

MQSeries for Windows NT V5R1 IBM

Using the Component Object
Model Interface

 SC34-5387-01

MQSeries for Windows NT V5R1 IBM

Using the Component Object
Model Interface

 SC34-5387-01

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix B, “Notices”
on page 151.

Second edition (April 1999)

This edition applies to MQSeries for Windows NT V5.1 and to any subsequent releases and modifications until otherwise indicated in
new editions.

 Copyright International Business Machines Corporation 1997,1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . v
Who this book is for . v
MQSeries publications . vi

MQSeries cross-platform publications . vi
MQSeries platform-specific publications . ix
MQSeries Level 1 product publications . x
Softcopy books . x

MQSeries information available on the Internet xii
Where to find more information about ActiveX xii

Summary of changes . xiii
Changes for this edition . xiii

Chapter 1. Introduction . 1
MQSeries Automation Classes for ActiveX overview 1

Chapter 2. Designing and programming using MQSeries Automation
Classes for ActiveX . 3

Designing MQAX applications that access non-ActiveX applications 3
Programming hints and tips . 4
Using data conversion . 6
Threading . 8
Error handling . 8

Chapter 3. MQSeries Automation Classes for ActiveX reference 11
MQSeries Automation Classes for ActiveX interface 11
About MQSeries Automation Classes for ActiveX classes 11
MQSession Class . 13
MQQueueManager class . 17
MQQueue class . 32
MQMessage class . 52
MQPutMessageOptions class . 81
MQGetMessageOptions class . 84
MQDistributionList class . 87
MQDistributionListItem class . 92

Chapter 4. Troubleshooting . 99
Code level tool . 99
Using trace . 100
When your MQSeries Automation Classes for ActiveX script fails 107
Reason codes . 108

Chapter 5. ActiveX interface to the MQAI 113
The MQBag class . 113
MQBag properties . 114
Error handling . 120

 Copyright IBM Corp. 1997,1999 iii

 Figures

Chapter 6. Using the Active Directory Service Interfaces (ADSI) 123
Prerequisites . 123
Troubleshooting . 124
The MQSeries namespace and object hierarchy 124
Accessing IBMMQSeries objects using COM or URL addresses 126
Accessing IBMMQSeries objects using enumeration 128
Configuring IBMMQSeries Active Directory objects 130
Object descriptions . 131

Appendix A. About the MQSeries Automation Classes for ActiveX
Starter samples . 143

What is demonstrated in the samples . 143
Running the ActiveX Starter samples . 144

Appendix B. Notices . 151

Glossary of terms and abbreviations . 153

Index . 159

 Figures

| 1. Supplied MQSeries constants for encoding 6
2. ADSI and interoperability . 123
3. MQSeries object hierarchy . 125

iv Using the Component Object Model Interface

 Who this book is for

About this book

This book describes the IBM MQSeries Automation Classes for ActiveX, the
MQSeries Administration Interface (MQAI), and the Active Directory Services
Interfaces (ADSI).

Information in this book includes:

� Guidance on how to design and program your applications using the MQSeries
ActiveX components

� Where to find more information about MQSeries, Windows NT, and ActiveX
components

� A description of each of the automation classes, the ActiveX interface to the
MQSeries Administration interface, and the support provided by MQSeries for
the Microsoft Active Directory Service Interfaces (ADSI)

� How to resolve problems, using trace and reason codes

� A full reference section on the ActiveX classes and their use

� A reference section on the ActiveX class 'MQBag' and its use

� Guidance on how to use the Active Directory Service Interfaces (ADSI)

� Code samples and how you can use them in your own applications

Who this book is for
This book is for designers and programmers wanting to use the MQSeries
component interfaces to develop MQSeries applications that run under Windows
NT applications, using ActiveX components.

This book is for you if:

� You are an experienced application developer who may or may not be
experienced in using ActiveX components

� You have some experience or knowledge of MQSeries

If you are not very familiar with the Message Queue Interface (MQI), you will find it
useful to have a copy of the MQSeries Application Programming Reference. Also,
for the MQBag class, see MQSeries Administration Interface Programming Guide
and Reference.

 Copyright IBM Corp. 1997,1999 v

 MQSeries publications

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

� MQseries for AIX V5.1
� MQSeries for AS/400 V4.2.1
� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for OS/390 V2.1
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for Sun Solaris V5.1
� MQSeries for Tandem NonStop Kernel V2.2
� MQSeries for VSE/ESA V2.1
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page x. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

vi Using the Component Object Model Interface

 MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, and the
dead-letter queue handler. It also includes the syntax of the MQSeries control
commands.

This book applies to the following MQSeries products only:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

 About this book vii

 MQSeries publications

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2M1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for OS/390 V2.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
� Windows 95 and Windows 98

MQSeries Using Java
MQSeries Using Java, SC34-5456, provides both guidance and reference
information for users of the MQSeries Bindings for Java and the MQSeries Client
for Java. MQSeries classes for Java are supported by these MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries Administration Interface Programming Guide and Reference
The MQSeries Administration Interface Programming Guide and Reference,
SC34-5390, provides information for users of the MQAI. The MQAI is a
programming interface that simplifies the way in which applications manipulate
Programmable Command Format (PCF) messages and their associated data
structures.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
explains the concepts and terminology and shows how you can benefit by taking
advantage of clustering. It details changes to the MQI, and summarizes the syntax
of new and changed MQSeries commands. It shows a number of examples of
tasks you can perform to set up and maintain clusters of queue managers.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1

viii Using the Component Object Model Interface

 MQSeries publications

MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AIX Version 5 Release 1 Quick Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

MQSeries for Digital UNIX

MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
GC34-5377

MQSeries for OS/390 Version 2 Release 1 Program Directory

MQSeries for OS/390 Version 2 Release 1 System Management Guide,
SC34-5374

MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

 About this book ix

 MQSeries publications

MQSeries for Sun Solaris

MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
GC34-5365

MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
MQSeries for Windows NT Using the Component Object Model Interface,
SC34-5387
MQSeries LotusScript Extension, SC34-5404

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’s Guide, SC33-1379

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

x Using the Component Object Model Interface

 MQSeries publications

 HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1 (compiled HTML)
� MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

 http://www.software.ibm.com/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is supported, visit the
Adobe Systems Inc. Web site at:

 http://www.adobe.com/

PDF versions of relevant MQSeries books are supplied with these MQSeries
products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1
� MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are also available from the MQSeries
product family Web site at:

 http://www.software.ibm.com/ts/mqseries/

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

 About this book xi

 MQSeries on the Internet

MQSeries information available on the Internet
MQSeries Web site

The MQSeries product family Web site is at:

 http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:

� Obtain latest information about the MQSeries product family.

� Access the MQSeries books in HTML and PDF formats.

� Download MQSeries SupportPacs.

Where to find more information about ActiveX
Microsoft provides documentation for ActiveX on the World Wide Web at

http://www.microsoft.com/

There are many books on the subject, including Understanding ActiveX and OLE
produced by Microsoft Press.

xii Using the Component Object Model Interface

 Changes

Summary of changes

Throughout the book, changes to the previous edition are marked with vertical bars
in the left-hand margin.

Changes for this edition
Where information has become outdated it has been removed or revised.

In Chapter 2 there is more detail about the MQSeries constants. In Chapter 3
property and method syntax has been corrected. In Chapter 4 new trace files have
replaced those in the first edition and the table of Reason codes has been made
complete. In Appendix A procedural instructions have been made more accurate.

 Copyright IBM Corp. 1997,1999 xiii

 Changes

xiv Using the Component Object Model Interface

 Introduction � COM and ActiveX scripting

 Chapter 1. Introduction

This chapter gives an overview of the MQSeries Automation Classes for ActiveX,
the Component Object Model (COM) interface, and ActiveX scripting. The
supported MQSeries environment is also described.

MQSeries Automation Classes for ActiveX overview
The MQSeries Automation Classes for ActiveX (MQAX) are ActiveX components
that provide classes that you can use in your application to access MQSeries. It
requires an MQSeries environment and a corresponding MQSeries application with
which to communicate.

It gives your ActiveX application the ability to run transactions and access data on
any of your enterprise systems that you can access through MQSeries.

MQSeries Automation Classes for ActiveX:

� Give you access to all the functions and features of the MQSeries API,
permitting full interconnectivity to other MQSeries platforms.

� Conform to the normal conventions expected of an ActiveX component.

� Conform to the MQSeries object model, also available for C++, Java, and
LotusScript.

MQAX starter samples are provided. You are recommended to use these initially
to check that your installation of the MQAX is successful and that you have the
basic MQSeries environment in place. The samples also demonstrate how MQAX
can be used.

COM and ActiveX scripting
The Component Object Model (COM) is an object-based programming model
defined by Microsoft. It specifies how software components can be provided in a
way that allows them to locate and communicate with each other irrespective of the
computer language in which they are written or their location.

ActiveX is a set of technologies, based on COM, that integrates application
development, reusable components, and Internet technologies on the Microsoft
Windows platforms. ActiveX components provide interfaces that can be accessed
dynamically by applications. An ActiveX scripting client is an application, for
example a compiler, that can build or execute a program or script that uses the
interfaces provided by ActiveX (or COM) components.

 Copyright IBM Corp. 1997,1999 1

 Environment support

MQSeries environment support
MQSeries Automation Classes for ActiveX can only be used with 32-bit ActiveX
scripting clients.

To run the MQAX in an MQSeries server environment you must have Windows NT
5.1 installed on your system.

To run the MQAX in an MQSeries client environment you need at least one of the
following installed on your system:

� MQSeries client on Windows NT

� MQSeries client on Windows 95 or Windows 98

| The MQSeries client requires access to at least one MQSeries server. When both
| the MQSeries server and client are installed on your system MQAX applications will
| always run against the server. The ActiveX interface to the MQAI and Active
| Directory Services is only available in MQSeries server environments.

2 Using the Component Object Model Interface

 Design and programming � Designing applications

Chapter 2. Designing and programming using MQSeries
Automation Classes for ActiveX

This chapter includes:

� Designing MQAX applications that access non-ActiveX applications.
� “Programming hints and tips” on page 4
� “Using data conversion” on page 6
� “Threading” on page 8
� “Error handling” on page 8

Designing MQAX applications that access non-ActiveX applications
The MQSeries Automation Classes provide full access to all the functions of the
MQSeries API, so you can benefit from all the advantages that using MQSeries can
bring to your Windows application. The overall design of your application will be
the same as for any MQSeries application, so you should first consider all of the
design aspects described in the MQSeries Application Programming Guide.

To use the MQSeries Automation Classes, you code the Windows programs in your
application using a language that supports the creation and use of COM objects; for
example, Visual Basic, Java, and other ActiveX scripting clients. The classes can
then be easily integrated into your application because the MQSeries objects you
need can be coded using the native syntax of the implementation language.

Using MQSeries Automation Classes for ActiveX
When designing an ActiveX application that uses MQSeries Automation Classes for
ActiveX, the most important item of information is the message that is sent or
received from the remote MQSeries system. Therefore you must know the format
of the items that are inserted into the message. For an MQAX script to a work,
both it and the MQSeries application that picks up or sends the message must
know the message structure.

If you are sending a message with an MQAX application and you want to perform
data conversion at the MQAX end, you must also know:

� The code page used by the remote system
� The encoding used by the remote system

To help you keep your code portable it is always good practice to set the code
page and encoding, even if these are currently the same in both the sending and
receiving systems.

When considering how to structure the implementation of the system you design,
remember that your MQAX scripts run on the same machine as the one on which
you have either the MQSeries queue manager or the MQSeries client installed.

 Copyright IBM Corp. 1997,1999 3

 Programming hints and tips � MQSeries string constants

Programming hints and tips
The following hints and tips are in no significant order. They are subjects that, if
relevant to the work you are doing, might save you time.

Message Descriptor properties
Where an MQSeries application is the originator of a message and MQSeries
generates the

 � AccountingToken
 � CorrelationId
 � GroupId
 � MessageId

you are recommended to use the AccountingTokenHex, CorrelationIdHex,
GroupIdHex, and MessageIdHex properties if you want to look at their values, or
manipulate them in any way - including passing them back in a message to
MQSeries. The reason for this is that MQSeries generated values are strings of
bytes that have any value from 0 through 255 inclusive, they are not strings of
printable characters.

Where your MQAX script is the originator of a message and you generate the

 � AccountingToken
 � CorrelationId
 � GroupId
 � MessageId

you can use either the AccountingToken, CorrelationId, GroupId, or MessageId
properties or their Hex equivalents.

| MQSeries constants
| MQSeries constants are provided as members of the enum MQ in library
| MQAX200.

MQSeries string constants
MQSeries string constants are not available when using MQSeries Automation
Classes for ActiveX. You must use the explicit character string for those shown
below and any others you may need:

4 Using the Component Object Model Interface

 Null string constants � Receiving a message

| MQFMT_NONE

| MQFMT_ADMIN

| MQFMT_CHANNEL_COMPLETED

| MQFMT_CICS

| MQFMT_COMMAND_1

| MQFMT_COMMAND_2

| MQFMT_DEAD_LETTER_HEADER

| MQFMT_DIST_HEADER

| MQFMT_EVENT

| MQFMT_IMS

| MQFMT_IMS_VAR_STRNG

| MQFMT_MD_EXTENSION

| MQFMT_PCF

| MQFMT_REF_MSG_HEADER

| MQFMT_RF_HEADER

| MQFMT_STRING

| MQFMT_TRIGGER

| MQFMT_WORK_INFO_HEADER

| MQFMT_XMIT_Q_HEADER

| " "

| "MQADMIN "

| "MQCHCOM "

| "MQCICS "

| "MQCMD1 "

| "MQCMD2 "

| "MQDEAD "

| "MQHDIST "

| "MQEVENT "

| "MQIMS "

| "MQIMSVS "

| "MQHMDE "

| "MQPCF "

| "MQHREF "

| "MQHRF "

| "MQSTR "

| "MQTRIG "

| "MQHWIH "

| "MQXMIT "

Null string constants
The MQSeries constants, used for the initialization of four MQMessage properties,
MQMI_NONE (24 NULL characters), MQCI_NONE (24 NULL characters),
MQGI_NONE (24 NULL characters), and MQACT_NONE (32 NULL characters),
are not supported by MQSeries Automation Classes for ActiveX. Setting them to
empty strings has the same effect.

| For example, to set the various ids of an MQMessage to these values:
| mymessage.MessageId = ""
| mymessage.CorrelationId = ""
| mymessage.AccountingToken = ""

Receiving a message from MQSeries
There are several ways of receiving a message from MQSeries:

� Polling by issuing a GET followed by a Wait, using the Visual Basic TIMER
function.

� Issuing a GET with the Wait option; you specify the wait duration by setting the
WaitInterval property. This is recommended when, even though you set your
system up to run in multithreaded environment, the software running at the time
may run only singlethreaded. This avoids your system locking up indefinitely.

Other threads operate unaffected. However, if your other threads require
access to MQSeries, they require a second connection to MQSeries using
additional MQAX queue manager and queue objects.

Issuing a GET with the Wait option and setting the WaitInterval to
MQWI_UNLIMITED causes your system to lock up until the GET call completes, if
the process is singlethreaded.

 Chapter 2. Designing and programming using MQSeries Automation Classes for ActiveX 5

 Using data conversion � Numeric encoding

Using data conversion
Two forms of data conversion are supported by MQSeries Automation Classes for
ActiveX.

 Numeric encoding
| If you set the MQMessage Encoding property, the following methods convert
| between different numeric encoding systems:

| � ReadDecimal2 method
| � ReadDecimal4 method
| � ReadDouble method
| � ReadDouble4 method
| � ReadFloat method
| � ReadInt2 method
| � ReadInt4 method
| � ReadLong method
| � ReadShort method
| � ReadUInt2 method
| � WriteDecimal2 method
| � WriteDecimal4 method

� WriteDouble method
� WriteDouble4 method
� WriteFloat method
� WriteInt2 method
� WriteInt4 method
� WriteLong method
� WriteShort method
� WriteUInt2 method

The Encoding property can be set and interpreted using the supplied MQSeries
constants.

| Figure 1 shows an example of these:

/\ Encodings for Binary Integers \/

 MQENC_INTEGER_UNDEFINED

 MQENC_INTEGER_NORMAL

 MQENC_INTEGER_REVERSED

| /\ Encodings for Decimals \/

| MQENC_DECIMAL_UNDEFINED

| MQENC_DECIMAL_NORMAL

| MQENC_DECIMAL_REVERSED

/\ Encodings for Floating-Point Numbers \/

 MQENC_FLOAT_UNDEFINED

 MQENC_FLOAT_IEEE_NORMAL

 MQENC_FLOAT_IEEE_REVERSED

 MQENC_FLOAT_S39ð

| Figure 1. Supplied MQSeries constants for encoding

| For example, to send an integer from an Intel system to a System/390 operating
| system in System/390 encoding:

6 Using the Component Object Model Interface

 Character set conversion

| Dim msg As New MQMessage 'Define an MQSeries message for our use..

| Print msg.Encoding 'Currently 546 (or X'222')

| 'Set the encoding property

| to 785 (or X'311')

| msg.Encoding = MQENC_INTEGER_NORMAL OR MQENC_DECIMAL_NORMAL
| OR MQENC_FLOAT_S39ð

| Print msg.Encoding 'Print it to see the change

| Dim local_num As long 'Define a long integer
| local_num = 1234 'Set it

| msg.WriteLong(local_num) 'Write the number into the message

Character set conversion
Character set conversion is necessary when you send a message from one system
to another system where the code pages are different. Code page conversion is
used by:

| � ReadString method
| � ReadNullTerminatedString method
| � WriteString method
| � WriteNullTerminatedString method
| � MessageData Property

| You must set the MQMessage CharacterSet property to a supported character set
| value (CCSID).

| MQSeries Automation Classes for ActiveX uses conversion tables to perform
| character set conversion.

| For example, to convert strings automatically to code page 437:

| Dim msg As New MQMessage 'Define an MQSeries message

| msg.CharacterSet = 437 'Set code page required

| msg.WriteString "A character string"'Put character string in message

The WriteString method receives the string data ("A character string" in the
example above) as a Unicode string. It then converts this data from Unicode into
code page 437 using the conversion table 34B001B5.TBL.

Characters in the Unicode string that are not supported by code page 437 are
given the standard substitution character from code page 437.

| In a similar manner, when you use the ReadString method, the incoming message
| has a character set established by the MQSeries Message Descriptor (MQMD)
| value and there is a conversion from this code page into Unicode before it is
| passed back to your scripting language.

| You can get error messages such as MQRC_NOT_CONVERTED if you specify an
| invalid character set or one for which you do not have the translation table.

 Chapter 2. Designing and programming using MQSeries Automation Classes for ActiveX 7

 Threading � How it works

 Threading
MQSeries Automation Classes for ActiveX implement a free-threading model where
objects can be used between threads.

While MQAX permits the use of MQQueue and MQQueueManager objects,
MQSeries does not currently permit the sharing of handles between different
threads.

Attempts to use these on another thread result in an error and MQSeries returns a
return code of MQRC_HCONN_ERROR.

Note: There is only one MQSession object per process. Using the MQSession
CompletionCode and ReasonCode is not recommended in multithreaded
environments. The MQSession error values may be overwritten by a
second thread between an error being raised and checked on the first

| thread. Threads are serialized for the duration of each method call or
| property access. So, issuing a Get with the Wait option will cause other
| threads accessing MQAX objects to be suspended until the operation
| completes.

 Error handling
Each MQAX object includes properties to hold error information and a method to
reset or clear them. The properties are:

 � CompletionCode
 � ReasonCode
 � ReasonName

The method is:

 � ClearErrorCodes

How error handling works
Your MQAX script or application invokes an MQAX object’s method, or accesses or
updates a property of the MQAX object:

1. The ReasonCode and CompletionCode in the object concerned are updated.

2. The ReasonCode and CompletionCode in the MQSession object are also
updated with the same information.

Note: See “Threading” for restrictions on the use of MQSession error codes in
threaded applications.

If the CompletionCode is greater than or equal to the ExceptionThreshold
property of MQSession, MQAX throws an exception (number 32000). Use this
within your script using the On Error (or equivalent) statement to process it.

3. Use the Error function to retrieve the associated error string, which will have the
form:

MQAX: CompletionCode=xxx, ReasonCode=xxx, ReasonName=xxx

For more information on how to use the On Error statements, see the
documentation for your ActiveX scripting language.

8 Using the Component Object Model Interface

 Getting a property

Using the CompletionCode and ReasonCode in the MQSession object is very
convenient for simple error handlers.

| ReasonName property returns the MQSeries symbolic name for the current
| value of the ReasonCode.

 Raising exceptions
The following rules describe how raising exceptions are handled:

� Whenever a property or method sets the completion code to a value greater
than or equal to the exception threshold (usually set to 2) an exception is
raised.

� All method calls and property sets set the completion code.

Getting a property
This is a special case because the CompletionCode and ReasonCode are not
always updated:

� If a property get succeeds, the object and MQSession object ReasonCode and
CompletionCode remain unchanged.

� If a property get fails with a CompletionCode of warning, the ReasonCode and
CompletionCode remain unchanged.

� If a property get fails with a CompletionCode of error, the ReasonCode and
CompletionCode are updated to reflect the true values, and error processing
proceeds as described.

The MQSession class has a method ReasonCodeName which may be used to
replace an MQSeries reason code with a symbolic name. This is especially useful
while developing programs where unexpected errors may occur. However, the
name is not ideal for presentation to end users.

Each class also has a property ReasonName, that returns the symbolic name of
the current reason code for that class.

 Chapter 2. Designing and programming using MQSeries Automation Classes for ActiveX 9

 Getting a property

10 Using the Component Object Model Interface

 ActiveX reference � About ActiveX classes

Chapter 3. MQSeries Automation Classes for ActiveX
reference

This chapter describes the classes of the MQSeries Automation Classes for
ActiveX (MQAX), developed for ActiveX. The classes enable you to write ActiveX
applications that can access other applications running in your non-ActiveX
environments, using MQSeries.

MQSeries Automation Classes for ActiveX interface
The ActiveX automation classes consist of the following:

� “MQSession Class” on page 13
� “MQQueueManager class” on page 17
� “MQQueue class” on page 32
� “MQMessage class” on page 52
� “MQPutMessageOptions class” on page 81
� “MQGetMessageOptions class” on page 84
� “MQDistributionList class” on page 87
� “MQDistributionListItem class” on page 92

| In addition MQSeries Automation Classes for ActiveX provides predefined numeric
| ActiveX constants (such as MQMT_REQUEST) needed to use the classes. These
| are provided in the enum MQ in library MQAX200. The constants are a subset of

those defined in the MQSeries C header files (cmqc*.h) with some additional
MQSeries Automation Classes for ActiveX Reason codes.

About MQSeries Automation Classes for ActiveX classes
This information should be read in conjunction with the MQSeries Application
Programming Reference manual.

The MQSession class provides a root object that contains the status of the last
action performed on any of the MQAX objects. See “Error handling” on page 8 for
more information.

The MQQueueManager and MQQueue classes provide access to the underlying
MQSeries objects. Methods or property accesses for these classes in general result
in calls being made across the MQSeries MQI.

The MQMessage, MQPutMessageOptions, and MQGetMessageOptions classes
encapsulate the MQMD, MQPMO, and MQGMO data structures respectively, and
are used to help you send messages to queues and retrieve messages from them.

The MQDistributionList class encapsulates a collection of queues - local, remote, or
alias for output. The MQDistributionListItem class encapsulates the MQOR,
MQRR, and MQPMR structures and associates them with an owning distribution
list.

These classes can be found in the MQAX200 library.

 Copyright IBM Corp. 1997,1999 11

 About ActiveX classes

 Parameter passing
Parameters on method invocations are all passed by value, except where that
parameter is an object, in which case it is a reference that is passed.

The class definitions provided list the Data Type for each parameter or property.
For many ActiveX clients, such as Visual Basic, if the variable used is not of the
required type, the value is automatically converted to or from the required type -
providing such a conversion is possible. This follows standard rules of the client;
MQAX provides no such conversion.

Many of the methods take fixed-length string parameters, or return a fixed-length
character string. The conversion rules are as follows:

� If the user supplies a fixed-length string of the wrong length, as an input
parameter or as a return value, the value is truncated or padded with trailing
spaces as required.

� If the user supplies a variable-length string of the wrong length as an input
parameter, the value is truncated or padded with trailing spaces.

� If the user supplies a variable-length string of the wrong length as a return
value, the string is adjusted to the required length (because returning a value
destroys the previous value in the string anyway).

� Strings provided as input parameters may contain embedded Nulls.

Object access methods
These methods do not relate directly to any single MQSeries call. Each of these
methods creates an object in which reference information is then held, followed by
connecting to or opening an MQSeries object:

When a connection is made to a queue manager, it holds the 'connection handle'
generated by MQSeries.

When a queue is opened, it holds the 'object handle' generated by MQSeries.

These MQSeries attributes are explained in the MQSeries Application Programming
Reference manual. They are not directly available to the MQAX program.

 Errors
Syntactic errors on parameter passing may be detected at compile time and run
time by the ActiveX client. Errors can be trapped using On Error in Visual Basic.

The MQSeries ActiveX classes all contain two special read-only properties -
ReasonCode and CompletionCode. These can be read at any time.

An attempt to access any other property, or to issue any method call could
potentially generate an error from MQSeries.

If a property set or method invocation succeeds, the owning object’s ReasonCode
and CompletionCode fields are set to MQRC_NONE and MQCC_OK respectively.

If the property access or method invocation does not succeed, reason and
completion codes are set in these fields.

12 Using the Component Object Model Interface

 MQSession class

 MQSession Class
This is the root class for MQSeries Automation Classes for ActiveX.

There is always only one MQSession object per ActiveX client process.

An attempt to create a second object creates a second reference to the original
object.

 Creation
New creates a new MQSession object.

 Syntax
Dim mqsess As New MQSession
Set mqsess = New MQSession

 Properties
 � CompletionCode property
 � ExceptionThreshold property
 � ReasonCode property
 � ReasonName property

 Methods
 � AccessGetMessageOptions method
 � AccessMessage method
 � AccessPutMessageOptions method
 � AccessQueueManager method
 � ClearErrorCodes method
 � ReasonCodeName method

 CompletionCode property
| Read-only. Returns the MQSeries completion code set by the most recent method
| or property set issued against any MQSeries object.

| It is reset to MQCC_OK when a method or a property set is invoked successfully
| against any MQAX object.

An error event handler can inspect this property to diagnose the error, without
having to know which object was involved.

Using the CompletionCode and ReasonCode in the MQSession object is very
convenient for simple error handlers.

Note: See “Threading” on page 8 for restrictions on the use of MQSession error
codes in threaded applications.

Defined in: MQSession class

Data Type: Long

 Chapter 3. MQSeries Automation Classes for ActiveX reference 13

 MQSession class

Values:

 � MQCC_OK
 � MQCC_WARNING
 � MQCC_FAILED

Syntax:
To get: completioncode& = MQSession.CompletionCode

 ExceptionThreshold property
Read-write. Defines the level of MQSeries error for which MQAX will throw an
exception. Defaults to MQCC_FAILED. A value greater than MQCC_FAILED
effectively prevents exception processing, leaving the programmer to perform
checks on the CompletionCode and ReasonCode.

Defined in: MQSession class

Data Type: Long

Values:

� Any, but only MQCC_WARNING, MQCC_FAILED or greater are recommended.

Syntax:
To get: ExceptionThreshold& = MQSession.ExceptionThreshold

| To set: MQSession.ExceptionThreshold = ExceptionThreshold&

 ReasonCode property
| Read-only. Returns the reason code set by the most recent method or property set
| issued against any MQSeries object.

An error event handler can inspect this property to diagnose the error, without
having to know which object was involved.

Using the CompletionCode and ReasonCode in the MQSession object is very
convenient for simple error handlers.

Note: See “Threading” on page 8 for restrictions on the use of MQSession error
codes in threaded applications.

Defined in: MQSession class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference and the additional
MQAX values listed under “Reason codes” on page 108

Syntax:
To get: reasoncode& = MQSession.ReasonCode

14 Using the Component Object Model Interface

 MQSession class

 ReasonName property
Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".

Note: See “Threading” on page 8 for restrictions on the use of MQSession error
codes in threaded applications.

Defined in: MQSession class

Data Type: String

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: reasonname$ = MQSession.ReasonName

 AccessGetMessageOptions method
Creates a new MQGetMessageOptions object.

Defined in: MQSession class

Syntax:
gmo = MQSession.AccessGetMessageOptions()

 AccessMessage method
Creates a new MQMessage object.

Defined in: MQSession class

Syntax:
msg = MQSession.AccessMessage()

 AccessPutMessageOptions method
Creates a new MQPutMessageOptions object.

Defined in: MQSession class

Syntax:
pmo = MQSession.AccessPutMessageOptions()

 Chapter 3. MQSeries Automation Classes for ActiveX reference 15

 MQSession class

| AccessQueueManager method
| Creates a new MQQueueManager object and connects it to a real queue manager
| by means of the MQSeries client or server. As well as performing a connect, this
| method also performs an open for the queue manager object.

| Note: When both the MQSeries server and client are installed on your system
| MQAX applications will always run against the server.

If successful it sets the MQQueueManager’s ConnectionStatus to TRUE.

A queue manager can be connected to at most one MQQueueManager object per
ActiveX instance.

If the connection to the queue manager fails, an error event is raised, and the
MQSession object’s ReasonCode and CompletionCode are set.

Defined in: MQSession class

Syntax:
set qm = MQSession.AccessQueueManager (Name$)

Parameter: Name$
String. Name of Queue Manager to be connected to.

 ClearErrorCodes method
Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE.

Defined in: MQSession class

Syntax:
Call MQSession.ClearErrorCodes()

 ReasonCodeName method
Returns the name of the reason code with the given numeric value. It is useful to
give clearer indications of error conditions to users. The name is still somewhat
cryptic (for example, ReasonCodeName(2059) is
MQRC_Q_MGR_NOT_AVAILABLE), so where possible errors should be caught
and replaced with descriptive text appropriate to the application.

Defined in: MQSession class

| Syntax:
| errname$ = MQSession.ReasonCodeName (reasonCode&)

| Parameter: reasoncode&
| Long. The reason code for which the symbolic name is required.

16 Using the Component Object Model Interface

 MQQueueManager class

 MQQueueManager class
This class represents a connection to a queue manager. The queue manager may
be running locally (an MQSeries server) or remotely with access provided by the
MQSeries client. An application must create an object of this class and connect it to
a queue manager. When an object of this class is destroyed it is automatically
disconnected from its queue manager.

 Containment
MQQueue class objects are associated with this class.

 Creation
New creates a new MQQueueManager object and sets all the properties to initial
values. Alternatively use the AccessQueueManager method of the MQSession
class.

 Syntax
Dim mgr As New MQQueueManager
set mgr = New MQQueueManager

 Properties
 � AlternateUserId property
 � AuthorityEvent property
 � BeginOptions property
 � ChannelAutoDefinition property
 � ChannelAutoDefinitionEvent property
 � ChannelAutoDefinitionExit property
 � CharacterSet property
 � CloseOptions property
 � CommandInputQueueName property
 � CommandLevel property
 � CompletionCode property
 � ConnectionHandle property
 � ConnectionStatus property
 � ConnectOptions property
 � DeadLetterQueueName property
 � DefaultTransmissionQueueName property
 � Description property
 � DistributionLists property
 � InhibitEvent property
 � IsConnected property
 � IsOpen property
 � LocalEvent property
 � MaximumHandles property
 � MaximumMessageLength property
 � MaximumPriority property
 � MaximumUncommittedMessages property
 � Name property
 � ObjectHandle property
 � PerformanceEvent property
 � Platform property
 � ReasonCode property
 � ReasonName property

 Chapter 3. MQSeries Automation Classes for ActiveX reference 17

 MQQueueManager class

 � RemoteEvent property
 � StartStopEvent property
 � SyncPointAvailability property
 � TriggerInterval property

 Methods
 � AccessQueue method
 � AddDistributionList method
 � Backout method
 � Begin method
 � ClearErrorCodes method
 � Commit method
 � Connect method
 � Disconnect method

 Property Access
The following properties can be accessed at any time

 � AlternateUserId
 � CompletionCode
 � ConnectionStatus
 � ReasonCode

The remaining properties can be accessed only if the object is connected to a
queue manager, and the user ID is authorized to inquire against that queue
manager. If an alternate user ID is set and the current user ID is authorized to use
it, the alternate user ID is checked for authorization for inquire instead.

If these conditions do not apply, MQSeries Automation Classes for ActiveX
attempts to connect to the queue manager and open it for inquire automatically. If
this is unsuccessful, the call sets a CompletionCode of MQCC_FAILED and one of
the following ReasonCodes:

 � MQRC_CONNECTION_BROKEN
 � MQRC_NOT_AUTHORIZED
 � MQRC_Q_MGR_NAME_ERROR
 � MQRC_Q_MGR_NOT_AVAILABLE

| The Backout, Begin, Commit, Connect, and Disconnect methods set errors
| matching those set by the MQI calls MQBACK, MQBEGIN, MQCMIT, MQCONN,
| and MQDISC respectively.

18 Using the Component Object Model Interface

 MQQueueManager class

 AlternateUserId property
Read-write. The alternate user ID to be used to validate access to the queue
manager attributes.

This property should not be set if IsConnected is TRUE.

This property cannot be set whilst the object is open.

Defined in: MQQueueManager class

Data Type: String of 12 characters

Syntax:
To get: altuser$ = MQQueueManager.AlternateUserId
To set: MQQueueManager.AlternateUserId = altuser$

 AuthorityEvent property
Read-only. The MQI AuthorityEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQEVR_DISABLED

 � MQEVR_ENABLED

Syntax:
To get: authevent = MQQueueManager.AuthorityEvent

 BeginOptions property
Read-write. These are the options that apply to the Begin method.
Initially MQBO_NONE.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQBO_NONE

Syntax:
To get: beginoptions&=MQQueueManager.BeginOptions

To set: MQQueueManager.BeginOptions = beginoptions&

 Chapter 3. MQSeries Automation Classes for ActiveX reference 19

 MQQueueManager class

 ChannelAutoDefinition property
Read-only. This controls whether automatic channel definition is permitted.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQCHAD_DISABLED

 � MQCHAD_ENABLED

Syntax:
To get: channelautodef&= MQQueueManager.ChannelAutoDefinition

 ChannelAutoDefinitionEvent property
Read-only. This controls whether automatic channel definition events are
generated.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQEVR_DISABLED

 � MQEVR_ENABLED

| Syntax:
| To get: channelautodefevent&=MQQueueManager.ChannelAutoDefinitionEvent

 ChannelAutoDefinitionExit property
Read-only. The name of the user exit used for automatic channel definition.

Defined in: MQQueueManager class

Data Type: String

Syntax:
| To get: channelautodefexit$= MQQueueManager.ChannelAutoDefinitionExit

 CharacterSet property
Read-only. The MQI CodedCharSetId attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax:
To get: characterset& = MQQueueManager.CharacterSet

 CloseOptions property
| Read-write. Options used to control what happens when the queue manger is
| closed. The initial value is MQCO_NONE.

Defined in: MQQueueManager class

Data Type: Long

20 Using the Component Object Model Interface

 MQQueueManager class

Values:

 � MQCO_NONE

Syntax:
To get: closeopt& = MQQueueManager.CloseOptions

To set: MQQueueManager.CloseOptions = closeopt&

 CommandInputQueueName property
Read-only. The MQI CommandInputQName attribute.

Defined in: MQQueueManager class

Data Type: String of 48 characters

Syntax:
To get: commandinputqname$ = MQQueueManager.CommandInputQueueName

 CommandLevel property
Read-only. Returns the version and level of the MQSeries queue manager
implementation (MQI CommandLevel attribute)

Defined in: MQQueueManager class

Data Type: Long

Syntax:
To get: level& = MQQueueManager.CommandLevel

 CompletionCode property
Read-only. Returns the completion code set by the last method or property access
issued against the object.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQCC_OK

 � MQCC_WARNING

 � MQCC_FAILED

Syntax:
To get: completioncode& = MQQueueManager.CompletionCode

 Chapter 3. MQSeries Automation Classes for ActiveX reference 21

 MQQueueManager class

 ConnectionHandle property
Read-only. The connection handle for the MQSeries queue manager object.

Defined in: MQQueueManager class

Data Type: Long

Syntax:
To get: hconn& = MQQueueManager.ConnectionHandle

 ConnectionStatus property
Read-only. Indicates if the object is connected to its queue manager or not.

Defined in: MQQueueManager class

Data Type: Boolean

Values:

 � TRUE (-1)

 � FALSE (0)

Syntax:
To get: status = MQQueueManager.ConnectionStatus

 ConnectOptions property
Read-Write. These options apply to the Connect method. Initially MQCNO_NONE.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQCNO_STANDARD_BINDING

 � MQCNO_FASTPATH_BINDING

 � MQCNO_NONE

Syntax:
To get: connectoptions&=MQQueueManager.ConnectOptions

To set: MQQueueManager.ConnectOptions = connectoptions&

 DeadLetterQueueName property
Read-only. The MQI DeadLetterQName attribute.

Defined in: MQQueueManager class

Data Type: String of 48 characters

Syntax:
to get: dlqname$ = MQQueueManager.DeadLetterQueueName

22 Using the Component Object Model Interface

 MQQueueManager class

 DefaultTransmissionQueueName property
Read-only. The MQI DefXmitQName attribute.

Defined in: MQQueueManager class

Data Type: String of 48 characters

Syntax:
To get: defxmitqname$ = MQQueueManager.DefaultTransmissionQueueName

 Description property
Read-only. The MQI QMgrDesc attribute.

Defined in: MQQueueManager class

Data Type: String of 64 characters

Syntax:
To get: description$ = MQQueueManager.Description

 DistributionLists property
Read-Only. This is the capability of the queue manager to support distribution lists.

Defined in: MQQueueManager class

Data Type: Boolean

Values:

 � TRUE (-1)

 � FALSE (0)

Syntax:
To get: distributionlists= MQQueueManager.DistributionLists

 InhibitEvent property
Read-only. The MQI InhibitEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQEVR_DISABLED

 � MQEVR_ENABLED

Syntax:
To get: inhibevent& = MQQueueManager.InhibitEvent

 Chapter 3. MQSeries Automation Classes for ActiveX reference 23

 MQQueueManager class

 IsConnected property
| Read-only. A value that indicates whether or not the queue manager is currently
| connected.

Defined in: MQQueueManager class

Data Type: Boolean

Values:

 � TRUE (-1)

 � FALSE (0)

Syntax:
| To get: isconnected = MQQueueManager.IsConnected

 IsOpen property
| Read-only. A value that indicates whether or not the queue manager is currently
| open for inquire.

Defined in: MQQueueManager class

| Data Type: Boolean

Values:

 � TRUE (-1)

 � FALSE (0)

Syntax:
To get: IsOpen = MQQueueManager.IsOpen

 LocalEvent property
Read-only. The MQI LocalEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQEVR_DISABLED

 � MQEVR_ENABLED

Syntax:
To get: localevent& = MQQueueManager.LocalEvent

24 Using the Component Object Model Interface

 MQQueueManager class

 MaximumHandles property
Read-only. The MQI MaxHandles attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax:
To get: maxhandles& = MQQueueManager.MaximumHandles

 MaximumMessageLength property
Read-only. The MQI MaxMsgLength Queue Manager attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax:
To get: maxmessagelength& = MQQueueManager.MaximumMessageLength

 MaximumPriority property
Read-only. The MQI MaxPriority attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax:
To get: maxpriority& = MQQueueManager.MaximumPriority

 MaximumUncommittedMessages property
Read-only. The MQI MaxUncommittedMsgs attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax:
To get: maxuncommitted& = MQQueueManager.MaximumUncommittedMessages

 Chapter 3. MQSeries Automation Classes for ActiveX reference 25

 MQQueueManager class

 Name property
Read-write. The MQI QMgrName attribute. This property cannot be written once
the MQQueueManager is connected.

Defined in: MQQueueManager class

Data Type: String of 48 characters

Syntax:
To get: name$ = MQQueueManager.name

To set: MQQueueManager.name = name$

Note: Visual Basic reserves the "Name" property for use in the visual interface.
Therefore, when using within Visual Basic use lower-case, that is, "name".

 ObjectHandle property
Read-only. The object handle for the MQSeries queue manager object.

Defined in: MQQueueManager class

Data type Long

Syntax:
To get: hobj& = MQQueueManager.ObjectHandle

 PerformanceEvent property
Read-only. The MQI PerformanceEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQEVR_DISABLED

 � MQEVR_ENABLED

Syntax:
To get: perfevent& = MQQueueManager.PerformanceEvent

26 Using the Component Object Model Interface

 MQQueueManager class

 Platform property
Read-only. The MQI Platform attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQPL_WINDOWS_NT

 � MQPL_WINDOWS

Syntax:
To get: platform& = MQQueueManager.Platform

 ReasonCode property
Read-only. Returns the reason code set by the last method or property access
issued against the object.

Defined in: MQQueueManager class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: reasoncode& = MQQueueManager.ReasonCode

 ReasonName property
Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".

Defined in: MQQueueManager class

Data Type: String

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: reasonname$ = MQQueueManager.ReasonName

 Chapter 3. MQSeries Automation Classes for ActiveX reference 27

 MQQueueManager class

 RemoteEvent property
Read-only. The MQI RemoteEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQEVR_DISABLED

 � MQEVR_ENABLED

Syntax:
To get: remoteevent& = MQQueueManager.RemoteEvent

 StartStopEvent property
Read-only. The MQI StartStopEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQEVR_DISABLED

 � MQEVR_ENABLED

Syntax:
To get: strstpevent& = MQQueueManager.StartStopEvent

 SyncPointAvailability property
Read-only. The MQI SyncPoint attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

 � MQSP_AVAILABLE

 � MQSP_NOT_AVAILABLE

Syntax:
To get: syncpointavailability& = MQQueueManager.SyncPointAvailability

28 Using the Component Object Model Interface

 MQQueueManager class

 TriggerInterval property
Read-only. The MQI TriggerInterval attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax:
To get: trigint& = MQQueueManager.TriggerInterval

 AccessQueue method
| Creates a new MQQueue object and associates it with this MQQueueManager
| object by setting the queue's connection reference property. It sets the Name,

OpenOptions, DynamicQueueName, and AlternateUserId properties of the
MQQueue object to the values provided, and attempts to open it.

If the open is unsuccessful the call fails. An error event is raised against the object,
the object's ReasonCode and CompletionCode are set, and the MQSession
ReasonCode and CompletionCode are set.

The DynamicQueueName, QueueManagerName, and AlternateUserId parameters
are optional and default to "".

The OpenOption MQOO_INQUIRE should be specified in addition to other options
if queue properties are to be read.

Do not set the QueueManagerName, or set it to "" if the queue to be opened is
local. Otherwise, it should be set to the name of the remote queue manager that
owns the queue, and an attempt is made to open a local definition of the remote
queue. See “Creating dynamic queues” in the MQSeries Application Programming
Guide for more information on remote queue name resolution and queue manager
aliasing.

If the Name property is set to a model queue name, specify the name of the
dynamic queue to be created in the DynamicQueueName$ parameter. If the value
provided in the DynamicQueueName$ parameter is "", the value set into the queue
object and used on the open call is "AMQ.*". See “Creating dynamic queues” on
page 104 in the MQSeries Application Programming Guide for more information on
naming dynamic queues.

 Defined in:
MQQueueManager class.

 Syntax:
| set queue = MQQueueManager.AccessQueue (Name$,
| OpenOptions&,QueueManagerName$, DynamicQueueName$, AlternateUserId$)

 Chapter 3. MQSeries Automation Classes for ActiveX reference 29

 MQQueueManager class

 Parameters
Name$
String. Name of MQSeries queue.

OpenOptions:
Long. Options to be used when queue is opened. See “MQOPEN - Open object”
in the MQSeries Application Programming Reference.

QueueManagerName$
String. Name of the queue manager that owns the queue to be opened. A value
of "" implies the queue manager is local.

DynamicQueueName$
String. The name assigned to the dynamic queue at the time the queue is opened
when the Name$ parameter specifies a model queue.

AlternateUserId$
String. The alternate user ID used to validate access when opening the queue.

 AddDistributionList method
| Creates a new MQDistributionList object and sets its connection reference to the
| owning queue manager.

Defined in: MQQueueManager class

Syntax:
| set distributionlist = MQQueueManager. AddDistributionList

 Backout method
Backs out any uncommitted message puts and gets that have occurred as part of a
unit of work since the last syncpoint.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.Backout()

 Begin method
| Begins a unit of work that is coordinated by the queue manager. The begin options

affect the behavior of this method.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.Begin()

30 Using the Component Object Model Interface

 MQQueueManager class

 ClearErrorCodes method
Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE
for both the MQQueueManager class and the MQSession class.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.ClearErrorCodes()

 Commit method
Commits any message puts and gets that have occurred as part of a unit of work
since the last syncpoint.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.Commit()

 Connect method
| Connects the MQQueueManager object to a real queue manager via the MQSeries
| client or server. As well as performing a connect, this method also performs an
| open for queries to be made against the queue manager object.

Sets IsConnected to TRUE.

A maximum of one MQQueueManager object per ActiveX instance is allowed to
connect to a queue manager.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.Connect()

 Disconnect method
Disconnects the MQQueueManager object from the queue manager.

Sets IsConnected to FALSE.

All Queue objects associated with the MQQueueManager object are made
unusable and cannot be re-opened.

Any uncommitted changes (message puts and gets) are committed.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.Disconnect()

 Chapter 3. MQSeries Automation Classes for ActiveX reference 31

 MQQueue class

 MQQueue class
This represents access to an MQSeries queue. This connection is provided by an
associated MQQueueManager object. When an object of this class is destroyed it is
automatically closed.

 Containment
Contained by the MQQueueManager class.

 Creation
New creates a new MQQueue object and sets all the properties to initial values.
Alternatively, use the AccessQueue Method of the MQQueueManager class.

 Syntax
Dim que As New MQQueue
Set que = New MQQueue

 Properties
 � AlternateUserId property
 � BackoutRequeueName property
 � BackoutThreshold property
 � BaseQueueName property
 � CloseOptions property
 � CompletionCode property
 � ConnectionReference property
 � CreationDateTime property
 � CurrentDepth property
 � DefaultInputOpenOption property
 � DefaultPersistence property
 � DefaultPriority property
 � DefinitionType property
 � DepthHighEvent property
 � DepthHighLimit property
 � DepthLowEvent property
 � DepthLowLimit property
 � DepthMaximumEvent property
 � Description property
 � DynamicQueueName property
 � HardenGetBackout property
 � InhibitGet property
 � InhibitPut property
 � InitiationQueueName property
 � IsOpen property
 � MaximumDepth property

| � MaximumMessageLength property
 � MessageDeliverySequence property
 � Name property
 � ObjectHandle property
 � OpenInputCount property
 � OpenOptions property
 � OpenOutputCount property
 � OpenStatus property
 � ProcessName property

32 Using the Component Object Model Interface

 MQQueue class

 � QueueManagerName property
 � QueueType property
 � ReasonCode property
 � ReasonName property
 � RemoteQueueManagerName property
 � RemoteQueueName property

| � ResolvedQueueManagerName property
| � ResolvedQueueName property

 � RetentionInterval property
 � Scope property
 � ServiceInterval property
 � ServiceIntervalEvent property
 � Shareability property
 � TransmissionQueueName property
 � TriggerControl property
 � TriggerData property
 � TriggerDepth property
 � TriggerMessagePriority property
 � TriggerType property
 � Usage property

 Methods
 � ClearErrorCodes method
 � Close method
 � Get method
 � Open method
 � Put method

| Property Access
| If the queue object is not connected to a queue manager, you can read the
| following properties:

| � CompletionCode
| � OpenStatus
| � ReasonCode

| and you can read and write to:

| � AlternateUserId
| � CloseOptions
| � ConnectionReference
| � Name
| � OpenOptions

If the queue object is connected to a queue manager, you can read all the
properties.

Queue Attribute properties
Properties not listed in the previous section are all attributes of the underlying
MQSeries queue. They can be accessed only if the object is connected to a queue
manager, and the user's user ID is authorized for Inquire or Set against that queue.
If an alternate user ID is set and the current user ID is authorized to use it, the
alternate user ID is checked for authorisation instead.

The property must be an appropriate property for the given QueueType. See the
MQSeries Application Programming Reference manual.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 33

 MQQueue class

If these conditions do not apply, the property access will set a CompletionCode of
MQCC_FAILED and one of the following ReasonCodes:

 � MQRC_CONNECTION_BROKEN
 � MQRC_NOT_AUTHORIZED
 � MQRC_Q_MGR_NAME_ERROR
 � MQRC_Q_MGR_NOT_CONNECTED
� MQRC_SELECTOR_NOT_FOR_TYPE (CompletionCode is MQCC_WARNING)

Opening a queue
The only way to create an MQQueue object is by using the MQQueueManager
AccessQueue method or by New. An open MQQueue object remains open
(OpenStatus=TRUE) until it is closed or deleted or until the creating queue
manager object is deleted or connection is lost to the queue manager. The value of
the MQQueue CloseOptions property controls the behavior of the close operation
that takes place when the MQQueue object is deleted.

The MQQueueManager AccessQueue method opens the queue using the
OpenOptions parameter. The MQQueue.Open method opens the queue using the
OpenOptions property. MQSeries validates the OpenOptions against the user
authorization as part of the open queue process.

 AlternateUserId property
Read-write. The alternate user ID used to validate access to the queue when it is
opened.

This property cannot be set while the object is open (that is, when IsOpen is
TRUE).

Defined in: MQQueue class

Data Type: String of 12 characters

Syntax:
To get: altuser$ = MQQueue.AlternateUserId

To set: MQQueue.AlternateUserId = altuser$

 BackoutRequeueName property
Read-only. The MQI BackOutRequeueQName attribute.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax:
To get: backoutrequeuename$ = MQQueue.BackoutRequeueName

34 Using the Component Object Model Interface

 MQQueue class

 BackoutThreshold property
Read-only. The MQI BackoutThreshold attribute.

Defined in: MQQueue class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: backoutthreshold& = MQQueue.BackoutThreshold

 BaseQueueName property
Read-only. The queue name to which the alias resolves.

Valid only for alias queues.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax:
To get: baseqname$ = MQQueue.BaseQueueName

 CloseOptions property
Read-Write. Options used to control what happens when the queue is closed.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQCO_NONE
 � MQCO_DELETE
 � MQCO_DELETE_PURGE

MQCO_DELETE and MQCO_DELETE_PURGE are valid only for dynamic queues.

Syntax:
| To get: closeopt& = MQQueue.CloseOptions

To set: MQQueue.CloseOptions = closeopt&

 Chapter 3. MQSeries Automation Classes for ActiveX reference 35

 MQQueue class

 CompletionCode property
Read-only. Returns the completion code set by the last method or property access
issued against the object.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQCC_OK

 � MQCC_WARNING

 � MQCC_FAILED

Syntax:
To get: completioncode& = MQQueue.CompletionCode

 ConnectionReference property
Read-write. Defines the queue manager object to which a queue object belongs.
The connection reference cannot be written while a queue is open.

Defined in: MQQueue class

| Data Type: MQQueueManager

| Values:

| � A reference to an active MQSeries Queue Manager object

| Syntax:
| To set: set MQQueue.ConnectionReference = ConnectionReference

| To get: set ConnectionReference = MQQueue.ConnectionReference

 CreationDateTime property
Read-only. Date and time this queue was created.

Defined in: MQQueue class

Data Type: Variant of type 7 (date/time) or EMPTY

Syntax:
To get: datetime = MQQueue.CreationDateTime

 CurrentDepth property
Read-only. The number of messages currently on the queue.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: currentdepth& = MQQueue.CurrentDepth

36 Using the Component Object Model Interface

 MQQueue class

 DefaultInputOpenOption property
Read-only. Controls the way that the queue is opened if the OpenOptions specify
MQOO_INPUT_AS_Q_DEF.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQOO_INPUT_EXCLUSIVE
 � MQOO_INPUT_SHARED

Syntax:
To get: defaultinop& = MQQueue.DefaultInputOpenOption

 DefaultPersistence property
Read-only. The default persistence for messages on a queue.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: defpersistence& = MQQueue.DefaultPersistence

 DefaultPriority property
Read-only. The default priority for messages on a queue.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: defpriority& = MQQueue.DefaultPriority

 DefinitionType property
Read-only. Queue definition type.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQQDT_PREDEFINED
 � MQQDT_PERMANENT_DYNAMIC
 � MQQDT_TEMPORARY_DYNAMIC

Syntax:
To get: deftype& = MQQueue.DefinitionType

 Chapter 3. MQSeries Automation Classes for ActiveX reference 37

 MQQueue class

 DepthHighEvent property
Read-only. The MQI QDepthHighEvent attribute.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQEVR_DISABLED
 � MQEVR_ENABLED

Syntax:
To get: depthhighevent& = MQQueue.DepthHighEvent

 DepthHighLimit property
Read-only. The MQI QDepthHighLimit attribute.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: depthhighlimit& = MQQueue.DepthHighLimit

 DepthLowEvent property
Read-only. The MQI QDepthLowEvent attribute.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQEVR_DISABLED

 � MQEVR_ENABLED

Syntax:
To get: depthlowevent& = MQQueue.DepthLowEvent

 DepthLowLimit property
Read-only. The MQI QDepthLowLimit attribute.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: depthlowlimit& = MQQueue.DepthLowLimit

38 Using the Component Object Model Interface

 MQQueue class

 DepthMaximumEvent property
Read-only. The MQI QDepthMaxEvent attribute.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQEVR_DISABLED

 � MQEVR_ENABLED

Syntax:
To get: depthmaximumevent& = MQQueue.DepthMaximumEvent

 Description property
Read-only. A description of the queue.

Defined in: MQQueue class

Data Type: String of 64 characters

Syntax:
To get: description$ = MQQueue.Description

 DynamicQueueName property
Read-write, read-only when the queue is open.

| This controls the dynamic queue name used when a model queue is opened. It
| may be set with a wildcard by the user either as a property set (only when the
| queue is closed) or as a parameter to MQQueueManager.AccessQueue().

The actual name of the dynamic queue is found by querying QueueName.

Defined in: MQQueue class

Data Type: String of 48 characters

Values:

� Any valid MQSeries queue name.

Syntax:
To set: MQQueue.DynamicQueueName = dynamicqueuename$

To get: dynamicqueuename$ = MQQueue.DynamicQueueName

 Chapter 3. MQSeries Automation Classes for ActiveX reference 39

 MQQueue class

 HardenGetBackout property
Read-only. Whether to maintain an accurate back-out count.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQQA_BACKOUT_HARDENED
 � MQQA_BACKOUT_NOT HARDENED

Syntax:
To get: hardengetback& = MQQueue.HardenGetBackout

 InhibitGet property
Read-write. The MQI InhibitGet attribute.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQQA_GET_INHIBITED
 � MQQA_GET_ALLOWED

Syntax:
To get: getstatus& = MQQueue.InhibitGet

To set: MQQueue.InhibitGet = getstatus&

 InhibitPut property
Read-write. The MQI InhibitPut attribute.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQQA_PUT_INHIBITED
 � MQQA_PUT_ALLOWED

Syntax:
To get: putstatus& = MQQueue.InhibitPut

To set: MQQueue.InhibitPut = putstatus&

40 Using the Component Object Model Interface

 MQQueue class

 InitiationQueueName property
Read-only. Name of initiation queue.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax:
To get: initqname$ = MQQueue.InitiationQueueName

 IsOpen property
Read-only. Returns whether or not the queue is open.

Defined in: MQQueue class

Data Type: Boolean

Values:

 � TRUE (-1)

 � FALSE (0)

Syntax:
To get: open = MQQueue.IsOpen

 MaximumDepth property
Read-only. Maximum queue depth.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: maxdepth& = MQQueue.MaximumDepth

 MaximumMessageLength property
Read-only. Maximum permitted message length in bytes for this queue.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: maxmlength& = MQQueue.MaximumMessageLength

 Chapter 3. MQSeries Automation Classes for ActiveX reference 41

 MQQueue class

 MessageDeliverySequence property
Read-only. Message delivery sequence.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQMDS_PRIORITY

 � MQMDS_FIFO

Syntax:
To get: messdelseq& = MQQueue.MessageDeliverySequence

 Name property
Read-write. The MQI Queue attribute. This property cannot be written after the
MQQueue is open.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax:
To get: name$ = MQQueue.name

To set: MQQueue.name = name$

Note: Visual Basic reserves the "Name" property for use in the visual interface.
Therefore, when using within Visual Basic use lower-case, that is "name".

 ObjectHandle property
Read-only. The object handle for the MQSeries queue object.

Defined in: MQQueue class

Data Type: Long

Syntax:
| To get: hobj& = MQQueue.ObjectHandle

 OpenInputCount property
Read-only. Number of opens for input.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: openincount& = MQQueue.OpenInputCount

42 Using the Component Object Model Interface

 MQQueue class

 OpenOptions property
Read-write. Options to be used for opening the queue.

Defined in: MQQueue class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

| Syntax:
| To get: openopt& = MQQueue.OpenOptions

| To set: MQQueue.OpenOptions = openopt&

 OpenOutputCount property
Read-only. Number of opens for output.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: openoutcount& = MQQueue.OpenOutputCount

 OpenStatus property
Read-only. Indicates if the queue is opened or not. Initial value is TRUE after
AccessQueue method or FALSE after New.

Defined in: MQQueue class

Data Type: Boolean

Values:

 � TRUE (-1)

 � FALSE (0)

Syntax:
To get: status& = MQQueue.OpenStatus

 ProcessName property
Read-only. The MQI ProcessName attribute.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax:
To get: procname$ = MQQueue.ProcessName

 Chapter 3. MQSeries Automation Classes for ActiveX reference 43

 MQQueue class

 QueueManagerName property
Read-write. The MQSeries queue manager name.

Defined in: MQQueue class

Data Type: String

Syntax:
To get: QueueManagerName$ = MQQueue.QueueManagerName

To set: MQQueue.QueueManagerName = QueueManagerName$

 QueueType Property
Read-only. The MQI QType attribute.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQQT_ALIAS
 � MQQT_LOCAL
 � MQQT_MODEL
 � MQQT_REMOTE

Syntax:
To get: queuetype& = MQQueue.QueueType

 ReasonCode property
Read-only. Returns the reason code set by the last method or property access
issued against the object.

Defined in: MQQueue class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

| Syntax:
| To get: reasoncode& = MQQueue.ReasonCode

44 Using the Component Object Model Interface

 MQQueue class

 ReasonName property
Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".

Defined in: MQQueue class

Data Type: String

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: reasonname$ = MQQueue.ReasonName

 RemoteQueueManagerName property
Read-only. Name of remote queue manager. Valid for remote queues only.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax:
To get: remqmanname$ = MQQueue.RemoteQueueManagerName

 RemoteQueueName property
| Read-only. The name of the queue as it is known on the remote queue manager.
| Valid for remote queues only.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax:
To get: remqname$ = MQQueue.RemoteQueueName

| ResolvedQueueManagerName property
| Read-only. The name of the final destination queue manager as known to the local
| queue manager.

| Defined in: MQQueue class

| Data Type: String of 48 characters

| Syntax:
| To get: resqmanname$ = MQQueue.ResolvedQueueManagerName

 Chapter 3. MQSeries Automation Classes for ActiveX reference 45

 MQQueue class

| ResolvedQueueName property
| Read-only. The name of the final destination queue as known to the local queue
| manager.

| Defined in: MQQueue class

| Data Type: String of 48 characters

| Syntax:
| To get: resqname$ = MQQueue.ResolvedQueueName

 RetentionInterval property
Read-only. The period of time for which the queue should be retained.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: retinterval& = MQQueue.RetentionInterval

 Scope property
Read-only. Controls whether an entry for this queue also exists in a cell directory.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQSCO_Q_MGR

 � MQSCO_CELL

Syntax:
To get: scope& = MQQueue.Scope

 ServiceInterval property
Read-only. The MQI QServiceInterval attribute.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: serviceinterval& = MQQueue.ServiceInterval

46 Using the Component Object Model Interface

 MQQueue class

 ServiceIntervalEvent property
Read-only. The MQI QServiceIntervalEvent attribute.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQQSIE_HIGH

 � MQQSIE_OK

 � MQQSIE_NONE

Syntax:
To get: serviceintervalevent& = MQQueue.ServiceIntervalEvent

 Shareability property
Read-only. Queue shareability.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQQA_SHAREABLE

| � MQQA_NOT_SHAREABLE

Syntax:
To get: shareability& = MQQueue.Shareability

 TransmissionQueueName property
Read-only. Transmission queue name. Valid for remote queues only.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax:
To get: transqname$ = MQQueue.TransmissionQueueName

 Chapter 3. MQSeries Automation Classes for ActiveX reference 47

 MQQueue class

 TriggerControl property
Read-write. Trigger control.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQTC_OFF

 � MQTC_ON

Syntax:
To get: trigcontrol& = MQQueue.TriggerControl

To set: MQQueue.TriggerControl = trigcontrol&

 TriggerData property
Read-write. Trigger data.

Defined in: MQQueue class

Data Type: String of 64 characters

Syntax:
To get: trigdata$ = MQQueue.TriggerData

To set: MQQueue.TriggerData = trigdata$

 TriggerDepth property
Read-write. The number of messages that have to be on the queue before a trigger
message is written.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: trigdepth& = MQQueue.TriggerDepth

To set: MQQueue.TriggerDepth = trigdepth&

48 Using the Component Object Model Interface

 MQQueue class

 TriggerMessagePriority property
Read-write. Threshold message priority for triggers.

Defined in: MQQueue class

Data Type: Long

Syntax:
To get: trigmesspriority& = MQQueue.TriggerMessagePriority

To set: MQQueue.TriggerMessagePriority = trigmesspriority&

 TriggerType property
Read-write. Trigger type.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQTT_NONE

 � MQTT_FIRST

 � MQTT_EVERY

 � MQTT_DEPTH

Syntax:
To get: trigtype& = MQQueue.TriggerType

To set: MQQueue.TriggerType = Trigtype&

 Usage property
Read-only. Indicates what the queue is used for.

Defined in: MQQueue class

Data Type: Long

Values:

 � MQUS_NORMAL

 � MQUS_TRANSMISSION

Syntax:
To get: usage& = MQQueue.Usage

 Chapter 3. MQSeries Automation Classes for ActiveX reference 49

 MQQueue class

 ClearErrorCodes method
Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE
for both the MQQueue class and the MQSession class.

Defined in: MQQueue class

Syntax:
Call MQQueue.ClearErrorCodes()

 Close method
Closes a queue using the current values of CloseOptions.

Defined in: MQQueue class

Syntax:
Call MQQueue.Close()

 Get method
Retrieves a message from the queue.

This method takes an MQMessage object as a parameter. It uses some of the
fields in this object's MQMD as input parameters - in particular the MessageId and
CorrelId, so it is important to ensure that these are set as required. See the
MQSeries Application Programming Reference for details.

If the method fails then the MQMessage object is unchanged. If it succeeds then
the MQMD and Message Data portions of the MQMessage object are completely
replaced with the MQMD and Message Data from the incoming message. The
MQMessage control properties are set as follows

� MessageLength is set to length of the MQSeries message
� DataLength is set to length of the MQSeries message
� DataOffset is set to zero

Defined in: MQQueue class

Syntax:
Call MQQueue.Get(Message, GetMsgOptions, GetMsgLength)

Parameters Message:

MQMessage Object representing message to be retrieved.

GetMsgOptions:

Optional MQGetMessageOptions object to control the get operation. If
these are not specified, default MQGetMessageOptions are used.

GetMsgLength:

| Optional 2- or 4-byte length value to control the maximum length of
| MQSeries message that will be retrieved from the queue.

If the MQGMO_ACCEPT_TRUNCATED_MSG option is specified, the
GET succeeds with a completion code of MQCC_WARNING and a
reason code of MQRC_TRUNCATED_MSG_ACCEPTED if the message
size exceeds the specified length.

50 Using the Component Object Model Interface

 MQQueue class

The MessageData holds the first GetMsgLength bytes of data.

If MQGMO_ACCEPT_TRUNCATED_MSG is not specified, and the
message size exceeds the specified length, the completion code of
MQCC_FAILED together with reason code
MQRC_TRUNCATED_MESSAGE_FAILED is returned.

If the contents of the message buffer are undefined, the total message
length is set to the full length of the message that would have been
retrieved.

If the message length parameter is not specified, the length of the
message buffer is automatically adjusted to at least the size of the
incoming message.

 Open method
Opens a queue using the current values of:

 1. QueueName
 2. QueueManagerName
 3. AlternateUserId
 4. DynamicQueueName

Defined in: MQQueue class

Syntax:
Call MQQueue.Open()

 Put method
Places a message onto the queue.

This method takes an MQMessage object as a parameter. The Message Descriptor
(MQMD) properties of this object may be altered as a result of this method. The
values they have immediately after this method has run are the values that were
put onto the MQSeries queue.

Modifications to the MQMessage object after the Put has completed do not affect
the actual message on the MQSeries queue.

Defined in: MQQueue class

Syntax:
Call MQQueue.Put (Message, PutMsgOptions)

Parameters Message

MQMessage object representing message to be put.

PutMsgOptions

MQPutMessageOptions object containing options to control the put
operation. If these are not specified, default PutMessageOptions are
used.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 51

 MQMessage class

 MQMessage class
This class represents an MQSeries message. It includes properties to encapsulate
the MQSeries message descriptor (MQMD), and provides a buffer to hold the
application-defined message data.

The class includes Write methods to copy data from an ActiveX application to an
MQMessage object and similarly Read methods to copy data from an MQMessage
object to an ActiveX application. The class manages the allocation and
deallocation of memory for the buffer automatically. The application does not have
to declare the size of the buffer when an MQMessage object is created because
the buffer grows to accommodate data written to it.

You cannot place a message onto an MQSeries queue if the buffer size exceeds
the MaximumMessageLength property of that queue.

After it has been constructed, an MQMessage object may be Put onto an MQSeries
queue using the MQQueue.Put method. This method takes a copy of the MQMD
and message data portions of the object and places that copy on the queue - so
the application may modify or delete an MQMessage object after the Put, without
affecting the message on the MQSeries queue. The queue manager may adjust
some of the fields in the MQMD when it copies the message on the MQSeries
queue.

An incoming message may be read into an MQMessage object using the
MQQueue.Get method. This replaces any MQMD or message data that may
already have been in the MQMessage object with values from the incoming
message, adjusting the size of the MQMessage object’s data buffer to match the
size of the incoming message data.

 Containment
Messages are contained by the MQSession class.

 Creation
New creates a new MQMessage object. Its Message Descriptor properties are
initially set to default values, and its Message Data buffer is empty.

 Syntax
Dim msg As New MQMessage
or
Set msg = New MQMessage

 Properties
The control properties are:

 � CompletionCode property
 � DataLength property
 � DataOffset property
 � MessageLength property
 � ReasonCode property
 � ReasonName property

52 Using the Component Object Model Interface

 MQMessage class

The Message Descriptor properties are:

 � AccountingToken property
 � AccountingTokenHex property
 � ApplicationIdData property
 � ApplicationOriginData property
 � BackoutCount property
 � CharacterSet property
 � CorrelationId property
 � CorrelationIdHex property
 � Encoding property
 � Expiry property
 � Feedback property
 � Format property
 � GroupId property
 � GroupIdHex property
 � MessageData property
 � MessageFlags property
 � MessageId property
 � MessageIdHex property
 � MessageSequenceNumber property
 � MessageType property
 � Offset property
 � OriginalLength property
 � Persistence property
 � Priority property
 � PutApplicationName property
 � PutApplicationType property
 � PutDateTime property
 � ReplyToQueueManagerName property
 � ReplyToQueueName property
 � Report property
 � TotalMessageLength property
 � UserId property

 Methods
 � ClearErrorCodes method
 � ClearMessage method
 � Read method
 � ReadBoolean method
 � ReadByte method
 � ReadDecimal2 method
 � ReadDecimal4 method
 � ReadDouble method
 � ReadDouble4 method
 � ReadFloat method
 � ReadInt2 method
 � ReadInt4 method
 � ReadLong method
 � ReadNullTerminatedString method
 � ReadShort method
 � ReadString method
 � ReadUTF method
 � ReadUInt2 method

 Chapter 3. MQSeries Automation Classes for ActiveX reference 53

 MQMessage class

 � ReadUnsignedByte method
 � ResizeBuffer method
 � Write method
 � WriteBoolean method
 � WriteByte method
 � WriteDecimal2 method
 � WriteDecimal4 method
 � WriteDouble method
 � WriteDouble4 method
 � WriteFloat method
 � WriteInt2 method
 � WriteInt4 method
 � WriteLong method
 � WriteNullTerminatedString method
 � WriteShort method
 � WriteUTF method
 � WriteString method
 � WriteUInt2 method
 � WriteUnsignedByte method

 Property access
All properties can be read at any time.

The control properties are read-only, except for DataOffset which is read-write. The
Message Descriptor properties are all read-write, except BackoutCount and
TotalMessageLength which are both read-only.

Note however that some of the MQMD properties may be modified by the queue
manager when the message is put onto an MQSeries queue. See the MQSeries
Application Programming Reference for details.

You can pass binary data to an MQSeries message by setting the CharacterSet
property to the Coded Character Set Identifier of the queue manager
(MQCCSI_Q_MGR), and passing it a string. You can use the chr$ function to set
non-character data into the string.

 Data conversion
The Read and Write methods perform data conversion. They convert between the
ActiveX internal formats, and the MQSeries message formats as defined by the
Encoding and CharacterSet properties from the message descriptor. When writing
a message you should, if possible, set values into Encoding and CharacterSet that
match the characteristics of the recipient of the message before issuing a Write
method. When reading a message, this is not normally required because these
values will have been set from those in the incoming MQMD.

This is an additional data conversion step that happens after any conversion
performed by the MQQueue.Get method.

54 Using the Component Object Model Interface

 MQMessage class

 CompletionCode property
Read-only. Returns the MQSeries completion code set by the most recent method
or property access issued against this object.

Defined in: MQMessage class

Data Type: Long

Values:

 � MQCC_OK

 � MQCC_WARNING

 � MQCC_FAILED

Syntax:
To get: completioncode& = MQMessage.CompletionCode

 DataLength property
Read-only. This property returns the value:

| MQMessage.MessageLength - MQMessage.DataOffset

It can be used before a Read method, to check that the expected number of
characters are actually present in the buffer.

The initial value is zero.

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: bytesleft& = MQMessage.DataLength

 DataOffset property
Read-write. The current position within the Message Data portion of the message
object.

The value is expressed as a byte offset from the start of the message data buffer;
the first character in the buffer corresponds to a DataOffset value of zero.

A read or write method commences its operation at the character referenced by
DataOffset. These methods process data in the buffer sequentially from this
position, and update DataOffset to point to the byte (if any) immediately following
the last byte processed.

DataOffset may take only values in the range zero to MessageLength inclusive.
When DataOffset = MessageLength it is pointing to the end, that is the first invalid
character of the buffer. Write methods are permitted in this situation - they extend
the data in the buffer and increase MessageLength by the number of bytes added.
Reading beyond the end of the buffer is not valid.

The initial value is zero.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 55

 MQMessage class

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: currpos& = MQMessage.DataOffset

To set: MQMessage.DataOffset = currpos&

 MessageLength property
Read-only. Returns the total length of the Message Data portion of the message
object in characters, irrespective of the value of DataOffset.

The initial value is zero. It is set to the incoming Message Length after a Get
method invocation that referenced this message object. It is incremented if the
application uses a Write method to add data to the object. It is unaffected by Read
methods.

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: msglength& = MQMessage.MessageLength

 ReasonCode property
Read-only. Returns the reason code set by the most recent method or property
access issued against this object.

| Defined in: MQMessage class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: reasoncode& = MQMessage.ReasonCode

 ReasonName property
Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".
Defined in: MQMessage class

Data Type: String

Values:

� See the MQSeries Application Programming Reference

Syntax:
| To get: reasonname$ = MQMessage.ReasonName

56 Using the Component Object Model Interface

 MQMessage class

 AccountingToken property
Read-write. The MQMD AccountingToken - part of the message Identity Context.

Its initial value is all nulls.

Defined in: MQMessage class

Data Type: String of 32 characters

Syntax:
To get: actoken$ = MQMessage.AccountingToken

To set: MQMessage.AccountingToken = actoken$

Note: See “Message Descriptor properties” on page 4 for a discussion of when
you must use AccountingTokenHex in place of te AccountingToken
property.

 AccountingTokenHex property
Read-write. The MQMD AccountingToken - part of the message Identity Context.

Every two characters represent the hexadecimal equivalent of a single ASCII
character. For example, the pair of characters "6" and "1" represent the single
character "A", the pair of characters "6" and "2" represent the single character "B",
and so on.

You must supply 64 valid hexadecimal characters.

| Its initial value is "0...0"

Defined in: MQMessage class

Data Type: String of 64 hexadecimal characters representing 32 ASCII characters

Syntax:
To get: actokenh$ = MQMessage.AccountingTokenHex

To set: MQMessage.AccountingTokenHex = actokenh$

Note: See “Message Descriptor properties” on page 4 for a discussion of when
you must use AccountingTokenHex in place of the AccountingToken
property.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 57

 MQMessage class

 ApplicationIdData property
Read-write. The MQMD ApplIdentityData - part of the message Identity Context.

Its initial value is all blanks.

Defined in: MQMessage class

Data Type: String of 32 characters

Syntax:
To get: applid$ = MQMessage.ApplicationIdData

To set: MQMessage.ApplicationIdData = applid$

 ApplicationOriginData property
Read-write. The MQMD ApplOriginData - part of the message origin context.

Its initial value is all blanks.

Defined in: MQMessage class

Data Type: String of 4 characters

Syntax:
To get: applor$ = MQMessage.ApplicationOriginData

To set: MQMessage.ApplicationOriginData = applor$

 BackoutCount property
Read-only. The MQMD BackoutCount.

Its initial value is 0

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: backoutct& = MQMessage.BackoutCount

58 Using the Component Object Model Interface

 MQMessage class

 CharacterSet property
Read-write. The MQMD CodedCharSetId.

Its initial value is the special value MQCCSI_Q_MGR.

If CharacterSet is set to MQCCSI_Q_MGR, the WriteString method does not
perform code-page conversion.

For example:

msg.CharacterSet = MQCCSI_Q_MGR

msg.WriteString(chr$(n))

where 'n' is greater than or equal to zero and less than or equal to 255, results in a
single byte of value of 'n' being written to the buffer.

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: ccid& = MQMessage.CharacterSet

To set: MQMessage.CharacterSe t = ccid&

Example

If you want the string written out in code page 437, issue:

Message.CharacterSet = 437

Message.WriteString ("string to be written")

Set the value you want in the CharacterSet before issuing any WriteString calls.

 CorrelationId property
Read-write. The CorrelationId to be included in the MQMD of a message when put
on a queue, also the Id to be matched against when getting a message from a
queue.

Its initial value is null.

Defined in: MQMessage class

Data Type: String of 24 characters

Syntax:
To get: correlid$ = MQMessage.CorrelationId
To set: MQMessage.CorrelationId = correlid$

Note: See “Message Descriptor properties” on page 4 for a discussion of when
you must use CorrelationIdHex in place of the CorrelationId property.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 59

 MQMessage class

 CorrelationIdHex property
Read-write. The CorrelationId to be included in the MQMD of a message when put
on a queue, also the CorrelationId to be matched against when getting a message
from a queue.

Every two characters of the string represent the hexadecimal equivalent of a single
ASCII character. For example, the pair of characters "6" and "1" represent the
single character "A", the pair of characters "6" and "2" represent the single
character "B", and so on.

You must supply 48 valid hexadecimal characters.

| Its initial value is "0...0".

Defined in: MQMessage class

Data Type: String of 48 hexadecimal characters representing 24 ASCII characters

Syntax:
To get: correlidh$ = MQMessage.CorrelationIdHex

To set: MQMessage.CorrelationIdHex = correlidh$

Note: See “Message Descriptor properties” on page 4 for a discussion of when
you must use CorrelationIdHex in place of the CorrelationId property.

 Encoding property
Read-write. The MQMD field that identifies the representation used for numeric
values in the application message data.

Its initial value is the special value MQENC_NATIVE, which varies by platform.

This property is used by the following methods:

 � ReadDecimal2 method
 � ReadDecimal4 method
 � ReadDouble method
 � ReadDouble4 method
 � ReadFloat method
 � ReadInt2 method
 � ReadInt4 method
 � ReadLong method
 � ReadShort method
 � ReadUInt2 method
 � WriteDecimal2 method
 � WriteDecimal4 method
 � WriteDouble method
 � WriteDouble4 method
 � WriteFloat method
 � WriteInt2 method
 � WriteInt4 method
 � WriteLong method
 � WriteShort method
 � WriteUInt2 method

60 Using the Component Object Model Interface

 MQMessage class

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: encoding& = MQMessage.Encoding
To set: MQMessage.Encoding = encoding&

If you are preparing to write data to the message buffer, you should set this field to
match the characteristics of the receiving queue manager platform if the receiving
queue manager is incapable of performing its own data conversion.

 Expiry property
Read-write. The MQMD expiry time field, expected in tenths of a second.

Its initial value is the special value MQEI_UNLIMITED

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: expiry& = MQMessage.Expiry

To set: MQMessage.Expiry = expiry&

 Feedback property
Read-write. The MQMD feedback field.

Its initial value is the special value MQFB_NONE.

Defined in: MQMessage class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: feedback& = MQMessage.Feedback

To set: MQMessage.Feedback = feedback&

 Chapter 3. MQSeries Automation Classes for ActiveX reference 61

 MQMessage class

 Format property
Read-write. The MQMD format field. Gives the name of a built-in or user-defined
format that describes the nature of the Message Data.

Its initial value is the special value MQFMT_NONE.

Defined in: MQMessage class

Data Type: String of 8 characters

Syntax:
To get: format$ = MQMessage.Format

To set: MQMessage.Format = format$

 GroupId property
Read-write. The GroupId to be included in the MQPMR of a message when put on
a queue, also the Id to be matched against when getting a message from a queue.
Its initial value is all nulls.

Defined in: MQMessage class

Data Type: String of 24 characters

Syntax:
To get: groupid$ = MQMessage.GroupId

To set: MQMessage.GroupId = groupid$

Note: See “Message Descriptor properties” on page 4 for a discussion of when
you must use GroupIdHex in place of the GroupId property.

 GroupIdHex property
Read-write. The GroupId to be included in the MQPMR of a message when put on
a queue, also the Id to be matched against when getting a message from a queue.

Every two characters of the string represent the hexadecimal equivalent of a single
ASCII character. For example, the pair of characters "6" and "1" represent the
single character "A", the pair of characters "6" and "2" represent the single
character "B" and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0...0".

Defined in: MQMessage class

Data Type: String of 48 hexadecimal characters representing 24 ASCII characters.

Syntax:
To get: groupidh$ = MQMessage.GroupIdHex

To set: MQMessage.GroupIdHex = groupidh$

Note: See “Message Descriptor properties” on page 4 for a discussion of when
you must use GroupIdHex in place of the GroupId property.

62 Using the Component Object Model Interface

 MQMessage class

 MessageData property
Read-write. Retrieves or sets the entire contents of a message as a character
string.

Defined in: MQMessage class

Data Type: Variant

Note: The data type used by this property is Variant but MQAX expects this to be
a variant type of String. If you pass in a variant of other than this type then
the error MQRC_OBJECT_TYPE_ERROR will be returned.

Syntax:
| To get: String$ = MQMessage.MessageData

| To set: MQMessage.MessageData = String$

 MessageFlags property
Read-Write. Message flags specifying Segmentation control information. The initial
value is 0.

Defined in: MQMessage class

Data Type: Long

Values: See the MQSeries Application Programming Reference

Syntax:
To get: messageflags& = MQMessage.MessageFlags

To set: MQMessage.MessageFlags = messageflags&

 MessageId property
Read-write. The MessageId to be included in the MQMD of a message when put
on a queue, also the Id to be matched against when getting a message from a
queue.

Its initial value is all nulls.

Defined in: MQMessage class

Data Type: String of 24 characters

Syntax:
To get: messageid$ = MQMessage.MessageId

To set: MQMessage.MessageId = messageid$

Note: See “Message Descriptor properties” on page 4 for a discussion of when
you must use MessageIdHex in place of the MessageId property.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 63

 MQMessage class

 MessageIdHex property
Read-write. The MessageId to be included in the MQMD of a message when put
on a queue, also the MessageId to be matched against when getting a message
from a queue.

Every two characters of the string represent the hexadecimal equivalent of a single
ASCII character. For example, the pair of characters "6" and "1" represent the
single character "A", the pair of characters "6" and "2" represent the single
character "B", and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0...0".

Defined in: MQMessage class

Data Type: String of 48 hexadecimal characters representing 24 ASCII characters

Syntax:
To get: messageidh$ = MQMessage.MessageIdHex

To set: MQMessage.MessageIdHex = messageidh$

Note: See “Message Descriptor properties” on page 4 for a discussion of when
you must use MessageIdHex in place of the MessageId property.

 MessageSequenceNumber property
Read-Write. Sequence information identifying a message within a group. The initial
value is 1.

Defined in: MQMessage class

Data Type: Long

Values: See the MQSeries Application Programming Reference

Syntax:
To get: sequencenumber& = MQMessage.SequenceNumber

To set: MQMessage.SequenceNumber = sequencenumber&

64 Using the Component Object Model Interface

 MQMessage class

 MessageType property
Read-write. The MQMD MsgType field.

Its initial value is MQMT_DATAGRAM.

Defined in: MQMessage class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: msgtype& = MQMessage.MessageType

To set: MQMessage.MessageType = msgtype&

 Offset property
Read-Write. The offset in a segmented message. The initial value is 0.

Defined in: MQMessage class

Data Type: Long

Values: See the MQSeries Application Programming Reference

Syntax:
To get: offset& = MQMessage.Offset

To set: MQMessage.Offset = offset&

 OriginalLength property
Read-Write. The original length of a segmented message. The initial value is
MQOL_UNDEFINED

Defined in: MQMessage class

Data Type: Long

Values: See the MQSeries Application Programming Reference

Syntax:
To get: originallength& = MQMessage.OriginalLength

To set: MQMessage.OriginalLength = originallength&

 Chapter 3. MQSeries Automation Classes for ActiveX reference 65

 MQMessage class

 Persistence property
Read-write. The message's persistence setting.

Its initial value is MQPER_PERSISTENCE_AS_Q_DEF.

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: persist& = MQMessage.Persistence

To set: MQMessage.Persistence = persist&

 Priority property
Read-write. The message's priority.

Its initial value is the special value MQPRI_PRIORITY_AS_Q_DEF

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: priority& = MQMessage.Priority

To set: MQMessage.Priority = priority&

 PutApplicationName property
Read-write. The MQMD PutApplName - part of the Message Origin context.

Its initial value is all blanks.

Defined in: MQMessage class

Data Type: String of 28 characters

Syntax:
To get: putapplnm$ = MQMessage.PutApplicationName

To set: MQMessage.PutApplicationName = putapplnm$

66 Using the Component Object Model Interface

 MQMessage class

 PutApplicationType property
Read-write. The MQMD PutApplType - part of the Message Origin context.

Its initial value is MQAT_NO_CONTEXT

Defined in: MQMessage class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: putappltp& = MQMessage.PutApplicationType

To set: MQMessage.PutApplicationType = putappltp&

 PutDateTime property
Read-write. This property combines the MQMD PutDate and PutTime fields. These
are part of the Message Origin context that indicate when the message was put.

The ActiveX Extension converts between ActiveX date/time format and the Date
and Time formats used in an MQSeries MQMD. If a message is received which has
an invalid PutDate or PutTime, then the PutDateTime property after the get method
will be set to EMPTY.

Its initial value is EMPTY.

Defined in: MQMessage class

Data Type: Variant of type 7 (date/time) or EMPTY.

Syntax:
To get: datetime = MQMessage.PutDateTime

To set: MQMessage.PutDateTime = datetime

 ReplyToQueueManagerName property
Read-write. The MQMD ReplyToQMgr field.

Its initial value is all blanks

Defined in: MQMessage class

Data Type: String of 48 characters

Syntax:
To get: replytoqmgr$ = MQMessage.ReplyToQueueManagerName

To set: MQMessage.ReplyToQueueManagerName = replytoqmgr$

 Chapter 3. MQSeries Automation Classes for ActiveX reference 67

 MQMessage class

 ReplyToQueueName property
Read-write. The MQMD ReplyToQ field.

Its initial value is all blanks

Defined in: MQMessage class

Data Type: String of 48 characters

Syntax:
To get: replytoq$ = MQMessage.ReplyToQueueName

To set: MQMessage.ReplyToQueueName = replytoq$

 Report property
Read-write. The message's Report options.

Its initial value is MQRO_NONE.

Defined in: MQMessage class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: report& = MQMessage.Report

To set: MQMessage.Report = report&

 TotalMessageLength property
Read-only. Retrieves the length of the last message received by MQGET. If the

| message has not been truncated, this value is equal to the value of the
| MessageLength property.

Defined in: MQMessage class

Data Type: Long

Syntax:
To get: totalmessagelength& = MQMessage.TotalMessageLength

68 Using the Component Object Model Interface

 MQMessage class

 UserId property
Read-write. The MQMD UserIdentifier - part of the message Identity Context.

Its initial value is all blanks.

Defined in: MQMessage class

Data Type: String of 12 characters

Syntax:
To get: userid$ = MQMessage.UserId

To set: MQMessage.UserId = userid$

 ClearErrorCodes method
Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE
for both the MQMessage class and the MQSession class.

Defined in: MQMessage class

Syntax:
Call MQMessage.ClearErrorCodes()

 ClearMessage method
This method clears the data buffer portion of the MQMessage object. Any Message
Data in the data buffer is lost, because MessageLength, DataLength, and
DataOffset are all set to zero.

The Message Descriptor (MQMD) portion is unaffected; an application may need to
modify some of the MQMD fields before reusing the MQMessage object. If you
wish to set the MQMD fields back to initial values you should use New to replace
the object with a new instance.

Defined in: MQMessage class

Syntax:
Call MQMessage.ClearMessage()

| Read method
| Reads a sequence of the specified number of bytes from the message buffer into a
| byte array. DataOffset is incremented and DataLength decremented by the number
| of bytes read.

| The method fails if DataLength is less than the specified number of bytes when it is
| issued.

| Defined in: MQMessage class

| Syntax:
| Data = MQMessage.Read(len&)

| Parameters: len&: Long. Length of data in bytes to be read.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 69

 MQMessage class

 ReadBoolean method
Reads a 1-byte Boolean value from the message buffer and returns a 2-byte
Boolean TRUE(-1)/FALSE(0) value. DataOffset is incremented by 1 and
DataLength is decremented by 1 if the method succeeds.

| The method fails if DataLength is less than 1 when it is issued.

Defined in: MQMessage class

Syntax:
value = MQMessage.ReadBoolean

 ReadByte method
This method reads 1 byte from the Message Data buffer and returns it as an
Integer (signed 2-byte) integer value in the range -128 to 127.

| The method fails if MQMessage.DataLength is less than 1 when it is issued.

DataOffset is incremented by 1 and DataLength is decremented by 1 if the method
succeeds.

| The byte of message data is assumed to be a signed binary integer.

Defined in: MQMessage class

| Syntax:
| integerv% = MQMessage.ReadByte

 ReadDecimal2 method
Reads a 2-byte packed decimal number and returns it as a signed 2-byte integer

| value. DataOffset is incremented by 2 and DataLength is decremented by 2 if the
| method succeeds.

| The method fails if DataLength is less than 2 when it is issued.

Defined in: MQMessage class

| Syntax:
| value% = MQMessage.ReadDecimal2

 ReadDecimal4 method
Reads a 4-byte packed decimal number and returns it as a signed 4-byte integer

| value. DataOffset is incremented by 4 and DataLength is decremented by 4 if the
| method succeeds.

| The method fails if DataLength is less than 4 when it is issued.

Defined in: MQMessage class

| Syntax:
| Call value& = MQMessage.ReadDecimal4

70 Using the Component Object Model Interface

 MQMessage class

 ReadDouble method
This method reads 8 bytes from the Message Data buffer and returns it as a
Double (signed 8-byte) floating point value.

| The method fails if MQMessage.DataLength is less than 8 when it is issued.

DataOffset is incremented by 8 and DataLength is decremented by 8 if the method
succeeds.

| The 8 characters of message data are assumed to be a binary floating point
| number whose encoding is specified by the MQMessage.Encoding property. Note

that conversion from System/360 format is not supported.

Defined in: MQMessage class

Syntax:
| doublev# = MQMessage.ReadDouble

 ReadDouble4 method
The ReadDouble4 and WriteDouble4 methods are alternatives to ReadFloat and
WriteFloat. This is because they support 4-byte System/390 floating point message
values that are too large to convert to 4-byte IEEE floating point format.

This method reads 4 bytes from the Message Data buffer and returns it as a
Double (signed 8-byte) floating point value.

| The method fails if MQMessage.DataLength is less than 4 when it is issued.

DataOffset is incremented by 4 and DataLength is decremented by 4 if the method
succeeds.

| The 4 characters of message data are assumed to be a binary floating point
| number whose encoding is specified by the MQMessage.Encoding property. Note
| that conversion from System/360 format is not supported.

| Defined in: MQMessage class

| Syntax:
| doublev# = MQMessage.ReadDouble4

 Chapter 3. MQSeries Automation Classes for ActiveX reference 71

 MQMessage class

 ReadFloat method
This method reads 4 bytes from the Message Data buffer and returns it as a Single
(signed 4-byte) floating point value.

| The method fails if MQMessage.DataLength is less than 4 when it is issued.

| DataOffset is incremented by 4 and DataLength is decremented by 4 if the method
| succeeds.

| The 4 characters of message data are assumed to be a floating point number
| whose encoding is specified by the MQMessage.Encoding property. Note that
| conversion from System/360 format is not supported.

| Defined in: MQMessage class

| Syntax:
| singlev! = MQMessage.ReadFloat

 ReadInt2 method
| The method is identical to the ReadShort method.

| Syntax:
| integerv% = MQMessage.ReadInt2

| ReadInt4 method
| This method is identical to the ReadLong method.

| Syntax:
| bigint& = MQMessage.ReadInt4

 ReadLong method
This method reads 4 bytes from the Message Data buffer and returns it as a Long
(signed 4-byte) integer value.

| The method fails if MQMessage.DataLength is less than 4 when it is issued.

| DataOffset is incremented by 4 and DataLength is decremented by 4 if the method
| succeeds.

| The 4 characters of message data are assumed to be a binary integer whose
| encoding is specified by the MQMessage.Encoding property.

| Defined in: MQMessage class

| Syntax:
| bigint& = MQMessage.ReadLong

72 Using the Component Object Model Interface

 MQMessage class

 ReadNullTerminatedString method
This is for use in place of ReadString if the string may contain embedded null
characters.

This method reads the specified number of bytes from the message data buffer and
returns it as an ActiveX string. If the string contains an embedded null before the
end then the length of the returned string is reduced to reflect only those characters
before the null.

| The method fails if DataLength is less than the specified number of bytes when it is
| issued.

| DataOffset is incremented and DataLength is decremented by the value specified
| regardless of whether or not the string contains embedded null characters.

| The characters in the message data are assumed to be a string whose code page
| is specified by the MQMessage.CharacterSet property. Conversion to ActiveX
| representation is performed for the application.

| Defined in: MQMessage class

| Syntax:
| string$ = MQMessage.ReadNullTerminatedString(length&)

| Parameters: length& Long. Length of string field in bytes.

 ReadShort method
This method reads 2 bytes from the Message Data buffer and returns it as an
Integer (signed 2-byte) value.

| The method fails if MQMessage.DataLength is less than 2 when it is issued.

| DataOffset is incremented by 2 and DataLength is decremented by 2 if the method
| succeeds.

| The 2 characters of message data are assumed to be a binary integer whose
| encoding is specified by the MQMessage.Encoding property.

Defined in: MQMessage class

Syntax:
| integerv% = MQMessage.ReadShort

 Chapter 3. MQSeries Automation Classes for ActiveX reference 73

 MQMessage class

 ReadString method
This method reads n bytes from the Message Data buffer and returns it as an
ActiveX string.

| The method fails if MQMessage.DataLength is less than n when it is issued.

| DataOffset is incremented by n and DataLength is decremented by n if the method
| succeeds.

| The n characters of message data are assumed to be a string whose code page is
| specified by the MQMessage.CharacterSet property. Conversion to ActiveX
| representation is performed for the application.

| Defined in: MQMessage class

| Syntax:
| stringv$ = MQMessage.ReadString (length&)

| Parameter length& Long. Length of string field in bytes.

 ReadUInt2 method
This method reads 2 bytes from the Message Data buffer and returns it as a Long
(signed 4-byte) integer value.

| The method fails if MQMessage.DataLength is less than 2 when it is issued.

| DataOffset is incremented by 2 and DataLength is decremented by 2 if the method
| succeeds.

| The 2 bytes of message data are assumed to be an unsigned binary integer whose
| encoding is specified by the MQMessage.Encoding property.

| Defined in: MQMessage class

| Syntax:
| bigint& = MQMessage.ReadUInt2

 ReadUnsignedByte method
This method reads 1 byte from the Message Data buffer and returns it as an
Integer (signed 2-byte) integer value in the range 0 to 255.

| The method fails if MQMessage.DataLength is less than 1 when it is issued.

DataOffset is incremented by 1 and DataLength is decremented by 1 if the method
succeeds.

The 1 byte of message data is assumed to be an unsigned binary integer.

Defined in: MQMessage class

Syntax:
| integerv% = MQMessage.ReadUnsignedByte

74 Using the Component Object Model Interface

 MQMessage class

| ReadUTF method
| This method reads a UTF format string from the message buffer and returns it as
| an ActiveX string. The string in the message consists of a 2-byte length followed
| by the character data.

| The method fails if MQMessage.DataLength is less than the string length when it is
| issued.

| DataOffset is incremented and DataLength is decremented by the string length if
| the method succeeds.

Defined in: MQMessage class

| Syntax:
| value$ = MQMessage.ReadUTF

 ResizeBuffer method
This method alters the amount of storage currently allocated internally to hold the
Message Data buffer. It gives the application some control over the automatic
buffer management, in that if the application knows that it is going to deal with a
large message, it can ensure that a sufficiently large buffer is allocated. The
application does not need to use this call - if it does not, the automatic buffer
management code will grow the buffer size to fit.

If you resize the buffer to be smaller that the current MessageLength, you risk
losing data. If you do lose data, the method returns a CompletionCode of
MQCC_WARNING and a ReasonCode of MQRC_DATA_TRUNCATED.

If you resize the buffer to be smaller than the value of the DataOffset property the:

� DataOffset property is changed to point to the end of the new buffer

� DataLength property is set to zero

� MessageLength property is changed to the new buffer size

Defined in: MQMessage class

| Syntax:
| MQMessage.ResizeBuffer (Length&)

Parameter: Length& Long. Size required in characters.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 75

 MQMessage class

 Write method
| Writes a sequence of bytes to the message buffer from a byte array. DataOffset is
| incremented by the number of bytes written if the method succeeds.

| Defined in: MQMessage class

| Syntax:
| Call MQMessage.Write (data)

| Parameters: data: a byte array or a variant reference to a byte array

 WriteBoolean method
| Writes a 1-byte Boolean value to the message buffer from a 2-byte Boolean value.
| DataOffset is incremented by 1 if the method succeeds.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteBoolean (value)

Parameter: value: Boolean (2-bytes). Value to be written.

 WriteByte method
This method takes a signed 2-byte integer value and writes it into the Message
Data buffer as a 1-byte binary number.

DataOffset is incremented by 1 if the method succeeds.

| The value specified should be in the range -128 to 127. If it is not, the method
| returns with CompletionCode MQCC_FAILED and ReasonCode
| MQRC_WRITE_VALUE_ERROR.

Defined in: MQMessage class

Syntax:
| Call MQMessage.WriteByte (value%)

| Parameter: value% Integer. Value to be written.

 WriteDecimal2 method
| Writes a signed 2-byte integer as a 2-byte packed decimal number to the message
| buffer. DataOffset is incremented by 2 if the method succeeds.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteDecimal2 (value%)

Parameter: value% Integer. Value to be written.

76 Using the Component Object Model Interface

 MQMessage class

 WriteDecimal4 method
| Writes a signed 4-byte integer as a 4-byte packed decimal number to the message
| buffer. DataOffset is incremented by 4 if the method succeeds.

Defined in: MQMessage class

Syntax:
Call MQMessage.WritedDecimal4 (value&)

Parameter: value& Long. Value to be written.

 WriteDouble method
This method takes a signed 8-byte floating point value and writes it into the
Message Data buffer as an 8-byte floating point number.

DataOffset is incremented by 8 if the method succeeds.

The method converts to the floating point representation specified by the
MQMessage.Encoding property. Conversion to System/360 format is not supported.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteDouble (value#)

Parameter: value# Double. Value to be written.

 WriteDouble4 method
See “ReadDouble4 method” on page 71 for a description of when ReadDouble4
and WriteDouble4 should be used in place of ReadFloat and WriteFloat.

This method takes a signed 8-byte floating point value and writes it into the
Message Data buffer as a 4-byte floating number.

DataOffset is incremented by 4 if the method succeeds.

The method converts to the floating point representation specified by the
MQMessage.Encoding property. Conversion to System/360 format is not
supported.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteDouble4(value#)

Parameter: value# Double. Value to be written.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 77

 MQMessage class

 WriteFloat method
This method takes a signed 4-byte floating point value and writes it into the
Message Data buffer as a 4-byte floating point number.

DataOffset is incremented by 4 if the method succeeds.

The method converts to the binary representation specified by the
MQMessage.Encoding property. Conversion to System/360 format is not supported.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteFloat (value!)

Parameter value! Float. Value to be written.

 WriteInt2 method
| This method is identical to the WriteShort method.

Syntax:
Call MQMessage.WriteInt2 (value%)

Parameter value% Integer. Value to be written.

 WriteInt4 method
| This method is identical to the WriteLong method.

Syntax:
Call MQMessage.WriteInt4 (value&)

Parameter value& Long. Value to be written.

 WriteLong method
This method takes a signed 4-byte integer value and writes it into the Message
Data buffer as a 4-byte binary number.

DataOffset is incremented by 4 if the method succeeds.

The method converts to the binary representation specified by the
MQMessage.Encoding property.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteLong (value&)

Parameter value& Long. Value to be written.

78 Using the Component Object Model Interface

 MQMessage class

 WriteNullTerminatedString method
This method performs a normal WriteString and pads any remaining bytes up to the
specified length with null. If the number of bytes written by the initial write string is
equal to the specified length then no nulls are written. If the number of bytes
exceeds the specified length then an error (reason code
MQRC_WRITE_VALUE_ERROR) is set.

| DataOffset is incremented by the specified length if the method succeeds.

Defined in: MQMessage class

Syntax:
| Call MQMessage.WriteNullTerminatedString (value$, length&)

Parameters: value$ String. Value to be written.

length& Long. Length of string field in bytes.

 WriteShort method
| This method takes a signed 2-byte integer value and writes it into the Message
| Data buffer as a 2-byte binary number.

DataOffset is incremented by 2 if the method succeeds.

The method converts to the binary representation specified by the
MQMessage.Encoding property.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteShort (value%)

Parameter value% Integer. Value to be written.

 WriteString method
This method takes an ActiveX string and writes it into the Message Data buffer.

| DataOffset is incremented by the length of the string in bytes if the method
| succeeds.

The method converts characters into the code page specified by the
MQMessage.CharacterSet property.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteString (value$)

Parameter value$ String. Value to be written.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 79

 MQMessage class

 WriteUInt2 method
This method takes a signed 4-byte integer value and writes it into the Message
Data buffer as a 2-byte unsigned binary number.

DataOffset is incremented by 2 if the method succeeds.

The method converts to the binary representation specified by the
MQMessage.Encoding property. The value specified should be in the range 0 to

| 2**16-1. If it is not the method returns with CompletionCode MQCC_FAILED and
| ReasonCode MQRC_WRITE_VALUE_ERROR.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteUInt2 (value&)

| Parameter value& Long. Value to be written.

 WriteUnsignedByte method
This method takes a signed 2-byte integer value and writes it into the Message
Data buffer as a 1-byte unsigned binary number.

DataOffset is incremented by 1 if the method succeeds.

| The value specified should be in the range 0 to 255. If it is not the method returns
| with CompletionCode MQCC_FAILED and ReasonCode
| MQRC_WRITE_VALUE_ERROR.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteUnsignedByte (value%)

| Parameter value% Integer. Value to be written.

 WriteUTF method
| This method takes an ActiveX string and writes it into the message data buffer in
| UTF format. The data written consists of a 2-byte length followed by the character
| data. DataOffset is incremented by the length of the string if the method succeeds.

| Defined in: MQMessage class

| Syntax:
| Call MQMessage.WriteUTF (value$)

Parameter: value$ String. Value to be written.

80 Using the Component Object Model Interface

 MQPutMessageOptions class

 MQPutMessageOptions class
This class encapsulates the various options that control the action of putting a
message onto an MQSeries Queue.

 Containment
Contained by the MQSession class.

 Creation
New creates a new MQPutMessageOptions object and sets all its properties to
initial values.

Alternatively, use the AccessPutMessageOptions method of the MQSession class.

 Syntax:
Dim pmo As New MQPutMessageOptions or

Set pmo = New MQPutMessageOptions

 Properties
 � CompletionCode property
 � Options property
 � ReasonCode property
 � ReasonName property
 � RecordFields property
 � ResolvedQueueManagerName property
 � ResolvedQueueName property

 Methods
 � ClearErrorCodes method

 CompletionCode property
Read-only. Returns the completion code set by the last method or property access
issued against the object.

Defined in: MQPutMessageOptions class

Data Type: Long

Values:

 � MQCC_OK

 � MQCC_WARNING

 � MQCC_FAILED

Syntax:
To get: completioncode& = PutOpts.CompletionCode

 Chapter 3. MQSeries Automation Classes for ActiveX reference 81

 MQPutMessageOptions class

 Options property
Read-write. The MQPMO Options field. See the MQSeries Application
Programming Reference for details. Initial value is MQPMO_NONE.

Defined in: MQPutMessageOptions Class.

Data Type: Long

Syntax:
To get: options& = PutOpts.Options

To set: PutOpts.Options = options&

The MQPMO_PASS_IDENTITY_CONTEXT and MQPMO_PASS_ALL_CONTEXT
options are not supported.

 ReasonCode property
Read-only. Returns the reason code set by the last method or property access
issued against the object.

Defined in: MQPutMessageOptions class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: reasoncode& = PutOpts.ReasonCode

 ReasonName property
Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".

Defined in: MQPutMessageOptions class

Data Type: String

Values:

� See the MQSeries Application Programming Reference

Syntax:
| To get: reasonname$ = PutOpts.ReasonName

82 Using the Component Object Model Interface

 MQPutMessageOptions class

 RecordFields property
Read-write. Flags indicating which fields are to be customized on a per-queue basis
when putting a message to a distribution list. The initial value is zero.

This property corresponds to the PutMsgRecFields flags in the MQI MQPMO
structure. In the MQI, these flags control which fields (in the MQPMR structure) are
present and used by the MQPUT. In an MQPutMessageOptions object these fields
are always present and the flags therefore only affect which fields are used by the
Put. See the MQSeries Application Programming Reference for further details.

Defined in: MQPutMessageOptions class

Data Type: Long

Syntax:
To get: recordfields& = PutOpts.RecordFields

To set: PutOpts.RecordFields = recordfields&

 ResolvedQueueManagerName property
Read-only. The MQPMO ResolvedQMgrName field. See the MQSeries
Application Programming Reference for details. The initial value is all blanks.

Defined in: MQPutMessageOptions class

Data Type: String of 48 characters

Syntax:
To get: qmgr$ = PutOpts.ResolvedQueueManagerName

 ResolvedQueueName property
Read-only. The MQPMO ResolvedQName field. See the MQSeries Application
Programming Reference for details. The initial value is all blanks.

Defined in: MQPutMessageOptions class

Data Type: String of 48 characters

Syntax:
To get: qname$ = PutOpts.ResolvedQueueName

 ClearErrorCodes method
Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE
for both the MQPutMessageOptions class and the MQSession class.

Defined in: MQPutMessageOptions class

Syntax:
Call PutOpts.ClearErrorCodes()

 Chapter 3. MQSeries Automation Classes for ActiveX reference 83

 MQGetMessageOptions class

 MQGetMessageOptions class
This class encapsulates the various options that control the action of getting a
message from an MQSeries queue.

 Containment
Contained by the MQSession class.

 Properties
 � CompletionCode property
 � MatchOptions property
 � Options property
 � ReasonCode property
 � ReasonName property
 � ResolvedQueueName property
 � WaitInterval property

 Methods
 � ClearErrorCodes method

 Creation
New creates a new MQGetMessageOptions object and sets all its properties to
initial values.

Alternatively, use the AccessGetMessageOptions method of the MQSession class.

 Syntax:
Dim gmo As New MQGetMessageOptions or

Set gmo = New MQGetMessageOptions

 CompletionCode property
Read-only. Returns the completion code set by the last method or property access
issued against the object.

Defined in: MQGetMessageOptions Class.

Data Type: Long

Values:

 � MQCC_OK

 � MQCC_WARNING

 � MQCC_FAILED

Syntax:
| To get: completioncode& = GetOpts.CompletionCode

84 Using the Component Object Model Interface

 MQGetMessageOptions class

 MatchOptions property
Read-write. Options controlling selection criteria used for MQGET. The initial value
is MQMO_MATCH_MSG_ID + MQMO_MATCH_CORREL_ID.

Defined in: MQGetMessageOptions class

Data Type: Long

Values: See the MQSeries Application Programming Reference

Syntax:
To get: matchoptions& = GetOpts.MatchOptions

To set: GetOpts.MatchOptions = matchoptions&

 Options property
Read-write. The MQGMO Options field. See the MQSeries Application
Programming Reference for details. Initial value is MQGMO_NO_WAIT.

Defined in: MQGetMessageOptions Class.

Data Type: Long

Syntax:
To get: options& = GetOpts.Options
To set: GetOpts.Options = options&

 ReasonCode property
Read-only. Returns the reason code set by the last method or property access
issued against the object.

Defined in: MQGetMessageOptions class

Data Type: Long

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: reasoncode& = GetOpts.ReasonCode

 ReasonName property
Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".
Defined in: MQGetMessageOptions class

Data Type: String

Values:

� See the MQSeries Application Programming Reference

Syntax:
To get: reasonname$ = MQGetMessageOptions.ReasonName

 Chapter 3. MQSeries Automation Classes for ActiveX reference 85

 MQGetMessageOptions class

 ResolvedQueueName property
Read-only. The MQGMO ResolvedQName field. See the MQSeries Application
Programming Reference for details. The initial value is all blanks.

Defined in: MQGetMessageOptions class

Data Type: String of 48 characters

Syntax:
To get: qname$ = GetOpts.ResolvedQueueName

 WaitInterval property
Read-write. The MQGMO WaitInterval field. The maximum time, in milliseconds,
that the Get will wait for a suitable message to arrive - if wait action has been
requested by the Options property. See the MQSeries Application Programming
Reference for details. Initial value is 0.

Defined in: MQGetMessageOptions class

Data Type: Long

Syntax:
To get: wait& = GetOpts.WaitInterval

To set: GetOpts.WaitInterval = wait&

 ClearErrorCodes method
Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE
for both the MQGetMessageOptions class and the MQSession class.

Defined in: MQGetMessageOptions class

Syntax:
Call GetOpts.ClearErrorCodes()

86 Using the Component Object Model Interface

 MQDistributionList class

 MQDistributionList class
This class encapsulates a collection of queues - local, remote, or alias for output.

 Properties:
 � AlternateUserId property
 � CloseOptions property
 � CompletionCode property
 � ConnectionReference property
 � FirstDistributionListItem property
 � IsOpen property
 � OpenOptions property
 � ReasonCode property
 � ReasonName property

 Methods:
 � AddDistributionListItem method
 � ClearErrorCodes method
 � Close method
 � Open method
 � Put method

 Creation:
new creates a new MQDistributionList object.

Alternatively, use the AddDistributionList method of the MQQueueManager class.

| Syntax:
| Dim distlist As New MQDistributionList
| or
| Set distlist = New MQDistributionList

 AlternateUserId property
Read-write. The alternate user ID used to validate access to the list of queues
when they are opened.

Defined in: MQDistributionList class

Data Type: String of 12 characters

Syntax:
To get: altuser$ = MQDistributionList.AlternateUserId

To set: MQDistributionList.AlternateUserId = altuser$

 CloseOptions property
Read-write. Options used to control what happens when the distribution list is
closed. The initial value is MQCO_NONE.

Defined in: MQDistributionList class

Data Type: Long

 Chapter 3. MQSeries Automation Classes for ActiveX reference 87

 MQDistributionList class

Values:

 � MQCO_NONE

 � MQCO_DELETE

 � MQCO_DELETE_PURGE

Syntax:
To get: closeopt& = MQDistributionList.CloseOptions

To set: MQDistributionList.CloseOptions = closeopt&

 CompletionCode property
Read-only. The completion code set by the last method or property access issued
against the object.

Defined in: MQDistributionList class

Data Type: Long

Values:

 � MQCC_OK
 � MQCC_WARNING
 � MQCC_FAILED

Syntax:
| To get: completioncode& = MQDistributionList.CompletionCode

 ConnectionReference property
Read-write. The queue manager to which the distribution list belongs.

Defined in: MQDistributionList class

Data Type: MQQueueManager

Syntax:
To get: set queuemanager = MQDistributionList.ConnectionReference

| To set: set MQDistributionList.ConnectionReference = queuemanager

 FirstDistributionListItem property
| Read-only. The first distribution list item object associated with the distribution list.

Defined in: MQDistributionList class

Data Type: MQDistributionListItem

Values:

Syntax:
To get: set distributionlistitem = MQDistributionList.FirstDistributionListItem

88 Using the Component Object Model Interface

 MQDistributionList class

 IsOpen property
Read-only. A value that indicates whether or not the distribution list is currently
open.

Defined in: MQDistributionList class

Data Type: Boolean

Values:

 � TRUE (-1)

 � FALSE (0)

Syntax:
To get: IsOpen = MQDistributionList.IsOpen

 OpenOptions property
Read-write. Options to be used when the distribution list is opened.

Defined in: MQDistributionList class

Data Type: Long

Values: See the MQSeries Application Programming Reference

Syntax:
To get: openopt& = MQDistributionList.OpenOptions

To set: MQDistributionList.OpenOptions = openopt&

 ReasonCode property
Read-only. The reason code set by the last method or property access issued
against the object.

Defined in: MQDistributionList class

Data Type: Long

Values: See the MQSeries Application Programming Reference

Syntax:
To get: reasoncode& = MQDistributionList.ReasonCode

 ReasonName property
Read-only. The symbolic name for the ReasonCode. For example
"MQRC_QMGR_NOT_AVAILABLE".

Defined in: MQDistributionList class

Data Type: String

Values: See the MQSeries Application Programming Reference

Syntax:
To get: reasonname$ = MQDistributionList.ReasonName

 Chapter 3. MQSeries Automation Classes for ActiveX reference 89

 MQDistributionList class

 AddDistributionListItem method
Creates a new MQDistributionListItem object and associates it with the distribution
list object. The queue name parameter is mandatory.

| The DistributionList property of the distribution list item is set to the owning
| distribution list and the FirstDistributionListItem property of the distribution list is set
| to reference this new distribution list item.

| For the new distribution list item, the PreviousDistributionListItem property is set to
| nothing and the NextDistributionListItem property is set to reference any distribution
| list item that was previously first, or nothing if there was none previously (that is,
| the new one is inserted in front of those that exist already).

This will return an error if the distribution list is open.

Defined in: MQDistributionList class

Syntax:
set distributionlistitem = MQDistributionList.AddDistributionListItem (QName$,
QMgrName$)

Parameters:

QName$ String. Name of the MQSeries queue.

QMgrName$ String. Name of the MQSeries queue manager.

 ClearErrorCodes method
| Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE
| for both the MQDistributionList class and the MQSession class.

Defined in: MQDistributionList class

Syntax:
Call MQDistributionList.ClearErrorCodes ()

 Close method
Closes a distribution list using the current value of Close options.

Defined in: MQDistributionList class

Syntax:
Call MQDistributionList.Close ()

 Open method
| Opens each of the queues specified by the QueueName and (where appropriate)
| QueueManagerName properties of the distribution list items associated with the
| current object using the current value of AlternateUserId.

Defined in: MQDistributionList class

Syntax:
Call MQDistributionList.Open ()

90 Using the Component Object Model Interface

 MQDistributionList class

 Put method
Places a message on each of the queues identified by the distribution list items
associated with the distribution list.

This method takes an MQMessage object as a parameter. The following distribution
list item properties may be altered as a result of this method:

 � CompletionCode
 � ReasonCode
 � ReasonName
 � MessageId
 � MessageIdHex
 � CorrelationId
 � CorrelationIdHex
 � GroupId
 � GroupIdHex
 � Feedback
 � AccountingToken
 � AccountingTokenHex

 Defined in:
MQDistributionList class

 Syntax:
Call MQDistributionList.Put (Message, PutMsgOptions&)

 Parameters:
| Message MQMessage object representing the message to be put.

PutMsgOptions MQPutMessageOptions object containing options to control the put
operation. If not specified, default PutMessageOptions are used.

 Chapter 3. MQSeries Automation Classes for ActiveX reference 91

 MQDistributionListItem class

 MQDistributionListItem class
This class encapsulates the MQOR, MQRR, and MQPMR structures and
associates them with an owning distribution list.

 Properties:
 � AccountingToken property
 � AccountingTokenHex property
 � CompletionCode property
 � CorrelationId property
 � CorrelationIdHex property
 � DistributionList property
 � Feedback property
 � GroupId property
 � GroupIdHex property
 � MessageId property
 � MessageIdHex property
 � NextDistributionListItem property
 � PreviousDistributionListItem property
 � QueueManagerName property
 � QueueName property
 � ReasonCode property
 � ReasonName property

 Methods:
 � ClearErrorCodes method

 Creation:
Use the AddDistributionListItem method of the MQDistributionList class

 AccountingToken property
Read-write. The AccountingToken to be included in the MQPMR of a message
when put on a queue. Its initial value is all nulls.

Defined in: MQDistributionListItem class

Data Type: String of 32 characters

Syntax:
To get: accountingtoken$ = MQDistributionListItem.AccountingToken

To set: MQDistributionListItem.AccountingToken = accountingtoken$

92 Using the Component Object Model Interface

 MQDistributionListItem class

 AccountingTokenHex property
Read-write. The AccountingToken to be included in the MQPMR of a message
when put on a queue.

Every two characters of the string represent the hexadecimal equivalent of a single
ASCII character. For example, the pair of characters "6" and "1" represent the
single character "A", the pair of characters "6" and "2" represent the single
character "B" and so on.

You must supply 64 valid hexadecimal characters.

Its initial value is "0...0".

Defined in: MQDistributionListItem class

Data Type: String of 64 hexadecimal characters reqpresenting 32 ASCII
characters.

Syntax:
To get: accountingtokenh$ = MQDistributionListItem.AccountingTokenHex

To set: MQDistributionListItem.AccountingTokenHex = accountingtokenh$

 CompletionCode property
Read-only. The completion code set by the last open or put request issued against
the owning distribution list object.

Defined in: MQDistributionListItem class

Data Type: Long

Values:

 � MQCC_OK
 � MQCC_WARNING
 � MQCC_FAILED

Syntax:
To get: completioncode$ = MQDistributionListItem.CompletionCode

 CorrelationId property
Read-write. The CorrelId to be included in the MQPMR of a message when put on
a queue. Its initial value is all nulls.

Defined in: MQDistributionListItem class

Data Type: String of 24 characters

Syntax:
To get: correlid$ = MQDistributionListItem.CorrelationId

To set: MQDistributionListItem.CorrelationId = correlid$

 Chapter 3. MQSeries Automation Classes for ActiveX reference 93

 MQDistributionListItem class

 CorrelationIdHex property
Read-write. The CorrelId to be included in the MQPMR of a message when put on
a queue.

Every two characters of the string represent the hexadecimal equivalent of a single
ASCII character. For example, the pair of characters "6" and "1" represent the
single character "A", the pair of characters "6" and "2" represent the single
character "B" and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0..0".

Defined in: MQDistributionListItem class

Data Type: String of 48 hexadecimal characters representing 24 ASCII characters.

Syntax:
To get: correlidh$ = MQDistributionListItem.CorrelationIdHex

To set: MQDistributionListItem.CorrelationIdHex = correlidh$

 DistributionList property
Read-only. The distribution list with which this distribution list item is associated.

Defined in: MQDistributionListItem class

Data Type: MQDistributionList

Syntax:
To get: set distributionlist = MQDistributionListItem.DistributionList

 Feedback property
Read-write. The Feedback value to be included in the MQPMR of a message when
put on a queue.

Defined in: MQDistributionListItem class

Data Type: Long

Values: See the MQSeries Application Programming Reference

Syntax:
To get: feedback& = MQDistributionListItem.Feedback

To set: MQDistributionListItem.Feedback = feedback&

94 Using the Component Object Model Interface

 MQDistributionListItem class

 GroupId property
Read-write. The GroupId to be included in the MQPMR of a message when put on
a queue. Its initial value is all nulls.

Defined in: MQDistributionListItem class

Data Type: String of 24 characters

Syntax:
To get: groupid$ = MQDistributionListItem.GroupId

To set: MQDistributionListItem.GroupId = groupid$

 GroupIdHex property
Read-write. The GroupId to be included in the MQPMR of a message when put on
a queue.

Every two characters of the string represent the hexadecimal equivalent of a single
ASCII character. For example, the pair of characters "6" and "1" represent the
single character "A", the pair of characters "6" and "2" represent the single
character "B" and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0..0".

Defined in: MQDistributionListItem class

Data Type: String of 48 hexadecimal characters reqpresenting 24 ASCII
characters.

Syntax:
To get: groupidh$ = MQDistributionListItem.GroupIdHex

To set: MQDistributionListItem.GroupIdHex = groupidh$

 MessageId property
Read-write. The MessageId to be included in the MQPMR of a message when put
on a queue. Its initial value is all nulls.

Defined in: MQDistributionListItem class

Data Type: String of 24 characters

Syntax:
To get: messageid$ = MQDistributionListItem.MessageId

To set: MQDistributionListItem.MessageId = messageid$

 Chapter 3. MQSeries Automation Classes for ActiveX reference 95

 MQDistributionListItem class

 MessageIdHex property
Read-write. The MessageId to be included in the MQPMR of a message when put
on a queue.

Every two characters of the string represent the hexadecimal equivalent of a single
ASCII character. For example, the pair of characters "6" and "1" represent the
single character "A", the pair of characters "6" and "2" represent the single
character "B" and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0..0".

Defined in: MQDistributionListItem class

Data Type: String of 48 hexadecimal characters representing 24 ASCII characters.

Syntax:
To get: messageidh$ = MQDistributionListItem.MessageIdHex

To set: MQDistributionListItem.MessageIdHex = messageidh$

 NextDistributionListItem property
Read-only. The next distribution list item object associated with the same
distribution list.

Defined in: MQDistributionListItem class

Data Type: MQDistributionListItem

Syntax:
To get: set distributionlistitem = MQDistributionListItem.NextDistributionListItem

 PreviousDistributionListItem property
Read-only. The previous distribution list item object associated with the same
distribution list.

Defined in: MQDistributionListItem class

Data Type: MQDistributionListItem

Syntax:
To get: set distributionlistitem =
MQDistributionListItem.PreviousDistributionListItem

 QueueManagerName property
Read-write. The MQSeries queue manager name.

Defined in: MQDistributionListItem class

Data Type: String of 48 characters.

Syntax:
To get: qmname$ = MQDistributionListItem.QueueManagerName

To set: MQDistributionListItem.QueueManagerName = qmname$

96 Using the Component Object Model Interface

 MQDistributionListItem class

 QueueName property
Read-write. The MQSeries queue name.

Defined in: MQDistributionListItem class

Data Type: String of 48 characters.

Syntax:
To get: qname$ = MQDistributionListItem.QueueName

To set: MQDistributionListItem.QueueName = qname$

 ReasonCode property
Read-only. The completion code set by the last open or put issued to the owning
distribution list object.

Defined in: MQDistributionListItem class

Data Type: Long

Values: See the MQSeries Application Programming Reference

 � MQCC_OK
 � MQCC_WARNING
 � MQCC_FAILED

Syntax:
To get: reasoncode& = MQDistributionListItem.ReasonCode

 ReasonName property
Read-only. The symbolic name for the ReasonCode. For example
"MQRC_QMGR_NOT_AVAILABLE".

Defined in: MQDistributionListItem class

Data Type: String

Values: See the MQSeries Application Programming Reference

Syntax:
| To get: reasonname$ = MQDistributionListItem.ReasonName

 ClearErrorCodes method
| Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE
| for both the MQDistributionListItem class and the MQSession class.

Defined in: MQDistributionListItem class

Syntax:
Call MQDistributionListItem.ClearErrorCodes

 Chapter 3. MQSeries Automation Classes for ActiveX reference 97

 MQDistributionListItem class

98 Using the Component Object Model Interface

 Troubleshooting � Code level tool

 Chapter 4. Troubleshooting

This chapter explains the trace facility provided and details common pitfalls, with
help to avoid them, in the following sections:

� “Using trace” on page 100

� “When your MQSeries Automation Classes for ActiveX script fails” on page 107

� “Reason codes” on page 108

Code level tool
You may be asked by the IBM Service Team which level of code you have
installed.

To find this out, run the 'MQAXLEV' utility program.

From the command prompt, change to the directory containing the MQAX200.dll or
add the full path length and enter:

| MQAXLev MQAX2ðð.dll > MQAXLEV.OUT

| where MQAXLEV.OUT is the name of the output file.

If you do not specify an output file, the detail is displayed on the screen.

 Copyright IBM Corp. 1997,1999 99

 Example output file � Using trace

| Example output file from code level tool
| 5639-B43 (C) Copyright IBM Corp. 1996, 1998. ALL RIGHTS RESERVED.

| \\\\\ Code Level is 5.1 \\\\\ lib/mqole/mqole.cpp, mqole, pððð, pððð L981119 1.8 98/ð8/21

| lib/mqlsx/gmqdynða.c, mqlsx, pððð, pððð L99ð212 1.6 99/ð2/11 16:4ð:24

| lib/mqlsx/pc/gmqdyn1p.c, mqlsx, pððð, pððð L99ð212 1.6 99/ð2/11 16:44:14

| lib/imqi/imqbin.cpp, imqi, pððð, pððð L981119 1.7.1.16 98/11/12 15:47:32

| lib/imqi/imqcac.cpp, imqi, pððð, pððð L981215 1.14.2.11 98/12/15 1ð:ð9:21

| lib/imqi/imqdlh.cpp, imqi, pððð, pððð L981119 1.18.2.11 98/11/12 15:48:59

| lib/imqi/imqerr.cpp, imqi, pððð, pððð L981119 1.5.2.7 98/11/12 15:47:19

| lib/imqi/imqgmo.cpp, imqi, pððð, pððð L981119 1.3.1.26 98/11/16 12:ð2:ðð

| lib/imqi/imqgmo2.cpp, imqi, pððð, pððð L981119 1.2 98/11/12 15:47:55

| lib/imqi/imqhdr.cpp, imqi, pððð, pððð L981119 1.3.2.5 98/ð4/3ð 13:23:24

| lib/imqi/imqitm.cpp, imqi, pððð, pððð L981119 1.8.1.5 98/ð4/3ð 13:23:3ð

| lib/imqi/imqmgr.cpp, imqi, pððð, pððð L99ð2ð9 1.15.1.51 99/ð2/ð9 12:37:58

| lib/imqi/imqmsg.cpp, imqi, pððð, pððð L981216 1.22.1.29 98/12/16 12:39:12

| lib/imqi/imqobj.cpp, imqi, pððð, pððð L981119 1.25.1.36 98/11/16 11:53:11

| lib/imqi/imqpmo.cpp, imqi, pððð, pððð L981119 1.8.1.25 98/11/16 13:4ð:31

| lib/imqi/imqque.cpp, imqi, pððð, pððð L99ð2ð9 1.23.1.85 99/ð2/ð9 12:38:ð3

| lib/imqi/imqstr.cpp, imqi, pððð, pððð L99ð2ð9 1.8.1.3ð 99/ð2/ð9 12:38:12

| lib/imqi/imqsem.cpp, imqi, pððð, pððð L99ð212 1.19 99/ð2/12 12:57:27

| lib/mqole/mqoleafx.cpp, mqole, pððð, pððð L99ð216 1.2 99/ð2/15 12:12:51

| lib/mqole/mqgmo.cpp, mqole, pððð, pððð L981119 1.3 98/1ð/29 14:53:31

| lib/mqole/mqmsg.cpp, mqole, pððð, pððð L99ð219 1.12 99/ð2/18 12:13:ð4

| lib/mqole/mqole.cpp, mqole, pððð, pððð L981119 1.8 98/ð8/21 1ð:22:ð5

| lib/mqole/mqpmo.cpp, mqole, pððð, pððð L981119 1.3 98/1ð/29 14:54:ðð

| lib/mqole/mqqm.cpp, mqole, pððð, pððð L981119 1.3 98/1ð/29 14:54:11

| lib/mqole/mqqueue.cpp, mqole, pððð, pððð L981222 1.5 98/12/21 16:29:47

| lib/mqole/mqsess.cpp, mqole, pððð, pððð L981215 1.5 98/12/11 14:37:44

| lib/mqole/mqdst.cpp, mqole, pððð, pððð L981119 1.5 98/1ð/29 14:53:14

| lib/mqole/mqdstitm.cpp, mqole, pððð, pððð L981119 1.7 98/1ð/29 14:53:22

| lib/mqlsx/xmqcsa.c, mqole, pððð, pððð L99ð216 1.3 99/ð2/15 13:24:34

| lib/mqlsx/xmqfdca.c, mqlsx, pððð, pððð L99ð212 1.3 99/ð2/11 16:4ð:35

| lib/mqlsx/xmqtrca.c, mqlsx, pððð, pððð L99ð212 1.5 99/ð2/11 16:12:ð2

| lib/mqlsx/xmqutila.c, mqlsx, pððð, pððð L99ð212 1.3 99/ð2/11 16:4ð:4ð

| lib/mqlsx/xmqutl1a.c, mqlsx, pððð, pððð L99ð212 1.4 99/ð2/11 16:4ð:3ð

| lib/mqlsx/xmqcnv1a.c, mqlsx, pððð, pððð L99ð212 1.9 99/ð2/11 16:4ð:56

| lib/imqi/imqmtr.cpp, imqi, pððð, pððð L981217 1.15 98/12/17 ð9:57:26

| lib/imqi/imqtrg.cpp, imqi, pððð, pððð L981217 1.16.1.11 98/12/17 1ð:ð7:35

| lib/imqi/imqpro.cpp, imqi, pððð, pððð L981119 1.5.1.15 98/11/12 15:48:12

| lib/imqi/imqiih.cpp, imqi, pððð, pððð L99ð126 1.13 99/ð1/26 12:41:ð1

| lib/imqi/imqrfh.cpp, imqi, pððð, pððð L981119 1.19 98/11/12 15:47:28

| lib/mqlsx/xmqmsg.c, mqole, pððð, pððð L99ð219 1.11 99/ð2/18 12:12:59

 Using trace
MQAX includes a trace facility to help the service organization identify what is
happening when you have a problem. It shows the paths taken when you run your
MQAX script. Unless you have a problem, you are recommended to run with
tracing set off to avoid any unnecessary overheads on your system resources.

There are three environment variables that you set to control trace:

 � OMQ_TRACE
 � OMQ_TRACE_PATH
 � OMQ_TRACE_LEVEL

100 Using the Component Object Model Interface

 Trace filename and directory

You should be aware that specifying any value for OMQ_TRACE switches the trace
facilty on. Even if you set OMQ_TRACE to OFF, trace is still active.

To switch trace off, do not specify a value for OMQ_TRACE.

| To generate a trace file, carry out the following procedure:

| 1. Click the Start button

| 2. Choose Settings

| 3. Choose Control Panel

| 4. Open the System object

| 5. Click on the Environment tab

| 6. In the section titled "User Variables for (username)" enter the variable name
| and a valid value in the correct boxes

| 7. Click the Set button

| 8. Close the System object

| 9. Close the Control Panel window

| When deciding where you want the trace files written, ensure that you have
| sufficient authority to write to, not just read from, the disk.

| With tracing switched on, it slows down the running of the MQAX, but it does not
| affect the performance of your ActiveX or MQSeries environments. When you no
| longer need a trace file, you can delete it.

| You must stop MQAX running to change the status of the OMQ_TRACE variable.

Trace filename and directory
The trace file name takes the form OMQnnnnn.trc, where nnnnn is the id of the
ActiveX process running at the time.

Command Effect

SET
OMQ_TRACE_PATH=drive:\directory

Sets the trace directory where the trace file
will be written.

SET OMQ_TRACE_PATH= Removes the OMQ_PATH environment
variable the current working directory
(when ActiveX is started) is used.

ECHO %OMQ_TRACE_PATH% Displays the current setting of the trace
directory on Windows NT.

SET OMQ_TRACE=xxxxxxxx This sets tracing ON. You switch tracing
on by putting one or more characters after
the '=' sign. For example: SET
OMQ_TRACE=yes SET OMQ_TRACE=no.
In both of these examples, tracing will be
set ON. This is only effective for a single
window/session

SET OMQ_TRACE= Sets tracing OFF
ECHO %OMQ_TRACE% Displays the contents of the environment

variable on Windows NT.
SET Displays the contents of all the

environment variables on Windows NT.

 Chapter 4. Troubleshooting 101

 Example trace file

Command Effect

SET OMQ_TRACE_LEVEL=9 Sets the trace level to 9. Values greater
than 9 do not produce any additional
information in the trace file.

Example trace file
This is a sample trace file from the MQSeries Automation Classes

for ActiveX product. It has been edited and annotated for clarity.

Comments have been added to illustrate its contents and are enclosed

between bands of dashes.

\\

Trace for program C:.\PROGRAM FILES\MICROSOFT VISUAL BASIC\VB32.EXE

---- MQSeries ActiveX ----

started at Wed Aug ð6 ð8:59: 3ð 1997

@(!) \\\\\ Code Level is 2.ð.ð \\\\\

! BuildDate Aug 5 1997

! Trace Level is 2

The head of the trace gives details of when the trace was

started, and the build level of the code. These details may

be required by IBM Service in order to help problem resolution.

The trace level is also shown (2 in this case) and may be

controlled by use of the OMQ_TRACE_LEVEL environment variable.

| (97161)@ð8:59:3ð.72ð

| -->xxxInitialize

Every 4ð entries (excluding text or data entries) there will be a

timestamp preceded in brackets by a 5 digit number representing

the current thread within the process.

| Entries beginning --> show entry into a section of internal code

| the number of dashes indicates the depth within the code. Entries

| beginning <-- show return from a section of code.

---->ObtainSystemCP

! Code page is 85ð

<----ObtainSystemCP (rc= OK)

! Attempting to find xlat path via Registry

! XLAT_PATH (stored in xihConvPath) is h:\convert

! XLAT_PATH is h:\convert

! Successfully opened CCSID.TBL under path - h:\convert\CCSID.TBL -

Entries beginning ! are text entries placed in the code by the

programmer as an aid to problem determination.

<--xxxInitialize (rc= OK)

102 Using the Component Object Model Interface

 Example trace file

-->MQSession:initialize

<--MQSession:initialize (rc= OK)

-->MQSession:initialize

<--MQSession:initialize (rc= OK)

-->MQSession:ccessQueueManager

! ++ object e11bbð

---->GlobalLock

<----GlobalLock (rc= OK)

---->MQQueueManager::initialize

<----MQQueueManager::initialize (rc= OK)

---->ImqQueueManager::connect

<----ImqQueueManager::connbsp; ---->ImqObject::open

<----ImqObject&:open (rc= OK)

---->GlobalUnlock

<----GlobalUnlock (rc= OK)

<--MQSession::AccessQueueManager (rc= OK)

! -- object e11bbð

-->MQQueueManager::AccessQueue

! ++ object e11d28

---->GlobalLock

<----GlobalLock (rc= OK)

! parm# 1 is char\ 'SYSTEM.DEFAULT.LOCAL.QUEUE'

! parm# 2 is 17.ðððððð

! parm# 3 is variant type 1ð

! parm# 4 is variant type 1ð

! parm# 5 is variant type 1ð

(97161)@ð8::59::47.75ð

---->ImqObject::open

<----ImqObject::open (rc= OK)

---->GlobalUnlock

<----GlobalUnlock (rc= OK)

! -- object e11d28

<--MQQueueManager::AccessQueue (rc= OK)

-->MQSession::AccessMessage

! ++ object e11bbð

 Chapter 4. Troubleshooting 103

 Example trace file

---->MQMessage::MQMessage() <<< Constructor

<----MQMessage::MQMessage() (rc= OK)

<--MQSession::AccessMessage (rc= OK)

! -- object e11bbð

-->MQMessage::SetCharacterSet

! long value to set is 85ð

! ++ object e11f6ð

! -- object e11f6ð

<--MQMessage::SetCharacterSet (rc= OK)

-->MQMessage::SetMessageData

! long value to set is 5724228

! ++ object e11f6ð

---->MQMessage::WriteString

! ++ object e11f6ð

! WriteString malloc, outstring = ðxe121ð4, outstrlen = 38ð

! -- object e11f6ð

<----MQMessage::WriteString (rc= OK)

! -- object e11f6ð

<--MQMessage::SetMessageData (rc= OK)

-->MQMessage::SetMessageId

! BSTR value to set is as BSTR

! ++ object e11f6ð

! -- object e11f6ð

<--MQMessage::SetMessageId (rc= OK)

-->MQSession::AccessPutMessageOptions

! ++ object e11bbð

<--MQSession::AccessPutMessageOptions (rc= OK)

! -- object e11bbð

-->MQueue::Put

! ++ object e11e48

---->GetObjectFromVariantOptional

! optVar type is 9

! optVar type is VT_DISPATCH

<----GetObjectFromVariantOptional (rc= 66)

! ++ object e11f6ð

! ++ object e121ð4

---->ImqQueue::put

<----ImqQueue::put (rc= OK)

! -- object e11f6ð

104 Using the Component Object Model Interface

 Example trace file

! -- object e121ð4

! -- object e11e48

<--MQueue::Put (rc= OK)

-->MQSession::AccessMessage

! ++ object e11bbð

---->MQMessage::MQMessage() <<< Constructor

<----MQMessage::MQMessage() (rc= OK)

<--MQSession::AccessMessage (rc= OK)

! -- object e11bbð

-->MQMessage::SetMessageId

! BSTR value to set is as BSTR

! ++ object e123ðð

! -- object e123ðð

<--MQMessage::SetMessageId (rc= OK)

-->MQSession::AccessGetMessageOptions

! ++ object e11bbð

<--MQSession::AccessGetMessageOptions (rc= OK)

! -- object e11bbð

-->MQueue::Get

! ++ object e11e48

! parm# 2 is variant type 9

! parm# 3 is variant type 1ð

---->GetObjectFromVariantOptional

! optVar type is 9

! optVar type is VT_DISPATCH

<----GetObjectFromVariantOptional (rc= 66)

---->GetObjectFromVariantOptional

! optVar type is a

! optional optVar not specified

<----GetObjectFromVariantOptional (rc= 67)

! ++ object e123ðð

! ++ object e121dð

---->ImqQueue::get

<----ImqQueue::get (rc= OK)

! -- object e123ðð

! -- object e121dð

! -- object e11e48

<--MQueue::Get (rc= OK)

 Chapter 4. Troubleshooting 105

 Example trace file

(97161)@ð8::59::47.97ð

-->MQMessage::ReadString

! ++ object e123ðð

---->ConvertStrToDefault

! Readstring instrlen = 95

! string before conv::

ðððð 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 3ð : !"#¢%&'()\+,-./ð

ðð1ð 31 32 ðð 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 4ð : 12.456789:;<=>?@

ðð2ð 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 5ð : ABCDEFGHIJKLMNOP

ðð3ð 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 6ð : QRSTUVWXYZ$\⅛_

ðð4ð 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 7ð : abcdefghijklmnop

ðð5ð 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 1C : qrstuvwxyz{}}’.

The entry above shows an example of a data area dump within the

trace where the contents of a piece of memory is displayed

in hex and ascii.

! Character set conversion from 85ð to 12ðð, rc = ð

! string after conv:

ðððð 21 ðð 22 ðð 23 ðð 24 ðð 25 ðð 26 ðð 27 ðð 28 ðð : !.".#.¢.%.&.'.(.

ðð1ð 29 ðð 2A ðð 2B ðð 2C ðð 2D ðð 2E ðð 2F ðð 3ð ðð :).\.+.,.-../.ð.

ðð2ð 31 ðð 32 ðð ðð ðð 34 ðð 35 ðð 36 ðð 37 ðð 38 ðð : 1.2..4.5.6.7.8.

ðð3ð 39 ðð 3A ðð 3B ðð 3C ðð 3D ðð 3E ðð 3F ðð 4ð ðð : 9.:..;.<=>.?.@.

ðð4ð 41 ðð 42 ðð 43 ðð 44 ðð 45 ðð 46 ðð 47 ðð 48 ðð : A.B.C.D.E.F.G.H.

ðð5ð 49 ðð 4A ðð 4B ðð 4C ðð 4D ðð 4E ðð 4F ðð 5ð ðð : I.J.K.L.M.N.O.P.

ðð6ð 51 ðð 52 ðð 53 ðð 54 ðð 55 ðð 56 ðð 57 ðð 58 ðð : Q.R.S.T.U.V.W.X.

ðð7ð 59 ðð 5A ðð 5B ðð 5C ðð 5D ðð 5E ðð 5F ðð 6ð ðð : Y.Z.$.\.‘.⅛._. .

ðð8ð 61 ðð 62 ðð 63 ðð 64 ðð 65 ðð 66 ðð 67 ðð 68 ðð : a.b.c.d.e.f.g.h.

ðð9ð 69 ðð 6A ðð 6B ðð 6C ðð 6D ðð 6E ðð 6F ðð 7ð ðð : i.j.k.l.m.n.o.p.

ððAð 71 ðð 72 ðð 73 ðð 74 ðð 75 ðð 76 ðð 77 ðð 78 ðð : q.r.s.t.u.v.w.x.

ððBð 79 ðð 7A ðð 7B ðð 7C ðð 7D ðð 7E ðð 7F ðð : y.z.{.].}.’..

<----ConvertStrToDefault (rc= OK)

! Input length was 95, output length was 19ð

! -- object e123ðð

<--MQMessage::ReadString (rc= OK)

-->MQSession::destruct

<--MQSession::destruct (rc= OK)

-->MQQueueManager::destruct

<--MQQueueManager::destruct (rc= OK)

-->ImqQueueManager::disconnect

---->ImqObject::close

<----ImqObject::close (rc= OK)

---->ImqObject::close

<----ImqObject::close (rc= OK)

---->ImqQueueManager:backout

106 Using the Component Object Model Interface

 When your script fails � Other sources of information

<----ImqQueueManager:backout (rc= OK)

---->gmqdynða:MQDISC

! >>>HConn..

ðððð ð1 ðð ðð ðð

 :

-->MQMessage::OnFinalRelease()

---->MQMessage::’MQMessage() <<< Destructor

<----MQMessage::’MQMessage() (rc= OK)

<--MQMessage::OnFinalRelease() (rc= OK)

-->MQMessage::OnFinalRelease()

---->MQMessage::’MQMessage() <<< Destructor

<----MQMessage::’MQMessage() (rc= OK)

<--MQMessage::OnFinalRelease() (rc= OK)

When your MQSeries Automation Classes for ActiveX script fails
If your MQSeries Automation Classes for ActiveX script fails, there are a number of
sources of information.

First failure symptom report
Independently of the trace facility, for unexpected and internal errors, a First failure
symptom report may be produced.

This report is found in a file named OMQnnnnn.fdc, where nnnnn is the number of
the ActiveX process that is running at the time. You find this file in the working
directory from which you started ActiveX or in the path specified in the OMQ_PATH
environment variable.

Other sources of information
MQSeries provides various error logs and trace information, depending on the
platform involved. See your Winodws NT application event log.

 Chapter 4. Troubleshooting 107

 Reason codes

 Reason codes
The following reason codes can occur in addition to those documented for the
MQSeries MQI. For other codes, refer to your MQSeries application event log.

Reason code Explanation

MQRC_LIBRARY_LOAD_ERROR (6000) One or more of the MQSeries libraries
could not be loaded. Check that all
MQSeries libraries are in the correct
search path on the system you are using.
For example, make sure that the
directories containing the MQSeries
libraries are in PATH.

MQRC_CLASS_LIBRARY_ERROR
(6001)

One of the MQSeries classlibrary calls
returned an unexpected
ReasonCode/CompletionCode. Check
the First Failure Symptom Report for
details. Take note of the last
method/property and class being used
and inform IBM Support of the problem.

| MQRC_STRING_LENGTH_TOO_BIG
| (6002)
| An attempt has been made to write a UTF
| format string with a length greater than
| 65,535 bytes to the message buffer.

MQRC_WRITE_VALUE_ERROR (6003) A value is used that is out of range; for
example msg.WriteByte (240).

| MQRC_PACKED_DECIMAL_ERROR
| (6004)
| An attempt has been made to read a
| packed decimal number from the
| message buffer but the data at the data
| pointer is not in a valid packed data
| format.
| MQRC_FLOAT_CONVERSION_ERROR
| (6005)
| An attempt has been made to read a
| single or double floating point number
| from the message buffer but the data at
| the data pointer is not in an appropriate
| floating point format.

MQRC_REOPEN_EXCL_INPUT_ERROR
(6100)

An open object does not have the correct
OpenOptions and requires one or more
additional options. An implicit reopen is
required but closure has been prevented.
Set the OpenOptions explicitly to cover
all eventualities so that implicit reopening
is not required. Closure has been
prevented because the queue is open for
exclusive input and closure would present
a window of opportunity for others
potentially to gain access to the queue.

| MQRC_REOPEN_INQUIRE_ERROR
| (6101)
| An open object does not have the correct
| OpenOptions and requires one or more
| additional options. An implicit reopen is
| required but closure has been prevented.
| Set the OpenOptions explicitly to include
| MQOO_INQUIRE. Closure has been
| prevented because one or more
| characteristics of the object need to be
| checked dynamically prior to closure, and
| the OpenOptions do not already include
| MQOO_INQUIRE.

108 Using the Component Object Model Interface

 Reason codes

Reason code Explanation

| MQRC_REOPEN_SAVED_CONTEXT_ERR
| (6102)
| An open object does not have the correct
| OpenOptions and requires one or more
| additional options. An implicit reopen is
| required but closure has been prevented.
| Set the OpenOptions explicitly to cover all
| eventualities so that implicit reopening is
| not required. Closure has been
| prevented because the queue is open
| with MQOO_SAVE_ALL_CONTEXT, and
| a destructive Get has been performed
| previously. This has caused retained
| state information to be associated with the
| open queue and this information would be
| destroyed by closure.

MQRC_REOPEN_TEMPORARY_Q_ERROR
(6103)

An open object does not have the correct
OpenOptions and requires one or more
additional options. An implicit reopen is
required, but closure has been prevented.
Set the OpenOptions explicitly to cover
all eventualities so that implicit reopening
is not required. Closure has been
prevented because the queue is a local
queue of the definition type
MQQDT_TEMPORARY_DYNAMIC, which
would be destroyed by closure.

MQRC_ATTRIBUTE_LOCKED (6104) An attempt has been made to change the
value or attribute of an object while that
object is open. Certain attributes, such as
AlternateUserId , cannot be changed
while an object is open.

| MQRC_CURSOR_NOT_VALID (6105)| The browse cursor for an open queue has
| been invalidated since it was last used by
| an implicit reopen. Set the OpenOptions
| explicitly to cover all eventualities so that
| implicit reopening is not required.
| MQRC_ENCODING_ERROR (6106)| The encoding of the next message item
| needs to be MQENC_NATIVE for reading.
| MQRC_STRUCID_ERROR (6107)| The structure of the id for the next
| message item, which is derived from the
| 4 characters beginning at the data
| pointer, is either missing or is inconsistent
| with the type of variable into which the
| item is being read.
| MQRC_NULL_POINTER (6108) A null pointer has been supplied where a

non-null pointer is either required or
implied. This may be caused by using
explicit declarations for MQSeries objects
used from VBA as parameters to calls (for
example dim msg as Object is ok, dim
msg as MqMessage can cause
problems). For example, in Excel, with q
defined and set dim msg as
MqMessageq.put msg gives reasonCode
MQRC_NULL_POINTER. It operates
correctly from VisualBasic.

 Chapter 4. Troubleshooting 109

 Reason codes

Reason code Explanation

MQRC_NO_CONNECTION_REFERENCE
(6109)

The MQQueue object has lost its
connection to the MQQueueManager .
This will occur if the MQQueueManager
is disconnected. Delete the MQQueue
object.

MQRC_NO_BUFFER (6110) No buffer is available. For an
MQMessage object, one cannot be
allocated, denoting an internal
inconsistency in the object state that
should not occur.

MQRC_BINARY_DATA_LENGTH_ERROR
(6111)

The length of the binary data is
inconsistent with the length of the target
attribute. Zero is a correct length for all
attributes. 24 is a correct length for a
CorrelationId and for a MessageId 32 is
a correct length for an AccountingToken

| MQRC_BUFFER_NOT_AUTOMATIC
| (6112)
| A user-defined and managed buffer
| cannot be resized. Because message
| buffers are system managed, this
| indicates an internal inconsistency.

MQRC_INSUFFICIENT_BUFFER (6113) There is insufficient buffer space available
after the data pointer to accommodate the
request. This could be because the buffer
cannot be resized.

MQRC_INSUFFICIENT_DATA (6114) There is insufficient data after the data
pointer to accommodate the read request.
Reduce the buffer to the correct size and
read the data again.

MQRC_DATA_TRUNCATED (6115) Data has been truncated when copying
from one buffer to another. This could be
because the target buffer cannot be
resized, or because there is a problem
addressing one or other buffer, or
because a buffer is being downsized with
a smaller replacement.

MQRC_ZERO_LENGTH (6116) A zero length has been supplied where a
positive length is either required or
implied.

MQRC_NEGATIVE_LENGTH (6117) A negative length has been supplied
where a zero or positive length is
required.

MQRC_NEGATIVE_OFFSET (6118) A negative offset has been supplied
where a zero or positive offset is required.

| MQRC_INCONSISTENT_FORMAT (6119)| The format of the next message item is
| inconsistent with the type of variable into
| which the item is being read.

MQRC_INCONSISTENT_OBJECT_STATE
(6120)

There is an inconsistency between this
object, which is open, and the referenced
MQQueueManager object, which is not
connected.

MQRC_CONTEXT_OBJECT_NOT_VALID
(6121)

The MQPutMessageOptions context
reference does not reference a valid
MQQueue object. The object has been
previoulsy destroyed.

110 Using the Component Object Model Interface

 Reason codes

Reason code Explanation

MQRC_CONTEXT_OPEN_ERROR
(6122)

The MQPutMessageOptions context
reference references an MQQueue object
that could not be opened to establish a
context. This may be because the
MQQueue object has inappropriate open
options. Inspect the referenced object
reason code to establish the cause.

MQRC_STRUC_LENGTH_ERROR (6123) The length of an internal data structure is
inconsistent with its content. For an
MQRMH, the length is insufficient to
contain the fixed fields and all offset data.

MQRC_NOT_CONNECTED (6124) A method failed because a required
connection to a queue manager was not
available, and a connection cannot be
established implicitly.

MQRC_NOT_OPEN (6125) A method failed because an MQSeries
object was not open, and opening cannot
be accomplished implicitly.

MQRC_DISTRIBUTION_LIST_EMPTY
(6126)

An MQDistributionList failed to open
because there are no MQDistributionList
Item objects in the distribution list.

Corrective action: Add at least one
MQDistributionListItem object to the
distribution list.

MQRC_INCONSISTENT_OPEN_OPTIONS
(6127)

A method failed because the object is
open, and the open options are
inconsistent with the required operation.

Corrective action: Open the object with
appropriate open options and retry.

MQRC_WRONG_VERSION (6128) A method failed because a version
number specified or encountered is either
incorrect or not supported.

 Chapter 4. Troubleshooting 111

 Reason codes

112 Using the Component Object Model Interface

 ActiveX interface � The MQBag class

Chapter 5. ActiveX interface to the MQAI

For a brief overview of COM interfaces and their use in the MQAI, see “COM and
ActiveX scripting” on page 1.

The MQAI enables applications to build and send Programmable Command Format
(PCF) commands without directly obtaining and formatting the variable length
buffers required for PCF. For more information about the MQAI, see the MQSeries
Administration Interface Programming Guide and Reference. The MQAI ActiveX
MQBag class encapsulates the data bags supported by the MQAI in a way that is
possible to use in any language that supports the creation of COM objects; for
example, Visual Basic, C++, Java, and other ActiveX scripting clients.

The MQAI ActiveX interface is for use with the MQAX classes that provide a COM
interface to the MQI. For more information about the MQAX classes, see
Chapter 3, “MQSeries Automation Classes for ActiveX reference” on page 11.

The ActiveX interface provides a single class called MQBag. This class is used to
create MQAI data bags and its properties and methods are used to create and
work with data items within each bag. The MQBag Execute method sends the bag
data to an MQSeries queue manager as a PCF message and collects the replies.

The PCF message is sent to the queue manager object specified, optionally using
specified request and reply queues. Replies are returned in a new MQBag object.
The full set of commands and replies is described in MQSeries Programmable
System Management. Commands can be sent to any queue manager in the
MQSeries network by selecting the appropriate request and reply queues.

This chapter discusses the following:

� “The MQBag class”

� “MQBag properties” on page 114

� “MQBag methods” on page 116

� “Error handling” on page 120

The MQBag class
The MQBag class is in the MQAIX100 library. It is used to create MQBag objects
as required. When instantiated, the MQBag class returns a new MQBag object
reference.

Create a new MQBag object in Visual Basic as follows:

Dim mqbag As MQBag

Set mqbag = New MQBag

 Copyright IBM Corp. 1997,1999 113

 MQBag properties � Item Property

 MQBag properties
The properties of MQBag objects are explained over the following pages.

 Item property
The Item property represents an item in a bag. It is used to set or inquire about
the value of an item. Use of this property corresponds to the following MQAI calls:

 � “mqSetString”
 � “mqSetInteger”
 � “mqInquireInteger”
 � “mqInquireString”
 � “mqInquireBag”

in the MQSeries Administration Interface Programming Guide and Reference.

Item (Selector, ItemIndex, Value)

 Parameters

Selector (VARIANT) – input
Selector of the item to be set or inquired.

When inquiring about an item, MQSEL_ANY_USER_SELECTOR is the
default. When setting an item, MQIA_LIST or MQCA_LIST is the default.

If the Selector is not of type long, MQRC_SELECTOR_TYPE_ERROR
results.

This parameter is optional.

ItemIndex (LONG) – input
This value identifies the occurrence of the item of the specified selector
that is to be set or inquired on. MQIND_NONE is the default.

This parameter is optional.

Value (VARIANT) – input/output
The value returned or the value to be set. When inquiring about an item,
the return value can be of type long, string, or MQBag. However, when
setting an item, the value must be of type long or string; if not,
MQRC_ITEM_VALUE_ERROR results.

Note: You must enter a value for either the Selector or ItemIndex parameter; if
one is not present, MQRC_PARAMETER_MISSING results. Item Property is the
default property for the MQBag class, so does not need to be explicitly coded.

Visual Basic Language Invocation: When inquiring about a value of an item
within a bag:

Value = mqbag[.Item]([Selector], [ItemIndex])

For MQBag references:

Set abag = mqbag[.Item]([Selector].[ItemIndex])

To set the value of an item in a bag:

mqbag[.Item]([Selector], [ItemIndex]) = Value

114 Using the Component Object Model Interface

 Count property � Options Property

 Count property
The Count property represents the number of data items within a bag. This
property corresponds to the MQAI call, “mqCountItems,” in the MQSeries
Administration Interface Programming Guide and Reference.

Count (Selector, Value)

 Parameters

Selector (VARIANT) – input
Selector of the data items to be included in the count.

MQSEL_ALL_USER_SELECTORS is the default.

If the Selector is not of type long, MQRC_SELECTOR_TYPE_ERROR is
returned.

This parameter is optional.

Value (LONG) – output
The number of items in the bag included by the Selector.

Visual Basic Language Invocation: To return the number of items in a bag:

ItemCount = mqbag.Count([Selector])

 Options property
The Options property sets options for the use of a bag. This property corresponds
to the Options parameter of the MQAI call, “mqCreateBag,” in the MQSeries
Administration Interface Programming Guide and Reference.

Options (Options)

 Parameters

Options (LONG) – input/output
The bag options.

Note: The bag options must be set before data items are added to or set
within the bag. If the options are changed when the bag is not
empty, MQRC_OPTIONS_ERROR results. This applies even if the
bag is subsequently cleared.

Visual Basic Language Invocation: When inquiring about the options of an item
within a bag:

Options = mqbag.Options

To set an option of an item in a bag:

mqbag.Options = Options

 Chapter 5. ActiveX interface to the MQAI 115

 MQBag methods � Clear method

 MQBag methods
The methods of the MQBag objects are explained over the following pages.

 Add method
The Add method adds a data item to a bag. This method corresponds to the MQAI
calls, “mqAddInteger” and “mqAddString,” in the MQSeries Administration Interface
Programming Guide and Reference.

Add (Value, Selector)

 Parameters

Value (VARIANT) – input
Integer or string value of the data item.

Selector (VARIANT) – input
Selector identifying the item to be added.

Depending on the type of Value, MQIA_LIST or MQCA_LIST is the default.
If the Selector parameter is not of type long,
MQRC_SELECTOR_TYPE_ERROR results.

This parameter is optional.

Visual Basic Language Invocation: To add an item to a bag:

mqbag.Add(Value,[Selector])

 AddInquiry method
The AddInquiry method adds a selector specifying the attribute to be returned when
an administration bag is sent to execute an INQUIRE command. This method
corresponds to the MQAI call, “mqAddInquiry,” in the MQSeries Administration
Interface Programming Guide and Reference.

AddInquiry (Inquiry)

 Parameters

Inquiry (LONG) – input
Selector of the MQSeries attribute to be returned by the INQUIRE
administration command.

Visual Basic Language Invocation: To use the AddInquiry method:

mqbag.AddInquiry(Inquiry)

 Clear method
The Clear method deletes all data items from a bag. This method corresponds to
the MQAI call, “mqClearBag,” in the MQSeries Administration Interface
Programming Guide and Reference.

Clear

116 Using the Component Object Model Interface

 Execute method � FromMessage method

Visual Basic Language Invocation: To delete all data itmes from a bag:

mqbag.Clear

 Execute method
The Execute method sends an administration command message to the command
server and waits for any reply messages. This method corresponds to the MQAI
call, “mqExecute,” in the MQSeries Administration Interface Programming Guide
and Reference.

Execute (QueueManager, Command, OptionsBag, RequestQ, ReplyQ, ReplyBag)

 Parameters

QueueManager (MQQueueManager) – input
The queue manager to which the application is connected.

Command (LONG) – input
The command to be executed.

OptionsBag (MQBag) – input
The bag containing options that affect the processing of the call.

This parameter is optional.

RequestQ (MQQueue) – input
The queue on which the administration command message will be placed.

This parameter is optional.

ReplyQ (MQQueue) – input
The queue on which any reply messages are received.

This parameter is optional.

ReplyBag (MQBag) – output
A bag reference containing data from reply messages.

Visual Basic Language Invocation: To send an administration command
message and wait for any reply messages:

Set ReplyBag = mqbag.Execute(QueueManager, Command,
[OptionsBag],[RequestQ],[ReplyQ])

 FromMessage method
The FromMessage method loads data from a message into a bag. This method
corresponds to the MQAI call, “mqBufferToBag,” in the MQSeries Administration
Interface Programming Guide and Reference.

FromMessage (Message, OptionsBag)

 Chapter 5. ActiveX interface to the MQAI 117

 ItemType method � Remove method

 Parameters

Message (MQMessage) – input
The message containing the data to be converted.

OptionsBag (MQBag) – input
Options to control the processing of the call.

This parameter is optional.

Visual Basic Language Invocation: To load data from a message into a bag:

mqbag.FromMessage(Message,[OptionsBag])

 ItemType method
The ItemType method returns the type of the value in a specified item in a bag.
This method corresponds to the MQAI call, “mqInquireItemInfo,” in the MQSeries
Administration Interface Programming Guide and Reference.

ItemType (Selector, ItemIndex, ItemType)

 Parameters

Selector (VARIANT) – input
Selector identifying the item to be inquired.

MQSEL_ANY_USER_SELECTOR is the default. If the Selector
parameter is not of type long, MQRC_SELECTOR_TYPE_ERROR results.

This parameter is optional.

ItemIndex (LONG) – input
Index of items to be inquired.

MQIND_NONE is the default.

This parameter is optional.

ItemType (LONG) – output
Datatype of the specified item.

Note: Either the Selector parameter, ItemIndex parameter, or both must
be specified. If neither parameter is present,
MQRC_PARAMETER_MISSING results.

Visual Basic Language Invocation: To return the type of a value:

ItemType = mqbag.ItemType([Selector], [ItemIndex])

 Remove method
The Remove method deletes an item from a bag. This method corresponds to the
MQAI call, “mqDeleteItem,” in the MQSeries Administration Interface Programming
Guide and Reference.

Remove (Selector, ItemIndex)

118 Using the Component Object Model Interface

 Selector method

 Parameters

Selector (VARIANT) – input
Selector identifying the item to be deleted.

MQSEL_ANY_USER_SELECTOR is the default. If the Selector
parameter is not of type long, MQRC_SELECTOR_TYPE_ERROR results.

This parameter is optional.

ItemIndex (LONG) – input
Index of the item to be deleted.

MQIND_NONE is the default.

This parameter is optional.

Note: Either the Selector parameter, ItemIndex parameter, or both must
be specified. If neither parameter is present,
MQRC_PARAMETER_MISSING results.

Visual Basic Language Invocation: To delete an item from a bag:

mqbag.Remove([Selector],[ItemIndex])

 Selector method
The Selector method returns the selector of a specified item within a bag. This
method corresponds to the MQAI call, “mqInquireItemInfo,” in the MQSeries
Administration Interface Programming Guide and Reference.

Selector (Selector, ItemIndex, OutSelector)

 Parameters

Selector (VARIANT) – input
Selector identifying the item to be inquired.

MQSEL_ANY_USER_SELECTOR is the default. If the Selector
parameter is not of type long, MQRC_SELECTOR_TYPE_ERROR results.

This parameter is optional.

ItemIndex (LONG) – input
Index of the item to be inquired.

MQIND_NONE is the default.

This parameter is optional.

OutSelector (VARIANT) – output
Selector of the specified item.

Note: Either the Selector parameter, ItemIndex parameter, or both must
be specified. If neither parameter is present,
MQRC_PARAMETER_MISSING results.

Visual Basic Language Invocation: To return the selector of an item:

OutSelector = mqbag.Selector([Selector], [ItemIndex])

 Chapter 5. ActiveX interface to the MQAI 119

 ToMessage method � Truncate method

 ToMessage method
The ToMessage method returns a reference to an MQMessage object. The
reference contains data from a bag. This method corresponds to the MQAI call,
“mqBagToBuffer,” in the MQSeries Administration Interface Programming Guide
and Reference.

ToMessage (OptionsBag, Message)

 Parameters

OptionsBag (MQBag) – input
A bag containing options that control the processing of the method.

This parameter is optional.

Message (MQMessage) – output
An MQMessage object reference containing data from the bag.

Visual Basic Language Invocation: To use the ToMessage Method:

Set Message = mqbag.ToMessage([OptionsBag])

 Truncate method
The Truncate method reduces the number of user items in a bag. This method
corresponds to the MQAI call, “mqTruncateBag,” in the MQSeries Administration
Interface Programming Guide and Reference.

Truncate (ItemCount)

 Parameters

ItemCount (LONG) – input
The number of user items to remain in the bag after truncation has
occurred.

Visual Basic Language Invocation: To reduce the number of user items in a
bag:

mqbag.Truncate(ItemCount)

 Error handling
If an error is detected during an operation on an MQBag object, including those
errors returned to the bag by an underlying MQAX or MQAI object, an error
exception is raised. The MQBag class supports the COM ISupportErrorInfo
interface so the following information is available to your error handling routine:

� Error number: this is composed of the MQSeries reason code for the error
detected and a COM facility code. The facility field, as standard for COM,
indicates the area of responsibility for the error. For errors detected by
MQSeries it is always FACILITY_ITF.

120 Using the Component Object Model Interface

 Error handling

� Error source: this identifies the type and version of the object that detected the
error. For errors detected during MQBag operations this is always
MQBag.MQBag1.

� Error description: this is the string giving the symbolic name for the MQSeries
reason code.

How you access the error information depends on your scripting language; for
example, in Visual Basic the information is returned in the Err object and the
MQSeries reason code is obtained by subtracting the constant vbObjectError from
Err.Number.

ReasonCode = Err.Number - vbObjectError

If the MQBag Execute message sends a PCF message and a reply is received, the
operation is considered successful although the command sent may have failed. In
this case, the reply bag itself contains the completion and error reason codes as
described in MQSeries Administration Interface Programming Guide and Reference.

 Chapter 5. ActiveX interface to the MQAI 121

 Error handling

122 Using the Component Object Model Interface

 ADSI Interface � Prerequisites

Chapter 6. Using the Active Directory Service Interfaces
(ADSI)

The Active Directory Service Interfaces (ADSI) provide the means for client
applications to use a common set of interfaces to communicate with and control
any server that implements them. This allows a single client application to
configure a number of different servers because it is shielded from API details
specific to each server.

MQSeries provides such an implementation for accessing and managing MQSeries
resources: the MQSeries namespace. MQSeries administrators and developers
can use the ADSI to enumerate and manage the resources within this namespace
to develop their own, or use third-party, system-management tools.

Any programming language that supports the COM interface can be used. To
control a queue manager it must be configured to accept remote administration, be
started, and have an associated listener and command server. See Understanding
ActiveX and OLE by Microsoft Press for more information about COM interfaces.
See also Chapter 5, “ActiveX interface to the MQAI” on page 113.

Figure 2. ADSI and interoperability

 Prerequisites
To make use of the IBM MQSeries Active Directory Service Interface, you must be
using Windows NT 5. Alternatively, use Windows NT Version 4 with Service Pack
3 and the Active Directory Service Interfaces (ADSI) Version 2 applied.

To understand this information, you must understand how to use the Active
Directory Service Interfaces because this chapter does not provide such details.
This chapter describes the naming scheme used within the IBM MQSeries
implementation of these services. A full description of the ADSI can be found in
the appropriate Microsoft documentation; for example, the Active Directory Service
Interfaces Version 2 documentation available at the Microsoft MSDN Web site at

http://www.microsoft.com/

 Copyright IBM Corp. 1997,1999 123

 Troubleshooting � IBMMQSeries namespace and hierarchy

 Troubleshooting
The MQSeries ADSI implementation supports the standard MQSeries diagnostic
aids of trace and error logs. See the appropriate documentation for details on
starting, stopping, and interpreting trace.

The MQSeries namespace and object hierarchy
The MQSeries namespace lets you uniquely identify, access, and configure
individual objects such as queues and channels. These objects can be
represented as an object hierarchy within the namespace.

Note: In Figure 3 on page 125, object instances are represented within brackets
(< ... >) while object identifiers are not.

The object hierarchy is used by the client to reference all objects uniquely. The
MQSeries namespace is rooted into the Active Directory namespace (ADS://), and
below this point the hierarchy expands. You can access elements within the
namespace structure by:

� Using COM or URL addresses. See “Accessing IBMMQSeries objects using
COM or URL addresses” on page 126,

or
� Using enumeration. See “Accessing IBMMQSeries objects using enumeration”

on page 128.

124 Using the Component Object Model Interface

 IBMMQSeries namespace and hierarchy

<CHANNEL> <CHANNEL>

M
Q

C
lntC

onnC
hannel

M
Q

C
lusterR

eceiverC
hannel

M
Q

C
lusterSenderC

hannel

M
Q

R
eceiverC

hannel

M
Q

R
equesterC

hannel

M
Q

Process

<CHANNEL> <CHANNEL> <CHANNEL>

<CHANNEL>

M
Q

ServerC
hannel

<CHANNEL>

M
Q

SenderC
hannel

M
Q

SvrC
onnC

hannel
M

Q
AliasQ

ueue

<CHANNEL>

M
Q

C
lusterQ

ueue
M

Q
LocalQ

ueue

<QUEUE>

M
Q

M
odelQ

ueue
M

Q
R

em
oteQ

ueue

<QUEUE>

<QUEUE><QUEUE> <QUEUE>

<PROCESS>

Class

Property

Syntax

Schema

<QUEUE MANAGER>

MQQueueManager

<HOST>

MQHost

IBMMQSeries

ADS

Figure 3. MQSeries object hierarchy

 Chapter 6. Using the Active Directory Service Interfaces (ADSI) 125

 Accessing IBMMQSeries objects

Accessing IBMMQSeries objects using COM or URL addresses
You can gain access to objects within an application namespace by:

1. Calling the ADsGetObject() and ADsOpenObject() functions provided by
Microsoft to access the configuration interfaces supported by the specified
object.

2. Using the IParseDisplayName interface implemented by the MQSeries Provider
Object.

COM or URL format strings are used to identify objects within a namespace. COM
strings take the following syntax:

@<NamespaceID>!//<ProviderSpecificPath>

URL strings take the following syntax:

<NamespaceID>://<ProviderSpecificPath>

The URL format is recommended.

ADSI stipulates the syntax up to <NamespaceID> only; in this case, MQSeries. This
part of the object identifier is treated in the same way for both COM and URL
format strings. Individual applications are responsible for the
<ProviderSpecificPath>. For more information about the provider specific path,
see “Structuring IBMMQSeries COM and URL addresses” on page 127.

The MQSeries namespace consists of object identifiers and instances, as shown in
Figure 3 on page 125. For example, to identify a particular channel the following
string is required:

IBMMQSeries://MQHost/heron/MQQueueManager/queue.manager.1/MQChannel/

 SYSTEM.DEFAULT.SENDER

It is possible to shorten identifier strings by following these guidelines:

� When dealing with queue managers on the local machine, it is not necessary to
specify MQHost.

� When referring to objects residing on the default queue managers of a given
machine, it is not necessary to specify MQQueueManager.

Note: Using shortened identifier strings results in a performance impact, so only
use them when strictly necessary.

Thus, it is possible to shorten the example URL. For example, if the MQHost
instance is not specified in the example above, the default taken is the local host
machine. Therefore, to access a channel object for a local queue manager, the
following URL address is used:

IBMMQSeries://MQQueueManager/queue.manager.1/MQChannel/

 SYSTEM.DEFAULT.SENDER

In the case where the queue manager is the default, the URL address can be
shortened further:

IBMMQSeries://MQChannel/SYSTEM.DEFAULT.SENDER

126 Using the Component Object Model Interface

 Accessing IBMMQSeries objects

C++ Language invocation
To access the IADs interface on the channel SYSTEM.DEFAULT.SENDER defined
on queue manager queue.manager.1 residing on machine heron, use the following:

IADs \pMyObject;

ADsGetObject(

TEXT(“IBMMQSeries://MQHost/heron/MQQueueManager/queue.manager.1/MQChannel/

 SYSTEM.DEFAULT.SENDER”)

 , IID_IADs

 , (void\\)&pMyObject);

Structuring IBMMQSeries COM and URL addresses
As discussed in “Accessing IBMMQSeries objects using COM or URL addresses”
on page 126, ADSI identifier strings consist of a namespace identifier and a
provider specific path. The IBM MQSeries namespace identifier is IBMMQSeries .
The provider specific path is described below.

It is possible to generate a provider specific path that uniquely identifies any object
within the IBM MQSeries namespace using Figure 3 on page 125 as a guide.

MQSeries passes messages between queue managers residing on one or more
machines. Queue managers of the same name may reside across an organization
but not on the same host machine. Consequently, the first element in the tree,
MQHost, permits different machines to be identified and hence differentiates between
queue managers of the same name. Therefore, the first part of the provider
specific path is:

MQHost/<Host>

Having identified a particular host machine, it is necessary to differentiate the many
queue managers that may potentially reside there. This is achieved through the
MQQueueManager identifier producing a provider specific path of:

MQHost/<Host>/MQQueueManager/<QueueManager>

Each queue manager supports the following objects:

� “MQClntConnChannel” on page 134
� “MQClusterReceiverChannel” on page 135
� “MQClusterSenderChannel” on page 135
� “MQReceiverChannel” on page 136
� “MQRequesterChannel” on page 136
� “MQSenderChannel” on page 137
� “MQServerChannel” on page 137
� “MQSvrConnChannel” on page 138
� “MQProcess” on page 139
� “MQAliasQueue” on page 139
� “MQClusterQueue” on page 140
� “MQLocalQueue” on page 140
� “MQModelQueue” on page 141
� “MQRemoteQueue” on page 141

 Chapter 6. Using the Active Directory Service Interfaces (ADSI) 127

 Accessing IBMMQSeries objects

These are represented under a given MQQueueManager by the following paths:

MQHost/Host>/MQQueueManager/<QueueManager>/MQClntConnChannel/<Channel>

MQHost/Host>/MQQueueManager/<QueueManager>/MQClusterReceiverChannel/<Channel>

MQHost/Host>/MQQueueManager/<QueueManager>/MQClusterSenderChannel/<Channel>

MQHost/Host>/MQQueueManager/<QueueManager>/MQReceiverChannel/<Channel>

MQHost/Host>/MQQueueManager/<QueueManager>/MQRequesterChannel/<Channel>

MQHost/Host>/MQQueueManager/<QueueManager>/MQSenderChannel/<Channel>

MQHost/Host>/MQQueueManager/<QueueManager>/MQServerChannel/<Channel>

MQHost/Host>/MQQueueManager/<QueueManager>/MQSvrConnChannel/<Channel>

MQHost/Host>/MQQueueManager/<QueueManager>/MQProcess/<Process>

MQHost/Host>/MQQueueManager/<QueueManager>/MQAliasQueue/<Queue>

MQHost/Host>/MQQueueManager/<QueueManager>/MQClusterQueue/<Queue>

MQHost/Host>/MQQueueManager/<QueueManager>/MQLocalQueue/<Queue>

MQHost/Host>/MQQueueManager/<QueueManager>/MQModelQueue/<Queue>

MQHost/Host>/MQQueueManager/<QueueManager>/MQRemoteQueue/<Queue>

Accessing IBMMQSeries objects using enumeration
Objects within the Active Directory contain an enumeration function on the
IADsContainer interface. This function lists objects contained within the current
object. Enumeration can be used to reach any object in the IBMMQSeries
namespace by traversing down the object hierarchy from a known point. For
example, starting from the ADSI root of ADS:

1. From the ADS container, an enumeration request returns all available
namespace containers; for example, LDAP, WinNT, and IBMMQSeries.

2. From the MQSeries namespace object, an enumeration request
returns MQHost containers, each representing machines that host queue
managers.

3. From an MQHost/<Host> instance, an enumeration request returns
MQQueueManager containers for each queue manager hosted by that machine.

4. From an MQHost/<Host>/MQQueueManager/<QueueManager> instance, an
enumeration request returns MQAliasQueue, MQClntConnChannel,
MQClusterQueue, MQClusterReceiverChannel, MQClusterSenderChannel,
MQLocalQueue, MQModelQueue, MQProcess, MQReceiverChannel, MQRemoteQueue,
MQRequesterChannel, MQSenderChannel, MQServerChannel, MQSvrConnChannel.

MQChannel, MQProcess and MQQueue objects are represented as containers.
Enumerating these objects results in an empty return set, as they contain no
child objects.

Note: Enumeration is an alternative to using a URL or COM address of the object
to be interrogated. However, the process implies the enumeration of several
intermediate objects.

128 Using the Component Object Model Interface

 Accessing IBMMQSeries objects

C++ Language invocation
The following code fragment connects to the queue manager called
queue.manager.1 on machine heron and obtains an enumeration of its children.
Using the enumeration object obtained, the code then displays information about
each child before issuing a count of the number of child objects processed:

//

// Define and initialize variables.

//

ULONG cElementFetched = ðL;

IEnumVARIANT \pEnumVariant = NULL;

VARIANT VariantArray[MAX_ADS_ENUM];

IADsContainer \pADsContainer = NULL;

DWORD dwObjects = ð, i = ð;

BOOL fContinue = TRUE;

//

// Ensure VARIANT array used to store results is empty

//

for (i = ð; i <MAX_ADS_ENUM; i++)

{

 VariantInit(&VariantArray\lbrk.i]);

}

//

// Attach to the IADs Container interface for the queue manager

// queue.manager.1 residing on machine heron.

//

ADsGetObject(_TEXT("IBMMQSeries://MQHost/heron/MQQueueManager/

 queue.manager.1")

 , IID_IADsContainer

, (void \\)&pADsContainer);

//

// Build an enumerator object for the specified Active Directory container

//

ADsBuildEnumerator(pADsContainer, &pEnumVariant);

while (fContinue)

{

BSTR bstrClass = NULL;

BSTR bstrName = NULL;

 IADs \pObject;

 //

// Populate VARIANT array with elements fetched from

// the enumerator object

 //

fContinue = ADsEnumerateNext(pEnumVariant

 , MAX_ADS_ENUM

 , VariantArray

 , &cElementFetched);

 Chapter 6. Using the Active Directory Service Interfaces (ADSI) 129

 Configuring IBMMQSeries objects

 //

// Step through the VARIANT obtaining a pointer to the IADs interface

// on each object. Using this interface, extract the name and class

// of the object, printing this information onto the screen.

 //

for (i= ð; i < cElementFetched; i++)

 {

IDispatch \pDispatch = NULL;

 pDispatch=VariantArray[i].pdispVal;

 pDispatch->QueryInterface(IID_IADs

, (VOID \\)&pObject);

 pObject->Get_Name (&bstrName);

 pObject->get_Class(&bstrClass)

printf(" %S(%S)\n", bstrName, bstrClass) ;

 pObject->Release();

 pDispatch->Release();

 }

 memset(VariantArray

 , ð

 , sizeof(VARIANT)\MAX_ADS_ENUM);

dwObjects += cElementFetched;

}

printf("Total Number of Objects enumerated is %d\n", dwObjects);

if (pEnumVariant)

{

 pEnumVariant->Release();

}

if (pADsContainer)

{

 pADsContainer->Release();

}

Configuring IBMMQSeries Active Directory objects
After an MQSeries object is accessed, its configuration can be modified using the
Get and Put functions of the IADs interface. The ADSI objects communicate with
underlying queue managers by MQAI COM objects in response to Get and Put
requests. For more information about the MQAI see the appropriate help
documentation.

Within the IADs interfaces Get and Put functions, it is necessary to refer to
properties by names. A list of property names supported by a given class is
available through the IADsClass interface on the schema object for that class. To
obtain the schema object for a class, call the get_Schema function on its IADs
interface.

130 Using the Component Object Model Interface

 Object descriptions

Note: The property names used within the IBMMQSeries ADSI implementation
are similar to those used within the MQAI COM. For example, to determine
the name of a queue manager, call the Get function on its IAD interface
passing in a property name of “MQCA_Q_MGR_NAME”. Under MQAI you
would use the defined MQCA_Q_MGR_NAME.

Here is an example showing the use of the IADs interface to extract the name and
description of a queue manager object and printing this information to the screen:

//

// Define and initialize variables.

//

VARIANT vDesc;

VARIANT vName;

IADs \pObject = NULL;

//

// Initialize Variants

//

VariantInit(&vDesc);

VariantInit(&vName);

//

// Attach to the IADs interface for the queue manager queue.manager.1

// residing on machine heron.

//

ADsGetObject(_TEXT("IBMMQSeries://MQHost/heron/MQQueueManager/

 queue.manager.1")

 , IID_IADs

, (void \\)&pObject);

//

// Using the IADs interface extract the name and description of

// the queue manager printing this information to the screen.

//

pObject->Get(_TEXT("MQCA_Q_MGR_NAME"),&vName);

pObject->Get(_TEXT("MQCA_Q_MGR_DESC"),&vDesc);

printf(" %S,%S",vName.bstrVal, vDesc.bstrVal);

pObject->Release();

 Object descriptions
This section describes the objects contained within the MQSeries object hierarchy:

� “IBMMQSeries” on page 132
� “MQHost” on page 132
� “MQQueueManager” on page 133
� “Schema” on page 134
� “MQClntConnChannel” on page 134
� “MQClusterReceiverChannel” on page 135
� “MQClusterSenderChannel” on page 135
� “MQReceiverChannel” on page 136
� “MQRequesterChannel” on page 136

 Chapter 6. Using the Active Directory Service Interfaces (ADSI) 131

 IBMMQSeries � MQHost

� “MQSenderChannel” on page 137
� “MQServerChannel” on page 137
� “MQSvrConnChannel” on page 138
� “MQProcess” on page 139
� “MQAliasQueue” on page 139
� “MQClusterQueue” on page 140
� “MQLocalQueue” on page 140
� “MQModelQueue” on page 141
� “MQRemoteQueue” on page 141

 IBMMQSeries
The IBMMQSeries container represents the namespace presented by IBM
MQSeries. All other object types are contained within IBMMQSeries. Enumerating
the default container (ADS) provides access to all installed namespaces; for
example, WinNT, LDAP and IBMMQSeries.

Alternatively, the container object (IBMMQSeries Namespace Object) may be
instantiated directly by the CoCreateInstance call.

Enumerating IBMMQSeries provides a list of MQHost containers which are
described in the next section.

 Type
ADSI namespace container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IADsOpenDSObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
None.

 MQHost
The MQHost object represents a machine that hosts MQSeries queue managers.
Enumerating this object provides a list of queue managers supported by the
machine, each represented by an MQQueueManager object. For more information
about the MQQueueManager object, see “MQQueueManager” on page 133.

 Type
ADSI container object.

132 Using the Component Object Model Interface

 MQQueueManager

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
None.

 MQQueueManager
The MQQueueManager object represents a queue manager hosted by a particular
machine. Enumerating the MQQueueManager object provides access to the items
it contains (MQClntConnChannel, MQClusterReceiverChannel,
MQClusterSenderChannel, MQReceiverChannel, MQRequesterChannel,
MQSenderChannel, MQServerChannel, MQSvrConnChannel, MQProcess,
MQAliasQueue, MQClusterQueue, MQLocalQueue, MQModelQueue, and
MQRemoteQueue).

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQQueueManager class, see
“Inquire Queue Manager (Response)” in the MQSeries Programmable System
Management Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 Chapter 6. Using the Active Directory Service Interfaces (ADSI) 133

 schema � MQClntConnChannel

 Schema
The schema object contains all the ADSI Schema class objects, one for every type
of object that can be created in the IBMMQSeries directory. The object also
provides access to the ADSI property objects and the ADSI syntax objects.

 Type
ADSI schema container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsClass
 � IDispatch
 � IUnknown

Several schema objects exist within the IBMMQSeries namespace. You will be
directed to the correct one for a particular object by calling the:

get_Schema()

 function on its IADs interface.

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
None.

 MQClntConnChannel
The MQClntConnChannel class represents an individual client connection channel
on a particular queue manager. Enumerating an object of this class results in an
empty list.

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

134 Using the Component Object Model Interface

 MQClusterReceiverChannel � MQClusterSenderChannel

 Properties
For details about the properties supported by the MQClntConnChannel class, see
“Inquire Channel (Response)” in the MQSeries Programmable System Management
Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQClusterReceiverChannel
The MQClusterReceiverChannel class represents an individual cluster receiver
channel on a particular queue manager. Enumerating an object of this class results
in an empty list.

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

 Properties
For details about the properties supported by the MQClusterReceiverChannel class,
see “Inquire Channel (Response)” in the MQSeries Programmable System
Management Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQClusterSenderChannel
The MQClusterSenderChannel class represents an individual cluster sender
channel on a particular queue manager. Enumerating an object of this class results
in an empty list.

 Type
ADSI container object.

 Interfaces
 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at

http://www.microsoft.com/

 Chapter 6. Using the Active Directory Service Interfaces (ADSI) 135

 MQReceiverChannel � MQRequesterChannel

 Properties
For details about the properties supported by the MQClusterSenderChannel class,
see “Inquire Channel (Response)” in the MQSeries Programmable System
Management Guide.

Note: The properties are not provided in the header files; they must be entered as
a string between quotes (’ ’).

 MQReceiverChannel
The MQReceiverChannel class represents an individual receiver channel on a
particular queue manager. Enumerating an object of this class results in an empty
list.

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQReceiverChannel class, see
“Inquire Channel (Response)” in the MQSeries Programmable System Management
Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQRequesterChannel
The MQRequesterChannel class represents an individual requester channel on a
particular queue manager. Enumerating an object of this class results in an empty
list.

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDIrectoryObject
 � IDispatch
 � IUnknown

136 Using the Component Object Model Interface

 MQSenderChannel � MQServerChannel

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQRequesterChannel class, see
“Inquire Channel (Response)” in the MQSeries Programmable System Management
Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQSenderChannel
The MQSenderChannel class represents an individual sender channel on a
particular queue manager. Enumerating an object of this class results in an empty
list.

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQSenderChannel class, see
“Inquire Channel (Response)” in the MQSeries Programmable System Management
guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQServerChannel
The MQServerChannel class represents an individual server channel on a particular
queue manager. Enumerating an object of this class results in an empty list.

 Type
ADSI container object.

 Chapter 6. Using the Active Directory Service Interfaces (ADSI) 137

 MQSvrConnChannel

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQServerChannel class, see
“Inquire Channel (Response)” in the MQSeries Programmable System Management
Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQSvrConnChannel
The MQSvrConnChannel class represents an individual server connection channel
on a particular queue manager. Enumerating an object of this class results in an
empty list.

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQSvrConnChannel class, see
“Inquire Channel (Response)” in the MQSeries Programmable System Management
Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

138 Using the Component Object Model Interface

 MQProcess � MQAliasQueue

 MQProcess
The MQProcess class of objects represents an individual process definition defined
on a particular queue manager. Enumerating an object of this class results in an
empty list.

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQProcess class, see “Inquire
Process (Response)” in the MQSeries Programmable System Management Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQAliasQueue
The MQAliasQueue class represents an individual alias queue defined on a
particular queue manager. Enumerating an object of this class results in an empty
list.

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Chapter 6. Using the Active Directory Service Interfaces (ADSI) 139

 MQClusterQueue � MQLocalQueue

 Properties
For details about the properties supported by the MQAliasQueue class, see “Inquire
Queue (Response)” in the MQSeries Programmable System Management Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQClusterQueue
The MQClusterQueue class represents an individual cluster queue defined on a
particular queue manager. Enumerating an object of this class results in an empty
list.

 Type
ADSI container object.

 Interfaces
 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQClusterQueue class, see
“Inquire Queue (Response)” in the MQSeries Programmable System Management
Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQLocalQueue
The MQLocalQueue class represents an individual local queue defined on a
particular queue manager. Enumerating an object of this class results in an empty
list.

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

140 Using the Component Object Model Interface

 MQModelQueue � MQRemoteQueue

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQLocalQueue class, see
“Inquire Queue (Response)” in the MQSeries Programmable System Management
Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQModelQueue
The MQModelQueue class represents an individual model queue defined on a
particular queue manager. Enumerating an object of this class results in an empty
list.

 Type
ADSI Container Object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQModelQueue class, see
“Inquire Queue (Response)” in the MQSeries Programmable System Management
Guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

 MQRemoteQueue
The MQRemoteQueue class represents an individual remote queue defined on a
particular queue manager. Enumerating an object of this class results in an empty
list.

 Chapter 6. Using the Active Directory Service Interfaces (ADSI) 141

 MQRemoteQueue

 Type
ADSI container object.

 Interfaces
The following interfaces are available:

 � IADs
 � IADsContainer
 � IDirectoryObject
 � IDispatch
 � IUnknown

For more information about these interfaces, see the Microsoft MSDN Web site at:

http://www.microsoft.com/

 Properties
For details about the properties supported by the MQRemoteQueue class, see
“Inquire Queue (Response)” in the MQSeries Programmable System Management
guide.

Note: Unlike other MQSeries administration interfaces, ADSI uses strings to
represent the property names used. The names found in the MQSeries
Programmable System Management guide should be provided as a string
between quotes (’ ’).

142 Using the Component Object Model Interface

 About the ActiveX samples � Preparing to run the samples

Appendix A. About the MQSeries Automation Classes for
ActiveX Starter samples

This appendix describes the MQSeries Automation Classes for ActiveX Starter
samples, and explains how to use them.

MQSeries for Windows NT provides the following Visual Basic sample programs:

| � MQAXTRIV.VBP
| � MQAXBSRV.VBP

 � MQAXDLST.VBP
 � MQAXCLSS.VBP

| These samples run on Visual Basic 4 or Visual Basic 5. You will find them in the
| directory ...\tools\mqax\samples\vb.

| In the same directory you will also find samples for Microsoft Excel and html.
| These are:

| � MQAX.XLS
| � MQAXTRIV.XLS
| � MQAXTRIV.HTM

Note: If using Visual Basic 5, you must select and install Visual Basic component
grid32.ocx.

What is demonstrated in the samples
The samples demonstrate how to use MQSeries Automation Classes for ActiveX to:

� Connect to a queue manager
� Access a queue
� Put a message on a queue
� Get a message from a queue

The central part of the Visual Basic sample is shown on the following pages.

Preparing to run the samples
| To run any of the samples you need one of the following depending on which of the
| samples you intend to run.

| � Microsoft Visual Basic Version 4 (or later)

| � Microsoft Excel 95 (or later)

| � A Web browser

| You will also need:

| � An MQSeries queue manager running.

| � An MQSeries queue already defined.

 Copyright IBM Corp. 1997,1999 143

 Error handling in the samples � MQAX Starter samples

Error handling in the samples
Most of the samples provided in the MQSeries Automation Classes for ActiveX
package exhibit little or no error handling. For more information about error
handling, see “Error handling” on page 8.

Running the ActiveX Starter samples
| Before you run the MQSeries Automation Classes for ActiveX Starter samples
| check that you have a default queue manager running and that you have created
| the required queue definitions. For details of creating and running a queue

manager and creating a queue, refer to MQSeries System Administration. The
sample uses the queue SYSTEM.DEFAULT.LOCAL.QUEUE which should be
defined on any normally set up MQSeries server.

MQAX Starter samples for Microsoft Visual Basic Version 4 or later
This section explains how to run the MQAX starter samples for Microsoft Basic
Version 4 or later.

| The MQAXTRIV sample
| 1. Start the queue manager.

| 2. In Windows Explorer or File Manager, select the icon for the sample,
| MQAXTRIV.VBP (Visual Basic Project file) and open the file.

| The Visual Basic program starts and opens the file, MQAXTRIV.VBP.

3. In Visual Basic, press function key 5 (F5) to run the sample.

4. Click anywhere in the window form, "MQAX trivial tester".

| If everything is working correctly, the window background should change to green.
| If there is a problem with your setup, the window background should change to red
| and error information will be displayed.

The central part of the Visual Basic sample is shown below.

144 Using the Component Object Model Interface

 MQAX Starter samples

Option Explicit

Private Sub Form_Click()

'\\\

'\ This simple example illustrates how to put and get an MQSeries message to and

'\ from an MQSeries message queue. The data from the message returned by the get

'\ is read and compared with that from the original message.

'\\\

Dim MQSess As MQSession '\ session object

Dim QMgr As MQQueueManager '\ queue manager object

Dim Queue As MQQueue '\ queue object

Dim PutMsg As MQMessage '\ message object for put

Dim GetMsg As MQMessage '\ message object for get

Dim PutOptions As MQPutMessageOptions '\ get message options

Dim GetOptions As MQGetMessageOptions '\ put message options

Dim PutMsgStr As String '\ put message data string

Dim GetMsgStr As String '\ get message data string

'\\\

'\ Handle errors

'\\\

On Error GoTo HandleError

'\\\

'\ Initialize the current position for the form

'\\\

CurrentX = ð

CurrentY = ð

'\\\

'\ Create the MQSession object and access the MQQueueManager and (local) MQQueue

'\\\

Set MQSess = New MQSession

Set QMgr = MQSess.AccessQueueManager("")

Set Queue = QMgr.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE", _

MQOO_OUTPUT Or MQOO_INPUT_AS_Q_DEF)

'\\\

'\ Create a new MQMessage object for use with put, add some data then create an

'\ MQPutMessageOptions object and put the message

'\\\

Set PutMsg = MQSess.AccessMessage()

PutMsgStr = "12345678 " & Time

PutMsg.MessageData = PutMsgStr

Set PutOptions = MQSess.AccessPutMessageOptions()

Queue.Put PutMsg, PutOptions

'\\\

'\ Create a new MQMessage object for use with get, set the MessageId (to that of

'\ the message that was put), create an MQGetMessageOptions object and get the

'\ message.

'\

'\ Note: Setting the MessageId ensures that the get returns the MQMessage

'\ that was put earlier.

'\\\

 Appendix A. About the MQSeries Automation Classes for ActiveX Starter samples 145

 MQAX Starter samples

Set GetMsg = MQSess.AccessMessage()

GetMsg.MessageId = PutMsg.MessageId

Set GetOptions = MQSess.AccessGetMessageOptions()

Queue.Get GetMsg, GetOptions

'\\\

'\ Read the data from the message returned by the get, compare it with

'\ that from the original message and output a suitable message.

'\\\

GetMsgStr = GetMsg.MessageData

Cls

If GetMsgStr = PutMsgStr Then

BackColor = RGB(127, 255, 127) '\ set to green for ok

 Print

Print "Message data comparison was successful."

Print "Message data: """ & GetMsgStr & """"

Else

BackColor = RGB(255, 255, 127) '\ set to amber for compare error

Print "Compare error: "

Print "The message data returned by the get did not match the " & _

"input data from the original message that was put."

 Print

Print "Input message data: """ & PutMsgStr & """"

Print "Returned message data: """ & GetMsgStr & """"

End If

Exit Sub

146 Using the Component Object Model Interface

 MQAX Starter samples

'\\\

'\ Handle errors

'\\\

HandleError:

Dim ErrMsg As String

Dim StrPos As Integer

Cls

BackColor = RGB(255, ð, ð) '\ set to red for error

Print "An error occurred as follows:"

Print ""

If MQSess.CompletionCode <> MQCC_OK Then

ErrMsg = Err.Description

StrPos = InStr(ErrMsg, " ") '\ search for first blank

If StrPos > ð Then

Print Left(ErrMsg, StrPos) '\ print offending MQAX object name

 Else

Print Error(Err) '\ print complete error object

 End If

 Print ""

Print "MQSeries Completion Code = " & MQSess.CompletionCode

Print "MQSeries Reason Code = " & MQSess.ReasonCode

Print "(" & MQSess.ReasonName & ")"

Else

Print "Visual Basic error: " & Err

 Print Error(Err)

End If

Exit Sub

End Sub

 Appendix A. About the MQSeries Automation Classes for ActiveX Starter samples 147

The MQAXCLSS sample
| This sample allows you to browse properties and methods of queue manager and
| queue objects.

1. Start the queue manager.

2. Open the file, MQAXCLSS.VBP, by double clicking on the document icon in
Windows Explorer or by choosing File - Open from the file menu in Visual
Basic.

| 3. Start the sample.

| 4. Enter the appropriate queue manager and queue names then click the
| corresponding buttons.

| The MQAXDLST sample
| The Visual Basic MQAXDLST sample demonstrates the use of a distribution list to
| send the same message to two queues with one put. To run the sample, do the
| same as for the MQAXCLSS sample above.

MQAX Starter samples for Microsoft Excel 95 or later
| This section explains how to run the MQAX starter sample for Microsoft Excel 95 or
| later, MQAXTRIV.XLS.

| The MQAXTRIV.XLS sample
| 1. Start the queue manager.

| 2. In Explorer or File Manager, select the icon for the MQAX sample
| MQAXTRIV.XLS.

| 3. Click on the button.

| 4. The screen will be updated with a success (or failure) message.

| Running the Bank demonstration with MQAX.XLS
1. Start the queue manager.

2. Run the MQSeries MQSC command file, BANK.TST. This sets up the
necessary MQSeries queue definitions.

To find out how to use an MQSC command file, refer to the MQSeries System
Administration book.

3. Run MQAXBSRV.VBP. This is the server, simulating a back-end application.
| This has to run in conjunction with Microsoft Excel.

4. Run MQAX.XLS. This is the client MQSeries demonstration.

5. Select a customer from the drop-down list box.

6. Click on the Submit button.

After a short time, (3 seconds or so) the fields should become populated with
values and you should see a bar chart appear.

148 Using the Component Object Model Interface

 Starter sample using a WWW browser

Starter sample using an ActiveX compatible WWW browser
Note: To run this sample, you must be running an ActiveX compatible Web

browser. Microsoft Internet Explorer (but not Netscape Navigator) is a
compatible Web browser.

| Running the HTML sample
| This sample demonstrates how you can invoke MQAX from both VBScript and
| JavaScript.

1. Start the queue manager.

2. Open the file, "MQAXTRIV.HTM", in your ActiveX compatible Web browser.

You can do this either by double-clicking the file icon in Windows Explorer or
you can choose File - Open from the File menu of your ActiveX compatible
Web browser.

3. Follow the instructions on the screen.

 Appendix A. About the MQSeries Automation Classes for ActiveX Starter samples 149

 Starter sample using a WWW browser

150 Using the Component Object Model Interface

 Notices

 Appendix B. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM documentation or non-IBM Web sites
are provided for convenience only and do not in any manner serve as an
endorsement of those documents or Web sites. The materials for those documents
or Web sites are not part of the materials for this IBM product and use of those
documents or Web sites is at your own risk.

 Copyright IBM Corp. 1997,1999 151

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM
for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces. The following
terms are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, Visual Basic, MSDN and the Windows logo are
trademarks of Microsoft Corporation in the United States and/or other countries.

Other company, product, or service names, may be the trademarks or service
marks of others.

AIX AS/400 BookManager
IBM MQSeries OS/2
OS/390 System/390 VSE/ESA

152 Using the Component Object Model Interface

 administrator commands � DLQ

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
administrator commands . MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

application queue . A queue used by an application.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

C
CDF. Channel definition file.

channel . See message channel.

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event . An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application . An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type . The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

command . In MQSeries, an administration instruction
that can be carried out by the queue manager.

completion code . A return code indicating how an
MQI call has ended.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier or token by which a
program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

D
dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler . An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with
a user-written rules table.

DLQ. Dead-letter queue.

 Copyright IBM Corp. 1997,1999 153

 event � message channel

E
event . See channel event, instrumentation event,
performance event, and queue manager event.

event data . In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer . A tool provided by Windows NT to
examine and manage log files.

F
FFST. First Failure Support Technology.

First Failure Support Technology (FFST) . Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

G
get . In message queuing, to use the MQGET call to
remove a message from a queue.

H
handle . See connection handle and object handle.

hardened message . A message that is written to
auxiliary (disk) storage so that the message will not be
lost in the event of a system failure. See also
persistent message.

I
instrumentation event . A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

L
local definition of a remote queue . An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

log file . In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

M
message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises
two message channel agents (a sender at one end and
a receiver at the other end) and a communication link.
Contrast with MQI channel.

154 Using the Component Object Model Interface

 message descriptor � programmable command format (PCF)

message descriptor . Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

messaging . See synchronous messaging and
asynchronous messaging.

MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC. MQSeries commands.

MQSeries . A family of IBM licensed programs that
provides message queuing services.

MQSeries Administration Interface (MQAI) . A
programming interface to MQSeries.

MQSeries client . Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI
calls from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
namelist . An MQSeries object that contains a list of
names, for example, queue names.

nonpersistent message . A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

O
OAM. Object authority manager.

object . In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM) . In MQSeries on
UNIX systems and MQSeries for Windows NT, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor . A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle . The identifier or token by which a
program accesses the MQSeries object with which it is
working.

P
PCF. Programmable command format.

PCF command . See programmable command format.

performance event . A category of event indicating
that a limit condition has occurred.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel or a TCP/IP connection is functioning.

programmable command format (PCF) . A type of
MQSeries message used by:

� User administration applications, to put PCF
commands onto the system command input queue
of a specified queue manager

� User administration applications, to get the results
of a PCF command from a specified queue
manager

� A queue manager, as a notification that an event
has occurred

Contrast with MQSC.

 Glossary of terms and abbreviations 155

 queue � synchronous messaging

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by a queue manager. For example,
a queue is unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

R
reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

Registry . In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor . In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive . In Windows NT, the structure of the
data stored in the Registry.

remote queue . A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply
message and request message.

requester channel . In message queuing, a channel
that may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the
message. See also server channel.

request message . A type of message used to request
a reply from another program. Contrast with reply
message and report message.

return codes . The collective name for completion
codes and reason codes.

S
sender channel . In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With

156 Using the Component Object Model Interface

 time-independent messaging � utility

synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

T
time-independent messaging . See asynchronous
messaging.

trace . In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF).

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering . In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message containing information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

U
utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

 Glossary of terms and abbreviations 157

158 Using the Component Object Model Interface

 Index

 Index

A
About MQSeries automation classes for ActiveX

classes 11
AccessGetMessageOptions method 15
Accessing IBMMQSeries objects using COM or URL

addresses 126
C++ Language invocation 127

Accessing IBMMQSeries objects using
enumeration 128

C++ Language invocation 129
AccessPutMessageOptions method 15
AccessQueue method 29
AccessQueueManager method 16
AccountingToken property 57, 92
AccountingTokenHex property 57, 93
Add method 116

Selector parameter 116
Value parameter 116

AddDistributionList method 30
AddDistributionListItem method 90
Addinquiry method 116

Inquiry parameter 116
ADSI (Active Directory Service Interface 123
ADSI Troubleshooting 124
AlternateUserId property 19, 34, 87
ApplicationIdData property 58
ApplicationOriginData property 58
applications that access non-ActiveX applications 3

using MQSeries automation classes for ActiveX 3
AuthorityEvent property 19

B
Backout method 30
BackoutCount property 58
BackoutRequeueName property 34
BackoutThreshold property 35
BaseQueueName property 35
Begin method 30
BeginOptions property 19
bibliography vi
BookManager x

C
ChannelAutoDefinition property 20
ChannelAutoDefinitionEvent property 20
ChannelAutoDefinitionExit property 20
character set conversion 7
CharacterSet property 20, 59
Clear method 116

ClearErrorCodes method
MQDistributionList class 90
MQDistributionListItem class 97
MQGetMessageOptions class 86
MQMessage class 69
MQPutMessageOptions class 83
MQQueue class 50
MQQueueManager class 31
MQSession class 16

ClearMessage method 69
Close method 50, 90
CloseOptions property 20, 35, 87
code level tool 99
COM and ActiveX scripting 1
CommandInputQueueName property 21
CommandLevel property 21
commands using Windows NT 101
Commit method 31
CompletionCode property

MQDistributionList class 88
MQDistributionListItem class 93
MQGetMessageOptions class 84
MQMessage class 55
MQPutMessageOptions class 81
MQQueue class 36
MQQueueManager class 21
MQSession class 13

Configuring IBMMQSeries Active Directory objects 130
Connect method 31
ConnectionHandle property 22
ConnectionReference property 36, 88
ConnectionStatus property 22
ConnectOptions property 22
CorrelationId property 59, 93
CorrelationIdHex property 60, 94
Count property 115
CreationDateTime property 36
CurrentDepth property 36

D
data conversion 6
DataLength property 55
DataOffset property 55
DeadLetterQueueName property 22
DefaultInputOpenOption property 37
DefaultPersistence property 37
DefaultPriority property 37
DefaultTransmissionQueueName property 23
DefinitionType property 37
DepthHighEvent property 38

 Copyright IBM Corp. 1997,1999 159

 Index

DepthHighLimit property 38
DepthLowEvent property 38
DepthLowLimit property 38
DepthMaximumEvent property 39
Description property 23, 39
design and programming using MQSeries automation

classes for ActiveX 3
designing applications that access non-ActiveX

applications 3
Disconnect method 31
DistributionList property 94
DistributionLists property 23
DynamicQueueName property 39

E
Encoding property 60
environment support 2
error handling 8, 120
error handling in the samples 144
example output file from code level tool 100
example trace file 102
execute method 117

Command parameter 117
OptionsBag parameter 117
QueueManager parameter 117
ReplyBag parameter 117
ReplyQ parameter 117
RequestQ parameter 117

Expiry property 61

F
failure of the MQSeries automation classes for ActiveX

script 107
Feedback property 61, 94
first failure symptom report 107
FirstDistributionListItem property 88
Format property 62
Frommessage method 117

Message parameter 118

G
Get method 50
glossary 153
GroupId property 62, 95
GroupIdHex property 62, 95

H
HardenGetBackout property 40
how error handling works 8
HTML (Hypertext Markup Language) xi
Hypertext Markup Language (HTML) xi

I
InhibitEvent property 23
InhibitGet property 40
InhibitPut property 40
InitiationQueueName property 41
introduction to ActiveX 1
IsConnected property 24
IsOpen property 24, 41, 89
item property 114
ItemIndex parameter

Item property 114
itemtype method 118

ItemIndex parameter 118
ItemType parameter 118
Selector parameter 118

L
LocalEvent property 24

M
MatchOptions property 85
MaximumDepth property 41
MaximumHandles property 25
MaximumMessageLength property 25, 41
MaximumPriority property 25
MaximumUncommittedMessages property 25
Message Descriptor properties 4
MessageData property 63
MessageDeliverySequence property 42
MessageFlags property 63
MessageId property 63, 95
MessageIdHex property 64, 96
MessageLength property 56
MessageSequenceNumber property 64
MessageType property 65
methods

detailed description
Add method 116
Addinquiry method 116
Clear method 116
execute method 117
Frommessage method 117
itemtype method 118
Remove method 118
selector method 119
Tomessage method 120
Truncate method 120

MQDistributionList class 87
MQDistributionListItem class 92
MQGetMessageOptions class 84
MQMessage class 52
MQPutMessageOptions class 81

160 Using the Component Object Model Interface

 Index

MQQueue class 32
MQQueueManager class 17
MQSeries Automation Classes for Activex 1
MQSeries automation classes for ActiveX failure 107
MQSeries automation classes for ActiveX interface 11
MQSeries automation classes for ActiveX

Reference 11
MQSeries constants 4
MQseries environment support 2
MQSeries publications vi
MQSeries string constants 4
MQSession Class 13

N
Name property 26, 42
namespace and object hierarchy 124
NextDistributionListItem property 96
null string constants 5
numeric encoding 6

O
Object descriptions (ADSI)

IBMMQSeries 132
MQAliasQueue 139
MQClntConnChannel 134
MQClusterReceiverChannel 135
MQHost 132
MQProcess 139
MQQueueManager 133
MQReceiverChannel 136
MQRequesterChannel 136
MQSenderChannel 137
MQServerChannel 137
MQSvrConnChannel 138
schema 134

object hierarchy and namespace 124
ObjectHandle property 42
Offset property 65
Open method 90
OpenInputCount property 42
OpenOptions property 43, 89
OpenOutputCount property 43
OpenStatus property 43
Options parameter

Options Property 115
Options property 82, 85, 115
OriginalLength property 65

P
parameter passing 12

errors on parameter passing 12
object access methods 12

PDF (Portable Document Format) xi
PerformanceEvent property 26
Persistence property 66
Platform property 27
Portable Document Format (PDF) xi
PostScript format xi
preparing to run the samples 143
PreviousDistributionListItem property 96
Priority property 66
ProcessName property 43
Programming hints and tips 4
properties

detailed description
Count property 115
item property 114
options property 115

publications
MQSeries vi

Put method 51, 91
PutApplicationName property 66
PutApplicationType property 67
PutDateTime property 67

Q
QueueManagerName property 44, 96
QueueName property 97
QueueType property 44

R
Read method 69
ReadBoolean method 70
ReadByte method 70
ReadDecimal2 method 70
ReadDecimal4 method 70
ReadDouble method 71
ReadDouble4 method 71
ReadFloat method 72
ReadInt2 method 72
ReadInt4 method 72
ReadLong method 72
ReadShort method 73
ReadString method 74
ReadUInt2 method 74
ReadUnsignedByte method 74
ReadUTF method 75
reason codes 108
ReasonCode property

Message class 56
MQDistributionList class 89
MQDistributionListItem class 97
MQGetMessageOptions class 85
MQPutMessageOptions class 82
MQQueue class 44
MQQueueManager class 27

 Index 161

 Index

ReasonCode property (continued)
MQSession class 14

ReasonCodeName method 16
ReasonName property

MQDistributionList class 89
MQDistributionListItem class 97
MQGetMessageOptions class 85
MQMessage class 56
MQPutMessageOptions class 82
MQQueue class 45
MQQueueManager class 27
MQSession class 15

receiving a message from MQSeries 5
RecordFields property 83
reference guide for MQSeries automation classes for

ActiveX 11
RemoteEvent property 28
RemoteQueueManagerName property 45
RemoteQueueName property 45
Remove method 118

ItemIndex parameter 119
Selector parameter 119

ReplyToQueueManagerName property 67
ReplyToQueueName property 68
Report property 68
ResizeBuffer method 75
ResolvedQueueManagerName property 45, 83
ResolvedQueueName property 46, 83, 86
RetentionInterval property 46
Running the ActiveX Starter samples 144

MQAX Starter sample for Microsoft Excel 95 or
later 148

Running the Bank demonstration 148
Running the simple sample 148

starter sample using an ActiveX compatible WWW
browser 149

Running the HTML sample 149
starter samples for Visual Basic Version 4 or

later 144
MQAXDLST sample 148
Running the sample 144
Starting the MQAXCLSS sample 148

S
sample programs 143
Scope property 46
selector method 119

ItemIndex parameter 119
OutSelector parameter 119
Selector parameter 119

Selector parameter
Count Property 115
Item Property 114

ServiceInterval property 46

ServiceIntervalEvent property 47
Shareability property 47
softcopy books x
starter samples 143
StartStopEvent property 28
Structuring IBMMQSeries COM and URL

addresses 127
SyncPointAvailability property 28

T
terminology used in this book 153
threading 8
Tomessage method 120

Message parameter 120
OptionsBag parameter 120

TotalMessageLength property 68
trace filename and directory 101
TransmissionQueueName property 47
TriggerData property 48
TriggerDepth property 48
TriggerInterval property 29
TriggerMessagePriority property 49
TriggerType property 49
troubleshooting 99
troubleshooting (ADSI) 124
Truncate method 120

ItemCount parameter 120

U
Usage property 49
UserId property 69
using data conversion 6
Using the Active Directory Service Interface

(ADSI) 123
using trace 100

V
Value parameter

Count Property 115
Item property 114

W
WaitInterval property 86
when your MQSeries automation classes for ActiveX

script fails 107
where to find more information about ActiveX xii

related xii
Windows Help xi
Write method 76
WriteBoolean method 76
WriteByte method 76
WriteDecimal2 method 76

162 Using the Component Object Model Interface

 Index

WriteDecimal4 method 77
WriteDouble method 77
WriteDouble4 method 77
WriteFloat method 78
WriteInt2 method 78
WriteInt4 method 78
WriteLong method 78
WriteNullTerminatedString method 79
WriteShort method 79
WriteString method 79
WriteUInt2 method 80
WriteUnsignedByte method 80
WriteUTF method 80

 Index 163

Sending your comments to IBM
MQSeries  for Windows NT  V5R1

Using the Component Object
Model Interface

SC34-5387-01

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries  for Windows NT  V5R1

Using the Component Object
Model Interface

SC34-5387-01
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries  for Windows NT  V5R1

Using the Component Object Model Interface SC34-5387-01

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5387-ð1

	About this book
	Who this book is for
	MQSeries publications
	MQSeries cross-platform publications
	MQSeries platform-specific publications
	MQSeries Level 1 product publications
	Softcopy books

	MQSeries information available on the Internet
	Where to find more information about ActiveX

	Summary of changes
	Changes for this edition

	Chapter 1. Introduction
	MQSeries Automation Classes for ActiveX overview

	Chapter 2. Designing and programming using MQSeries Automation Classes for ActiveX
	Designing MQAX applications that access non-ActiveX applications
	Programming hints and tips
	Using data conversion
	Threading
	Error handling

	Chapter 3. MQSeries Automation Classes for ActiveX reference
	MQSeries Automation Classes for ActiveX interface
	About MQSeries Automation Classes for ActiveX classes
	MQSession Class
	MQQueueManager class
	MQQueue class
	MQMessage class
	MQPutMessageOptions class
	MQGetMessageOptions class
	MQDistributionList class
	MQDistributionListItem class

	Chapter 4. Troubleshooting
	Code level tool
	Using trace
	When your MQSeries Automation Classes for ActiveX script fails
	Reason codes

	Chapter 5. ActiveX interface to the MQAI
	The MQBag class
	MQBag properties
	Error handling

	Chapter 6. Using the Active Directory Service Interfaces (ADSI)
	Prerequisites
	Troubleshooting
	The MQSeries namespace and object hierarchy
	Accessing IBMMQSeries objects using COM or URL addresses
	Accessing IBMMQSeries objects using enumeration
	Configuring IBMMQSeries Active Directory objects
	Object descriptions

	Appendix A. About the MQSeries Automation Classes for ActiveX Starter samples
	What is demonstrated in the samples
	Running the ActiveX Starter samples

	Appendix B. Notices
	Glossary of terms and abbreviations
	Index

