MQSeries® Integrator

Application Development Guide

Version 1.1

SC34-5508-01

Note: Before using this information, and the product it supports, be sure to read the general
information under Notices on page 43.

Second edition (June 1999)

This edition applies to IBM® MQSeries Integrator, Version 1.1 and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your
locality. Publications are not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to
make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

SO212JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright New Era of Networks, Inc., 1998, 1999. All rights reserved.

© Copyright International Business Machines Corporation, 1999. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Chapter 1: Introductionccccvvvcirnnnncnnnnnaa 1

MQSeries INtegrator OVEIVIEW.........c.cccivveriiierieeeeee s se st enesneens 1
IVIQSEBIIBS ... ittt ettt ettt sttt ettt et ebe e besbe e sbesreebeetaebe e e e sbeeree e 1
NEONFOIMEATLET ... 1
=0T N U] =TSSR 2
MQSeries Integrator RUIES DaemoONcccevveveeieeeiee s 2

Product DOCUMENTALION SETcccciiiiriiiiiireree s 3

SUMMArY OFf CHANQES ...c.vcviciicece et ereaneas 4

Supported Platforms and COMPIIErSccccovviviiiviiie s 5

Year 2000 Readiness DiSCIOSUIE........cccoviieiieieeice e 6

Chapter 2: Application Programming7

Rules Processing DaemONcocii ittt st e sbesnea 7

IMIESSAGES ...ttt bt ettt et b e b e she b bbb e e e bt enb e nnr bt ebe e 8
NEON HEAUETc.oiiti ettt re s 8

MQORFH STTUCTUIE ...t 9
NEON Option BUFErcco it 10

Chapter 3: Database Abstraction Layer

APIS and Header Fles.........cooiiiiiiie e e 12
Source Code fOr DUITAMESSA0Ecc.ovueiiiiriiieiiees et 29
Sample Application Using buildMessageccocoeieneniiiiieineecsene e 32
Trademarks and Service Marks ..o 45

MQSeries Integrator Application Development Guide i

MQSeries Integrator Application Development Guide

Chapter 1
Introduction

MQSeries Integrator Overview

MQSeries Integrator provides the flexibility and scalability that allows true
application integration. MQSeries Integrator consists of four components:

= MQSeries
m NEONFormatter
m NeoNRules

= MQSeries Integrator Rules daemon

MQSeries

MQSeries is message-oriented middleware that is ideal for high-value
message handling and high-volume applications because it guarantees each
message is delivered only once, and it supports transactional messaging.
Messages are grouped into units of work and either all or none of the
messages in a unit of work are processed.

NEONFormatter

NeoNFormatter translates messages from one format to another.
NeonFormatter handles multiple message format types from multiple data
value sources with the ability to convert and parse messages. Messages can be
converted from any described format to any other described format (if fields
in input data formats are missing, you can set up defaults for those fields on
output). When a message is provided as input to NeonFormatter, the message
is parsed and data values are returned. NeonFormatter can handle virtually
any message format, including fixed (for example, COBOL records),

MQSeries Integrator Application Development Guide 1

Chapter 1

delimited (for example, C null delimited strings), and variable, tagged,
delimited, repetitive and recursive formats (for example, S.W.I.F.T. messages).

Defining message formats in NeonFormatter’s database is done through the
graphical user interface (GUI). The GUI leads you through the definitions of
format components, for example, tags, delimiters, and patterns, to the
building of complete message definitions.

NEONRules

NeoNRules lets you develop rules for managing message destination 1Ds,
receiver locations, expected message formats, and any processes initiated
upon message delivery. The creation and dispatch of multiple messages to
multiple destinations from a single input message is supported, and different
formats and transport methods for each is allowed. The dynamic nature of
the Rules Engine means that rules can be effective immediately, staged over
time, or delayed, depending on how the reload messages are timed, allowing
flexibility in rapidly changing environments.

NeoNRules can examine the value of any field or group of fields in a message
to make its determinations. It can aggregate conditions with the Boolean
AND and OR operators without architectural limits as to the number or
complexity of the expressions.

MQSeries Integrator Rules Daemon

The MQSeries Integrator Rules daemon combines MQSeries, NeonFormatter,
and neoNRules in a generic server process. The MQSeries Integrator Rules
daemon processes messages from one or more MQSeries input queues, uses
NEoNFormatter to parse messages, uses NeonRules to determine what
transformations to perform and where to route the messages, and then puts
the output messages on MQSeries queues for delivery to applications. See the
MQSeries Integrator System Management Guide for detailed information
about the MQSeries Integrator Rules Daemon.

MQSeries Integrator Application Development Guide

Introduction

Product Documentation Set

The MQSeries Integrator documentation set includes:

MQSeries Integrator Installation and Configuration Guide helps end
users and engineers install and configure MQSeries Integrator.

MQSeries Integrator User’s Guide helps MQSeries Integrator users
understand and apply the program through its graphical user
interfaces (GUIs).

MQSeries Integrator System Management Guide is for system
administrators and database administrators who work with
MQSeries Integrator on a day-to-day basis.

MQSeries Integrator Application Development Guide assists
programmers in writing applications that use MQSeries Integrator
APIs.

Programming References are intended for users who build and
maintain the links between MQSeries Integrator and other
applications. The documents include:

— MQSeries Integrator Programming Reference for NeonFormatter
is a reference to Formatter APIs for those who write applications
to translate messages from one format to another.

— MQSeries Integrator Programming Reference for NeonRules is a
reference to Rules APIs for those who write applications to
perform actions based on message contents.

Notes:
For information on message queuing, refer to the IBM MQSeries
documentation.

MQSeries Integrator Application Development Guide

Chapter 1

Summary of Changes

This document is a major revision in support of the functional changes
introduced with Version 1.1. This revision also includes maintenance and
editorial changes.

The following summarizes the new information.

MQSeries Integrator now supports message processing from multiple input
queues. Chapter 2: Application Programming on page 7 discusses this feature in
general terms. Complete details on how to specify multiple input queues is
located in MQSeries Integrator System Management, The MQSeries Integrator
Rules Daemon on page 151.

4 MQSeries Integrator Application Development Guide

Introduction

Supported Platforms and Compilers

Operating System | DBMS Compiler

AlX 42,43 DB25.0 IBM C Set ++ version 3 or later
DB25.2

Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

HP-UX 10.20 DB25.0 HP C++ version 10.40
DB25.2 (HP-UX 10.20)

Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

Solaris 2.5.1, 2.6 DB25.0 Sparcworks C++ compiler
DB25.2 version 4.2

Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

Windows NT 4.0 DB25.0 Microsoft Visual C++
DB25.2 version 6.0

Oracle 7.3.4
Oracle 8.0.5
MSSQL Server 6.5
Sybase 11.5
Sybase 11.9

MQSeries Integrator Application Development Guide 5

Chapter 1

Year 2000 Readiness Disclosure

MQSeries Integrator, when used in accordance with its associated
documentation, is capable of correctly processing, providing, and/or
receiving date information within and between the twentieth and twenty-first
centuries, provided that all products (for example, hardware, software, and
firmware) used with this IBM program properly exchange accurate date
information with it.

Customers should contact third party owners or vendors regarding the
readiness status of their products.

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:
http://www.software.ibm.com/ts/magseries/platforms/supported.html

For the latest IBM statement regarding Year 2000 readiness, refer to:
http://www.ibm.com/ibm/year2000/

6 MQSeries Integrator Application Development Guide

http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.ibm.com/ibm/year2000/

Chapter 2
Application Programming

Rules Processing Daemon

The MQSeries Integrator Rules daemon combines MQSeries, NEoNFOrmatter,
and NneoNRules in a generic server process. The MQSeries Integrator Rules
daemon processes messages from one or more MQSeries input queues, uses
NEONFormatter to parse messages, uses NEoNRules to determine what
transformations to perform and where to route the messages, then puts the
output messages on MQSeries queues for delivery to applications.

MQSeries Integrator Application Development Guide 7

Chapter 2

Messages

MQSeries messages sent to the rules processing daemon have the following
format:

MQSeries Message Descriptor
(MQMD)

| Format= MQRHF |

MQIntegrator
Message <€——
Header

| — MQRFH Header

+——MQIntegrator Options

+——Application Data

Message Body

MQSeries Integrator Message Format

NEON Header

The first part of the message body is the NEON header. This header contains
the application group and message type information that the neonRules
processing daemon requires to parse the message. If the NeonRules processing
daemon receives a message that does not contain a NEON header, it assigns
default values for both the application group and message type.

Applications that put messages to the neonRules processing daemon input
queue indicate that a NEON header precedes the application data by setting

8 MQSeries Integrator Application Development Guide

Application Programming

the format field of the MQMD structure to MQFMT_RF_HEADER where
MQFMT_RF_HEADER is defined as the eight-character string: MQRFHbbb

(b = space).

The NEON header consists of two parts: the MQRFH structure and the

NEON option buffer.

MQRFH Structure

The MQRFH structure contains the following fields:

Field

Description

Strucld (MQCHAR4)

The identifier for the MQRFH structure. The value must
be: MQRFH_STRUC_ID = “RFHb” (b = space).

Version (MQLONG)

The identifier for Version-1 MQRFH structure. The value
must be: MQRFH_VERSION_1.

StrucLength The length of the MQRFH structure and the subsequent
(MQLONG) option buffer. There is no default value for this field
because the value depends on the length of the option
buffer, which may be different for each message.
Encoding Encoding of the data following the MQRFH structure. The
(MQLONG) queue manager does not check the value of this field. The

initial value of this field is MQENC_NATIVE.

CodedCharSetld
(MQLONG)

Character set identifier of the data following the MQRFH
structure. The queue manager does not check the value of
this field. The initial value of this field is zero.

Format (MQCHARS)

Format name of the data following the MQRFH structure.
The queue manager does not check the value of this field.
See the description of the Format field in the MQMD
structure for more information about Format names. The
initial value of this field is MQFMT_NONE.

Flags (MQLONG)

General flags.

MQSeries Integrator Application Development Guide 9

Chapter 2

NEON Option Buffer

The NEON option buffer immediately follows the MQRFH structure in the
NEON header. The option buffer consists of a collection of space-delimited
tag/value pairs. The size of the NEON option buffer can be calculated as
follows:

Opti onBuf ferLength = MJRFH. StrucLength - si zeof (MOQRFH)

The data in the NEON option buffer is in the following form:
<tagnamel>b<valuel>b<tagname2>b<value2>b (etc.)

Tag names and values cannot contain nulls or b (b = space).
Recognized names in option buffer:

= OPT_APP_GRP
Application Group

s OPT_MSG_TYPE
Message Type

m OPT _RELOAD RULE_SET
Reload Rule Set

s OPT _SHUTDOWN
Shutdown

10 MQSeries Integrator Application Development Guide

Chapter 3

Database Abstraction Layer
APIs

The Database Abstraction Layer APIs section describes functions used in
Formatter and Rules APIs for database abstraction. Database Abstraction

Layer APIs provide a means of managing transactions and maintaining data
integrity.

Make sure the session state is accessible by using the Ok() function.

OpenDbmsSession() provides MQSeries Integrator functions a session name
to associate with a MQSeries Integrator database. CloseDbmsSession() cleans
up an MQSeries Integrator session and releases any residual storage that may

have been allocated by MQSeries Integrator or the DBMS during a program’s
execution.

MQSeries Integrator Application Development Guide 11

Chapter 3

APIs and Header Files

Header files contain declarations for class functions and declarations for data
types and constants.

Header Files

Object Description Header File
Class
DbmsSession For Class DbmsSession ses.h

Declarations

Procedural APIs for sqglapi.h
DbmsSession

DbmsSession Factory Functions

Return Function Arguments
Type

DbmsSession* | OpenDbmsSession | (char *SessionName, int DbmsType)

DbmsSession* | OpenDbmsSession | (void* SessionHandle, int DbmsType)

DbmsSession* | OpenDbmsSession | (const char* const sessionName, const
char* const configFileName, int
DbmsType)

DbmsSession* | OpenDbmsSession | (const char * const serverName, const
char * const userlD, const char * const
passwd, const char * const dblnstance, int

DbmsType)
void CloseDbmsSession | (DbmsSession* Session)
int Ok 0

12 MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs

Ok

Overview

The state of the DbmsSession class.
Syntax
int Ok();

Parameters
None
Remarks

None.

Return Value

Returns 1 or TRUE for a class state that is usable, and zero (0) or FALSE if the
class is not usable.

Example

#i ncl ude "dbtypes. h"
DbnsSessi on *nySessi on;
/1 logon to the Sybase dat abase
nmySessi on = OpenDbnsSessi on("neonSYB", NN_DB TYPE _SYB CT);
if (!'mySession || !'mySession->k()) {
/| Dat abase session not created or not
connect ed

}

MQSeries Integrator Application Development Guide 13

Chapter 3

14

OpenDbmsSession
Overview

OpenDbmsSession searches the sqlsvses.cfg configuration file for an entry
named SessionName and instantiates a DbmsSession object of type
DbmsType. The sqlsvses.cfg file must be in the same directory as the program
executable file.

Syntax
DbnsSessi on* OpenDbnsSessi on(char *Sessi onNane,
int DonsType);
Parameters
Name Type | Input/ | Description
Output

SessionName char * Input Identifies the session tag name in the
configuration file to be used. The tag
name is the first field of a line in the
configuration file.

DbmsType int Input Identifies the type of database to use.
Supported types are defined in
dbtypes.h.

Remarks

A call to OpenDbmsSession() is required prior to using any of the high-level,
Formatter or Rules APIs.

Return Value

Returns a session pointer for use in other MQSeries Integrator API calls;
NULL if the session object could not be allocated.

MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs

It is the application programmer’s responsibility to make sure the session
state is accessible using the Ok() function. Ok() should return a zero (0) if the
session state is operational.

Example

#i ncl ude "dbtypes. h"

DbnsSessi on *mySessi on;

nmySessi on = QpenDbnsSessi on(" nytag", NN_DB_TYPE_ORA7) ;
if (!'mySession || !mySession->Ck())

{
... |* Database session not created or not connected */
}

/* Use for Rules or Formatter */

See Also

OpenDbmsSession(SessionHandle, DbmsType)

OpenDbmsSession(SessionName, configFileName, DbmsType)

OpenDbmsSession(serverName, userlD, passwd, dblnstance, DbmsType)

CloseDbmsSession (DbmsSession * Session)

MQSeries Integrator Application Development Guide 15

Chapter 3

OpenDbmsSession
Overview

OpenDbmsSession() enables the user to connect to a MQSeries Integrator
database using a pre-existing, database-specific, user-created (such as a
Sybase DBPROC or Microsoft SQL Server handle, or Oracle LDA) session
handle. DbmsType indicates the database vendor and version.

Syntax
DbnsSessi on* OpenDbnsSessi on(voi d* Sessi onHandl e,
int DonsType);
Parameters
Name Type | Input/ | Description
Output
SessionHandle void* | Input Identifier for interacting with MQSeries
Integrator databases. For example, this
is the DBPROC handle for Sybase and
SQL Server, and LDA for Oracle.
DbmsType int Input Supported types are defined in
dbtypes.h.
Remarks

A call to OpenDbmsSession() is required prior to using any of the high-level,
Formatter APIs, or Rules APIs.

Return Value

Returns a session pointer for use in other MQSeries Integrator API calls;
NULL if the session object could not be allocated.

It is the application programmer’s responsibility to make sure the session
state is accessible using the Ok() function. Ok() should return a zero (0) if the
session state is operational.

16 MQSeries Integrator Application Development Guide

Example

#i ncl ude "dbtypes. h"
DbnsSessi on *mySessi on;
Lda_Def * nylLda;
/1 Manually log on to Oracl e database
nmySessi on = QpenDbnsSessi on((void *)nyLda, NN_DB_TYPE_CRA7);
if ('mySession || !mySession->k()) {
/| Database session not created or not connected

/1l Use for Rules or Formatter

See Also

OpenDbmsSession(SessionName, DbmsType)

OpenDbmsSession(SessionName, configFileName, DbmsType)

OpenDbmsSession(serverName, userlD, passwd, dblnstance, DbmsType)

CloseDbmsSession (DbmsSession * Session)

MQSeries Integrator Application Development Guide

17

Chapter 3

OpenDbmsSession
Use this call to open a DbmsSession with a specific file other than sqlsvses.cfg.
Syntax

OpenDbnsSessi on (const char* const sessi onNane,
const char*const confi gFi |l eNane,

i nt DbnsType)
Parameters
Name Type Input/ | Description
Output
SessionName const char* Input Identifies the session tag name in
const the configuration file to be used.
The tag name is the first field of a
line in the configuration file.
configFileName const char* Input The configuration file name that
const has the same format as the
sqlsvses.cfg default file name.
DbmsType int Input Identifies the type of database to
use. Supported data types are
defined in dbtypes.h.
Remarks

The alternative configuration file must be in the same format as the
sqlsvses.cfg file. A call to OpenDbmsSession() is required prior to using any
of the high-level Formatter or Rules APIs.

Return Value

If the OpenDbmsSession call is successful, returns a currently open
DbmsSession; NULL if the session object could not be allocated.

18 MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs

It is the application programmer’s responsibility to make sure the session
state is accessible using the Ok() function. Ok() should return a zero (0) if the
session state is operational.

Example

i ncl ude dbtypes. h
DbnmsSessi on *sessi on = OpenDbnsSessi on ("oraHub",
"configFile.txt",
NN_DB_TYPE_ORA7) ;
if (!session)
/1 handl e error

See Also

OpenDbmsSession(SessionName, DbmsType)

OpenDbmsSession(SessionHandle, DbmsType)

OpenDbmsSession(serverName, userlD, passwd, dblnstance, DbmsType)

CloseDbmsSession (DbmsSession * Session)

MQSeries Integrator Application Development Guide 19

Chapter 3

OpenDbmsSession

Overview

This overloaded version of OpenDbmsSession() enables the user to connect to
a MQSeries Integrator database using a pre-existing database server name,
user ID, password, database instance, and database type.

Syntax

DbnsSessi on* OpenDbnsSessi on(const

char* const serverNane,

const char* const userlD,
const char* const passwd,
const char* const dbl nstance,
int DonsType);
Parameters
Name Type Input/ | Description
Output
serverName const char* Input Server where the MQSeries
const Integrator database is resident.
userld const char* Input The database user name.
const
passwd const char* Input The database password.
const
SessionHandle | void * Input Database session name to be used
by MQSeries Integrator
applications. This can be any string
as long as it is unique.
DbmsType int Input Identifies the type of database to
use. Supported types are defined in
dbtypes.h.

20 MQSeries Integrator Application Development Guide

Remarks

A call to OpenDbmsSession() is required prior to using any of the high-level,
Formatter APIs or Rules APIs.

Return Value

Returns a session pointer for use in other MQSeries Integrator API calls;
NULL if the session object could not be allocated.

It is the application programmer’s responsibility to make sure the session
state is accessible using the Ok() function. Ok() should return a zero (0) if the
session state is operational.

Example

#i ncl ude "dbtypes. h"

DbmsSessi on *mySessi on;

nmySessi on = QpenDbnsSessi on(" Portl and", "Reno", "Denver",
"Atl anta", NN_DB_TYPE_ORA7);

if ('nmySession || !mySession->Ck())

{

.../ * Database session not created or not connected */

}

...l* Use for Rules or Formatter */

See Also

OpenDbmsSession(SessionName, DbmsType)

OpenDbmsSession(SessionHandle, DbmsType)

OpenDbmsSession(SessionName, configFileName, DbmsType)

CloseDbmsSession (DbmsSession * Session)

MQSeries Integrator Application Development Guide 21

Chapter 3

22

CloseDbmsSession

Overview

CloseDbmsSession() cleans up a MQSeries Integrator session and releases any
residual storage that may have been allocated by MQSeries Integrator during
execution. Once a session is closed, use OpenDbmsSession() to establish
another DBMS session.

Syntax

voi d Cd oseDbnsSessi on(DbnsSessi on* Sessi on);

Parameters
Name | Type Input/ | Description
Output
Session DbmsSession* Input Pointer to a currently open
DbmsSession. Session MUST have been
allocated using one of the
OpenDbmsSession() methods.
Remarks

CloseDbmsSession() should be the last call after all MQSeries Integrator
processing is complete.

Return Value
None. There are no error-handling functions for CloseDbmsSession().
Example

#i ncl ude "dbtypes. h"
DbnsSessi on *nySessi on;
nmySessi on = QpenDbnsSession(. . .)

/1 Al work on open session mySession is conplete
Cl oseDbnsSessi on(nySessi on) ;

MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs

See Also

OpenDbmsSession(SessionName, DbmsType)

OpenDbmsSession(SessionHandle, DbmsType)

OpenDbmsSession(SessionName, configFileName, DbmsType)

OpenDbmsSession(serverName, userlD, passwd, dblnstance, DbmsType)

MQSeries Integrator Application Development Guide 23

Chapter 3

24

DbmsType

Identifies the database type of DbmsSession object.

Syntax
int DbnsType();
Parameters

None

Return Value

The DBMS type of DbmsSession is returned. Based on the Dbms you are
using, the NN_DB_TYPE macro is set accordingly and provides the
appropriate value. Complete definitions of the DBMS types is located in
dbtypes.h. The dbtypes.h file must be included in the header file.

Database Session Types

Return Value Description
NN_DB_TYPE_SYB_CT Sybase ctlib
NN_DB_TYPE_SYB_DB Sybase dblib
NN_DB_TYPE_ORA7 Oracle 7.3.X
NN_DB_TYPE_ORAS Oracle 8.0.X

NN_DB_TYPE_MSSQL

Microsoft SQLServer

NN_DB_TYPE_DB2

IBM DB2 ODBC CLI

NN_DB_TYPE_ODBC

ODBC

NN_DB_TYPE_MQSERIES

IBM MQSeries

If using platform or database specific sections of code, you must add compiler
flag options at compile time. The following table identifies the compiler flags

for each DBMS.

MQSeries Integrator Application Development Guide

Database Abstraction Layer APIs

Compiler Flag Description

-Doracle Oracle (7.3 or 8.0)

-Dsybase Sybase (ctlib or dblib)

-Dmssql Microsoft SQLServer

-Dodbc ODBC or DB2

-Dmgseries IBM MQSeries
Example

i f (nySession->DbnsType() == NN_DB _TYPE_SYB_CT) {
nmyHandl e = (DBPROCESS *) nySessi on- >Handl e() ;
} ce

See Also

DbmsSession::Handle ()

DbmsSession (SessionName, DbmsType)

DbmsSession (SessionHandle, DbmsType)

DbmsSession (sessionName, configFileName, DbmsType)

DbmsSession (serverName, UserlD, passwd, dblnstance, DbmsType)

OpenDbmsSession (sessionHandle, DbmsType)

MQSeries Integrator Application Development Guide 25

Chapter 3

26 MQSeries Integrator Application Development Guide

Chapter 4

buildMessage

The buildMessage routine builds messages with an MQSeries Integrator
header and initializes the associated message descriptor. After calling
buildMessage, the application can call MQPUT with the message descriptor
and the message buffer supplied by buildMessage.

Function Declaration for buildMessage
int buil dMessage(MQVD* nd,

char* data,

| ong dat aLengt h,

char *dataForm

i nt *bufferlLength,

char *buffer,

char *applicationG oup,
char *nessageType,

i nt shut down,

int rel oad)

Parameter Descriptions for buildMessage

Parameter Description

md Pointer to an MQSeries message descriptor allocated by the
calling application.

data Pointer to the application data.

datalLength Length of the application data.

dataFormat The format of the data contained in the buffer pointed to by
the data parameter.

buffer The pointer to the memory where buildMessage will put the

MQSeries Integrator message.

MQSeries Integrator Application Development Guide

27

Chapter 4

28

Parameter Description

bufferLength The size of the buffer.

applicationGroup The application group to associate with the message. This
parameter should be set to NULL when building
SHUTDOWN messages.

messageType The message type to associate with the message. This
parameter should be set to NULL when building
SHUTDOWN messages.

shutdown Set to 1 for SHUTDOWN messages; 0 otherwise.

reload Set to 1 for RELOAD messages; 0 otherwise.

Example Calls to buildMessage

To build a message with application group “TestApp” and message type
“TestMsgType”, call the buildMessage routine as follows:

bui | dMessage(&d, datalLength, data, "MXTR',
buf ferLength, buffer, "TestApp", "testMsgType", 0.0);
To build a SHUTDOWN message, call the routine as follows:
bui | dMessage(&rd, NULL, NULL, O, NULL, O, NULL, NULL,
1, 0);
To build a RELOAD message to reload the TestApp/TestMsgtType rule set,
call the routine as follows:

bui | dMessage(&nd, 0, NULL, 0, 0, NULL, "TestApp",
"Test MsgType", 0, 1);

MQSeries Integrator Application Development Guide

Source Code for buildMessage

#i ncl ude "Ml rfheader. h"
#i nclude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <stdio. h>

int buil dMessage(MAVD* nd, | ong datalength, char* data,
char *dataFornat, int *bufferLength, char *buffer,
char *applicati onG oup, char *nessageType,
i nt shutdown, int rel oad)

char optionBuffer[1024];

i nt outputCursor = 0;

i nt optionBufferLength = 0;
MAMVD t npMl = { MQVD_DEFAULT} ;
MQRFH header = { MORFH_DEFAULT};

mencpy(nmd, & npMl, sizeof (MAWD));
menset (optionBuffer, 0, sizeof(optionBuffer));

/[*Construct the Option Buffer*/
if (applicationGoup != NULL)

{
strcat (opti onBuf fer, "OPT_APP_GRP");
strcat (opti onBuffer, " ");
strcat (opti onBuf fer, applicationG oup);
strcat (opti onBuffer, " ");

}

if (messageType != NULL)

{
strcat (opti onBuf fer, "OPT_MSG TYPE");
strcat (opti onBuffer, " ");
strcat (opti onBuf fer, nessageType);
strcat (opti onBuffer, " ");

}

if (shutdown > 0)

MQSeries Integrator Application Development Guide

buildMessage

29

Chapter 4

30

{
strcat (opti onBuf fer, "OPT_SHUTDOMW');
strcat (opti onBuffer, " ");
strcat (opti onBuf fer, "SHUTDOMW');
strcat (opti onBuffer, " ");
}
if (reload > 0)
{
strcat (opti onBuf fer, "OPT_RELOAD RULE SET");
strcat (opti onBuffer, " ");
strcat (opti onBuffer, "TRUE");
strcat (opti onBuffer, " ");
}
if (strlen(optionBuffer) > 0)
{
/*Renove Trailing Bl ank*/
optionBuf ferLength = strlen(optionBuffer) - 1;
}
el se
{
opti onBuf ferLength = strlen(optionBuffer);
}

/*Construct the MQRFH structure*/
header. StrucLength = si zeof (MQRFH) +
opti onBuf f er Lengt h;

if (dataFormat != NULL)
{
strncpy(header. Format, dataFormat,
si zeof (header. Format)) ;
}

/*Make sure there is enough roomin the buffer to hol d*/
/*the header, options and data*/
if (*bufferLength <

(sizeof (MQRFH) + optionBufferLength + datalLength))

{

MQSeries Integrator Application Development Guide

buildMessage

return (0);

}

/*Transfer header, options, and data to the nessage */

/* buffer */

mencpy(buf fer + out put Cursor, &header, sizeof (MQRFH));

out put Cursor += si zeof (MQRFH);

mencpy(buf fer + outputCursor, optionBuffer, optionBufferLength);
out put Cursor += opti onBufferLength;

if (data !'= NULL)

{
mencpy(buf fer + output Cursor, data, datalength);
out put Cur sor += dat aLengt h;
}
el se
{
return(0);
}

/*Return the size of the header + options + data*/
*puf fer Lengt h = out put Cursor;

/*Set the nmessage descriptor format field */
/*to indicate that an MJ ntegrator header is present */
/*in the message buffer. */
strncpy(md->Format, " MMHRF ", sizeof (nd->Format));
return(l);

}

MQSeries Integrator Application Development Guide 31

Chapter 4

Sample Application Using
buildMessage

The following source code is from the amqgsput0.c MQSeries sample
application and is modified to use the buildMessage routine. The program
functions the same as amqsput0, except it prepends an MQSeries Integrator
header to each message that is sends. The program assigns the application
group “TestApp” and the message type “TestMsg” to each message that it

puts.

/
khkkhkkhhkkhkkhhhkhkkhkkhhhhhhhhhhkdhhhhdhhhhhddhhdddhhddhrhrddhrhhkddhrrrdxhhdhxxx*
*****/

/*

*/

/* Program nanme: AMXBPUTO
*/

/*

*/

/* Description: Sanple C programthat puts nmessages to
*/

/* a nessage queue (exanpl e using MYPUT)
*/

/*

*/

/* Statement: Li censed Materials - Property of |BM
*/

/*

*/

/* 84H2000, 5765-B73
*/

/* 84H2001, 6539-B42
*/

/* 84H2002, 5765-B74
*/

/* 84H2003, 5765-B75
*/

32 MQSeries Integrator Application Development Guide

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

84H2004, 6539-B43

*/
(C Copyright |1BM Corp. 1994, 1997
*/
*/
khkkhkkhhkkhkkhhkhkhkkhkkhhhhhkhhhhhkkhhhhdhhhhkhkhdhhhddhhhddhhrhrddhrhhkddhrxrdxhhddxx*x*
*****/
*/
Functi on:
*/
*/
*/
AMXSPUTO is a sanple C programto put nmessages on a nessage
*/
queue, and is an exanple of the use of MQPUT.
*/
*/
-- messages are sent to the queue named by the paraneter
*/
*/
-- gets lines from Stdln, and adds each to target
*/
queue, taking each line of text as the content
*/
of a datagram nmessage; the sanple stops when a null
*/
line (or EOF) is read.
*/
New- | i ne characters are renoved.
*/
If aline is longer than 99 characters it is broken up
*/
into 99-character pieces. Each piece becones the
*/
content of a datagram message.

MQSeries Integrator Application Development Guide 33

Chapter 4

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

34

*/

If the length of alineis a nultiple of 99 plus 1
*/

e.g. 199, the last piece will only contain a newline
*/

character so will term nate the input.
*/
*/

-- wites a nessage for each MJ reason other than

*/

MIRC _NONE; stops if there is a MJ conpletion code
*/

of MQCC_FAI LED
*/
*/
Program | ogi c:
*/

MQXOPEN t ar get queue for OUTPUT
*/

while end of input file not reached,
*/

read next |ine of text
*/
MQPUT dat agram nmessage with text line as data

*/

MXCLCSE t arget queue
*/
*/
*/
EE R I S O O
*****/
*/
AMQSPUTO has 2 paraneters
*/

- the nane of the target queue (required)

*/

MQSeries Integrator Application Development Guide

buildMessage

/* - queue manager nane (optional)
*/

/*
*/

/

R R I R S kR O

*****/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
/* includes for MJ */
#i ncl ude <cngc. h>
int main(int argc, char **argv)

{

/* Declare file and character for sanple input

FI LE /*fp;

/* Declare MJ structures needed

NQOD/ od = { MQOD DEFAULT}; /*

I\/QVD/ md = { MOVD_DEFAULT}; /*

I\/QDI\/(; pno = { MOPMO DEFAULT}; /*
*/

Ohj ect Descri ptor
Message Descri ptor

put nmessage options

/** note, sample uses defaults where it can **/

MHCONN Hcon; /*
I\/Q—KB/J Hobj ; /*
I\/Q.O\iG O _opti ons; /*
I\/Q_O\iG C options; /*
I\/Q_O\iG ConpCode; /*
I\/Q.O\iG OpenCode; [*
I\/Q_O\iG Reason; /*
I\/Q_O\iG CReason; /*
*/

MQSeries Integrator Application Development Guide

connection handl e

obj ect handl e

MXOPEN opt i ons

MQCLGCSE opti ons

conpl eti on code

MXOPEN conpl eti on code
reason code

reason code for MQUCONN

35

Chapter 4

36

ML ONG buf | en; /* buffer length
*/

char buf fer[100]; /* message buffer
*/

char QWane[50] ; /* queue nmanager nane
*/

/* buffer to hold MJ ntegrator Header and Message data*/

char newBuf f er[1024] ;

/* size of new buffer */

int newBuf f erLength = 1024,

printf("Sanple AMBPUTO start\n");

if (argc < 2)

printf("Required paraneter mssing - queue nanme\n");
exit(99);

}

/
khkkhkkhhkkhkkhkhkhkhkkhkkhhhhkhkhhhhhkkhhkhhdhhhkkhddhhdddhhddhhrddhrhhkddhrdrrdxhhddxxx*
***/

/*

*/

/* Connect to queue manager
*/

/*

*/
/
R I S O I kR O
***/
QWane[0] = 0; /* default */
if (argc > 2)
strcpy(QwWane, argv[2]);

MQUCONN(QWNane, /* queue manager

*/
&Hcon, /* connection handl e
*/
&ConmpCode, /* conpl etion code
*/
&CReason) ; /* reason code
*/
/* report reason and stop if it failed */

MQSeries Integrator Application Development Guide

if (ConpCode == MQCC FAI LED)

{
printf("MXONN ended with reason code % d\n", CReason);
exit((int)CReason);

}

/
khkkhkkhhkkhkkhhkhkhkkhkkhhhhkhkhhhhhkkhhhhdhhhhdhdhhdddhhddhrhhddhrhhddhrdxrdxhhdhxx*x*
***/

/*

*/

/* Use paranmeter as the name of the target queue
*/

/*

*/

/

EE R I S O I o O S O
***/
strncpy(od. Cbj ect Narme, argv[1l], (size_t)M) Q NAME_LENGTH);
printf("target queue is %\n", od.oject Nane);

/
EE R I I S O O I
***/

/*
*/

/* Open the target message queue for output
*/

/*

*/

/
khkkhkkhkhkkhkkhkhkhkhkkhkkhdhhhhkhhhhhkdhhhhdhhhhhdhhhddhhddhhrddhrhhddhrrrdxhhddxxx*
***/

O options = MQOO QUTPUT /* open queue for output
*/

+ MQOO FAIL_IF QU ESCING /* but not if MM stopping
*/

MUOPEN(Hcon, /* connection handl e
*/

&od, /* object descriptor for queue
*/

O _options, /* open options
*/

&Hobj , /* object handl e

MQSeries Integrator Application Development Guide 37

Chapter 4

38

*/
&OpenCode, /* MQOPEN conpl eti on code
*/
&Reason) ; /* reason code
*/
/* report reason, if any; stop if failed */
if (Reason != MJRC _NONE)
{
printf("MXPEN ended with reason code % d\n", Reason);
}
i f (OpenCode == MQC_FAI LED)
{
printf("unable to open queue for output\n");
}
/
EE R I S O I o O S O
***/
/*
*/

/* Read lines fromthe file and put themto the nessage queue
*/

/* Loop until null line or end of file, or there is a failure
*/

/*
*/

/
EE R I Sk kS O O O O O Rk O O
***/

ConpCode = OpenCode; /* use MQOPEN result for initial test
*/

fp = stdin;

mencpy(nd. For mat /* character string format */

MOFMI_STRI NG, (si ze_t) MQ _FORVAT LENGTH) ;
whi | e (ConpCode ! = MQCC_FAI LED)

if (fgets(buffer, sizeof(buffer), fp) !'= NULL)

{
bufl en = strlen(buffer); /* length without null
*/
if (buffer[buflen-1] == '\n") /* last char is a newline
*/
{

MQSeries Integrator Application Development Guide

buildMessage

buf fer[buflen-1] ="'\0"; /* replace newline with null
*/

--buflen; /* reduce buffer length
*/
}

el se buflen = 0O; /* treat EOF sane as null line
*/

/
R I S O I I
*/

/*
*/

/* Put each buffer to the nmessage queue
*/

/*

*/

/
khkkhkkhhkkhkkhhkhkhkkhkkhhhhkhkhhhhhkkhhhhdhhhhkddhhdddhhddhhrhdddhrhhddhrdrrdxhhkddxxx*
*/

if (buflen > 0)

{

mencpy(nd. Msgl d, /* reset Msgld to get a new one
*/
MM _NONE, sizeof (nd. Msgld));
mencpy(nd. Correl | d, /* reset Correlld to get a new one
*/

M _NONE, sizeof (nmd. Correlld));

bui | dMessage(&, buflen, buffer, "MXTR',
&newBuf f er Lengt h, newBuffer, "TestApp", "TestMsg",0, 0);

MQPUT(Hcon, /* connection handl e

*

/ Hobj , /* object handle

*

/ &nmd, /* message descri ptor

*

/ &pno, /* default options (datagram

*

/ newBuf f er Lengt h, /* buffer length with MJ ntegrator

header */
newBuf f er, /* message buffer with MJ ntegrator

MQSeries Integrator Application Development Guide 39

Chapter 4

header */

40

&CompCode, /* conpl etion code
*/
&Reason) ; /* reason code
*/
/* report reason, if any */
i f (Reason != MJRC_NONE)
{

}
}

el se /* satisfy end condition when enpty line is read */
CompCode = MQCC_FAI LED;

printf("MXPUT ended with reason code % d\n", Reason);

}
/
EE R I S O I o O S O
***/
/*
*/
/* Close the target queue (if it was opened)
*/
/*
*/

/
khkkhkkhhkkhkkhhkhkhkkhkkhdhhhhkkhhhhhkkhhhhdhhhkhkddhhhhddhhddhhrhrddhrhhkddhrdxrdxhhkdhxx*x*
***/

i f (OpenCode != MXC_FAI LED)

{

C options = 0; /* no cl ose options
*/
MQCLOSE(Hecon, /* connection handl e
*/
&Hobj , /* object handle
*/
C options,
&CompCode, /* conpl etion code
*/
&Reason) ; /* reason code
*/
/* report reason, if any */
i f (Reason != MJRC_NONE)
{

MQSeries Integrator Application Development Guide

buildMessage

printf("MXLOSE ended with reason code % d\n", Reason);

}
}

/***/

/*

*/

[* Di sconnect from MM if not already connected
*/

/*
*/

/***/

if (CReason != MQRC_ALREADY_ CONNECTED)

{
MDI SC(&Hcon, /* connection handl e
*
/
&ConpCode, /* conpl etion code
*
/
&Reason) ; /* reason code
*
/
/* report reason, if any */
i f (Reason != MJRC_NONE)
{
printf("MXDI SC ended with reason code % d\n", Reason);
}
}

/***/

/*

*/

/* END OF AMQSPUTO
x/

/*
x/

/***/

printf("Sanple AMBPUTO end\n");
return(0); }

MQSeries Integrator Application Development Guide 41

Chapter 4

42 MQSeries Integrator Application Development Guide

Appendix A
Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBMDirector of Licensing
| BM Cor por ati on

North Castle Drive
Armonk, NY 10504- 1785

U S A

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

| BM Wrld Trade Asia Corporation Licensing
2- 31 Roppongi 3-chone, M nato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

MQSeries Integrator Application Development Guide 43

Appendix A

44

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

| BM Uni ted Ki ngdom Labor atori es,
Mai | Point 151,

Hur sl ey Park,

W nchester,

Hanpshi re,

Engl and,

SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.

MQSeries Integrator Application Development Guide

Notices

You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appeatr.

Trademarks and Service Marks

The following, which appear in this book or other MQSeries Integrator books,
are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

MXeri es
Al X
DB2
| BM

NeoNFormatter and NeonRules are trademarks of New Era of Networks, Inc.
in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service
marks of others.

MQSeries Integrator Application Development Guide 45

Appendix A

46 MQSeries Integrator Application Development Guide

Index

A
accessors

DbmsType 24
application programming 7

buildMessage 27
samples application 32
source code 29

C

CloseDbmsSession 11, 22

D

Database Abstaction Layer APIs 11
Database Abstraction Layer
DbmsSession Factory functions 12
DbmsSession member functions
accessors 24
header files 12
DbmsSession Factory functions 12
DbmsSession member functions
accessors
DbmsType 24
DbmsType 24
documentation set 3

F

Formatter 1

H

header files 12

headers 8
MQRFH structure 9
NEON option buffer 10

MQSeries Integrator Application Development Guide

M

messages 8
MQRFH structure 9
MQSeries 1
MQSeries Integrator components
MQSeries 1
MQSeries Integrator Rules daemon 2
NEONFormatter 1
NEONRules 2
MQSeries Integrator overview 1
MQSeries Integrator Rules daemon 2, 7
MQSeries messages 8

N
NEON header 8
MQRFH structure 9
NEON option buffer 10
NEON option buffer 10
NEONFormatter 1
NEONRules 2

o

OK function 13

OpenDbmsSession 11, 14, 16, 18, 20
option buffer 10

overview 1

P

programming applications 7

R

Rules 2
rules processing daemon 7

S

sample application for buildMessage 32
ses.h 12

source code for buildMessage 29

Index

47

48

MQSeries Integrator Application Development Guide

Sending your commentsto IBM
MQSeries I ntegrator
Application Development Guide
SC34-5508-01

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.
Please limit your comments to the information in this book only and the way
in which the information is presented.

To request additional publications or make comments about the functions of
IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:
m By mail, use the Readers’ Comment Form
m By fax:

— From outside the U.K., use your international access code
followed by 44 1962 870229

— From within the U.K., use 01962 870229
Electronically, use the appropriate network ID:
= IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
m IBMLink: HURSLEY(IDRCF)
= Internet: idrcf@hursley.ibm.com
Whichever you use, ensure that you include:
= The publication number and title
m The page number or topic number to which your comment applies

= Your name/address/telephone number/fax number/network 1D

Readers’ Comments

MQSeries Integrator

Application Development Guide

SC34-5508-01
Use this form to tell us what you think about this manual. If you have found
errors in it, or if you want to express your opinion about it (such as
organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer. This form is provided
for comments about the information in this manual and the way it is
presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate without
incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address
Company or organization

Telephone Email

MQSeries Integrator Application Development Guide SC34-5508-01

You can send your comments POST FREE on this form from any one of these countries: 2
(@]
Australia Finland Iceland Netherlands Singapore United States s
Belgium France Israel New Zealand Spain of America §
Bermuda Germany Italy Norway Sweden i
Cyprus Greece Luxembourg Portugal Switzerland 3
Denmark Hong Kong Monaco Republic of Ireland United Arab Emirates
If your country is notlisted here, yourlocal IBM representative will be pleased to forward your comments
tous. Oryou can pay the postage and send the form directto IBM (this includes mailingin the U.K.).
E Foldalongthisline
By airmail NE PAS AFFRANCHIR
Par avion
IBRS/CCRINUMBER: PHQ-D/1348/SO
NO STAMP REQUIRED
—— — — |
|
IBM United Kingdom Laboratories
Information Development Department (MP 095)
Hursley Park
WINCHESTER, Hants
S0212z2z7 United Kingdom
] Foldalongthisline
From: Name
Company or Organization
Address =
e
g
EMAIL =
Telephone g

ﬂ Fastenhere with adhesive tape

Printed in U.S.A

SC34-5508-01

	Contents
	Introduction
	MQSeries Integrator Overview
	MQSeries
	NEONFormatter
	NEONRules
	MQSeries Integrator Rules Daemon

	Product Documentation Set
	Summary of Changes
	Supported Platforms and Compilers
	Year 2000 Readiness Disclosure

	Application Programming
	Rules Processing Daemon
	Messages
	NEON Header
	MQRFH Structure
	NEON Option Buffer

	Database Abstraction Layer APIs
	APIs and Header Files

	buildMessage
	Source Code for buildMessage
	Sample Application Using buildMessage

	Notices
	Trademarks and Service Marks

	Index

