitrule(), and so on.

6\QWD[

int VRule::LoadRuleSet(char* AppName,
 char* MsgName,
 int LoadNow=0);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

AppName char* Input Application Group Name. Should be the
Application Group for the rule set to load.
This string should not be empty.

MsgName char* Input Type of message to be evaluated. If
NEONFormatter is used, message type is the
input format name. Should be the Message
Type for the rule set to load. This string
should not be empty.

LoadNow int Input Indicates when to reload the rule set
information.
MQSeries Integrator Programming Reference for NEONRules 71

Chapter 3
5HPDUNV

If LoadNow is zero (0) (the default), the system reloads rule set information
when the next eval() is called. If LoadNow is 1, the reload is done
immediately, effectively ending the evaluation cycle, though eval() completes
retrieving subscription, action, and option information if doing so when
receiving the signal to reload. If the rule set has not been loaded previously,
LoadRuleSet() loads it only if LoadNow is set.

5HWXUQ�9DOXH

Returns 1 if the load was performed or if the reload indicator was set for the
rule set indicated; 2 if the rule set has not been loaded, though the reload
indicator was set correctly; zero (0) if the load cannot be performed.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

([DPSOH

// OpenDbmsSession and CreateRulesEngine called already
// Rules (VRule object) has been used for evaluations and this
// call reloads the named RuleSet

 char appgrp[APP_NAME_LEN] = "TestApp";
 char msgtype[MSG_NAME_LEN] = "TestFmt";
 int LoadImmed = 0;
 int ReloadResult = 0;

 if ((!ReloadResult = Rules->LoadRuleSet(appgrp,msgtype,
 LoadImmed))) {
 cerr << "Error reloading rule set: " << appgrp << ", ";
 cerr << msgtype << endl;
 cerr << "Rules Error String > " ;
 cerr << "NNR" << Rules->GetErrorNo() << " <" ;
 cerr << Rules->GetErrorMessage() << " <" << endl;
 } else if (ReloadResult == 2) {
 cerr << "Rule Set has not been loaded yet. It will
 be when eval is called." << endl;
 } else {
 cerr << "Rule Set Reload succeeded for:
72 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
 " << appgr <<
 ", "
 << msgtype << endl;
 }

// subsequent calls to VRule::eval will use the new Rules data

1RWH�
The LoadRuleSet API returns a value of 2 if the Rules Engine instance has
never evaluated a message using the specified application group/message
name pair. In this case, the LoadRuleSet API does not load the rule set,
instead, the load occurs when the eval() API is invoked.

6HH�$OVR

CreateRulesEngine

DeleteRuleEngine

eval

GetErrorNo

GetRerror

GetErrorMessage
MQSeries Integrator Programming Reference for NEONRules 73

Chapter 3
/RDG5XOH&RPSRQHQW

Using the application name, message type name, component type to reload,
component name to reload, and the LoadNow parameter, the
LoadRuleComponent() reloads the specified rule component stored in the
Rules memory with the modified component data stored in the database. The
MSG component type reloads the entire rule set (all rules and subscriptions
for the application group/message type) and the SUB component type
reloads the specified subscription. When a single subscription is reloaded, the
data reloaded by the LoadRuleComponent API includes the subscription
information, the subscription actions, options, and links to rules.

:$51,1*�
LoadRuleComponent() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). As needed, it should be
called before VRule::eval(). However, it should never be called after an eval()
and before getsubscription(), getopt(), gethitrule(), and so on.

6\QWD[

int VRule::LoadRuleComponent(char* AppGrp,
 char* MsgType,
 NNRComponentTypes ComponentType,
 char* ComponentName,
 int LoadNow=0);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

AppGrp char* Input Application Group Name. Should be
the Application Group for the rule set
to load. If loading a subscription, the
subscription being loaded must reside
in the rule set defined by the
application. This string should not be
empty.
74 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
5HPDUNV

If you specify a subscription that does not exist in the database, the
LoadRuleComponent API removes the designated subscription, along with
the subscription’s actions, options, and rule links, from the rules cache.

If the subscription in the database contains zero actions, it is still cached. If an
associated rule does not exist in the rules cache then the subscription is
loaded without that rule link.

MsgType char* Input Type of message to be evaluated. If
NEONFormatter is used, message type
is the input format name. Should be
the message type for the rule set to
load. If loading a subscription, the
subscription must reside in the rule
set defined by the message. This
string should not be empty.

Component
Type

NNR
Component
Types

Input Component Type. If NNRCOMP_
MSG is used, the entire rule set is
loaded; if NNRCOMP_SUBS is used,
the given subscription is loaded.
See Permissions APIs on page 151 for
the NNRComponent Types
definition.

Component
Name

char* Input Component Name. If
ComponentType is
NNRCOMP_SUBS, this parameter is
the subscription name. If the
ComponentType is
NNRCOMP_MSG, this parameter is
the MsgType name.

LoadNow int Input Indicates when to reload the rule set
or subscription information.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 75

Chapter 3
If the LoadNow parameter is set (value equals 1), and the rule set is loaded
when the reload request is received, the LoadRuleComponent API
immediately reads the specified subscription from the database and updates
the rules cache. If the rule set is not loaded when the reload request is
received, then the entire rule set loads (performance hit).

If the LoadNow parameter is not set (value equals zero (0)), the rule set is
stored and reloads the next time eval() is called. When eval() is called for the
rule set, each of the stored reload requests are completed before the eval is
executed. This is the suggested method.

5HWXUQ�9DOXH

Returns 2 if the subscription in the LoadRuleComponent API call resides in a
rule set that has not been loaded into the rules cache or does not exist in the
database. This applies if the LoadNow parameter is not set (equal to 0),
because the information is not checked until eval() is called. Also returns 2 if
the component is not found in the database or cache and LoadNow is set.

Returns 1 if the LoadRuleComponent() succeeds. Returns 0 if the
LoadRuleComponent fails, or if the reload of the rule set fails and removes
the rules from cache. If the LoadNow parameter is set to 1, returns zero (0).

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

([DPSOH

// OpenDbmsSession and CreateRulesEngine called already
// Rules (VRule object) has been used for evaluations and
// this call reloads the named Rule Set or Component

 char appgrp[APP_NAME _LEN] = "TestApp";
 char msgtype[MSG_NAME_LEN] = "TestFmt";
 NNRComponentTypes CompType; // fill in
 char ComponentName[SUB_NAME_LEN]; // fill in
 char ComponentType[15];
 int LoadImmed = 0;
 int ReloadResult = 0;

 switch (CompType) {
 case NNRCOMP_MSG:
76 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
 strcpy (ComponentName, msgtype);
 strcpy (ComponentType, "Message Type");
 break;

 case NNRCOMP_SUB:
 strcpy (ComponentType, "Subscription");

 break;
 case NNRCOMP_RULE:
 case NNRCOMP_APP:
 default:

 cerr < "invalid component type" << endl;
 return 0;
 break;

 }

 if (!(ReloadResult = Rules->LoadRuleComponent(appgrp,
 msgtype,CompType,ComponentName,LoadImmed))) {
 cerr << "Error reloading rule component: ";
 if (CompType == NNRCOMP_MSG) {
 cerr << "Message Type = "<< appgrp << ", " << msgtype <<
 endl;
 } else {
 cerr << ComponentType << " = "<< appgrp << ", ";
 cerr << msgtype << ", " << ComponentName << end1;
 }
 cerr << "Rules Error String > " ;
 cerr << "NNR" << Rules->GetErrorNo() << " <" ;
 cerr << Rules->GetErrorMessage() << " <" <<endl;
 } else {
 cerr << "Reload succeeded for component: ";
 if (CompType == NNRCOMP_MSG) {
 cerr <<"Message Type = "<< appgrp << ", ";
 cerr << msgtype << endl;
 } else {
 cerr << ComponentType << " = "<< appgrp << ", ";
 cerr << msgtype << ", " << ComponentName << endl;
 }
 if (ReloadResult == 2) {
 cerr << "Component not found OR rule set not
 currently loaded. ";
 cerr << "Reload request ignored." << endl;
 }
 }
MQSeries Integrator Programming Reference for NEONRules 77

Chapter 3
 // subsequent calls to VRule::eval will use the new Rules data

1RWH�
The LoadRuleComponent API returns a value of 2 if the Rules Engine
instance has never evaluated a message using the specified application
group/message name pair and LoadNow is not set. In this case, the
LoadRuleComponent API does not load the rule set, instead, the load occurs
when the eval() API is invoked.

6HH�$OVR

CreateRulesEngine

DeleteRuleEngine

eval

GetErrorNo

GetRerror

GetErrorMessage
78 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
JHWIRUPDWWHUREMHFW

getformatterobject is a formatter object retrieval function that takes no
parameters and returns the instance of the formatter that the VRule::eval()
function used to parse the last input message. A user may want to use this
function to retrieve the parsed fields and, therefore, not have to parse before a
reformat done after the eval().

This formatter object is destroyed when the DeleteRuleEngine() destroys the
VRule object. Do not access the formatter object after the VRule is deleted

6\QWD[

Formatter* VRule::getformatterobject();

3DUDPHWHUV

None

5HWXUQ�9DOXH

Returns a pointer to a formatter object.

1RWH�
In a multithreaded environment, the returned Formatter instance will be
thread-safe. It will contain the data/parse results for the thread in which the
eval() and Parse() was performed. Do not access other threads with this
Formatter instance because the data in those threads will be different.

([DPSOH

char *appname;
char *msgname;
char *msg;
int msglen;

DbmsSession *session = OpenDbmsSession("rules", DbType);

VRule *rule = CreateRulesEngine(session);
Formatter *gFormatter = rule->getformatterobject();
MQSeries Integrator Programming Reference for NEONRules 79

Chapter 3
if (!rule->eval(appname, msgname, msg, msglen) { // error
 if (gFormatter->GetErrorCode()) {
 // Formatter Error.
 cerr << "Formatter Error:"
 << gFormatter->GetErrorCode() << endl;
 cerr << "Error Message:"
 << gFormatter->GetErrorMessage() << endl;
 }
80 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
5XOHV�(UURU�+DQGOLQJ

*HW(UURU1R

GetErrorNo() returns the error number associated with the last error that
occurred.

6\QWD[

int *VRule::GetErrorNo();

3DUDPHWHUV

None

5HWXUQ�9DOXH

Returns the error number associated with the last error that occurred (for that
thread in a multi-threaded application). Zero (0) or -1000 is returned if no
error occurred.

([DPSOH

VRule *rules=CreateRulesEngine(session);
 if (!rules->eval("Bravo", msgname, msg, msglen)){
 cout << "Fail, errno = ";
 cout << GetRerror(rules->GetErrorNo()) << endl;
 }else{
 // process Subscription Actions by Subscription
 // and process options by Subscription Action
 }

6HH�$OVR

GetRerror

GetErrorMessage
MQSeries Integrator Programming Reference for NEONRules 81

Chapter 3
*HW(UURU0HVVDJH�

GetErrorMessage() returns the last error message, including any specific data
such as an Application Group Name for the current thread. This function
should be used in place of GetRerror().

6\QWD[

char* VRule::GetErrorMessage();

3DUDPHWHUV

None

5HWXUQ�9DOXH

Returns a pointer to a NULL-terminated string containing the description for
the last error that occurred (for that thread in a multi-threaded application).

([DPSOH

VRule *rule=CreateRulesEngine(session);
 if (!rules->eval("Bravo", msgname, msg, msglen)){
 cout << "Fail, errno = ";
 cout << rules->GetErrorMessage() << endl;
 }else{
 // process Subscription Actions by Subscription
 // and process options by Subscription Action
 }

6HH�$OVR

GetErrorNo

GetRerror
82 MQSeries Integrator Programming Reference for NEONRules

Rules APIs
*HW5HUURU

GetRerror() returns the description for the error number relating to a SQL or
NEONRules processing error. SQL and NEONRules processing errors are shown
in the next section. The static error message is returned with "%s"
representing where the additional data would be placed.

For example, if GetRerror(-1001) is called, it returns the following message:

Rules configuration missing Application Group -- AppGrp - %s, MsgType -
%s

1RWH�
GetErrorMessage() returns the last error message including additional
information replacing the "%s".

6\QWD[

char* GetRerror(int ErrorNo);

3DUDPHWHUV

5HWXUQ�9DOXH

Returns a pointer to a NULL-terminated string containing the description for
the error number passed into the function.

([DPSOH

if (!rules->eval("Bravo", msgname, msg, msglen)){
 cout << "Fail, errno = ";
 cout << GetRerror(rules->GetErrorNo()) << endl;
}else{

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

ErrorNo int Input Determines the string value containing the
meaning of the error.
MQSeries Integrator Programming Reference for NEONRules 83

Chapter 3
 // process Subscription Actions by Subscription
 // and process options by Subscription Action
}

6HH�$OVR

GetErrorNo

GetErrorMessage
84 MQSeries Integrator Programming Reference for NEONRules

&KDSWHU��

5XOHV�0DQDJHPHQW�$3,V

Rules Management APIs enable users to add, update, delete, and read rules.
To use Rules Management APIs, include the following header files located in
the MQSeries Integrator include directory:

n nnrmgr.h

n nnperm.h

n rdefs.h

Link with the following libraries located in the MQSeries Integrator library
directory (use the .a extension for AIX, .so or .sl for UNIX, and .DLL for NT):

n libnnfmgr.a

n libnnsql.a

n libnntools.so

Rules components must be added in the following order:

1. Application Group

2. Message Type

3. Rule

4. Rule Permission

5. Rule Expression

6. Argument

7. Subscription

8. Subscription Permission

9. Action

10. Option
MQSeries Integrator Programming Reference for NEONRules 85

:$51,1*�
The names of formats and fields should not be changed if they are used by a
rule. The following occurs if either or both format and field names are
changed:

n If you change a format name or the field names in a format, rules
associated with that format become invalid.

n After a format name is changed, Rules permissions will not retrieve
the correct format name, causing permission error messages.

n Subscription actions using format names fail if the format name is
changed.

n If a field name is changed, the arguments using the field name
become invalid and the rule will fail.

See the MQSeries Integrator Programming Reference for NEONFormatter for
information on changing formats and field names.

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises between two components named the same with
only case differences.

 See System Management for information on using NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. For more information, see Appendix B : Operator Types on page
317.

See System Management for information on how to change a current case-
insensitive installation to be case-sensitive.
MQSeries Integrator Programming Reference for NEONRules 86

Rules Management APIs
5XOHV�0DQDJHPHQW�$3,�6WUXFWXUHV

11'DWH

NNDate is passed as part of an argument in several Rules Management
functions and should be cleared using NNR_CLEAR prior to use in a function
call.

Currently, dates are defaulted, and this structure is provided for forward
compatibility.

6\QWD[

typedef struct NNDate{
 unsigned char century;
 unsigned char year;
 unsigned char month;
 unsigned char day;
 unsigned char hours;
 unsigned char minutes;
 unsigned char seconds;
 unsigned char _filler;
 unsigned short mseconds;
 long InitFlag;
} NNDate;

0HPEHUV

1DPH 7\SH 'HVFULSWLRQ

century unsigned char Century for the year. Currently, 19 (as in 1997)
and 20 (as in 2001) are acceptable values.

year unsigned char Number for the year, exclusive of the century. For
example, 1996 is saved as 96 and 2001 is saved as
01.

month unsigned char Numeric month within the year (range 1 to 12).
MQSeries Integrator Programming Reference for NEONRules 87

Chapter 4
day unsigned char Numeric day of the month (range 1 to 31).

hours unsigned char Number of hours past midnight in a 24-hour
notation (range 0 to 23).

minutes unsigned char Number of minutes past the hour (range 0 to 59).

seconds unsigned char Number of seconds past the minute (range 0 to
59).

filler unsigned char This field exists to insure proper alignment of the
mseconds field below and is set to zero (0).

mseconds unsigned char Number of milliseconds past the second (range 0
to 999).

InitFlag long This field is present so the software can detect if
this structure was preset to zero (0) before use.

1DPH 7\SH 'HVFULSWLRQ
88 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
2YHUDOO�5XOHV�0DQDJHPHQW�$3,V�DQG�
0DFURV

1150JU,QLW

When using Rules Management APIs, users are expected to initialize rules
management by calling NNRMgrInit(). NNRMgrInit() initializes the rules
management data access capability and error handling.

6\QWD[

NNRMgr * NNRMgrInit (DbmsSession *session);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls. For
information about the DbmsSession Type to use, see OpenDbmsSession() in
MQSeries Integrator Application Development Guide.

5HWXUQ�9DOXH

Returns a pointer to an instance of a NNRMgr object.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrClose

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

session DbmsSession * Input Name of the open database session.
MQSeries Integrator Programming Reference for NEONRules 89

Chapter 4
1150JU&ORVH

When using Rules Management APIs, users are expected to close rules
management by calling the NNRMgrClose() function. NNRMgrClose()
removes the user’s ability to perform rules management.

6\QWD[

void NNRMgrClose (NNRMgr *pMgr);

3DUDPHWHUV

5HPDUNV

A call to NNRMgrClose() should be the last call made when managing rules.
Once a call to NNRMgrClose() is made, the user will not be able to manage
rules without calling NNRMgrInit() again.

1RWH�
NNRMgrClose() only cleans up resources claimed by NNRMgrInit() and does
not close the DbmsSession.

5HWXUQ�9DOXH

None

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr* Input Valid Rules Management object returned
from call to NNRMgrInit().
90 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
115B&/($5

When using Rules Management APIs, user must clear structures prior to
invoking each function. Use the NNR_CLEAR macro to clear structures.
NNR_CLEAR clears a structure in such a way that the Rules Management
APIs can alert the user to a noninitialized structure.

6\QWD[

NNR_CLEAR(_p)

3DUDPHWHUV

5HWXUQ�9DOXH

None

([DPSOH

struct NNRApp app;

NNR_CLEAR(&app);

6HH�$OVR

NN_CLEAR

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

_p Any rules
management
structure

Input Any structure used in Rules
Management API calls except
permission structures.
MQSeries Integrator Programming Reference for NEONRules 91

Chapter 4
$SSOLFDWLRQ�*URXS�0DQDJHPHQW�$3,V

An application group is a logical division of rules. Application Management
APIs are how applications are created and associated with rules,
subscriptions, and user permissions.

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences will cause NNRie to fail
during import if a conflict arises between two components named the same
with only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators (see Operator Management APIs on page 169)
may not work correctly on case-insensitive databases.

See System Management for information on how to change a current case-
insensitive installation to be case-sensitive.
92 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
$SSOLFDWLRQ�*URXS�0DQDJHPHQW�$3,�
6WUXFWXUHV

115$SS

NNRApp is passed as a pointer as the second parameter of the Application
Group Management APIs. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to
any Application Group Management API calls.

6\QWD[

typedef struct NNRApp{
 char AppName[APP_NAME_LEN];
 long InitFlag;
}

0HPEHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

AppName
[APP_NAME_
LEN]

char Name of the application group defined by the user.
Should be the application group in which the user is
defining rules for evaluation.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management API.
MQSeries Integrator Programming Reference for NEONRules 93

Chapter 4
115$SS'DWD�

NNRAppData is passed as a pointer as the third parameter of some of the
Application Group Management APIs. The pointer cannot be NULL and
must be cleared using NNR_CLEAR prior to being populated by the user or
Application Group Management API calls. Use of this structure is described
in each Application Group Management API section.

6\QWD[

typedef struct NNRAppData{
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
}

0HPEHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future capability.

ChangeAction int Defaulted for now, provided for future capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
94 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
115$SS5HDG'DWD

NNRAppReadData is passed as a pointer to select functions in the
Application Group Management API. The pointer cannot be NULL and must
be cleared using NNR_CLEAR prior to any Application Group Management
API read calls.

6\QWD[

typedef struct NNRAppReadData{
 char AppName[APP_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
} NNRAppReadData;

0HPEHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

AppName
[APP_NAME_LEN]

char Name of the application group defined by the
user. Should be the application group in which
the user is defining rules for evaluation.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
MQSeries Integrator Programming Reference for NEONRules 95

Chapter 4
115$SS8SGDWH

NNRAppUpdate is a structure designed to pass update information within
the Rules Management APIs. It must be cleared using NNR_CLEAR prior to
being populated, and must be populated prior to any Rules Management API
update calls.

6\QWD[

typedef struct NNRAppUpdate {
 char AppName[APP_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
}

0HPEHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

AppName
[APP_NAME_LEN]

char Name of the application group, defined by
the API using this structure.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
96 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
$SSOLFDWLRQ�*URXS�0DQDJHPHQW�$3,�
)XQFWLRQV

1150JUGGSS

NNRMgrAddApp() enables the user to define a name for one application
group in Rules. The user creates a name and provides it to
NNRMgrAddApp(), which then saves it in Rules. Only after an application
group has been defined can the application name be used in other Rules
Management functions.

6\QWD[

const long NNRMgrAddApp(
 NNRMgr *pMgr,
 const NNRApp *pRApp,
 const NNRAppData *pRAppData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Name of a current Rules
Management object.

pRApp const NNRApp * Input Must be populated prior to this
function call.

pRAppData const
NNRAppData *

Input Must be populated prior to this
function call. DateChange and
ChangeAction should be
populated with NULL values
because they are provided only
for future enhancements.
MQSeries Integrator Programming Reference for NEONRules 97

Chapter 4
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrAddApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the application is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrReadApp

NNRMgrUpdateApp
98 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU5HDG$SS

NNRMgrReadApp() attempts to read all rules defined for a specific
application group name.

6\QWD[

const long NNRMgrReadApp(
 NNRMgr *pMgr,
 const NNRApp *pRApp,
 NNRAppData *const pRAppData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrReadApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the application is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Name of a current Rules
Management object.

pRApp const NNRApp * Input Should be populated prior to this
function call.

pRAppData NNRAppData
* const

Output NNRMgrReadApp populates
this structure. If DateChange is
not NULL, it is assumed that the
application group exists.
MQSeries Integrator Programming Reference for NEONRules 99

Chapter 4
([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddApp

NNRMgrUpdateApp
100 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW)LUVW$SS

NNRMgrGetFirstApp() provides a way to start iterating through the
application groups that exist in a database. NNRMgrGetFirstApp() must be
called before NNRMgrGetNextApp().

6\QWD[

const long NNRMgrGetFirstApp (
 NNRMgr *pMgr,
 NNRAppReadData *const RAppData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

5HWXUQ�9DOXH

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

 Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

([DPSOH

See Rules Management API Sample Program on page 351.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

RAppData NNRAppReadData
*const

Output NNRMgrGetFirstApp
populates this structure.
MQSeries Integrator Programming Reference for NEONRules 101

Chapter 4
6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrDuplicateApp

NNRMgrDeleteEntireApp

NNRMgrGetNextApp
102 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW1H[W$SS

NNRMgrGetNextApp() provides a way of iterating through the application
groups after the first application group has been retrieved.
NNRMgrGetFirstApp() must be called before NNRMgrGetNextApp().

6\QWD[

const long NNRMgrGetFirstApp (
 NNRMgr *pMgr,
 NNRAppReadData *const RAppData);

3DUDPHWHUV�

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

5HWXUQ�9DOXH

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

([DPSOH

See Rules Management API Sample Program on page 351.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

RAppData NNRAppReadData
*const

Output NNRMgrGetNextApp
populates this structure.
MQSeries Integrator Programming Reference for NEONRules 103

Chapter 4
6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrDuplicateApp

NNRMgrDeleteEntireApp

NNRMgrGetFirstApp
104 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU'XSOLFDWH$SS

NNRMgrDuplicateApp() creates a new application group with the name
specified in the NewAppName syntax.

NNRMgrDuplicateApp() creates the message type in the specified
application group, accesses each subscription in the original application
group/message type pair, and duplicates the subscription and its
components. The rules are then duplicated into the new application/message
type pair in a similar way.

The current user is the owner of the new application group. Read permission
must exist for the application group to be duplicated.

6\QWD[

const long NNRMgrDuplicateApp (
 NNRMgr *pMgr,
 const NNRApp* pRApp,
 const char* NewAppName);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRApp const NNRApp* Input This structure must be
populated prior to this
function call.

NewAppName const char* Input Name of the new application
group.
MQSeries Integrator Programming Reference for NEONRules 105

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the application group is duplicated successfully; returns zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrDuplicateApp

NNRMgrDeleteEntireApp

NNRMgrGetFirstApp

NNRMgrGetNextApp
106 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU8SGDWH$SS

NNRMgrUpdateApp() enables the user to update an application group name
by providing the name of the application group to change (in the pRApp
structure) and the new application group name to change it to (in the
pRAppUpdate structure).

6\QWD[

const long NNRMgrUpdateApp (
 NNRMgr *pMgr,
 const NNRApp *pRApp,
 const NNRAppUpdate *pRAppUpdate);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

5HWXUQ�9DOXH

Returns 1 if the application group is updated successfully; zero (0) if an error
occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Name of a current Rules
Management object.

pRApp const NNRApp * Input Must be populated prior to
this function call.

pRAppUpdate const
NNRAppUpdate *

Input Must be populated prior to
this function call.
MQSeries Integrator Programming Reference for NEONRules 107

Chapter 4
([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRApp key;
struct NNRAppData data;
struct NNRAppUpdate update;
NNR_CLEAR(&key);
NNR_CLEAR(&data);
NNR_CLEAR(&update);

cout << "Enter old app group name \n>";
cin >> key.AppName;
cout << "Enter new app group name \n>";
cin >> update.AppName;

if (NNRMgrUpdateApp(pmgr, &key, &update)){
 cout << endl
 << "\tApp Group Name: "
 << key.AppName << "changed to "
 << update.AppName << endl << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}

CloseNNRMgr(pmgr, session);
return;

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddApp

NNRMgrReadApp
108 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU'HOHWH(QWLUH$SS

NNRMgrDeleteEntireApp() deletes an application group by deleting each
component for the application group, including application, message type,
rule, expression, and associations with subscriptions. This call depends on
permissions. If the user does not have permission for each component in the
application group, that component and the application group will not be
deleted. However, the components that the user does have permission for will
be deleted.

NNRMgrDeleteEntireApp() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type will only delete if there are not rules and
subscriptions left. The application group will only delete if there are no
message types left.

:$51,1*�
NNRMgrDeleteEntireApp() deletes all components contained within an
application group.

6\QWD[

const long NNRMgrDeleteEntireApp (
 NNRMgr *pMgr,
 const NNRApp *pRApp);
MQSeries Integrator Programming Reference for NEONRules 109

Chapter 4
3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

5HWXUQ�9DOXH

Returns 1 if the application group and its contents are completely removed.
Returns 2 if the application group still remains, but some rules or
subscriptions remain due to mismatched permissions. Returns zero (0) if an
error occurs.
Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. This does not
report which rules or subscriptions could not be deleted. The user must
retrieve the lists of items to find this information.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrDeleteEntireRule

NNRMgrDeleteEntireSubscription

NNRMgrDuplicateApp

NNRMgrGetFirstApp

NNRMgrGetNextApp

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().

pRApp NNRApp Input The unique identifier for the
application with the message type
name and subscription name.
110 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
0HVVDJH�7\SH�0DQDJHPHQW�$3,V

A message type identifies the type of data to which the rules apply. Message
type is the same as the input format name in NEONFormatter.

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises between two components named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. For more information, see Appendix B : Operator Types on page
317.

See System Management for information on how to change a current case-
insensitive installation to be case-sensitive.
MQSeries Integrator Programming Reference for NEONRules 111

Chapter 4
0HVVDJH�7\SH�0DQDJHPHQW�$3,�
6WUXFWXUHV

1150VJ

NNRMsg is passed as a pointer as the second parameter of the Message Type
Management APIs. The pointer cannot be NULL, must be cleared (using
NNR_CLEAR) prior to being populated, and must be populated prior to any
Message Type Management API calls.

6\QWD[

typedef struct NNRMsg{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 long InitFlag;
} NNRMsg;

0HPEHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

AppName
[APP_NAME_
LEN]

char Name of the application group defined by the user.
Should be the application group in which the user is
defining rules for evaluation.

MsgName[MSG
_NAME_LEN]

char Name of the message for which the user is defining
rules for message evaluation. The message type is
the input format name if the user is using Formatter.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management API.
112 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150VJ'DWD

NNRMsgData is passed as a pointer as the third parameter of the Message
Type Management APIs. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to being populated by the user or by Message Type
Management API calls. Use of this structure is described in each Message
Type Management API section.

6\QWD[

typedef struct NNRMsgData {
 char EvalType[EVAL_TYPE_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
} NNRMsgData;

0HPEHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

EvalType
[EVAL_TYPE_LEN]

char Defaulted for now, provided for future
capability.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
MQSeries Integrator Programming Reference for NEONRules 113

Chapter 4
1150VJ5HDG'DWD

NNRMsgReadData is passed as a pointer to select functions in the Message
Type Management API. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to any Message Type Management API read calls.

6\QWD[

typedef struct NNRMsgReadData(
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
} NNRMsgReadData;

0HPEHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

AppName[APP_
NAME_LEN]

char Name of the application group (defined by the
user). Should be the application group in which
the user is defining rules for evaluation.

MsgName[MSG
_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. The
message type is the input format name if the user
is using NEONFormatter.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
114 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
0HVVDJH�7\SH�0DQDJHPHQW�$3,�)XQFWLRQV

1150JU$GG0VJ

A message is a string of data to be processed. NNRMgrAddMsg() associates a
message type with a specific application group. The application group and
message type must exist prior to associating the message type to an
application group using NNRMgrAddMsg(). If you are using NEONFormatter,
an input format of this name must exist. Messages must be associated with an
application group prior to adding a rule using NNRMgrAddRule().

6\QWD[

const long NNRMgrAddMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg,
 const NNRMsgData *pRMsgData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrAddMsg().

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRMsg const NNRMsg * Input Must be populated prior to this
function call.

pRMsgData const
NNRMsgData *

Input Default the DateChange and
ChangeAction parameters to
NULL This is provided only for
future enhancements.
MQSeries Integrator Programming Reference for NEONRules 115

Chapter 4
A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the message is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NNR_CLEAR
NNRMgrReadMsg
116 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU5HDG0VJ

NNRMgrReadMsg() enables the user to read a message type.

6\QWD[

const long NNRMgrReadMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg,
 NNRMsgData *const pRMsgData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrReadMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the message is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRMsg const NNRMsg * Input Must be populated prior to this
function call.

pRMsgData NNRMsgData
*const

Output NNRMgrReadMsg() populates
this structure. If DateChange is not
NULL, the user can assume a
message exists.
MQSeries Integrator Programming Reference for NEONRules 117

Chapter 4
([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR
NNRMgrAddMsg
118 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW)LUVW0VJ

NNRMgrGetFirstMsg() provides a way to start iterating through the message
types that exist in a database. NNRMgrGetFirstMsg() must be called before
NNRMgrGetNextMsg().

6\QWD[

const long NNRMgrGetFirstMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg,
 NNRMsgReadData *const pRMsgData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetFirstMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRMsg const NNRMsg * Input Should be populated prior to this
function call. This must contain
the correct application group
name.

pRMsgData NNRMsgData
*const

Output NNRMgrGetFirstMsg() populates
this structure. If DateChange is
non-NULL, the user should
assume a message exists.
MQSeries Integrator Programming Reference for NEONRules 119

Chapter 4
5HWXUQ�9DOXH

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_MESSAGES, the end of the message type list
was reached.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NNR_CLEAR
NNRMgrAddMsg
NNRMgrDeleteEntireMsg

NNRMgrDuplicateMsg

NNRMgrGetNextMsg

NNRMgrReadMsg
120 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW1H[W0VJ

NNRMgrGetNextMsg() provides a way of iterating through the message
types after the first message type has been retrieved. NNRMgrGetFirstMsg()
must be called before NNRMgrGetNextMsg().

6\QWD[

const long NNRMgrGetNextMsg(
 NNRMgr *pMgr,
 NNRMsgReadData *const pRMsgData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetNextMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRMsgData NNRMsgData
*const

Output NNRMgrGetNextMsg() populates
this structure. If DateChange is not
NULL, the user can assume a
message exists.
MQSeries Integrator Programming Reference for NEONRules 121

Chapter 4
 Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_MESSAGES, the end of the message
type list was reached.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrAddMsg

NNRMgrDeleteEntireMsg

NNRMgrDuplicateMsg

NNRMgrGetFirstMsg

NNRMgrReadMsg
122 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU'XSOLFDWH0VJ

NNRMgrDuplicateMsg() creates a new message type under the application
group specified in the NewAppName syntax. If the application group entered
in NewAppName does not exist, NNRMgrDuplicateMsg() also creates the
application group.

NNRMgrDuplicateMsg() creates the message type in the application group
specified in the NewAppName syntax, accesses each subscription in the
original application group/message type pair, and duplicates the
subscription and its components.The rules are then duplicated into the new
application/message type pair in a similar way.

The current user is the owner of the new message type. Read permission must
exist for the message type to be duplicated.

6\QWD[

const long NNRMgrDuplicateMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg,
 const char *NewAppName);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRMsg const NNRMsg * Input Must be populated prior to
this function call.

NewAppName const char * Input Enter the application group
name for the message type to
be duplicated in.
MQSeries Integrator Programming Reference for NEONRules 123

Chapter 4
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrDuplicateMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the message type and its contents are completely duplicated.
Returns zero (0) if an error occurs, for example, the message type already
exists in the new application group.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NNR_CLEAR
NNRMgrAddMsg

NNRMgrDeleteEntireMsg

NNRMgrReadMsg
124 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU'HOHWH(QWLUH0VJ

NNRMgrDeleteEntireMsg() deletes a message type by deleting each
component for the message type, including message type, rule, expression,
and associations with subscriptions. This call depends on permissions. If the
user does not have permission for each component of the message type, that
component and the message type are not deleted. However, the components
that the user does have permission for will delete.

NNRMgrDeleteEntireMsg() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type will only delete if there are not rules and
subscriptions left.

6\QWD[

const long NNRMgrDeleteEntireMsg(
 NNRMgr *pMgr,
 const NNRMsg *pRMsg);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRMsg const NNRMsg * Input Should be populated prior to this
function call.
MQSeries Integrator Programming Reference for NEONRules 125

Chapter 4
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrDeleteEntireMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the message type and its contents are completely removed;
returns 2 if the message type still remains, but some rules or subscription
remain due to mismatched permissions; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NNR_CLEAR
NNRMgrAddMsg

NNRMgrDuplicateMsg

NNRMgrReadMsg
126 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5XOH�0DQDJHPHQW�$3,V

Rule Management APIs are used to create rules that contain expressions and
associate rules with subscriptions and user permissions.

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises between two components named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. For more information, see Appendix B : Operator Types on page
317.

See System Management for information on how to change a current case-
insensitive installation to be case-sensitive.

5XOH�0DQDJHPHQW�$3,�6WUXFWXUHV

1155XOH

NNRRule is passed as a pointer as the second parameter for some of the Rule
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Rule Management API calls. NNRRule is also part of the permission API
Structures.
MQSeries Integrator Programming Reference for NEONRules 127

Chapter 4
6\QWD[

typedef struct NNRRule{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 long InitFlag;
} NNRRule;

0HPEHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

AppName[APP_
NAME_LEN]

char Name of the application group defined by the
user. Should be the application group in which
the user is defining rules for evaluation.

MsgName[MSG
_NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. If the user
is using NEONFormatter, the message type is the
input format name.

RuleName
[RULE_NAME_
LEN]

char Name of the rule to be defined within an
application group and message name pair. This
rule name is defined by the user.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
128 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1155XOH'DWD

NNRRuleData is passed as a pointer as the third parameter of the Rule
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by Rules Management
API calls. Use of this structure is described in each Rule Management API
section.

6\QWD[

typedef struct NNRRuleData{
 NNDate DateChange;
 int ChangeAction;
 int ArgumentCount;
 int OrCondition;
 int SubscriberIndex;
 int RuleActive;
 NNDate RuleEnableDate;
 NNDate RuleDisableDate;
 long InitFlag;
} NNRRuleData;

0HPEHUV

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future capability.

ChangeAction int Defaulted for now, provided for future capability.

ArgumentCount int Number of arguments associated with this rule.

OrCondition int Defaulted for now, provided for future capability.

SubscriberIndex int Defaulted for now, provided for future capability.

RuleActive int Value of 1 indicates that the rule is active, a value
of zero (0) indicates that the rule is inactive.

RuleEnableDate NNDate Defaulted for now, provided for future capability.

RuleDisableDate NNDate Defaulted for now, provided for future capability.
MQSeries Integrator Programming Reference for NEONRules 129

Chapter 4
6HH�$OVR

NNR_CLEAR

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.

1DPH 7\SH 'HVFULSWLRQ
130 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1155XOH5HDG'DWD

NNRRuleReadData is passed as a pointer to select functions in the Rule
Management API. The pointer may not be NULL, must be cleared using
NNR_CLEAR prior to any Rule Management API read calls.

6\QWD[

typedef struct NNRRuleReadData {
 char RuleName[RULE_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 int OrCondition;
 int SubscriberIndex;
 int RuleActive;
 NNDate RuleEnableDate;
 NNDate RuleDisableDate;
 long InitFlag;
} NNRRuleReadData;

0HPEHUV

1DPH 7\SH 'HVFULSWLRQ

RuleName[RULE_
NAME_LEN]

char Name of the rule, previously defined by the
user.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

SubscriberIndex int Defaulted for now, provided for future
capability.

RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.
MQSeries Integrator Programming Reference for NEONRules 131

Chapter 4
6HH�$OVR

NNR_CLEAR

RuleEnableDate NNDate Defaulted for now, provided for future
capability.

RuleDisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.

1DPH 7\SH 'HVFULSWLRQ
132 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1155XOH8SGDWH

NNRRuleUpdate is a structure containing rule update information. It must be
cleared using NNR_CLEAR prior to being populated, and must be populated
prior to any Rule Management API update calls.

6\QWD[

typedef struct NNRRuleUpdate{
 char RuleName[RULE_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 int OrCondition;
 int SubscriberIndex;
 int RuleActive;
 NNDate RuleEnableDate;
 NNDate RuleDisableDate;
 long InitFlag;
} NNRRuleUpdate;

0HPEHUV

1DPH 7\SH 'HVFULSWLRQ

RuleName[RULE_
NAME_LEN]

char Name of the rule to be evaluated within an
application group and message type defined
by the user.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

SubscriberIndex int Defaulted for now, provided for future
capability.
MQSeries Integrator Programming Reference for NEONRules 133

Chapter 4
6HH�$OVR

NNR_CLEAR

RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.

RuleEnableDate NNDate Defaulted for now, provided for future
capability.

RuleDisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.

1DPH 7\SH 'HVFULSWLRQ
134 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5XOH�0DQDJHPHQW�$3,�)XQFWLRQV
1150JU$GG5XOH

NNRMgrAddRule() enables the user to add a rule associated with a specific
application group and message type pair by providing the unique application
group, message type, and rule name for the rule in the pRule structure and
the new information for the rule in the pRRuleData structure.

Prior to adding a rule, the application group and message type must be
defined and exist in Rules using NNRMgrAddApp() and
NNRMgrAddMsg().

When adding the rule, the current user is set as the rule owner for
permissions. The owner is automatically granted Read and Update
permission for the rule. PUBLIC is given read permission.

6\QWD[

const long NNRMgrAddRule(
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 const NNRRuleData *pRRuleData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pPRRule const NNRRule * Input Should be populated prior to this
function call.
MQSeries Integrator Programming Reference for NEONRules 135

Chapter 4
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrAddRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

5HWXUQ�9DOXH

Returns 1 if the rule is added successfully; zero (0) if an error occurs. An error
can occur if the component cannot be stored, if either the owner or PUBLIC
cannot be stored, or if the Read or Update permissions for both the owner and
PUBLIC cannot be stored.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrReadRule

NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm

pRRuleData const
NNRRuleData *

Input DateChange, ChangeAction,
RuleEnableDate and
RuleDisableDates should be
populated with NULL. These are
provided only for future
enhancements. ArgumentCount
defaults to zero (0).

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
136 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU5HDG5XOH

NNRMgrReadRule() enables the user to retrieve rule management
information. Note that this API reads rule maintenance information, not rule
evaluation or subscription information. To read rule evaluation or
subscription information, use NNRMgrReadExpression() or
NNRMgrReadSubscription(). Prior to reading a rule, the application group,
message, and rule maintenance information must be defined and exist in
Rules using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule().

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

6\QWD[

const long NNRMgrReadRule(
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 NNRRuleData* const pRRuleData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRRule const NNRRule * Input Should be populated prior to this
function call.

pRRuleData NNRRuleData*
const

Output NNRMgrReadRule() populates
this structure. If DateChange is
not NULL, this rule exists.
MQSeries Integrator Programming Reference for NEONRules 137

Chapter 4
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrReadRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the rule is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrAddRule
138 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW)LUVW5XOH

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and application
group pair.

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

6\QWD[

const long NNRMgrGetFirstRule (
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 NNRRuleReadData *const pRRuleData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRRule const NNRRule * Input Must be completely populated
except for the RuleName field
prior to this function call.

pRRuleData NNRRule
Read Data *const

Output NNRMgrGetFirstRule populates
this structure.
MQSeries Integrator Programming Reference for NEONRules 139

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, no rules were
found for the application group and message type specified in the pRRule
structure.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrUpdateRule

NNRMgrAddRule

NNRMgrReadRule

NNRMgrDeleteEntireRule

NNRMgrGetNextRule
140 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW1H[W5XOH

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and rule name
pair.

When retrieving rule management information, user permission to read the
rule will be checked. If the user is the owner or another user with Read or
Update permissions for the rule, the user can see the rule information. If the
user does not have a minimum of Read access, an error is returned indicating
that the user does not have read permission.

6\QWD[

const long NNRMgrGetNextRule (
 NNRMgr *pMgr,
 NNRRuleReadData * const pRRuleData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.
NNRMgrGetFirstRule() must be called before NNRMgrGetNextRule().

5HWXUQ�9DOXH

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRRuleRead
Data

NNRRuleRead
Data const *

Output NNRMgrGetFirstRule
populates this structure.
MQSeries Integrator Programming Reference for NEONRules 141

Chapter 4
Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_RULES, the end of the rules list has been
reached.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrUpdateRule

NNRMgrAddRule
NNRMgrReadRule
NNRMgrDeleteEntireRule
NNRMgrGetFirstRule
142 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU'XSOLFDWH5XOH

NNRMgrDuplicateRule() creates a new rule under the same application
group/message type pair. Specify the new rule name in the NewRuleName
syntax.

The current user is the owner of the new rule. Read permission must exist for
the rule to be duplicated.

6\QWD[

const long NNRMgrDuplicateRule(
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 const char *NewRuleName);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrDuplicateRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pPRRule const NNRRule * Input Should be populated prior to this
function call.

NewRule
Name

const char Input Enter the new rule name. The
duplicated rule is created under
the same application group/
message type pair.
MQSeries Integrator Programming Reference for NEONRules 143

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the rule and its contents are completely duplicated; returns zero
(0) if an error occurs; for example, the new rule exists.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrReadRule

NNRMgrUpdateOwnerPerm

NNRMgrUpdatePublicPerm
144 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU8SGDWH5XOH

NNRMgrUpdateRule() enables the user to update a rule associated with a
specific application and group/message type pair by providing the unique
application group, message type, and rule name for the rule to be updated in
the pRule structure and the new information for the rule in the
pRRuleUpdate structure.

When updating rule management information, user permission to update the
rule will be checked. If the user is the owner or another user with Update
permission for the rule, the user can update the rule information. If the user
does not have Update access, an error is returned indicating that the user
does not have Update permission, and no change will occur.

6\QWD[

const long NNRMgrUpdateRule (
 NNRMgr *pMgr,
 const NNRRule *pRule,
 const NNRRuleUpdate *pRRuleUpdate);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRule const NNRRule * Input Must be populated prior to
this function call.

pRRuleUpdate const
NNRRuleUpdate *

Input Should be populated prior to
this function call.
MQSeries Integrator Programming Reference for NEONRules 145

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the rule is updated successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRRule key;
struct NNRRuleData data;
struct NNRRuleUpdate update;
NNR_CLEAR(&key);
NNR_CLEAR(&data);
NNR_CLEAR(&update);

cout << "Enter app group name" << endl << ">";
cin >> key.AppName;
cout << "Enter message type name" << endl << ">";
cin >> key.MsgName;
cout << "Enter old rule name" << endl << ">";
cin >> key.RuleName;
cout << "Enter new rule name" << endl << ">";
cin >> update.RuleName;
cout << "Enter rule active (1->Active, 0->Inactive)"
 << endl << ">";
cin >> update.RuleActive;

if (NNRMgrUpdateRule(pmgr,&key,&update)) {
 cout << endl << "\tOld Rule Name: " << key.RuleName <<
endl
 << "\tNew rule name: " << update.RuleName << endl
 << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr,session);

return;
146 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrAddRule

NNRMgrReadRule
NNRMgrDeleteEntireRule
NNRMgrGetFirstRule
NNRMgrGetNextRule
MQSeries Integrator Programming Reference for NEONRules 147

Chapter 4
1150JU'HOHWH(QWLUH5XOH

NNRMgrDeleteEntireRule() deletes a rule by deleting each component for the
rule, including rule, expression, and associations with subscriptions.
Subscriptions can be deleted from the rule set using
NNRMgrDeleteEntireSubscription(). The user provides the application name,
message type, and rule name.

:$51,1*�
NNRMgrDeleteEntireRule() deletes all components associated with a rule.
The user should only call this API to delete a rule.

When deleting rule management information, user permission to update the
rule is checked. If the user is the owner and has Update permissions for the
rule, the rule can be deleted. If the user is not the owner but does have Update
permission, the rule is set to inactive but not deleted. If the user does not have
Update permission, an error is returned indicating that the user does not have
Update permission, and no change will occur.

6\QWD[

const long NNRMgrDeleteEntireRule (
 NNRMgr *pMgr,
 const NNRRule *pRRule);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().

pRRule const NNRRule * Input Must be populated prior to this
function call.
148 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HWXUQ�9DOXH

Returns 1 if the rule is deleted successfully; returns 2 if the rule is deactivated;
returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRRule key;
struct NNRRuleData data;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter rule name \n>";
cin >> key.RuleName;

if (NNRMgrDeleteEntireRule(pmgr, &key)){
 cout << endl
 << "\tRule Name: " << key.RuleName << " Deleted."
 << endl << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr, session);

return;

6HH�$OVR

NNRMgrInit
NNR_CLEAR
MQSeries Integrator Programming Reference for NEONRules 149

Chapter 4
NNRMgrUpdateRule

NNRMgrAddRule
NNRMgrReadRule
NNRMgrGetFirstRule
NNRMgrGetNextRule
150 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
3HUPLVVLRQV�$3,V

When a rule is added using NNRMgrAddRule(), the user is given ownership
of the rule, as well as Read and Update permissions. PUBLIC is given Read
permission.

The same occurs when a subscription is added using
NNRMgrAddSubscription(). These default permissions can be changed by
using NNRMgrUpdateOwnerPerm() and NNRMgrUpdatePublicPerm().

The rule expression or subscription actions can be added by the owner
without changing the default permissions. Once permissions are defined for a
rule or subscription, an owner can give ownership to another user and
change permissions for themselves or PUBLIC using other Permissions APIs.

3HUPLVVLRQ�0DQDJHPHQW�$3,�6WUXFWXUHV

118VHU3HUPLVVLRQ'DWD

NNUserPermissionData is passed as an argument in several Rules
Management functions affecting permissions and should be cleared using
NN_CLEAR prior to use in a function call.

6\QWD[

typedef struct NNUserPermissionData{
 NNPermissionData Permission;
 char ParticipantName[NN_PARTICIPANT_NAME_LEN];
 long InitFlag;
} NNUserPermissionData;
MQSeries Integrator Programming Reference for NEONRules 151

Chapter 4
3DUDPHWHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

Permission NNPermission
Data

Specifies the permission for this
specific participant.

ParticipantName
[NN_PARTICIPANT
_NAME_LEN]

char Logon name of the user to whom the
permission is being assigned. This
parameter must be all capital letters
for Oracle; and case sensitive for
Sybase. PUBLIC for all users other
than the owner.

InitFlag long Flag used to determine if variables
have been initialized prior to calling a
Rules Management API.
152 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
113HUPLVVLRQ'DWD

NNPermissionData is passed as an argument in several Rules Management
functions affecting permissions and should be cleared using NN_CLEAR
prior to use in a function call.

6\QWD[

typedef struct NNPermissionData{
 int Sequence;
 char PermissionName[NN_PERMISSION_NAME_LEN];
 char PermissionValue[NN_PERMISSION_VALUE_LEN];
 long InitFlag;
} NNPermissionData;

3DUDPHWHUV

6HH�$OVR

NN_CLEAR

1DPH 7\SH 'HVFULSWLRQ

Sequence int Ordering value for this specific permission name-
value pair.

PermissionName[
NN_PERMISSION
_NAME_LEN]

char Type of permission being defined for the rule and
user permission. Only Update is valid.

PermissionValue
[NN_PERMISSION
_NAME_LEN]

char Value for the permission being defined for the
rule and user permission. Only the Granted and
DenyAll values associated with Update are valid.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
MQSeries Integrator Programming Reference for NEONRules 153

Chapter 4
115&RPSRQHQW

After a NNRRule structure is created for a rule, the user must create a
NNRComponent with ComponentType = NNRCOMP_RULE and
ComponentUnion.pRRule = &myRule.

After an NNRSubs structure is created for a rule, the user must create a
NNRComponent with ComponentType = NNRCOMP_SUBS and
ComponentUnion.pRSubs = &mySubs.

The NNRComponent is then called into a Permission API. NNRComponent
can be initialized by calling NN_CLEAR before populating.

6\QWD[

typedef enum NNRComponentTypes{
 NNRCOMP_RULE =1,
 NNRCOMP_SUBS =2,
 NNRCOMP_APP =3,
 NNRCOMP_MSG =4
 }NNRComponentTypes;

typedef union NNRComponentUnion {
 const struct NNRRule *pRRule;
 const struct NNRSubs *pRSubs;
 }NNRComponentUnion;

typedef struct {
 Long InitFlag;
 NNRComponentTypes ComponentType;
 NNRComponentUnion ComponentUnion;
 }NNRComponent;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

InitFlag Long Flag used to determine if
variables have been initialized
prior to calling a Rules
Management API.
154 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
6HH�$OVR

NNR_CLEAR

ComponentType NNRComponentTypes Identifies the type of component
used in ComponentUnion; must
be either NNRCOMP_RULE or
NNRCOMP_SUBS.

ComponentUnion NNRComponentUnion A union where either pRRule is
set to point to a previously
defined NNRRule structure or
pRSubs is set to point to a
previously defined NNRSubs
structure.

1DPH 7\SH 'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 155

Chapter 4
2YHUDOO�3HUPLVVLRQ�0DFUR

11B&/($5

When using Rules Management APIs affecting permissions, users are
expected to clear structures prior to invoking each function. Structures should
be cleared with a call to the NN_CLEAR macro. NN_CLEAR clears a
structure in such a way that the Rules Management APIs can alert the user to
a non-initialized structure.

6\QWD[

NN_CLEAR(_p)

3DUDPHWHUV

5HWXUQ�9DOXH

None

([DPSOH

struct NNPermission permit;

NN_CLEAR(&permit);

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

_p Any Rules
management
permissions
structure

Input Any structure used in Rules
Management API calls affecting
permissions.
156 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
3HUPLVVLRQ�$3,�)XQFWLRQV

1150JU*HW)LUVW3HUP

NNRMgrGetFirstPerm() enables the user to prepare the list of user-
permissions pairs for rules or subscriptions for retrieval by the
NNRMgrGetNextPerm() API.

6\QWD[

const long NNRMgrGetFirstPerm(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent
 NNUserPermissionData* const pPermissionData);

3DUDPHWHUV

5HPDUNV

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structure or calling
this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRComponent const NNR
Component *

Input Must populate prior to this
function call.

pPermission
Data

NNUser
PermissionData*
const

Output Populated by the call to
NNRMgrGetFirstPerm().
MQSeries Integrator Programming Reference for NEONRules 157

Chapter 4
Call NNRMgrGetNextPerm() to retrieve all remaining rule or subscription
permissions before calling NNRMgrGetFirstPerm() to retrieve permissions
for another rule or subscription.

5HWXUQ�9DOXH

Returns 1 if the list of user-permission pairs is prepared successfully; zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error message returned is RERR_NO_MORE_PERMISSIONS, no
permissions were found for the application group, message type, and rule or
subscription specified in the pRComponent structure.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NN_CLEAR

NNRMgrGetNextPerm
158 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW1H[W3HUP

NNRMgrGetNextPerm() enables the user to retrieve an user-permission pair
from the user-permissions list for a rule. When iterating through the list, a
NULL pPermissionData indicates the end of the list. NNRMgrGetFirstPerm()
MUST be called prior to using this routine.

6\QWD[

const long NNRMgrGetNextPerm(
 NNRMgr *pMgr,
 const NNUserPermissionData *pPermissionData);

3DUDPHWHUV

5HPDUNV

A call to NN_CLEAR for pPermissionData should be made prior to calling
this API.

NNRMgrGetFirstPerm() MUST be called prior to using this routine.

5HWXUQ�9DOXH

Returns 1 if an user-permission pair is read from the list successfully; zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pPermission
Data

const
NNUserPermission
Data *

Output Populated by the call to
NNRMgrGetNext Perm().
MQSeries Integrator Programming Reference for NEONRules 159

Chapter 4
If the error message returned is RERR_NO_MORE_PERMISSIONS, the end of
the permissions list has been reached.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NN_CLEAR

NNRMgrGetFirstPerm
160 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU8SGDWH8VHU3HUP

NNRMgrUpdateUserPerm() enables the user to add or change permissions
for a specific user. Only the owner of the permission can call
NNRMgrUpdateUserPerm().

6\QWD[

const long NNRMgrUpdateUserPerm(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent,
 const NNUserPermissionData *pPermissionData);

3DUDPHWHUV

5HPDUNV

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling
this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRComponent const
NNRComponent *

Input Must be populated prior to
this function call.

pPermissionData constNNUser
PermissionData *

Input Must be populated prior to
this function call. This
must include a valid
database user name and a
valid permission name/
value pair (Name = Owner,
Update; Value = Granted,
DenyAll).
MQSeries Integrator Programming Reference for NEONRules 161

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the permission is added or updated. Returns zero (0) if the input
parameters are not initialized with NNR_CLEAR and NN_CLEAR, the
current user is not the owner of the item, the given user is invalid, the
permission name/value is invalid, or a different error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NN_CLEAR

NNRMgrUpdatePublicPerm
162 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU&KDQJH2ZQHU

NNRMgrChangeOwner() enables the owner of the rule or subscription to
change ownership to a new user. Only the current owner can change
ownership. The new owner’s name must exist in the database and must be in
the same group/role as the current owner. The original owner’s permissions
are transferred to the new owner, overwriting any previous permissions of
the new owner.

6\QWD[

const long NNRMgrChangeOwner(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent,
 char *pNewOwner);

3DUDPHWHUV

5HPDUNV

A call to NNR_CLEAR for pRComponent should be made prior to populating
the structures or calling this API.

Note that for Oracle, all owner names must be in upper-case. For example,
owner should be OWNER. Sybase uses the same case as the logon name.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRComponent const
NNRComponent *

Input Must be populated prior to
this function call.

pNewOwner char * Input Must be populated with the
new owner’s logon name
prior to this function call.
MQSeries Integrator Programming Reference for NEONRules 163

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the owner is changed successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NN_CLEAR

NNRMgrUpdateOwnerPerm

NNRMgrUpdatePublicPerm
164 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU8SGDWH2ZQHU3HUP

NNRMgrUpdateOwnerPerm() enables the user to add/change permissions
for the owner. Only the owner can affect owner permissions. By default,
Update and Read permissions for all rules and subscriptions are given to their
owner.

6\QWD[

const long NNRMgrUpdateOwnerPerm(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent,
 const NNPermissionData *pPermissionData);

3DUDPHWHUV

5HPDUNV

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling
this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules
Management object
returned from call to
NNRMgrInit().

pRComponent const NNRComponent
*

Input Must be populated
prior to this function
call.

pPermissionData const
NNPermission Data *

Input Must be populated
prior to this function
call.
MQSeries Integrator Programming Reference for NEONRules 165

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the owner’s permissions are updated successfully; zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NN_CLEAR

NNRMgrUpdatePublicPerm
166 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU8SGDWH3XEOLF3HUP

NNRMgrUpdatePublicPerm() enables the owner to change permissions for
another user. Only the owner can change permissions for other users. By
default, other users (PUBLIC) are granted Read permission and denied
Update privilege. NNRMgrUpdatePublicPerm() can add any permissions
that do not currently exist.

6\QWD[

const long NNRMgrUpdatePublicPerm(
 NNRMgr *pMgr,
 const NNRComponent *pRComponent,
 const NNPermissionData *pPermissionData);

3DUDPHWHUV

5HPDUNV

NNRMgrAddOtherUserPermission() should be called prior to calling
NNRMgrUpdatePublicPerm().

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling
this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRComponent const
NNRComponent *

Input Should be populated prior
to this function call.

pPermissionData const
NNPermission
Data *

Input Should be populated prior
to this function call.
MQSeries Integrator Programming Reference for NEONRules 167

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the other user’s permission is added successfully; zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NN_CLEAR

NNR_CLEAR

NNRMgrUpdateOwnerPerm
168 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
2SHUDWRU�0DQDJHPHQW�$3,V

2SHUDWRU�0DQDJHPHQW�$3,�6WUXFWXUHV

1152SHUDWRU

NNROperator is passed as a pointer to the second parameter of the Operator
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Operator Management API calls. Use of this structure
is described in each Operator Management API section.

6\QWD[

typedef struct NNROperator {
 int OperatorHandle;
 char OperatorSymbol[OPERATOR_SYMBOL_LEN];
 int OperatorType;
}

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

OperatorHandle int Unique operator handle.

OperatorSymbol
[OPERATOR_SYMBOL_
LEN]

char String definition of operator.

OperatorType int Type of data.
MQSeries Integrator Programming Reference for NEONRules 169

Chapter 4
2SHUDWRU�0DQDJHPHQW�$3,�)XQFWLRQV

1150JU*HW)LUVW2SHUDWRU

Prior to adding arguments, users must know what operators are available
and supported within the current Rules installation.
NNRMgrGetFirstOperator() provides a way of starting to retrieve this
information. After using NNRMgrGetFirstOperator() to return the first
operator in the pOperator parameter, the user should call
NNRMgrGetNextOperator().

The pOperator structure contains a unique operator specified by a symbol,
type, and handle. The operator type and operator symbol provide a means for
the user to choose the operator symbol to provide the expression addition and
update functions: NNRMgrAddExpression() and
NNRMgrUpdateExpression().

6\QWD[

const long NNRMgrGetFirstOperator(
 NNRMgr *pRMgr,
 NNROperator * const pOperator);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetFirstOperator().

A call to NNR_CLEAR for pOperator should be made prior to populating the
structures or calling this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pRMgr NNRMgr * Input Name of a current Rules
Management object.

pOperator NNROperator *
const

Output Populated by
NNRMgrGetFirstOperator().
170 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HWXUQ�9DOXH

Returns 1 if the first operator was retrieved successfully; zero (0) if an error
occurred.

Use NNRMgrGetErrorNo() to retrieve the number for the error that occurred,
or use NNRMgrGetError() to retrieve the error message.

If the error number returned is RERR_NO_MORE_OPERATORS, no
operators were found.

([DPSOH

See Sample Program 2: Rules Management API.

6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrGetNextOperator()

NNRMgrGetErrorNo()

NNRMgrGetError()
MQSeries Integrator Programming Reference for NEONRules 171

Chapter 4
1150JU*HW1H[W2SHUDWRU

Prior to adding arguments, users must know what operators are available
and supported within the current Rules installation.
NNRMgrGetFirstOperator() provides a way of starting to retrieve this
information. After using NNRMgrGetFirstOperator() to return the first
operator in the pOperator parameter, the user should call
NNRMgrGetNextOperator().

The pOperator structure contains a unique operator specified by a symbol,
type, and handle. The operator type and operator symbol provide a means for
the user to choose the operator symbol to provide the expression addition and
update functions: NNRMgrAddExpression() and
NNRMgrUpdateExpression().

6\QWD[

const long NNRMgrGetNextOperator(
 NNRMgr *pRMgr,
 NNROperator * const pOperator);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetNextOperator().

A call to NNR_CLEAR for pOperator should be made prior to populating the
structures or calling this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pRMgr NNRMgr * Input Name of a current Rules
Management object.

pOperator NNROperator *
const

Output Populated by
NNRMgrGetFirstOperator().
172 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HWXUQ�9DOXH

Returns 1 if the next operator was retrieved successfully; zero (0) if an error
occurred.

Use NNRMgrGetErrorNo() to retrieve the number for the error that occurred,
or use NNRMgrGetError() to retrieve the error message.

If the error number returned is RERR_NO_MORE_OPERATORS, the end of
the operators list has been reached.

([DPSOH

See Sample Program 2: Rules Management API.

6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrGetFirstOperator()

NNRMgrGetErrorNo()

NNRMgrGetError()
MQSeries Integrator Programming Reference for NEONRules 173

Chapter 4
([SUHVVLRQ�0DQDJHPHQW�$3,V

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. For more information, see Operator Types on page 317.

See System Management for information on how to change a current case-
insensitive installation to case sensitive.
174 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
([SUHVVLRQ�0DQDJHPHQW�$3,�6WUXFWXUHV

115([S

NNRExp is passed as an argument in several Rules Management APIs to
identify what rule owns the Expression. It should be cleared using
NNR_CLEAR prior to use in a function call.

6\QWD[

typedef struct NNRExp {
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 long InitFlag;
} NNRExp;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

AppName[APP_
NAME_LEN]

char Name of the application group (defined by the
user). Should be the application group in which
the user is defining rules for evaluation.

MsgName[MSG_
NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. As long as
the user is using Formatter, the message type is
the input format name.

RuleName[RULE_
NAME_LEN]

char Name of the rule to be evaluated within an
application group and message name pair. This
rule name is defined by the user.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
MQSeries Integrator Programming Reference for NEONRules 175

Chapter 4
115([S'DWD

NNRExpData is passed as an argument in several Rules Management APIs
affecting Rule expressions. It should be cleared using NNR_CLEAR prior to
use in a function call.

6\QWD[

typedef struct NNRExpData {
 NNDate DateChange;
 int ChangeAction;
 long InitFlag
 NNDate EnableDate;
 NNDate DisableDate;
 char Expression[EXPRESSION_LEN];
 // This will always be the last data
 } NNRExpData;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

EnableDate NNDate Defaulted for now, provided for future
capability.

DisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
176 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
Expression
[EXPRESSION_
LEN]

char Boolean expression containing arguments and
Boolean operators AND (&) and OR (|) with
parentheses to determine order of evaluation.
Allows the user to add, update, and read rule
expressions up to 4096 characters long plus the
terminating NULL.

1DPH 7\SH 'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 177

Chapter 4
([SUHVVLRQ�0DQDJHPHQW�$3,�)XQFWLRQV

1150JU$GG([SUHVVLRQ

NNRMgrAddExpression() adds an expression to a rule. A rule can have only
one expression containing any number of arguments.
NNRMgrAddExpression() can be called only once per rule. Prior to adding
an expression, the user must define the application group, associated message
type, and rule using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule(). Before adding an expression, the user must also know
the operator information, obtained using NNRMgrGetFirstOperator() or
NNRMgrGetNextOperator().

When adding expression information, user permission to update the rule is
checked. If the user is the owner or has update permission for the rule, the
user can add the expression information. If the user does not have update
access, an error is returned indicating that the user does not have update
permission and no change occurs.

6\QWD[

const long NNRMgrAddExpression (
 NNRMgr *pMgr,
 const NNRExp* pRExp,
 NNRExpData* pRExpData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRExp const NNRExp * Input Must be populated prior to this
function call.
178 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

To store data related to expressions the application group, message type and
rule information must exist.

NNRMgrInit() should be called before NNRMgrAddExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

5HWXUQ�9DOXH

Returns 1 if the expression was added successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrDeleteEntireRule

NNRMgrReadExpression

NNRMgrUpdateExpression

pRExpData const
NNRExpData *

Input DateChange, ChangeAction,
EnableDate and DisableDate
must be set to NULL; provided
only for future enhancements.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 179

Chapter 4
1150JU5HDG([SUHVVLRQ

NNRMgrReadExpression() retrieves the rule expression associated with the
application group, message type, and rule triplet. Prior to retrieving an
expression, it must be defined. See NNRMgrAddApp(), NNRMgrAddMsg(),
NNRMgrAddRule(), and NNRMgrAddExpression().

When retrieving the rule expression, user permission to read the rule is
checked. If the user has read permission for the rule, the user can see the rule
information. If the user attempting to access rule information does not have
read access, an error is returned, indicating the user does not have read
permission.

6\QWD[

const long NNRMgrReadExpression (
 NNRMgr *pMgr,
 const NNRExp *pRExp,
 NNRExpData* pRExpData);

3DUDPHWHUV

5HPDUNV

To read expression data, the application group, message type and rule
information (including the expression) must exist.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRExp const NNRExp * Input Must be populated prior to this
function call.

pRExpData const
NNRExpData *

Output Populate this structure using
NNRMgrReadExpression().
180 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
NNRMgrInit() should be called before NNRMgrReadExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

5HWXUQ�9DOXH

Returns 1 if the expression was added successfully, zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrDeleteEntireRule
NNRMgrAddExpression

NNRMgrUpdateExpression
MQSeries Integrator Programming Reference for NEONRules 181

Chapter 4
1150JU8SGDWH([SUHVVLRQ

NNRMgrUpdateExpression() updates an expression in a rule. Prior to adding
an expression, the user must define the application group, associated message
type, and rule using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule(). Before adding or updating an expression, the user must
also know the operator information, obtained using
NNRMgrGetFirstOperator() or NNRMgrGetNextOperator().

When updating expression information, user permission to update the rule is
checked. If the user has update permission for the rule, the user can update
the expression information. If the user attempting to update an expression
does not have update access, an error is returned indicating that the user does
not have update permission and no change will occur.

6\QWD[

const long NNRMgrUpdateExpression(
 NNRMgr *pMgr,
 const NNRExp *pRExp,
 const NNRExpData *pRExpData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRExp const NNRExp * Input Must be populated prior to this
function call.

pRExpData const
NNRExpData *

Input DateChange, ChangeAction,
EnableDate and DisableDate
must be set to NULL; provided
only for future enhancements.
182 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

To update data related to expressions, the application group, message type
and rule information (including the expression) must exist.

NNRMgrInit() should be called before NNRMgrUpdateExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

5HWXUQ�9DOXH

Returns 1 if the expression was updated successfully, zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrDeleteEntireRule
NNRMgrAddExpression

NNRMgrReadExpression
MQSeries Integrator Programming Reference for NEONRules 183

Chapter 4
$UJXPHQW�0DQDJHPHQW�$3,V

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. See Appendix B: Operator Types.

See System Management for information on how to change a current case-
insensitive installation case sensitive.
184 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
$UJXPHQW�0DQDJHPHQW�$3,�6WUXFWXUHV

115$UJ

NNRArg is passed as a pointer as the second parameter of select Argument
Management APIs. The pointer may not be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Argument Management API calls.

6\QWD[

typedef struct NNRArg {
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 long InitFlag;
} NNRArg;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

AppName[APP_
NAME_LEN]

char Name of the application group (defined by the
user). Should be the application group in which
the user is defining rules for evaluation.

MsgName[MSG_
NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. Using
Formatter, the message type is the input format
name.

RuleName[RULE_
NAME_LEN]

char Name of the rule to be evaluated within an
application group and message name pair. This
rule name is defined by the user.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
MQSeries Integrator Programming Reference for NEONRules 185

Chapter 4
115$UJ'DWD�

NNRArgData is passed as a pointer as the third parameter of select Argument
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by Argument
Management API calls. Use of this structure is described in each Argument
Management API section.

6\QWD[

typedef struct NNRArgData{
 NNDate DateChange;
 int ChangeAction;
 char FieldName[FIELD_NAME_LEN];
 int OperatorId;
 char SecondFieldName[SECOND_FIELD_NAME_LEN];
 char ArgValue[ARG_VALUE_LEN];
 int ArgActive;
 NNDate ArgEnableDate;
 NNDate ArgDisableDate;
 int ArgSequence;
 long InitFlag;
} NNRArgData;

0HPEHUV

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

FieldName[FIELD_
NAME_LEN]

char Name of the field to which the operator will
be applied.

OperatorId int ID retrieved by NNRMgrGetFirstOperator()
or NNRMgrGetNextOperator().
186 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
SecondFieldName
[SECOND_FIELD_
NAME_LEN]

char Value to which the field will be compared for
a field to field operator.

ArgValue[ARG_V
ALUE_LEN]

char Value of the comparison (static value).

ArgActive int Specifies whether the argument is active
(value of 1). For release 4.0 and later, all
arguments MUST be active.

ArgEnableDate NNDate For future enhancements, ignore for now.

ArgDisableDate NNDate For future enhancements, ignore for now.

ArgSequence int Sequence of this argument within the rule.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.

1DPH 7\SH 'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 187

Chapter 4
115$UJ8SGDWH

NNRArgUpdate is a structure containing update information for arguments
contained within an application group/message type/rule. The pointer may
not be NULL, must be cleared using NNR_CLEAR prior to being populated,
and must be populated prior to any Argument Management API calls.

6\QWD[

typedef struct NNRArgUpdate {
 NNDate DateChange;
 int ChangeAction;
 char FieldName[FIELD_NAME_LEN];
 int OperatorId;
 char SecondFieldName[SECOND_FIELD_NAME_LEN];
 char ArgValue[ARG_VALUE_LEN];
 int ArgActive;
 NNDate ArgEnableDate;
 NNDate ArgDisableDate;
 long InitFlag;
} NNRArgUpdate;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

FieldName[FIELD_
NAME_LEN]

char Name of the field to which the operator will be
applied.

OperatorId int ID retrieved by NNRMgrReadFirstOperator()
or NNRMgrReadNextOperator().

SecondFieldName
[SECOND_FIELD_
NAME_LEN]

char Value to which the field is compared for a field
to field operator.
188 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
ArgValue[ARG_
VALUE_LEN]

char Value of the comparison (static value).

ArgActive int Value of 1 indicates that the argument is active,
a value of zero (0) indicates that the argument is
inactive. For release 4.0 and later, all arguments
must be active.

ArgEnableDate NNDate Defaulted for now, provided for future
capability.

ArgDisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.

1DPH 7\SH 'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 189

Chapter 4
$UJXPHQW�0DQDJHPHQW�$3,�)XQFWLRQV

1150JU*HW)LUVW$UJXPHQW

NNRMgrGetFirstArgument() provides a way to retrieve information for a list
of arguments associated with an application group/message type/rule
triplet. This API returns the first argument in the rule in the pRArgData
parameter. Prior to retrieving an argument, it must be defined.

When retrieving argument information, user permission to read the rule is
checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have Read permission.

1RWH�
The arguments are not necessarily grouped together with the Boolean AND
(&) operator. If there is more than one argument, use the
NNRMgrReadExpression() API to determine the Boolean operators.

6\QWD[

const long NNRMgrGetFirstArgument(
 NNRMgr *pMgr,
 const NNRArg * pRArg,
 NNRArgData * const pRArgData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Name of a current Rules
Management object.

pRArg const NNRArg * Input Must be populated prior to this
API call.
190 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetFirstArgument().
A call to NNR_CLEAR for both pRArg and pRArgData should be made prior
to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the argument is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_ARGUMENTS, no arguments were
found for the application group, message type, and rule name specified in the
pRArg structure.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrGetNextArgument

NNRMgrReadExpression

NNRMgrAddApp()

NNRMgrAddMsg()

NNRMgrAddRule()

NNRMgrAddExpression()

pRArgData NNRArgData *
const

Output NNRMgrGetFirstArgument()
populates this structure.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 191

Chapter 4
1150JU*HW1H[W$UJXPHQW

NNRMgrGetNextArgument() provides a way of iterating through the
arguments after the first argument has been retrieved (see
NNRMgrGetFirstArgument()).

When retrieving argument information, user permission to read the rule is
checked. If the user is the owner or another user and with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have Read permission.

:$51,1*�
The arguments are not necessarily grouped together with the Boolean AND ()
operator. If there is more than one argument, the user should use the
NNRMgrReadExpression() API to retrieve the Boolean operators.

6\QWD[

const long NNRMgrGetNextArgument (
 NNRMgr *pMgr,
 NNRArgData * const pRArgData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRArgData NNRArgData *
const

Output NNRMgrGetNextArgument()
populates this structure.
192 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetNextArgument().
A call to NNR_CLEAR for both pRArg and pRArgData should be made prior
to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the argument is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_ARGUMENTS, the end of the
arguments list has been reached.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrGetFirstArgument

NNRMgrReadExpression
MQSeries Integrator Programming Reference for NEONRules 193

Chapter 4
6XEVFULSWLRQ�0DQDJHPHQW�$3,V

Subscriptions are added to an Application Group/Message Type Rule Set.
After they are added, subscriptions can be associated with multiple rules in
the same Application Group/Message Type.

The NNRMgrAddSubscription() API is used to add the subscription to the
Rule Set if no rule name is given, and to associate the subscription to a rule.
Subscription permissions work similarly to rule permissions.

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

See System Management for information on how to change a current case-
insensitive installation to case sensitive.
194 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
6XEVFULSWLRQ�0DQDJHPHQW�$3,�6WUXFWXUHV

1156XEV�

NNRSubs is passed as a pointer as the second parameter of select
Subscription Management APIs. This pointer cannot be NULL. This structure
must be populated by the user prior to calling any of the Subscription
Management APIs, and should be initialized by calling NNR_CLEAR prior to
populating all of the fields.

6\QWD[

typedef struct NNRSubs{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 char SubsName[SUBS_NAME_LEN];
 long InitFlag;
 } NNRSubs;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

AppName
[APP_NAME_LEN]

char Name of the application group (defined by the
user). Should be the application group in which
the user is defining rules for evaluation.

MsgName[MSG_
NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. Using
Formatter, the message type is the input format
name.

RuleName[RULE_
NAME_LEN]

char Name of the rule to be evaluated within an
application group and message name pair. This
rule name is defined by the user. This is required
only when adding a subscription to a specific
rule. It is ignored for action, option, update, and
delete functions.
MQSeries Integrator Programming Reference for NEONRules 195

Chapter 4
SubsName[SUBS_
NAME_LEN]

char Name of the subscription associated with a
message name and application group.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.

1DPH 7\SH 'HVFULSWLRQ
196 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1156XEV'DWD�

NNRSubsData is passed as a pointer as the third parameter of select
Subscription Management APIs. The pointer may not be NULL and must be
cleared (see NNR_CLEAR) prior to being populated (either by the user or by
Subscription Management API calls). Use of this structure is described in each
Subscription Management API section.

6\QWD[

typedef struct NNRSubsData{
 NNDate DateChange;
 int ChangeAction;
 int SubsActive;
 NNDate SubsEnableDate;
 NNDate SubsDisableDate;
 char SubsOwner[SUBS_OWNER_LEN];
 char SubsComment[SUBS_COMMENT_LEN];
 long InitFlag;
 } NNRSubsData;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of 1indicates that the subscription is
active, a value of zero (0) indicates that the
subscription is inactive.

SubsEnableDate NNDate Provided for future functionality, ignored
for now.

SubsDisableDate NNDate Provided for future functionality, ignored
for now.
MQSeries Integrator Programming Reference for NEONRules 197

Chapter 4
6HH�$OVR

NNR_CLEAR

SubsOwner[SUBS_
OWNER_LEN]

char Name of the owner of the subscription.

SubsComment{SUBS
_COMMENT_LEN]

char Information details about the subscription.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.

1DPH 7\SH 'HVFULSWLRQ
198 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1156XEV5HDG'DWD

NNRSubsReadData is a structure containing subscription information after a
subscription read operation.

6\QWD[

typedef struct NNRSubsReadData{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 char SubsName[SUBS_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 int SubsActive;
 NNDate SubsEnableDate;
 NNDate SubsDisableDate;
 char SubsOwner[SUBS_OWNER_LEN];
 char SubsComment[SUBS_COMMENT_LEN];
 long InitFlag;
 } NNRSubsReadData;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

AppName[APP_NAME_
LEN]

char Name of the application group to
identify the subscription.

MsgName[MSG_NAME_
LEN]

char Name of the message type to identify
the subscription.

RuleName[RULE_NAME
_LEN]

char Name of the rule to link to the
subscription, if provided.

SubsName[SUBS_NAME
_LEN]

char Name of the subscription to be read.

DateChange NNDate Defaulted for now, provided for future
capability.
MQSeries Integrator Programming Reference for NEONRules 199

Chapter 4
6HH�$OVR

NNR_CLEAR

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of 1indicates that the subscription
is active, a value of zero (0) indicates that
the subscription is inactive.

SubsEnableDate NNDate Defaulted for now, provided for future
capability.

SubsDisableDate NNDate Defaulted for now, provided for future
capability.

SubsOwner
[SUBS_OWNER_ LEN]

char Contains the name of the subscription
owner.

SubsComment
[SUBS_COMMENT_LEN]

char Contains the subscription owner’s
comment.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.

1DPH 7\SH 'HVFULSWLRQ
200 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1156XEV8SGDWH

NNRSubsUpdate contains update information for subscriptions. The pointer
must be cleared using NNR_CLEAR prior to being populated, and must be
populated prior to any Subscription Management API calls.

6\QWD[

typedef struct NNRSubsUpdate {
 char SubsName[SUBS_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 int SubsActive;
 NNDate SubsEnableDate;
 NNDate SubsDisableDate;
 char SubsOwner[SUBS_OWNER_LEN];
 char SubsComment[SUBS_COMMENT_LEN];
 long InitFlag;
 } NNRSubsUpdate;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

SubsName[SUBS_
NAME_LEN]

char Name for the subscription to be updated.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of 1 indicates that the subscription is
active, a value of zero (0) indicates that the
subscription is inactive.

SubsEnableDate NNDate Defaulted for now, provided for future
capability.

SubsDisableDate NNDate Defaulted for now, provided for future
capability.
MQSeries Integrator Programming Reference for NEONRules 201

Chapter 4
6HH�$OVR

NNR_CLEAR

SubsOwner[SUBS_
OWNER_LEN]

char Defaulted for now, provided for future
capability.

SubsComment[SUBS
_COMMENT_LEN]

char Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.

1DPH 7\SH 'HVFULSWLRQ
202 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
6XEVFULSWLRQ�0DQDJHPHQW�$3,�)XQFWLRQV

1150JU$GG6XEVFULSWLRQ

NNRMgrAddSubscription() adds subscription maintenance information for
one subscription. If the user wants more than one subscription for the rule or
rule set, this function must be called once for each subscription. The user can
either supply a rule name or not. The subscription is created if it does not
already exist in the rule set. If the rule name is provided, the subscription is
associated with that rule, if the user has Update permission for the rule. The
user entering the subscription is identified and stored as its owner and is
automatically granted Update and Read permission for the subscription.
PUBLIC is automatically granted Read permission for the subscription.

When adding subscription information to a rule, user permission to update
the rule will be checked. If the user is the owner or another user with Update
permission for the rule, the user can add the subscription information. If the
user attempting to add a subscription does not have Update access, an error is
returned indicating that the user does not have Update permission and no
change will occur.

6\QWD[

const long NNRMgrAddSubscription(
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 const NNRSubsData *pRSubsData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().

pRSubs const NNRSubs
*

Input Must be populated prior to this
function call.
Users need not specify the rule name.
MQSeries Integrator Programming Reference for NEONRules 203

Chapter 4
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrAddSubscription().

A call to NNR_CLEAR for both pRSubs and pRSubsData should be made
prior to populating the structures or calling this API.

If a rule name is provided, the function checks to see if the subscription
already exists in the rule set. If the subscription exists, it then checks to see if
the rule already has the subscription. If so, the function fails and sets the error
code to RERR_SUBS_NAME_ALREADY_EXISTS. If not, the function adds
the subscription to the rule.

If the rule name is provided, and the subscription does not exist in the rule
set, the function creates the subscription and automatically adds it to the rule.

If the user does not provide the rule name, the function
NNRMgrAddSubscription() will check to see if the subscription exists in the
rule set. If the subscription already exists, the function will be set to the
RERR_SUBS_ALREADY_EXISTS_IN_RULESET error code. If not, the
function will create the subscription.

5HWXUQ�9DOXH

Returns 1 if the subscription is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

pRSubs
Data

const
NNRSubsData *

Input Must be populated prior to calling this
function. DateChange, ChangeAction,
SubsEnableDate and SubsDisableDate
should be set to NULL. They are
provided only for future
enhancements. SubsActive is
defaulted to 1.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
204 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddRule
NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm
NNRMgrReadSubscription
MQSeries Integrator Programming Reference for NEONRules 205

Chapter 4
1150JU5HDG6XEVFULSWLRQ

NNRMgrReadSubscription() reads subscription maintenance information for
one subscription.

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or a user with Read or Update
permissions for the subscription, the user can see the subscription. If the user
attempting to access subscription information does not have a minimum of
Read access, an error is returned indicating that the user does not have Read
permission. The subscription Read permission is also checked when reading
an action or option in the subscription. If the rule name is given, the rule is
checked for Read permission and association with the subscription.

6\QWD[

const long NNRMgrReadSubscription(
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 NNRSubsData* const pRSubsData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRSubs const NNRSubs * Input Must be populated prior to this
function call.
The rule name does not have to be
provided in the NNRSubs structure
pointed to by pRSubs.

pRSubs
Data

NNRSubsData*
const

Output NNRMgrReadSubscription()
populates this structure. If
DateChange is non-NULL, the
subscription exists.
206 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrReadSubscription().
A call to NNR_CLEAR for both pRSubs and pRSubsData should be made
prior to populating the structures or calling this API.

If a rule name is provided, pRSubs verifies whether the subscription exists for
the rule name and checks rule permission. If the rule name is not provided,
the function verifies whether the subscription exists in the rule set.

5HWXUQ�9DOXH

Returns 1 if the subscription was read successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription
MQSeries Integrator Programming Reference for NEONRules 207

Chapter 4
1150JU*HW)LUVW6XEVFULSWLRQ

NNRMgrGetFirstSubscription() and NNRMgrGetNextSubscription() enable
the user to iterate through the subscriptions associated with the application
group, message type and, optionally, the rule name. Call
NNRMgrGetFirstSubscription(), and then call
NNRMgrGetNextSubscription().

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for the subscription, the user can see the information. If
the user does not have a minimum of Read access, an error is returned,
indicating the user does not have Read permission. If the rule name is not
provided, all subscriptions are retrieved for the rule set.

6\QWD[

const long NNRMgrGetFirstSubscription (
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 NNRSubsReadData * const pRSubsReadData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRSubs const NNRSubs * Input Must be completely populated
except for the
SubscriptionName field prior
to this function call.
User need not specify a rule
name.

pRSubsRead
Data

NNRSubsRead
Data * const

Output Populated by this function call.
208 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

The rule name does not have to be provided in the NNRSubs structure
pointed to by pRSubs. If provided, the function retrieves the first subscription
associated with the rule. If not provided, the function retrieves the first
subscription associated with the rule set.

5HWXUQ�9DOXH

Returns 1 if the subscription was retrieved successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_SUBSCRIPTIONS, no
subscriptions were found for the application group and message type
specified in the pRSubs structure.

([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRSubs key;
struct NNRSubsReadData data;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter rule name \n>";
cin >> key.RuleName;

int iret = NNRMgrGetFirstSubscription(pmgr, &key, &data);
if (iret)
{
 printSubscription(&key, &data);
MQSeries Integrator Programming Reference for NEONRules 209

Chapter 4
 while(NNRMgrGetNextSubscription(pmgr, &data))
 {
 printSubscription(&key, &data);
 }
}
else
{
 cout << endl << "Read failed." << endl << endl << endl;
}
CloseNNRMgr(pmgr, session);

return;

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription

NNRMgrReadSubscription

NNRMgrGetNextSubscription

NNRMgrUpdateSubscription
210 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW1H[W6XEVFULSWLRQ

NNRMgrGetFirstSubscription() and NNRMgrGetNextSubscription() enable
the user to iterate through the subscriptions associated with the application
group, message type and, optionally, the rule name. Call
NNRMgrGetFirstSubscription() before NNRMgrGetNextSubscription().

When retrieving subscription information, user permission to read both the
rule and the subscription is checked. If the user is the owner or another user
has read or update permissions for the subscription, the user can see the
information. If the user attempting to access subscription information does
not have a minimum of read access, an error returns indicating the user does
not have read permission. The subscription read permission is also checked
when reading an action or option in the subscription

6\QWD[

const long NNRMgrGetNextSubscription (
 NNRMgr *pMgr,
 NNRSubsReadData * const pRSubsReadData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRSubsRead
Data

NNRSubsRead
Data * const

Output Populated by this function call.
MQSeries Integrator Programming Reference for NEONRules 211

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the subscription was retrieved successfully; zero if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_SUBSCRIPTIONS, the end
of the subscriptions list has been reached.

([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRSubs key;
struct NNRSubsReadData data;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter rule name \n>";
cin >> key.RuleName;

int iret = NNRMgrGetFirstSubscription(pmgr, &key, &data);
if (iret)
{
 printSubscription(&key, &data);
 while(NNRMgrGetNextSubscription(pmgr, &data))
 {
 printSubscription(&key, &data);
 }
}
else
{
 cout << endl << "Read failed." << endl << endl << endl;
}
CloseNNRMgr(pmgr, session);
return;
212 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrAddSubscription
NNRMgrReadSubscription
NNRMgrGetFirstSubscription
NNRMgrUpdateSubscription
MQSeries Integrator Programming Reference for NEONRules 213

Chapter 4
1150JU'XSOLFDWH6XEVFULSWLRQ

NNRMgrDuplicateSubscription() creates a new subscription based on the
subscription name provided. The new subscription has the name provided in
the pNewSubsName and inherits all other properties from the existing
subscription provided in pSubs.SubsName. The user must have Read
permission to the subscription to duplicate it.

6\QWD[

const long NNRMgrDuplicateSubscription (
 NNRMgr *pMgr,
 const NNRSubs* pSubs,
 const char * const pNewSubsName);

3DUDPHWHUV

5HWXUQ�9DOXH

Returns 1 if the subscription duplicated successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pSub const NNRSubs* Input Must be populated prior to this
function call.

NewSubs
Name

const char* const Input Names of duplicate specified
subscription.
214 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrGetNextRuleUsingSubs
MQSeries Integrator Programming Reference for NEONRules 215

Chapter 4
1150JU8SGDWH6XEVFULSWLRQ

NNRMgrUpdateSubscription() enables the user to update a subscription. The
user provides the unique application group, message type, and subscription
name to identify the subscription to be updated in the pRSubs structure, and
provides the new information in the pRSubsUpdate structure.

When updating subscription information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission, the user can update the subscription information. If the user
attempting to update a subscription does not have Update access, an error is
returned indicating that the user does not have Update permission, and no
change occurs.

1RWH�
The subscription Update permission is also checked when an action or option
is either added or updated in the subscription.

6\QWD[

const long NNRMgrUpdateSubscription (
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 const NNRSubsUpdate *pRSubsUpdate);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRSubs const NNRSubs * Input Must be populated prior to this
function call.
The user does not have to specify a
rule name; the name is ignored.
216 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

The rule name does not have to be in the NNRSubs structure pointed to by
pRSubs; the name is ignored. However, all the changes made to the
subscription are made globally within the rule set.

5HWXUQ�9DOXH

Returns 1 if the subscription was updated successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRSubs key;
struct NNRSubsUpdate data;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;

cout << "Enter New subscription name \n>";

pRSubs
Update

const
NNRSubsUpdate *

Input Must be populated prior to this
function call.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 217

Chapter 4
cin >> data.SubsName;
cout << "Enter new subscription owner \n>";
cin >> data.SubsOwner;
cout << "Enter new subscription comment \n>";
cin >> data.SubsComment;
if (NNRMgrUpdateSubscription(pmgr, &key, &data)) {
 cout << endl
 << "\tSubs Name: " << key.SubsName << "
Changed."
 << endl << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr, session);
return;

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription

NNRMgrReadSubscription

NNRMgrGetFirstSubscription

NNRMgrGetNextSubscription
218 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU'HOHWH6XEVFULSWLRQ)URP5XOH

NNRMgrDeleteSubscriptionFromRule() disassociates a subscription from its
rule if the user has update permission for the rule. Only a subscription that is
not associated with any rule can be deleted from the rule set by using
NNRMgrDeleteEntireSubscription().

6\QWD[

const long NNRMgrDeleteSubscriptionFromRule (
 NNRMgr *pMgr,
 const NNRRule *pRRule,
 const char * SubsName);

3DUDPHWHUV

5HPDUNV

A call to NNR_CLEAR for pRRule should be made prior to populating the
structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the user has update permission for the rule, is deleting the
subscription, and the subscription is successfully deleted. Returns zero (0) if
an error occurs. An error will occur if the user does not have update
permission.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRRule pRRule Input The unique rule definition.

SubsName const char* const Input Name of subscription.
MQSeries Integrator Programming Reference for NEONRules 219

Chapter 4
Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNRMgrDeleteEntireSubscription
220 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU'HOHWH(QWLUH6XEVFULSWLRQ

NNRMgrDeleteEntireSubscription() deletes a subscription and its actions and
options from the specified rule. If the subscription is associated with any
rules, an error will be returned.

When deleting subscription information, user permission to update the
subscription will be checked. If the user is the owner and has Update
permissions for the subscription, the subscription is deleted. If the user is not
the owner but does have Update access, the subscription is set to inactive but
not deleted. If the user does not have Update access, an error is returned
indicating that the user does not have Update permission, and no change will
occur.

6\QWD[

const long NNRMgrDeleteEntireSubscription (
 NNRMgr *pMgr,
 const NNRMSubs *pRSubs);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().

pRSubs NNRMSubs Input The unique identifier for the
subscription with the application
group name, message type name, and
subscription name.
MQSeries Integrator Programming Reference for NEONRules 221

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the subscription was deleted successfully; 2 if the subscription
was deactivated; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNRMgrDeleteSubscriptionFromRule
222 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW)LUVW5XOH8VLQJ6XEV

NNRMgrGetFirstRuleUsingSubs() enables the user to iterate through the
rules associated with a subscription. If there are any rules using the
subscription, the name of the first rule is returned in
NpRSubsReadData.RuleName.

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for subscription, the user can see the information. If the
user attempting to access subscription information does not have a minimum
of Read access, an error is returned indicating that the user does not have
Read permission. The subscription Read permission is also checked when the
user is reading an action or option in the subscription.

6\QWD[

const long NNRMgrGetFirstRuleUsingSubs (
 NNRMgr *pMgr,
 const NNRSubs *pRSubs,
 char* const pRuleName);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRSubs const NNRSubs * Input Must be completely populated
except for the Subscription Name
field prior to this function call.
User must not specify a rule
name.

pRuleName char* const Output Populated by this function call.
MQSeries Integrator Programming Reference for NEONRules 223

Chapter 4
5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

The rule name should not be provided in the NNRSubs structure pointed to
by pRSubs.

5HWXUQ�9DOXH

Returns 1 if the rules were retrieved successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, no rules were
found for the application group, message type, and rule name specified in the
pRSubs structure.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription

NNRMgrReadSubscription

NNRMgrGetFirstSubscription

NNRMgrUpdateSubscription

NNRMgrGetNextRuleUsingSubs
224 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU*HW1H[W5XOH8VLQJ6XEV

NNRMgrGetFirstRuleUsingSubs() and NNRMgrGetNextRuleUsingSubs()
enable the user to iterate through the subscriptions associated with a rule.
Call NNRMgrGetFirstRuleUsingSubs() before
NNRMgrGetNextRuleUsingSubs().

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for the subscription, the user can see the information. If
the user attempting to access subscription information does not have a
minimum of Read access, an error is returned indicating that the user does
not have Read permission. The subscription Read permission is also checked
when reading an action or option in the subscription

6\QWD[

const long NNRMgrGetNextRuleUsingSubs (
 NNRMgr *pMgr,
 char* const pRuleName);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

The rule name does not have to be provided in the NNRSubs structure
pointed to by pRSubs.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().

pRuleName char* const Output Populated by this function call.
MQSeries Integrator Programming Reference for NEONRules 225

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the rule was retrieved successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, the end of the rule
list has been reached.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddSubscription

NNRMgrReadSubscription

NNRMgrGetFirstSubscription

NNRMgrUpdateSubscription

NNRMgrGetFirstRuleUsingSubs
226 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
$FWLRQ�0DQDJHPHQW�$3,V

Action are commands used if a rule evaluates as true and the subscription is
performed. A subscription includes actions that contain option name-value
pairs.

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. See Appendix B: Operator Types on page 317.

See System Management for information on how to change a current case-
insensitive installation case sensitive.
MQSeries Integrator Programming Reference for NEONRules 227

Chapter 4
$FWLRQ�0DQDJHPHQW�$3,�6WUXFWXUHV

115$FWLRQ

NNRAction is passed as a pointer as the second parameter of select Action
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Action Management API calls.

6\QWD[

typedef struct NNRAction{
 char AppName[APP_NAME_LEN];
 char MsgName[MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 char SubsName[SUBS_NAME_LEN];
 char ActionName[ACTION_NAME_LEN];
 char OptionName[OPTION_NAME_LEN];
 long InitFlag;
 } NNRAction;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

AppName
[APP_NAME_LEN]

char Name of the application group defined by the
user. Should be the application group in which
the user is defining rules for evaluation.

MsgName[MSG_
NAME_LEN]

char Name of the message for which the user is
defining rules for message evaluation. As long
as the user is using Formatter, the message type
is the input format name.

RuleName[RULE_
NAME_LEN]

char The rule name is ignored for actions and
options.

SubsName[SUBS_
NAME_LEN]

char Name of the subscription associated with a rule
name, message name, and application group.
228 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
6HH�$OVR

NNR_CLEAR

ActionName
[ACTION_NAME_
LEN]

char Name of the action associated with this
subscription.

OptionName
[OPTION_NAME_
LEN]

char Name of the first option associated with this
action.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.

1DPH 7\SH 'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 229

Chapter 4
115$FWLRQ'DWD

NNRActionData is passed as a pointer as the third parameter of the Action
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Action Management API calls. Use of this structure is
described in the Action Management API section.

6\QWD[

typedef struct NNRActionData{
 NNDate DateChange;
 int ChangeAction;
 char OptionValue[OPTION_VALUE_LEN];
 long InitFlag;
) NNRActionData;

3DUDPHWHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OptionValue
[OPTION_VALUE_
LEN]

char Value of the first option.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
230 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
115$FWLRQ5HDG'DWD

NNRActionReadData is passed as a pointer as the third parameter of select
Action Management APIs. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to being populated by the user or by Action
Management API calls. Use of this structure is described in each Action
Management API section.

6\QWD[

typedef struct NNRActionReadData{
 NNDate DateChange;
 int ChangeAction;
 int ActionSequence;
 char ActionName[ACTION_NAME_LEN];
 char OptionName[OPTION_NAME_LEN];
 char OptionValue[OPTION_VALUE_LEN];
 long InitFlag;
 } NNRActionReadData;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

ActionSequence int Sequence of this action within its
subscription. For example, for the first
action, ActionSequence=1.

ActionName[ACTION_
NAME_LEN]

char Name of the action associated with the
subscription.

OptionName[OPTION_
NAME_LEN]

char Name of the first option associated with
the action.

OptionValue[OPTION_
VALUE_LEN]

char Static value of the first option if there are no
actions.
MQSeries Integrator Programming Reference for NEONRules 231

Chapter 4
InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.

1DPH 7\SH 'HVFULSWLRQ
232 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
115$FWLRQ8SGDWH

NNRActionUpdate contains update information for actions. The pointer
must be cleared using NNR_CLEAR prior to being populated, and must be
populated prior to any Action Management API calls.

6\QWD[

typedef struct NNRActionUpdate{
 char ActionName[ACTION_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 long InitFlag;
 } NNRActionUpdate;

3DUDPHWHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

ActionName[ACTION_
NAME_LEN]

char Name of the action to be updated.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.
MQSeries Integrator Programming Reference for NEONRules 233

Chapter 4
$FWLRQ�0DQDJHPHQW�$3,�)XQFWLRQV

1150JUGGFWLRQ

NNRMgrAddAction() adds both an action and its first option. All other
options must be added using NNRMgrAddOption(). Prior to adding an
action, the application group, message type, and subscription must have been
added using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddSubscription().

When adding action information, user permission to update the subscription
is checked. If the user is the owner or another user with Update permission
for the subscription, the user can add the action information. If the user
attempting to add an action does not have Update access, an error is returned
indicating that the user does not have Update permission, and no change
occurs.

6\QWD[

const long NNRMgrAddAction(
 NNRMgr *pMgr,
 const NNRAction *pRAction,
 const NNRActionData *pRActionData,
 int *pActionId);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRAction const
NNRAction *

Input Must be populated prior to this
function call. The rule name is
ignored.
234 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrAddAction().

A call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the action was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrGetFirstAction

NNRMgrGetNextAction

NNRMgrDeleteAction

pRActionData const
NNRAction
Data *

Input DateChange and ChangeAction
should be populated with NULL
since they are provided only for
future enhancements.

pActionId int * Input Value of the action identifier used
to insert all but the first option for
an action.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 235

Chapter 4
1150JU*HW)LUVW$FWLRQ

NNRMgrGetFirstAction() provides a way of starting to retrieve information
for a list of actions associated with an application group, message type, rule
and subscription. This API returns the first action in the subscription in the
pRActionData parameter. Prior to retrieving an action, actions must be
defined.

When retrieving action information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the rule information. If the
user does not have a minimum of Read access, an error is returned indicating
that the user does not have Read permission.

6\QWD[

const long NNRMgrGetFirstAction(
 NNRMgr *pMgr,
 const NNRAction * pRAction,
 NNRActionReadData * const pRActionData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRAction const NNRAction * Input Must be populated prior to this
function call. RuleName,
ActionName, and OptionName
do not have to be populated
before this call.

pRAction
Data

NNRActionRead
Data * const

Output NNRMgrGetFirstAction()
populates this structure.
236 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetFirstAction().A
call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the action was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_ACTIONS, no actions
were found for the application group and message type specified in the
pRAction structure.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrGetNextAction

NNRMgrAddApp()

NNRMgrAddMsg()

NNRMgrAddRule()

NNRMgrAddSubscription()

NNRMgrAddAction()

NNRMgrAddOption()
MQSeries Integrator Programming Reference for NEONRules 237

Chapter 4
1150JU*HW1H[W$FWLRQ

NNRMgrGetNextArgument() provides a way of iterating through the actions
after the first action has been retrieved. See NNRMgrGetFirstAction().

When retrieving action information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the action information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

6\QWD[

const long NNRMgrGetNextAction(
 NNRMgr *pMgr,
 NNRActionReadData * const pRActionData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetNextAction(). A
call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the action was read successfully; zero (0) if an error occurred. Use
NNRGetErrorNo() to retrieve the number for the error that occurred, or use
NNRGetErrorMessage() to retrieve the error message.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRActionData NNRActionRead
Data * const

Output NNRMgrGetNextAction()
populates this structure.
238 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
If the error number returned is RERR_NO_MORE_ACTIONS, the end of the
actions list has been reached.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrGetFirstAction
MQSeries Integrator Programming Reference for NEONRules 239

Chapter 4
1150JU5HVHTXHQFH$FWLRQ

NNRMgrResequenceAction() enables the user to resequence actions within a
subscription. Given the current numeric position of the action,
NNRMgrResequenceAction() moves the action to the specified new position.
The user provides the unique application group, message type, subscription
name, current position for the action to move, and the position to move it to.

For example, the following actions exist in your code:

putqueue(TargetQ, MessageType)
reformat(inputformat, outputformat)

You want the reformat should occur before the putqueue, so you can call
NNRMgrResequenceAction(), providing action 2 as the action to be moved
and action 1 as the new position. This results in:

reformat(inputformat, outputformat)
putqueue(TargetQ, MessageType)

To indicate the first action to move in an action sequence, oldPosition can be
set to either NNRRB_START or to the number 1. To specify the last action to
move in an action sequence, set oldPosition to NNRRB_END.

To move an action to the end of an action sequence, set newPosition to
NNRRB_END. To move an action to the start of an action sequence, set
newPosition to NNRRB_START, or to the number 1.

If oldPosition or newPosition is greater than the maximum action/option
sequence, it is changed to the maximum action sequence.

When updating action information, user permission to update the rule will be
checked. If the user is the owner or another user with Update permission for
the subscription, the user can update the action information. If the user does
not have Update access, an error is returned indicating that the user does not
have Update permission, and no change will occur.
240 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
6\QWD[

const long NNRMgrResequenceAction (
 NNRMgr *pMgr,
 const NNRAction *pRAction,
 int oldPosition,
 int newPosition);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

Rules Management resequence boundaries are held in the following
structure:

typedef enum NNRReseqBounds {
 NNRRB_END = -1,
 NNRRB_START = 1
} NNRReseqBounds;

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().

pRAction const
NNRAction
*

Input Must be populated prior to this
function call. The rule name is
ignored.

oldPosition int Input Old numeric position of the action to
be resequenced.

newPosition int Input New numeric position of the action to
be resequenced.
MQSeries Integrator Programming Reference for NEONRules 241

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the action is resequenced successfully; zero (0) if an error
occurred.

If either oldPosition or newPosition are negative and not equal to
NNRRB_END, an error condition is returned, and errVal is set to
RERR_INVALID_ACTION_PARAM.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRAction key;
struct NNRActionUpdate data;
int oldActionSeq, newActionSeq;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;
cout << "Enter old action sequence \n>";
cin >> oldActionSeq;
cout << "Enter new action sequence \n>";
cin >> newActionSeq;

if (NNRMgrResequenceAction(pmgr, &key, oldActionSeq,
 newActionSeq)) {
 cout << endl
 << "\tAction Name: " << key.ActionName
 << "Resequenced." << endl;
 cout << endl
 << "\tOld Action id: " << oldActionSeq << endl
 << endl;
242 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr, session);

return;

6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrAddAction

NNRMgrDeleteAction

NNRMgrGetFirstAction

NNRMgrGetNextAction
NNRMgrUpdateAction
MQSeries Integrator Programming Reference for NEONRules 243

Chapter 4
1150JU8SGDWH$FWLRQ

NNRMgrUpdateAction() enables the user to update an action for a
previously defined subscription. NNRMgrUpdateAction() only changes the
action name. To update options, use the Option Management APIs.

The action position represents the sequence number of the action to be
updated, starting from 1 and going to the end of the action sequence. To
change the first action, set position to 1. To change the fifth action, set position
to 5, and so on.

When updating action information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission for the subscription, the user can update the action information. If
the user attempting to update an action does not have Update access, an error
is returned indicating the user does not have Update permission and no
changes occur.

6\QWD[

const long NNRMgrUpdateAction (
 NNRMgr *pMgr,
 const NNRAction *pRAction,
 const NNRActionUpdate *pRActionUpdate,
 int position);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pRAction const
NNRAction *

Input Should be populated prior to
this function call. The rule
name is ignored.
244 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

5HWXUQ�9DOXH

Returns 1 if the action was updated successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNRAction key;
struct NNRActionUpdate data;
int ActionId = -1;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;
cout << "Enter action ID \n>";
cin >> ActionId;

pRActionUpdate const
NNRAction
Update *

Input Should be populated prior to
this function call.

position int Input Numeric order of the action to
be updated.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 245

Chapter 4
cout << "Enter new action name \n>";
cin >> data.ActionName;

if (NNRMgrUpdateAction(pmgr, &key, &data, ActionId)) {
 cout << endl
 << "\tAction Name: " << key.ActionName
 << " Updated." << endl;
 cout << endl
 << "\tAction id: " << ActionId << endl << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}
CloseNNRMgr(pmgr, session);

return;

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddAction

NNRMgrDeleteAction

NNRMgrGetFirstAction

NNRMgrGetNextAction

NNRMgrResequenceAction
246 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU'HOHWH$FWLRQ

NNRMgrDeleteAction deletes the specified action from a subscription. After
this function is performed, the action and all its options are deleted and
subsequent actions are re-sequenced.

The user must have Update permission for the subscription. If the user is the
owner, the user can delete the action from a subscription. If the user
attempting to delete an action is not the owner, an error is returned indicating
that the user does not have Update permission and no changes occur.

6\QWD[

const long NNRMgrDeleteAction(
 NNRMgr *pMgr,
 const NNRAction *pRAction,
 int position);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrDeleteAction().

A call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pRAction const
NNRAction
*

Input Must be populated prior to this
function call. The rule name is
ignored.

position int * Input Numeric order of the action to be
deleted.
MQSeries Integrator Programming Reference for NEONRules 247

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the action was deleted.

Returns zero (0) if the input parameters are not initialized with NNR_CLEAR,
the current user does not have Update permission for the subscription, the
action does not exist, or a different error occurs. Use NNRGetErrorNo() to
retrieve the number for the error that occurred, or use
NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrGetFirstAction

NNRMgrGetNextAction

NNRMgrAddAction
248 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
2SWLRQ�0DQDJHPHQW�$3,V

Options are name-value pairs that further define an action. The first option is
added with the action, and others must be added with
NNRMgrAddOption().

:$51,1*�
If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. See Appendix B: Operator Types on page 317.

See System Management for information on how to change a current case-
insensitive installation to case sensitive.
MQSeries Integrator Programming Reference for NEONRules 249

Chapter 4
2SWLRQ�0DQDJHPHQW�$3,�6WUXFWXUHV

1152SWLRQ

NNROption is passed as a pointer as the second parameter of select Option
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Option Management API calls.

6\QWD[

typedef struct NNROption{
 char AppName [APP_NAME_LEN];
 char MsgName [MSG_NAME_LEN];
 char RuleName[RULE_NAME_LEN];
 char SubsName[SUBS_NAME_LEN];
 char ActionName[ACTION_NAME_LEN];
 int ActionId;
 char OptionName [OPTION_NAME_LEN];
 long InitFlag;
} NNROption;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

AppName[APP_NAME_
LEN]

char Name of the application group defined by the
user. Should be the application group in
which the user is defining rules for
evaluation.

MsgName[MSG_NAME_
LEN]

char Name of the message for which the user is
defining rules for message evaluation. The
message type is the input format name if the
user is using Formatter.

RuleName[Rule_
NAME_LEN]

char Name of the rule to be defined within an
application group and message name pair.
This rule name is defined by the user.
250 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
SubsName[SUBS_
NAME_LEN]

char Name of the subscription associated with a
message name and application group.

ActionName[ACTION_
NAME_LEN]

char Name of action.

ActionId int Value of the action identifier used to insert all
but the first option for an action.

OptionName[OPTION_
NAME_LEN]

char Name of the option associated with this
action. If this field is empty, "default" is used
as the OptionName.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.

1DPH 7\SH 'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 251

Chapter 4
1152SWLRQ'DWD

NNROptionData is passed as a pointer as the third parameter of the Option
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Option Management API calls. Use of this structure is
described in each Option Management API section.

6\QWD[

typedef struct NNROptionData{
 NNDate DateChange;
 int ChangeAction;
 char OptionValue[OPTION_VALUE_LEN];
 long InitFlag;
 } NNROptionData;

3DUDPHWHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OptionValue[OPTION_
NAME_LEN]

char Value of the option. If this field is empty,
"default" is used as the OptionValue.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.
252 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1152SWLRQ5HDG'DWD

NNROptionReadData is passed as a pointer as a parameter of select Option
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by Option Management
API calls. Use of this structure is described in each Option Management API
section.

6\QWD[

typedef struct NNROptionReadData{
 NNDate DateChange;
 int ChangeAction;
 char ActionName[ACTION_NAME_LEN]
 int ActionSequence;
 char OptionName[OPTION_NAME_LEN]
 char OptionValue[OPTION_VALUE_LEN];
 int OptionSequence
 long InitFlag;
 } NNROptionReadData;

3DUDPHWHUV

1DPH 7\SH 'HVFULSWLRQ

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

ActionName[ACTION_
NAME_LEN]

char Name of action.

ActionSequence int Sequence of this action within its
subscription. For example, for the first
action, ActionSequence=1.

OptionName[OPTION_
NAME_LEN]

char Name of option.
MQSeries Integrator Programming Reference for NEONRules 253

Chapter 4
6HH�$OVR

NNR_CLEAR

OptionValue[OPTION_
VALUE_LEN]

char Static value of the option. If there are no
options, this must not be NULL since this
function adds an option.

OptionSequence int Sequence of this option within its action.
For example, for the first option,
OptionSequence=1.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.

1DPH 7\SH 'HVFULSWLRQ
254 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1152SWLRQ8SGDWH

NNROptionUpdate is passed as a pointer as a parameter of select functions in
the Option Management API. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to
any Option Management API calls.

6\QWD[

typedef struct NNROptionUpdate{
 char OptionName[OPTION_NAME_LEN];
 NNDate DateChange;
 int ChangeAction;
 char OptionValue[OPTION_VALUE_LEN];
 long InitFlag;
 } NNROptionUpdate;

3DUDPHWHUV

6HH�$OVR

NNR_CLEAR

1DPH 7\SH 'HVFULSWLRQ

OptionName[OPTION_
NAME_LEN]

char Name of the option to be updated.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OptionValue[OPTION_
VALUE_LEN]

char Value of the option to be updated.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.
MQSeries Integrator Programming Reference for NEONRules 255

Chapter 4
2SWLRQ�0DQDJHPHQW�$3,�)XQFWLRQV

1150JU$GG2SWLRQ

If an action has more than one option, NNRMgrAddOption() is used to add
all but the first option. Prior to adding more options, the user must define the
first action and first option pair using NNRMgrAddAction().

When adding option information, user permission to update the subscription
will be checked. If the user is the owner or another user with Update
permission for the subscription, the user can add the option information. If
the user does not have Update access, an error is returned indicating that the
user does not have Update permission and no change occurs.

6\QWD[

const long NNRMgrAddOption(
 NNRMgr *pMGR,
 const NNROption *pROption,
 const NNROptionData *pROptionData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().

NNROption const
NNROption *

Input Must be populated prior to this
function call. The rule name is
ignored.

NNROption
Data

const
NNROption
Data *

Input DateChange and ChangeAction
should be populated with NULL
since they are provided only for
future enhancements.
256 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrAddOption(). A call
to NNR_CLEAR for both NNROption and NNROptionData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the option was added successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrDeleteOption

NNRMgrGetFirstOption

NNRMgrGetNextOption
MQSeries Integrator Programming Reference for NEONRules 257

Chapter 4
1150JU*HW)LUVW2SWLRQ

NNRMgrGetFirstOption() provides a way of starting to retrieve information
for a list of options associated with an application group, message type,
subscription, and action. This API returns the first option in the action in the
pROptionData parameter. Prior to retrieving an option, options must be
defined.

When retrieving option information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the option information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

6\QWD[

const long NNRMgrGetFirstOption(
 NNRMgr *pMgr,
 const NNROption * pROption,
 NNROptionReadData * const pROptionData);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Name of a current Rules
Management object.

pROption const NNROption * Input Must be populated prior to this
function call. The rule name is
ignored.

pROption
Data

NNROptionRead
Data * const

Output NNRMgrGetFirstOption()
populates this structure.
258 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetFirstOption().

A call to NNR_CLEAR for both pROption and pROptionData should be
made prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the option was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_OPTIONS, no options were found
for the application group and message type specified in the pROption
structure.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrGetNextOption

NNRMgrAddApp()

NNRMgrAddMsg()

NNRMgrAddRule()

NNRMgrAddSubscription()

NNRMgrAddOption()
MQSeries Integrator Programming Reference for NEONRules 259

Chapter 4
1150JU*HW1H[W2SWLRQ

NNRMgrGetNextOption() provides a way of iterating through the options
after the first option has been retrieved (see NNRMgrGetFirstOption()).

When retrieving option information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the option information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

6\QWD[

const long NNRMgrGetNextOption(
 NNRMgr *pMgr,
 NNROptionReadData * const pROptionData);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to calling NNRMgrGetNextOption(). A
call to NNR_CLEAR for both pROption and pROptionData should be made
prior to populating the structures or calling this API.

5HWXUQ�9DOXH

Returns 1 if the option was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Name of a current Rules
Management object.

pROption
Data

NNROption
ReadData * const

Output NNRMgrGetNextOption()
populates this structure.
260 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
If the error number returned is RERR_NO_MORE_OPTIONS, the end of the
options list has been reached.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrGetFirstOption
MQSeries Integrator Programming Reference for NEONRules 261

Chapter 4
1150JU5HVHTXHQFH2SWLRQ

NNRMgrResequenceOption() enables the user to resequence options within
an action. Given the current numeric position of the option,
NNRMgrResequenceOption() moves the option to the specified new position.
The user provides the unique application group, message type, rule name,
subscription name, and current position for the option to move and the
position to move it to.

For example, the following action/option information exists:

exec(process, argument1, argument2, argument3)

A call to NNRMgrResequenceOption switches the option in position 4
(argument3) to the option in position 3. The option in position 3 (argument2)
then resides in position 4:

exec(process, argument1, argument3, argument2)

To indicate the first option to move in an option sequence, oldPosition can be
set to either NNRRB_START or to the number 1. To specify the last option to
move in an option sequence, set oldPosition to NNRRB_END.

To move an option to the end of an option sequence, set newPosition to
NNRRB_END. To move an option to the start of an option sequence, set
newPosition to NNRRB_START, or to the number 1.

If oldPosition or newPosition is greater than the maximum action/option
sequence, it is changed to the maximum option sequence.

When updating option information, user permission to update the
subscription will be checked. If the user is the owner or another user with
Update permission for the subscription, the user can update the option
information. If the user does not have Update access, an error is returned
indicating that the user does not have Update permission, and no change
occurs.
262 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
6\QWD[

const long NNRMgrResequenceOption (
 NNRMgr *pMgr,
 const NNROption *pROption,
 int oldPosition,
 int newPosition);

3DUDPHWHUV

5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

Rules Management resequence boundaries are held in the following
structure:

typedef enum NNRReseqBounds {
 NNRRB_END = -1,
 NNRRB_START = 1
} NNRReseqBounds;

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrInit().

pROption const
NNROption *

Input Must be populated prior to this
function call. The rule name is
ignored.

oldPosition int Input Old numeric order of the action to
be resequenced.

newPosition int Input New numeric order of the action to
be resequenced.
MQSeries Integrator Programming Reference for NEONRules 263

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the option is resequenced successfully; zero (0) if an error
occurred.

If either oldPosition or newPosition are negative and not equal to
NNRRB_END, an error condition is returned, and errVal is set to
RERR_INVALID_OPTION_PARAM.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNROption key;
struct NNROptionUpdate data;
int oldPosition, newPosition;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;
cout << "Enter action id \n>";
cin >> key.ActionId;
cout << "Enter old option sequence \n>";
cin >> oldPosition;
cout << "Enter new option sequence \n>";
cin >> newPosition;

if (NNRMgrResequenceOption(pmgr, &key, oldPosition,
 newPosition)) {
 cout << endl
 << "\tOption Name: " << key.OptionName
 << "Resequenced." << endl
 << endl;
264 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}

CloseNNRMgr(pmgr, session);

return;

6HH�$OVR

NNRMgrInit
NNR_CLEAR

NNRMgrAddOption

NNRMgrDeleteOption

NNRMgrGetFirstOption

NNRMgrGetNextOption
NNRMgrUpdateOption
MQSeries Integrator Programming Reference for NEONRules 265

Chapter 4
1150JU8SGDWH2SWLRQ

NNRMgrUpdateOption() enables the user to update an action for an existing
subscription. The user provides the unique application group, message type,
and subscription name, and defines the option to change (in the pROption
structure). The new information is provided in the pROptionUpdate
structure.

The option position represents the sequence number of the option to be
updated, starting from 1 and going to the end of the option sequence. To
change the first option, set position to 1. To change the fifth option, set
position to 5, and so on.

When updating option information, user permission to update the
subscription is checked. The user or owner has Update permission for the
rule and can update the rule information. If the user does not have Update
access, an error is returned indicating that the user does not have Update
permission, and no change occurs.

6\QWD[

Const long NNRMgrUpdateOption (
 NNRMgr *pMgr,
 const NNROption *pROption,
 const NNROptionUpdate *pROptionUpdate,
 int position);

3DUDPHWHUV

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrInit().

pROption const NNROption * Input Must be populated prior to
this function call.
266 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5HPDUNV

NNRMgrInit() should be called prior to any Rules Management API calls.

5HWXUQ�9DOXH

Returns 1 if the option was updated successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

([DPSOH

DbmsSession *session;
NNRMgr *pmgr;
InitNNRMgrSession(pmgr, session);

struct NNROption key;
struct NNROptionUpdate data;
int position;
NNR_CLEAR(&key);
NNR_CLEAR(&data);

cout << "Enter app group name \n>";
cin >> key.AppName;
cout << "Enter message type name \n>";
cin >> key.MsgName;
cout << "Enter subscription name \n>";
cin >> key.SubsName;
cout << "Enter action id \n>";
cin >> key.ActionId;

pROption
Update

const
NNROptionUpdate *

Input Must be populated prior to
this function call. The rule
name is ignored.

position int Input Numeric order of the
action to be updated.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 267

Chapter 4
cout << "Enter option id \n>";
cin >> position;
cout << "Enter new option name \n>";
cin >> data.OptionName;
cout << "Enter new option value \n>";
cin >> data.OptionValue;

if (NNRMgrUpdateOption(pmgr, &key, &data, position)) {
 cout << endl
 << "\tOption Name: " << key.OptionName
 << " Changed." << endl
 << endl;
 CommitXact(session);
} else {
 DisplayError(pmgr);
 RollbackXact(session);
}

CloseNNRMgr(pmgr, session);

return;

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddOption

NNRMgrGetFirstOption

NNRMgrGetNextOption

NNRMgrResequenceOption
268 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
1150JU'HOHWH2SWLRQ

NNRMgrDeleteOption() deletes the specified option from a subscription
action. This call deletes the option and resequences subsequent options for
the action. If the action contains only the one option, the entire action is
deleted.

The user must have Update permission for the subscription to perform this
action. If the user does not have Update permission, an error is returned and
no changes occur.

6\QWD[

const long NNRMgrDeleteOption(
 NNRMgr *pMGR,
 const NNROption *pROption,
 int position);

3DUDPHWHUV

5HPDUNV

A call to NNR_CLEAR for both NNROption and NNROptionData should be
made prior to populating the structures or calling this API.

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().

pROption const
NNROption *

Input The position parameter is the
Option Sequence number (starting
with 1) for the Action defined by the
pROption Action Id. Does not need
the RuleName or OptionName
populated.

position int Input Numeric order of the option to be
deleted.
MQSeries Integrator Programming Reference for NEONRules 269

Chapter 4
5HWXUQ�9DOXH

Returns 1 if the option was deleted.

Returns zero (0) if the input parameters are not initialized with NNR_CLEAR,
the current user does not have update permission, the action or option does
not exist, or a different error occurred. Use NNRGetErrorNo() to retrieve the
number for the error that occurred, or use NNRGetErrorMessage() to retrieve
the error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRMgrInit

NNR_CLEAR

NNRMgrAddOption

NNRMgrGetFirstOption

NNRMgrGetNextOption

NNRMgrResequenceOption
270 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs
5XOHV�0DQDJHPHQW�(UURU�+DQGOLQJ

115*HW(UURU1R

NNRGetErrorNo() retrieves the error number from previous Rules
Management calls.

6\QWD[

const int NNRGetErrorNo(NNRMgr *pRMgr);

3DUDPHWHUV

5HWXUQ�9DOXH

Returns the error number for an error occurring during any of the prior Rules
Management calls; returns zero (0) if no Rules Management functions were
called prior to this call or NNR_NO_ERR if no error exists. Use
NNRGetErrorMessage() to get the associated error message.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRGetErrorMessage

NNRMgrInit

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pRMgr NNRMgr * Input Name of a current Rules Management
object.
MQSeries Integrator Programming Reference for NEONRules 271

Chapter 4
115*HW(UURU0HVVDJH

NNRGetErrorMessage() retrieves the error message from previous rules
management calls.

6\QWD[

const char * NNRGetErrorMessage(NNRMgr *pRMgr);

3DUDPHWHUV

5HWXUQ�9DOXH

Returns the error message for an error occurring during any of the previous
Rules Management calls.

([DPSOH

See Rules Management API Sample Program on page 351.

6HH�$OVR

NNRGetErrorNo

NNRMgrInit

1DPH 7\SH ,QSXW�
2XWSXW

'HVFULSWLRQ

pRMgr NNRMgr * Input Name of a current Rules Management
object.
272 MQSeries Integrator Programming Reference for NEONRules

&KDSWHU��

5XOHV�(UURU�0HVVDJHV

The following lists of errors are available for this release and are subject to
change:

n Data processing related errors

n Client code errors

n Rules Management data errors

If you receive one of these errors, verify that the DBMS is still running
properly

n General Rules Management errors

Component refers to any item with its own permissions, for example,
Rules or Subscriptions.

n Permission data errors

Component refers to any item with its own permissions, for example,
Rules or Subscriptions.

n General permission errors

The listed errors are generic. When an error code is set, the error message is
enhanced with contextual information. For example, when a rule does not
exist, the given Application Group name, Message Type name, and Rule
name are appended to the error message with a space and dash separating
each name.

1RWH�
Error numbers -10000 to -10099 are Rules daemon specific and are not
included in this list. For more information, see System Management.
MQSeries Integrator Programming Reference for NEONRules 273

'DWD�3URFHVVLQJ�5HODWHG�(UURUV

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH

-1000 Unknown error
code or no error

No matching error
code.

-1001 NO_
APPLICATION

Rules
configuration
missing
Application
Group

The application
group passed into
eval() does not
exist for the Rules
database. The
message on the
queue does not
have a valid
OPT_APP_
GRP option.

Check the
Application Group
set in the eval() call
OR check the
OPT_APP_GRP
option for the
message in the
input queue.

-1002 NO_MESSAGE Rules
configuration
missing
Message Type

The application
group message
type pair passed
into eval() does not
exist for the Rules
database. The
message on the
queue does not
have a valid
OPT_MSG_
TYPE option.

Check the
Application Group
and Message Type
set in the eval()
call. Check the
OPT_APP_GRP
and
OPT_MSG_TYPE
options for the
message in the
input queue.

-1003 NO_
OPERATIONS

Rules not
configured or
Operations
missing for
message

Rule data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-1004 NO_
ARGUMENTS

Rules
configuration
missing
Arguments for
message

Rule missing
active arguments
in the database.

Run Consistency
Checker to check
data.
MQSeries Integrator Programming Reference for NEONRules 274

Rules Error Messages
-1005 NO_RULES Rules
configuration
missing Rules

No active rules
defined for the
application group–
message type pair.

Review the data in
the database.

-1006 NO_
SUBSCRIPTIONS

Rules
configuration
missing
Subscriptions

No active
subscriptions for
the rules in the
application group–
message type pair.

Run Consistency
Checker to check
data.

-1007 NO_
SUBSCRIPTION_
ACTIONS

Rules
configuration
missing
Subscription
Actions

At least one
subscription does
not have any
actions.

Make sure all rules
have subscription
actions.

-1008 NO_BOOLEAN_
OPS

Rules
configuration
missing
Boolean
Operators

All rules have just
a single argument.

This error code is
used internally
only as a warning.
It should never
appear to the user.
Call technical
support if it does.

-1009 GET_APP_MSG_
SQL_ERROR

Major Database
Error
Retrieving
Application
Group/
Message Type

Major database
error.

Verify that
database is up and
schema is okay.

-1010 GET_ARG_SQL_
ERROR

Major Database
Error
Retrieving
Arguments

Major database
error.

Verify that
database is up and
schema is okay.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 275

Chapter 5
-1011 GET_BOOLEAN_
OP_SQL_ERROR

Major Database
Error
Retrieving
Boolean
Operators

Major database
error

Verify that
database is up and
schema is okay.

-1012 GET_OPERN_
SQL_ERROR

Major Database
Error
Retrieving
Operations

Major database
error

Verify that
database is up and
schema is okay.

-1013 GET_RULE_SQL_
ERROR

Major Database
Error
Retrieving
Rules

Major database
error

Verify that
database is up and
schema is okay.

 -1014 GET_SUBACT_
SQL_ERROR

Major Database
Error
Retrieving
Subscription
Actions

Major database
error

Verify that
database is up and
schema is okay.

-1015 GET_SUBS_SQL_
ERROR

Major Database
Error
Retrieving
Subscriptions

Major database
error

Verify that
database is up and
schema is okay.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
276 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
&OLHQW�&RGH�(UURUV

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH

-2000 RULE_MIN_
ERROR

Unknown error
code or no error

No error.

-2001 DBMS_SESSION_
ERROR

NULL or dead
dbms
connection
provided to
Rules daemon

The Session
pointer was
invalid.

Check your DBMS
and run Open
DbmsSession()
again.

-2002 EMPTY_INPUT_
MESSAGE_TYPE

NULL or
missing
message type
provided to
Rules daemon

No message type
name set in eval().

Send in a valid
message type.

-2003 ERROR_LOAD_
ARGUMENTS_
ADDARG

Error adding an
argument to
Rules daemon

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

-2004 ERROR_LOAD_
ARGUMENTS_CC

Wrong number
of argument
columns during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2005 ERROR_LOAD_
ARGUMENTS_
NOCOL

Unexpected
argument
column during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2006 ERROR_LOAD_
ARGUMENTS_
NULL

NULL
argument
column during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2007 ERROR_LOAD_
OPERATIONS_
ADDOP

Error adding an
operation to
Rules daemon

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.
MQSeries Integrator Programming Reference for NEONRules 277

Chapter 5
-2008 ERROR_LOAD_
OPERATIONS_CC

Wrong number
of operation
columns during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2009 ERROR_LOAD_
OPERATIONS_
NOCOL

Unexpected
operation
column during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2010 ERROR_LOAD_
OPERATIONS_
NULL

NULL
operation
column during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2011 ERROR_LOAD_
RULES_ADD_
RULE

Error adding a
Rule to Rules
daemon

A rule in the
database has an
argument count of
zero (0) which is
invalid. Rules
must have at least
one active
argument.

Run the
Consistency
Checker to find the
rule and fix the
problem.

-2012 ERROR_LOAD_
RULES_CC

Wrong number
of rule columns
during load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2013 ERROR_LOAD_
RULES_NOCOL

Unexpected
rule column
during load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2014 ERROR_LOAD_
RULES_NULL

NULL rule
column during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2015 ERROR_LOAD_
SUBS_ADD_SUB

Error adding a
Subscription to
Rules daemon

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
278 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2016 ERROR_LOAD_
SUBS_CC

Wrong number
of subscription
columns during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2017 ERROR_LOAD_
SUBS_NOCOL

Unexpected
subscription
column during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2018 ERROR_LOAD_
SUBS_NULL

NULL
subscription
column during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2019 ERROR_LOAD_
SUBSLIST_ADD_
SUBSL

Error adding a
Rule
Subscription to
Rules daemon

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

-2020 ERROR_LOAD_
SUBSLIST_CC

Wrong number
of Rule
Subscription
columns during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2021 ERROR_LOAD_
SUBSLIST_
NOCOL

Unexpected
Rule
Subscription
column during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2022 ERROR_LOAD_
SUBSLIST_NULL

NULL Rule
Subscription
column during
load

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2023 ERROR_
NEGATIVE_OP_
COUNT

INTERNAL
ERROR - failed
to resize
operations

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 279

Chapter 5
-2024 ERROR_
NEGATIVE_
RULE_COUNT

INTERNAL
ERROR - failed
to resize rules

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

-2025 FORMATTER_
PARSE_FAILED

Formatter
failed to parse
input message

The message type
may not match the
format of the input
message.

Check both the
Input Format
Name (MsgType)
and message (use
apitest).

-2026 IE_TOO_MANY_
OPERATIONS

INTERNAL
ERROR -
incorrect
operation count

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

-2027 INVALID_
ARGUMENT_
OPERATION

Invalid
Argument
loaded -
operation id too
high

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2028 INVALID_
INPUT_MESSAGE
_LEN

Input message
had an invalid
length

Call to eval() had
an invalid msglen
parameter.

Check the
parameters sent to
eval().

-2029 INVALID_RULE_
ARG_COUNT

Rule argument
count is invalid
- check table

Data in the
database is
incorrect.

Run Consistency
Checker to check
data.

-2030 NULL_
FORMATTER_
INSTANCE

Formatter
instance is
NULL

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

-2031 INPUT_MESSAGE
_NULL

NULL input
message

The message sent
through eval() is
empty.

Check the call to
eval() or the
message in the
queue when
running the Rules
daemon.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
280 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2032 OPERATION_
EVALUATION_
FAILED

Internal Error -
Evaluation
failure #1

Problem
evaluating part of
a rule – operator
may be invalid.

Run Consistency
Checker to check
data.

-2033 OP_ADD_ARG_
FAILED (operation
add argument
failed)

Internal Error -
Load failure #1

Problem loading
arguments.

Run Consistency
Checker to check
data.

-2034 OP_CONS_
FAILED (Operator
Constructor
detected)

Internal Error -
Load failure #2

Problem loading
operator.

Run Consistency
Checker to check
data.

-2035 RULE_
OPERATION_
MISSING (rule
operation array
error)

Internal Error -
Evaluation
failure #2

Problem
evaluating part of
a rule; operator
may be invalid.

Run Consistency
Checker to check
data.

-2036 UNSUPPORTED_
DBMS_
INTERFACE

Database type
not supported

Invalid DbmsType
in the Session
variable used to
create Rules
daemon.

Check call to
OpenDbmsSession
().

-2037 INVALID_RULE_
SUBSCRIPTION

Internal Error -
Load failure #3

Problem loading
subscriptions.

Run Consistency
Checker to check
data.

-2038 FAILED_ADD_
SUBSCRIPTION

Internal Error -
Load failure #4

Problem loading
subscriptions.

Run Consistency
Checker to check
data.

-2039 EMPTY_
APPLICATION_
GROUP_NAME

Empty Input
Value for
Application
Group Name

No application
group name
passed into eval().

Check call to
eval().

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 281

Chapter 5
-2040 EMPTY_
MESSAGE_
NAME

Empty Input
Value for
Message Name

No message type
name passed into
eval().

Check call to
eval().

-2041 IE_NULL_
MESSAGE_
GROUP

Internal Error -
Lookup failure
#1

Problem loading
message type.

Run Consistency
Checker to check
data.

-2042 IE_NULL_
APPLICATION_
GROUP

Internal Error -
Lookup failure
#2

Problem loading
application group.

Run Consistency
Checker to check
data.

-2043 IE_NULL_
ENGINE_
INSTANCE

Internal Error -
NULL Engine
Instance

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

-2044 ERROR_
SETTING_
HITLIST

Error setting
HitList

gethitrule() had
problems
retrieving hit rules.

Run Consistency
Checker to check
data.

-2045 ERROR_SETTING
_HITLIST

Error setting
NoHitList

getnohitrule() had
problems
retrieving no hit
rules.

Run Consistency
Checker to check
data.

-2046 IE_NO_ERROR_
HANDLER

Internal Error -
No error
handler

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

-2047 IE_CANNOT_
SET_TSD

Internal Error -
Error Setting
Thread Specific
Data

Problem with
threading - maybe
too many threads.

Shut down process
immediately,
check system, and
restart.

-2048 ERROR_LOAD_
BOOLEAN_
OPERATORS

Internal Error -
Error Loading
Boolean
Operators

Problem loading
Boolean operators.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
282 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2049 FIELD_OPER_
TYPE_
MISMATCH

Field value
does not have
valid Month
and/or Day.

A Date or
DateTime
comparison is not
valid against Time
data - the month
and day are then
00.

Verify a Time
value is not used in
a Date comparison
and that the month
and day have valid
non-zero values.

-2050 ERROR_ADDING
_SUB_ACTION_
OPTION

Error adding
Subscription
Action/Option
to Rules
daemon.

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

-2051 ERROR_ADDING
_SUB_RULE_
LINK

Error adding
Subscription
Rule Link to
Rules daemon.

(Should never see)
Memory may be
low.

Shut down Rules
daemon and
restart.

-2052 INVALID_
COMPONENT_
TYPE

Invalid
Component
Type passed
into Reload
Call.

For NEONRules
4.1.1, the only valid
components to
reload are:
NNRCOMP_MSG
and NNRCOMP_
SUBS.

Verify that the
Load
RuleComponent
API is not sent
Component Type
NNRCOMP_
APP or
NNRCOMP_
RULE.

-2053 FAILED_REMOVE
_SUBSCRIPTION

Error removing
Rule
Subscription
Link to Rules
Engine.

(Should never see)
Memory may be
corrupted.

Shut down Rules
daemon and
restart.

-2054 FAILED_COMP_
RULE_LIST_FOR_
SUB

Error
comparing old
and new
Subscription
Rule Links.

(Should never see)
Memory may be
corrupted.

Shut down Rules
daemon and
restart.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 283

Chapter 5
5XOHV�0DQDJHPHQW�'DWD�(UURUV

-2055 FAILED_REMOVE
RELOAD
COMPONENT

Error
Removing
Reload
Component
from Reload
List in Rules
daemon.

(Should never see)
Memory may be
corrupted.

Shut down Rules
daemon and
restart.

-2056 FAILED_MEM_
ALLOC_ENGINE

Error allocating
memory for
new Rules
daemon object.

(Should never see)
Severe error.
Memory must be
low.

Shut down Rules
daemon and
restart.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH

-2500 NNR_NO_ERR No rules
management
error

No error.

-2501 RERROR_DB DB error Not in use. (Should never see)

-2502 RERR_COUNTER
_ADD

DB error
Counter Insert

Data may be
incorrect to add
new Application
Group.

Run Consistency
Checker to check
data.

-2503 RERR_COUNTER
_UPDATE

DB error
Counter
Update

Data may be
incorrect to add
new Application
Group.

Run Consistency
Checker to check
data.

-2504 RERR_COUNTER
INSTANCE
ADD

DB error
Counter
Instance Insert

Data may be
incorrect to add
new Rule,
Subscription, and
so on.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
284 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2505 RERR_COUNTER
INSTANCE
UPDATE

DB error
Counter
Instance
Update

Data may be
incorrect to add
new Rule,
Subscription, and
so on.

Run Consistency
Checker to check
data.

-2506 RERR_APP_
GROUP_ADD

DB error
Application
Group Insert

Problem inserting
Application
Group. May be
duplicate.

Run Consistency
Checker to check
data.

-2507 RERR_MSG_TYPE
_ADD_FORMAT

DB error
message type
insert (format)

Problem inserting
Message Type.
May not be valid
format.

Run Consistency
Checker to check
data.

-2508 RERR_R_
MESSAGES_ADD

DB error
message type
insert

Problem inserting
Message Type.
May be duplicate.

Run Consistency
Checker to check
data.

-2509 RERR_RULE_
ADD

DB error rule
insert

Problem inserting
Rule. May be
duplicate.

Run Consistency
Checker to check
data.

-2510 RERR_RULE_
UPDATE

DB error rule
update

Problem updating
Rule. Rule may not
exist.

Run Consistency
Checker to check
data.

-2511 RERR_
OPERATION_
ADD

DB error
argument op
insert

Problem inserting
operator for rule.

Run Consistency
Checker to check
data.

-2512 RERR_ARG_ADD DB error
argument insert
(Arg)

Problem inserting
argument for rule.

Run Consistency
Checker to check
data.

-2513 RERR_
OPERATION_
UPDATE

DB error
argument op
update

Problem updating
argument for rule.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 285

Chapter 5
-2514 RERR_R_
SUBSCRIPTION_
LIST_ADD

DB error
subscription list
insert

Problem inserting
subscription. May
be duplicate.

Run Consistency
Checker to check
data.

-2515 RERR_R_
SUBSCRIPTION_
MASTER_ADD

DB error
subscription
master insert

Problem inserting
subscription. May
be duplicate.

Run Consistency
Checker to check
data.

-2516 RERR_R_
SUBSCRIPTION_
ACTION_ADD

DB error action
insert

Problem inserting
action.

Run Consistency
Checker to check
data.

-2517 RERR_
APPLICATION_
GROUP_READ

DB error
application
group read

Problem retrieving
application group.
May have wrong
name.

Run Consistency
Checker to check
data.

-2518 RERR_MESSAGE_
TYPE_READ

DB error
message type
read

Problem retrieving
message type. May
have wrong
parameters.

Run Consistency
Checker to check
data.

-2519 RERR_RULE_
READ

DB error rule
read

Problem retrieving
rule. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2520 RERR_
SUBSCRIPTION_
LIST_READ

DB error
subscription list
read

Problem retrieving
subscription. May
have wrong
parameters.

Run Consistency
Checker to check
data.

-2521 RERR_
SUBSCRIPTION_
MASTER_READ

DB error
subscription
master read

Problem retrieving
subscription. May
have wrong
parameters.

Run Consistency
Checker to check
data.

-2522 RERR_
SUBSCRIPTION_
ACTION_READ

DB error
subscription
action read

Problem retrieving
subscription
action. May have
wrong parameters.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
286 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2523 RERR_MESSAGE_
TYPE_READ_
MESSAGE_ID

DB error
message type
read (message
id)

Problem retrieving
message type/
format. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2524 RERR_
OPERATOR_
READ

DB error
operator read

Problem retrieving
operator. May
have wrong
parameters.

Run Consistency
Checker to check
data.

-2525 RERR_
OPERATOR_TYPE
_READ

DB error
operator type
read

Problem retrieving
operator type. May
have invalid
operator.

Run Consistency
Checker to check
data.

-2526 RERR_ARG_
READ

DB error
argument read

Problem retrieving
rule action. May
have wrong
parameters.

Run Consistency
Checker to check
data.

-2527 RERR_COUNTER
_READ

DB error
counter read

Problem retrieving
new application id.
May have wrong
parameters.

Run Consistency
Checker to check
data.

-2528 RERR_COUNTER
INSTANCE
READ

DB error
counter
instance read

Problem retrieving
new ids for rule,
subscription, etc.
May have wrong
parameters.

Run Consistency
Checker to check
data.

-2529 RERR_
OPERATION_
READ

DB error
operation read

Problem retrieving
argument info.
May have wrong
parameters.

Run Consistency
Checker to check
data.

-2530 RERR_STALE_
OPERATION_
EXISTS

DB error
unreferenced
operations

Arguments still
exist that are not
used in a rule.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 287

Chapter 5
-2531 RERR_
ARGUMENT_
UPDATE

DB error
argument
update

Could not update
argument.

Run Consistency
Checker to check
data.

-2532 RERR_
SUBSCRIPTION_
COMBINED_
READ

DB error
subscription
multi-read

Problem retrieving
subscription info.
May have wrong
parameters.

Run Consistency
Checker to check
data.

-2533 RERR_NO_
OPTIONS_READ

DB error
options not
found

No options found
for subscription
action.

Run Consistency
Checker to check
data.

-2534 RERR_DELETE_
OPTION_FAILED

DB error option
delete

Could not delete
option.

Run Consistency
Checker to check
data.

-2535 RERR_
RESEQUENCE_
ACTION_FAILED

DB error action
resequence

Could not
resequence
actions. May have
invalid sequence
parameters.

Run Consistency
Checker to check
data.

-2536 RERR_
RESEQUENCE_
OPTION_FAILED

DB error option
resequence

Could not
resequence
options. May have
invalid sequence
parameters.

Run Consistency
Checker to check
data.

-2537 RERR_DELETE_
ALL_
ARGUMENTS_
FAILED

DB error delete
all arguments
failed

Could not delete
all arguments for a
rule. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2538 RERR_DELETE_
ALL_LIST_SUBS_
FAILED

DB error delete
all list
subscriptions
failed

Could not delete
all subscriptions
for a rule. May
have wrong
parameters.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
288 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2539 RERR_DELETE_
ALL_MASTER_
SUBS_FAILED

DB error delete
all subscription
masters failed

Could not delete
all subscriptions
for a rule. May
have wrong
parameters.

Run Consistency
Checker to check
data.

-2540 RERR_DELETE_
ALL_ACTIONS_
FAILED

DB error delete
all actions failed

Could not delete
all actions for a
rule. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2541 RERR_
DECREMENT_
OPERATION_
FAILED

DB error
operation
decrement

Could not reduce
the number of
arguments using a
specific operator.

Run Consistency
Checker to check
data.

-2542 RERR_DELETE_
RULE_FAILED

DB error delete
rule

Could not delete
rule. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2543 RERR_DELETE_
ARGUMENTS_
FAILED

DB error delete
arguments

Could not delete
argument. May
have wrong
parameters.

Run Consistency
Checker to check
data.

-2544 RERR_DELETE_
OPERATION_
FAILED

DB error delete
operation

Could not delete
argument
information for a
rule. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2545 RERR_DELETE_
ACTIONS_
FAILED

DB error delete
actions

Could not delete
action. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2546 RERR_DELETE_
SUBS_FAILED

DB error delete
subscriptions

Could not delete
subscription. May
have wrong
parameters.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 289

Chapter 5
-2547 RERR_RESEQ_
OPTION_RANGE
_FAILED

DB error
resequence
multiple
options

Could not
resequence
options. May have
invalid sequence
parameters.

Run Consistency
Checker to check
data.

-2548 RERR_INSERT_
OPTION_FAILED

DB error option
insert

Could not insert
option. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2549 RERR_GET_MAX_
ACTION_FAILED

DB error get
max action

Could not retrieve
the maximum
number of actions.
May not have any
actions.

Run Consistency
Checker to check
data.

-2550 RERR_GET_MAX_
OPTION_FAILED

DB error get
max option

Could not retrieve
the maximum
number of options.
May not have any
options.

Run Consistency
Checker to check
data.

-2551 RERR_MOVE_
ACTION_FAILED

DB error move
action

Could not
resequence action.
May have invalid
sequence
parameter.

Run Consistency
Checker to check
data.

-2552 RERR_MOVE_
OPTION_FAILED

DB error move
option

Could not
resequence option.
May have invalid
sequence
parameter.

Run Consistency
Checker to check
data.

-2553 RERR_RESEQ_
ACTION_RANGE
_FAILED

DB error
resequence
multiple actions

Could not
resequence
actions. May have
invalid sequence
parameters.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
290 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2554 RERR_UPDATE_
ACTION_FAILED

DB error
update action

Could not update
action. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2555 RERR_UPDATE_
OPTION_FAILED

DB error
update option

Could not update
option. May have
wrong parameters.

Run Consistency
Checker to check
data.

-2556 RERR_UPDATE_
SUBSCRIPTION_
FAILED

DB error
update
subscription

Could not update
subscription. May
have wrong
parameters.

Run Consistency
Checker to check
data.

-2557 RERR_OPTION_
READ_FAILED

DB error option
read

Could not retrieve
option. May have
wrong parameters

Run Consistency
Checker to check
data.

-2558 RERR_GET_MAX_
ARG_FAILED

DB error get
max argument

Could not retrieve
the maximum
number of
arguments. May
not have any
arguments.

Run Consistency
Checker to check
data.

-2559 RERR_APP_
GROUP_UPDATE

DB error
application
group update

Could not update
application name.
May have wrong
old name.

Run Consistency
Checker to check
data.

-2560 RERR_GET_
VERSION_
FAILED

DB error get
version failed

Could not retrieve
version
information for
import/export.

Run Consistency
Checker to check
data.

-2561 RERR_CANNOT_
UPDATE_FIELD

DB error
update field
name failed

Could not update
the old name to the
new field name.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 291

Chapter 5
-2562 RERR_GET_MAX_
BOOLEAN_OPER
_FAILED

DB error get
max boolean
operator

Could not retrieve
the maximum
number of Boolean
operators. May
have wrong
parameters.

Run Consistency
Checker to check
data.

-2563 RERR_BOOLEAN
_OP_ADD

DB error
boolean
operator add
failed

Could not insert
Boolean operator.
May have wrong
parameters.

Run Consistency
Checker to check
data.

-2564 RERR_BOOLEAN
_OP_INCR

DB error
boolean
operator
update failed

Could not update
Boolean operator.
May have wrong
parameters.

Run Consistency
Checker to check
data.

-2565 RERR_APP_
GROUP_DELETE

DB error
application
group delete
failed.

Could not delete
application group.

Run Consistency
Checker to check
data.

-2566 RERR_MSG_TYPE
_DELETE

DB error
message type
delete failed

Could not delete
message type.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
292 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
*HQHUDO�5XOHV�0DQDJHPHQW�(UURUV

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH

-2600 RERR_INVALID_
APP_PARAM

Invalid
application
group
parameters

Invalid application
group name.

Check passed-in
application group
name.

-2601 RERR_APP_
GROUP_NAME_
ALREADY_
EXISTS

Error
application
group already
exists

Cannot add
application with
duplicate name.

Check passed-in
application group
name.

-2602 RERR_APP_
GROUP_NAME_
DOES_NOT_
EXIST

Error
application
group does not
exist

Invalid application
group name.

Check passed-in
application group
name.

-2603 RERR_INVALID_
MSG_PARAM

Invalid
message type
parameters

Invalid application
group/message
type pair.

Check passed-in
application
group/message
type name.

-2604 RERR_MSG_TYPE
NAME
ALREADY_
EXISTS

Error message
type already
exists

Application group
already has the
message type.

Check passed-in
application
group/message
type name.

-2605 RERR_MSG_TYPE
_NAME_DOES_
NOT_EXIST

Error message
type does not
exist

Invalid application
group/message
type pair.

Check passed-in
application
group/message
type name.

-2606 RERR_FORMAT_
NAME_DOES_
NOT_EXIST

Error format
name does not
exist

Message type
name must match
an input format
name.

Check passed-in a
message type
name against
format names.

-2607 RERR_INVALID_
RULE_PARAM

Invalid rule
parameters

Invalid application
group/message
type/rule name.

Check passed-in
parameters.
MQSeries Integrator Programming Reference for NEONRules 293

Chapter 5
-2608 RERR_RULE_
NAME_
ALREADY_
EXISTS

Error rule name
already exists

Application
group/message
type pairs cannot
have duplicate rule
names.

Check passed-in
parameters.

-2609 RERR_RULE_
NAME_DOES_
NOT_EXIST

Error rule name
does not exist

Invalid application
group/message
type/rule name.

Check passed-in
parameters.

-2610 RERR_INVALID_
OPERATOR_
PARAM

Invalid
operator
parameters

Invalid operator
ID.

Check passed-in
parameter.

-2611 RERR_INVALID_
ARG_PARAM

Invalid
argument
parameters

Invalid parameters
to create/update/
retrieve argument.

Check passed-in
parameters.

-2612 RERR_INVALID_
SUBS_PARAM

Invalid
subscription
parameters

Invalid parameters
to create/update/
retrieve
subscription.

Check passed-in
parameters.

-2613 RERR_SUBS_
NAME_
ALREADY_
EXISTS

Error
subscription
name already
exists

Subscription
names cannot be
duplicated within
a rule.

Check passed-in
parameters.

-2614 RERR_SUBS_
NAME_DOES_
NOT_EXIST

Error
subscription
name does not
exist

Application
group/message
type/rule name/
subscription name
not found.

Check passed-in
parameters.

-2615 RERR_INVALID_
ACTION_PARAM

Invalid action
parameters

Invalid parameters
to create/update/
retrieve action.

Check passed-in
parameters.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
294 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2616 RERR_ACTION_
SEQ_DOES_NOT_
EXIST

Error action
does not exist

Application
group/message
type/rule name/
subscription
name/action name
not found.

Check passed-in
parameters.

-2617 RERR_INVALID_
OPTION_PARAM

Invalid option
parameters

Invalid parameters
to create/update/
retrieve action

Check passed-in
parameters.

-2618 RERR_
CONVERSION_
ERROR

Error during
conversion

Conversion of
static argument
value failed.

Check passed-in
parameters. Run
Consistency
Checker.

-2619 RERR_NO_MORE
_ACTIONS

No more
actions

Not really error
unless returned
from
NNRMgrGetFirst
Action.

Subscription must
have at least one
action.

-2620 RERR_NO_
MORE_
OPERATORS

No more
operators

Not really an error.

-2621 RERR_NO_
MORE_
ARGUMENTS

No more
arguments

Not really error
unless returned
from
NNRMgrGetFirst
Argument.

Rule must have at
least one
argument.

-2622 RERR_INVALID_
RULES_PARAM

Invalid rules
management
object passed in

Must call
NNRMgrInit()
before calling any
other functions.

Call NNRMgrInit()
prior to calling any
other functions.

-2623 RERR_FEATURE_
NOT_
IMPLEMENTED

Feature not
implemented

Feature is not
implemented at
this time.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 295

Chapter 5
-2624 RERR_
ARGUMENT_
DOES_NOT_
EXIST

Argument does
not exist

Invalid parameters
to update/retrieve
argument.

Check passed-in
parameters:
AppGrp
MsgType
RuleName
ArgSeq
Fields
Operator

-2625 RERR_
OPERATION_
DOES_NOT_
EXIST

Operation does
not exist

Invalid parameters
to update/retrieve
argument
information.

Check passed-in
parameters:
AppGrp
MsgType
RuleName
ArgSeq
Fields
Operator

-2626 RERR_
UNKNOWN_
OPERATOR_
TYPE

Unknown
operator type

Operator may be
invalid.

Check passed-in
parameters.

-2627 RERR_NO_
MORE_
SUBSCRIPTIONS

No more
subscriptions

Not really error
unless returned
from
NNRMgrGetFirst
Subscription.

Rule must have at
least one
subscription.

-2628 RERR_NO_
MORE_RULES

No more rules Not really an error.

-2629 RERR_ACTION_
DOES_NOT_
EXIST

Action does not
exist

Invalid parameters
to update/retrieve
action.

Check passed-in
parameters:
AppGrp
MsgType
RuleName
SubName
ActSeq

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
296 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2630 RERR_OPTION_
DOES_NOT_
EXIST

Option does not
exist

Invalid parameters
to update/retrieve
option.

Check passed-in
parameters:
AppGrp
MsgType
RuleName
SubName
ActSeq
OptSeq

-2631 RERR_APP_ID_
CORRUPTED

App id
corrupted

Data for
Application Group
may be incorrect.

Run Consistency
Checker to check
data.

-2632 RERR_MSG_ID_
CORRUPTED

Msg id
corrupted

Data for Message
Type may be
incorrect.

Run Consistency
Checker to check
data.

-2633 RERR_NO_
MORE_
OPTIONS

No more
options

Not really error
unless returned
from
NNRMgrGetFirst
Option.

Action must
currently have at
least one option.

-2634 RERR_EXPORT_
APP_FAILURE

Export app
name failed

Export failed
during retrieval,
encoding, or
writing to file.

Run Consistency
Checker to check
data.

-2635 RERR_EXPORT_
MSG_FAILURE

Export message
name failed

Export failed
during retrieval,
encoding, or
writing to file.

Run Consistency
Checker to check
data.

-2636 RERR_EXPORT_
RULE_FAILURE

Export rule
failed

Export failed
during retrieval,
encoding, or
writing to file.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 297

Chapter 5
-2637 RERR_EXPORT_
ARG_FAILURE

Export
argument failed

Export failed
during retrieval,
encoding, or
writing to file.

Run Consistency
Checker to check
data.

-2638 RERR_EXPORT_
SUB_FAILURE

Export
subscription
failed

Export failed
during retrieval,
encoding, or
writing to file.

Run Consistency
Checker to check
data.

-2639 RERR_EXPORT_
ACT_FAILURE

Export action
failed

Export failed
during retrieval,
encoding, or
writing to file.

Run Consistency
Checker to check
data.

-2640 RERR_EXPORT_
OPT_FAILURE

Export option
failed

Export failed
during retrieval,
encoding, or
writing to file.

Run Consistency
Checker to check
data.

-2641 RERR_NO_MORE
_MESSAGES

No more
messages

Not really an error.

-2642 RERR_NO_
MORE_
APPLICATIONS

No more
applications

Not really an error.

-2643 RERR_IMPORT_
FILE_READ

Error reading
import file

Import failed to
read from file.

Check file.
Recreate file by
exporting again.

-2644 RERR_IMPORT_
APP

Error importing
application

Import failed
during reading of
file, decoding, or
writing to
database.

Check file. Run
Consistency
Checker to check
data. Try
importing with
overwrite flag.

-2645 RERR_INVALID_
IE_TYPE

Invalid import/
export type

Can only import/
export Rules
components.

Should never see
this error.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
298 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2646 RERR_IMPORT_
MSG

Error importing
message type

Import failed
during reading of
file, decoding, or
writing to
database.

Check file. Run
Consistency
Checker to check
data. Try
importing with
overwrite flag.

-2647 RERR_IMPORT_
RULE

Error importing
rule

Import failed
during reading of
file, decoding, or
writing to
database.

Check file. Run
Consistency
Checker to check
data. Try
importing with
overwrite flag.

-2648 RERR_MEMORY_
ALLOCATION_
FAILURE

Memory
allocation
failure

Could not allocate
memory.

Shut down excess
items. Restart
import/export.

-2649 RERR_IMPORT_
ARGUMENT

Error importing
argument

Import failed
during reading of
file, decoding, or
writing to
database.

Check file. Run
Consistency
Checker to check
data.

-2650 RERR_IMPORT_
SUBSCRIPTION

Error importing
subscription

Import failed
during reading of
file, decoding, or
writing to
database.

Check file. Run
Consistency
Checker to check
data. Try
importing with
overwrite flag

-2651 RERR_IMPORT_
ACTION

Error importing
action

Import failed
during reading of
file, decoding, or
writing to
database.

Check file. Run
Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 299

Chapter 5
-2652 RERR_IMPORT_
OPTION

Error importing
option

Import failed
during reading of
file, decoding, or
writing to
database.

Check file. Run
Consistency
Checker to check
data.

-2653 RERR_
UNSUPPORTED_
VERSION

Unsupported
version of
database

Can only export
and import to
version 4.1
databases.

Check version of
NEONRules.

-2654 RERR_DECODE_
FAILURE

Decoding
failure

Could not decode
line in file.

Export File may be
corrupt. Recreate
file by exporting
again.

-2655 RERR_
NONOWNER_
CANNOT_ADD_
PERMISSION

Cannot add
permission if
not owner

Rule old owner
may not be a valid
user of the current
database.

Check database
users.

-2656 RERR_NO_
PERMISSION_TO
_READ

No permission
to read

Cannot read
permission. Read
permission not
granted.

Assign
permissions to
rules.

-2657 RERR_NO_
PERMISSION_TO
_UPDATE

No permission
to update

Current user does
not have update
permission for the
rule.

Have rule owner
change update
permissions for
himself and/or
PUBLIC.

-2658 RERR_
PERMISSION_
LIST_READ_
FAILURE

Permission list
read failure

Could not read
permission list.

Run Consistency
Checker to check
data.

-2659 RERR_NO_MORE
_PERMISSIONS

No more
permissions

Not really an error.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
300 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2660 RERR_EXPORT_
VERSION_
FAILURE

Error exporting
version

Could not retrieve
version for export.
Can only export
from version 4.0
and higher.

Check install.

-2661 RERR_EXPORT_
PERMISSIONS_
FAILURE

Error exporting
permissions

Could not export
rule permissions.

Run Consistency
Checker to check
data.

-2662 RERR_INVALID_
FIELD_NAME_
PARAM

Invalid field
name
parameter

The field name
provided is
invalid.

Check parameters
to function call.

-2666 RERR_INVALID_
DATE_TIME_
FORMAT_IN_
ARG

Invalid date/
time format in
argument

Bad format of
static date/time
value.

Check input
parameter. Verify
that the Time
portion of a Date
value or the Date
portion of a Time
value is zero
padded.

-2667 RERR_NON_
NUMERIC_DATE
_TIME_IN_ARG

Invalid non-
numeric date/
time value in
argument

Bad format of
static date/time
value.

Check input
parameter.

-2668 RERR_INVALID_
YEAR_IN_ARG

Invalid year in
argument

Bad format of
static date/time
value.

Check input
parameter.

-2669 RERR_INVALID_
MONTH_IN_ARG

Invalid month
in argument

Bad format of
static date/time
value.

Check input
parameter.

-2670 RERR_INVALID_
DAY_IN_ARG

Invalid day in
argument

Bad format of
static date/time
value.

Check input
parameter.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 301

Chapter 5
-2671 RERR_INVALID_
HOUR_IN_ARG

Invalid hour in
argument

Bad format of
static date/time
value.

Check input
parameter.

-2672 RERR_INVALID_
MINUTE_IN_ARG

Invalid minute
in argument

Bad format of
static date/time
value.

Check input
parameter.

 -2673 RERR_INVALID_
SECOND_IN_
ARG

Invalid second
in argument

Bad format of
static date/time
value.

Check input
parameter.

-2674 RERR_
UNBALANCED_
QUOTES

Unbalanced
quotes in
expression after

Invalid Boolean
expression; quotes
must be balanced.

Check input
expression
parameter.

-2675 RERR_INVALID_
RULES_
OPERATOR

Invalid Rules Operator in
expression in
Invalid Rules
operator.

Check the
Operator list for
spelling/case.

-2676 RERR_MISSING_
RULES_
OPERATOR

Expression
missing Rules
Operator

Rules expression
must have a Rules
Operator.

Check input
expression
parameter.

-2677 RERR_NEED_
SECOND_FIELD_
OR_VALUE

Rules Operator
missing
comparison
value or field
name in
expression

All Rules operators
must have a
second argument
except those
checking for
existence.

Check input
expression
parameter.

-2678 RERR_
UNBALANCED_
PARENS

Unbalanced
parentheses in
expression

Parentheses must
be balanced in
Rules expression.

Check input
expression
parameter.

-2679 RERR_EXPECTED
_TERMINAL

Expected
terminal in
expression

Expression ended
incorrectly.

Check input
parameter.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
302 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2680 RERR_ARG_
MUST_BE_
ACTIVE

Arguments
must be active
for NEONet
4.0+

Arguments can no
longer be Inactive.

Change input
expression
parameter.

-2681 RERR_USE_
UPDATE_EXPR

Must Use NNR
MgrUpdate
Expression to
perform
desired update

Cannot use
NNRMgrAddArg
ument unless all
arguments are just
ANDed together.

Use
NNRMgrUpdate
Expression.

-2682 RERR_TRAILING
_CHARS

Trailing
characters
found in
expression

Extra characters in
the expression.

Make sure you are
using ’&’ and ’|’ for
Boolean operators.

-2683 RERR_MISSING_
OPERAND

Missing
operand in
boolean
expression
before/after

Two Operands are
required around a
Boolean operator.

Check input
expression
parameter.

-2684 RERR_
NONOWNER_
CANNOT_
DELETE

Cannot delete
item if not
owner.

User not the owner
of the sub/rule
Cannot delete.

Delete as owner.

-2685 RERR_
SUBSCRIPTION_
IS_USED

Subscription is
used by a rule -
cannot delete

Subscription is
used by a rule and
cannot be deleted.

Remove
subscription from
all associated
rules.

-2686 RERR_INVALID_
COMPONENT_
TYPE

Invalid
component
type as
parameter

Invalid component
type parameter.

Check component
type - input
parameter.

-2687 RERR_INVALID_
COMPONENT_
PARAM

Invalid or
missing
parameter

May have invalid
parameter.

Check passed in
parameters (i.e.,
NULL values).

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 303

Chapter 5
-2688 RERR_INVALID_
CHANGE_
OWNER_PARAM

Invalid or
missing change
owner
parameter

May have invalid
parameter.

Check passed in
parameter.

-2689 RERR_INVALID_
COMPONENT_
OWNER_PARAM

Invalid or
missing
component
owner
parameter

May have invalid
parameter.

Check passed in
parameter for
NULL value.

-2690 RERR_
SUBSCRIPTION_
LIST_READ_
FAILURE

Subscription
list read failure

Failure reading
subscription list.

Run Consistency
Checker and check
data.

-2691 RERR_RULE_
LIST_READ_
FAILURE

Rule list read
failure

Failure reading
rule list.

Run Consistency
Checker and check
data.

-2692 RERR_IMPORT_
PERM

Error importing
permission

Error importing
permission.

Check file. Run
Consistency
Checker to check
data.

-2693 RERR_USE_
EXISTENCE_OPS

Cannot
compare
against empty
strings - use
existence
operator

Cannot do a
comparison
against an empty
string.

To compare
against an empty
field, use the
EXIST or
NOT_EXIST
operator.

-2694 RERR_OPT_PUT_
FMT_INVALID

Invalid option
value for
putqueue MQS
_FORMAT
option

Option can be only
8 characters long.

Change the
parameters sent
into NNRMgrAdd
Option or
NNRMgr
UpdateOption.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
304 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2695 RERR_OPT_PUT_
PROP_INVALID

Invalid option
value for
putqueue MQS
_PROPAGATE
option

Must be
PROPAGATE or
NO_
PROPAGATE.

Change the
parameters sent
into NNRMgrAdd
Option or
NNRMgr
UpdateOption.

-2696 RERR_OPT_PUT_
PER_INVALID

Invalid option
value for
putqueue
MQS_PERSIST
option

Must be PERSIST
or NO_PERSIST.

Change the
parameters sent
into NNRMgrAdd
Option or
NNRMgr
UpdateOption.

-2697 REERR_OPT_
PUT_EXP_
INVALID

Invalid option
value for
putqueue
MQS_EXPIRY
option

Must be
PROPAGATE or
NO_
PROPAGATE.

Change the
parameters sent
into NNRMgrAdd
Option or
NNRMgr
UpdateOption.

-2698 RERR_OPT_FMT_
FMT_INVALID

Invalid option
value for
reformat option

INPUT_FORMAT
must be a valid
input format name
and TARGET_
FORMAT must be
a valid output
format name

Change the
parameters sent
into NNRMgrAdd
Option or
NNRMgr
UpdateOption or
add the needed
formats.

-2699 RERR_INVALID_
INT_ARG_VALUE

Invalid integer
static
comparison
value.

For integer
comparison
values, no non-
numeric characters
are allowed except
for a (+/-) sign as
the first character
(No decimal point
is allowed).

Check input into
Argument or
Expression APIs.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 305

Chapter 5
-2700 RERR_INT_ARG_
VALUE_OUT_OF
_RANGE

Integer static
comparison
value out of
valid range.

The valid INT
values are whole
numbers in the
integer range for
the platform used
(usually about -2.1
to about 2.1
billion).

Check input into
Argument or
Expression APIs.

-2701 RERR_INVALID_
FLOAT_ARG_
VALUE

Invalid float
static
comparison
value.

For float
comparison
values, the only
non-numeric
characters allowed
are (+/-) sign as
the first character
and a decimal
point.

Check input into
Argument or
Expression APIs.

-2702 RERR_FLOAT_
ARG_VALUE_
MISSING_
DECIMAL

Float static
comparison
value must
have a decimal.

Valid float
comparison values
must contain a
decimal point.

Check input into
Argument or
Expression APIs.

-2703 RERR_FLOAT_
ARG_VALUE_
OUT_OF_RANGE

Float static
comparison
value out of
valid range.

The valid FLOAT
values include a
whole number in
the integer range
for the platform
used (usually
about -2.1billion to
about 2.1 billion)
and a decimal
mantissa with a
maximum of 31
digits.

Check input into
Argument or
Expression APIs.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
306 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2704 RERR_STATIC_
ARG_VALUE_
TOO_LONG

Static
comparison
value too long.

Static comparison
values cannot
exceed 64
characters (plus a
terminating
NULL).

Check input into
Argument or
Expression APIs.

-2705 RERR_NO_PERM
_TO_DELETE_
ALL_APP

Could not
delete all rules
and/or
subscriptions in
application
group.

The user deleting
might not have
permissions for all
the rules and/or
subscriptions in
the application
group.

Check into the
permissions for the
rules and/or
subscriptions.
Only the owner
can delete them.

-2706 RERR_NO_PERM
_TO_DELETE_
ALL_MSG

Could not
delete all rules
and/or
subscriptions in
message type.

The user deleting
might not have
permissions for all
the rules and/or
subscriptions in
the message type.

Check into the
permissions for the
rules and/or
subscriptions.
Only the owner
can delete them.

-2707 RERR_RULE_SUB
_LINK_SUB_NOT
_EXIST

Error linking
subscription to
rule.
Subscription
does not exist.

Subscription was
not imported.

Look at the error
message as to why
the subscription
was not imported.

-2708 RERR_IMPORT_
EXPRESSION

Error importing
expression.

Malformed
expression or
problem in the
database.

Review the
expression and run
consistency
checker on the
database.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 307

Chapter 5
-2709 RERR_WRONG_
VER_FOR_
OVERWRITE

Error. -O flag is
not supported
in pre 4.10
versions. The -o
flag is used
instead.

Due to significant
changes in the
NNRie file
formats,
NEONRules does
not support the –O
in import files
from pre 4.10
versions.

Remove the
message types you
want to completely
overwrite using
the NEONRules
GUI or NEONRules
Management APIs
prior to importing.

-2710 RERR_IMPORT_
VERSION_
FAILURE_FILE

Unsupported
version of
import file.

The import file was
created from a
version of
NNRie.exe that is
no longer
supported in
NEONRules.

Check the version
in the import file.
This might require
using the
NNCrypt utility.
Check the version
of NNRie used to
create the export
file.

-2711 RERR_MISSING_
VERSION_IN_
FILE

Missing version
information in
export file.

The version of the
export file is
missing.

Check the file to
see that the version
line is present. This
might require
using the
NNCrypt utility.
Check the version
of NNRie used to
create the export
file.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
308 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-2712 RERR_NOT_
RULES_FILE

Missing key
information to
the NNRie
export file.

Missing the “R” as
the first non-
comment line in
the NNRie export
file.

Check the file to
see that the “R”
line is present. This
might require
using the
NNCrypt utility.
Check the version
of NNRie used to
create the export
file.

-2713 RERR_NOTHING
IMPORTED
EXPORTED

Nothing was
imported or
exported.

There are no valid
lines to import or
no data to export.

Check the database
or the import file to
see if they contain
the data required.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 309

Chapter 5
3HUPLVVLRQ�'DWD�(UURUV

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH

-5500 NN_NO_DB_ERR No NEONet
database error

No error.

-5501 NN_ID_INSERT_
FAILURE

Get next id
insert error

Error getting new
ids for user/
permission.

Run Consistency
Checker to check
data.

-5502 NN_ID_UPDATE_
FAILURE

Get next id
update error

Error getting new
ids for user/
permission.

Run Consistency
Checker to check
data.

-5503 NN_NODE_DOES
_NOT_EXIST

Node does not
exist

Must run on valid
4.1 database with
node data saved.

Check installation.

-5504 NN_HIERARCHY
_DOES_NOT_
EXIST

Hierarchy does
not exist

Must run on valid
4.0 database with
hierarchy data
saved.

Check install. Run
Consistency
Checker to check
data.

-5505 NN_
COMPONENT_
ADD_FAILURE

Component
add failure

Cannot add rule
component to
permission
system; may be
duplicate.

Run Consistency
Checker to check
data.

-5506 NN_
COMPONENT_
LOAD_FAILURE

Component
load failure

Cannot retrieve
rule component
information from
permission
system; may not
exist.

Run Consistency
Checker to check
data.

-5507 NN_DELETE_
COMPONENT_
FAILURE

Delete
component
failure

Cannot delete rule
component
information from
permission
system; may not
exist.

Run Consistency
Checker to check
data.
310 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-5508 NN_UNABLE_
TO_DETERMINE_
USER

Unable to
determine user

Permission user
not a valid
database user.

Run Consistency
Checker to check
data.

-5509 NN_UNABLE_
TO_FIND_USER

Unable to find
user in database

Permission user
not a valid
database user.

Run Consistency
Checker to check
data.

-5510 NN_UNABLE_
TO_FIND_USER_
IN_NEONET

Unable to find
user in NEONet

Permission user
not a valid
permission user.

Run Consistency
Checker to check
data.

-5511 NN_UNABLE_
TO_ADD_USER_
TO_NEONET

Unable to add
user to NEONet

Cannot add
permission user.
May not be a valid
database user.

Run Consistency
Checker to check
data.

-5512 NN_UNABLE_
TO_ADD_
PERMISSION_
SET

Unable to add
permission

Cannot add
permission - may
be a duplicate.

Run Consistency
Checker to check
data.

-5513 NN_UNABLE_
TO_FIND_
PERMISSION

Unable to find
permission

Cannot find
permission. May
have invalid
parameters.

Run Consistency
Checker to check
data.

-5514 NN_UNABLE_
TO_LOAD_
PERMISSION_
LIST

Unable to read
permission

Cannot retrieve
permission. May
have invalid
parameters.

Run Consistency
Checker to check
data.

-5515 NN_UNABLE_
TO_UPDATE_
PERMISSION

Unable to
update
permission

Cannot update
permission. May
have invalid
parameters.

Run Consistency
Checker to check
data.

-5516 NN_ADD_USER_
NOT_DB_USER

User is not a
valid user of the
database
instance

Permission user
not a valid
database user.

Run Consistency
Checker to check
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 311

Chapter 5
-5517 NN_UNABLE_
TO_CHANGE_
PERMISSION_
USER

Unable to
change the user
for the
permissions

The new user may
not be valid or
caused a duplicate
permission.

Run Consistency
Checker to check
data.

-5518 NN_UNABLE_
TO_DELETE_
PERMISSIONSET

Unable to
delete the
permission set

Invalid parameters
to delete
permission set for
a user/rule pair.

Run Consistency
Checker to check
data.

-5519 NN_
NOPERMISSIONS
_FOUND

No permissions
were found

Indicates no more
permissions to
read for rule or
subscription.

Rule or
subscription must
have at least two
permissions.

5520 NN_
COMPONENT_
UPDATE_
FAILURE

Component
update failure

Cannot update
permission.May
have invalid
parameter.

Run Consistency
Checker to run
data.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
312 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
*HQHUDO�3HUPLVVLRQ�(UURUV

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH

-5000 NN_NO_ERR No Errors No error.

-5001 NN_GET_NEXT_
ID_INVALID_
PARAM

Next id invalid
parameters

Invalid parameters
to get new user/
component id for
permission
system.

Check passed-in
parameters.

-5002 NN_UPDATE_
PERMISSION_
INVALID_
PARAM

Update
permission
invalid
parameters

Invalid parameters
to update
permission.

Check passed-in
parameters.

-5003 NN_GET_NODE_
ID_INVALID_
PARAM

Get node
invalid
parameters

Invalid parameters
to retrieve node
information.

Check passed-in
parameters.

-5004 NN_HIERARCHY
LEVEL
INVALID_
PARAM

Get hierarchy
level invalid
parameters

Invalid parameters
to retrieve
hierarchy level
information.

Check passed-in
parameters.

-5005 NN_HIERARCHY
INVALID
PARAM

Get hierarchy
invalid
parameters

Invalid parameters
to retrieve
hierarchy
information.

Check passed-in
parameters.

-5006 NN_ADD_
COMPONENT_
INVALID_
PARAM

Add
component
invalid
parameters

Invalid parameters
to add component
to permission
system.

Check passed-in
parameters.

-5007 NN_
COMPONENT_
LOAD_INVALID_
PARAM

Load
component
invalid
parameters

Invalid parameters
to retrieve
component from
permission
system.

Check passed-in
parameters.
MQSeries Integrator Programming Reference for NEONRules 313

Chapter 5
-5008 NN_DELETE_
COMPONENT_
INVALID_
PARAM

Delete
component
invalid
parameters

Invalid parameters
to delete
component from
permission
system.

Check passed-in
parameters.

-5009 NN_LOAD_USER
INVALID
PARAM

Load user
invalid
parameters

Invalid parameters
to retrieve user
from permission
system.

Check passed-in
parameters.

-5010 NN_ADD_USER_
INVALID_
PARAM

Add user
invalid
parameters

Invalid parameters
to add user to
permission
system.

Check passed-in
parameters.

-5011 NN_ADD_
PERMISSION_
INVALID_
PARAM

Add
permission
invalid
parameters

Invalid parameters
to add permission
to permission
system.

Check passed-in
parameters.

-5012 NN_LOAD_
PERMISSION_
INVALID_
PARAM

Load
permission
invalid
parameters

Invalid parameters
to retrieve
permission from
permission
system.

Check passed-in
parameters.

-5013 NN_PERMISSION
ALREADY
EXISTS

Adding
permission that
already exists

Duplicate
permissions not
allowed for user/
component/
permission.

Check passed-in
parameters.

-5014 NN_CHANGE_
USER_PERM_
INVALID_
PARAM

Changing user
invalid
parameters

Invalid parameters
to change the
owner for a certain
component.

Check passed-in
parameters.

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
314 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages
-5015 NN_DELETE_
PERMSET_
INVALID_
PARAM

Deleting
permission set
invalid
parameters

Invalid parameters
to delete all
permissions for a
user/component.

Check passed-in
parameters.

 -5016 NN_NONOWNER
_CANNOT_ADD_
PERMISSION

Cannot add
permission if
not owner

User is not the
owner of the
component.
Cannot add/
update
permission.

Add as owner of
component.

-5017 NN_NO_
PERMISSION_TO
_READ

No permission
to read

Read permission
not granted to
PUBLIC or User.

Grant read
permission for
component.

-5018 NN_PERMISSION
_LIST_READ_
FAILURE

Permission list
read failure

Cannot read
permission list.

Run Consistency
Checker to check
data.

-5019 NN_NO_MORE_
PERMISSIONS

No more
permissions

Indicates no more
permissions to
read for rule or
subscription.

Rules and
Subscriptions must
have at least two
permissions.

-5020 NN_NO_MORE_
ITEMS

No more
components.

Not really an error.

-5021 NN_
NOPERMISSION_
TO_UPDATE

No permission
to update

Update permission
not granted to
PUBLIC or User.

Grant update
permission for
component.

-5022 NN_NONOWNER
CANNOT
DELETE

Cannot delete
item if not
owner

User is not the
owner of the
component.
Cannot delete
item.

Delete as owner of
component

&RGH 1DPH 0HVVDJH ([SODQDWLRQ 5HVSRQVH
MQSeries Integrator Programming Reference for NEONRules 315

Chapter 5
316 MQSeries Integrator Programming Reference for NEONRules

$SSHQGL[�$

2SHUDWRU�7\SHV

The following operator types are available for use in Rules expressions. These
operator types are described in the subsequent tables:

n Existence

n Integer

n String

n Field-to-field integer

n Field-to-field string

n Float

n Case-sensitive string

n Field-to-field case-sensitive

n Date

n Field-to-field date

n Time

n Field-to-field time

n DateTime

n Field-to-field DateTime

1RWH�
Case-sensitive operators do not work correctly on case-insensitive databases.
MQSeries Integrator Programming Reference for NEONRules 317

([LVWHQFH�2SHUDWRUV

,QWHJHU�2SHUDWRUV

6WULQJ�2SHUDWRUV

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

NOT_EXIST 0 Required Field Is Not Present

NOT_EXIST_TRIM 104 Required Field Is Not Present
(After Trimming)

EXIST 1 Required Field Is Present

EXIST_TRIM 105 Required Field Is Present (After
Trimming)

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

INT= 2 Integer Equals

INT> 3 Integer Greater Than

INT< 4 Integer Less Than

INT>= 5 Integer Greater Than Or Equal To

INT<= 6 Integer Less Than Or Equal To

INT<> 7 Integer Not Equal To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

STRING= 8 String Equal To

STRING_TRIM= 106 String Equal To (After Trimming)

STRING> 9 String Greater Than
318 MQSeries Integrator Programming Reference for NEONRules

)LHOG�7R�)LHOG�,QWHJHU�2SHUDWRUV

STRING_TRIM> 107 String Greater Than (After
Trimming)

STRING< 10 String Less Than

STRING_TRIM< String Less Than (After
Trimming)

STRING_TRIM>= 109 String Greater Than Or Equal To
(After Trimming)

STRING>= 11 String Greater Than Or Equal To

STRING<= 12 String Less Than Or Equal To

STRING_TRIM<= 110 String Less Than Or Equal To
(After Trimming)

STRING<> 13 String Not Equal To

STRING_TRIM<> 111 String Not Equal To (After
Trimming)

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

F2FINT= 18 Field To Field Integer Equal To

F2FINT> 19 Field to Field Integer Greater
Than

F2FINT< 20 Field to Field Integer Less Than

F2FINT>= 21 Field to Field Integer Greater
Than Or Equal To

F2FINT<= 22 Field to Field Integer Less Than
Or Equal To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 319

)LHOG�7R�)LHOG�6WULQJ�2SHUDWRUV

F2FINT<> 23 Field To Field Integer Not Equal
To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

F2FSTRING= 24 Field To Field String Equal To

F2FSTRING_TRIM= 112 Field To Field String Equal To
(After Trimming)

F2FSTRING> 25 Field To Field String Greater
Than

F2FSTRING_TRIM> 113 Field To Field String Greater
Than (After Trimming)

F2FSTRING< 26 Field To Field String Less Than

F2FSTRING_TRIM< 114 Field To Field String Less Than
(After Trimming)

F2FSTRING>= 27 Field To Field String Greater
Than Or Equal To

F2FSTRING_TRIM>= 115 Field To Field String Greater
Than Or Equal To (After
Trimming)

F2FSTRING<= 28 Field To Field String Less Than
Or Equal To

F2FSTRING_TRIM<= 116 Field To Field String Less Than
Or Equal To (After Trimming)

F2FSTRING<> 29 Field To Field String Not Equal
To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ
320 MQSeries Integrator Programming Reference for NEONRules

)ORDW�2SHUDWRUV

&DVH�6HQVLWLYH�6WULQJ�2SHUDWRUV

F2FSTRING_TRIM<> 117 Field To Field String Not Equal
To (After Trimming)

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

FLOAT= 34 Float Equals

FLOAT> 35 Float Greater Than

FLOAT< 36 Float Less Than

FLOAT>= 37 Float Greater Than Or Equal To

FLOAT<= 38 Float Less Than Or Equal To

FLOAT<> 39 Float Not Equal To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

CSSTRING = 56 Case Sensitive String Equal To

CSSTRING_TRIM= 118 Case Sensitive String Equal To
(After Trimming)

CSSTRING> 57 Case Sensitive String Greater
Than

CSSTRING_TRIM> 119 Case Sensitive String Greater
Than (After Trimming)

CSSTRING< 58 Case Sensitive String Less Than

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 321

)LHOG�7R�)LHOG�&DVH�6HQVLWLYH�2SHUDWRUV

CSSTRING_TRIM< 120 Case Sensitive String Less Than
(After Trimming)

CSSTRING>= 59 Case Sensitive String Greater
Than Or Equal To

CSSTRING_TRIM>= 121 Case Sensitive String Greater
Than Or Equal To (After
Trimming)

CSSTRING<= 60 Case Sensitive String Less Than
Or Equal To

CSSTRING_TRIM<= 122 Case Sensitive String Less Than
Or Equal To (After Trimming)

CSSTRING<> 61 Case Sensitive String Not Equal
To

CSSTRING_TRIM<> 123 Case Sensitive String Not Equal
To (After Trimming)

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

F2FCSSTRING= 62 Field To Field Case Sensitive
String Equal To

F2FCSSTRING_TRIM= 124 Field To Field Case Sensitive
String Equal To (After Trimming)

F2FCSSTRING> 63 Field To Field Case Sensitive
String Greater Than

F2FCSSTRING_TRIM> 125 Field To Field Case Sensitive
String Greater Than (After
Trimming)

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ
322 MQSeries Integrator Programming Reference for NEONRules

'DWH�2SHUDWRUV

F2FCSSTRING< 64 Field To Field Case Sensitive
String Less Than

F2FCSSTRING_TRIM< 126 Field To Field Case Sensitive
String Less Than (After
Trimming)

F2FCSSTRING>= 65 Field To Field Case Sensitive
String Greater Than Or Equal To

F2FCSSTRING_TRIM>= 127 Field To Field Case Sensitive
String Greater Than Or Equal To
(After Trimming)

F2FCSSTRING<= 66 Field To Field Case Sensitive
String Less Than Or Equal To

F2FCSSTRING_TRIM<= 128 Field To Field Case Sensitive
String Less Than Or Equal To
(After Trimming)

F2FCSSTRING<> 67 Field To Field Case Sensitive
String Not Equal To

F2FCSSTRING_TRIM<> 129 Field To Field Case Sensitive
String Not Equal To (After
Trimming)

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

DATE= 68 Date Equal To

DATE> 69 Date Greater Than

DATE< 70 Date Less Than

DATE>= 71 Date Greater Than Or Equal To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ
MQSeries Integrator Programming Reference for NEONRules 323

)LHOG�7R�)LHOG�'DWH�2SHUDWRUV

7LPH�2SHUDWRUV

DATE<= 72 Date Less Than Or Equal To

DATE<> 73 Date Not Equal To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

F2FDATE= 74 Field To Field Date Equal To

F2FDATE> 75 Field To Field Date Greater Than

F2FDATE< 76 Field To Field Date Less Than

F2FDATE>= 77 Field To Field Date Greater Than
Or Equal To

F2FDATE<= 78 Field To Field Date Less Than Or
Equal To

F2FDATE<> 79 Field To Field Date Not Equal To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

TIME= 80 Time Equal To

TIME> 81 Time Greater Than

TIME< 82 Time Less Than

 TIME>= 83 Time Greater Than Or Equal To

TIME<= 84 Time Less Than Or Equal To

TIME<> 85 Time Not Equal To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ
324 MQSeries Integrator Programming Reference for NEONRules

)LHOG�7R�)LHOG�7LPH�2SHUDWRUV

'DWH7LPH�2SHUDWRUV

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

F2FTIME= 86 Field To Field Time Equal To

F2FTIME> 87 Field To Field Time Greater Than

F2FTIME< 88 Field To Field Time Less Than

F2FTIME>= 89 Field To Field Time Greater Than
Or Equal To

F2FTIME<= 90 Field To Field Time Less Than Or
Equal To

F2FTIME<> 91 Field To Field Time Not Equal To

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

DATETIME= 92 DateTime Equal To

DATETIME> 93 DateTime Greater Than

DATETIME< 94 DateTime Less Than

DATETIME>= 95 DateTime Greater Than Or Equal
To

DATETIME<= 96 DateTime Less Than Or Equal To

DATETIME<> 97 DateTime Not Equal To
MQSeries Integrator Programming Reference for NEONRules 325

)LHOG�7R�)LHOG�'DWH7LPH�2SHUDWRUV

2SHUDWRU�6\PERO 2SHUDWRU�
+DQGOH

�'HVFULSWLRQ

F2FDATETIME= 98 Field To Field DateTime Equal To

F2FDATETIME> 99 Field To Field DateTime Greater
Than

F2FDATETIME< 100 Field To Field DateTime Less
Than

F2FDATETIME>= 101 Field To Field DateTime Greater
Than Or Equal To

F2FDATETIME<= 102 Field To Field DateTime Less
Than Or Equal To

F2FDATETIME<> 103 Field To Field DateTime Not
Equal To
326 MQSeries Integrator Programming Reference for NEONRules

$SSHQGL[�%

1RWLFHV

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
MQSeries Integrator Programming Reference for NEONRules 327

Appendix B
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
328 MQSeries Integrator Installation and Configuration Guide

Notices
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

7UDGHPDUNV�DQG�6HUYLFH�0DUNV

The following, which appear in this book or other MQSeries Integrator books,
are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

MQSeries
AIX
DB2
IBM

NEONFormatter and NEONRules are trademarks of New Era of Networks, Inc.
in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service
marks of others.
MQSeries Integrator Programming Reference for NEONRules 329

Appendix B
330 MQSeries Integrator Installation and Configuration Guide

,QGH[

6\PEROV
& operator 12
| operator 12

$
Action Management API functions

NNRMgrAddAction 234, 247
NNRMgrGetFirstAction 236
NNRMgrGetNextAction 238
NNRMgrResequenceAction 240
NNRMgrUpdateAction 244

Action Management APIs 227
NNRAction 228
NNRActionData 230
NNRActionReadData 231
NNRActionUpdate 233

actions 20, 227
AND operator 12
APIs

action management 227
application groups 92
argument management 184
expression management 174
header files 27
member functions 27
message types 111, 115
option management 249
permissions 151
Rules 39
Rules error handling function 27
Rules Management 127
Rules Management APIs 85
Rules Management functions 27
Rules Management macros 27
subscription management 194
VRule member functions 27

Application Group Management API functions 97
NNRMgrReadApp 99

NNRMgrUpdateApp 107
Application Group Management APIs 92

NNRApp 93
NNRAppData 94
NNRAppUpdate 96

application groups 11, 92
Argument Management API functions

NNRMgrGetFirstArgument 190
NNRMgrGetNextArgument 192

Argument Management APIs 184
NNRArg 185
NNRArgData 186
NNRArgUpdate 188

arguments 12

%
Boolean operators 12

&
class/type definitions 39
client code errors 273
CreateRulesEngine 39, 47

'
data processing errors 273
date operators 15
dates

standard notation 15
datetime operators 15
definitions 39
DeleteRuleEngine 39, 50
diskspace requirements 9
documents

NEONet documentation set 6
MQSeries Integrator Programming Reference for NEONRules 331

(
environments

multi-threaded 24
non-threaded 23

error codes 273
client code errors 273
data processing errors 273
permission errors 273
Rules Management data errors 273

error handling 81
eval 21, 52
Expression Management API functions

NNRmgrAddExpression 178
NNRMgrReadExpression 180
NNRmgrUpdateExpression 182

Expression Management APIs 174
NNRExp 175
NNRExpData 176

expressions 12

*
getaction 62
GetErrorMessage 82
GetErrorNo 81
getformatterobject 79
gethitrule 45, 55
getlog 66
getnohitrule 45, 57
getopt 64
GetRerror 83
getsubscription 59

+
header files 27

,
ISO-8601:1988 standard date notation 15

/
libraries 36
linking to libraries 36
LoadRuleSet 71

0
memory requirements 9
Message Type Management API functions 115

NNRMgrAddMsg 115, 123, 125
NNRMgrReadMsg 117, 119, 121
NNRMsgData 113, 114

Message Type Management APIs 111
NNRMsg 112

message types 11, 111, 115
MQSeries Integrator

disk space requirements 9
multi-threaded environment 24

1
NN_CLEAR 154, 156
NNDate 87
NNPermissionData 153
NNR_CLEAR 91
NNRAction 228
NNRActionData 230
NNRActionReadData 231
NNRActionUpdate 233
NNRApp 93
NNRAppData 94
NNRAppUpdate 96
NNRArg 185
NNRArgData 186
NNRArgUpdate 188
NNRExp 175
NNRExpData 176
NNRGetErrorMessage 272
NNRMgrAddAction 234, 247
NNRmgrAddExpression 178
NNRMgrAddMsg 115, 123, 125
NNRMgrAddOption 256, 269
NNRMgrAddRule 135, 143
NNRMgrAddSubscription 203
NNRMgrChangeOwner 163
NNRMgrClose 90
NNRMgrDeleteEntireRule 148
NNRMgrDeleteEntireSubscription 109, 221
NNRMgrDeleteSubscriptionFromRule 219
NNRMgrDuplicateSubscription 105, 214
NNRMgrGetFirstAction 236
NNRMgrGetFirstArgument 190
332 MQSeries Integrator Programming Reference for NEONRules

NNRMgrGetFirstOperator 170
NNRMgrGetFirstOption 258
NNRMgrGetFirstPerm 157
NNRMgrGetFirstRule 139
NNRMgrGetFirstRuleUsingSubs 223
NNRMgrGetFirstSubscription 101, 103, 208
NNRMgrGetNextAction 238
NNRMgrGetNextArgument 192
NNRMgrGetNextOperator 172
NNRMgrGetNextOption 260
NNRMgrGetNextPerm 159
NNRMgrGetNextRule 141
NNRMgrGetNextRuleUsingSubs 225
NNRMgrGetNextSubscription 211
NNRMgrInit 89
NNRMgrReadApp 99
NNRMgrReadExpression 180
NNRMgrReadMsg 117, 119, 121
NNRMgrReadRule 137
NNRMgrReadSubscription 206
NNRMgrResequenceAction 240
NNRMgrResequenceOption 262
NNRMgrUpdateAction 244
NNRMgrUpdateApp 107
NNRmgrUpdateExpression 182
NNRMgrUpdateOption 266
NNRMgrUpdateOwnerPerm 161, 165
NNRMgrUpdatePublicPerm 167
NNRMgrUpdateRule 145
NNRMgrUpdateSubscription 216
NNRMSG 112
NNRMsgData 113, 114
NNROperator 169
NNROption 250
NNROptionData 252
NNROptionReadData 253
NNROptionUpdate 255
NNRRule 95, 127
NNRRuleData 129
NNRRuleReadData 131
NNRRuleUpdate 133
NNRSubs 195
NNRSubsData 197
NNRSubsReadData 199
NNRSubsUpdate 201
NNUserPermissionData 151
non-threaded environment 23

2
Operator Management API functions

NNRMgrGetFirstOperator 170
NNRMgrGetNextOperator 172

Operator Management APIs
NNROperator 169

operators
& 12
| 12
AND 12
Boolean 12
date 15
datetime 15
OR 12
Rules 12
time 15

Option Management API functions
NNRMgrAddOption 256, 269
NNRMgrGetFirstOption 258
NNRMgrGetNextOption 260
NNRMgrResequenceOption 262
NNRMgrUpdateOption 266

Option Management APIs 249
NNROption 250
NNROptionData 252
NNROptionReadData 253
NNROptionUpdate 255

option name-value pairs 43
OPTIONPAIR structures 43
options 20
OR operator 12
Overall Permission Macro

NN_CLEAR 156
Overview 11

3
Permission API functions 157

NNRMgrChangeOwner 163
NNRMgrGetFirstPerm 157
NNRMgrGetNextPerm 159
NNRMgrUpdateOwnerPerm 161, 165
NNRMgrUpdatePublicPerm 167

permission errors 273
permissions

Rules 19
MQSeries Integrator Programming Reference for NEONRules 333

Subscription 19
Permissions APIs 151
Permissions Management API functions

NNPermissionData 153
NNUserPermissionData 151

Permissions Management API structures 151

5
requirements

diskspace 9
memory 9
MQSeries Integrator disk space 9

Rule Management API functions
NNRMgrAddRule 135, 143
NNRMgrDeleteEntireRule 148
NNRMgrGetFirstRule 139
NNRMgrGetNextRule 141
NNRMgrReadRule 137
NNRMgrUpdateRule 145

Rule Management APIs
NNRRule 95, 127
NNRRuleData 129
NNRRuleReadData 131
NNRRuleUpdate 133

RULE structure
gethitrule 45
getnohitrule 45

Rules 12
application groups 11
CreateRulesEngine 47
DeleteRuleEngine 50
libraries 36
linking to libraries 36
message types 11
NN_CLEAR 154
OPTIONPAIR 43
Overview 11
RULE structure 45
SUBSCRIPTION 41
thread-safe functions 23
VRule 39
VRule member functions

CreateRulesEngine 47
DeleteRuleEngine 50

VRule supporting functions 46
Rules APIs 39

Rules error codes 273
client code errors 273
data processing errors 273
permission errors 273
Rules Management data errors 273

Rules error handling 81
GetErrorMessage 82
GetErrorNo 81
GetRerror 83

Rules Management
NN_CLEAR 154

Rules Management APIs 85, 127
NNDate 87
NNRMgrClose 90
NNRMgrInit 89

Rules Management data errors 273
Rules Management error handling

NNRGetErrorMessage 272
Rules Management functions 27
Rules Management macros 27

NNR_CLEAR 91
Rules operators 12
Rules permissions 19

6
standard date notation 15
Subscription Management API functions

NNRMgrAddSubscription 203
NNRMgrDeleteEntireSubscription 109, 221
NNRMgrDeleteSubscriptionFromRule 219
NNRMgrDuplicateSubscription 105, 214
NNRMgrGetFirstRuleUsingSubs 223
NNRMgrGetFirstSubscription 101, 103, 208
NNRMgrGetNextRuleUsingSubs 225
NNRMgrGetNextSubscription 211
NNRMgrReadSubscription 206
NNRMgrUpdateSubscription 216

Subscription Management APIs 194
NNRSubs 195
NNRSubsData 197
NNRSubsReadData 199
NNRSubsUpdate 201

Subscription permissions 19
SUBSCRIPTION structures 41
subscriptions 20
334 MQSeries Integrator Programming Reference for NEONRules

7
ThreadCleanup 67
thread-safe functions 23
time operators 15

9
Virtual Rules Engine 39
VRule member functions 27

CreateRulesEngine 47
DeleteRuleEngine 50
eval 52
getaction 62
getformatterobject 79
gethitrule 55
getlog 66
getnohitrule 57
getopt 64
getsubscription 59
LoadRuleSet 71
ThreadCleanup 67

VRule object 39
VRule supporting functions 46
MQSeries Integrator Programming Reference for NEONRules 335

Sending your comments to IBM
MQSeries Integrator
Programming Reference for NEONRules
SC34-5506-01

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.
Please limit your comments to the information in this book only and the way
in which the information is presented.

To request additional publications or make comments about the functions of
IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

n By mail, use the Readers’ Comment Form

n By fax:

– From outside the U.K., use your international access code
followed by 44 1962 870229

– From within the U.K., use 01962 870229

Electronically, use the appropriate network ID:

n IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

n IBMLink: HURSLEY(IDRCF)

n Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

n The publication number and title

n The page number or topic number to which your comment applies

n Your name/address/telephone number/fax number/network ID

Readers’ Comments
MQSeries Integrator
Programming Reference for NEONRules
SC34-5506-01

Use this form to tell us what you think about this manual. If you have found
errors in it, or if you want to express your opinion about it (such as
organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer. This form is provided
for comments about the information in this manual and the way it is
presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate without
incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or organization

Telephone Email

046HULHV�,QWHJUDWRU�3URJUDPPLQJ�5HIHUHQFH�IRU�1(215XOHV���������6&�������������������� IBM

IBM

Printed in U.S.A

SC34-5506-01

	Contents
	Introduction
	Product Documentation Set
	Summary of Changes
	Supported Platforms and Compilers
	Disk Space and Memory Requirements
	MQSeries Integrator Disk Space Requirements

	Year 2000 Readiness Disclosure

	Rules Overview
	NEONRules Components
	Application Groups
	Message Types
	Rules

	Suggested Flow of Calls for Rules Evaluation
	Thread-Safe Rule Evaluation

	APIs and Header Files
	Libraries

	Rules APIs
	Class/Type Definitions
	VRule Supporting Functions
	VRule Member Functions
	Rules Error Handling

	Rules Management APIs
	Rules Management API Structures
	Overall Rules Management APIs and Macros
	Application Group Management APIs
	Application Group Management API Structures
	Application Group Management API Functions

	Message Type Management APIs
	Message Type Management API Structures
	Message Type Management API Functions

	Rule Management APIs
	Rule Management API Structures
	Rule Management API Functions

	Permissions APIs
	Permission Management API Structures
	Overall Permission Macro
	Permission API Functions

	Operator Management APIs
	Operator Management API Structures
	Operator Management API Functions

	Expression Management APIs
	Expression Management API Structures
	Expression Management API Functions

	Argument Management APIs
	Argument Management API Structures
	Argument Management API Functions

	Subscription Management APIs
	Subscription Management API Structures
	Subscription Management API Functions

	Action Management APIs
	Action Management API Structures
	Action Management API Functions

	Option Management APIs
	Option Management API Structures
	Option Management API Functions

	Rules Management Error Handling

	Rules Error Messages
	Operator Types
	Notices
	Trademarks and Service Marks

	Index

