MQSeries® Integrator

Programming Reference for
NeoNRules

Version 1.1

SC34-5506-01

Note: Before using this information, and the product it supports, be sure to read the general
information under Notices on page 327.

Second edition (June 1999)

This edition applies to IBM® MQSeries Integrator, Version 1.1 and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your
locality. Publications are not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to
make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright New Era of Networks, Inc., 1998, 1999. All rights reserved.

© Copyright International Business Machines Corporation, 1999. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Chapter 1: Introductionccccciviiennnnncennnns 5

Product DOCUMENTAtiON SET.........covvviriiirieie e 6
SUMMATY Of CHANQES ...c.vcviciecece et ereeneas 7
Supported Platforms and COMPIIErScccccvvieiiviiie i 8

Disk Space and Memory REQUITEMENTSccccvvvvereririeieeeeee e s 9
MQSeries Integrator Disk Space Requirements..........ccocvevvvevrevvnevvreeieneenns 9

Year 2000 Readiness DISCIOSUIE.ccouiririnieinseee s 10
Chapter 2: Rules Overviewlllllllllllllllllllllllllllll11
NEONRUIES COMPONENTS ...ttt et 11
APPLICALION GrOUPSoiiiiiiieiie ettt et 11

IMESSAGE TYPIES ..ttt sttt sttt b ettt b et b e e bt 11

RUIES <.ttt ae s 12

Suggested Flow of Calls for Rules Evaluation.............ccccoccoeiiiinininciincsee, 21
Thread-Safe Rule EVaAluation ... 23

APIS and Header FIles. ..o e 27

[o] =T LSO UR RPN 36
Chapter 3: Rules APIS llllllllllllllllllllllllllllllllllll39
Class/Type DefiNitiONS.cooiiiieiiiie e 39

VRUle SUPPOrting FUNCLIONS ... e 46

VRUle MembBDer FUNCLIONScooiiiiieee e 52

Rules Error Handling ... 81
Chapter 4: Rules Management APIs................85
Rules Management API StFUCLUIESccooiiiiiiininere e e 87

Overall Rules Management APIS and MaCIOSc.ccocevereiiincieininesieeesenins 89
Application Group Management APIS.........coooiiiiiiiniie e 92
Application Group Management AP StruCtUIeScocoeeieierieiinicneniens 93
Application Group Management APl FUNCLIONS...........ccocoorininienincneine 97

Message Type Management APIS ... 111
Message Type Management APl StrUCTUIES.........cccoviiiiieininien i 112

Message Type Management APl FUNCLIONSccccooeiiiiiiiinieiscsinee 115

Rule Management APIS ... 127

MQSeries Integrator Programming Reference for NEONRules iii

Rule Management API STrUCTUIES........ccccovvvverieieeiic e 127

Rule Management APl FUNCLIONSccovviieieininse e 135
PErmMISSIONS APIS ..o s 151
Permission Management APl StruCtUIeSccocvcvvivveverereveeese e 151
Overall Permission MACKO..........coviriiiiirnsees s 156
Permission APL FUNCLIONS ... 157
Operator Management APIS ... 169
Operator Management AP StrUCTUIES.........ccceiieiiniiiee e 169
Operator Management API FUNCLIONSccoooviiineieneieie e 170
Expression Management APIS. 174
Expression Management APl StFUCLUIESccooviviirineienine e 175
Expression Management APl FUNCLIONS ... 178
Argument Management APIS ... 184
Argument Management APl SIrUCTUIESccoeiiriiieiii e 185
Argument Management APl FUNCLIONScccooiiiiiini e 190
Subscription Management APIS ... e 194
Subscription Management APl StrUCTUFESccoeiiieiiiicinenineeenie s 195
Subscription Management APl FUNCLIONScoeiiiiiiiicinecincseniens 203
ACtion Management APIS........coi e e 227
Action Management AP StrUCTUFES...........ccoeiiiine i 228
Action Management APl FUNCLIONS..........cccoiiiiiiiiiiece e 234
Option ManagemMeENt APIS ... e 249
Option Management APl STrUCTUIESccooiiiriie e 250
Option Management APl FUNCLIONS ..ot 256
Rules Management Error Handling.........ccceeiiiciiiiiiiie e 271

Chapter 5: Rules Error MessagesS.........cxu01:::. 273
Appendix A: Operator TypeS....ccvveemrrrssnnennnnn 317
Appendix B: Notices......ccccirivincirninincennnnnnn . 327

Trademarks and SErvice MarKScccccviviiiii i 329
Index lllllllllllllllllllllllllllllIIIIIIIIllllllllllllllllllllll331

iv MQSeries Integrator Programming Reference for NEONRules

Chapter 1
Introduction

The MQSeries Integrator Programming Reference for NEONRules provides
descriptions and examples for each function in Rules and Rules Management
APIs.

This document is divided into two main sections: Rules APls and Rules
Management APIs.

MQSeries Integrator Programming Reference for NEONRules 5

Chapter 1

Product Documentation Set

The MQSeries Integrator documentation set includes:

MQSeries Integrator Installation and Configuration Guide helps
end-users and engineers to install and configure MQSeries Integrator
Version 1.1.

MQSeries Integrator User’s Guide helps users understand and apply
the program through its graphical user interfaces (GUIs).

System Management is intended for system administrators and
database administrators who work with MQSeries Integrator on a
day-to-day basis.

MQSeries Integrator Programming References are intended for those
users who build and maintain the links between MQSeries Integrator
and other applications. These documents include:

— Programming Reference for NEONFormatter is a reference to
NEoNFormatter APIs for those who write applications to translate
messages from one format to another.

— Programming Reference for NEONRules is a reference to
NeoNRules APIs for those who write applications to perform
actions based on message contents.

— Application Development Guide assists programmers in writing
applications that use MQSeries Integrator APIs.

Note:
For information on message queuing, refer to the IBM MQSeries
documentation.

MQSeries Integrator Programming Reference for NEONRules

Introduction

Summary of Changes

This document is a major revision in support of the functional changes
introduced with Version 1.1. This revision also includes maintenance and
editorial changes.

Chapter 4: Rules Management APIs has been updated to include the following
new APIs:

= NNRMgrGetFirstApp

= NNRMgrGetNextApp

= NNRMgrDuplicateApp
NNRMgrDeleteEntireApp
NNRMgrGetFirstMsg
NNRMgrGetNextMsg
NNRMgrDeleteEntireMsg
NNRMgrDuplicateRule

= NNRMgrDeleteAction

= NNRMgrDeleteOption

= NNRMgrUpdateUserPerm

Chapter 4: Rules Management APIs also includes modifications to the following
APIs:

m NNRExpData structure

= NNRMgrAddExpression

= NNRMgrUpdateExpression
= NNRMgrReadExpression

Chapter 5: Rules Error Messages on page 273 has been updated to include
enhanced error handling. Error messages now include contextual
information.

MQSeries Integrator Programming Reference for NEONRules 7

Chapter 1

Supported Platforms and Compilers

Operating System

DBMS

Compiler

AlIX4.2,4.3

DB25.0
DB25.2
Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

IBM C Set ++ version 3 or later

HP-UX 10.20

DB25.0
DB25.2
Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

HP C++ version 10.40 (HP-UX 10.20)

Solaris 2.5.1, 2.6

DB25.0
DB25.2
Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

Sparcworks C++ compiler
version 4.2

Windows NT 4.0

DB2 5.0
DB25.2
Oracle 7.3.4
Oracle 8.0.5
SQL Server 6.5
Sybase 11.5
Sybase 11.9

Microsoft Visual C++ version 6.0

MQSeries Integrator Programming Reference for NEONRules

Introduction

Disk Space and Memory
Requirements

Required disk space is dependent on the number of queues, formats, and
rules. Recommended memory for satisfactory performance depends on
message rates, message sizes, and application-specific factors. For Windows
NT/SQLServer, the recommended memory is 128 MB; for other platforms,
the recommended memory is 256 MB.

MQSeries Integrator Disk Space
Requirements

For Solaris, the Zvar/tmp file system requires at least 250 MB of free space to
unpack the MQSeries and MQSeries Integrator products.

The minimum database allocation requires 20 MB.
MQSeries Integrator binaries require 150 MB.

MQSeries base code and server require a minimum of 25-30 MB of disk space
to be available for the product code and data.

MQSeries documentation requires 50 MB of disk space (HTML files — 35 MB,
PDF files — 15 MB).

The GUI requires 40 MB.

MQSeries Integrator Programming Reference for NEONRules 9

Chapter 1

Year 2000 Readiness Disclosure

10

MQSeries Integrator, when used in accordance with its associated
documentation, is capable of correctly processing, providing, and/or
receiving date information within and between the twentieth and twenty-first
centuries, provided that all products (for example, hardware, software, and
firmware) used with this IBM program properly exchange accurate date
information with it.

Customers should contact third party owners or vendors regarding the
readiness status of their products.

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:
http://www.software.ibm.com/ts/maseries/platforms/supported.html.

For the latest IBM statement regarding Year 2000 readiness, refer to:
http://www.ibm.com/ibm/year2000/.

MQSeries Integrator Programming Reference for NEONRules

//www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.ibm.com/ibm/year2000/

Chapter 2
Rules Overview

NEoNRules enables you to evaluate a string of data (message) and react to the
evaluation results. The following overview describes NeonRules components
and the types of APls available for rule processing.

neonRules Components

NEONRules components consist of the following:
= Application groups
= Message types

= Rules

Application Groups

Application groups are logical divisions of rule sets for different business
needs. You can define as many application groups as you need. For example,
you might want rules for the accounting department and the application
development department separated into two groups. You might define
Accounting as one application group, Application Development as another,
and then associate rules with each group as appropriate.

Message Types

Message types define the layout of a string of data. Each application group
can contain several message types, and a message type can be used with more
than one application group. Message types are defined by the user. When
using NEONFormatter, a message type is the same as an input format name.

MQSeries Integrator Programming Reference for NEONRules 11

Chapter 2

This format name is used by NeoNFormatter to parse input messages for rules
evaluation.

Rules

12

To create rules, users give each rule a rule name and associate the rule name
with an application group and message type. Each rule is uniquely identified
by its application group/message type/rule name triplet.

Each rule must define the following items:
m Expressions: evaluation criteria containing arguments and operators
m Subscription information: subscriptions, actions, and options

m Permission information

Expressions

The evaluation criteria is an expression that consists of fields, associated
operators, and associated comparison data, connected with Boolean
operators. An argument is a combination of a field name, Rules comparison
operator, and comparison data that is either a static value or other field name.
Field names depend on the message type or input format name, and are
defined using NEONFormatter. Rules comparison operators are defined within
Rules. Field comparisons can be made against static data or other field values.
Arguments are linked together with Boolean operators, AND (&) and OR (]),
and parentheses can be used to control the evaluation priority.

Arguments

An argument is the smallest component of a rule that can be evaluated. This
consists of a field name, a Rules comparison operator and another field name
(field to field comparisons), a static value (static comparisons), or nothing
(existence operators).

The predefined Rules operators contain a type in uppercase characters and an
operator, concatenated with no spaces, for example, STRING=. See
Appendix B: Operator Types on page 317.

There must be at least one space between the field name and the Rules
operator and between the Rules operator and the comparison value. The

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

EXIST and NOT_EXIST operators must be followed by a least one space
before a parenthesis or a Boolean operator.

Data types of comparison values are only checked for DATE, TIME,
DATETIME, INT, FLOAT, and STRING operators.

If the field name or static comparison value contains spaces, quotes, or
parentheses, the item must be enclosed in quotes (either single or double--
whatever the value does NOT contain). A value cannot have both single and
double quotes. If the Rules operator is a DATE, TIME, or DATETIME
operator, the static comparison value must have a four-digit year. For Rules
Management APIs, the value must be in 1ISO-8601:1988 standard format
(YYMMDDhhmmess) with the TIME or DATE portions padded with zeros (0)
if the operator is DATE or TIME, respectively.

Field Names

A field name is defined by the user when an input format is defined. A rule
message type is the input format that must contain the field or contain a
nested format that contains that field. If the field name contains spaces,
quotes, or parentheses, the name must be enclosed in quotes (either single or
double -- whatever the name does not have). A field name cannot contain
both single and double quotes. Field names are not checked for validity.

For a more detailed explanation of a field, see the Programming Reference for
NEONFormatter APIs.

Rules Comparison Operators

An operator is defined by type and associated symbol. See Appendix B :
Operator Types on page 317.

Rules comparison operators are defined to be field existence, field non-
existence, and the following operators: <,<=,>,>= <> = for INT (whole
number), FLOAT (decimal number), DATE, TIME, DATETIME, and STRING
fields. Field-to-field comparisons, for example, comparing fieldl to field2,

MQSeries Integrator Programming Reference for NEONRules 13

Chapter 2

14

and case-sensitive string comparisons, for example, where "a" does not equal
"A", are also possible.

Note:

Use EXIST_TRIM operators and STRING_TRIM operators to trim trailing
blanks prior to evaluating or comparing fields. The EXIST and STRING
operators will not trim trailing blanks.

Existence Operators

Existence operators enable a user to determine if a field exists and is not
empty in a message. Integer, string, float, date, time, and datetime operators
evaluate a message field against a static value using the operator symbol.
Field-to-field operators compare two groups of data (fields) within the
message.

Operators, except for NOT_EXIST and NOT_EXIST_TRIM, will not hit if a
field does not exist or is empty.

Existence operators determine if a field exists or is empty in a message.
Existence operators have a TRIM option that trims trailing blanks prior to
determining whether a field exists or is empty, thus making a string of blanks
a nonexistent field.

Integer Operators

Integer operators compare numeric values. For static value comparisons, the
comparison value must be a whole number (which can preceded by ‘+’ or *-").
If the message field is not numeric, its value is assumed to be zero (0), so a
rule might hit in this case.

INT comparison values are valid if there are whole numbers in the integer
range for the platform used, which is usually from -2.1 billion to 2.1 billion.
Non-numeric characters are not allowed except for a plus sign (+) or minus
sign (-) as the first character. Do not use a decimal point.

String Operators

String operators compare strings of characters. Case-sensitive operators
evaluate the characters ‘a’ and ‘A’ differently. Rules can work differently on
different platforms. For example, on an EBCDIC machine, the order of
charactersis: ‘a’- 'z’ <‘A’-‘Z’ <*0’ - ‘9". In ASCII, the order of characters is: ‘0’

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

-9 <A -2 < "a’ - ‘7", String operators (including field to field, case
sensitive, and field to field case sensitive operators) can have a TRIM option
that trims trailing blanks prior to comparing fields. For the TRIM operators,
trailing blanks are truncated from message fields and comparison values.
Therefore, a field containing a string of trailing blanks is considered empty.

STRING comparison values are valid if they are composed of NULL-
terminated strings with a maximum of 64 characters.

Float Operators

Float operators compare decimal (real) numeric values. For static value
comparison, the comparison value must be a numeric value (which can be
preceded by ‘+’ or ‘-’) and contain a decimal point (*.”). When comparing float
values, ‘1.5’ does not always equal ‘1.5’ because of real number precision.

FLOAT comparison values are valid if there is a whole number in the integer
range for the platform used. The range is usually from -2.1 billion to 2.1
billion, and a decimal mantissa being a whole number with the maximum of
32 digits. Non-numeric characters not are allowed except for a plus sign (+) or
minus sign (-) as the first character. A decimal point must be used.

neonRules Date, Time, and DateTime Operators

The International 1SO-8601:1988 standard date notation is used as the
standard format. This format specifies numeric representations of date and
time. The standard date notation is YYYYMMDD, where YYYY is the year in
the usual Gregorian calendar, MM is the month of the year between 01
(January) and 12 (December), and DD is the day of the month between 01 and
31. The standard time notation is hhmmss where hh is the number of
complete hours that have passed since midnight between 00 and 23, mm is
the number of complete minutes that have passed since the start of the hour
between 00 and 59, and ss is the number of seconds since the start of the
minute between 00 and 59.

Static Date, Time, or DateTime comparison values are valid if they comply
with the 1ISO-8601:1988 standard notation. Date, Time, and DateTime static
values appearing in expressions must be specified in the
YYYYMMDDhhmmss format. Consequently, Date values must have the Time
component (hhmmss) padded with zeros, and Time values must have the
Date component (YYYYMMDD) padded with zeros.

MQSeries Integrator Programming Reference for NEONRules 15

Chapter 2

16

The neonRules Date, Time, and DateTime operators are used to create and
evaluate the rule arguments that perform Date, Time, and DateTime
comparisons. Rules performs comparisons between unmatched Date, Time,
and DateTime types based on the operator used in the argument. The Date
operators compare the date portion (YYYYMMDD), the Time operators, the
time portion (hhmmess) and DateTime operators, the entire value
(YYYYMMDDhhmmss).

In the following example, an argument using a DATE operator compares a
Date against a DateTime:

F1 DATE=F2, where F1 is a Date and F2 is a DateTime

The value of the first field (F1) is compared against only the Date portion of
the second field (F2).

Note:

The visual representation of dates in the GUI does not adhere to the standard
DateTime format, for example, YYYYMMDD and hhmmss. However, the
Management APls must receive Date, Time, and DateTime values in the
standard DateTime format.

Specifying a Year Cutoff Value

The internal application functions of MQSeries Integrator use DateTime
information for archiving, time stamping, logging, and so on. These functions
use the standard C++ class libraries and use four-digit notation or Universal
Coordinated Time (UTC for time stamps.These functions are Y2K compliant,
given that the underlying hardware is compliant. The function and libraries
used with MQSeries Integrator include the logic for correct processing of leap
year before, during, and after 1/1/2000.

Within the message handling and processing functionality, date information
can be embedded and reformatted. MQSeries Integrator provides Date and
DateTime comparison, parsing, and reformatting functions. Date and
DateTime parsing and reformatting and supported Date and DateTime rules
facilities are Y2K compliant for accepting input and providing output date
information. Default Date and DateTime formats use four-digit years and are
Y2K compliant. MQSeries Integrator also supports two-digit years as custom
field definitions. These custom formats are Y2K compliant if used as
described in the following paragraphs.

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

MQSeries Integrator products provide the facility to resolve the century
ambiguity through a Year Cutoff Number for Input field data definitions, or
Input Controls, using Custom Date and Time and Custom Date definitions,
which include a two-digit year notation, such as MM/DD/Y HH:MM:SS or
MM/DD/YY. You must specify a Year Cutoff Number from 0 to 100
(inclusive). Using this cutoff number, NEONFormatter converts a two-digit
year (YY) to a four-digit year (YYYY).

The Year Cutoff algorithm is as follows:
m year value >= cutoff value -> 19XX
m year value < cutoff value -> 20XX
With this method, any year 00 to 100 is converted to either 19XX or 20XX.

The following are some examples of how NneonFormatter interprets the Year
Cutoff number:

= If you specify the Year Cutoff number as 50, all two-digit input dates
from 50 to 99 are designated as 1950 to 1999 output dates; all two-
digit input dates from 00 to 49 are designated as 2000 to 2049 output
dates.

= If you specify the cutoff date as 75, all two-digit input dates from 75
to 99 are designated as 1975 to 1999 output dates; all two-digit input
dates from 00 to 74 are designated as 2000 to 2074 output dates.

You can use the NeonFormatter APl or the NeonFormatter GUI to define date-
related formats. Both facilities use the same underlying libraries and both are
Y2K compliant.

NEONFormatter API

For an input control that specifies a data type of custom date or date-time
with a two-digit year format string, you must specify a Year Cutoff value
(regardless of the output Date or DateTime string). NeonFormatter uses this
value to convert the two-digit year date value to a four-digit year date value.
When NEONFormatter does the conversion, it compares the year value of the
input data to the specified year Cutoff value and assigns the century
designation as required. For example, based on the comparison,
NEONFormatter converts the year value "XX" to "20XX" (21st century year) or
"19XX" (20th century year) as appropriate.

MQSeries Integrator Programming Reference for NEONRules 17

Chapter 2

18

NEONFormatter GUI

In the NeonFormatter GUI, you must specify a Year Cutoff value for all input
formats with a two-digit year date string. The GUI provides a field for this
and defaults the field to a Year Cutoff of '101’, which is an invalid number.
You must enter a valid Year Cutoff value to continue.

Boolean Operators

A Boolean expression is a single argument or more than one argument
connected by Boolean operators. Boolean algebra defines the AND operator
as having higher precedence than the OR operator if no parentheses are
present. Parentheses change the order of evaluation from the standard
Boolean operator precedence. The implementation of Rules Boolean
expressions complies with this algebraic definition.

For example, the following rule is defined:
FLINT=1] F2INT=2&F3INT=3

The Rules evaluation API evaluates the expression as if parentheses were
added around the second set of values:

F1INT=1] (F2 INT=2 & F3 INT= 3).

Arguments in the innermost set of parentheses are evaluated first regardless
of the Boolean operator for the arguments. The evaluation then progresses
outward until the whole expression is evaluated.

Note:
All arguments must be active. Therefore, all inactive arguments must be

activated or deleted during the database upgrade. NNRie automatically
deletes inactive rules.

Grouping Arguments

Arguments can be grouped in parentheses based on Boolean algebraic
definitions:

1. Parentheses can surround a single complete argument.
(FLINT=1).

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

2. Parentheses can surround two or more arguments separated by a
Boolean AND (&) or OR (]).

(FLINT=1&F2 INT=2)

3. Parentheses must be balanced and in accordance with definitions 1
and 2.

4. Parentheses can be nested within other parentheses in accordance
with definitions 1, 2, and 3.

(F1INT=1] F2INT=2) & F3 INT=3)

Permissions

Rule and Subscription permissions restrict user access to individual complete
rules or subscriptions or their components in the NEONRules database.
Permissions only apply to managing rule and subscription contents, not rule
evaluation.

A rule is uniquely identified by its application group name, message type,
and rule name. A complete rule includes everything associated with it,
including an expression (arguments) and subscriptions.

A subscription is uniquely defined by its application group name, message
type, and subscription name. A complete subscription includes everything
associated with it including its actions and options.

The Rules component owner or subscription owner is the user who created
the component. When the rule or subscription is created, owner information
is determined by the software. Owners can update their own permissions,
create and update the PUBLIC user’s permissions, and change ownership to
another user.

Only read and update permissions are implemented. The owner is given both
read and update permission by default. All other users are grouped into a
public user group named PUBLIC and given read permissions by default.

Note:
Owners can change their own permissions at any time from read to update

and back again, but they must have update permissions to change a rule or
subscription contents. Read permission cannot be denied.

MQSeries Integrator Programming Reference for NEONRules 19

Chapter 2

20

Subscriptions, Actions, and Options

When a rule evaluates to true, it is considered a hit. If the rule does not
evaluate to true, it is considered a no-hit. When a rule hits, NEONRules lets you
retrieve associated subscriptions to be taken by the application. These
subscriptions are the actions or commands and the associated parameters or
options used to execute them.

Subscriptions are lists of actions to take when a message evaluates to true.
Each rule must have at least one associated subscription. Subscriptions are
uniquely identified within an application group/message type pair by a user-
defined subscription name. Permissions must be defined for subscriptions as
for rules. You can define as many subscriptions as you need. Each action
within a subscription is defined by action name and need not be unique since
all actions are intended to be executed in sequence. A single subscription can
be shared by multiple rules where the same subscription is associated with
each of the rules. In this case, the shared subscription would be retrieved only
once no matter how many of its rules hit.

An action has a list of one or more associated options. An option consists of
an option name-value pair. The user defines all action names and option
name-value pairs.

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

Suggested Flow of Calls for Rules
Evaluation

Using eval(), Rules evaluates rules by taking in a text message and the
definitions of the rule set (application group/message type).

Open a
DMBS
Session

Create the
Rules
Engine

Evaluate
Message

Get
Tme* Subscription

Get Option

Another
Option?

Process
Option

No

v

Process
Action

MQSeries Integrator Programming Reference for NEONRules 21

Chapter 2

22

The user then retrieves the list of user actions with their parameters (options)
that should be performed based on the rules that evaluated true for the
message. These actions and options are retrieved by calling getsubscription()
and getopt() in nested loops.

Open the DBMS Session:

DbneSessi on *Rul esSessi on =
OpenDbnsSessi on(Rul esSessi onNane, DBl dentifier);

Create the Rules engine:

VRul e *rul es = Creat eRul esEngi ne(Rul esSessi on);

For each Message
Evaluate Message against the Rule Set::

if (!rul es->eval (appnane, nsgnanme, msg, nsglen))

Get the error message and print it:

Print (rul es->GetErrorMessage())
el se

For each Subscription

while ((pAct = rul es->getsubscription()))

Note:

This gets the next action associated with this subscription and removes it
from the list of subscriptions to execute. You must differentiate between
subscription boundaries by performing any initialization associated with a
new subscription prior to getting the next subscription, including saving the
Subld field from the SUBSCRIPTION structure. This Subld field should be
compared to the saved Subld field to determine when a new subscription has
been reached each time an action is retrieved .

Now, the SUBSCRIPTION structure is populated.
For each Option

while ((popt = rules->getopt()))

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

Note:
This gets all of the options associated with this subscription. Looping
terminates when the next option is NULL.

The OPTIONPAIR structure is populated each time the getopt function is
called and is overwritten the next time getopt is called. The user must save or
process the options associated with a given action prior to retrieving the next
option.

Thread-Safe Rule Evaluation

When a function is thread-safe, that function can be called by one or more
threads without adversely affecting the data in each thread. Functions
executing in multiple threads synchronize themselves as appropriate behind
the scenes.

Global resources for a process, such as globally allocated memory and files,
get shared by all threads for that process. Access to those resources must be
regulated to keep them in a consistent state when routines in the library are
entered by different threads at the same time.

Evaluating Messages in a Non-Threaded
Environment

The preceding Suggested Flow of Calls for Rules Evaluation section describes
how to evaluate and retrieve results for messages run against a set of rules in
a non-threaded environment.

The general algorithm resembles the following pseudocode:

Instantiate an instance of the DBMSSessi on class to open a
dat abase sessi on.
Instantiate an instance of the Rules Engine, passing it the
DbnmsSessi on i nst ance.
When you want to do eval uations...
Retri eve the nessage, application group, and nessage type
for eval uation.
Eval uate the nessage agai nst the rules described by the
application group/ nessage type pair

MQSeries Integrator Programming Reference for NEONRules 23

Chapter 2

24

|f the eval uati on succeeds,
[You can call gethitrule() and getnohitrule() in separate
lists to retrieve lists of rules here.]

Wiile there are subscriptions to retrieve...
[Do sonet hing based on the actions for this
subscri ption.]

Wiile there are options for an action...
[Do something with the options for this action.]
end Wi le

end Wil e

El se
Cet the error that occurred.
[Continue doi ng eval uations.]

end Wile
Destroy the instance of the Rul es Engine.
Cl ose the database session.

Evaluating Messages in a Multi-Threaded
Environment

To evaluate messages concurrently, thread-safe NeonRules APIs can be called
in a multi-threaded environment. Only the Rules daemon and NeonFormatter
APIs are thread-safe.

However, note that one thread cannot call any of the following APlIs to
retrieve the results of an evaluation done by another thread, since each thread
only has access to its own evaluation results:

= gethitrule()

= getnohitrule()

m getsubscription()

m getoption()

m GetErrorNo()

m GetErrorMessage()

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

The general algorithm in a multi-threaded environment resembles the
following pseudocode:

Thread A

Instantiate an instance of the DbnsSession class to open a
dat abase sessi on.

Instantiate an instance of the Rules Engine, passing it the
DbnsSessi on i nstance.

Threads A, B, and C all do the same

To do eval uati ons:

Retri eve the nessage, application group, and nessage type
for eval uation.

Eval uate the nessage agai nst the rul es described by the

application group/ nessage type pair

If the evaluation succeeds,
[You can call gethitrule() and getnohitrule() in separate
lists to retrieve lists of rules here.]

Wil e there are subscriptions to retrieve,

[Do sonething based on the actions for this

subscri ption.]
Wi le there are options for an action,
[Do sonething with the options for this action.]
end Wile

end Wile

El se
Cet the error that occurred.
[Conti nue doi ng eval uations.]

end Wiile

MQSeries Integrator Programming Reference for NEONRules 25

Chapter 2

Threads B and C

[When done eval uating nessages in threads B and C, destroy the
t hreads.]

Call VRul e:: Threadd eanup()

[Exit thread]

Thread A

Destroy the instance of the Rul es Engine.
Cl ose the dat abase sessi on.

26 MQSeries Integrator Programming Reference for NEONRules

Rules Overview

APIs and Header Files

Two types of APlIs exist for NeonRules: Rules APIs and Rules Management
APIs.

Use Rules APIs to evaluate rules and retrieve subscription, hit, and no-hit
information. Before you evaluate a rule, the rule must exist and you must use
CreateRulesEngine() to create a VRule object. After that, you can do as many
evaluations and subscription retrievals as needed. When you finish, destroy
the Rules daemon object using DeleteRuleEngine().

Use Rules Management APIs to maintain rule information. Add, Read, and
Update APIs are implemented and available as well as APIs to delete an
entire rule or subscription and all their associated information.

The APIs are made up of classes of objects that have member functions:

Header Files

Object Class Header File Description

VRule vrule.h Rules Processing APls
NNRMgr nnrmgr.h Rules Management APIs
— ruleuser.h Evaluation structures

— nnrmerr.h Rules Management errors
— rerror.h Rules error handling

MQSeries Integrator Programming Reference for NEONRules 27

Chapter 2

28

VRule Supporting Functions

Return Type

Function

Arguments

VRule * CreateRulesEngine | (DbmsSession *Session)
VRule * CreateRulesEngine | (DbmsSession* Session,
int alert=1,
char *logfile=NULL)
void DeleteRuleEngine (VRule * pEngine)

VRule Member Functions

Return Type Function Arguments
int eval (char *AppName,
char *MsgName,
char *msg,
int msglen,
int log=0)
RULE* gethitrule None
RULE* getnohitrule None
SUBSCRIPTION* getsubscription None
Formatter getformatterobject None
OPTIONPAIR* getopt None
void ThreadCleanup None
char * getlog None
int LoadRuleSet (char *AppGrp,
char*MsgType,
int LoadNow=0)

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

Return Type

Function

Arguments

int

LoadRuleComponent

(char *AppGrp,
char*MsgType,
NNRComponentTypes
ComponentType,
char* ComponentType,
int LoadNow=0)

Rules Error Handling Functions

Return Type Function Arguments
char* GetErrorNo None
char* GetErrorMessage None

Rules Management Functions and Macros

Return Type | Function Arguments
NNRMgr * NNRMgrlnit (DbmsSession *session)
void NNRMgrClose (NNRMgr *pMgr)
N/A NNR_CLEAR p)
N/A NN_CLEAR p)
const long NNRMgrAddApp (NNRMgr *pMgr,
const NNRApp *pRApP,
const NNRAppData *pRAppData)
const long NNRMgrReadApp (NNRMgr *pMgr,
const NNRApp *pRApp,
NNRAppData *const pRAppData)
const long NNRMgrGetFirst (NNRMgr *pMgr,
App NNRAppReadData *const
RAppData)

MQSeries Integrator Programming Reference for NEONRules

29

Chapter 2

30

Return Type | Function Arguments
const long NNRMgrGetNext (NNRMgr *pMgr,
App NNRAppReadData *const
RAppData)
const long NNRMgrDuplicate (NNRMgr *pMgr,
App const NNRApp* pRApPP,
const char* NewAppName)
const long NNRMgrUpdateApp | (NNRMgr *pMgr,
const NNRApp *pRApP,
const NNRAppUpdate
*pRAppUpdate)
const long NNRMgrDelete (NNRMgr *pMgr,
EntireApp const NNRApp *pRAppP)
const long NNRMgrAddMsg (NNRMgr *pMgr,
const NNRMsg *pRMsg,
const NNRMsgData *pRMsgData)
const long NNRMgrReadMsg (NNRMgr *pMgr,
const NNRMsg *pRMsg,
NNRMsgData *const pRMsgData)
const long NNRMgrGetFirst (NNRMgr *pMgr,
Msg const NNRMsg *pRMsg,
NNRMsgReadData *const
pRMsgData)
const long NNRMgrGetNext (NNRMgr *pMgr,
Msg NNRMsgReadData *const
pRMsgData)
const long NNRMgrDuplicate (NNRMgr *pMgr,
Msg const NNRMsg *pRMsg,
const char *NewAppName)
const long NNRMgrDelete (NNRMgr *pMgr,

EntireMsg

MQSeries Integrator Programming Reference for NEONRules

const NNRMsg *pRMsg)

Rules Overview

Return Type | Function Arguments

const long NNRMgrAddRule | (NNRMgr *pMgr,
const NNRRule *pRRule,
const NNRRuleData *pRRuleData)

const long NNRMgrReadRule (NNRMgr *pMgr,
const NNRRule *pRRule,
NNRRuleData* const pRRuleData)

const long NNRMgrGetFirst (NNRMgr *pMgr,

Rule const NNRRule *pRRule,
NNRRuleReadData * const
pRRuleData)

const long NNRMgrGetNext (NNRMgr *pMgr,
Rule NNRRuleReadData * const
pRRuleData)
const long NNRMgrDuplicate (NNRMgr *pMgr,
Rule const NNRRule *pRRule,

const char *NewRuleName)

const long NNRMgrUpdateRule | (NNRMgr *pMgr,
const NNRRule *pRule,
const NNRRuleUpdate
*pRRuleUpdate)

const long NNRMgrDelete (NNRMgr *pMgr,
EntireRule const NNRRule *pRRule)
const long NNRMgrGetFirst (NNRMgr *pRMgr,
Perm const NNRComponent *
pRComponent,

NNUserPermissionData const *
pPermissionData)

const long NNRMgrGetNext (NNRMgr *pRMgr,
Perm NNUserPermissionData const *
pPermissionData)

MQSeries Integrator Programming Reference for NEONRules 31

Chapter 2

32

Return Type | Function Arguments
const long NNRMgrUpdate (NNRMgr *pRMgr,
UserPerm const NNRComponent *
pRComponent,
const NNPermissionData *
pPermission Data)
const long NNRMgrChange (NNRMgr *pRMgr,
Owner const NNRComponent *
pRComponent,
char *pNewOwner)
const long NNRMgrUpdate (NNRMgr *pRMgr,
OwnerPerm const NNRComponent *
pRComponent,
const NNPermissionData *
pPermission Data)
const long NNRMgrUpdate (NNRMgr *pRMgr const
PublicPerm NNRComponent * pRComponent,
const NNPermission Data *
pPermission Update)
const long NNRMgrGetFirst (NNRMgr *pMgr,
Operator NNROperator * const pOperator)
const long NNRMgrGetNext (NNRMgr *pMgr,
Operator NNROperator * const pOperator)
const long NNRMgrAdd (NNRMgr *pMgr,
Expression const NNREXxp * pRExp,
NNRExpData * pRExpData)
const long NNRMgrRead (NNRMgr *pMgr,
Expression const NNREXxp * pRExp,
NNRExpData * pRExpData)
const long NNRMgrUpdate (NNRMgr *pMgr,
Expression const NNRExp *pREXxp,

MQSeries Integrator Programming Reference for NEONRules

const NNRExpData *pRExpData)

Rules Overview

Return Type | Function Arguments
const long NNRMgrGetFirst (NNRMgr *pMgr,

Argument const NNRArg * pRArg,
NNRArgData * const pRArgData)

const long NNRMgrGetNext (NNRMgr *pMgr,

Argument NNRArgData * const pRArgData)

const long NNRMgrAdd (NNRMgr *pMgr,

Subscription const NNRSubs *pRSubs,
const NNRSubsData *pRSubsData)

const long NNRMgrRead (NNRMgr *pMgr,

Subscription const NNRSubs *pRSubs,
NNRSubsData * const pRSubsData)

const long NNRMgrGetFirst (NNRMgr *pMgr,

Subscription const NNRSubs *pRSubs,
NNRSubsReadData * const
pRSubsReadData)

const long NNRMgrGetNext (NNRMgr *pMgr,

Subscription NNRSubsReadData * const
pRSubsReadData)

const long NNRMgrDuplicate (NNRMgr *pMgr,

Subscription const NNRSubs *pRSubs,
const char * const pNewSubsName)

const long NNRMgrUpdate (NNRMgr *pMgr,

Subscription const NNRSubs *pRSubs,
const NNRSubsUpdate
*pRSubsUpdate)

const long NNRMgrDelete (NNRMgr *pMgr,

SubscriptionFrom const NNRRule * pRRule,

Rule const char * SubsName)

const long NNRMgrDelete (NNRMgr *pMgr,

EntireSubscription

MQSeries Integrator Programming Reference for NEONRules

const NNRRule * pRRule)

33

Chapter 2

Return Type | Function Arguments
const long NNRMgrGetFirst (NNRMgr *pMgr,

RuleUsingSubs const NNRSubs *pRSubs,
char* const pRuleName)

const long NNRMgrGetNext (NNRMgr *pMgr,

RuleUsingSubs char* const pRuleName)

const long NNRMgrAddAction (NNRMgr *pMgr,
const NNRAction *pRAction,
const NNRActionData
*pRActionData,
int *pActionld)

const long NNRMgrGetFirst (NNRMgr *pMgr,

Action const NNRAction * pRAction,
NNRActionReadData * const
pRActionData)

const long NNRMgrGetNext (NNRMgr *pMgr,

Action NNRActionReadData * const
pRActionData)

const long NNRMgrResequence | (NNRMgr *pMgr,

Action const NNRAction *pRAction,
int oldPosition,
int newPosition)

const long NNRMgrUpdate (NNRMgr *pMgr,

Action const NNRAction *pRAction,
const NNRActionUpdate
*pRActionUpdate,
int position)

const long NNRMgrDelete (NNRMgr *pMgr,

Action const NNRAction *pRAction,

int position)
const long NNRMgrAddOption | (NNRMgr *pMGR,

34

const NNROption *pROption,
const NNROptionData
*pROptionData)

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

Return Type | Function Arguments
const long NNRMgrGetFirst (NNRMgr *pMgr,

Option const NNROption * pROption,
NNROptionReadData * const
pROptionData)

const long NNRMgrGetNext (NNRMgr *pMgr,

Option NNROptionReadData * const
pROptionData)

const long NNRMgrResequence | (NNRMgr *pMgr,

Option const NNROption *pROption,
int oldPosition,
int newPosition)

const long NNRMgrUpdate (NNRMgr *pMgr,

Option const NNROption *pROption,
const NNROptionUpdate
*pROptionUpdate,
int position)

const long NNRMgrDelete (NNRMgr *pMgr,

Option

const NNROption *pROption,
int Position)

Rules Management Error Handling Functions

Return Type Function Arguments
const int NNRGetErrorNo NNRMgr *pRMgr
const char* NNRGetErrorMessage NNRMgr *pRMgr

MQSeries Integrator Programming Reference for NEONRules

35

Chapter 2

Libraries

36

NEONRules APIs must be linked with the following libraries:

Link Libraries for Rules APIs

UNIX Library

Description

libnnrulesfmt.so

NEONRules and NEONFormatter library

libnnfmgr.so

NEONRules Manager library

libnncmpntmgr.so

NEONRules Permission Management library

libnntools.so MQSeries Integrator generic tool set

libnnaim.so High-Level MQSeries Integrator library
libnnsgl.so MQSeries Integrator SQL Obiject Interface library
libnnses.so MQSeries Integrator session-specific library

libnnsesdbold.so

MQSeries Integrator session-specific library

System/compiler-specific libraries

Database dependent libraries

Notes:

m Library file extensions are .so or .sl for UNIX, .DLL for NT, and .a for
AIX. NT library names are not preceded by lib.

m For MQSeries Integrator, link with libnnmgs.so.1 and
libnnMQSruleng.so.1.

s THREAD SAFETY: For multi-threading, you must also link with the
appropriate thread library matching the MQSeries Integrator release.
For example, link with the thread library for Ul threads, pthread for
POSIX threads, and so on.

MQSeries Integrator Programming Reference for NEONRules

Rules Overview

m For MQSeries, link with libnnmgs.so, libnnsesmgs.so, and
libnnsesdboldboth.so.

= You must use libnnfmgr.so and libnncmpntmgr.so when using
libnnrmgr.so.

MQSeries Integrator Programming Reference for NEONRules 37

Chapter 2

38 MQSeries Integrator Programming Reference for NEONRules

Chapter 3

Rules APIs

This chapter details NeonRules Supporting and Member Functions.

Class/Type Definitions

VRule

A VRule object is a Virtual Rules Engine instance. This class provides a
standard interface for handling Rules API calls and allows the user to
perform all rule evaluation and subscription retrieval. A VRule object is
created using CreateRulesEngine() and deleted by DeleteRuleEngine().

Syntax
class VRul e {
publi c:
VRul e() {}
virtual ~VRule();
virtual int GetErrorNo() = O;
virtual int eval (char * AppNane,
char * MsgNane,
char * msg,
i nt nmsglen,
int 1og=0) = 0;
virtual int eval (char * MsgNane,
Formatter * formatter,
int 1og=0) = O;
virtual char * getaction() = 0;
virtual SUBSCRI PTI ON * getsubscription() = 0;
virtual OPTIONPAIR * getopt() = O;

MQSeries Integrator Programming Reference for NEONRules

39

Chapter 3

\'
\'
\'
\'
\'
\'

rtual RULE * gethitrule() =
rtual RULE * getnohitrul e()
rtual char * getlog() = O;
rtual char * GetErrorMessage() = 0;
rtual void Threadd eanup() = 0;
rtual int LoadRul eSet(char* AppG p,

char* MsgType,

int LoadNow = 0) = O;
rtual Formatter *getFormatterobject() = 0;

0;

0;

\

40 MQSeries Integrator Programming Reference for NEONRules

Rules APIs

SUBSCRIPTION

Each rule has an associated list of subscriptions, and each subscription has an
associated list of one or more actions. The list of actions for a subscription is a
list of SUBSCRIPTION structures.

When stepping through the list of actions for a specific subscription, the
presence of a new subscription identifier (Subld) signifies that a new
subscription has been reached and that the action is the first associated with
the new subscription.

Syntax

struct SUBSCRI PTI O\{
| ong Subl d;
char * action;
char *SubNane;

b
Parameters
Name Type Description
Subld long Subscription sequence identifier
action char* Action name
SubName char* Subscription name

MQSeries Integrator Programming Reference for NEONRules 41

Chapter 3

Example

The following code fragment illustrates stepping through a list of actions:

whil e ((p=rul es->getsubscription()){
if (strcmp(p->action,"nmy_funl") == 0){

ny_funl();

telse if (strcnp(p->action,"nmy_fun2") == 0){
nmy_fun2();

Yel sef

/I performlogging or exception handling

}

42 MQSeries Integrator Programming Reference for NEONRules

OPTIONPAIR

Rules APIs

Each rule has an associated list of subscriptions and each subscription has a
list of one or more actions. Actions are intended to be executed in sequence,
and each action may have one or more associated option name-value pairs.

Option name-value pairs are OPTIONPAIR structures. An option pair can be
unique to an action. A NULL OPTIONPAIR in a subscription option list
signifies the end of the options for that subscription action.

Syntax

struct OPTI ONPAI R{
i nt Sequence;
char * Nane;
char * Val ue;

b

Parameters
Name Type Description
Sequence int Sequence identifier
Name char* Option name
Value char* Option value

MQSeries Integrator Programming Reference for NEONRules 43

Chapter 3

44

Example

The following code segment illustrates walking through a list of options.
Note that the presence of a NULL popt signifies the end of the list of options.

whil e ((popt=rul es->getopt()){
if (strcnp(popt->Nane, " Command_Argunent1") == 0){
pConmmand_Ar gunent 1 = strdup(popt->Val ue);
}
else if (strcnp(popt->Nane, " Command_Argunment 2") == 0){
pConmmand_Ar gunent 2 = strdup(popt->Val ue);
}
}
i f (pCommand_Argunentl && pConmand_Argunent2){
ny_funl(pConmand_Ar gunent 1, pComrand_Ar gunent 2) ;

}
el se {

/lerror handling for mssing options to nmy call
}

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

RULE

gethitrule() and getnohitrule() return records of rule information contained in
a RULE structure.

Syntax

struct RULE{
int Rul eld;
char *Rul eNane;

b

Parameters
Name Type Description
Ruleld int Rule identifier
RuleName char* Rule name

Example

The following code fragment describes how to walk through a list of rules
that did not hit and a list of rules that hit. It should be noted that these APIs
are called after the Rules eval() API.

RULE *r;
cout << "NO H T RULES" << endl;
while ((r=rules->getnohitrule())){
cout << " " << r->Rul eNane << endl;
}
cout << "HI'T RULES" << endl;
while ((r = rules->gethitrule())){
cout << " " << r->Rul eNane << endl;

}

MQSeries Integrator Programming Reference for NEONRules 45

Chapter 3

VRule Supporting Functions

46

To use NeoNRules APIs, you must include the following header files located in
the MQSeries Integrator include directory:

dbtypes.h
ses.h
sqlapi.h
rerror.h
ruleuser.h

vrule.h

Link with the following libraries (UNIX) in the MQSeries Integrator library
directory:

libnnrulesfmt.so

libnnrmrg.so

Note:

THREAD SAFETY: For multithreading, you must also link with the
appropriate thread library matching the MQSeries Integrator release. For
example, link with the thread library for Ul threads, pthread for POSIX
threads, and so on.

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

CreateRulesEngine

Note:

THREAD SAFETY: For multi-threaded applications, OpenDbmsSession() and
CreateRulesEngine() should only be called by the main thread. The VRule
pointer returned by CreateRulesEngine() should then be passed to separate
threads so that each thread can perform evaluations in parallel.

DeleteRuleEngine() should be called by the main thread only after ALL
threads are done with evaluations.

Syntax 1

VRul e* Creat eRul esEngi ne(DbnsSessi on* Sessi on);

Description

CreateRulesEngine() creates a VRule object for the MQSeries Integrator
session provided in the session parameter. By default, errors are sent through
the NNAlert mechanism. See Failure Processing in System Management.

Parameters
Name Type Input/ Description
Output
Session DbmsSession * | Input Name of the open MQSeries
Integrator session.
Syntax 2

VRul e* Creat eRul esEngi ne(DbnsSessi on* Sessi on,
int alert=1,
char *l ogfil e=NULL);

MQSeries Integrator Programming Reference for NEONRules a7

Chapter 3

Description

CreateRulesEngine() creates a VRule object for the MQSeries Integrator
session provided in the session parameter and enables the user to specify
whether alerts should be sent to the NNAlert mechanism or to a log file.

Parameters

Name Type Input/ Description
Output

Session DbmsSession * Input Name of the open MQSeries
Integrator session. See
OpenDbmsSession() in the
MQSeries Integrator Application
Development Guide.

alert int Input True(1)/False zero(0) option
determining whether or not to send
errors through the alert mechanism.
Defaults to True (1).

logfile char * Input Errors are logged to the logfile
instead of sending them through
the NNAlert mechanism. Only
valid if alert is True (1). Defaults to
no file (NULL).

Remarks

CreateRulesEngine() must be called prior to rules processing and prior to
calling DeleteRuleEngine().

Return Value

Returns a VRule object if successful; NULL on failure. All error handling of a
failed call to CreateRulesEngine() must be done by the code that calls this
API.

48 MQSeries Integrator Programming Reference for NEONRules

Rules APIs

Example 1

DbnsSessi on *sessi on = OpenDbnsSessi on("fred", DbType);

if (!session || !session->0k()){
cout << "Failed to open rul es database session" << endl;
exit(1);

}

VRul e *rul e = Creat eRul esEngi ne(sessi on);

if ('rule)

cout << "Error no rules engine created" << endl,

Example 2

DbnsSessi on *sessi on = QpenDbnsSessi on("fred", DbType);

if (!session || !session->0k()){
cout << "Failed to open rul es database session" << endl;
exit(1);

}

VRul e *rul e = Creat eRul esEngi ne(session, 1,"rerrlog.lo0g");

if ('rule)

cout << "Error no rules engine created" < endi;

See Also

DeleteRuleEngine

MQSeries Integrator Programming Reference for NEONRules 49

Chapter 3

DeleteRuleEngine
Syntax

voi d Del et eRul eEngi ne(VRul e * pEngi ne);

Parameters

Name Type Input/ | Description
Output

pPEngine VRule* Input Name of the open VRule object.

Remarks

DeleteRuleEngine() must be called after CreateRulesEngine() and after all
Rules processing is complete.

Return Value

None

There are no error handling functions for DeleteRuleEngine().

Example

DbnsSessi on *sessi on = QpenDbnsSession("fred", DbType);

if (!session || !session->Ck()) {
cout << "Failed to open session" << endl;
exit(1);

}

Vrule *rul e = Creat eRul esEngi ne(sessi on);

if (frule) {
cout << "Unable to create rules object" << endl;
exit(2);

}

char MessageString[65];

menset (MyMessageString, 0, 65);
strcpy(M/MessageString, "Fieldl|Field2, Field3");
if (!'rule->eval ("MAppG oup”, "M/MessageType",

50 MQSeries Integrator Programming Reference for NEONRules

Rules APIs

M/MessageStri ng
strlen(M/MessageString))){
cout << "Failure" << endl;

exit(3);
}
if (rule){

Del et eRul eEngi ne(rul e);
}

if (session){

Cl oseDbnsSessi on(session);
}
See Also

CreateRulesEngine

MQSeries Integrator Programming Reference for NEONRules 51

eval

VRule Member Functions

Using the application group and message type, eval(), retrieves all associated
active rules, parses the message into fields, and evaluates those fields based

on evaluation criteria.
Syntax

int VRul e::eval (char* AppNane,
char* MsgNane,

char* nsg,
int msglen,
int |10g=0);
Parameters
Name Type Input/ | Description
Output

AppName char* Input Application Group Name. This should
be the Application Group in which the
user defined rules for evaluating this
message. This string should not be
empty.

MsgName char* Input Type of message to be evaluated. If
NEONFormatter is used, message type is
the input format name. This name
should be the message type in which the
user defined rules for evaluating this
message. This string should not be
empty.

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

Name Type Input/ | Description
Output
msg char* Input String containing the message to be

evaluated. This message should be in
the format expected by the message
type. The string should not be empty.

msglen int Input Message length, in bytes, of the message
to be evaluated. msglen should be
greater than zero (0).

log int Input For increased logging capability in a
future release, log defaults to zero (0) for
now.

Remarks

eval() should be called after CreateRulesEngine() and before
DeleteRuleEngine(). In addition, eval() should be called prior to returning
subscriptions or hit/no-hit rules.

Note:

THREAD SAFETY: For multi-threaded applications, be sure to retrieve
subscriptions, actions, and options from the same thread as the one that called
eval().

Return Value

Returns 1 if the rules evaluate completely, regardless of the outcome; zero (0)
if the evaluation fails.

Note that a successful evaluation does not imply that a rule fired, only that all
rules associated with the application group and message type were evaluated
against the message completely.

MQSeries Integrator Programming Reference for NEONRules 53

Chapter 3

54

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Note:

If this is the first eval() call for the specified Application Group/Message
Type, all the rules and subscriptions for this rule set will be read into cache.
Subsequent calls to eval() will not reload the data unless LoadRuleSet() or
LoadRuleComponent() were called previously with LoadNow set to FALSE.
Modifications to the data will only be reflected if one of the Load APIs is
called prior to the eval() API. See LoadRuleSet on page 71 or
LoadRuleComponent on page 74 for more information.

Example

if (!'rul es->eval (appnane, nsgnanme, nsg, nsglen)){
cout << "Failure" << endl;

} else {
cout << "Success" << endl;

}

See Also

CreateRulesEngine

DeleteRuleEngine

getaction
getsubscription
gethitrule

getnohitrule
GetErrorNo

GetRerror
GetErrorMessage
LoadRuleSet

LoadRuleComponent

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

gethitrule

gethitrule() retrieves one hit rule from the hit rules list created by eval(),
placing it in a RULE structure. When stepping through the hit rules list using
gethitrule(), a NULL indicates the end of the list.

Syntax

RULE *VRul e:: gethitrule();

Parameters

None

Remarks

Call gethitrule() after the eval() function, which should follow a call to
CreateRulesEngine() but precede a call to DeleteRuleEngine(). You must call
gethitrule() before getsubscription() or getopt() because these functions
change the hit rules list. gethitrule() will not work after getsubscription() is
called.

Note:
THREAD SAFETY: For multi-threaded applications, be sure to call
gethitrule() from the same thread as the one that called eval().

Return Value

Returns a pointer to a single RULE structure with a number and name
indicating which rule was hit. When the return value is NULL, the list of hit
rules has been exhausted. The rules are not returned in any specific order.

Note:
Each time this APl is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

MQSeries Integrator Programming Reference for NEONRules 55

Chapter 3

56

Example

The following code fragment describes how to walk through a list of rules
that did not hit and a list of rules that hit. It should be noted that these APIs
are called after the Rules eval() API.

RULE *r;
cout << "NO H'T RULES" << endl;
while ((r=rul es->getnohitrule())){
cout << " " << r->Rul eNane << endl ;

}
cout << "HI T RULES" << endl;

while ((r = rules->gethitrule())){
cout << " " << r->Rul eNane << endl;
}

See Also

getnohitrule
eval

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

getnohitrule

getnohitrule() retrieves one no-hit rule from the no-hit rules list created by
eval(), placing it in a RULE structure. Only active rules are retrieved. When
stepping through the no-hit rules list using getnohitrule(), a NULL indicates
the end of the list.

Syntax

RULE *VRul e: : getnohitrul e();

Parameters

None

Remarks

getnohitrule() should be called after the eval() function, which should follow
a call to CreateRulesEngine() but precede a call to DeleteRuleEngine().
getnohitrule() must be called before getsubscription() or getopt() because
these functions change the hit rules list. getnohitrule() will not work after
getsubscription() is called.

Note:
THREAD SAFETY: For multi-threaded applications, be sure to call
getnohitrule() from the same thread as the one that called eval().

Return Value

Returns a pointer to a single RULE structure with a number and name
indicating which rule was not hit. When the return value is NULL, the list of
no hit rules has been exhausted. The rules are not returned in any specific
order.

Note:
Each time this APl is called, the returned rule is removed from the list.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

MQSeries Integrator Programming Reference for NEONRules 57

Chapter 3

58

Example

The following code fragment describes how to walk through a list of rules
that did not hit and a list of rules that hit. These APIs are called after the Rules
eval() API.

RULE *r;
cout << "NO H'T RULES" << endl;
while ((r=rul es->getnohitrule())){
cout << " " << r->Rul eNane << endl ;

}
cout << "HI T RULES" << endl;

while ((r = rules->gethitrule())){
cout << " " << r->Rul eNane << endl;
}

See Also

ethitrule
eval

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

getsubscription

getsubscription() gets an action within a subscription associated with a rule
that evaluated true, retrieving the subscription identifier, subscription name,
and action name. When using this API within a loop, a change in the Subld
(subscription sequence) of the SUBSCRIPTION structure signifies the end of
one subscription and the beginning of the next.

Syntax

SUBSCRI PTI ON* VRul e: : get subscription();

Parameters

None

Remarks

getsubscription() should be called after the eval() function, which should
follow a call to CreateRulesEngine() but before a call to DeleteRuleEngine().
getaction() should not be called after getsubscription() because it has the same
functionality. getopt() should be called to retrieve the action options.

Note:
THREAD SAFETY: For multi-threaded applications, be sure to call
getsubscription() from the same thread as the one that called eval().

MQSeries Integrator Programming Reference for NEONRules 59

Chapter 3

60

Return Value

Returns a pointer to a single subscription action with a number indicating
which subscription it belongs to, strictly for the purposes of checking the
current subscription. If previous subscriptions have been retrieved, a different
Subscription Identifier indicates that the action is for a new subscription. The
subscription name and action name are also retrieved for the user. When the
return value is NULL, the list of subscriptions has been exhausted. The
subscriptions are not returned in any specific order.

Note:
Each time this API is called, the returned subscription is removed from the

subscription list for the hit rules.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

The following code fragment illustrates walking through a list of actions:

A dSubld = NULL;
int Acti onCount = O;
char * Actionlist[MY_ACTI ONS_MAX] ;
whil e ((p=rul es->getsubscription())){
if ((p->Subld != ddsubld) || (!'AdSubld)){
//this is the first action of the new subscription
A dSubl d = p->Subl d;
myfun(Acti onLi st, Acti onCount) ;
cl eanup(Acti onLi st, Acti onCount) ;
ActionCount = O;
}
Actionlist[ActionCount] = strdup (p->action);
Act i onCount ++;
//the options should be checked here if options are
/lrelevant to the action. Options only have neaning if
//the applications programer has witten code to
handl e
//options within the program

}

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

See Also

getaction
getopt

MQSeries Integrator Programming Reference for NEONRules 61

Chapter 3

62

getaction

getaction() returns action names for rules that evaluate to true.
Syntax

char * VRul e::getaction();

Parameters

None

Remarks

Note:
THREAD SAFETY: For multi-threaded applications, be sure to call getaction()
from the same thread as the one that called eval().

Return Value

Returns a pointer to a string containing the action name. Each time this APl is
called, the returned action is removed from the list. When the return value is
NULL, the list of actions has been exhausted.

getsubscription() serves the same function as getaction(). Both functions
return the Subscription Identification and name, so subscription boundaries
can be determined. Use getsubscription() instead of getaction().

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example
DbnmeSessi on *sessi on = OpenDbnsSessi on("fred", DbType);
if (!session || !session->Ck()) {
cout << "Failed to open session" << endl;
exit(1);
}
Vrul e *rul e = Creat eRul esEngi ne(sessi on);
if (lrule) {

cout << "Unable to create rules object" << endl;

MQSeries Integrator Programming Reference for NEONRules

exit(2);

}
char MessageString[65];
menset (MyMessageString, 0, 65);
strcpy(M/MessageString, "Fieldl|Field2, Field3");
if (!rule->eval ("MAppG oup”,

"MyMessageType",

M/MessageStri ng,

strlen(M/MessageString))){

cout << "Failure" << endl;

exit(3);
}
char *actionnane = rul e->getaction();
cout << "Action: " << actionname << endl;
Del et eRul eEngi ne(rul e)
Cl oseDbnsSessi on(session);
See Also
getopt

getsubscription

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

63

Chapter 3

64

getopt

Each subscription can contain several actions, each of which can contain
several options. getopt() gets an option within an action, retrieving the option
sequence number, option name, and option value. When this API is used
within a loop to retrieve all options for an action, a NULL option signifies the
end of the options for that subscription.

Syntax

OPTI ONPAI R *VRul e: : getopt ();

Parameters

None

Remarks

getopt() should be called after the CreateRulesEngine(), eval() and
getsubscription() functions have been called and before DeleteRuleEngine().

Note:
THREAD SAFETY: For multi-threaded applications, be sure to call getopt()
from the same thread as the one that called eval().

Return Value

Returns a pointer to a single name-value option pair composed of an option
name and option value. Each time this function is called, the option is
removed from the list. When the return value is NULL, the list of options for
the subscription action has been exhausted.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

Example

The following code fragment illustrates walking through a list of options for a
subscription action. This action finds the occurrences of a word in a file using
the UNIX grep command as the action:

SUBSCRI PTI ON *psubscri pti on;
OPTI ONPAI R *popti onpair;
char string_to_find[MAX_LENGTH _STRI NG _TO FI NDJ ;

VRul e * rul es = CreateRul esEngi ne(session);
if (lrules){
cout << "ERROR' << endl;
exit(2);
}
if (psubscription=rul es->getsubscription()) {
if (!strcnp(psubscription->action, "UN X_GREP_COWAND"))

{
strcpy(action_string, psubscription->action);
strcat (action_string, " ");
whil e ((poptionpair=rul es->getopt()){
if (!strcnp(poptionpair->Nanme, "WORD TO FIND"))
{
strcat(string_to_find, poptionpair->Val ue);
strcat(action_string, " ");
} else if (!strcnp(poptionpair->Nane, "FILENAMVE")) {
strcat (fil enane, poptionpair->Val ue)
}
}
}
}

/I Now execute 'grep word filename’
system(action_string);
DeleteRuleEngine(rule);

See Also

getaction
getsubscription

MQSeries Integrator Programming Reference for NEONRules 65

Chapter 3

66

getliog

getlog() retrieves a list of Rules error messages and returns the list in a string
format. This string usually contains more information than
GetErrorMessage() because it saves more than just the last API error.

Syntax

char * VRul e::getlog();

Parameters
None
Return Value

Returns a pointer to a character string containing error messages; NULL if
there are no errors.

Use GetErrorNo() to retrieve the number for the last error that occurred.

Example

Vrul e *rul e = Creat eRul esEngi ne(sessi on);

if (lrule) {
cout << "Unable to create rules object"” << endl;
exit(2);

}

if (rule->GetErrorNo()){
cerr << "Unable to create rules engine" << endl;
cerr << rule->getlog() << endl;
exit(3);

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

ThreadCleanup

ThreadCleanup() removes data from a specific thread prior to exiting the
thread. For example, if you are using Ul threads, ThreadCleanup() is used
prior to a thread_exit() call. This function is usually called for a specific thread
immediately before it is destroyed.

Syntax

voi d VRul e: : ThreadC eanup();

Parameters
None
Return Value

Returns a 1 if an error occurs; zero (0) if there are no errors.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error

number.

Example

struct ThreadRul eArgs

{

public:
VRul e * rules;

b

main () /1 called by the main thread
DbnsSessi on * session = OpenDbnmsSes”sion("rul es", DBTYPE) ;
if (!'session || !'session->Ck()){

cout << "Failed to open rul es database session"" << endl;
exit_thread(1);
}

VRul e * rul es = CreateRul esEngi ne(session, 0);
t hread_handl e* threads = new thread_handl e[t hread_nunber];

Thr eadRul eArgs Rul eAr gs;

MQSeries Integrator Programming Reference for NEONRules 67

Chapter 3

Rul eArgs.rules = rul es;
int i;

for (i = 0; i < thread_nunber; ++i)

{
#i f defined (THREAD_PCOSI X)

pthread_create(& hreads[i], O, run_test, &Rul eArgs);
#elif defined (THREAD_NT)

threads[i] = CreateThread(0, 0O, run_test, &RuleArgs, O,

0);
#elif defined (THREAD Ul) /1 U
thr_create(0, 0, run_test, &RuleArgs, 0, & hreads[i]);
#endi f
}

/1 wait for threads to conplete
void * result = NULL;

#i f defined (THREAD_NT)
Wai t For Mul ti pl eObj ects(t hread_nunber, threads, TRUE,
I NFI NI TE) ;
#el se
for (i = 0; i < thread_nunber; ++i)
{
#i f defined (THREAD_POSI X)
pthread_join(threads[i], &result);

#elif defined (THREAD_U) /1 U
thr_join(threads[i], NULL, &result);
#endi f
}
#endi f

Del et eRul eEngi ne(rul es);
Cl oseDbnsSessi on(sessi on);

exit_thread(0);
}

thread_result run_test(thread_arg arg)

68 MQSeries Integrator Programming Reference for NEONRules

Rules APIs

{
ThreadRul eArgs * Rul eArgs = (ThreadRul eArgs *) arg;
VRul e * rules = Rul eArgs->rul es;
/1 get nsg, nsglen, AppGp, MgType, open outfile
[l - if take frominput mutex_| ock as needed
if (!'rules->eval (AppG p, MsgType, nsg, pos)){
outfile << "Fail, errno =" << rules->GetErrorNo();
outfile << " - " << rul es->CGetErrorMssage() << endl;
} el se{
outfile << "\nM\nNO HT RULES - Rule Name (Id) " <<
endl ;
while ((r=rul es->getnohitrule())) {
outfile << " " << setw(32) <<
setiosflags(ios::left) << r->Rul eNane <<
"(" << r->Ruleld << ")" << endl;
}
outfile << "\n\nH T RULES - Rule Nane (1d)" <<
endl ;

while ((r = rules->gethitrule())){
outfile << " " << setw(32) <<
setiosflags(ios::left) << r->Rul eNane <<
"(" << r->Ruleld << ")" << endl;

}

outfile << "\n\nACTI ONS" << endl;

while ((p=rul es->getsubscription())){
outfile << " Action(ld): " <<
p->action <<
"(" << p->Subld << ")" << endl;

while ((popt=rules->getopt())){

outfile << " " << popt->Sequence << "

outfile << popt->Name << " - ";

outfile << popt->Value << endl;

}
}

outfile << endl;

MQSeries Integrator Programming Reference for NEONRules 69

Chapter 3

rul es- >Thr eadd eanup() ;
#i f ndef W N32

return O;
#endi f

70 MQSeries Integrator Programming Reference for NEONRules

Rules APIs

LoadRuleSet

Using the application group and message type, LoadRuleSet() sets a flag
indicating that the system should clear any current rule set information
(identified by an Application Group/Message Type pair) and load the rule set
indicated by the AppName and MsgName parameters.

WARNING!

LoadRuleSet() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). It can be called before
VRule::eval(). However, it should never be called after an eval() and before
getsubscription(), getopt(), gethitrule(), and so on.

Syntax

i nt VRul e:: LoadRul eSet (char* AppNane,
char* MsgNarne,
i nt LoadNow=0) ;

Parameters
Name Type | Input/ | Description
Output

AppName | char* Input Application Group Name. Should be the
Application Group for the rule set to load.
This string should not be empty.

MsgName | char* Input Type of message to be evaluated. If
NEONFormatter is used, message type is the
input format name. Should be the Message
Type for the rule set to load. This string
should not be empty.

LoadNow | int Input Indicates when to reload the rule set
information.

MQSeries Integrator Programming Reference for NEONRules 71

Chapter 3

72

Remarks

If LoadNow is zero (0) (the default), the system reloads rule set information
when the next eval() is called. If LoadNow is 1, the reload is done
immediately, effectively ending the evaluation cycle, though eval() completes
retrieving subscription, action, and option information if doing so when
receiving the signal to reload. If the rule set has not been loaded previously,
LoadRuleSet() loads it only if LoadNow is set.

Return Value

Returns 1 if the load was performed or if the reload indicator was set for the
rule set indicated; 2 if the rule set has not been loaded, though the reload
indicator was set correctly; zero (0) if the load cannot be performed.

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

/1 OpenDbnsSessi on and Creat eRul esEngine cal | ed al ready
/1 Rules (VRul e object) has been used for evaluations and this
/1 call reloads the named Rul eSet

char appgrp[APP_NAME _LEN] = "Test App";
char nsgtype[MSG_ NAME_LEN] = "TestFnt";
int Loadl mmed = O;

int Rel oadResult = O;

if ((!ReloadResult = Rul es->LoadRul eSet (appgr p, msgt ype,
Loadl med))) {
cerr << "Error reloading rule set: " << appgrp << ",
cerr << msgtype << endl;
cerr << "Rules Error String > " ;
cerr << "NNR' << Rules->CGetErrorNo() << " <" ;
cerr << Rul es->GetErrorMessage() << " <" << endl;
} else if (ReloadResult == 2) {
cerr << "Rule Set has not been |oaded yet. It will
be when eval is called." << endl;
} else {
cerr << "Rule Set Rel oad succeeded for:

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

<< appgr <<
<< megtype << endl;

}
/1 subsequent calls to VRule::eval will use the new Rul es data

Note:

The LoadRuleSet API returns a value of 2 if the Rules Engine instance has
never evaluated a message using the specified application group/message
name pair. In this case, the LoadRuleSet API does not load the rule set,
instead, the load occurs when the eval() APl is invoked.

See Also

CreateRulesEngine

DeleteRuleEngine

eval
GetErrorNo
GetRerror

GetErrorMessage

MQSeries Integrator Programming Reference for NEONRules 73

Chapter 3

74

LoadRuleComponent

Using the application name, message type name, component type to reload,
component name to reload, and the LoadNow parameter, the
LoadRuleComponent() reloads the specified rule component stored in the
Rules memory with the modified component data stored in the database. The
MSG component type reloads the entire rule set (all rules and subscriptions
for the application group/message type) and the SUB component type
reloads the specified subscription. When a single subscription is reloaded, the
data reloaded by the LoadRuleComponent API includes the subscription
information, the subscription actions, options, and links to rules.

WARNING!

LoadRuleComponent() must be called after OpenDbmsSession() and
CreateRulesEngine(), but before DeleteRuleEngine(). As needed, it should be
called before VRule::eval(). However, it should never be called after an eval()
and before getsubscription(), getopt(), gethitrule(), and so on.

Syntax

i nt VRul e:: LoadRul eConponent (char* AppG p,
char* MsgType,
NNRConponent Types Conponent Type,
char* Conponent Nane,
i nt LoadNow=0);

Parameters
Name Type Input/ | Description
Output
AppGrp char* Input Application Group Name. Should be

the Application Group for the rule set
to load. If loading a subscription, the
subscription being loaded must reside
in the rule set defined by the

application. This string should not be

empty.

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

Name Type Input/ | Description
Output
MsgType char* Input Type of message to be evaluated. If

NEONFormatter is used, message type
is the input format name. Should be
the message type for the rule set to
load. If loading a subscription, the
subscription must reside in the rule
set defined by the message. This
string should not be empty.

Component | NNR Input Component Type. If NNRCOMP_
Type Component MSG is used, the entire rule set is
Types loaded; if NNRCOMP_SUBS is used,

the given subscription is loaded.
See Permissions APIs on page 151 for
the NNRComponent Types

definition.
Component | char* Input Component Name. If
Name ComponentType is

NNRCOMP_SUBS, this parameter is
the subscription name. If the
ComponentType is
NNRCOMP_MSG, this parameter is
the MsgType name.

LoadNow int Input Indicates when to reload the rule set
or subscription information.

Remarks

If you specify a subscription that does not exist in the database, the
LoadRuleComponent API removes the designated subscription, along with
the subscription’s actions, options, and rule links, from the rules cache.

If the subscription in the database contains zero actions, it is still cached. If an
associated rule does not exist in the rules cache then the subscription is
loaded without that rule link.

MQSeries Integrator Programming Reference for NEONRules 75

Chapter 3

76

If the LoadNow parameter is set (value equals 1), and the rule set is loaded
when the reload request is received, the LoadRuleComponent API
immediately reads the specified subscription from the database and updates
the rules cache. If the rule set is not loaded when the reload request is
received, then the entire rule set loads (performance hit).

If the LoadNow parameter is not set (value equals zero (0)), the rule set is
stored and reloads the next time eval() is called. When eval() is called for the
rule set, each of the stored reload requests are completed before the eval is
executed. This is the suggested method.

Return Value

Returns 2 if the subscription in the LoadRuleComponent API call resides in a
rule set that has not been loaded into the rules cache or does not exist in the
database. This applies if the LoadNow parameter is not set (equal to 0),
because the information is not checked until eval() is called. Also returns 2 if
the component is not found in the database or cache and LoadNow is set.

Returns 1 if the LoadRuleComponent() succeeds. Returns 0 if the
LoadRuleComponent fails, or if the reload of the rule set fails and removes
the rules from cache. If the LoadNow parameter is set to 1, returns zero (0).

Use GetErrorNo() to retrieve the number for the error that occurred, then use
GetErrorMessage() to retrieve the error message associated with that error
number.

Example

/1 OpenDbnsSessi on and Creat eRul esEngi ne cal | ed al ready
/1 Rules (VRul e object) has been used for eval uations and
/1 this call reloads the naned Rul e Set or Conponent

char appgrp[APP_NAME _LEN] = "Test App";
char nsgtype[MSG_ NAME_LEN] = "TestFnt";
NNRConponent Types CompType; // fill in
char Conponent Nane[SUB_NAME_LEN] ; [fill in

char Conponent Type[15] ;
int Loadl med = O;
int Rel oadResult = O;

switch (CompType) {
case NNRCOWP_MSG

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

strcpy (Conponent Narme, nsgtype);
strcpy (Conponent Type, "Message Type");
br eak;

case NNRCOWP_SUB:
strcpy (Conponent Type, "Subscription");
br eak;

case NNRCOWP_RULE:

case NNRCOVP_APP:

defaul t:
cerr < "invalid conponent type" << endl;
return O;
br eak;

}

if (!'(ReloadResult = Rul es->LoadRul eConponent (appgrp,
nsgt ype, ConpType, Conponent Nane, Loadl mmed))) {

cerr << "Error reloading rule conponent: ";

i f (ConpType == NNRCOWP_MSG ({

cerr << "Message Type = "<< appgrp << ", " << nsgtype <<
endl ;
} else {
cerr << ConponentType << " = "<< appgrp << ", ";
cerr << msgtype << ", " << Conponent Nane << endl;
}

cerr << "Rules Error String > " ;

cerr << "NNR' << Rules->GetErrorNo() << " <" ;
cerr << Rul es->CGetErrorMessage() << " <" <<endl;
} else {

cerr << "Rel oad succeeded for conmponent: ";

if (ConpType == NNRCOWP_MSG ({

cerr <<"Message Type = "<< appgrp << ", ";

cerr << negtype << endl;

} else {

cerr << ConponentType << " = "<< appgrp << ", ";

cerr << nsgtype << ", " << Conponent Nane << endl;
}

if (ReloadResult == 2) {

cerr << "Conponent not found OR rule set not
currently | oaded. ";

cerr << "Rel oad request ignored." << endl;

}

MQSeries Integrator Programming Reference for NEONRules 77

Chapter 3

78

/1 subsequent calls to VRule::eval will use the new Rules data

Note:

The LoadRuleComponent API returns a value of 2 if the Rules Engine
instance has never evaluated a message using the specified application
group/message hame pair and LoadNow is not set. In this case, the
LoadRuleComponent API does not load the rule set, instead, the load occurs
when the eval() APl is invoked.

See Also

CreateRulesEngine

DeleteRuleEngine

eval
GetErrorNo
GetRerror

GetErrorMessage

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

getformatterobject

getformatterobject is a formatter object retrieval function that takes no
parameters and returns the instance of the formatter that the VRule::eval()
function used to parse the last input message. A user may want to use this
function to retrieve the parsed fields and, therefore, not have to parse before a
reformat done after the eval().

This formatter object is destroyed when the DeleteRuleEngine() destroys the
VRule object. Do not access the formatter object after the VRule is deleted

Syntax

Formatter* VRul e::getformatterobject();

Parameters

None

Return Value

Returns a pointer to a formatter object.

Note:

In a multithreaded environment, the returned Formatter instance will be
thread-safe. It will contain the data/parse results for the thread in which the
eval() and Parse() was performed. Do not access other threads with this
Formatter instance because the data in those threads will be different.

Example
char *appnane;
char *nsgnane;
char *nsg;
int nmsglen;

DbneSessi on *sessi on = QpenDbnsSessi on("rul es”, DbType);

VRul e *rul e = Creat eRul esEngi ne(sessi on);
Formatter *gFormatter = rul e->getformatterobject();

MQSeries Integrator Programming Reference for NEONRules 79

Chapter 3

if (!rul e->eval (appnane, nsgnanme, nsg, nmsglen) { // error
if (gFormatter->Get ErrorCode()) {
/'l Formatter Error.
cerr << "Formatter Error:"
<< gFormatter->Get Error Code() << endl;
cerr << "Error Message:"
<< gFormatter->Get Error Message() << endl;

80 MQSeries Integrator Programming Reference for NEONRules

Rules APIs

Rules Error Handling

GetErrorNo

GetErrorNo() returns the error number associated with the last error that
occurred.

Syntax

int *VRul e:: Get ErrorNo();

Parameters

None

Return Value

Returns the error number associated with the last error that occurred (for that
thread in a multi-threaded application). Zero (0) or -1000 is returned if no
error occurred.

Example

VRul e *rul es=Cr eat eRul esEngi ne(sessi on)
if (!rules->eval ("Bravo", msgnane, nsg, nsglen)){

cout << "Fail, errno = ";
cout << GetRerror(rules->GetErrorNo()) << endl;
tel se{

/1 process Subscription Actions by Subscription
/1 and process options by Subscription Action

}
See Also

GetRerror

GetErrorMessage

MQSeries Integrator Programming Reference for NEONRules 81

Chapter 3

82

GetErrorMessage

GetErrorMessage() returns the last error message, including any specific data
such as an Application Group Name for the current thread. This function
should be used in place of GetRerror().

Syntax

char* VRul e: : Get Error Message() ;

Parameters
None
Return Value

Returns a pointer to a NULL-terminated string containing the description for
the last error that occurred (for that thread in a multi-threaded application).

Example

VRul e *rul e=Cr eat eRul esEngi ne(sessi on);
if (!rules->eval ("Bravo", msgnane, nsg, nsglen)){

cout << "Fail, errno =";
cout << rul es->CetErrorMessage() << endl;
tel se{

/| process Subscription Actions by Subscription
/1 and process options by Subscription Action

}
See Also

GetErrorNo

GetRerror

MQSeries Integrator Programming Reference for NEONRules

Rules APIs

GetRerror

GetRerror() returns the description for the error number relating to a SQL or
NeoNRules processing error. SQL and neonRules processing errors are shown
in the next section. The static error message is returned with "%s"
representing where the additional data would be placed.

For example, if GetRerror(-1001) is called, it returns the following message:

Rules configuration missing Application Group -- AppGrp - %s, MsgType -
%s

Note:
GetErrorMessage() returns the last error message including additional

information replacing the "%s".

Syntax

char* GetRerror(int ErrorNo);

Parameters

Name Type | Input/ | Description
Output

ErrorNo int Input Determines the string value containing the
meaning of the error.

Return Value

Returns a pointer to a NULL-terminated string containing the description for
the error number passed into the function.

Example
if (!rul es->eval ("Bravo", msgname, nsg, nsglen)){
cout << "Fail, errno =";
cout << GetRerror(rules->GetErrorNo()) << endl;
}el sef

MQSeries Integrator Programming Reference for NEONRules 83

Chapter 3

84

/1 process Subscription Actions by Subscription
/1 and process options by Subscription Action

}

See Also

GetErrorNo

GetErrorMessage

MQSeries Integrator Programming Reference for NEONRules

Chapter 4
Rules Management APIs

Rules Management APIs enable users to add, update, delete, and read rules.
To use Rules Management APIs, include the following header files located in
the MQSeries Integrator include directory:

= nnrmgr.h
= nnperm.h
m rdefs.h

Link with the following libraries located in the MQSeries Integrator library
directory (use the .a extension for AlX, .so or .sl for UNIX, and .DLL for NT):

m libnnfmgr.a
m libnnsgl.a
= libnntools.so
Rules components must be added in the following order:
1. Application Group
Message Type
Rule

Rule Permission

2

3

4

5. Rule Expression

6. Argument

7. Subscription

8. Subscription Permission
9. Action

10. Option

MQSeries Integrator Programming Reference for NEONRules 85

WARNING!

The names of formats and fields should not be changed if they are used by a
rule. The following occurs if either or both format and field names are
changed:

m |f you change a format name or the field names in a format, rules
associated with that format become invalid.

m After a format name is changed, Rules permissions will not retrieve
the correct format name, causing permission error messages.

m Subscription actions using format names fail if the format name is
changed.

m Ifafield name is changed, the arguments using the field name
become invalid and the rule will fail.

See the MQSeries Integrator Programming Reference for NeonFormatter for
information on changing formats and field names.

WARNING!

If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises between two components named the same with
only case differences.

See System Management for information on using NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. For more information, see Appendix B : Operator Types on page
317.

See System Management for information on how to change a current case-
insensitive installation to be case-sensitive.

MQSeries Integrator Programming Reference for NEONRules 86

Rules Management APIs

Rules Management API Structures

NNDate

NNDate is passed as part of an argument in several Rules Management
functions and should be cleared using NNR_CLEAR prior to use in a function

call.

Currently, dates are defaulted, and this structure is provided for forward

compatibility.
Syntax

typedef struct NNDat e{

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

I ong InitFl ag;

} NNDat e;

Members

char
char
char
char
char
char
char
char

century;
year;
mont h;
day;

hour s;
m nut es;
seconds;
_filler;

short nseconds

Name Type

Description

century unsigned char | Century for the year. Currently, 19 (as in 1997)

and 20 (as in 2001) are acceptable values.

year unsigned char | Number for the year, exclusive of the century. For

example, 1996 is saved as 96 and 2001 is saved as
01.

month unsigned char | Numeric month within the year (range 1 to 12).

MQSeries Integrator Programming Reference for NEONRules 87

Chapter 4

Name Type Description

day unsigned char | Numeric day of the month (range 1 to 31).

hours unsigned char | Number of hours past midnight in a 24-hour
notation (range 0 to 23).

minutes unsigned char | Number of minutes past the hour (range 0 to 59).

seconds unsigned char | Number of seconds past the minute (range 0 to
59).

filler unsigned char | This field exists to insure proper alignment of the
mseconds field below and is set to zero (0).

mseconds unsigned char | Number of milliseconds past the second (range 0
t0 999).

InitFlag long This field is present so the software can detect if

this structure was preset to zero (0) before use.

88 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Overall Rules Management APIs and
Macros

NNRMgrInit

When using Rules Management APIs, users are expected to initialize rules
management by calling NNRMgriInit(). NNRMgrlnit() initializes the rules
management data access capability and error handling.

Syntax

NNRMgr * NNRMgr il nit (DbnsSessi on *session);

Parameters
Name Type Input/ Description
Output
session DbmsSession * | Input Name of the open database session.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls. For
information about the DbmsSession Type to use, see OpenDbmsSession() in
MQSeries Integrator Application Development Guide.

Return Value

Returns a pointer to an instance of a NNRMgr object.

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMagrClose

MQSeries Integrator Programming Reference for NEONRules 89

Chapter 4

90

NNRMgrClose

When using Rules Management APIs, users are expected to close rules
management by calling the NNRMgrClose() function. NNRMgrClose()
removes the user’s ability to perform rules management.

Syntax

voi d NNRMgr Cl ose (NNRwgr *pMr) ;

Parameters

Name Type Input/ | Description
Output

pMgr NNRMgr* | Input Valid Rules Management object returned
from call to NNRMgrlnit().

Remarks

A call to NNRMgrClose() should be the last call made when managing rules.
Once a call to NNRMgrClose() is made, the user will not be able to manage
rules without calling NNRMgrInit() again.

Note:
NNRMgrClose() only cleans up resources claimed by NNRMgrlInit() and does

not close the DbmsSession.

Return Value

None

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit

MQSeries Integrator Programming Reference for NEONRules

NNR_CLEAR

Rules Management APIs

When using Rules Management APIs, user must clear structures prior to
invoking each function. Use the NNR_CLEAR macro to clear structures.
NNR_CLEAR clears a structure in such a way that the Rules Management
APIs can alert the user to a noninitialized structure.

Syntax

NNR_CLEAR(_p)

Parameters
Name Type Input/ | Description
Output
p Any rules Input Any structure used in Rules
management Management API calls except
structure permission structures.

Return Value

None

Example

struct NNRApp app;
NNR_CLEAR(&app) ;
See Also

NN_CLEAR

MQSeries Integrator Programming Reference for NEONRules

91

Chapter 4

Application Group Management APIs

An application group is a logical division of rules. Application Management
APIs are how applications are created and associated with rules,
subscriptions, and user permissions.

WARNING!

If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences will cause NNRie to fail
during import if a conflict arises between two components named the same
with only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators (see Operator Management APIs on page 169)
may not work correctly on case-insensitive databases.

See System Management for information on how to change a current case-
insensitive installation to be case-sensitive.

92 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Application Group Management API

Structures

NNRApp

NNRApp is passed as a pointer as the second parameter of the Application
Group Management APIs. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to
any Application Group Management API calls.

Syntax

typedef struct NNRApp{

char AppNarme[APP_NAME _LEN] ;

I ong InitFl ag;

}
Members
Name Type Description
AppName char Name of the application group defined by the user.
[APP_NAME_ Should be the application group in which the user is
LEN] defining rules for evaluation.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management API.
See Also
NNR _CLEAR

MQSeries Integrator Programming Reference for NEONRules 93

Chapter 4

NNRAppData

NNRAppData is passed as a pointer as the third parameter of some of the
Application Group Management APIs. The pointer cannot be NULL and
must be cleared using NNR_CLEAR prior to being populated by the user or
Application Group Management API calls. Use of this structure is described
in each Application Group Management API section.

Syntax

typedef struct NNRAppDat af
NNDat e Dat eChange;
i nt ChangeActi on;
I ong InitFlag;

}
Members
Name Type Description
DateChange NNDate Defaulted for now, provided for future capability.
ChangeAction int Defaulted for now, provided for future capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
See Also
NNR_CLEAR

94

MQSeries Integrator Programming Reference for NEONRules

NNRAppReadData

Rules Management APIs

NNRAppReadData is passed as a pointer to select functions in the
Application Group Management API. The pointer cannot be NULL and must
be cleared using NNR_CLEAR prior to any Application Group Management

API read calls.
Syntax

typedef struct NNRAppReadDat a{
char AppNare[APP_NAME _LEN] ;

NNDat e Dat eChange;
i nt ChangeActi on;
I ong InitFlag;

} NNRAppReadDat a;

Members
Name Type Description
AppName char Name of the application group defined by the

[APP_NAME_LEN]

user. Should be the application group in which
the user is defining rules for evaluation.

DateChange NNDate | Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
See Also
NNR _CLEAR

MQSeries Integrator Programming Reference for NEONRules

95

Chapter 4

NNRAppUpdate

NNRAppUpdate is a structure designed to pass update information within
the Rules Management APIs. It must be cleared using NNR_CLEAR prior to
being populated, and must be populated prior to any Rules Management API
update calls.

Syntax

typedef struct NNRAppUpdate {
char AppNare[APP_NAME _LEN] ;
NNDat e Dat eChange;
i nt ChangeActi on;
I ong InitFlag;

}
Members
Name Type Description
AppName char Name of the application group, defined by
[APP_NAME_LEN] the API using this structure.
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
See Also
NNR _CLEAR

96 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Application Group Management API

Functions

NNRMgrAddApp

NNRMgrAddApp() enables the user to define a name for one application
group in Rules. The user creates a name and provides it to

NNRMgrAddApp(), which then saves it in Rules. Only after an application

group has been defined can the application name be used in other Rules
Management functions.

Syntax

const | ong NNRwMgr AddApp(
NNRMgr *pMgr,
const NNRApp *pRApp,
const NNRAppData *pRAppDat a) ;

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Name of a current Rules
Management object.

pPRApp const NNRApp * | Input Must be populated prior to this
function call.

pRAppData | const Input Must be populated prior to this

NNRAppData *

function call. DateChange and
ChangeAction should be
populated with NULL values
because they are provided only
for future enhancements.

MQSeries Integrator Programming Reference for NEONRules

97

Chapter 4

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the application is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management APl Sample Program on page 351.
See Also

NNRMarlnit
NNR CLEAR

NNRMgrReadApp
NNRMgrUpdateApp

98 MQSeries Integrator Programming Reference for NEONRules

NNRMgrReadApp

Rules Management APIs

NNRMgrReadApp() attempts to read all rules defined for a specific

application group name.
Syntax

const | ong NNRMgr ReadApp(

NNRMgr - * pMor
const NNRApp *pRApp,

NNRAppDat a *const pRAppDat a) ;

Parameters
Name Type Input/ Description
Output
pMgr NNRMgr * Input Name of a current Rules
Management object.
pPRApp const NNRApp * | Input Should be populated prior to this
function call.
pRAppData | NNRAppData Output NNRMgrRead App populates
* const this structure. If DateChange is
not NULL, it is assumed that the
application group exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadApp().

A call to NNR_CLEAR for both pRApp and pRAppData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the application is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

MQSeries Integrator Programming Reference for NEONRules

99

Chapter 4

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddApp
NNRMgrUpdateApp

100 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetFirstApp

NNRMgrGetFirstApp() provides a way to start iterating through the
application groups that exist in a database. NNRMgrGetFirstApp() must be
called before NNRMgrGetNextApp().

Syntax
const | ong NNRWMgr Get Fi rst App (

NNRMgr - * pMor
NNRAppReadDat a *const RAppDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().
RAppData NNRAppReadData | Output NNRMgrGetFirstApp
*const populates this structure.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.
Return Value

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

Example

See Rules Management API Sample Program on page 351.

MQSeries Integrator Programming Reference for NEONRules 101

Chapter 4

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrDuplicateApp
NNRMgrDeleteEntireApp
NNRMgrGetNextApp

102 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetNextApp

NNRMgrGetNextApp() provides a way of iterating through the application
groups after the first application group has been retrieved.
NNRMgrGetFirstApp() must be called before NNRMgrGetNextApp().

Syntax
const | ong NNRWMgr Get Fi rst App (

NNRMgr - * pMor
NNRAppReadDat a *const RAppDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().
RAppData NNRAppReadData | Output NNRMgrGetNextApp
*const populates this structure.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.
Return Value

Returns 1 if the application is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_APPLICATIONS, the end of the
application group list was reached.

Example

See Rules Management API Sample Program on page 351.

MQSeries Integrator Programming Reference for NEONRules 103

Chapter 4

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrDuplicateApp
NNRMgrDeleteEntireApp
NNRMgrGetFirstApp

104 MQSeries Integrator Programming Reference for NEONRules

NNRMgrDuplicateApp

Rules Management APIs

NNRMgrDuplicateApp() creates a new application group with the name
specified in the NewAppName syntax.

NNRMgrDuplicateApp() creates the message type in the specified
application group, accesses each subscription in the original application
group/message type pair, and duplicates the subscription and its
components. The rules are then duplicated into the new application/message
type pair in a similar way.

The current user is the owner of the new application group. Read permission
must exist for the application group to be duplicated.

Syntax

const | ong NNRMgr Dupl i cat eApp (

NNRMgr - * pMor
const NNRApp* pRApp,

const char* NewAppNane) ;

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMagrlnit().

pPRApp const NNRApp* Input This structure must be
populated prior to this
function call.

NewAppName const char* Input Name of the new application

group.

MQSeries Integrator Programming Reference for NEONRules

105

Chapter 4

Return Value

Returns 1 if the application group is duplicated successfully; returns zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management API Sample Program on page 351.
See Also

NNRMarlnit
NNR CLEAR

NNRMgarDuplicateApp
NNRMgrDeleteEntireApp
NNRMgrGetFirstApp
NNRMarGetNextApp

106 MQSeries Integrator Programming Reference for NEONRules

NNRMgrUpdateApp

NNRMgrUpdateApp() enables the user to update an application group name
by providing the name of the application group to change (in the pRApp
structure) and the new application group name to change it to (in the

pRAppUpdate structure).

Syntax

const | ong NNRMgr Updat eApp (
NNRMgr *pMgr,
const NNRApp *pRApp,
const NNRAppUpdat e *pRAppUpdat e) ;

Rules Management APIs

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Name of a current Rules
Management object.
pPRApp const NNRApp * Input Must be populated prior to
this function call.
pRAppUpdate | const Input Must be populated prior to
NNRAppUpdate * this function call.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

Return Value

Returns 1 if the application group is updated successfully; zero (0) if an error

occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

MQSeries Integrator Programming Reference for NEONRules

107

Chapter 4

108

Example

DbnsSessi on *sessi on;
NNRMgr * pnor ;
I ni t NNRMgr Sessi on(pngr, session);

struct NNRApp key;
struct NNRAppDat a dat a;
struct NNRAppUpdat e updat e;
NNR_CLEAR(&key) ;

NNR_CLEAR(&dat a) ;

NNR_CLEAR(&updat €) ;

cout << "Enter old app group nane \n>";
cin >> key. AppNane;

cout << "Enter new app group nane \n>";
cin >> updat e. AppNarne;

i f (NNRMgr Updat eApp(pngr, &key, &update))
cout << endl
<< "\t App Group Nane:
<< key. AppNarme << "changed to "
<< updat e. AppNane << endl << endl;
Conmi t Xact (sessi on) ;
} else {
Di spl ayError (pnyr);
Rol | backXact (sessi on);

}

Cl oseNNRMgr (pngr, session);
return;

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrAddApp
NNRMgrReadApp

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrDeleteEntireApp

NNRMgrDeleteEntireApp() deletes an application group by deleting each
component for the application group, including application, message type,
rule, expression, and associations with subscriptions. This call depends on
permissions. If the user does not have permission for each component in the
application group, that component and the application group will not be
deleted. However, the components that the user does have permission for will
be deleted.

NNRMgrDeleteEntireApp() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type will only delete if there are not rules and
subscriptions left. The application group will only delete if there are no
message types left.

WARNING!
NNRMgrDeleteEntireApp() deletes all components contained within an

application group.

Syntax
const | ong NNRWMgrDel et eEntireApp (

NNRMor *pMr,
const NNRApp *pRApp);

MQSeries Integrator Programming Reference for NEONRules 109

Chapter 4

Parameters
Name | Type Input/ | Description
Output
pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().
pPRApp NNRApp Input The unique identifier for the
application with the message type
name and subscription name.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

Return Value

Returns 1 if the application group and its contents are completely removed.
Returns 2 if the application group still remains, but some rules or
subscriptions remain due to mismatched permissions. Returns zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. This does not
report which rules or subscriptions could not be deleted. The user must
retrieve the lists of items to find this information.

Example

See Rules Management API Sample Program on page 351.
See Also

NNRMarlnit

NNR_CLEAR

NNRMagrDeleteEntireRule
NNRMagrDeleteEntireSubscription
NNRMarDuplicateApp

NNRMagrGetFirstApp

NNRMgrGetNextApp

110 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Message Type Management APIs

A message type identifies the type of data to which the rules apply. Message
type is the same as the input format name in NeoNFOrmatter.

WARNING!

If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises between two components nhamed the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. For more information, see Appendix B : Operator Types on page
317.

See System Management for information on how to change a current case-
insensitive installation to be case-sensitive.

MQSeries Integrator Programming Reference for NEONRules 111

Chapter 4

Message Type Management API

Structures

NNRMsg

NNRMsg is passed as a pointer as the second parameter of the Message Type
Management APIs. The pointer cannot be NULL, must be cleared (using
NNR_CLEAR) prior to being populated, and must be populated prior to any
Message Type Management API calls.

Syntax

typedef struct NNRMsg{

char AppNarme[APP_NAME _LEN] ;

char MsgName[MSG_NAME_LEN] ;
I ong InitFlag;
} NNRMsg;
Members
Name Type | Description
AppName char Name of the application group defined by the user.
[APP_NAME_ Should be the application group in which the user is
LEN] defining rules for evaluation.
MsgName[MSG char Name of the message for which the user is defining
_NAME_LEN] rules for message evaluation. The message type is
the input format name if the user is using Formatter.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management API.
See Also
NNR _CLEAR

112

MQSeries Integrator Programming Reference for NEONRules

NNRMsgData

Rules Management APIs

NNRMsgData is passed as a pointer as the third parameter of the Message
Type Management APIs. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to being populated by the user or by Message Type
Management API calls. Use of this structure is described in each Message
Type Management API section.

Syntax

typedef struct NNRMsgData {

char Eval Type[EVAL_TYPE_LEN] ;
NNDat e Dat eChange;
i nt ChangeActi on;
I ong InitFlag;

} NNRMsgDat a;

Members
Name Type Description
EvalType char Defaulted for now, provided for future
[EVAL_TYPE_LEN] capability.
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
See Also
NNR _CLEAR

MQSeries Integrator Programming Reference for NEONRules 113

Chapter 4

NNRMsgReadData

NNRMsgReadData is passed as a pointer to select functions in the Message
Type Management API. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to any Message Type Management API read calls.

Syntax

typedef struct NNRMsgReadDat a(
char AppNarme[APP_NAME _LEN] ;
char MsgNanme[MSG_NAME_LEN] ;

NNDat e Dat eChange;
i nt ChangeActi on;

long InitFl ag;
} NNRMsgReadDat a;

Members
Name Type Description
AppName[APP_ | char Name of the application group (defined by the
NAME_LEN] user). Should be the application group in which
the user is defining rules for evaluation.
MsgName[MSG char Name of the message for which the user is
_NAME_LEN] defining rules for message evaluation. The
message type is the input format name if the user
is using NEONFormatter.
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
See Also
NNR CLEAR

114

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Message Type Management API Functions

NNRMgrAddMsg

A message is a string of data to be processed. NNRMgrAddMsg() associates a
message type with a specific application group. The application group and
message type must exist prior to associating the message type to an

application group using NNRMgrAddMsg(). If you are using NEONFormatter,
an input format of this name must exist. Messages must be associated with an
application group prior to adding a rule using NNRMgrAddRule().

Syntax

const | ong NNRwMgr AddMsg(
NNRMgr *pMgr,
const NNRMsg *pRMsQ,
const NNRMsgData *pRMsgDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
pPRMsg const NNRMsg * | Input Must be populated prior to this
function call.
pRMsgData | const Input Default the DateChange and
NNRMsgData * ChangeAction parameters to
NULL This is provided only for
future enhancements.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddMsg().

MQSeries Integrator Programming Reference for NEONRules

115

Chapter 4

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example
See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrReadMsg

116 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrReadMsg

NNRMgrReadMsg() enables the user to read a message type.
Syntax

const | ong NNRWMgr ReadMsg(
NNRMgr *pMgr,
const NNRVsg *pRMsg,
NNRMsgDat a *const pRMsgDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
PRMsg const NNRMsg * | Input Must be populated prior to this
function call.
pRMsgData | NNRMsgData Output NNRMgrReadMsg() populates
*const this structure. If DateChange is not
NULL, the user can assume a
message exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

MQSeries Integrator Programming Reference for NEONRules 117

Chapter 4

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg

118 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetFirstMsg

NNRMgrGetFirstMsg() provides a way to start iterating through the message
types that exist in a database. NNRMgrGetFirstMsg() must be called before
NNRMgrGetNextMsg().

Syntax

const | ong NNRMgr Get Fi r st Msg(
NNRMgr - * pMor
const NNRMsg *pRMsg,
NNRMsgReadDat a *const pRMsgDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
pPRMsg const NNRMsg * | Input Should be populated prior to this
function call. This must contain
the correct application group
name.
pRMsgData | NNRMsgData Output NNRMgrGetFirstMsg() populates
*const this structure. If DateChange is
non-NULL, the user should
assume a message exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

MQSeries Integrator Programming Reference for NEONRules 119

Chapter 4

Return Value

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_MESSAGES, the end of the message type list
was reached.

Example

See Rules Management API Sample Program on page 351.
See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddMsg
NNRMgrDeleteEntireMsg

NNRMgrDuplicateMsg
NNRMgrGetNextMsg
NNRMgrReadMsg

120 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetNextMsg

NNRMgrGetNextMsg() provides a way of iterating through the message
types after the first message type has been retrieved. NNRMgrGetFirstMsg()
must be called before NNRMgrGetNextMsg().

Syntax
const | ong NNRMgr Get Next Msg(

NNRMgr - * pMor
NNRMsgReadDat a *const pRMsgDat a) ;

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
pRMsgData | NNRMsgData Output NNRMgrGetNextMsg() populates
*const this structure. If DateChange is not
NULL, the user can assume a
message exists.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if a message type is retrieved; returns zero (0) if an error occurs.

MQSeries Integrator Programming Reference for NEONRules 121

Chapter 4

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error
message returned is RERR_NO_MORE_MESSAGES, the end of the message
type list was reached.

Example

See Rules Management API Sample Program on page 351.
See Also

NNRMarlnit

NNR_CLEAR

NNRMgrAddMsg

NNRMagrDeleteEntireMsg

NNRMgarDuplicateMsg

NNRMQgrGetFirstMsg

NNRMqgrReadMsqg

122 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrDuplicateMsg

NNRMgrDuplicateMsg() creates a new message type under the application
group specified in the NewAppName syntax. If the application group entered
in NewAppName does not exist, NNRMgrDuplicateMsg() also creates the
application group.

NNRMgrDuplicateMsg() creates the message type in the application group
specified in the NewAppName syntax, accesses each subscription in the
original application group/message type pair, and duplicates the
subscription and its components.The rules are then duplicated into the new
application/message type pair in a similar way.

The current user is the owner of the new message type. Read permission must
exist for the message type to be duplicated.

Syntax

const | ong NNRwMgr Dupl i cat eMsg(
NNRMgr *pMgr,
const NNRVsg *pRMsg,
const char *NewAppNane);

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().

pPRMsg const NNRMsg * | Input Must be populated prior to
this function call.

NewAppName const char * Input Enter the application group
name for the message type to
be duplicated in.

MQSeries Integrator Programming Reference for NEONRules 123

Chapter 4

Remarks

NNRMgrInit() should be called prior to calling NNRMgrDuplicateMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message type and its contents are completely duplicated.
Returns zero (0) if an error occurs, for example, the message type already
exists in the new application group.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management APl Sample Program on page 351.
See Also

NNRMagrlnit
NNR CLEAR

NNRMgrAddMsg
NNRMgrDeleteEntireMsg
NNRMgrReadMsg

124 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrDeleteEntireMsg

NNRMgrDeleteEntireMsg() deletes a message type by deleting each
component for the message type, including message type, rule, expression,
and associations with subscriptions. This call depends on permissions. If the
user does not have permission for each component of the message type, that
component and the message type are not deleted. However, the components
that the user does have permission for will delete.

NNRMgrDeleteEntireMsg() automatically calls NNRMgrDeleteEntireRule()
and NNRMgrDeleteEntireSubscription(). NNRMgrDeleteEntireRule() deletes
the rule if the current user owns and has Update permission for it. If the user
is not the owner but has Update permission, the rule is deactivated. If the user
does not have Update permission, the rule is not changed. Deleting a rule
unlinks all the related subscriptions. NNRMgrDeleteEntireSubscription()
cannot delete subscriptions that are linked to rules that were not deleted.

There may be some active and inactive rules or subscriptions left in the
message type. The message type will only delete if there are not rules and
subscriptions left.

Syntax
const | ong NNRWMgr Del et eEnt i reMsg(

NNRMgr * pMor
const NNRVsg *pRMsQ) ;

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pPRMsg const NNRMsg * | Input Should be populated prior to this
function call.

MQSeries Integrator Programming Reference for NEONRules 125

Chapter 4

Remarks

NNRMgrInit() should be called prior to calling NNRMgrDeleteEntireMsg().

A call to NNR_CLEAR for both pRMsg and pRMsgData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the message type and its contents are completely removed,;
returns 2 if the message type still remains, but some rules or subscription
remain due to mismatched permissions; returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management APl Sample Program on page 351.
See Also

NNRMagrlnit
NNR CLEAR

NNRMgrAddMsg
NNRMgrDuplicateMsg
NNRMgrReadMsg

126 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Rule Management APIs

Rule Management APIs are used to create rules that contain expressions and
associate rules with subscriptions and user permissions.

WARNING!
If you are using a case-insensitive database, you cannot name components the

same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises between two components nhamed the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. For more information, see Appendix B : Operator Types on page
317.

See System Management for information on how to change a current case-
insensitive installation to be case-sensitive.

Rule Management API Structures

NNRRule

NNRRule is passed as a pointer as the second parameter for some of the Rule
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Rule Management API calls. NNRRule is also part of the permission API
Structures.

MQSeries Integrator Programming Reference for NEONRules 127

Chapter 4

Syntax

typedef struct NNRRul ef

char AppNane[APP_NAME_LEN] ;
char MsgNane[MSG_NAME_LEN] ;

char Rul eNarme[RULE_NAME_LEN] ;
I ong I nitFlag;
} NNRRul e;
Members
Name Type Description
AppName[APP_ | char Name of the application group defined by the
NAME_LEN] user. Should be the application group in which
the user is defining rules for evaluation.
MsgName[MSG char Name of the message for which the user is
_NAME_LEN] defining rules for message evaluation. If the user
is using NEONFormatter, the message type is the
input format name.
RuleName char Name of the rule to be defined within an
[RULE_NAME_ application group and message name pair. This
LEN] rule name is defined by the user.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
See Also
NNR _CLEAR

128

MQSeries Integrator Programming Reference for NEONRules

NNRRuleData

NNRRuleData is passed as a pointer as the third parameter of the Rule
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by Rules Management
API calls. Use of this structure is described in each Rule Management API

section.

Syntax

Rules Management APIs

typedef struct NNRRul eDat a{

NNDat e Dat eChange;
i nt ChangeActi on;
i nt Argunent Count ;
int OrCondition;

int Subscriberl ndex;
int Rul eActive;
NNDat e Rul eEnabl eDat €;

NNDat e Rul eDi sabl eDat e;
I ong InitFlag;

} NNRRul eDat a;

Members

Name Type Description

DateChange NNDate Defaulted for now, provided for future capability.
ChangeAction int Defaulted for now, provided for future capability.
ArgumentCount | int Number of arguments associated with this rule.
OrCondition int Defaulted for now, provided for future capability.
Subscriberindex int Defaulted for now, provided for future capability.
RuleActive int Value of 1 indicates that the rule is active, a value

of zero (0) indicates that the rule is inactive.

RuleEnableDate NNDate Defaulted for now, provided for future capability.
RuleDisableDate | NNDate Defaulted for now, provided for future capability.

MQSeries Integrator Programming Reference for NEONRules 129

Chapter 4

Name Type Description
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
See Also
NNR _CLEAR

130

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRRuleReadData

NNRRuleReadData is passed as a pointer to select functions in the Rule
Management API. The pointer may not be NULL, must be cleared using
NNR_CLEAR prior to any Rule Management API read calls.

Syntax

typedef struct NNRRul eReadData {
char Rul eName[RULE_NAME_LEN] ;
NNDat e Dat eChange;
i nt ChangeActi on;
int OrCondition;
int Subscriberl ndex;
int Rul eActive;
NNDat e Rul eEnabl eDat e;
NNDat e Rul eDi sabl eDat e;
I ong InitFlag;

} NNRRul eReadDat a;

Members

Name Type Description

RuleName[RULE_ char Name of the rule, previously defined by the

NAME_LEN] user.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

Subscriberindex int Defaulted for now, provided for future
capability.

RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.

MQSeries Integrator Programming Reference for NEONRules 131

Chapter 4

Name Type Description
RuleEnableDate NNDate Defaulted for now, provided for future
capability.
RuleDisableDate NNDate Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
See Also
NNR_CLEAR

132 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRRuleUpdate

NNRRuleUpdate is a structure containing rule update information. It must be
cleared using NNR_CLEAR prior to being populated, and must be populated
prior to any Rule Management API update calls.

Syntax

typedef struct NNRRul eUpdat e{
char Rul eName[RULE_NAME_LEN] ;
NNDat e Dat eChange;
i nt ChangeActi on;
int OrCondition;
int Subscriberl ndex;
int Rul eActive;
NNDat e Rul eEnabl eDat e;
NNDat e Rul eDi sabl eDat e;
I ong InitFlag;

} NNRRul eUpdat e;

Members

Name Type Description

RuleName[RULE_ char Name of the rule to be evaluated within an

NAME_LEN] application group and message type defined
by the user.

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

OrCondition int Defaulted for now, provided for future
capability.

Subscriberindex int Defaulted for now, provided for future
capability.

MQSeries Integrator Programming Reference for NEONRules 133

Chapter 4

Name Type Description
RuleActive int Value of 1 indicates that the rule is active, a
value of zero (0) indicates that the rule is
inactive.
RuleEnableDate NNDate Defaulted for now, provided for future
capability.
RuleDisableDate NNDate Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
See Also
NNR_CLEAR

134 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Rule Management API Functions
NNRMgrAddRule

NNRMgrAddRule() enables the user to add a rule associated with a specific
application group and message type pair by providing the unique application
group, message type, and rule name for the rule in the pRule structure and
the new information for the rule in the pRRuleData structure.

Prior to adding a rule, the application group and message type must be
defined and exist in Rules using NNRMgrAddApp() and
NNRMgrAddMsg().

When adding the rule, the current user is set as the rule owner for
permissions. The owner is automatically granted Read and Update
permission for the rule. PUBLIC is given read permission.

Syntax

const | ong NNRwMgr AddRul e(
NNRMgr *pMgr,
const NNRRul e *pRRul e,
const NNRRul eData *pRRul eDat a) ;

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pPRRule const NNRRule * | Input Should be populated prior to this
function call.

MQSeries Integrator Programming Reference for NEONRules 135

Chapter 4

Name Type Input/ | Description
Output
pRRuleData | const Input DateChange, ChangeAction,
NNRRuleData * RuleEnableDate and

RuleDisableDates should be
populated with NULL. These are
provided only for future
enhancements. ArgumentCount
defaults to zero (0).

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

Return Value

Returns 1 if the rule is added successfully; zero (0) if an error occurs. An error
can occur if the component cannot be stored, if either the owner or PUBLIC
cannot be stored, or if the Read or Update permissions for both the owner and
PUBLIC cannot be stored.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management API Sample Program on page 351.

See Also
NNRMarlnit

NNR CLEAR
NNRMgrReadRule

NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm

136 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrReadRule

NNRMgrReadRule() enables the user to retrieve rule management
information. Note that this API reads rule maintenance information, not rule
evaluation or subscription information. To read rule evaluation or
subscription information, use NNRMgrReadExpression() or
NNRMgrReadSubscription(). Prior to reading a rule, the application group,
message, and rule maintenance information must be defined and exist in
Rules using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule().

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

Syntax

const | ong NNRMgr ReadRul e(
NNRMgr *pMgr,
const NNRRul e *pRRul e,
NNRRul eDat a* const pRRul eDat a) ;

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pRRule const NNRRule * | Input Should be populated prior to this
function call.

pRRuleData | NNRRuleData* Output NNRMgrReadRule() populates

const this structure. If DateChange is

not NULL, this rule exists.

MQSeries Integrator Programming Reference for NEONRules 137

Chapter 4

Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the rule is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management APl Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddRule

138 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetFirstRule

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and application
group pair.

When retrieving rule management information, user permission to read the
rule is checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user
attempting to access rule information does not have a minimum of Read
access, an error is returned indicating that the user does not have Read
permission.

Syntax

const | ong NNRWgrGet FirstRul e (
NNRMgr *pMgr,
const NNRRul e *pRRul e,
NNRRul eReadDat a *const pRRul eDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
pRRule const NNRRule * | Input Must be completely populated
except for the RuleName field
prior to this function call.
pRRuleData | NNRRule Output NNRMgrGetFirstRule populates
Read Data *const this structure.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

MQSeries Integrator Programming Reference for NEONRules 139

Chapter 4

Return Value

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, no rules were
found for the application group and message type specified in the pRRule
structure.

Example

See Rules Management API Sample Program on page 351.
See Also

NNRMarlnit
NNR CLEAR

NNRMgrUpdateRule
NNRMgrAddRule
NNRMgrReadRule
NNRMagrDeleteEntireRule
NNRMgrGetNextRule

140 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetNextRule

NNRMgrGetFirstRule() and NNRMgrGetNextRule() enable the user to
iterate through a list of rules associated with a message type and rule name
pair.

When retrieving rule management information, user permission to read the
rule will be checked. If the user is the owner or another user with Read or
Update permissions for the rule, the user can see the rule information. If the
user does not have a minimum of Read access, an error is returned indicating
that the user does not have read permission.

Syntax
const | ong NNRWMgr Get Next Rul e (

NNRMgr - * pMor
NNRRul eReadDat a * const pRRul eDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
pRRuleRead NNRRuleRead Output NNRMgrGetFirstRule
Data Data const * populates this structure.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.
NNRMgrGetFirstRule() must be called before NNRMgrGetNextRule().

Return Value

Returns 1 if the rule is retrieved successfully; zero (0) if an error occurs.

MQSeries Integrator Programming Reference for NEONRules 141

Chapter 4

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message. If the error number
returned is RERR_NO_MORE_RULES, the end of the rules list has been
reached.

Example

See Rules Management APl Sample Program on page 351.
See Also

NNRMarlnit

NNR_CLEAR

NNRMgrUpdateRule

NNRMgrAddRule
NNRMgrReadRule
NNRMgarDeleteEntireRule
NNRMarGetFirstRule

142 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrDuplicateRule

NNRMgrDuplicateRule() creates a new rule under the same application
group/message type pair. Specify the new rule name in the NewRuleName
syntax.

The current user is the owner of the new rule. Read permission must exist for
the rule to be duplicated.

Syntax

const | ong NNRMgr Dupl i cat eRul e(
NNRMgr *pMgr,
const NNRRul e *pRRul e,
const char *NewRul eNane);

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
pPRRule const NNRRule* | Input Should be populated prior to this
function call.
NewRule const char Input Enter the new rule name. The
Name duplicated rule is created under
the same application group/
message type pair.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrDuplicateRule().

A call to NNR_CLEAR for both pRRule and pRRuleData should be made
prior to populating the structures and calling this API.

MQSeries Integrator Programming Reference for NEONRules 143

Chapter 4

Return Value

Returns 1 if the rule and its contents are completely duplicated; returns zero
(0) if an error occurs; for example, the new rule exists.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrReadRule
NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm

144 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrUpdateRule

NNRMgrUpdateRule() enables the user to update a rule associated with a
specific application and group/message type pair by providing the unique
application group, message type, and rule name for the rule to be updated in
the pRule structure and the new information for the rule in the
pRRuleUpdate structure.

When updating rule management information, user permission to update the
rule will be checked. If the user is the owner or another user with Update
permission for the rule, the user can update the rule information. If the user
does not have Update access, an error is returned indicating that the user
does not have Update permission, and no change will occur.

Syntax

const | ong NNRMgr Updat eRul e (
NNRMgr *pMgr,
const NNRRul e *pRul e,
const NNRRul eUpdat e *pRRul eUpdat e) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().
pRule const NNRRule * Input Must be populated prior to
this function call.
pRRuleUpdate | const Input Should be populated prior to
NNRRuleUpdate * this function call.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

MQSeries Integrator Programming Reference for NEONRules 145

Chapter 4

Return Value
Returns 1 if the rule is updated successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbnsSessi on *sessi on;

NNRMgr * pngr ;

I ni t NNRMgr Sessi on(pngr, session);
struct NNRRul e key;
struct NNRRul eDat a dat a;

struct NNRRul eUpdat e updat e;
NNR_CLEAR(&key) ;

NNR_CLEAR(&dat a) ;

NNR_CLEAR(&updat e) ;

cout << "Enter app group nane" << endl << ">";

cin >> key. AppNane;

cout << "Enter nmessage type nanme" << endl << ">";

cin >> key. MsgNane;

cout << "Enter old rule nane" << endl << ">";

cin >> key. Rul eNan®;

cout << "Enter new rule name" << endl << ">";

ci n >> updat e. Rul eNane;

cout << "Enter rule active (1->Active, 0->lnactive)"
<< endl << ">";

cin >> update. Rul eActive;

i f (NNRMgr Updat eRul e(pngr, &ey, &update)) {

cout << endl << "\tdd Rule Name: " << key.Rul eNane <<
endl
<< "\'tNew rul e nane: " << update. Rul eNane << endl
<< endl;
Commi t Xact (sessi on);
} else {
Di spl ayError (pngr);
Rol | backXact (sessi on);
}
Cl oseNNRMgr (pngr, sessi on) ;
return;

146 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

See Also

NNRMarlnit
NNR_CLEAR

NNRMgrAddRule

NNRMgrReadRule
NNRMarDeleteEntireRule
NNRMagrGetFirstRule
NNRMgrGetNextRule

MQSeries Integrator Programming Reference for NEONRules 147

Chapter 4

NNRMgrDeleteEntireRule

NNRMgrDeleteEntireRule() deletes a rule by deleting each component for the
rule, including rule, expression, and associations with subscriptions.
Subscriptions can be deleted from the rule set using
NNRMgrDeleteEntireSubscription(). The user provides the application name,
message type, and rule name.

WARNING!

NNRMgrDeleteEntireRule() deletes all components associated with a rule.
The user should only call this API to delete a rule.

When deleting rule management information, user permission to update the
rule is checked. If the user is the owner and has Update permissions for the
rule, the rule can be deleted. If the user is not the owner but does have Update
permission, the rule is set to inactive but not deleted. If the user does not have
Update permission, an error is returned indicating that the user does not have
Update permission, and no change will occur.

Syntax
const | ong NNRWgrDel eteEntireRul e (

NNRMor *pMr,
const NNRRul e *pRRul e);

Parameters
Name | Type Input/ | Description
Output
pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrlnit().
pRRule | const NNRRule* | Input Must be populated prior to this
function call.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

148 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Return Value

Returns 1 if the rule is deleted successfully; returns 2 if the rule is deactivated;
returns zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbnsSessi on *sessi on;

NNRMgr * pnor ;
I ni t NNRMgr Sessi on(pngr, session);

struct NNRRul e key;
struct NNRRul eDat a dat a;
NNR_CLEAR(&key) ;

NNR_CLEAR(&dat a) ;

cout << "Enter app group nane \n>";
cin >> key. AppNane;

cout << "Enter nmessage type nane \n>";
cin >> key. MsgNane;

cout << "Enter rule nanme \n>";

cin >> key. Rul eNan®;

i f (NNRMgrDel et eEntireRul e(pngr, &key)){
cout << endl
<< "\tRule Nane: " << key.RuleNane << " Deleted."
<< endl << endl;
Conmi t Xact (sessi on);
} else {
Di spl ayError (pnor);
Rol | backXact (sessi on) ;

}
Cl oseNNRMgr (pngr, sessi on);

return;

See Also

NNRMarlnit
NNR CLEAR

MQSeries Integrator Programming Reference for NEONRules 149

Chapter 4

150

NNRMgrUpdateRule

NNRMgrAddRule

NNRMgrReadRule

NNRMgrGetFirstRule

NNRMgrGetNextRule

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Permissions APIs

When a rule is added using NNRMgrAddRule(), the user is given ownership
of the rule, as well as Read and Update permissions. PUBLIC is given Read
permission.

The same occurs when a subscription is added using
NNRMgrAddSubscription(). These default permissions can be changed by
using NNRMgrUpdateOwnerPerm() and NNRMgrUpdatePublicPerm().

The rule expression or subscription actions can be added by the owner
without changing the default permissions. Once permissions are defined for a
rule or subscription, an owner can give ownership to another user and
change permissions for themselves or PUBLIC using other Permissions APIs.

Permission Management API Structures

NNUserPermissionData

NNUserPermissionData is passed as an argument in several Rules
Management functions affecting permissions and should be cleared using
NN_CLEAR prior to use in a function call.

Syntax

typedef struct NNUser Perni ssi onDat af
NNPer mi ssi onDat a Per m ssi on;
char Partici pant Nanme[NN_PARTI Cl PANT_NAME _LEN] ;
long InitFl ag;

} NNUser Per i ssi onDat a;

MQSeries Integrator Programming Reference for NEONRules 151

Chapter 4

Parameters
Name Type Description
Permission NNPermission Specifies the permission for this
Data specific participant.
ParticipantName char Logon name of the user to whom the
[NN_PARTICIPANT permission is being assigned. This
_NAME_LEN] parameter must be all capital letters
for Oracle; and case sensitive for
Sybase. PUBLIC for all users other
than the owner.
InitFlag long Flag used to determine if variables
have been initialized prior to calling a
Rules Management API.
See Also
NNR_CLEAR

152 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNPermissionData

NNPermissionData is passed as an argument in several Rules Management
functions affecting permissions and should be cleared using NN_CLEAR

prior to use in a function call.

Syntax

typedef struct NNPerni ssi onDat a{
i nt Sequence;
char Per m ssi onNane[NN_PERM SSI ON_NAME_LEN] ;
char Perm ssionVal ue[NN_PERM SSI ON_VALUE_LEN];
I ong InitFlag;

} NNPer i ssi onDat a;

Parameters
Name Type Description
Sequence int Ordering value for this specific permission name-
value pair.
PermissionName[char Type of permission being defined for the rule and
NN_PERMISSION user permission. Only Update is valid.
_NAME_LEN]
PermissionValue char Value for the permission being defined for the
[NN_PERMISSION rule and user permission. Only the Granted and
_NAME_LEN] DenyAll values associated with Update are valid.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
See Also
NN CLEAR

MQSeries Integrator Programming Reference for NEONRules 153

Chapter 4

NNRComponent

After a NNRRule structure is created for a rule, the user must create a
NNRComponent with ComponentType = NNRCOMP_RULE and
ComponentUnion.pRRule = &myRule.

After an NNRSubs structure is created for a rule, the user must create a
NNRComponent with ComponentType = NNRCOMP_SUBS and
ComponentUnion.pRSubs = &mySubs.

The NNRComponent is then called into a Permission APl. NNRComponent
can be initialized by calling NN_CLEAR before populating.

Syntax

typedef enum NNRConponent Types{
NNRCOWP_RULE =1,
NNRCOWP_SUBS =2,
NNRCOVP_APP =3,
NNRCOWP_MSG =4
} NNRConponent Types;

typedef uni on NNRConponent Uni on {
const struct NNRRul e *pRRul €;
const struct NNRSubs *pRSubs;
} NNRConponent Uni on;

typedef struct {
Long I nitFl ag;
NNRComponent Types Conponent Type;
NNRConponent Uni on Conponent Uni on;
} NNRConponent ;

Parameters
Name Type Description
InitFlag Long Flag used to determine if

variables have been initialized
prior to calling a Rules
Management API.

154 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type Description

ComponentType NNRComponentTypes Identifies the type of component
used in ComponentUnion; must
be either NNRCOMP_RULE or
NNRCOMP_SUBS.

ComponentUnion NNRComponentUnion | A union where either pRRule is
set to point to a previously
defined NNRRule structure or
pRSubs is set to point to a
previously defined NNRSubs
structure.

See Also

NNR _CLEAR

MQSeries Integrator Programming Reference for NEONRules 155

Chapter 4

Overall Permission Macro

156

NN_CLEAR

When using Rules Management APIs affecting permissions, users are
expected to clear structures prior to invoking each function. Structures should
be cleared with a call to the NN_CLEAR macro. NN_CLEAR clears a
structure in such a way that the Rules Management APIs can alert the user to
a non-initialized structure.

Syntax
NN_CLEAR(_p)
Parameters
Name | Type Input/ | Description
Output
p Any Rules Input Any structure used in Rules
management Management API calls affecting
permissions permissions.
structure

Return Value

None
Example

struct NNPerm ssion permt;

NN_CLEAR(&permit);

MQSeries Integrator Programming Reference for NEONRules

Permission API Functions

NNRMgrGetFirstPerm

NNRMgrGetFirstPerm() enables the user to prepare the list of user-
permissions pairs for rules or subscriptions for retrieval by the
NNRMgrGetNextPerm() API.

Syntax

const | ong NNRMgr Get Fi r st Per m(
NNRMor *pMr,

const NNRConponent

* pRConponent

Rules Management APIs

NNUser Per mi ssi onDat a* const pPerm ssionData);

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pRComponent | const NNR Input Must populate prior to this

Component * function call.
pPermission NNUser Output Populated by the call to
Data PermissionData* NNRMgrGetFirstPerm().

const

Remarks

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structure or calling

this API.

MQSeries Integrator Programming Reference for NEONRules

157

Chapter 4

158

Call NNRMgrGetNextPerm() to retrieve all remaining rule or subscription
permissions before calling NNRMgrGetFirstPerm() to retrieve permissions
for another rule or subscription.

Return Value

Returns 1 if the list of user-permission pairs is prepared successfully; zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error message returned is RERR_NO_MORE_PERMISSIONS, no
permissions were found for the application group, message type, and rule or
subscription specified in the pRComponent structure.

Example
See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NN CLEAR

NNRMgrGetNextPerm

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetNextPerm

NNRMgrGetNextPerm() enables the user to retrieve an user-permission pair
from the user-permissions list for a rule. When iterating through the list, a
NULL pPermissionData indicates the end of the list. NNRMgrGetFirstPerm()
MUST be called prior to using this routine.

Syntax
const | ong NNRMgr Get Next Per n(
NNRMor *pMr,

const NNUser Permi ssi onData *pPerm ssi onDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().
pPermission | const Output Populated by the call to
Data NNUserPermission NNRMgrGetNext Perm().
Data *
Remarks

A call to NN_CLEAR for pPermissionData should be made prior to calling
this API.

NNRMgrGetFirstPerm() MUST be called prior to using this routine.
Return Value

Returns 1 if an user-permission pair is read from the list successfully; zero (0)
if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

MQSeries Integrator Programming Reference for NEONRules 159

Chapter 4

If the error message returned is RERR_NO_MORE_PERMISSIONS, the end of
the permissions list has been reached.

Example
See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NN CLEAR

NNRMgrGetFirstPerm

160 MQSeries Integrator Programming Reference for NEONRules

NNRMgrUpdateUserPerm

NNRMgrUpdateUserPerm() enables the user to add or change permissions
for a specific user. Only the owner of the permission can call
NNRMgrUpdateUserPerm().

Syntax

const | ong NNRMgr Updat eUser Per m(

NNRMgr - * pMor

const NNRConponent

* pRConponent ,

Rules Management APIs

const NNUser Permi ssi onData *pPerm ssi onDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().
pRComponent const Input Must be populated prior to
NNRComponent * this function call.
pPermissionData | constNNUser Input Must be populated prior to

PermissionData *

this function call. This
must include a valid
database user name and a
valid permission name/
value pair (Name = Owner,
Update; Value = Granted,
DenyAll).

Remarks

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling

this API.

MQSeries Integrator Programming Reference for NEONRules

161

Chapter 4

Return Value

Returns 1 if the permission is added or updated. Returns zero (0) if the input
parameters are not initialized with NNR_CLEAR and NN_CLEAR, the
current user is not the owner of the item, the given user is invalid, the
permission name/value is invalid, or a different error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NN CLEAR

NNRMgrUpdatePublicPerm

162 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrChangeOwner

NNRMgrChangeOwner() enables the owner of the rule or subscription to
change ownership to a new user. Only the current owner can change
ownership. The new owner’s name must exist in the database and must be in
the same group/role as the current owner. The original owner’s permissions
are transferred to the new owner, overwriting any previous permissions of
the new owner.

Syntax

const | ong NNRMgr ChangeOaner (
NNRMgr *pMgr,
const NNRConmponent *pRConponent,
char *pNewOaner);

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().
pRComponent | const Input Must be populated prior to
NNRComponent * this function call.
pNewOwner char * Input Must be populated with the
new owner’s logon name
prior to this function call.
Remarks

A call to NNR_CLEAR for pRComponent should be made prior to populating
the structures or calling this API.

Note that for Oracle, all owner names must be in upper-case. For example,
owner should be OWNER. Sybase uses the same case as the logon name.

MQSeries Integrator Programming Reference for NEONRules 163

Chapter 4

Return Value

Returns 1 if the owner is changed successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management API Sample Program on page 351.
See Also

NNRMarlnit

NN_CLEAR

NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm

164 MQSeries Integrator Programming Reference for NEONRules

NNRMgrUpdateOwnerPerm

NNRMgrUpdateOwnerPerm() enables the user to add/change permissions
for the owner. Only the owner can affect owner permissions. By default,
Update and Read permissions for all rules and subscriptions are given to their

owner.
Syntax

const | ong NNRMgr Updat eOaner Per n{
NNRMor *pMr,

const NNRConmponent *pRConponent,
const NNPerm ssi onData *pPerni ssi onDat a) ;

Rules Management A

Pls

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules
Management object
returned from call to
NNRMgrlnit().

pRComponent const NNRComponent | Input Must be populated

* prior to this function

call.

pPermissionData | const Input Must be populated

NNPermission Data *

prior to this function
call.

Remarks

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling

this API.

MQSeries Integrator Programming Reference for NEONRules

165

Chapter 4

Return Value

Returns 1 if the owner’s permissions are updated successfully; zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management APl Sample Program on page 351.

See Also

NNRMarlnit
NN CLEAR

NNRMgrUpdatePublicPerm

166 MQSeries Integrator Programming Reference for NEONRules

NNRMgrUpdatePublicPerm

NNRMgrUpdatePublicPerm() enables the owner to change permissions for
another user. Only the owner can change permissions for other users. By
default, other users (PUBLIC) are granted Read permission and denied
Update privilege. NNRMgrUpdatePublicPerm() can add any permissions
that do not currently exist.

Rules Management APIs

Syntax
const | ong NNRMgr Updat ePubl i cPer m(
NNRMgr - * pMor
const NNRConmponent *pRConponent,
const NNPerm ssi onData *pPerni ssi onDat a) ;
Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().
pRComponent const Input Should be populated prior
NNRComponent * to this function call.
pPermissionData | const Input Should be populated prior

NNPermission
Data *

to this function call.

Remarks

NNRMgrAddOtherUserPermission() should be called prior to calling
NNRMgrUpdatePublicPerm().

A call to NNR_CLEAR for pRComponent and NN_CLEAR for
pPermissionData should be made prior to populating the structures or calling

this API.

MQSeries Integrator Programming Reference for NEONRules

167

Chapter 4

Return Value

Returns 1 if the other user’s permission is added successfully; zero (0) if an
error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example
See Rules Management APl Sample Program on page 351.

See Also

NNRMarlnit
NN CLEAR

NNR_CLEAR

NNRMgrUpdateOwnerPerm

168 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Operator Management APIs

Operator Management API Structures

NNROperator

NNROperator is passed as a pointer to the second parameter of the Operator
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Operator Management API calls. Use of this structure
is described in each Operator Management API section.

Syntax

typedef struct NNROperator {
i nt QperatorHandl e;
char Oper at or Synbol [OPERATOR_SYMBOL_LEN] ;
i nt QperatorType;

}

Parameters
Name Type | Description
OperatorHandle int Unique operator handle.
OperatorSymbol char String definition of operator.
[OPERATOR_SYMBOL _
LEN]
OperatorType int Type of data.

MQSeries Integrator Programming Reference for NEONRules 169

Chapter 4

Operator Management API Functions

170

NNRMgrGetFirstOperator

Prior to adding arguments, users must know what operators are available
and supported within the current Rules installation.
NNRMgrGetFirstOperator() provides a way of starting to retrieve this
information. After using NNRMgrGetFirstOperator() to return the first
operator in the pOperator parameter, the user should call
NNRMgrGetNextOperator().

The pOperator structure contains a unique operator specified by a symbol,
type, and handle. The operator type and operator symbol provide a means for
the user to choose the operator symbol to provide the expression addition and
update functions: NNRMgrAddExpression() and
NNRMgrUpdateExpression().

Syntax
const | ong NNRMyr Get Fi r st Oper at or (

NNRMgr - * pRMorr,
NNROper at or * const pQperator);

Parameters

Name Type Input/ | Description

Output
pRMgr NNRMgr * Input Name of a current Rules
Management object.
pOperator NNROperator * Output Populated by
const NNRMgrGetFirstOperator().

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstOperator().

A call to NNR_CLEAR for pOperator should be made prior to populating the
structures or calling this API.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Return Value

Returns 1 if the first operator was retrieved successfully; zero (0) if an error
occurred.

Use NNRMgrGetErrorNo() to retrieve the number for the error that occurred,
or use NNRMgrGetError() to retrieve the error message.

If the error number returned is RERR_NO_MORE_OPERATORS, no
operators were found.

Example

See Sample Program 2: Rules Management API.

See Also

NNRMarlnit

NNR_CLEAR
NNRMagarGetNextOperator()
NNRMgrGetErrorNo()
NNRMgrGetError()

MQSeries Integrator Programming Reference for NEONRules 171

Chapter 4

172

NNRMgrGetNextOperator

Prior to adding arguments, users must know what operators are available
and supported within the current Rules installation.
NNRMgrGetFirstOperator() provides a way of starting to retrieve this
information. After using NNRMgrGetFirstOperator() to return the first
operator in the pOperator parameter, the user should call
NNRMgrGetNextOperator().

The pOperator structure contains a unique operator specified by a symbol,
type, and handle. The operator type and operator symbol provide a means for
the user to choose the operator symbol to provide the expression addition and
update functions: NNRMgrAddExpression() and
NNRMgrUpdateExpression().

Syntax
const | ong NNRMgr Get Next Oper at or (

NNRMgr - * pRMorr,
NNROper at or * const pQperator);

Parameters

Name Type Input/ Description

Output
pPRMgr NNRMgr * Input Name of a current Rules
Management object.
pOperator NNROperator * Output Populated by
const NNRMgrGetFirstOperator().

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextOperator().

A call to NNR_CLEAR for pOperator should be made prior to populating the
structures or calling this API.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Return Value

Returns 1 if the next operator was retrieved successfully; zero (0) if an error
occurred.

Use NNRMgrGetErrorNo() to retrieve the number for the error that occurred,
or use NNRMgrGetError() to retrieve the error message.

If the error number returned is RERR_NO_MORE_OPERATORS, the end of
the operators list has been reached.

Example

See Sample Program 2: Rules Management API.

See Also

NNRMarlnit
NNR CLEAR

NNRMarGetFirstOperator()
NNRMgrGetErrorNo()
NNRMgrGetError()

MQSeries Integrator Programming Reference for NEONRules 173

Chapter 4

Expression Management APIs

174

WARNING!

If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. For more information, see Operator Types on page 317.

See System Management for information on how to change a current case-
insensitive installation to case sensitive.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Expression Management API Structures

NNREXxp

NNREXxp is passed as an argument in several Rules Management APIs to
identify what rule owns the Expression. It should be cleared using
NNR_CLEAR prior to use in a function call.

Syntax

typedef struct NNRExp {
char AppNarme[APP_NAME _LEN] ;
char MsgNane[MSG_NAME_LEN] ;
char Rul eNarme[RULE_NAME_LEN] ;
I ong InitFlag;

} NNRExp;
Parameters
Name Type Description
AppName[APP_ char Name of the application group (defined by the
NAME_LEN] user). Should be the application group in which
the user is defining rules for evaluation.
MsgName[MSG_ char Name of the message for which the user is
NAME_LEN] defining rules for message evaluation. As long as
the user is using Formatter, the message type is
the input format name.
RuleName[RULE_ | char Name of the rule to be evaluated within an
NAME_LEN] application group and message name pair. This
rule name is defined by the user.
InitFlag long Flag used to determine if variables have been

initialized prior to calling a Rules Management
API.

MQSeries Integrator Programming Reference for NEONRules 175

Chapter 4

NNRExpData

NNRExpData is passed as an argument in several Rules Management APIs
affecting Rule expressions. It should be cleared using NNR_CLEAR prior to

use in a function call.
Syntax

typedef struct NNRExpData {
NNDat e Dat eChange;
i nt ChangeActi on;
long InitFlag
NNDat e Enabl eDat e;
NNDat e Di sabl eDat €;

char Expressi on[EXPRESSI ON_LEN] ;

/1 This will always be the | ast data
} NNRExpDat a;
Parameters
Name Type Description
DateChange NNDate Defaulted for now, provided for future

capability.

ChangeAction int Defaulted for now, provided for future
capability.

EnableDate NNDate Defaulted for now, provided for future
capability.

DisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been

initialized prior to calling a Rules Management
API.

176 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type Description

Expression char Boolean expression containing arguments and
[EXPRESSION_ Boolean operators AND (&) and OR (]) with
LEN] parentheses to determine order of evaluation.

Allows the user to add, update, and read rule
expressions up to 4096 characters long plus the
terminating NULL.

MQSeries Integrator Programming Reference for NEONRules 177

Chapter 4

Expression Management API Functions

NNRMgrAddExpression

NNRMgrAddExpression() adds an expression to a rule. A rule can have only
one expression containing any number of arguments.
NNRMgrAddExpression() can be called only once per rule. Prior to adding
an expression, the user must define the application group, associated message
type, and rule using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule(). Before adding an expression, the user must also know
the operator information, obtained using NNRMgrGetFirstOperator() or
NNRMgrGetNextOperator().

When adding expression information, user permission to update the rule is
checked. If the user is the owner or has update permission for the rule, the
user can add the expression information. If the user does not have update
access, an error is returned indicating that the user does not have update
permission and no change occurs.

Syntax

const | ong NNRMgr AddExpr essi on (
NNRMgr * pMor
const NNRExp* pREXp,
NNRExpDat a* pRExpDat a) ;

Parameters
Name Type Input/ Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pPRExp const NNRExp * | Input Must be populated prior to this
function call.

178 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type Input/ Description
Output
pRExpData const Input DateChange, ChangeAction,
NNRExpData * EnableDate and DisableDate

must be set to NULL,; provided
only for future enhancements.

Remarks

To store data related to expressions the application group, message type and
rule information must exist.

NNRMgrInit() should be called before NNRMgrAddExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

Return Value

Returns 1 if the expression was added successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management APl Sample Program on page 351.
See Also

NNRMagrDeleteEntireRule

NNRMgrReadExpression
NNRMgrUpdateExpression

MQSeries Integrator Programming Reference for NEONRules 179

Chapter 4

180

NNRMgrReadExpression

NNRMgrReadExpression() retrieves the rule expression associated with the
application group, message type, and rule triplet. Prior to retrieving an
expression, it must be defined. See NNRMgrAddApp(), NNRMgrAddMsg(),
NNRMgrAddRule(), and NNRMgrAddExpression().

When retrieving the rule expression, user permission to read the rule is
checked. If the user has read permission for the rule, the user can see the rule
information. If the user attempting to access rule information does not have
read access, an error is returned, indicating the user does not have read
permission.

Syntax

const | ong NNRWMgr ReadExpr essi on (
NNRMgr * pMgr,
const NNRExp *pREXp,
NNRExpDat a* pRExpDat a) ;

Parameters
Name Type Input/ Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
PREXp const NNRExp * | Input Must be populated prior to this
function call.
pRExpData const Output Populate this structure using
NNRExpData * NNRMgrReadExpression().
Remarks

To read expression data, the application group, message type and rule
information (including the expression) must exist.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrInit() should be called before NNRMgrReadExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

Return Value

Returns 1 if the expression was added successfully, zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example
See Rules Management API Sample Program on page 351.
See Also

NNRMgrDeleteEntireRule
NNRMgrAddExpression

NNRMgrUpdateExpression

MQSeries Integrator Programming Reference for NEONRules 181

Chapter 4

NNRMgrUpdateExpression

NNRMgrUpdateExpression() updates an expression in a rule. Prior to adding
an expression, the user must define the application group, associated message
type, and rule using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddRule(). Before adding or updating an expression, the user must
also know the operator information, obtained using
NNRMgrGetFirstOperator() or NNRMgrGetNextOperator().

When updating expression information, user permission to update the rule is
checked. If the user has update permission for the rule, the user can update
the expression information. If the user attempting to update an expression
does not have update access, an error is returned indicating that the user does
not have update permission and no change will occur.

Syntax

const | ong NNRMgr Updat eExpr essi on(
NNRMgr *pMgr,
const NNRExp *pREXp,
const NNRExpData *pRExpDat a);

Parameters
Name Type Input/ Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

PREXp const NNRExp * | Input Must be populated prior to this
function call.

pRExpData const Input DateChange, ChangeAction,

NNRExpData * EnableDate and DisableDate

must be set to NULL,; provided
only for future enhancements.

182 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Remarks

To update data related to expressions, the application group, message type
and rule information (including the expression) must exist.

NNRMgrInit() should be called before NNRMgrUpdateExpression(). A call to
NNR_CLEAR for both pRExp and pRExpData should be made prior to
populating the structures and calling this API.

Return Value

Returns 1 if the expression was updated successfully, zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example
See Rules Management APl Sample Program on page 351.
See Also

NNRMgrDeleteEntireRule
NNRMgrAddExpression

NNRMgrReadExpression

MQSeries Integrator Programming Reference for NEONRules 183

Chapter 4

Argument Management APIs

184

WARNING!

If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. See Appendix B: Operator Types.

See System Management for information on how to change a current case-
insensitive installation case sensitive.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Argument Management API Structures

NNRArg

NNRArg is passed as a pointer as the second parameter of select Argument
Management APIs. The pointer may not be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Argument Management API calls.

Syntax

typedef struct NNRArg {
char AppNarme[APP_NAME _LEN] ;
char MsgNane[MSG_NAME_LEN] ;
char Rul eNarme[RULE_NAME_LEN] ;
I ong InitFlag;

} NNRAr g;
Parameters
Name Type | Description
AppName[APP_ char Name of the application group (defined by the
NAME_LEN] user). Should be the application group in which
the user is defining rules for evaluation.
MsgName[MSG _ char Name of the message for which the user is
NAME_LEN] defining rules for message evaluation. Using
Formatter, the message type is the input format
name.
RuleName[RULE_ char Name of the rule to be evaluated within an
NAME_LEN] application group and message name pair. This
rule name is defined by the user.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.

MQSeries Integrator Programming Reference for NEONRules 185

Chapter 4

186

NNRArgData

NNRArgData is passed as a pointer as the third parameter of select Argument
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by Argument
Management API calls. Use of this structure is described in each Argument
Management API section.

Syntax

typedef struct NNRArgDat af
NNDat e Dat eChange;
i nt ChangeActi on;

char Fi el dNane[FI ELD_NAME_LEN] ;
int Qperatorld,
char SecondFi el dName[SECOND_FI ELD NAME_LEN] ;
char ArgVal ue[ARG VALUE_LEN];

int ArgActive;

NNDat e Ar gEnabl eDat e;

NNDat e Ar gDi sabl eDat e;
i nt ArgSequence;
long InitFl ag;

} NNRAr gDat a;
Members
Name Type Description
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
FieldName[FIELD_ | char Name of the field to which the operator will
NAME_LEN] be applied.
Operatorld int ID retrieved by NNRMgrGetFirstOperator()

or NNRMgrGetNextOperator().

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type Description

SecondFieldName char Value to which the field will be compared for
[SECOND_FIELD_ a field to field operator.

NAME_LEN]

ArgValue[ARG_V char Value of the comparison (static value).
ALUE_LEN]

ArgActive int Specifies whether the argument is active

(value of 1). For release 4.0 and later, all
arguments MUST be active.

ArgEnableDate NNDate For future enhancements, ignore for now.

ArgDisableDate NNDate For future enhancements, ignore for now.

ArgSequence int Sequence of this argument within the rule.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.

MQSeries Integrator Programming Reference for NEONRules 187

Chapter 4

188

NNRArgUpdate

NNRArgUpdate is a structure containing update information for arguments
contained within an application group/message type/rule. The pointer may
not be NULL, must be cleared using NNR_CLEAR prior to being populated,
and must be populated prior to any Argument Management API calls.

Syntax

typedef struct NNRArgUpdate {
NNDat e Dat eChange;
i nt ChangeActi on;
char Fi el dNane[FI ELD_NAME_LEN] ;
int Qperatorld,
char SecondFi el dName[SECOND_FI ELD NAME_LEN] ;
char ArgVal ue[ARG VALUE_LEN];
int ArgActive;
NNDat e Ar gEnabl eDat e;
NNDat e Ar gDi sabl eDat e;
I ong InitFlag;

} NNRAr gUpdat e;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

FieldName[FIELD_ | char Name of the field to which the operator will be

NAME_LEN] applied.

Operatorld int ID retrieved by NNRMgrReadFirstOperator()

or NNRMgrReadNextOperator().

SecondFieldName
[SECOND_FIELD_
NAME_LEN]

char Value to which the field is compared for a field
to field operator.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type Description

ArgValue[ARG_ char Value of the comparison (static value).
VALUE_LEN]

ArgActive int Value of 1 indicates that the argument is active,

avalue of zero (0) indicates that the argument is
inactive. For release 4.0 and later, all arguments
must be active.

ArgEnableDate NNDate Defaulted for now, provided for future
capability.

ArgDisableDate NNDate Defaulted for now, provided for future
capability.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.

MQSeries Integrator Programming Reference for NEONRules 189

Chapter 4

Argument Management API Functions

190

NNRMgrGetFirstArgument

NNRMgrGetFirstArgument() provides a way to retrieve information for a list
of arguments associated with an application group/message type/rule
triplet. This API returns the first argument in the rule in the pRArgData
parameter. Prior to retrieving an argument, it must be defined.

When retrieving argument information, user permission to read the rule is
checked. If the user is the owner or another user with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have Read permission.

Note:
The arguments are not necessarily grouped together with the Boolean AND

(&) operator. If there is more than one argument, use the
NNRMgrReadExpression() API to determine the Boolean operators.

Syntax

const | ong NNRMgr Get Fi r st Ar gunment (
NNRMgr *pMar,
const NNRArg * pRArg,
NNRAr gDat a * const pRArgbData);

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Name of a current Rules
Management object.
pRArg const NNRArg * | Input Must be populated prior to this
API call.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type Input/ | Description
Output
pRArgData NNRArgData * Output NNRMgrGetFirstArgument()
const populates this structure.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstArgumenty().
A call to NNR_CLEAR for both pRArg and pRArgData should be made prior
to populating the structures or calling this API.

Return Value

Returns 1 if the argument is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_ARGUMENTS, no arguments were
found for the application group, message type, and rule name specified in the
PRATrg structure.

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrGetNextArgument
NNRMgrReadExpression
NNRMarAddApp()
NNRMarAddMsa()
NNRMarAddRule()
NNRMarAddExpression()

MQSeries Integrator Programming Reference for NEONRules 191

Chapter 4

192

NNRMgrGetNextArgument

NNRMgrGetNextArgument() provides a way of iterating through the
arguments after the first argument has been retrieved (see
NNRMgrGetFirstArgument()).

When retrieving argument information, user permission to read the rule is
checked. If the user is the owner or another user and with Read or Update
permissions for the rule, the user can see the rule information. If the user does
not have a minimum of Read access, an error is returned indicating that the
user does not have Read permission.

WARNING!

The arguments are not necessarily grouped together with the Boolean AND ()
operator. If there is more than one argument, the user should use the
NNRMgrReadExpression() API to retrieve the Boolean operators.

Syntax

const | ong NNRMgr Get Next Ar gunent (

NNRMor *pMr,
NNRAr gDat a * const pRArgbData);

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pRArgData NNRArgData * Output NNRMgrGetNextArgument()

const populates this structure.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextArgument().
A call to NNR_CLEAR for both pRArg and pRArgData should be made prior
to populating the structures or calling this API.

Return Value

Returns 1 if the argument is read successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_ARGUMENTS, the end of the
arguments list has been reached.

Example

See Rules Management APl Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMagrGetFirstArgument
NNRMgrReadExpression

MQSeries Integrator Programming Reference for NEONRules 193

Chapter 4

Subscription Management APIs

Subscriptions are added to an Application Group/Message Type Rule Set.
After they are added, subscriptions can be associated with multiple rules in
the same Application Group/Message Type.

The NNRMgrAddSubscription() APl is used to add the subscription to the
Rule Set if no rule name is given, and to associate the subscription to a rule.
Subscription permissions work similarly to rule permissions.

WARNING!

If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

See System Management for information on how to change a current case-
insensitive installation to case sensitive.

194 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Subscription Management API Structures

NNRSubs

NNRSubs is passed as a pointer as the second parameter of select
Subscription Management APIs. This pointer cannot be NULL. This structure
must be populated by the user prior to calling any of the Subscription
Management APIs, and should be initialized by calling NNR_CLEAR prior to
populating all of the fields.

Syntax

typedef struct NNRSubs{
char AppNarme[APP_NAME _LEN] ;
char MsgNane[MSG_NAME_LEN] ;
char Rul eNarme[RULE_NAME_LEN] ;
char SubsNane[SUBS_NAME_LEN] ;
long InitFl ag;

} NNRSubs;
Parameters

Name Type | Description

AppName char Name of the application group (defined by the

[APP_NAME_LEN] user). Should be the application group in which
the user is defining rules for evaluation.

MsgName[MSG_ char Name of the message for which the user is

NAME_LEN] defining rules for message evaluation. Using
Formatter, the message type is the input format
name.

RuleName[RULE_ char Name of the rule to be evaluated within an

NAME_LEN]

MQSeries Integrator Programming Reference for NEONRules

application group and message name pair. This
rule name is defined by the user. This is required
only when adding a subscription to a specific
rule. It is ignored for action, option, update, and
delete functions.

195

Chapter 4

Name Type | Description

SubsName[SUBS_ char Name of the subscription associated with a

NAME_LEN] message name and application group.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.

196 MQSeries Integrator Programming Reference for NEONRules

NNRSubsData

Rules Management APIs

NNRSubsData is passed as a pointer as the third parameter of select
Subscription Management APIs. The pointer may not be NULL and must be
cleared (see NNR_CLEAR) prior to being populated (either by the user or by
Subscription Management API calls). Use of this structure is described in each
Subscription Management API section.

Syntax

typedef struct NNRSubsDat a{

NNDat e Dat eChange;
i nt ChangeActi on;
int SubsActive;

NNDat e SubsEnabl eDat €;

NNDat e SubsDi sabl eDat €;
char SubsOmner[SUBS_OMNER _LEN] ;
char SubsComent [SUBS_COMMENT_LEN] ;

I ong InitFlag;
} NNRSubsDat a;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of lindicates that the subscription is
active, a value of zero (0) indicates that the
subscription is inactive.

SubsEnableDate NNDate Provided for future functionality, ignored
for now.

SubsDisableDate NNDate Provided for future functionality, ignored
for now.

MQSeries Integrator Programming Reference for NEONRules

197

Chapter 4

Name Type Description
SubsOwner[SUBS_ char Name of the owner of the subscription.
OWNER_LEN]
SubsComment{SUBS | char Information details about the subscription.
_COMMENT_LEN]
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
See Also
NNR_CLEAR

198 MQSeries Integrator Programming Reference for NEONRules

NNRSubsReadData

NNRSubsReadData is a structure containing subscription information after a
subscription read operation.

Syntax

Rules Management APIs

typedef struct NNRSubsReadDat a{

char AppNarme[APP_NAME _LEN] ;
char MsgNanme[MSG_NAME_LEN] ;
char Rul eNarme[RULE_NAME_LEN] ;
char SubsNare[SUBS_NAME_LEN] ;
NNDat e Dat eChange;

i nt ChangeActi on;

int SubsActive;

NNDat e SubsEnabl eDat e;

NNDat e SubsDi sabl eDat e;

char SubsOmner[SUBS_OMER _LEN] ;
char SubsComent [SUBS_COMMENT_LEN] ;
I ong InitFl ag;

} NNRSubsReadDat a;

Parameters
Name Type Description
AppName[APP_NAME_ | char Name of the application group to
LEN] identify the subscription.
MsgName[MSG_NAME_ | char Name of the message type to identify
LEN] the subscription.
RuleName[RULE_NAME | char Name of the rule to link to the
_LEN] subscription, if provided.
SubsName[SUBS_NAME | char Name of the subscription to be read.
_LEN]
DateChange NNDate Defaulted for now, provided for future

capability.

MQSeries Integrator Programming Reference for NEONRules 199

Chapter 4

Name Type Description

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of lindicates that the subscription
isactive, a value of zero (0) indicates that
the subscription is inactive.

SubsEnableDate NNDate Defaulted for now, provided for future
capability.

SubsDisableDate NNDate Defaulted for now, provided for future
capability.

SubsOwner char Contains the name of the subscription

[SUBS_OWNER_ LEN] owner.

SubsComment char Contains the subscription owner’s

[SUBS_COMMENT_LEN] comment.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.

See Also
NNR _CLEAR

200 MQSeries Integrator Programming Reference for NEONRules

NNRSubsUpdate

NNRSubsUpdate contains update information for subscriptions. The pointer
must be cleared using NNR_CLEAR prior to being populated, and must be
populated prior to any Subscription Management API calls.

Syntax

Rules Management APIs

typedef struct NNRSubsUpdate {
char SubsNarme[SUBS_NAME_LEN] ;
NNDat e Dat eChange;
i nt ChangeActi on;
int SubsActive;

NNDat e SubsEnabl eDat €e;

NNDat e SubsDi sabl eDat €;

char SubsOmner [SUBS_OMNER _LEN] ;
char SubsComent [SUBS_COWMMENT_LEN] ;
I ong InitFlag;

} NNRSubsUpdat €;

Parameters

Name Type Description

SubsName[SUBS_ char Name for the subscription to be updated.

NAME_LEN]

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

SubsActive int Value of 1 indicates that the subscription is
active, a value of zero (0) indicates that the
subscription is inactive.

SubsEnableDate NNDate Defaulted for now, provided for future
capability.

SubsDisableDate NNDate Defaulted for now, provided for future

capability.

MQSeries Integrator Programming Reference for NEONRules

201

Chapter 4

Name Type Description
SubsOwner[SUBS_ char Defaulted for now, provided for future
OWNER_LEN] capability.
SubsComment[SUBS | char Defaulted for now, provided for future
_COMMENT_LEN] capability.
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
See Also
NNR_CLEAR

202 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Subscription Management API Functions

NNRMgrAddSubscription

NNRMgrAddSubscription() adds subscription maintenance information for
one subscription. If the user wants more than one subscription for the rule or
rule set, this function must be called once for each subscription. The user can
either supply a rule name or not. The subscription is created if it does not
already exist in the rule set. If the rule name is provided, the subscription is
associated with that rule, if the user has Update permission for the rule. The
user entering the subscription is identified and stored as its owner and is
automatically granted Update and Read permission for the subscription.
PUBLIC is automatically granted Read permission for the subscription.

When adding subscription information to a rule, user permission to update
the rule will be checked. If the user is the owner or another user with Update
permission for the rule, the user can add the subscription information. If the
user attempting to add a subscription does not have Update access, an error is
returned indicating that the user does not have Update permission and no
change will occur.

Syntax

const | ong NNRMgr AddSubscri pti on(
NNRMgr *pMgr,
const NNRSubs *pRSubs,
const NNRSubsData *pRSubsDat a) ;

Parameters
Name | Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().

pRSubs | const NNRSubs Input Must be populated prior to this

* function call.

Users need not specify the rule name.

MQSeries Integrator Programming Reference for NEONRules 203

Chapter 4

204

Name | Type Input/ | Description

Output
pRSubs | const Input Must be populated prior to calling this
Data NNRSubsData * function. DateChange, ChangeAction,

SubsEnableDate and SubsDisableDate
should be set to NULL. They are
provided only for future
enhancements. SubsActive is
defaulted to 1.

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddSubscription().

A call to NNR_CLEAR for both pRSubs and pRSubsData should be made
prior to populating the structures or calling this API.

If a rule name is provided, the function checks to see if the subscription
already exists in the rule set. If the subscription exists, it then checks to see if
the rule already has the subscription. If so, the function fails and sets the error
code to RERR_SUBS_NAME_ALREADY_EXISTS. If not, the function adds
the subscription to the rule.

If the rule name is provided, and the subscription does not exist in the rule
set, the function creates the subscription and automatically adds it to the rule.

If the user does not provide the rule name, the function
NNRMgrAddSubscription() will check to see if the subscription exists in the
rule set. If the subscription already exists, the function will be set to the
RERR_SUBS_ALREADY_EXISTS_IN_RULESET error code. If not, the
function will create the subscription.

Return Value

Returns 1 if the subscription is added successfully; zero (0) if an error occurs.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMgrlnit

NNR_CLEAR
NNRMgrAddRule
NNRMgrUpdateOwnerPerm
NNRMgrUpdatePublicPerm
NNRMgrReadSubscription

MQSeries Integrator Programming Reference for NEONRules 205

Chapter 4

206

NNRMgrReadSubscription

NNRMgrReadSubscription() reads subscription maintenance information for
one subscription.

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or a user with Read or Update
permissions for the subscription, the user can see the subscription. If the user
attempting to access subscription information does not have a minimum of
Read access, an error is returned indicating that the user does not have Read
permission. The subscription Read permission is also checked when reading
an action or option in the subscription. If the rule name is given, the rule is
checked for Read permission and association with the subscription.

Syntax

const | ong NNRMgr ReadSubscri pti on(
NNRMgr *pMgr,
const NNRSubs *pRSubs,
NNRSubsDat a* const pRSubsDat a) ;

Parameters
Name | Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pRSubs | const NNRSubs * Input Must be populated prior to this
function call.
The rule name does not have to be
provided in the NNRSubs structure
pointed to by pRSubs.

pRSubs | NNRSubsData* Output NNRMgrReadSubscription()

Data const populates this structure. If
DateChange is non-NULL, the
subscription exists.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrReadSubscription().
A call to NNR_CLEAR for both pRSubs and pRSubsData should be made
prior to populating the structures or calling this API.

If arule name is provided, pRSubs verifies whether the subscription exists for
the rule name and checks rule permission. If the rule name is not provided,
the function verifies whether the subscription exists in the rule set.

Return Value

Returns 1 if the subscription was read successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management APl Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddSubscription

MQSeries Integrator Programming Reference for NEONRules 207

Chapter 4

208

NNRMgrGetFirstSubscription

NNRMgrGetFirstSubscription() and NNRMgrGetNextSubscription() enable
the user to iterate through the subscriptions associated with the application
group, message type and, optionally, the rule name. Call
NNRMgrGetFirstSubscription(), and then call
NNRMgrGetNextSubscription().

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for the subscription, the user can see the information. If
the user does not have a minimum of Read access, an error is returned,
indicating the user does not have Read permission. If the rule name is not
provided, all subscriptions are retrieved for the rule set.

Syntax

const | ong NNRMgr Get Fi r st Subscri ption (
NNRMgr *pMgr,
const NNRSubs *pRSubs,
NNRSubsReadDat a * const pRSubsReadDat a) ;

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().

pRSubs const NNRSubs * Input Must be completely populated
except for the
SubscriptionName field prior
to this function call.
User need not specify a rule
name.

pRSubsRead | NNRSubsRead Output Populated by this function call.

Data Data * const

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

The rule name does not have to be provided in the NNRSubs structure
pointed to by pRSubs. If provided, the function retrieves the first subscription
associated with the rule. If not provided, the function retrieves the first
subscription associated with the rule set.

Return Value

Returns 1 if the subscription was retrieved successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_SUBSCRIPTIONS, no
subscriptions were found for the application group and message type
specified in the pRSubs structure.

Example

DbnsSessi on *sessi on;

NNRMor - * pnor ;
I ni t NNRMgr Sessi on(pngr, session);

struct NNRSubs key;
struct NNRSubsReadDat a dat a;
NNR_CLEAR(&key) ;

NNR_CLEAR(&dat a) ;

cout << "Enter app group nane \n>";
cin >> key. AppNane;

cout << "Enter nessage type nane \n>";
cin >> key. MsgNane;

cout << "Enter rule nane \n>";

cin >> key. Rul eNane;

int iret = NNRMgrGet FirstSubscription(pmgr, &key, &data);
if (iret)

{
print Subscription(&key, &data);

MQSeries Integrator Programming Reference for NEONRules 209

Chapter 4

whi | e(NNRMgr Get Next Subscri ption(pngr, &data))
{

}

print Subscri ption(&key, &data);

}

el se

{

}
Cl oseNNRMgr (pngr, session);

return;

cout << endl << "Read failed." << endl << endl << endl;

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddSubscription
NNRMgrReadSubscription
NNRMgrGetNextSubscription

NNRMgrUpdateSubscription

210 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetNextSubscription

NNRMgrGetFirstSubscription() and NNRMgrGetNextSubscription() enable
the user to iterate through the subscriptions associated with the application
group, message type and, optionally, the rule name. Call
NNRMgrGetFirstSubscription() before NNRMgrGetNextSubscription().

When retrieving subscription information, user permission to read both the
rule and the subscription is checked. If the user is the owner or another user
has read or update permissions for the subscription, the user can see the
information. If the user attempting to access subscription information does
not have a minimum of read access, an error returns indicating the user does
not have read permission. The subscription read permission is also checked
when reading an action or option in the subscription

Syntax
const | ong NNRMgr Get Next Subscri ption (

NNRMgr * pMor
NNRSubsReadDat a * const pRSubsReadDat a) ;

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().
pRSubsRead | NNRSubsRead Output Populated by this function call.
Data Data * const
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

MQSeries Integrator Programming Reference for NEONRules 211

Chapter 4

Return Value

Returns 1 if the subscription was retrieved successfully; zero if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_SUBSCRIPTIONS, the end
of the subscriptions list has been reached.

Example

DbnsSessi on *sessi on;
NNRMgr * pngr ;
I ni t NNRMgr Sessi on(pngr, session);

struct NNRSubs key;

struct NNRSubsReadDat a dat a;
NNR_CLEAR(&key) ;

NNR_CLEAR(&dat a) ;

cout << "Enter app group nane \n>";
cin >> key. AppNane;

cout << "Enter message type nane \n>";
cin >> key. MsgNane;

cout << "Enter rule nane \n>";

cin >> key. Rul eNane;

int iret = NNRMgr Get Fi rst Subscription(pngr, &key, &data);
if (iret)
{

print Subscription(&key, &data);

whi | e(NNRMgr Get Next Subscri ption(pngr, &data))

{
print Subscri ption(&key, &data);

}
}
el se
{

cout << endl << "Read failed." << endl << endl << endl;
}
Cl oseNNRMgr (pngr, sessi on);
return;

212 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

See Also

NNRMarlnit

NNR_CLEAR
NNRMgrAddSubscription
NNRMgrReadSubscription
NNRMagrGetFirstSubscription
NNRMgarUpdateSubscription

MQSeries Integrator Programming Reference for NEONRules 213

Chapter 4

NNRMgrDuplicateSubscription

NNRMgrDuplicateSubscription() creates a new subscription based on the
subscription name provided. The new subscription has the name provided in
the pNewSubsName and inherits all other properties from the existing
subscription provided in pSubs.SubsName. The user must have Read
permission to the subscription to duplicate it.

Syntax

const | ong NNRMgr Dupl i cat eSubscri ption (
NNRMgr *pMgr,
const NNRSubs* pSubs,
const char * const pNewSubsNane);

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pSub const NNRSubs* Input Must be populated prior to this
function call.

NewSubs const char* const Input Names of duplicate specified

Name subscription.

Return Value

Returns 1 if the subscription duplicated successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

214 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Example

See Rules Management API Sample Program on page 351.
See Also
NNRMarlnit

NNR _CLEAR
NNRMgrGetNextRuleUsingSubs

MQSeries Integrator Programming Reference for NEONRules 215

Chapter 4

216

NNRMgrUpdateSubscription

NNRMgrUpdateSubscription() enables the user to update a subscription. The
user provides the unique application group, message type, and subscription
name to identify the subscription to be updated in the pRSubs structure, and
provides the new information in the pRSubsUpdate structure.

When updating subscription information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission, the user can update the subscription information. If the user
attempting to update a subscription does not have Update access, an error is
returned indicating that the user does not have Update permission, and no
change occurs.

Note:
The subscription Update permission is also checked when an action or option

is either added or updated in the subscription.

Syntax

const | ong NNRMgr Updat eSubscri ption (
NNRMgr *pMar,
const NNRSubs *pRSubs,
const NNRSubsUpdat e *pRSubsUpdate);

Parameters
Name | Type Input/ | Description
Output

pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pRSubs | const NNRSubs * Input Must be populated prior to this
function call.
The user does not have to specify a
rule name; the name is ignored.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name | Type Input/ | Description
Output
pRSubs | const Input Must be populated prior to this
Update | NNRSubsUpdate * function call.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

The rule name does not have to be in the NNRSubs structure pointed to by
pRSubs; the name is ignored. However, all the changes made to the
subscription are made globally within the rule set.

Return Value

Returns 1 if the subscription was updated successfully; zero (0) if an error
occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbnsSessi on *sessi on;

NNRMgr * pnor
I ni t NNRMgr Sessi on(pngr, session);

struct NNRSubs key;

struct NNRSubsUpdat e dat a;
NNR_CLEAR(&key) ;
NNR_CLEAR(&dat a) ;

cout << "Enter app group nane \n>";
cin >> key. AppNane;

cout << "Enter nessage type nane \n>";
cin >> key. MsgNane;

cout << "Enter subscription nane \n>";
cin >> key. SubsNane;

cout << "Enter New subscription name \n>";

MQSeries Integrator Programming Reference for NEONRules 217

Chapter 4

cin >> dat a. SubsNane;
cout << "Enter new subscription owner \n>";
cin >> dat a. SubsOaner;
cout << "Enter new subscription coment \n>";
cin >> data. SubsComent ;
i f (NNRMgr Updat eSubscri ption(pmgr, &key, &data)) {
cout << endl
<< "\tSubs Nane: " << key.SubsNane << "
Changed. "
<< endl << endl;
Conmmi t Xact (sessi on);
} else {
Di spl ayError (pngr) ;
Rol | backXact (sessi on);
}
Cl oseNNRMgr (pngr, session);
return;

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrAddSubscription
NNRMgrReadSubscription
NNRMgrGetFirstSubscription

NNRMgrGetNextSubscription

218 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrDeleteSubscriptionFromRule

NNRMgrDeleteSubscriptionFromRule() disassociates a subscription from its
rule if the user has update permission for the rule. Only a subscription that is
not associated with any rule can be deleted from the rule set by using
NNRMgrDeleteEntireSubscription().

Syntax

const | ong NNRWMgr Del et eSubscri pti onFronmRul e (
NNRMgr *pMgr,
const NNRRul e *pRRul e,
const char * SubsNane);

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
pRRule pRRule Input The unique rule definition.
SubsName const char* const | Input Name of subscription.
Remarks

A call to NNR_CLEAR for pRRule should be made prior to populating the
structures or calling this API.

Return Value

Returns 1 if the user has update permission for the rule, is deleting the
subscription, and the subscription is successfully deleted. Returns zero (0) if
an error occurs. An error will occur if the user does not have update
permission.

MQSeries Integrator Programming Reference for NEONRules 219

Chapter 4

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example
See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNRMgrDeleteEntireSubscription

220 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrDeleteEntireSubscription

NNRMgrDeleteEntireSubscription() deletes a subscription and its actions and
options from the specified rule. If the subscription is associated with any

rules, an error will be returned.

When deleting subscription information, user permission to update the

subscription will be checked. If the user is

the owner and has Update

permissions for the subscription, the subscription is deleted. If the user is not
the owner but does have Update access, the subscription is set to inactive but
not deleted. If the user does not have Update access, an error is returned

indicating that the user does not have Update permission, and no change will

occur.
Syntax
const | ong NNRWMyrDel et eEnt i reSubscription (
NNRMor *pMr,
const NNRMSubs *pRSubs) ;
Parameters
Name | Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().
pRSubs | NNRMSubs Input The unique identifier for the
subscription with the application
group name, message type name, and
subscription name.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

MQSeries Integrator Programming Reference for NEONRules

221

Chapter 4

Return Value

Returns 1 if the subscription was deleted successfully; 2 if the subscription
was deactivated; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example
See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNRMgrDeleteSubscriptionFromRule

222 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetFirstRuleUsingSubs

NNRMgrGetFirstRuleUsingSubs() enables the user to iterate through the
rules associated with a subscription. If there are any rules using the
subscription, the name of the first rule is returned in
NpRSubsReadData.RuleName.

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for subscription, the user can see the information. If the
user attempting to access subscription information does not have a minimum
of Read access, an error is returned indicating that the user does not have
Read permission. The subscription Read permission is also checked when the
user is reading an action or option in the subscription.

Syntax

const | ong NNRMgr Get Fi r st Rul eUsi ngSubs (
NNRMgr *pMgr,
const NNRSubs *pRSubs,
char* const pRul eNane);

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pRSubs const NNRSubs * | Input Must be completely populated
except for the Subscription Name
field prior to this function call.
User must not specify a rule
name.

pRuleName | char* const Output Populated by this function call.

MQSeries Integrator Programming Reference for NEONRules 223

Chapter 4

224

Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

The rule name should not be provided in the NNRSubs structure pointed to
by pRSubs.

Return Value

Returns 1 if the rules were retrieved successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, no rules were
found for the application group, message type, and rule name specified in the
pRSubs structure.

Example

See Rules Management API Sample Program on page 351.
See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddSubscription
NNRMgrReadSubscription
NNRMQgrGetFirstSubscription
NNRMgrUpdateSubscription
NNRMgrGetNextRuleUsingSubs

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrGetNextRuleUsingSubs

NNRMgrGetFirstRuleUsingSubs() and NNRMgrGetNextRuleUsingSubs()
enable the user to iterate through the subscriptions associated with a rule.
Call NNRMgrGetFirstRuleUsingSubs() before
NNRMgrGetNextRuleUsingSubs().

When retrieving subscription information, user permission to read the
subscription is checked. If the user is the owner or another user with Read or
Update permissions for the subscription, the user can see the information. If
the user attempting to access subscription information does not have a
minimum of Read access, an error is returned indicating that the user does
not have Read permission. The subscription Read permission is also checked
when reading an action or option in the subscription

Syntax
const | ong NNRMgr Get Next Rul eUsi ngSubs (
NNRMor *pMr,

char* const pRul eNane);

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrlnit().
pRuleName | char* const Output Populated by this function call.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

The rule name does not have to be provided in the NNRSubs structure
pointed to by pRSubs.

MQSeries Integrator Programming Reference for NEONRules 225

Chapter 4

Return Value

Returns 1 if the rule was retrieved successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_RULES, the end of the rule
list has been reached.

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrAddSubscription
NNRMarReadSubscription
NNRMarGetFirstSubscription
NNRMagrUpdateSubscription
NNRMarGetFirstRuleUsingSubs

226 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Action Management APIs

Action are commands used if a rule evaluates as true and the subscription is
performed. A subscription includes actions that contain option name-value
pairs.

WARNING!

If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. See Appendix B: Operator Types on page 317.

See System Management for information on how to change a current case-
insensitive installation case sensitive.

MQSeries Integrator Programming Reference for NEONRules 227

Chapter 4

Action Management API Structures

NNRAction

NNRAction is passed as a pointer as the second parameter of select Action
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Action Management API calls.

Syntax

typedef struct NNRActi on{
char AppNarme[APP_NAME _LEN] ;
char MsgNane[MSG_NAME_LEN] ;
char Rul eNarme[RULE_NAME_LEN] ;
char SubsNane[SUBS_NAME_LEN] ;
char Acti onName[ACTI ON_NAME_LEN] ;
char Opti onName[OPTI ON_NAME_LEN] ;
I ong InitFl ag;

} NNRActi on;
Parameters

Name Type | Description

AppName char Name of the application group defined by the

[APP_NAME_LEN] user. Should be the application group in which
the user is defining rules for evaluation.

MsgName[MSG_ char Name of the message for which the user is

NAME_LEN] defining rules for message evaluation. As long
as the user is using Formatter, the message type
is the input format name.

RuleName[RULE_ char The rule name is ignored for actions and

NAME_LEN] options.

SubsName[SUBS_ char Name of the subscription associated with arule

NAME_LEN] name, message name, and application group.

228 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type | Description
ActionName char Name of the action associated with this
[ACTION_NAME_ subscription.
LEN]
OptionName char Name of the first option associated with this
[OPTION_NAME_ action.
LEN]
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules Management
API.
See Also
NNR _CLEAR

MQSeries Integrator Programming Reference for NEONRules 229

Chapter 4

NNRActionData

NNRActionData is passed as a pointer as the third parameter of the Action
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Action Management API calls. Use of this structure is
described in the Action Management API section.

Syntax

typedef struct NNRActi onDat af

NNDat e Dat eChange;
i nt ChangeActi on;
char OptionVal ue[OPTI ON_VALUE _LEN];
I ong InitFlag;

) NNRAct i onDat a;

Parameters
Name Type Description
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
OptionValue char Value of the first option.
[OPTION_VALUE_
LEN]
InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.
See Also
NNR _CLEAR

230

MQSeries Integrator Programming Reference for NEONRules

NNRActionReadData

Rules Management APIs

NNRActionReadData is passed as a pointer as the third parameter of select
Action Management APIs. The pointer cannot be NULL and must be cleared
using NNR_CLEAR prior to being populated by the user or by Action
Management API calls. Use of this structure is described in each Action

Management API section.

Syntax

typedef struct NNRActi onReadDat af
NNDat e Dat eChange;
i nt ChangeActi on;
int ActionSequence;
char Acti onName[ACTI ON_NAME_LEN] ;
char Opti onName[OPTI ON_NAME_LEN] ;
char OptionVal ue[OPTI ON_VALUE LEN];
I ong InitFl ag;
} NNRAct i onReadDat a;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

ActionSequence int Sequence of this action within its
subscription. For example, for the first
action, ActionSequence=1.

ActionName[ACTION_ | char Name of the action associated with the

NAME_LEN] subscription.

OptionName[OPTION_ | char Name of the first option associated with

NAME_LEN] the action.

OptionValue[OPTION_ | char Static value of the first option if there are no

VALUE_LEN]

actions.

MQSeries Integrator Programming Reference for NEONRules

231

Chapter 4

Name Type Description

InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.

232 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRActionUpdate

NNRActionUpdate contains update information for actions. The pointer

must be cleared using NNR_CLEAR prior to being populated, and must be

populated prior to any Action Management API calls.
Syntax

typedef struct NNRActi onUpdat e{
char Acti onName[ACTI ON_NAME_LEN] ;
NNDat e Dat eChange;
i nt ChangeActi on;
I ong InitFlag;
} NNRAct i onUpdat e;

Parameters
Name Type Description
ActionName[ACTION_ | char Name of the action to be updated.
NAME_LEN]
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.
See Also
NNR _CLEAR

MQSeries Integrator Programming Reference for NEONRules

233

Chapter 4

Action Management API Functions

NNRMgrAddAction

NNRMgrAddAction() adds both an action and its first option. All other
options must be added using NNRMgrAddOption(). Prior to adding an
action, the application group, message type, and subscription must have been
added using NNRMgrAddApp(), NNRMgrAddMsg(), and
NNRMgrAddSubscription().

When adding action information, user permission to update the subscription
is checked. If the user is the owner or another user with Update permission
for the subscription, the user can add the action information. If the user
attempting to add an action does not have Update access, an error is returned
indicating that the user does not have Update permission, and no change
occurs.

Syntax

const | ong NNRwWgr AddAct i on(
NNRMgr *pMgr,
const NNRAction *pRActi on,
const NNRActionData *pRActi onDat a,
int *pActionld);

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlInit().

pRAction const Input Must be populated prior to this

NNRAction * function call. The rule name is

ignored.

234 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type Input/ | Description
Output
pRActionData | const Input DateChange and ChangeAction
NNRAction should be populated with NULL
Data * since they are provided only for
future enhancements.
pActionid int* Input Value of the action identifier used

to insert all but the first option for
an action.

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddAction().

A call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the action was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management APl Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMagrGetFirstAction
NNRMgrGetNextAction
NNRMgrDeleteAction

MQSeries Integrator Programming Reference for NEONRules

235

Chapter 4

NNRMgrGetFirstAction

NNRMgrGetFirstAction() provides a way of starting to retrieve information
for a list of actions associated with an application group, message type, rule
and subscription. This API returns the first action in the subscription in the
pRActionData parameter. Prior to retrieving an action, actions must be
defined.

When retrieving action information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the rule information. If the
user does not have a minimum of Read access, an error is returned indicating
that the user does not have Read permission.

Syntax

const | ong NNRMgr Get Fi rst Acti on(
NNRMgr *pMgr,
const NNRAction * pRAction,
NNRAct i onReadData * const pRActi onDat a);

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().

pRAction const NNRAction * | Input Must be populated prior to this
function call. RuleName,
ActionName, and OptionName
do not have to be populated
before this call.

pRAction NNRActionRead Output NNRMgrGetFirstAction()

Data Data * const populates this structure.

236 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstAction().A
call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the action was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error number returned is RERR_NO_MORE_ACTIONS, no actions
were found for the application group and message type specified in the
pRAction structure.

Example

See Rules Management APl Sample Program on page 351.

See Also

NNRMarlnit
NNR _CLEAR

NNRMagrGetNextAction
NNRMgrAddApp()
NNRMgrAddMsg()
NNRMgrAddRule()
NNRMgrAddSubscription()
NNRMgrAddAction()
NNRMgrAddOption()

MQSeries Integrator Programming Reference for NEONRules 237

Chapter 4

238

NNRMgrGetNextAction

NNRMgrGetNextArgument() provides a way of iterating through the actions
after the first action has been retrieved. See NNRMgrGetFirstAction().

When retrieving action information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the action information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

Syntax
const | ong NNRMgr Get Next Act i on(

NNRMgr - * pMor
NNRAct i onReadData * const pRActi onDat a);

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().
pRActionData | NNRActionRead Output NNRMgrGetNextAction()
Data * const populates this structure.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextAction(). A
call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the action was read successfully; zero (0) if an error occurred. Use
NNRGetErrorNo() to retrieve the number for the error that occurred, or use
NNRGetErrorMessage() to retrieve the error message.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

If the error number returned is RERR_NO_MORE_ACTIONS, the end of the
actions list has been reached.

Example
See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrGetFirstAction

MQSeries Integrator Programming Reference for NEONRules 239

Chapter 4

240

NNRMgrResequenceAction

NNRMgrResequenceAction() enables the user to resequence actions within a
subscription. Given the current numeric position of the action,
NNRMgrResequenceAction() moves the action to the specified new position.
The user provides the unique application group, message type, subscription
name, current position for the action to move, and the position to move it to.

For example, the following actions exist in your code:

put queue(Target Q MessageType)
ref ormat (i nputformat, outputformat)

You want the reformat should occur before the putqueue, so you can call
NNRMgrResequenceAction(), providing action 2 as the action to be moved
and action 1 as the new position. This results in:

ref ormat (i nputfornmat, outputformat)
put queue(Target Q MessageType)

To indicate the first action to move in an action sequence, oldPosition can be
set to either NNRRB_START or to the number 1. To specify the last action to
move in an action sequence, set oldPosition to NNRRB_END.

To move an action to the end of an action sequence, set newPosition to
NNRRB_END. To move an action to the start of an action sequence, set
newPosition to NNRRB_START, or to the number 1.

If oldPosition or newPosition is greater than the maximum action/option
sequence, it is changed to the maximum action sequence.

When updating action information, user permission to update the rule will be
checked. If the user is the owner or another user with Update permission for
the subscription, the user can update the action information. If the user does
not have Update access, an error is returned indicating that the user does not
have Update permission, and no change will occur.

MQSeries Integrator Programming Reference for NEONRules

Syntax

Rules Management APIs

const | ong NNRWMgr ResequenceAction (

NNRMyr

*pMr,

const NNRAction *pRActi on,
int ol dPosition,

int newPosition);

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().
pRAction const Input Must be populated prior to this
NNRAction function call. The rule name is
* ignored.
oldPosition int Input Old numeric position of the action to
be resequenced.
newPosition | int Input New numeric position of the action to
be resequenced.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

Rules Management resequence boundaries are held in the following

structure:

t ypedef enum NNRReseqBounds {
NNRRB_END
NNRRB_START

} NNRReseqBounds;

MQSeries Integrator Programming Reference for NEONRules

= -1,
= 1

241

Chapter 4

Return Value

Returns 1 if the action is resequenced successfully; zero (0) if an error
occurred.

If either oldPosition or newPosition are negative and not equal to
NNRRB_END, an error condition is returned, and errVal is set to
RERR_INVALID_ACTION_PARAM.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbnsSessi on *sessi on;

NNRMgr * pnor ;
I ni t NNRMgr Sessi on(pngr, session);

struct NNRActi on key;
struct NNRActionUpdate data;

i nt ol dActi onSeq, newActi onSeq;
NNR_CLEAR(&key) ;

NNR_CLEAR(&dat a) ;

cout << "Enter app group nane \n>";

cin >> key. AppNane;

cout << "Enter message type nane \n>";
cin >> key. MsgNane;

cout << "Enter subscription nane \n>";
cin >> key. SubsNane;

cout << "Enter old action sequence \n>";
cin >> ol dActi onSeq;

cout << "Enter new action sequence \n>";
cin >> newActi onSeq;

i f (NNRMgr ResequenceActi on(pmgr, &key, ol dActi onSeq,
newActionSeq)) {

cout << end|
<< "\tAction Nanme: " << key.Acti onNane
<< "Resequenced." << endl;
cout << end|
<< "\tOd Action id: " << ol dActionSeq << endl
<< endl ;

242 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Conmi t Xact (sessi on);
} else {
Di spl ayError (pngr);
Rol | backXact (sessi on);

}
Cl oseNNRMgr (pngr, session);

return;

See Also
NNRMarlnit
NNR_CLEAR
NNRMgrAddAction
NNRMagrDeleteAction
NNRMQgrGetFirstAction

NNRMgrGetNextAction
NNRMgrUpdateAction

MQSeries Integrator Programming Reference for NEONRules 243

Chapter 4

244

NNRMgrUpdateAction

NNRMgrUpdateAction() enables the user to update an action for a
previously defined subscription. NNRMgrUpdateAction() only changes the
action name. To update options, use the Option Management APIs.

The action position represents the sequence number of the action to be
updated, starting from 1 and going to the end of the action sequence. To
change the first action, set position to 1. To change the fifth action, set position
to 5, and so on.

When updating action information, user permission to update the
subscription is checked. If the user is the owner or another user with Update
permission for the subscription, the user can update the action information. If
the user attempting to update an action does not have Update access, an error
is returned indicating the user does not have Update permission and no
changes occur.

Syntax

const | ong NNRWMgr Updat eActi on (
NNRMgr *pMgr,
const NNRAction *pRActi on,
const NNRActi onUpdat e *pRActi onUpdat e,
int position);

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().

pRAction const Input Should be populated prior to

NNRAction * this function call. The rule

name is ignored.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type Input/ | Description
Output

pRActionUpdate | const Input Should be populated prior to
NNRAction this function call.
Update *

position int Input Numeric order of the action to

be updated.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

Return Value

Returns 1 if the action was updated successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbnsSessi on *sessi on;

NNRMgr * pnor
I ni t NNRMgr Sessi on(pngr, session);

struct NNRActi on key;
struct NNRActionUpdate data;
int Actionld = -1;
NNR_CLEAR(&key) ;

NNR_CLEAR(&dat a) ;

cout << "Enter app group nane \n>";
cin >> key. AppNane;

cout << "Enter message type nane \n>";
cin >> key. MsgNane;

cout << "Enter subscription nanme \n>";
cin >> key. SubsNane;

cout << "Enter action ID \n>";

cin >> Actionld;

MQSeries Integrator Programming Reference for NEONRules 245

Chapter 4

cout << "Enter new action name \n>";
cin >> data. Acti onNane;

i f (NNRMgr Updat eActi on(pngr, &key, &data, Actionld)) {

cout << end|
<< "\tAction Nane: " << key.ActionNane
<< " Updated." << endl;
cout << endl
<< "\tAction id: " << Actionld << endl << endl;
Commi t Xact (sessi on);
} else {

Di spl ayError (pngr) ;
Rol | backXact (sessi on);

}
Cl oseNNRMgr (pngr, session);

return;

See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddAction
NNRMagrDeleteAction
NNRMQgrGetFirstAction
NNRMagrGetNextAction

NNRMgrResequenceAction

246 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrDeleteAction

NNRMgrDeleteAction deletes the specified action from a subscription. After
this function is performed, the action and all its options are deleted and
subsequent actions are re-sequenced.

The user must have Update permission for the subscription. If the user is the
owner, the user can delete the action from a subscription. If the user
attempting to delete an action is not the owner, an error is returned indicating
that the user does not have Update permission and no changes occur.

Syntax

const | ong NNRWMgr Del et eActi on(
NNRMgr - * pMor
const NNRAction *pRActi on,
int position);

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
pRAction const Input Must be populated prior to this
NNRAction function call. The rule name is
* ignored.
position int* Input Numeric order of the action to be
deleted.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrDeleteAction().

A call to NNR_CLEAR for both pRAction and pRActionData should be made
prior to populating the structures or calling this API.

MQSeries Integrator Programming Reference for NEONRules 247

Chapter 4

Return Value

Returns 1 if the action was deleted.

Returns zero (0) if the input parameters are not initialized with NNR_CLEAR,
the current user does not have Update permission for the subscription, the
action does not exist, or a different error occurs. Use NNRGetErrorNo() to
retrieve the number for the error that occurred, or use
NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrGetFirstAction
NNRMgrGetNextAction
NNRMgrAddAction

248 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Option Management APIs

Options are name-value pairs that further define an action. The first option is
added with the action, and others must be added with
NNRMgrAddOption().

WARNING!

If you are using a case-insensitive database, you cannot name components the
same with only a change in case to identify them. For example, you cannot
name one rule "r1" and another rule "R1". In a case-insensitive environment,
you must make each item unique using something other than case
differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences cause NNRie to fail during
import if a conflict arises when two components are named the same with
only case differences. See System Management for information on using
NNRie.

Also, case-sensitive operators may not work correctly on case-insensitive
databases. See Appendix B: Operator Types on page 317.

See System Management for information on how to change a current case-
insensitive installation to case sensitive.

MQSeries Integrator Programming Reference for NEONRules 249

Chapter 4

Option Management API Structures

NNROption

NNROption is passed as a pointer as the second parameter of select Option
Management APIs. The pointer cannot be NULL, must be cleared using
NNR_CLEAR prior to being populated, and must be populated prior to any
Option Management API calls.

Syntax

typedef struct NNROpti on{
char AppName [APP_NAMVE LEN];
char MsgNane [MSG_NAME _LEN];
char Rul eNarme[RULE_NAME_LEN] ;
char SubsNane[SUBS_NAME_LEN] ;
char Acti onName[ACTI ON_NAME_LEN] ;
int Actionld;
char OptionName [OPTI ON_NAMVE_LEN] ;
I ong InitFlag;

} NNROpti on;
Parameters
Name Type | Description
AppName[APP_NAME_ | char Name of the application group defined by the
LEN] user. Should be the application group in
which the user is defining rules for
evaluation.
MsgName[MSG_NAME_ | char Name of the message for which the user is
LEN] defining rules for message evaluation. The
message type is the input format name if the
user is using Formatter.
RuleName[Rul e_ char Name of the rule to be defined within an
NAVE_LEN] application group and message name pair.
This rule name is defined by the user.

250 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type | Description

SubsName[SUBS_ char Name of the subscription associated with a
NAVE_LEN] message nhame and application group.
ActionName[ACTI ON_ | char Name of action.

NAMVE_LEN|

Actionld int Value of the action identifier used to insert all

but the first option for an action.

OptionName[OPTI ON_ | char Name of the option associated with this

NAVE_LEN] action. If this field is empty, "default” is used
as the OptionName.

InitFlag long Flag used to determine if variables have been
initialized prior to calling a Rules
Management API.

MQSeries Integrator Programming Reference for NEONRules 251

Chapter 4

NNROptionData

NNROptionData is passed as a pointer as the third parameter of the Option
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to Option Management API calls. Use of this structure is
described in each Option Management API section.

Syntax

typedef struct NNROpti onDat af
NNDat e Dat eChange;
i nt ChangeActi on;
char OptionVal ue[OPTI ON_VALUE _LEN];
I ong InitFlag;
} NNROpt i onDat a;

Parameters
Name Type Description
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
OptionValue[OPTI ON_ | char Value of the option. If this field is empty,
NAVE_LEN] "default" is used as the OptionValue.
InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.
See Also
NNR CLEAR

252 MQSeries Integrator Programming Reference for NEONRules

NNROptionReadData

Rules Management APIs

NNROptionReadData is passed as a pointer as a parameter of select Option
Management APIs. The pointer cannot be NULL and must be cleared using
NNR_CLEAR prior to being populated by the user or by Option Management
API calls. Use of this structure is described in each Option Management API

section.

Syntax

typedef struct NNROpti onReadDat af
NNDat e Dat eChange;
i nt ChangeActi on;
char Acti onNanme[ACTI ON_NAME_LEN]
i nt ActionSequence;
char Opti onName[OPTI ON_NAME_LEN]
char OptionVal ue[OPTI ON_VALUE LEN];
int OptionSequence
I ong InitFlag;
} NNROpt i onReadDat a;

Parameters

Name Type Description

DateChange NNDate Defaulted for now, provided for future
capability.

ChangeAction int Defaulted for now, provided for future
capability.

ActionName[ACTI ON_ | char Name of action.

NAME_LEN]

ActionSequence int Sequence of this action within its
subscription. For example, for the first
action, ActionSequence=1.

OptionName[OPTI ON_ | char Name of option.

NAVE_LEN|

MQSeries Integrator Programming Reference for NEONRules

253

Chapter 4

Name Type Description
OptionValue[OPTI ON_ | char Static value of the option. If there are no
VALUE_LEN| options, this must not be NULL since this

function adds an option.

OptionSequence int Sequence of this option within its action.
For example, for the first option,
OptionSequence=1.

InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.
See Also
NNR _CLEAR

254 MQSeries Integrator Programming Reference for NEONRules

NNROptionUpdate

NNROptionUpdate is passed as a pointer as a parameter of select functions in
the Option Management API. The pointer cannot be NULL, must be cleared
using NNR_CLEAR prior to being populated, and must be populated prior to

any Option Management API calls.

Syntax

typedef struct NNROpti onUpdat e{

Rules Management APIs

char Opti onName[OPTI ON_NAME_LEN] ;
NNDat e Dat eChange;
i nt ChangeActi on;

char OptionVal ue[OPTI ON_VALUE LEN];
I ong InitFl ag;

} NNROpt i onUpdat e;

Parameters
Name Type Description
OptionName[OPTI ON_ | char Name of the option to be updated.
NAMVE_LEN]
DateChange NNDate Defaulted for now, provided for future
capability.
ChangeAction int Defaulted for now, provided for future
capability.
OptionValue[OPTI ON_ | char Value of the option to be updated.
VALUE_LEN]
InitFlag long Flag used to determine if variables have
been initialized prior to calling a Rules
Management API.
See Also
NNR _CLEAR

MQSeries Integrator Programming Reference for NEONRules 255

Chapter 4

Option Management API Functions

NNRMgrAddOption

If an action has more than one option, NNRMgrAddOption() is used to add
all but the first option. Prior to adding more options, the user must define the
first action and first option pair using NNRMgrAddAction().

When adding option information, user permission to update the subscription
will be checked. If the user is the owner or another user with Update
permission for the subscription, the user can add the option information. If
the user does not have Update access, an error is returned indicating that the
user does not have Update permission and no change occurs.

Syntax

const | ong NNRwMgr AddOpt i on(
NNRMgr * pMGR,
const NNROption *pROpti on,
const NNROptionData *pROpti onData);

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().
NNROption | const Input Must be populated prior to this
NNROption * function call. The rule name is
ignored.
NNROption | const Input DateChange and ChangeAction
Data NNROption should be populated with NULL
Data * since they are provided only for
future enhancements.

256 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrAddOption(). A call
to NNR_CLEAR for both NNROption and NNROptionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was added successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

See Rules Management APl Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrDeleteOption
NNRMgrGetFirstOption
NNRMgrGetNextOption

MQSeries Integrator Programming Reference for NEONRules 257

Chapter 4

NNRMgrGetFirstOption

NNRMgrGetFirstOption() provides a way of starting to retrieve information
for a list of options associated with an application group, message type,
subscription, and action. This API returns the first option in the action in the
pROptionData parameter. Prior to retrieving an option, options must be
defined.

When retrieving option information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the option information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

Syntax

const | ong NNRMgr Get Fi r st Opti on(
NNRMgr *pMgr,
const NNROption * pROption,
NNROpt i onReadData * const pROptionDat a);

Parameters
Name Type Input/ | Description
Output

pMgr NNRMgr * Input Name of a current Rules
Management object.

pROption | const NNROption* | Input Must be populated prior to this
function call. The rule name is
ignored.

pROption | NNROptionRead Output NNRMgrGetFirstOption()

Data Data * const populates this structure.

258 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetFirstOption().

A call to NNR_CLEAR for both pROption and pROptionData should be
made prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

If the error returned is RERR_NO_MORE_OPTIONS, no options were found
for the application group and message type specified in the pROption
structure.

Example

See Rules Management APl Sample Program on page 351.

See Also

NNRMarlnit
NNR _CLEAR

NNRMagrGetNextOption
NNRMgrAddApp()
NNRMgrAddMsg()
NNRMgrAddRule()
NNRMgrAddSubscription()
NNRMgrAddOption()

MQSeries Integrator Programming Reference for NEONRules 259

Chapter 4

260

NNRMgrGetNextOption

NNRMgrGetNextOption() provides a way of iterating through the options
after the first option has been retrieved (see NNRMgrGetFirstOption()).

When retrieving option information, user permission to read the subscription
is checked. If the user is the owner or another user with Read or Update
permissions for the subscription, the user can see the option information. If
the user does not have a minimum of Read access, an error is returned
indicating that the user does not have Read permission.

Syntax
const | ong NNRMgr Get Next Opt i on(

NNRMgr - * pMor
NNROpt i onReadData * const pROptionDat a);

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Name of a current Rules
Management object.
pROption | NNROption Output NNRMgrGetNextOption()
Data ReadData * const populates this structure.
Remarks

NNRMgrInit() should be called prior to calling NNRMgrGetNextOption(). A
call to NNR_CLEAR for both pROption and pROptionData should be made
prior to populating the structures or calling this API.

Return Value

Returns 1 if the option was read successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

If the error number returned is RERR_NO_MORE_OPTIONS, the end of the
options list has been reached.

Example
See Rules Management API Sample Program on page 351.

See Also

NNRMarlnit
NNR CLEAR

NNRMgrGetFirstOption

MQSeries Integrator Programming Reference for NEONRules 261

Chapter 4

262

NNRMgrResequenceOption

NNRMgrResequenceOption() enables the user to resequence options within
an action. Given the current numeric position of the option,
NNRMgrResequenceOption() moves the option to the specified new position.
The user provides the unique application group, message type, rule name,
subscription name, and current position for the option to move and the
position to move it to.

For example, the following action/option information exists:

exec(process, argumentl, argument?2, argumnent3)

A call to NNRMgrResequenceOption switches the option in position 4
(argument3) to the option in position 3. The option in position 3 (argument2)
then resides in position 4:

exec(process, argumentl, argument3, argumnent?2)

To indicate the first option to move in an option sequence, oldPosition can be
set to either NNRRB_START or to the number 1. To specify the last option to
move in an option sequence, set oldPosition to NNRRB_END.

To move an option to the end of an option sequence, set newPosition to
NNRRB_END. To move an option to the start of an option sequence, set
newPosition to NNRRB_START, or to the number 1.

If oldPosition or newPosition is greater than the maximum action/option
sequence, it is changed to the maximum option sequence.

When updating option information, user permission to update the
subscription will be checked. If the user is the owner or another user with
Update permission for the subscription, the user can update the option
information. If the user does not have Update access, an error is returned
indicating that the user does not have Update permission, and no change
occurs.

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Syntax

const | ong NNRMgr ResequenceOption (
NNRMgr - * pMarr,
const NNROption *pROpti on,
int ol dPosition,
int newPosition);

Parameters
Name Type Input/ | Description
Output
pMgr NNRMgr * Input Valid Rules Management object
returned from call to
NNRMgrlnit().
pROption const Input Must be populated prior to this
NNROption * function call. The rule name is
ignored.
oldPosition int Input Old numeric order of the action to
be resequenced.
newPosition | int Input New numeric order of the action to
be resequenced.
Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.

Rules Management resequence boundaries are held in the following

structure:

typedef enum NNRReseqBounds {
NNRRB_END = -1,
NNRRB_START =1

} NNRReseqBounds;

MQSeries Integrator Programming Reference for NEONRules 263

Chapter 4

Return Value

Returns 1 if the option is resequenced successfully; zero (0) if an error
occurred.

If either oldPosition or newPosition are negative and not equal to
NNRRB_END, an error condition is returned, and errVal is set to
RERR_INVALID_OPTION_PARAM.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbnsSessi on *sessi on;

NNRMgr * pnor ;
I ni t NNRMgr Sessi on(pngr, session);

struct NNROpti on key;
struct NNROpti onUpdat e dat a;
int ol dPosition, newPosition;
NNR_CLEAR(&key) ;

NNR_CLEAR(&dat a) ;

cout << "Enter app group nane \n>";

cin >> key. AppNane;

cout << "Enter message type nane \n>";
cin >> key. MsgNane;

cout << "Enter subscription nane \n>";
cin >> key. SubsNane;

cout << "Enter action id \n>";

cin >> key. Actionl d;

cout << "Enter old option sequence \n>";
cin >> ol dPosition;

cout << "Enter new option sequence \n>";
cin >> newPosition;

i f (NNRMgr ResequenceOpti on(pnmgr, &key, ol dPosition,
newPosition)) {
cout << endl
<< "\tOption Nanme: " << key. OptionNane
<< "Resequenced." << endl
<< endl ;

264 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Conmi t Xact (sessi on);

} else {
Di spl ayError (pngr);
Rol | backXact (sessi on);

}

Cl oseNNRMgr (pngr, session);
return;

See Also
NNRMarlnit
NNR_CLEAR
NNRMgrAddOption
NNRMgrDeleteOption
NNRMarGetFirstOption

NNRMgrGetNextOption
NNRMgrUpdateOption

MQSeries Integrator Programming Reference for NEONRules 265

Chapter 4

NNRMgrUpdateOption

NNRMgrUpdateOption() enables the user to update an action for an existing
subscription. The user provides the unique application group, message type,
and subscription name, and defines the option to change (in the pROption
structure). The new information is provided in the pROptionUpdate
structure.

The option position represents the sequence number of the option to be
updated, starting from 1 and going to the end of the option sequence. To
change the first option, set position to 1. To change the fifth option, set
position to 5, and so on.

When updating option information, user permission to update the
subscription is checked. The user or owner has Update permission for the
rule and can update the rule information. If the user does not have Update
access, an error is returned indicating that the user does not have Update
permission, and no change occurs.

Syntax

Const | ong NNRMgr Updat eOpti on (
NNRMgr *pMgr,
const NNROption *pROpti on,
const NNROpti onUpdat e *pROpti onUpdat e,
int position);

Parameters
Name Type Input/ | Description
Output

pMagr NNRMgr * Input Valid Rules Management
object returned from call to
NNRMgrlnit().

pROption const NNROption * Input Must be populated prior to
this function call.

266 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Name Type Input/ | Description

Output
pROption const Input Must be populated prior to
Update NNROptionUpdate * this function call. The rule

name is ignored.

position int Input Numeric order of the
action to be updated.

Remarks

NNRMgrInit() should be called prior to any Rules Management API calls.
Return Value

Returns 1 if the option was updated successfully; zero (0) if an error occurred.

Use NNRGetErrorNo() to retrieve the number for the error that occurred, or
use NNRGetErrorMessage() to retrieve the error message.

Example

DbnsSessi on *sessi on;

NNRMgr * pnor
I ni t NNRMgr Sessi on(pngr, session);

struct NNROpti on key;
struct NNROpti onUpdate dat a;
int position;

NNR_CLEAR(&key) ;

NNR_CLEAR(&dat a) ;

cout << "Enter app group nane \n>";
cin >> key. AppNane;

cout << "Enter message type nane \n>";
cin >> key. MsgNane;

cout << "Enter subscription nanme \n>";
cin >> key. SubsNane;

cout << "Enter action id \n>";

cin >> key. Actionl d;

MQSeries Integrator Programming Reference for NEONRules 267

Chapter 4

268

cout << "Enter option id \n>";

cin >> position;

cout << "Enter new option nane \n>";
cin >> data. Opti onNane;

cout << "Enter new option value \n>";
cin >> data. OptionVal ue;

i f (NNRMgr Updat eOpti on(prgr, &key, &data, position)) {
cout << endl
<< "\tOption Nanme: " << key. Opti onNane
<< " Changed." << endl
<< endl ;
Conmi t Xact (sessi on);
} else {
Di spl ayError (pngr);
Rol | backXact (sessi on);

}

Cl oseNNRMgr (pngr, session);
return;

See Also

NNRMarlnit
NNR _CLEAR

NNRMgrAddOption
NNRMgrGetFirstOption
NNRMgrGetNextOption

NNRMgrResequenceOption

MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

NNRMgrDeleteOption

NNRMgrDeleteOption() deletes the specified option from a subscription
action. This call deletes the option and resequences subsequent options for
the action. If the action contains only the one option, the entire action is
deleted.

The user must have Update permission for the subscription to perform this
action. If the user does not have Update permission, an error is returned and
no changes occur.

Syntax

const | ong NNRWMgr Del et eOpti on(
NNRMgr * pMGR,
const NNROption *pROpti on,
int position);

Parameters
Name Type Input/ | Description
Output
pMagr NNRMgr * Input Valid Rules Management object
returned from call to NNRMgrInit().
pROption const Input The position parameter is the
NNROption * Option Sequence humber (starting
with 1) for the Action defined by the
pROption Action Id. Does not need
the RuleName or OptionName
populated.
position int Input Numeric order of the option to be
deleted.
Remarks

A call to NNR_CLEAR for both NNROption and NNROptionData should be
made prior to populating the structures or calling this API.

MQSeries Integrator Programming Reference for NEONRules 269

Chapter 4

Return Value

Returns 1 if the option was deleted.

Returns zero (0) if the input parameters are not initialized with NNR_CLEAR,
the current user does not have update permission, the action or option does
not exist, or a different error occurred. Use NNRGetErrorNo() to retrieve the
number for the error that occurred, or use NNRGetErrorMessage() to retrieve
the error message.

Example

See Rules Management API Sample Program on page 351.
See Also

NNRMarlnit
NNR CLEAR

NNRMgrAddOption
NNRMgrGetFirstOption
NNRMgrGetNextOption

NNRMgrResequenceOption

270 MQSeries Integrator Programming Reference for NEONRules

Rules Management APIs

Rules Management Error Handling

NNRGetErrorNo

NNRGetErrorNo() retrieves the error number from previous Rules
Management calls.

Syntax

const int NNRGet Error No(NNRMgr *pRMgr) ;

Parameters
Name Type Input/ | Description
Output
pPRMgr NNRMgr * Input Name of a current Rules Management
object.

Return Value

Returns the error number for an error occurring during any of the prior Rules
Management calls; returns zero (0) if no Rules Management functions were
called prior to this call or NNR_NO_ERR if no error exists. Use
NNRGetErrorMessage() to get the associated error message.

Example

See Rules Management API Sample Program on page 351.
See Also

NNRGetErrorMessage

NNRMarlnit

MQSeries Integrator Programming Reference for NEONRules 271

Chapter 4

NNRGetErrorMessage

NNRGetErrorMessage() retrieves the error message from previous rules
management calls.

Syntax

const char * NNRGet Error Message(NNRMgr *pRMr) ;

Parameters
Name Type Input/ | Description
Output
pPRMgr NNRMgr * Input Name of a current Rules Management
object.

Return Value

Returns the error message for an error occurring during any of the previous
Rules Management calls.

Example

See Rules Management APl Sample Program on page 351.
See Also

NNRGetErrorNo

NNRMgrInit

272 MQSeries Integrator Programming Reference for NEONRules

Chapter 5
Rules Error Messages

The following lists of errors are available for this release and are subject to

change:

Data processing related errors
Client code errors
Rules Management data errors

If you receive one of these errors, verify that the DBMS is still running
properly
General Rules Management errors

Component refers to any item with its own permissions, for example,
Rules or Subscriptions.

Permission data errors

Component refers to any item with its own permissions, for example,
Rules or Subscriptions.

General permission errors

The listed errors are generic. When an error code is set, the error message is
enhanced with contextual information. For example, when a rule does not
exist, the given Application Group name, Message Type name, and Rule
name are appended to the error message with a space and dash separating
each name.

Note:

Error numbers -10000 to -10099 are Rules daemon specific and are not
included in this list. For more information, see System Management.

MQSeries Integrator Programming Reference for NEONRules 273

Data Processing Related Errors

Code | Name Message Explanation Response

-1000 Unknown error | No matching error
code or no error | code.

-1001 NO_ Rules The application Check the

APPLICATION configuration group passed into | Application Group
missing eval() does not setintheeval() call
Application exist for the Rules OR check the
Group database. The OPT_APP_GRP
message on the option for the
queue does not message in the
have a valid input queue.
OPT_APP_
GRP option.

-1002 NO_MESSAGE Rules The application Check the
configuration group message Application Group
missing type pair passed and Message Type
Message Type into eval() doesnot | setin the eval()

exist for the Rules call. Check the
database. The OPT_APP_GRP
message on the and
queue does not OPT_MSG_TYPE
have a valid options for the
OPT_MSG_ message in the
TYPE option. input queue.
-1003 NO_ Rules not Rule data in the Run Consistency
OPERATIONS configured or database is Checker to check
Operations incorrect. data.
missing for
message
-1004 NO_ Rules Rule missing Run Consistency
ARGUMENTS configuration active arguments Checker to check
missing in the database. data.
Arguments for
message
MQSeries Integrator Programming Reference for NEONRules 274

Rules Error Messages

Code | Name Message Explanation Response
-1005 NO_RULES Rules No active rules Review the data in
configuration defined for the the database.
missing Rules application group—
message type pair.
-1006 NO_ Rules No active Run Consistency
SUBSCRIPTIONS configuration subscriptions for Checker to check
missing the rules in the data.
Subscriptions application group—
message type pair.

-1007 NO_ Rules At least one Make sure all rules
SUBSCRIPTION_ configuration subscription does have subscription
ACTIONS missing not have any actions.

Subscription actions.
Actions
-1008 NO BOOLEAN _ Rules All rules have just | This error code is
OPS configuration asingle argument. | used internally
missing only as a warning.
Boolean It should never
Operators appear to the user.
Call technical
support if it does.

-1009 GET_APP_MSG_ Major Database | Major database Verify that
SQL_ERROR Error error. database is up and

Retrieving schema is okay.
Application

Group/

Message Type

-1010 GET_ARG_SQL_ Major Database | Major database Verify that
ERROR Error error. database is up and

Retrieving
Arguments

MQSeries Integrator Programming Reference for NEONRules

schema is okay.

275

Chapter 5

Code | Name Message Explanation Response
-1011 GET_BOOLEAN_ Major Database | Major database Verify that
OP_SQL_ERROR Error error database is up and
Retrieving schema is okay.
Boolean
Operators
-1012 GET_OPERN_ Major Database | Major database Verify that
SQL_ERROR Error error database is up and
Retrieving schema is okay.
Operations
-1013 GET_RULE_SQL_ | Major Database | Major database Verify that
ERROR Error error database is up and
Retrieving schema is okay.
Rules
-1014 GET_SUBACT_ Major Database | Major database Verify that
SQL_ERROR Error error database is up and
Retrieving schema is okay.
Subscription
Actions
-1015 GET_SUBS_SQL _ Major Database | Major database Verify that
ERROR Error error database is up and
Retrieving schema is okay.
Subscriptions
276 MQSeries Integrator Programming Reference for NEONRules

Client Code Errors

Rules Error Messages

Code | Name Message Explanation Response
-2000 RULE_MIN_ Unknown error | No error.
ERROR code or no error
-2001 DBMS_SESSION _ NULL or dead The Session Check your DBMS
ERROR dbms pointer was and run Open
connection invalid. DbmsSession()
provided to again.
Rules daemon
-2002 EMPTY_INPUT_ NULL or No message type Send in a valid
MESSAGE_TYPE missing name set in eval(). message type.
message type
provided to
Rules daemon
-2003 ERROR_LOAD_ Erroraddingan | (Should never see) | Shut down Rules
ARGUMENTS_ argument to Memory may be daemon and
ADDARG Rules daemon low. restart.
-2004 ERROR_LOAD_ Wrong number | Data in the Run Consistency
ARGUMENTS_CC | of argument database is Checker to check
columnsduring | incorrect. data.
load
-2005 ERROR_LOAD_ Unexpected Data in the Run Consistency
ARGUMENTS_ argument database is Checker to check
NOCOL column during incorrect. data.
load
-2006 ERROR_LOAD _ NULL Data in the Run Consistency
ARGUMENTS_ argument database is Checker to check
NULL column during incorrect. data.
load
-2007 ERROR_LOAD_ Erroraddingan | (Should never see) | Shut down Rules
OPERATIONS_ operation to Memory may be daemon and
ADDOP Rules daemon low. restart.

MQSeries Integrator Programming Reference for NEONRules

277

Chapter 5

Code | Name Message Explanation Response
-2008 ERROR_LOAD_ Wrong number | Data in the Run Consistency
OPERATIONS_CC | of operation database is Checker to check
columnsduring | incorrect. data.
load
-2009 ERROR_LOAD_ Unexpected Data in the Run Consistency
OPERATIONS_ operation database is Checker to check
NOCOL column during incorrect. data.
load
-2010 ERROR_LOAD_ NULL Data in the Run Consistency
OPERATIONS_ operation database is Checker to check
NULL column during incorrect. data.
load
-2011 ERROR_LOAD_ Error adding a A rulein the Run the
RULES_ADD_ Rule to Rules database has an Consistency
RULE daemon argument count of | Checker to find the
zero (0) which is rule and fix the
invalid. Rules problem.
must have at least
one active
argument.
-2012 ERROR_LOAD_ Wrong number | Data in the Run Consistency
RULES CC of rule columns | database is Checker to check
during load incorrect. data.
-2013 ERROR_LOAD_ Unexpected Data in the Run Consistency
RULES NOCOL rule column database is Checker to check
during load incorrect. data.
-2014 ERROR_LOAD _ NULL rule Data in the Run Consistency
RULES_NULL column during | database is Checker to check
load incorrect. data.
-2015 ERROR_LOAD_ Error adding a (Should never see) | Shut down Rules
SUBS_ADD_SUB Subscriptionto | Memory may be daemon and
Rules daemon low. restart.
278 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2016 ERROR_LOAD_ Wrong number | Data in the Run Consistency
SUBS_CC of subscription database is Checker to check
columnsduring | incorrect. data.
load
-2017 ERROR_LOAD_ Unexpected Data in the Run Consistency
SUBS_NOCOL subscription database is Checker to check
column during incorrect. data.
load
-2018 ERROR_LOAD_ NULL Data in the Run Consistency
SUBS_NULL subscription database is Checker to check
column during incorrect. data.
load
-2019 ERROR_LOAD_ Error adding a (Should never see) | Shut down Rules
SUBSLIST_ADD _ Rule Memory may be daemon and
SUBSL Subscriptionto | low. restart.
Rules daemon
-2020 ERROR_LOAD_ Wrong number | Data in the Run Consistency
SUBSLIST_CC of Rule database is Checker to check
Subscription incorrect. data.
columnsduring
load
-2021 ERROR_LOAD_ Unexpected Data in the Run Consistency
SUBSLIST_ Rule database is Checker to check
NOCOL Subscription incorrect. data.
column during
load
-2022 ERROR_LOAD _ NULL Rule Data in the Run Consistency
SUBSLIST_NULL Subscription database is Checker to check
column during incorrect. data.
load
-2023 ERROR_ INTERNAL (Should never see) | Shut down Rules
NEGATIVE_OP_ ERROR - failed | Memory may be daemon and
COUNT to resize low. restart.
operations

MQSeries Integrator Programming Reference for NEONRules

279

Chapter 5

Code | Name Message Explanation Response

-2024 ERROR_ INTERNAL (Should never see) | Shut down Rules
NEGATIVE_ ERROR - failed | Memory may be daemon and
RULE_COUNT to resize rules low. restart.

-2025 FORMATTER_ Formatter The message type Check both the
PARSE_FAILED failed to parse may not match the | Input Format

input message format of the input | Name (MsgType)
message. and message (use
apitest).

-2026 IE_TOO_MANY_ INTERNAL (Should never see) | Shut down Rules
OPERATIONS ERROR - Memory may be daemon and

incorrect low. restart.
operation count

-2027 INVALID_ Invalid Data in the Run Consistency
ARGUMENT _ Argument database is Checker to check
OPERATION loaded - incorrect. data.

operation id too
high

-2028 INVALID_ Input message Call to eval() had Check the
INPUT_MESSAGE | had an invalid an invalid msglen parameters sent to
_LEN length parameter. eval().

-2029 INVALID_RULE_ | Rule argument Data in the Run Consistency
ARG_COUNT countisinvalid | database is Checker to check

- check table incorrect. data.

-2030 NULL_ Formatter (Should never see) | Shut down Rules
FORMATTER_ instance is Memory may be daemon and
INSTANCE NULL low. restart.

-2031 INPUT_MESSAGE | NULL input The message sent Check the call to
_NULL message through eval() is eval() or the

empty. message in the
gqueue when
running the Rules
daemon.
280 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response

-2032 OPERATION_ Internal Error - | Problem Run Consistency
EVALUATION_ Evaluation evaluating part of Checker to check
FAILED failure #1 a rule — operator data.

may be invalid.

-2033 OP_ADD ARG _ Internal Error - Problem loading Run Consistency
FAILED (operation | Load failure#1 | arguments. Checker to check
add argument data.
failed)

-2034 OP_CONS_ Internal Error - | Problem loading Run Consistency
FAILED (Operator | Load failure#2 | operator. Checker to check
Constructor data.
detected)

-2035 RULE_ Internal Error - | Problem Run Consistency
OPERATION_ Evaluation evaluating part of Checker to check
MISSING (rule failure #2 a rule; operator data.
operation array may be invalid.
error)

-2036 UNSUPPORTED_ | Database type Invalid DbmsType | Check call to
DBMS_ not supported in the Session OpenDbmsSession
INTERFACE variable used to 0.

create Rules
daemon.

-2037 INVALID_RULE_ Internal Error - | Problem loading Run Consistency
SUBSCRIPTION Load failure #3 | subscriptions. Checker to check

data.

-2038 FAILED_ADD_ Internal Error - | Problem loading Run Consistency
SUBSCRIPTION Load failure #4 | subscriptions. Checker to check

data.

-2039 EMPTY_ Empty Input No application Check call to
APPLICATION_ Value for group name eval().
GROUP_NAME Application passed into eval().

Group Name
MQSeries Integrator Programming Reference for NEONRules 281

Chapter 5

Code | Name Message Explanation Response

-2040 EMPTY_ Empty Input No message type Check call to
MESSAGE_ Value for name passed into eval().

NAME Message Name | eval().

-2041 IE_NULL_ Internal Error - | Problem loading Run Consistency
MESSAGE_ Lookup failure message type. Checker to check
GROUP #1 data.

-2042 IE_NULL_ Internal Error - | Problem loading Run Consistency
APPLICATION_ Lookup failure application group. | Checker to check
GROUP #2 data.

-2043 IE_NULL_ Internal Error - | (Should never see) | Shut down Rules
ENGINE_ NULL Engine Memory may be daemon and
INSTANCE Instance low. restart.

-2044 ERROR_ Error setting gethitrule() had Run Consistency
SETTING_ HitList problems Checker to check
HITLIST retrieving hit rules. | data.

-2045 ERROR_SETTING | Error setting getnohitrule() had | Run Consistency
_HITLIST NoHitList problems Checker to check

retrieving no hit data.
rules.

-2046 IE_ NO_ERROR_ Internal Error - (Should never see) | Shut down Rules
HANDLER No error Memory may be daemon and

handler low. restart.

-2047 IE_CANNOT_ Internal Error - | Problem with Shut down process
SET_TSD Error Setting threading - maybe | immediately,

Thread Specific | too many threads. check system, and
Data restart.

-2048 ERROR_LOAD_ Internal Error - | Problem loading Run Consistency
BOOLEAN_ Error Loading Boolean operators. | Checker to check
OPERATORS Boolean data.

Operators
282 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2049 FIELD_OPER_ Field value A Date or Verify a Time
TYPE_ does not have DateTime value is not used in
MISMATCH valid Month comparison is not a Date comparison
and/or Day. valid against Time | and that the month
data - the month and day have valid
and day are then non-zero values.
00.
-2050 ERROR_ADDING | Error adding (Should never see) | Shut down Rules
_SUB_ACTION_ Subscription Memory may be daemon and
OPTION Action/Option | low. restart.
to Rules
daemon.
-2051 ERROR_ADDING | Error adding (Should never see) | Shut down Rules
_SUB_RULE_ Subscription Memory may be daemon and
LINK Rule Link to low. restart.
Rules daemon.
-2052 INVALID_ Invalid For NEONRules Verify that the
COMPONENT_ Component 4.1.1,theonlyvalid | Load
TYPE Type passed components to RuleComponent
into Reload reload are: API is not sent
Call. NNRCOMP_MSG | Component Type
and NNRCOMP_ NNRCOMP_
SUBS. APP or
NNRCOMP_
RULE.
-2053 FAILED_REMOVE | Error removing | (Should never see) | Shut down Rules
_SUBSCRIPTION Rule Memory may be daemon and
Subscription corrupted. restart.
Link to Rules
Engine.
-2054 FAILED_COMP_ Error (Should never see) | Shut down Rules
RULE_LIST_FOR_ | comparing old Memory may be daemon and
SUB and new corrupted. restart.
Subscription
Rule Links.

MQSeries Integrator Programming Reference for NEONRules

283

Chapter 5

Code | Name Message Explanation Response
-2055 FAILED_REMOVE | Error (Should never see) | Shut down Rules
RELOAD Removing Memory may be daemon and
COMPONENT Reload corrupted. restart.
Component
from Reload
List in Rules
daemon.
-2056 FAILED_MEM_ Error allocating | (Should never see) | Shut down Rules

ALLOC_ENGINE memory for Severe error. daemon and
new Rules Memory must be restart.
daemon object. low.
Rules Management Data Errors
Code | Name Message Explanation Response
-2500 NNR_NO_ERR No rules No error.
management
error
-2501 RERROR_DB DB error Not in use. (Should never see)
-2502 RERR_COUNTER | DB error Data may be Run Consistency
_ADD Counter Insert incorrect to add Checker to check
new Application data.
Group.
-2503 RERR_COUNTER | DB error Data may be Run Consistency
_UPDATE Counter incorrect to add Checker to check
Update new Application data.
Group.
-2504 RERR_COUNTER | DB error Data may be Run Consistency
INSTANCE Counter incorrect to add Checker to check
ADD Instance Insert new Rule, data.
Subscription, and
so on.
284 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2505 RERR_COUNTER DB error Data may be Run Consistency
_INSTANCE _ Counter incorrect to add Checker to check
UPDATE Instance new Rule, data.
Update Subscription, and
So on.
-2506 RERR_APP_ DB error Problem inserting Run Consistency
GROUP_ADD Application Application Checker to check
Group Insert Group. May be data.
duplicate.
-2507 RERR_MSG_TYPE | DB error Problem inserting Run Consistency
_ADD_FORMAT message type Message Type. Checker to check
insert (format) May not be valid data.
format.
-2508 RERR_R_ DB error Problem inserting Run Consistency
MESSAGES_ADD | message type Message Type. Checker to check
insert May be duplicate. data.
-2509 RERR_RULE_ DB error rule Problem inserting Run Consistency
ADD insert Rule. May be Checker to check
duplicate. data.
-2510 RERR_RULE_ DB error rule Problem updating | Run Consistency
UPDATE update Rule. Rule may not | Checker to check
exist. data.
-2511 RERR_ DB error Problem inserting Run Consistency
OPERATION_ argument op operator for rule. Checker to check
ADD insert data.
-2512 RERR_ARG_ADD | DBerror Problem inserting Run Consistency
argumentinsert | argument for rule. | Checker to check
(Arg) data.
-2513 RERR_ DB error Problem updating | Run Consistency
OPERATION_ argument op argument for rule. | Checker to check
UPDATE update data.
MQSeries Integrator Programming Reference for NEONRules 285

Chapter 5

Code | Name Message Explanation Response

-2514 RERR_R_ DB error Problem inserting Run Consistency
SUBSCRIPTION_ subscriptionlist | subscription. May | Checker to check
LIST_ADD insert be duplicate. data.

-2515 RERR_R_ DB error Problem inserting Run Consistency
SUBSCRIPTION_ subscription subscription. May | Checker to check
MASTER_ADD master insert be duplicate. data.

-2516 RERR_R_ DB error action | Problem inserting Run Consistency
SUBSCRIPTION_ insert action. Checker to check
ACTION_ADD data.

-2517 RERR_ DB error Problem retrieving | Run Consistency
APPLICATION_ application application group. | Checker to check
GROUP_READ group read May have wrong data.

name.

-2518 RERR_MESSAGE_ | DB error Problemretrieving | Run Consistency

TYPE_READ message type message type. May | Checker to check
read have wrong data.
parameters.

-2519 RERR_RULE_ DB error rule Problemretrieving | Run Consistency
READ read rule. May have Checker to check

wrong parameters. | data.

-2520 RERR_ DB error Problemretrieving | Run Consistency
SUBSCRIPTION_ subscriptionlist | subscription. May | Checker to check
LIST_READ read have wrong data.

parameters.

-2521 RERR_ DB error Problemretrieving | Run Consistency
SUBSCRIPTION_ subscription subscription. May | Checker to check
MASTER_READ master read have wrong data.

parameters.

-2522 RERR_ DB error Problemretrieving | Run Consistency
SUBSCRIPTION_ subscription subscription Checker to check
ACTION_READ action read action. May have data.

wrong parameters.
286 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2523 RERR_MESSAGE_ | DB error Problemretrieving | Run Consistency
TYPE_READ_ message type message type/ Checker to check
MESSAGE_ID read (message format. May have data.
id) wrong parameters.
-2524 RERR_ DB error Problem retrieving | Run Consistency
OPERATOR_ operator read operator. May Checker to check
READ have wrong data.
parameters.
-2525 RERR_ DB error Problemretrieving | Run Consistency
OPERATOR_TYPE | operator type operatortype. May | Checker to check
_READ read have invalid data.
operator.
-2526 RERR_ARG_ DB error Problemretrieving | Run Consistency
READ argument read rule action. May Checker to check
have wrong data.
parameters.
-2527 RERR_COUNTER | DB error Problemretrieving | Run Consistency
_READ counter read new applicationid. | Checker to check
May have wrong data.
parameters.
-2528 RERR_COUNTER DB error Problemretrieving | Run Consistency
INSTANCE counter new ids for rule, Checker to check
READ instance read subscription, etc. data.
May have wrong
parameters.
-2529 RERR_ DB error Problem retrieving | Run Consistency
OPERATION_ operation read argument info. Checker to check
READ May have wrong data.
parameters.
-2530 RERR_STALE_ DB error Arguments still Run Consistency
OPERATION_ unreferenced exist that are not Checker to check
EXISTS operations used inarule. data.
MQSeries Integrator Programming Reference for NEONRules 287

Chapter 5

Code | Name Message Explanation Response

-2531 RERR_ DB error Could not update Run Consistency
ARGUMENT_ argument argument. Checker to check
UPDATE update data.

-2532 RERR_ DB error Problem retrieving | Run Consistency
SUBSCRIPTION_ subscription subscription info. Checker to check
COMBINED_ multi-read May have wrong data.

READ parameters.

-2533 RERR_NO_ DB error No options found Run Consistency
OPTIONS_READ options not for subscription Checker to check

found action. data.

-2534 RERR_DELETE_ DB error option | Could not delete Run Consistency
OPTION_FAILED | delete option. Checker to check

data.

-2535 RERR_ DB error action | Could not Run Consistency
RESEQUENCE_ resequence resequence Checker to check
ACTION_FAILED actions. May have | data.

invalid sequence
parameters.

-2536 RERR_ DB error option | Could not Run Consistency
RESEQUENCE_ resequence resequence Checker to check
OPTION_FAILED options. May have | data.

invalid sequence
parameters.

-2537 RERR_DELETE_ DB error delete | Could not delete Run Consistency
ALL_ all arguments allarguments fora | Checker to check
ARGUMENTS_ failed rule. May have data.

FAILED wrong parameters.

-2538 RERR_DELETE DB error delete | Could not delete Run Consistency
ALL_LIST SUBS _ all list all subscriptions Checker to check
FAILED subscriptions for a rule. May data.

failed have wrong
parameters.
288 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response

-2539 RERR_DELETE_ DB error delete | Could not delete Run Consistency
ALL_MASTER_ all subscription | all subscriptions Checker to check
SUBS_FAILED masters failed for a rule. May data.

have wrong
parameters.

-2540 RERR_DELETE DB error delete | Could not delete Run Consistency
ALL_ACTIONS_ all actions failed | all actions for a Checker to check
FAILED rule. May have data.

wrong parameters.

-2541 RERR_ DB error Could not reduce Run Consistency
DECREMENT _ operation the number of Checker to check
OPERATION_ decrement arguments using a | data.

FAILED specific operator.

-2542 RERR_DELETE DB error delete | Could not delete Run Consistency
RULE_FAILED rule rule. May have Checker to check

wrong parameters. | data.

-2543 RERR_DELETE DB error delete | Could not delete Run Consistency
ARGUMENTS_ arguments argument. May Checker to check
FAILED have wrong data.

parameters.

-2544 RERR_DELETE_ DB error delete | Could not delete Run Consistency
OPERATION_ operation argument Checker to check
FAILED information for a data.

rule. May have
wrong parameters.

-2545 RERR_DELETE DB error delete | Could not delete Run Consistency
ACTIONS_ actions action. May have Checker to check
FAILED wrong parameters. | data.

-2546 RERR_DELETE DB error delete | Could not delete Run Consistency

SUBS_FAILED

subscriptions

subscription. May
have wrong
parameters.

MQSeries Integrator Programming Reference for NEONRules

Checker to check
data.

289

Chapter 5

Code | Name Message Explanation Response

-2547 RERR_RESEQ _ DB error Could not Run Consistency
OPTION_RANGE | resequence resequence Checker to check
_FAILED multiple options. May have | data.

options invalid sequence
parameters.

-2548 RERR_INSERT _ DB error option | Could not insert Run Consistency
OPTION_FAILED | insert option. May have Checker to check

wrong parameters. | data.

-2549 RERR_GET_MAX_ | DBerror get Could not retrieve | Run Consistency
ACTION_FAILED | max action the maximum Checker to check

number of actions. | data.
May not have any
actions.

-2550 RERR_GET_MAX_ | DB error get Could not retrieve | Run Consistency

OPTION_FAILED | max option the maximum Checker to check
number of options. | data.
May not have any
options.

-2551 RERR_MOVE_ DB error move Could not Run Consistency

ACTION_FAILED | action resequence action. | Checker to check
May have invalid data.
sequence
parameter.

-2552 RERR_MOVE_ DB error move Could not Run Consistency

OPTION_FAILED | option resequence option. | Checker to check
May have invalid data.
sequence
parameter.

-2553 RERR_RESEQ _ DB error Could not Run Consistency
ACTION_RANGE | resequence resequence Checker to check
_FAILED multiple actions | actions. May have | data.

invalid sequence
parameters.
290 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2554 RERR_UPDATE_ DB error Could not update Run Consistency
ACTION_FAILED | update action action. May have Checker to check
wrong parameters. | data.
-2555 RERR_UPDATE_ DB error Could not update Run Consistency
OPTION_FAILED | update option option. May have Checker to check
wrong parameters. | data.
-2556 RERR_UPDATE_ DB error Could not update Run Consistency
SUBSCRIPTION_ update subscription. May | Checker to check
FAILED subscription have wrong data.
parameters.
-2557 RERR_OPTION_ DB error option | Could not retrieve | Run Consistency
READ_FAILED read option. May have Checker to check
wrong parameters | data.
-2558 RERR_GET_MAX_ | DBerror get Could not retrieve | Run Consistency
ARG_FAILED max argument the maximum Checker to check
number of data.
arguments. May
not have any
arguments.
-2559 RERR_APP_ DB error Could not update Run Consistency
GROUP_UPDATE | application application name. Checker to check
group update May have wrong data.
old name.
-2560 RERR_GET_ DB error get Could not retrieve | Run Consistency
VERSION_ version failed version Checker to check
FAILED information for data.
import/export.
-2561 RERR_CANNOT_ | DBerror Could not update Run Consistency
UPDATE_FIELD update field the old nametothe | Checker to check
name failed new field name. data.
MQSeries Integrator Programming Reference for NEONRules 291

Chapter 5

Code | Name Message Explanation Response
-2562 RERR_GET_MAX_ | DB error get Could not retrieve | Run Consistency
BOOLEAN_OPER | max boolean the maximum Checker to check
_FAILED operator number of Boolean | data.
operators. May
have wrong
parameters.
-2563 RERR_BOOLEAN | DB error Could not insert Run Consistency
_OP_ADD boolean Boolean operator. Checker to check
operator add May have wrong data.
failed parameters.
-2564 RERR_BOOLEAN | DB error Could not update Run Consistency
_OP_INCR boolean Boolean operator. Checker to check
operator May have wrong data.
update failed parameters.
-2565 RERR_APP_ DB error Could not delete Run Consistency
GROUP_DELETE application application group. | Checker to check
group delete data.
failed.
-2566 RERR_MSG_TYPE | DB error Could not delete Run Consistency
_DELETE message type message type. Checker to check
delete failed data.
292 MQSeries Integrator Programming Reference for NEONRules

General Rules Management Errors

Rules Error Messages

Code | Name Message Explanation Response

-2600 RERR_INVALID_ Invalid Invalid application | Check passed-in
APP_PARAM application group name. application group

group name.
parameters

-2601 RERR_APP_ Error Cannot add Check passed-in
GROUP_NAME_ application application with application group
ALREADY_ group already duplicate name. name.

EXISTS exists

-2602 RERR_APP_ Error Invalid application | Check passed-in
GROUP_NAME_ application group name. application group
DOES_NOT_ group does not name.

EXIST exist

-2603 RERR_INVALID_ Invalid Invalid application | Check passed-in

MSG_PARAM message type group/message application
parameters type pair. group/message
type name.

-2604 RERR_MSG_TYPE | Error message Application group | Check passed-in
NAME type already already has the application
ALREADY_ exists message type. group/message
EXISTS type name.

-2605 RERR_MSG_TYPE | Error message Invalid application | Check passed-in
_NAME_DOES _ type does not group/message application
NOT_EXIST exist type pair. group/message

type name.

-2606 RERR_FORMAT _ Error format Message type Check passed-in a
NAME_DOES_ name does not name must match message type
NOT_EXIST exist an input format name against

name. format names.

-2607 RERR_INVALID_ Invalid rule Invalid application | Check passed-in
RULE_PARAM parameters group/message parameters.

type/rule name.

MQSeries Integrator Programming Reference for NEONRules

293

Chapter 5

Code | Name Message Explanation Response

-2608 RERR_RULE_ Errorrulename | Application Check passed-in
NAME_ already exists group/message parameters.
ALREADY_ type pairs cannot
EXISTS have duplicaterule

names.

-2609 RERR_RULE_ Errorrulename | Invalidapplication | Check passed-in
NAME_DOES_ does not exist group/message parameters.
NOT_EXIST type/rule name.

-2610 RERR_INVALID_ Invalid Invalid operator Check passed-in
OPERATOR_ operator ID. parameter.
PARAM parameters

-2611 RERR_INVALID_ Invalid Invalid parameters | Check passed-in
ARG_PARAM argument to create/update/ | parameters.

parameters retrieve argument.

-2612 RERR_INVALID_ Invalid Invalid parameters | Check passed-in
SUBS_PARAM subscription to create/update/ | parameters.

parameters retrieve
subscription.

-2613 RERR_SUBS _ Error Subscription Check passed-in
NAME_ subscription names cannot be parameters.
ALREADY_ name already duplicated within
EXISTS exists arule.

-2614 RERR_SUBS_ Error Application Check passed-in
NAME_DOES_ subscription group/message parameters.
NOT_EXIST name does not type/rule name/

exist subscription name
not found.

-2615 RERR_INVALID_ Invalid action Invalid parameters | Check passed-in
ACTION_PARAM | parameters to create/update/ | parameters.

retrieve action.
294 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2616 RERR_ACTION_ Error action Application Check passed-in
SEQ_DOES_NOT_ | does not exist group/message parameters.
EXIST type/rule name/
subscription
name/action name
not found.
-2617 RERR_INVALID_ Invalid option Invalid parameters | Check passed-in
OPTION_PARAM | parameters to create/update/ | parameters.
retrieve action
-2618 RERR_ Error during Conversion of Check passed-in
CONVERSION_ conversion static argument parameters. Run
ERROR value failed. Consistency
Checker.
-2619 RERR_NO_MORE | No more Not really error Subscription must
_ACTIONS actions unless returned have at least one
from action.
NNRMgrGetFirst
Action.
-2620 RERR_NO_ No more Not really an error.
MORE_ operators
OPERATORS
-2621 RERR_NO_ No more Not really error Rule must have at
MORE_ arguments unless returned least one
ARGUMENTS from argument.
NNRMgrGetFirst
Argument.
-2622 RERR_INVALID_ Invalid rules Must call CallNNRMgrlInit()
RULES_PARAM management NNRMgrlnit() prior to calling any
object passed in | before calling any other functions.
other functions.
-2623 RERR_FEATURE_ | Feature not Feature is not

NOT_
IMPLEMENTED

implemented

implemented at
this time.

MQSeries Integrator Programming Reference for NEONRules

295

Chapter 5

Code | Name Message Explanation Response
-2624 RERR_ Argumentdoes | Invalid parameters | Check passed-in
ARGUMENT_ not exist to update/retrieve | parameters:
DOES_NOT_ argument. AppGrp
EXIST MsgType
RuleName
ArgSeq
Fields
Operator
-2625 RERR_ Operation does | Invalid parameters | Check passed-in
OPERATION_ not exist to update/retrieve | parameters:
DOES_NOT_ argument AppGrp
EXIST information. MsgType
RuleName
ArgSeq
Fields
Operator
-2626 RERR_ Unknown Operator may be Check passed-in
UNKNOWN_ operator type invalid. parameters.
OPERATOR_
TYPE
-2627 RERR_NO _ No more Not really error Rule must have at
MORE_ subscriptions unless returned least one
SUBSCRIPTIONS from subscription.
NNRMgrGetFirst
Subscription.
-2628 RERR_NO_ No more rules Not really an error.
MORE_RULES
-2629 RERR_ACTION_ Actiondoes not | Invalid parameters | Check passed-in
DOES_NOT_ exist to update/retrieve | parameters:
EXIST action. AppGrp
MsgType
RuleName
SubName
ActSeq
296 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response

-2630 RERR_OPTION_ Optiondoesnot | Invalid parameters | Check passed-in
DOES_NOT_ exist to update/retrieve | parameters:
EXIST option. AppGrp

MsgType
RuleName
SubName
ActSeq
OptSeq

-2631 RERR_APP_ID_ App id Data for Run Consistency
CORRUPTED corrupted ApplicationGroup | Checker to check

may be incorrect. data.

-2632 RERR_MSG_ID_ Msg id Data for Message Run Consistency
CORRUPTED corrupted Type may be Checker to check

incorrect. data.

-2633 RERR_NO _ No more Not really error Action must
MORE_ options unless returned currently have at
OPTIONS from least one option.

NNRMgrGetFirst
Option.

-2634 RERR_EXPORT_ Export app Export failed Run Consistency

APP_FAILURE name failed during retrieval, Checker to check
encoding, or data.
writing to file.

-2635 RERR_EXPORT_ Exportmessage | Export failed Run Consistency
MSG_FAILURE name failed during retrieval, Checker to check

encoding, or data.
writing to file.

-2636 RERR_EXPORT_ Export rule Export failed Run Consistency
RULE_FAILURE failed during retrieval, Checker to check

encoding, or data.
writing to file.
MQSeries Integrator Programming Reference for NEONRules 297

Chapter 5

Code | Name Message Explanation Response
-2637 RERR_EXPORT _ Export Export failed Run Consistency
ARG_FAILURE argument failed | during retrieval, Checker to check
encoding, or data.
writing to file.
-2638 RERR_EXPORT_ Export Export failed Run Consistency
SUB_FAILURE subscription during retrieval, Checker to check
failed encoding, or data.
writing to file.
-2639 RERR_EXPORT _ Export action Export failed Run Consistency
ACT_FAILURE failed during retrieval, Checker to check
encoding, or data.
writing to file.
-2640 RERR_EXPORT _ Export option Export failed Run Consistency
OPT_FAILURE failed during retrieval, Checker to check
encoding, or data.
writing to file.
-2641 RERR_NO_MORE | No more Not really an error.
_MESSAGES messages
-2642 RERR_NO _ No more Not really an error.
MORE_ applications
APPLICATIONS
-2643 RERR_IMPORT _ Error reading Import failed to Check file.
FILE_READ import file read from file. Recreate file by
exporting again.
-2644 RERR_IMPORT _ Errorimporting | Import failed Check file. Run
APP application during reading of Consistency
file, decoding, or Checker to check
writing to data. Try
database. importing with
overwrite flag.
-2645 RERR_INVALID_ Invalid import/ | Can only import/ Should never see
IE_TYPE export type export Rules this error.
components.
298 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2646 RERR_IMPORT _ Errorimporting | Import failed Check file. Run
MSG message type during reading of Consistency
file, decoding, or Checker to check
writing to data. Try
database. importing with
overwrite flag.
-2647 RERR_IMPORT _ Errorimporting | Import failed Check file. Run
RULE rule during reading of Consistency
file, decoding, or Checker to check
writing to data. Try
database. importing with
overwrite flag.
-2648 RERR_MEMORY_ | Memory Could not allocate | Shut down excess
ALLOCATION_ allocation memory. items. Restart
FAILURE failure import/export.
-2649 RERR_IMPORT _ Errorimporting | Import failed Check file. Run
ARGUMENT argument during reading of Consistency
file, decoding, or Checker to check
writing to data.
database.
-2650 RERR_IMPORT _ Errorimporting | Import failed Check file. Run
SUBSCRIPTION subscription during reading of Consistency
file, decoding, or Checker to check
writing to data. Try
database. importing with
overwrite flag
-2651 RERR_IMPORT _ Errorimporting | Import failed Check file. Run
ACTION action during reading of Consistency

file, decoding, or
writing to
database.

MQSeries Integrator Programming Reference for NEONRules

Checker to check
data.

299

Chapter 5

Code | Name Message Explanation Response

-2652 RERR_IMPORT _ Errorimporting | Import failed Check file. Run
OPTION option during reading of Consistency

file, decoding, or Checker to check
writing to data.
database.

-2653 RERR_ Unsupported Can only export Check version of
UNSUPPORTED_ | version of and import to NEONRules.
VERSION database version 4.1

databases.

-2654 RERR_DECODE _ Decoding Could not decode Export File may be

FAILURE failure line in file. corrupt. Recreate
file by exporting
again.

-2655 RERR_ Cannot add Rule old owner Check database
NONOWNER_ permission if may not be a valid | users.

CANNOT _ADD_ not owner user of the current
PERMISSION database.

-2656 RERR_NO_ No permission Cannot read Assign
PERMISSION_TO | toread permission. Read permissions to
_READ permission not rules.

granted.

-2657 RERR_NO_ No permission Current user does Have rule owner
PERMISSION_TO | to update not have update change update
_UPDATE permission for the | permissions for

rule. himself and/or
PUBLIC.

-2658 RERR_ Permission list Could not read Run Consistency
PERMISSION_ read failure permission list. Checker to check
LIST_READ_ data.

FAILURE
-2659 RERR_NO_MORE | No more Not really an error.
_PERMISSIONS permissions
300 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response

-2660 RERR_EXPORT _ Error exporting | Could not retrieve | Check install.
VERSION_ version version for export.

FAILURE Can only export
from version 4.0
and higher.

-2661 RERR_EXPORT_ Error exporting | Could not export Run Consistency
PERMISSIONS_ permissions rule permissions. Checker to check
FAILURE data.

-2662 RERR_INVALID_ Invalid field The field name Check parameters
FIELD_NAME_ name provided is to function call.
PARAM parameter invalid.

-2666 RERR_INVALID_ Invalid date/ Bad format of Check input
DATE_TIME_ time format in static date/time parameter. Verify
FORMAT _IN_ argument value. that the Time
ARG portion of a Date

value or the Date
portion of a Time
value is zero
padded.

-2667 RERR_NON_ Invalid non- Bad format of Check input
NUMERIC_DATE | numeric date/ static date/time parameter.
_TIME_IN_ARG time value in value.

argument

-2668 RERR_INVALID_ Invalid year in Bad format of Check input
YEAR_IN_ARG argument static date/time parameter.

value.

-2669 RERR_INVALID_ Invalid month Bad format of Check input
MONTH_IN_ARG | in argument static date/time parameter.

value.

-2670 RERR_INVALID_ Invalid day in Bad format of Check input
DAY_IN_ARG argument static date/time parameter.

value.

MQSeries Integrator Programming Reference for NEONRules

301

Chapter 5

Code | Name Message Explanation Response

-2671 RERR_INVALID_ Invalid hour in | Bad format of Check input
HOUR_IN_ARG argument static date/time parameter.

value.

-2672 RERR_INVALID_ Invalid minute Bad format of Check input
MINUTE_IN_ARG | in argument static date/time parameter.

value.

-2673 RERR_INVALID_ Invalid second Bad format of Check input
SECOND_IN_ in argument static date/time parameter.
ARG value.

-2674 RERR_ Unbalanced Invalid Boolean Check input
UNBALANCED_ quotesin expression; quotes | expression
QUOTES expression after | must be balanced. parameter.

-2675 RERR_INVALID_ Invalid Rules Operator in Check the
RULES_ expression in Operator list for
OPERATOR Invalid Rules spelling/case.

operator.

-2676 RERR_MISSING _ Expression Rules expression Check input
RULES_ missing Rules must have a Rules | expression
OPERATOR Operator Operator. parameter.

-2677 RERR_NEED _ Rules Operator | AllRulesoperators | Check input
SECOND_FIELD_ | missing must have a expression
OR_VALUE comparison second argument parameter.

value or field except those
namein checking for
expression existence.

-2678 RERR_ Unbalanced Parentheses must Check input
UNBALANCED_ parentheses in be balanced in expression
PARENS expression Rules expression. parameter.

-2679 RERR_EXPECTED | Expected Expression ended Check input
_TERMINAL terminal in incorrectly. parameter.

expression
302 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2680 RERR_ARG_ Arguments Arguments can no | Change input
MUST_BE_ must be active longer be Inactive. | expression
ACTIVE for NEONet parameter.
4.0+
-2681 RERR_USE Must Use NNR | Cannot use Use
UPDATE_EXPR MgrUpdate NNRMgrAddArg NNRMgrUpdate
Expression to ument unless all Expression.
perform arguments are just
desired update | ANDed together.
-2682 RERR_TRAILING Trailing Extra characters in | Make sure you are
_CHARS characters the expression. using'&’and '] ’for
found in Boolean operators.
expression
-2683 RERR_MISSING _ Missing Two Operands are | Check input
OPERAND operand in required around a | expression
boolean Boolean operator. parameter.
expression
before/after
-2684 RERR_ Cannot delete User notthe owner | Delete as owner.
NONOWNER_ item if not of the sub/rule
CANNOT_ owner. Cannot delete.
DELETE
-2685 RERR_ Subscription is Subscription is Remove
SUBSCRIPTION_ used by arule - | used by aruleand | subscription from
IS_ USED cannot delete cannot be deleted. all associated
rules.
-2686 RERR_INVALID_ Invalid Invalid component | Check component
COMPONENT_ component type parameter. type - input
TYPE type as parameter.
parameter
-2687 RERR_INVALID_ Invalid or May have invalid Check passed in
COMPONENT_ missing parameter. parameters (i.e.,
PARAM parameter NULL values).

MQSeries Integrator Programming Reference for NEONRules

303

Chapter 5

Code | Name Message Explanation Response
-2688 RERR_INVALID_ Invalid or May have invalid Check passed in
CHANGE_ missing change | parameter. parameter.
OWNER_PARAM owner
parameter
-2689 RERR_INVALID_ Invalid or May have invalid Check passed in
COMPONENT_ missing parameter. parameter for
OWNER_PARAM | component NULL value.
owner
parameter
-2690 RERR_ Subscription Failure reading Run Consistency
SUBSCRIPTION_ list read failure | subscription list. Checker and check
LIST_READ_ data.
FAILURE
-2691 RERR_RULE_ Rule list read Failure reading Run Consistency
LIST READ_ failure rule list. Checker and check
FAILURE data.
-2692 RERR_IMPORT _ Errorimporting | Error importing Check file. Run
PERM permission permission. Consistency
Checker to check
data.
-2693 RERR_USE_ Cannot Cannotdo a To compare
EXISTENCE_OPS compare comparison against an empty
against empty against an empty field, use the
strings - use string. EXIST or
existence NOT_EXIST
operator operator.
-2694 RERR_OPT_PUT_ | Invalid option Option can beonly | Change the
FMT_INVALID value for 8 characters long. parameters sent
putqueue MQS into NNRMgrAdd
_FORMAT Option or
option NNRMgr
UpdateOption.
304 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2695 RERR_OPT_PUT_ | Invalid option Must be Change the
PROP_INVALID value for PROPAGATE or parameters sent
putqueue MQS | NO_ into NNRMgrAdd
_PROPAGATE | PROPAGATE. Option or
option NNRMgr
UpdateOption.
-2696 RERR_OPT_PUT_ | Invalid option Must be PERSIST Change the
PER_INVALID value for or NO_PERSIST. parameters sent
putqueue into NNRMgrAdd
MQS_PERSIST Option or
option NNRMgr
UpdateOption.
-2697 REERR_OPT_ Invalid option Must be Change the
PUT EXP_ value for PROPAGATE or parameters sent
INVALID putqueue NO_ into NNRMgrAdd
MQS_EXPIRY PROPAGATE. Option or
option NNRMgr
UpdateOption.
-2698 RERR_OPT_FMT_ | Invalid option INPUT_FORMAT | Change the
FMT_INVALID value for must be a valid parameters sent
reformatoption | inputformatname | into NNRMgrAdd
and TARGET_ Option or
FORMAT mustbe | NNRMgr
a valid output UpdateOption or
format name add the needed
formats.
-2699 RERR_INVALID_ Invalid integer For integer Check input into
INT_ARG_VALUE | static comparison Argument or

comparison
value.

values, no non-
numericcharacters
are allowed except
for a (+/-) sign as
the first character
(No decimal point
is allowed).

MQSeries Integrator Programming Reference for NEONRules

Expression APIs.

305

Chapter 5

Code | Name Message Explanation Response

-2700 RERR_INT_ARG_ | Integer static The valid INT Check input into
VALUE_OUT_OF comparison values are whole Argument or
_RANGE value out of numbers in the Expression APIs.

valid range. integer range for
the platform used
(usually about -2.1
to about 2.1
billion).

-2701 RERR_INVALID_ Invalid float For float Check input into
FLOAT_ARG_ static comparison Argument or
VALUE comparison values, the only Expression APIs.

value. non-numeric
characters allowed
are (+/-) sign as
the first character
and a decimal
point.

-2702 RERR_FLOAT _ Float static Valid float Check input into
ARG_VALUE_ comparison comparison values | Argument or
MISSING_ value must must contain a Expression APIs.
DECIMAL have a decimal. | decimal point.

-2703 RERR_FLOAT _ Float static The valid FLOAT Check input into
ARG_VALUE_ comparison values include a Argument or
OUT_OF_RANGE | value out of whole number in Expression APls.

valid range. the integer range
for the platform
used (usually
about -2.1billion to
about 2.1 billion)
and a decimal
mantissa with a
maximum of 31
digits.

306 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response

-2704 RERR_STATIC_ Static Static comparison Check input into
ARG_VALUE_ comparison values cannot Argument or
TOO_LONG value too long. exceed 64 Expression APIs.

characters (plus a
terminating
NULL).

-2705 RERR_NO_PERM Could not The user deleting Check into the
_TO_DELETE_ delete all rules might not have permissions for the
ALL_APP and/or permissions for all | rules and/or

subscriptionsin | the rules and/or subscriptions.

application subscriptions in Only the owner

group. the application can delete them.
group.

-2706 RERR_NO_PERM Could not The user deleting Check into the
_TO_DELETE_ delete all rules might not have permissions for the
ALL_MSG and/or permissions for all | rules and/or

subscriptionsin | the rules and/or subscriptions.
message type. subscriptions in Only the owner
the message type. can delete them.

-2707 RERR_RULE_SUB | Error linking Subscription was Look at the error
_LINK_SUB_NOT | subscription to not imported. message as to why
_EXIST rule. the subscription

Subscription was not imported.
does not exist.

-2708 RERR_IMPORT _ Errorimporting | Malformed Review the
EXPRESSION expression. expression or expressionand run

problem in the
database.

MQSeries Integrator Programming Reference for NEONRules

consistency
checker on the
database.

307

Chapter 5

Code | Name Message Explanation Response

-2709 RERR_WRONG _ Error. -O flag is | Due to significant Remove the
VER_FOR_ not supported changes in the message types you
OVERWRITE in pre 4.10 NNRie file wanttocompletely

versions. The-o | formats, overwrite using

flag is used NEONRules does the NEONRuUles

instead. not supportthe-O | GUI or NEONRules
in import files Management APIs
from pre 4.10 prior to importing.
versions.

-2710 RERR_IMPORT _ Unsupported Theimportfilewas | Check the version
VERSION_ version of created from a in the import file.
FAILURE_FILE import file. version of This might require

NNRie.exe that is using the

no longer NNCrypt utility.

supported in Check the version

NEONRules. of NNRie used to
create the export
file.

-2711 RERR_MISSING _ Missingversion | The version of the Check the file to
VERSION_IN_ information in export file is see that the version
FILE export file. missing. lineis present. This

might require
using the
NNCrypt utility.
Check the version
of NNRie used to
create the export
file.

308 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response
-2712 RERR_NOT_ Missing key Missing the “R” as | Check the file to
RULES FILE information to the first non- see that the “R”
the NNRie comment line in lineis present. This
export file. the NNRie export might require
file. using the
NNCrypt utility.
Check the version
of NNRie used to
create the export
file.
-2713 RERR_NOTHING Nothing was There are no valid | Checkthedatabase

IMPORTED
EXPORTED

imported or
exported.

lines to import or
no data to export.

ortheimportfileto
see if they contain
the data required.

MQSeries Integrator Programming Reference for NEONRules

309

Chapter 5

Permission Data Errors

Code | Name Message Explanation Response
-5500 NN_NO DB ERR No NEONet No error.
database error

-5501 NN_ID_INSERT_ Get next id Error getting new Run Consistency
FAILURE insert error ids for user/ Checker to check

permission. data.

-5502 NN_ID_UPDATE_ | Get nextid Error getting new Run Consistency
FAILURE update error ids for user/ Checker to check

permission. data.

-5503 NN_NODE_DOES | Node does not Must run on valid | Check installation.
_NOT_EXIST exist 4.1 database with

node data saved.

-5504 NN_HIERARCHY | Hierarchy does | Mustrunon valid | Check install. Run
_DOES_NOT_ not exist 4.0 database with Consistency
EXIST hierarchy data Checker to check

saved. data.

-5505 NN_ Component Cannot add rule Run Consistency
COMPONENT_ add failure component to Checker to check
ADD_FAILURE permission data.

system; may be
duplicate.

-5506 NN_ Component Cannot retrieve Run Consistency
COMPONENT_ load failure rule component Checker to check
LOAD_FAILURE information from data.

permission
system; may not
exist.

-5507 NN_DELETE_ Delete Cannot delete rule | Run Consistency
COMPONENT_ component component Checker to check
FAILURE failure information from data.

permission
system; may not
exist.
310 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response

-5508 NN_UNABLE_ Unable to Permission user Run Consistency
TO_DETERMINE_ | determine user | nota valid Checker to check
USER database user. data.

-5509 NN_UNABLE_ Unable to find Permission user Run Consistency
TO_FIND_USER user in database | not a valid Checker to check

database user. data.

-5510 NN_UNABLE_ Unable to find Permission user Run Consistency
TO_FIND_USER_ user in NEONet | not a valid Checker to check
IN_NEONET permission user. data.

-5511 NN_UNABLE_ Unable to add Cannot add Run Consistency
TO_ADD_USER_ user to NEONet | permission user. Checker to check
TO_NEONET May not be avalid | data.

database user.

-5512 NN_UNABLE_ Unable to add Cannot add Run Consistency
TO_ADD_ permission permission - may Checker to check
PERMISSION_ be a duplicate. data.

SET

-5513 NN_UNABLE_ Unable to find Cannot find Run Consistency
TO_FIND_ permission permission. May Checker to check
PERMISSION have invalid data.

parameters.

-5514 NN_UNABLE_ Unable to read Cannot retrieve Run Consistency
TO_LOAD_ permission permission. May Checker to check
PERMISSION _ have invalid data.

LIST parameters.

-5515 NN_UNABLE_ Unable to Cannot update Run Consistency
TO_UPDATE_ update permission. May Checker to check
PERMISSION permission have invalid data.

parameters.

-5516 NN_ADD_USER_ User is not a Permission user Run Consistency
NOT_DB_USER valid user ofthe | nota valid Checker to check

database database user. data.
instance
MQSeries Integrator Programming Reference for NEONRules 311

Chapter 5

Code | Name Message Explanation Response

-5517 NN_UNABLE_ Unable to The new user may | Run Consistency
TO_CHANGE_ change the user | not be valid or Checker to check
PERMISSION_ for the caused a duplicate | data.

USER permissions permission.

-5518 NN_UNABLE_ Unable to Invalid parameters | Run Consistency
TO_DELETE_ delete the to delete Checker to check
PERMISSIONSET permission set permission set for data.

a user/rule pair.

-5519 NN_ No permissions | Indicates no more Rule or
NOPERMISSIONS | were found permissions to subscription must
_FOUND read for rule or have at least two

subscription. permissions.

5520 NN_ Component Cannot update Run Consistency
COMPONENT_ update failure permission.May Checker to run
UPDATE_ have invalid data.

FAILURE parameter.
312 MQSeries Integrator Programming Reference for NEONRules

General Permission Errors

Rules Error Messages

Code | Name Message Explanation Response

-5000 NN_NO _ERR No Errors No error.

-5001 NN_GET_NEXT_ Next id invalid Invalid parameters | Check passed-in
ID_INVALID_ parameters to get new user/ parameters.
PARAM component id for

permission
system.

-5002 NN_UPDATE_ Update Invalid parameters | Check passed-in
PERMISSION_ permission to update parameters.
INVALID_ invalid permission.

PARAM parameters

-5003 NN_GET_NODE_ | Get node Invalid parameters | Check passed-in
ID_INVALID_ invalid to retrieve node parameters.
PARAM parameters information.

-5004 NN_HIERARCHY | Get hierarchy Invalid parameters | Check passed-in
_LEVEL _ level invalid to retrieve parameters.
INVALID_ parameters hierarchy level
PARAM information.

-5005 NN_HIERARCHY | Get hierarchy Invalid parameters | Check passed-in
INVALID invalid to retrieve parameters.
PARAM parameters hierarchy

information.

-5006 NN_ADD_ Add Invalid parameters | Check passed-in
COMPONENT_ component to add component | parameters.
INVALID_ invalid to permission
PARAM parameters system.

-5007 NN_ Load Invalid parameters | Check passed-in
COMPONENT_ component to retrieve parameters.
LOAD_INVALID_ | invalid component from
PARAM parameters permission

system.

MQSeries Integrator Programming Reference for NEONRules

313

Chapter 5

Code | Name Message Explanation Response

-5008 NN_DELETE_ Delete Invalid parameters | Check passed-in
COMPONENT_ component to delete parameters.
INVALID_ invalid component from
PARAM parameters permission

system.

-5009 NN_LOAD_USER | Load user Invalid parameters | Check passed-in
INVALID invalid to retrieve user parameters.
PARAM parameters from permission

system.

-5010 NN_ADD_USER_ | Add user Invalid parameters | Check passed-in
INVALID_ invalid to add user to parameters.
PARAM parameters permission

system.

-5011 NN_ADD_ Add Invalid parameters | Check passed-in
PERMISSION_ permission to add permission parameters.
INVALID_ invalid to permission
PARAM parameters system.

-5012 NN_LOAD _ Load Invalid parameters | Check passed-in
PERMISSION_ permission to retrieve parameters.
INVALID_ invalid permission from
PARAM parameters permission

system.

-5013 NN_PERMISSION | Adding Duplicate Check passed-in
ALREADY permission that | permissions not parameters.
EXISTS already exists allowed for user/

component/
permission.

-5014 NN_CHANGE_ Changing user Invalid parameters | Check passed-in
USER_PERM_ invalid to change the parameters.
INVALID_ parameters owner for a certain
PARAM component.

314 MQSeries Integrator Programming Reference for NEONRules

Rules Error Messages

Code | Name Message Explanation Response

-5015 NN_DELETE_ Deleting Invalid parameters | Check passed-in
PERMSET _ permission set to delete all parameters.
INVALID_ invalid permissions for a
PARAM parameters user/component.

-5016 NN_NONOWNER | Cannot add User is not the Add as owner of
_CANNOT_ADD_ | permission if owner of the component.
PERMISSION not owner component.

Cannot add/
update
permission.

-5017 NN_NO_ No permission Read permission Grant read
PERMISSION_TO to read not granted to permission for
_READ PUBLIC or User. component.

-5018 NN_PERMISSION | Permission list Cannot read Run Consistency
_LIST READ _ read failure permission list. Checker to check
FAILURE data.

-5019 NN_NO_MORE_ No more Indicates no more Rules and
PERMISSIONS permissions permissions to Subscriptions must

read for rule or have at least two
subscription. permissions.

-5020 NN_NO_MORE_ No more Not really an error.

ITEMS components.

-5021 NN_ No permission Update permission | Grant update
NOPERMISSION_ | to update not granted to permission for
TO_UPDATE PUBLIC or User. component.

-5022 NN_NONOWNER | Cannot delete User is not the Delete as owner of
CANNOT item if not owner of the component
DELETE owner component.

Cannot delete
item.

MQSeries Integrator Programming Reference for NEONRules

315

Chapter 5

316 MQSeries Integrator Programming Reference for NEONRules

Appendix A

Operator Types

The following operator types are available for use in Rules expressions. These
operator types are described in the subsequent tables:

m Existence

= Integer

= String

m Field-to-field integer

m Field-to-field string

m Float

m Case-sensitive string

m Field-to-field case-sensitive
m Date

m Field-to-field date

= Time

m Field-to-field time

m DateTime

m Field-to-field DateTime

Note:
Case-sensitive operators do not work correctly on case-insensitive databases.

MQSeries Integrator Programming Reference for NEONRules 317

318

Existence Operators

Operator Symbol Operator | Description
Handle
NOT_EXIST 0 Required Field Is Not Present
NOT_EXIST_TRIM 104 Required Field Is Not Present
(After Trimming)
EXIST 1 Required Field Is Present
EXIST_TRIM 105 Required Field Is Present (After
Trimming)
Integer Operators
Operator Symbol Operator | Description
Handle
INT= 2 Integer Equals
INT> 3 Integer Greater Than
INT< 4 Integer Less Than
INT>= 5 Integer Greater Than Or Equal To
INT<= 6 Integer Less Than Or Equal To
INT<> 7 Integer Not Equal To
String Operators
Operator Symbol Operator | Description
Handle
STRING= 8 String Equal To
STRING_TRIM= 106 String Equal To (After Trimming)
STRING> 9 String Greater Than

MQSeries Integrator Programming Reference for NEONRules

Operator Symbol Operator | Description
Handle

STRING_TRIM> 107 String Greater Than (After
Trimming)

STRING< 10 String Less Than

STRING_TRIM< String Less Than (After
Trimming)

STRING_TRIM>= 109 String Greater Than Or Equal To
(After Trimming)

STRING>= 11 String Greater Than Or Equal To

STRING<= 12 String Less Than Or Equal To

STRING_TRIM<= 110 String Less Than Or Equal To
(After Trimming)

STRING<> 13 String Not Equal To

STRING_TRIM<> 111 String Not Equal To (After

Trimming)

Field To Field Integer Operators

Operator Symbol Operator | Description
Handle
F2FINT= 18 Field To Field Integer Equal To
F2FINT> 19 Field to Field Integer Greater
Than
F2FINT< 20 Field to Field Integer Less Than
F2FINT>= 21 Field to Field Integer Greater
Than Or Equal To
F2FINT<= 22 Field to Field Integer Less Than

MQSeries Integrator Programming Reference for NEONRules

Or Equal To

319

Operator Symbol Operator | Description

Handle

F2FINT<> 23 Field To Field Integer Not Equal

To
Field To Field String Operators
Operator Symbol Operator | Description
Handle

F2FSTRING= 24 Field To Field String Equal To

F2FSTRING_TRIM= 112 Field To Field String Equal To
(After Trimming)

F2FSTRING> 25 Field To Field String Greater
Than

F2FSTRING_TRIM> 113 Field To Field String Greater
Than (After Trimming)

F2FSTRING< 26 Field To Field String Less Than

F2FSTRING_TRIM< 114 Field To Field String Less Than
(After Trimming)

F2FSTRING>= 27 Field To Field String Greater
Than Or Equal To

F2FSTRING_TRIM>= 115 Field To Field String Greater
Than Or Equal To (After
Trimming)

F2FSTRING<= 28 Field To Field String Less Than
Or Equal To

F2FSTRING_TRIM<= 116 Field To Field String Less Than
Or Equal To (After Trimming)

F2FSTRING<> 29 Field To Field String Not Equal
To

320 MQSeries Integrator Programming Reference for NEONRules

Operator Symbol Operator | Description
Handle
F2FSTRING_TRIM<> 117 Field To Field String Not Equal
To (After Trimming)
Float Operators
Operator Symbol Operator | Description
Handle
FLOAT= 34 Float Equals
FLOAT> 35 Float Greater Than
FLOAT< 36 Float Less Than
FLOAT>= 37 Float Greater Than Or Equal To
FLOAT<= 38 Float Less Than Or Equal To
FLOAT<> 39 Float Not Equal To

Case Sensitive String Operators

Operator Symbol Operator | Description
Handle

CSSTRING = 56 Case Sensitive String Equal To

CSSTRING_TRIM= 118 Case Sensitive String Equal To
(After Trimming)

CSSTRING> 57 Case Sensitive String Greater
Than

CSSTRING_TRIM> 119 Case Sensitive String Greater
Than (After Trimming)

CSSTRING< 58 Case Sensitive String Less Than

MQSeries Integrator Programming Reference for NEONRules

321

322

Operator Symbol Operator | Description
Handle

CSSTRING_TRIM< 120 Case Sensitive String Less Than
(After Trimming)

CSSTRING>= 59 Case Sensitive String Greater
Than Or Equal To

CSSTRING_TRIM>= 121 Case Sensitive String Greater
Than Or Equal To (After
Trimming)

CSSTRING<= 60 Case Sensitive String Less Than
Or Equal To

CSSTRING_TRIM<= 122 Case Sensitive String Less Than
Or Equal To (After Trimming)

CSSTRING<> 61 Case Sensitive String Not Equal
To

CSSTRING_TRIM<> 123 Case Sensitive String Not Equal

To (After Trimming)

Field To Field Case Sensitive Operators

Operator Symbol Operator | Description
Handle
F2FCSSTRING= 62 Field To Field Case Sensitive
String Equal To
F2FCSSTRING_TRIM= 124 Field To Field Case Sensitive
String Equal To (After Trimming)
F2FCSSTRING> 63 Field To Field Case Sensitive
String Greater Than
F2FCSSTRING_TRIM> 125 Field To Field Case Sensitive

String Greater Than (After
Trimming)

MQSeries Integrator Programming Reference for NEONRules

Operator Symbol Operator | Description
Handle

F2FCSSTRING< 64 Field To Field Case Sensitive
String Less Than

F2FCSSTRING_TRIM< 126 Field To Field Case Sensitive
String Less Than (After
Trimming)

F2FCSSTRING>= 65 Field To Field Case Sensitive
String Greater Than Or Equal To

F2FCSSTRING_TRIM>= 127 Field To Field Case Sensitive
String Greater Than Or Equal To
(After Trimming)

F2FCSSTRING<= 66 Field To Field Case Sensitive
String Less Than Or Equal To

F2FCSSTRING_TRIM<= 128 Field To Field Case Sensitive
String Less Than Or Equal To
(After Trimming)

F2FCSSTRING<> 67 Field To Field Case Sensitive
String Not Equal To

F2FCSSTRING_TRIM<> 129 Field To Field Case Sensitive
String Not Equal To (After
Trimming)

Date Operators
Operator Symbol Operator | Description
Handle

DATE= 68 Date Equal To

DATE> 69 Date Greater Than

DATE< 70 Date Less Than

DATE>= 71 Date Greater Than Or Equal To

MQSeries Integrator Programming Reference for NEONRules

323

324

Operator Symbol Operator | Description

Handle
DATE<= 72 Date Less Than Or Equal To
DATE<> 73 Date Not Equal To

Field To Field Date Operators

Operator Symbol Operator | Description
Handle
F2FDATE= 74 Field To Field Date Equal To
F2FDATE> 75 Field To Field Date Greater Than
F2FDATE< 76 Field To Field Date Less Than
F2FDATE>= 77 Field To Field Date Greater Than
Or Equal To
F2FDATE<= 78 Field To Field Date Less Than Or
Equal To
F2FDATE<> 79 Field To Field Date Not Equal To
Time Operators
Operator Symbol Operator | Description
Handle
TIME= 80 Time Equal To
TIME> 81 Time Greater Than
TIME< 82 Time Less Than
TIME>= 83 Time Greater Than Or Equal To
TIME<= 84 Time Less Than Or Equal To
TIME<> 85 Time Not Equal To

MQSeries Integrator Programming Reference for NEONRules

Field To Field Time Operators

Operator Symbol Operator | Description
Handle
F2FTIME= 86 Field To Field Time Equal To
F2FTIME> 87 Field To Field Time Greater Than
F2FTIME< 88 Field To Field Time Less Than
F2FTIME>= 89 Field To Field Time Greater Than
Or Equal To
F2FTIME<= 90 Field To Field Time Less Than Or
Equal To
F2FTIME<> 91 Field To Field Time Not Equal To
DateTime Operators
Operator Symbol Operator | Description
Handle
DATETIME= 92 DateTime Equal To
DATETIME> 93 DateTime Greater Than
DATETIME< 94 DateTime Less Than
DATETIME>= 95 DateTime Greater Than Or Equal
To
DATETIME<= 96 DateTime Less Than Or Equal To
DATETIME<> 97 DateTime Not Equal To

MQSeries Integrator Programming Reference for NEONRules

325

Field To Field DateTime Operators

Operator Symbol Operator | Description
Handle

F2FDATETIME= 98 Field To Field DateTime Equal To

F2FDATETIME> 99 Field To Field DateTime Greater
Than

F2FDATETIME< 100 Field To Field DateTime Less
Than

F2FDATETIME>= 101 Field To Field DateTime Greater
Than Or Equal To

F2FDATETIME<= 102 Field To Field DateTime Less
Than Or Equal To

F2FDATETIME<> 103 Field To Field DateTime Not
Equal To

326 MQSeries Integrator Programming Reference for NEONRules

Appendix B
Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBMDirector of Licensing
| BM Cor por ati on

North Castle Drive
Armonk, NY 10504- 1785

U S A

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

| BM Wrld Trade Asia Corporation Licensing
2- 31 Roppongi 3-chone, M nato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

MQSeries Integrator Programming Reference for NEONRules 327

Appendix B

328

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

| BM Uni ted Ki ngdom Labor atori es,
Mai | Point 151,

Hur sl ey Park,

W nchester,

Hanpshi re,

Engl and,

SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.

MQSeries Integrator Installation and Configuration Guide

Notices

You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appeatr.

Trademarks and Service Marks

The following, which appear in this book or other MQSeries Integrator books,
are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

MXeri es
Al X
DB2
| BM

NeoNFormatter and NeonRules are trademarks of New Era of Networks, Inc.
in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service
marks of others.

MQSeries Integrator Programming Reference for NEONRules 329

Appendix B

330 MQSeries Integrator Installation and Configuration Guide

Index

Symbols
& operator 12
| operator 12

A

Action Management API functions
NNRMgrAddAction 234, 247
NNRMgrGetFirstAction 236
NNRMgrGetNextAction 238
NNRMgrResequenceAction 240
NNRMgrUpdateAction 244

Action Management APls 227
NNRAction 228
NNRActionData 230
NNRActionReadData 231
NNRActionUpdate 233

actions 20, 227

AND operator 12

APIs
action management 227
application groups 92
argument management 184
expression management 174
header files 27
member functions 27
message types 111, 115
option management 249
permissions 151
Rules 39
Rules error handling function 27
Rules Management 127
Rules Management APIs 85
Rules Management functions 27
Rules Management macros 27
subscription management 194
VRule member functions 27

Application Group Management API functions 97

NNRMgrReadApp 99

NNRMgrUpdateApp 107
Application Group Management APls 92
NNRApp 93
NNRAppData 94
NNRAppUpdate 96
application groups 11, 92
Argument Management API functions
NNRMgrGetFirstArgument 190
NNRMgrGetNextArgument 192
Argument Management APIs 184
NNRArg 185
NNRArgData 186
NNRArgUpdate 188
arguments 12

Boolean operators 12

C

class/type definitions 39
client code errors 273
CreateRulesEngine 39, 47

D

data processing errors 273
date operators 15
dates

standard notation 15
datetime operators 15
definitions 39
DeleteRuleEngine 39, 50
diskspace requirements 9
documents

NEONet documentation set 6

MQSeries Integrator Programming Reference for NEONRules 331

environments
multi-threaded 24
non-threaded 23
error codes 273
client code errors 273
data processing errors 273
permission errors 273
Rules Management data errors 273
error handling 81
eval 21, 52
Expression Management API functions
NNRmgrAddExpression 178
NNRMgrReadExpression 180
NNRmgrUpdateExpression 182
Expression Management APls 174
NNRExp 175
NNRExpData 176
expressions 12

G

getaction 62
GetErrorMessage 82
GetErrorNo 81
getformatterobject 79
gethitrule 45, 55
getlog 66
getnohitrule 45, 57
getopt 64

GetRerror 83
getsubscription 59

H

header files 27

I

1SO-8601:1988 standard date notation 15

L

libraries 36
linking to libraries 36
LoadRuleSet 71

332

M

memory requirements 9

Message Type Management API functions 115
NNRMgrAddMsg 115, 123, 125
NNRMgrReadMsg 117, 119, 121
NNRMsgData 113, 114

Message Type Management APIs 111
NNRMsg 112

message types 11, 111, 115

MQSeries Integrator
disk space requirements 9

multi-threaded environment 24

NN_CLEAR 154, 156

NNDate 87

NNPermissionData 153
NNR_CLEAR 91

NNRAction 228
NNRActionData 230
NNRActionReadData 231
NNRActionUpdate 233
NNRApp 93

NNRAppData 94
NNRAppUpdate 96

NNRArg 185

NNRArgData 186
NNRArgUpdate 188

NNRExp 175

NNRExpData 176
NNRGetErrorMessage 272
NNRMgrAddAction 234, 247
NNRmgrAddExpression 178
NNRMgrAddMsg 115, 123, 125
NNRMgrAddOption 256, 269
NNRMgrAddRule 135, 143
NNRMgrAddSubscription 203
NNRMgrChangeOwner 163
NNRMgrClose 90
NNRMgrDeleteEntireRule 148
NNRMgrDeleteEntireSubscription 109, 221
NNRMgrDeleteSubscriptionFromRule 219
NNRMgrDuplicateSubscription 105, 214
NNRMgrGetFirstAction 236
NNRMgrGetFirstArgument 190

MQSeries Integrator Programming Reference for NEONRules

NNRMgrGetFirstOperator 170 (o)
NNRMgrGetFirstOption 258
NNRMgrGetFirstPerm 157
NNRMgrGetFirstRule 139
NNRMgrGetFirstRuleUsingSubs 223
NNRMgrGetFirstSubscription 101, 103, 208
NNRMgrGetNextAction 238 operators
NNRMgrGetNextArgument 192 &12
NNRMgrGetNextOperator 172 |12
NNRMgrGetNextOption 260

Operator Management API functions
NNRMgrGetFirstOperator 170
NNRMgrGetNextOperator 172

Operator Management APls
NNROperator 169

AND 12
NNRMgrGetNextPerm 159 Boolean 12
NNRMgrGetNextRule 141 date 15
NNRMgrGetNextRuleUsingSubs 225 datetime 15
NNRMgrGetNextSubscription 211 OR 12
NNRMgrlnit 89 Rules 12
NNRMgrReadApp 99 time 15

NNRMgrReadExpression 180
NNRMgrReadMsg 117, 119, 121
NNRMgrReadRule 137
NNRMgrReadSubscription 206
NNRMgrResequenceAction 240
NNRMgrResequenceOption 262
NNRMgrUpdateAction 244
NNRMgrUpdateApp 107
NNRmgrUpdateExpression 182
NNRMgrUpdateOption 266
NNRMgrUpdateOwnerPerm 161, 165
NNRMgrUpdatePublicPerm 167
NNRMgrUpdateRule 145
NNRMgrUpdateSubscription 216
NNRMSG 112

NNRMsgData 113, 114
NNROperator 169

NNROption 250

Option Management API functions
NNRMgrAddOption 256, 269
NNRMgrGetFirstOption 258
NNRMgrGetNextOption 260
NNRMgrResequenceOption 262
NNRMgrUpdateOption 266

Option Management APIs 249
NNROption 250
NNROptionData 252
NNROptionReadData 253
NNROptionUpdate 255

option name-value pairs 43

OPTIONPAIR structures 43

options 20

OR operator 12

Overall Permission Macro
NN_CLEAR 156

. Overview 11
NNROptionData 252
NNROptionReadData 253
NNROptionUpdate 255 P
NNRRule 95, 127 Permission API functions 157
NNRRuleData 129 NNRMgrChangeOwner 163
NNRRuleReadData 131 NNRMgrGetFirstPerm 157
NNRRuleUpdate 133 NNRMgrGetNextPerm 159
NNRSubs 195 NNRMgrUpdateOwnerPerm 161, 165
NNRSubsData 197 NNRMgrUpdatePublicPerm 167
NNRSubsReadData 199 permission errors 273
NNRSubsUpdate 201 permissions
NNUserPermissionData 151 Rules 19

non-threaded environment 23

MQSeries Integrator Programming Reference for NEONRules 333

Subscription 19

Permissions APIs 151

Permissions Management API functions
NNPermissionData 153
NNUserPermissionData 151

Permissions Management API structures 151

R

requirements
diskspace 9
memory 9
MQSeries Integrator disk space 9
Rule Management API functions
NNRMgrAddRule 135, 143
NNRMgrDeleteEntireRule 148
NNRMgrGetFirstRule 139
NNRMgrGetNextRule 141
NNRMgrReadRule 137
NNRMgrUpdateRule 145
Rule Management APIs
NNRRule 95, 127
NNRRuleData 129
NNRRuleReadData 131
NNRRuleUpdate 133
RULE structure
gethitrule 45
getnohitrule 45
Rules 12
application groups 11
CreateRulesEngine 47
DeleteRuleEngine 50
libraries 36
linking to libraries 36
message types 11
NN_CLEAR 154
OPTIONPAIR 43
Overview 11
RULE structure 45
SUBSCRIPTION 41
thread-safe functions 23
VRule 39
VRule member functions
CreateRulesEngine 47
DeleteRuleEngine 50
VRule supporting functions 46
Rules APIs 39

334

Rules error codes 273
client code errors 273
data processing errors 273
permission errors 273
Rules Management data errors 273
Rules error handling 81
GetErrorMessage 82
GetErrorNo 81
GetRerror 83
Rules Management
NN_CLEAR 154
Rules Management APIs 85, 127
NNDate 87
NNRMgrClose 90
NNRMgrInit 89
Rules Management data errors 273
Rules Management error handling
NNRGetErrorMessage 272
Rules Management functions 27
Rules Management macros 27
NNR_CLEAR 91
Rules operators 12
Rules permissions 19

S

standard date notation 15

Subscription Management API functions
NNRMgrAddSubscription 203
NNRMgrDeleteEntireSubscription 109, 221
NNRMgrDeleteSubscriptionFromRule 219
NNRMgrDuplicateSubscription 105, 214
NNRMgrGetFirstRuleUsingSubs 223
NNRMgrGetFirstSubscription 101, 103, 208
NNRMgrGetNextRuleUsingSubs 225
NNRMgrGetNextSubscription 211
NNRMgrReadSubscription 206
NNRMgrUpdateSubscription 216

Subscription Management APIs 194
NNRSubs 195
NNRSubsData 197
NNRSubsReadData 199
NNRSubsUpdate 201

Subscription permissions 19

SUBSCRIPTION structures 41

subscriptions 20

MQSeries Integrator Programming Reference for NEONRules

T

ThreadCleanup 67
thread-safe functions 23
time operators 15

\")

Virtual Rules Engine 39
VRule member functions 27
CreateRulesEngine 47
DeleteRuleEngine 50
eval 52
getaction 62
getformatterobject 79
gethitrule 55
getlog 66
getnohitrule 57
getopt 64
getsubscription 59
LoadRuleSet 71
ThreadCleanup 67
VRule object 39
VRule supporting functions 46

MQSeries Integrator Programming Reference for NEONRules

335

Sending your commentsto IBM
MQSeries I ntegrator

Programming Reference for neonRuUles
SC34-5506-01

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.
Please limit your comments to the information in this book only and the way
in which the information is presented.

To request additional publications or make comments about the functions of
IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:
m By mail, use the Readers’ Comment Form
m By fax:

— From outside the U.K., use your international access code
followed by 44 1962 870229

— From within the U.K., use 01962 870229
Electronically, use the appropriate network ID:
= IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
m IBMLink: HURSLEY(IDRCF)
= Internet: idrcf@hursley.ibm.com
Whichever you use, ensure that you include:
= The publication number and title
m The page number or topic number to which your comment applies

= Your name/address/telephone number/fax number/network 1D

Readers’ Comments

MQSeries Integrator

Programming Reference forneonRules

SC34-5506-01
Use this form to tell us what you think about this manual. If you have found
errors in it, or if you want to express your opinion about it (such as
organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer. This form is provided
for comments about the information in this manual and the way it is
presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate without
incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address
Company or organization

Telephone Email

MQSeries Integrator Programming Reference for NEONRules SC34-5506-01

You can send your comments POST FREE on this form from any one of these countries: 2
(@]
Australia Finland Iceland Netherlands Singapore United States s
Belgium France Israel New Zealand Spain of America %
Bermuda Germany Italy Norway Sweden i
Cyprus Greece Luxembourg Portugal Switzerland 3
Denmark Hong Kong Monaco Republic of Ireland United Arab Emirates
If your country is notlisted here, yourlocal IBM representative will be pleased to forward your comments
tous. Oryou can pay the postage and send the form directto IBM (this includes mailinginthe U.K.).
E Foldalongthisline
By airmail NE PAS AFFRANCHIR
Par avion
IBRS/CCRINUMBER: PHQ-D/1348/SO
NO STAMP REQUIRED
—— i —]
|
IBM United Kingdom Laboratories
Information Development Department (MP 095)
Hursley Park
WINCHESTER, Hants
S0212z2z7 United Kingdom
E] Fold alongthisline
From: Name
Company or Organization
Address =
e
g
EMAIL =
Telephone g

ﬂ Fastenhere with adhesive tape

Printed in U.S.A

SC34-5506-01

	Contents
	Introduction
	Product Documentation Set
	Summary of Changes
	Supported Platforms and Compilers
	Disk Space and Memory Requirements
	MQSeries Integrator Disk Space Requirements

	Year 2000 Readiness Disclosure

	Rules Overview
	NEONRules Components
	Application Groups
	Message Types
	Rules

	Suggested Flow of Calls for Rules Evaluation
	Thread-Safe Rule Evaluation

	APIs and Header Files
	Libraries

	Rules APIs
	Class/Type Definitions
	VRule Supporting Functions
	VRule Member Functions
	Rules Error Handling

	Rules Management APIs
	Rules Management API Structures
	Overall Rules Management APIs and Macros
	Application Group Management APIs
	Application Group Management API Structures
	Application Group Management API Functions

	Message Type Management APIs
	Message Type Management API Structures
	Message Type Management API Functions

	Rule Management APIs
	Rule Management API Structures
	Rule Management API Functions

	Permissions APIs
	Permission Management API Structures
	Overall Permission Macro
	Permission API Functions

	Operator Management APIs
	Operator Management API Structures
	Operator Management API Functions

	Expression Management APIs
	Expression Management API Structures
	Expression Management API Functions

	Argument Management APIs
	Argument Management API Structures
	Argument Management API Functions

	Subscription Management APIs
	Subscription Management API Structures
	Subscription Management API Functions

	Action Management APIs
	Action Management API Structures
	Action Management API Functions

	Option Management APIs
	Option Management API Structures
	Option Management API Functions

	Rules Management Error Handling

	Rules Error Messages
	Operator Types
	Notices
	Trademarks and Service Marks

	Index

