

MQSeries for Windows** IBM

User’s Guide
Version 2.0

 GC33-1822-00

MQSeries for Windows** IBM

User’s Guide
Version 2.0

 GC33-1822-00

 Note

Before using this information and the product it supports, be sure to read the general information in Appendix G,
“Notices” on page 187.

First Edition (September 1996)

This edition applies to IBM MQSeries for Windows, Version 2.0, part number 83H8535, program number 5622-960,
and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM.” If you want to make comments, but
the methods described are not available to you, please address them to IBM United Kingdom Laboratories, Information
Development, Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

 Contents

About this book . ix
Who this book is for . ix
What you need to know to understand this book ix
How to use this book . x

Appearance of text in this book . xi
Terms used in this book . xi

MQSeries for Windows publications . xii
MQSeries publications . xii

Evaluating products . xii
Planning . xii
Administration . xiii
Application programming . xiii
Problem determination . xiv
Special topics . xiv
Softcopy books . xiv
Other MQSeries Version 1 publications . xv

Information about MQSeries on the Internet . xv

Part 1. Introduction . 1

Chapter 1. Introduction to MQSeries for Windows 3
Where to use MQSeries for Windows . 3
The features of MQSeries for Windows . 5
Where to find the information you need . 8
Introduction to messaging . 9

Chapter 2. Planning for MQSeries for Windows 13
Suggested hardware . 13
Required software . 13
Comparing queue managers, clients, and servers 15

Part 2. Installing MQSeries for Windows . 17

Chapter 3. Installing MQSeries for Windows from diskettes 19
Components you can install . 19
Installing the product . 20
Changing your installation . 23

 Copyright IBM Corp. 1994, 1996 iii

Contents

Chapter 4. Installing MQSeries for Windows automatically 27
What is automatic installation? . 27
Preparing for automatic installation . 28
Creating response files . 28
Creating an installation profile . 30
The automatic installation process . 32
Return codes from the installation process . 33

Chapter 5. Verifying your installation and configuration 35
Verifying your installation . 35
Creating your test configuration . 37
Running the sample programs . 37

Part 3. Setting up queue managers . 41

Chapter 6. Working with a queue manager 43
Creating components using the Create and Go utility 44
Creating queue managers and queues using the Create Components utility . . . 44
Monitoring queue managers and queues using the Standard Controls utility . . . 46
Deleting queue managers and queues using the Delete Components utility . . . 51
Other MQSeries for Windows utilities . 52

Chapter 7. Using more than one queue manager 53
Connecting two queue managers . 53
An example of how to use two queue managers 54
Starting a channel . 56
Channel definitions . 56
Using channel groups . 58
Creating channels and channel groups . 59
Monitoring channel groups . 61
Deleting channel groups and channels . 65

Chapter 8. Setting up and verifying two queue managers 67
Setting up the two queue managers on Windows 67
Setting up the two queue managers yourself 71
Verifying the configuration . 73
When one of your queue managers is on a different platform 76
Other tests you may want to try . 77

Part 4. Supporting users of MQSeries for Windows 79

Chapter 9. Administering a queue manager 81
The administration facilities . 81
The Advanced Controls utility . 82

iv User’s Guide

Contents

Chapter 10. Using MQSC commands . 85
How to issue MQSC commands . 85
The MQSC Commands utility . 86
Writing MQSC command files . 89

Chapter 11. Creating an INI file for the Create and Go utility 95
The format of the INI file . 96
Processing the INI file . 99
Defining a queue manager . 100
Defining a channel group . 104
Defining a transport link . 107
Defining controls . 110

Chapter 12. Working with transport links 113
Transport link programs . 113
Creating transport links . 114
Monitoring transport links . 114
Deleting a transport link . 118

Chapter 13. Service tools . 119
The Service Information utility . 119
The Service Trace utility . 119

Chapter 14. Diagnosing problems . 123
Preliminary checks . 123
Problems with queues and queue managers 124
Problems with channels and channel groups 125
Problems with messages . 126

Part 5. Application programming . 129

Chapter 15. Writing applications using the MQI on Windows 131
Using the C programming language . 131
Using the Visual Basic programming language 141

Chapter 16. Application programming restrictions 149
Unsupported features of the MQI calls . 149
Unsupported features of the MQI structures . 150
MQI attributes on Windows . 152

Chapter 17. Sample programs . 155
General design . 156
The design of the Putting Messages sample program 157
The design of the Getting Messages sample program 157
The design of the Browsing Messages sample program 158
Building the 16-bit executable files . 159
Generating 32-bit samples . 160

 Contents v

Contents

Part 6. Appendixes . 161

Appendix A. How MQSeries for Windows differs from the MQSeries family 163

Appendix B. MQSeries control commands 167

Appendix C. MQSC commands supported by MQSeries for Windows 169

Appendix D. Predefined queues and channels 171
Default and system objects . 171
Objects for the sample programs . 172
Objects for verifying the configuration of two workstations 172

Appendix E. Reason codes . 175

Appendix F. Error messages . 179

Appendix G. Notices . 187
Trademarks . 187

Part 7. Glossary and index . 189

Glossary of terms and abbreviations . 191

Index . 197

vi User’s Guide

Figures and tables

 Figures

1. A network of server queue managers and three leaf nodes 4
2. Programs connected to the same queue manager 11
3. The default directory structure . 22
4. The supplied sample response file AMQICATW.RSP 30
5. Queue definitions from the supplied file MARS.TST 54
6. Communication between two queue managers 55
7. The queues and channels that the supplied INI files create 69
8. An extract from VENUS.TST . 89
9. The supplied file MARS.TST . 92

10. The supplied file VENUS.TST . 93

 Tables

1. Suggested hardware configurations for MQSeries for Windows 13
2. Comparison of supported features . 15
3. Disk space requirements for MQSeries components 20
4. How you can issue MQSC commands in MQSeries for Windows 86
5. The format of MQSC command files . 90
6. C header files . 132
7. Elementary data types in C . 138
8. Visual Basic header files . 141
9. Elementary data types in Visual Basic . 145

10. Attributes of queue managers on Windows 152
11. Attributes of queues on Windows . 153
12. Attributes of channels on Windows . 154
13. MQI calls used in the MQSeries for Windows sample programs 156
14. Files for the Putting Messages sample 159
15. Files for the Getting Messages sample 159
16. Files for the Browsing Messages sample 159
17. Control commands and MQSeries for Windows 167
18. MQSC commands . 169
19. Objects defined in AMQSCOMW.TST . 171
20. Object defined in AMQSCOSW.TST . 172
21. Objects defined in VENUS.TST . 172
22. Objects defined in MARS.TST . 173
23. Reason codes returned by MQI calls and MQSC commands 175

 Copyright IBM Corp. 1994, 1996 vii

Figures and tables

viii User’s Guide

About this book

About this book

IBM MQSeries for Windows** Version 2.0 (known in this book as MQSeries for
Windows) provides messaging and queuing services on Microsoft Windows.

This book tells you how to install, set up, administer, and operate MQSeries for
Windows. However, this book is just to get you started, so for more advanced topics
(such as detailed guidance on how to write an MQSeries application) it refers you to
other MQSeries publications.

This book does not contain descriptions of the commands you can use when you are
running or administering MQSeries for Windows because descriptions of those
commands are available in the online MQSeries for Windows Command Reference that
you can install as part of the product.

This book introduces you to the utilities provided with MQSeries for Windows. For
detailed information on how to use them, see the online help.

Who this book is for
This book is for:

� Users of MQSeries applications who want to install and configure MQSeries for
Windows.

� System administrators and operators who want to add an MQSeries for Windows
queue manager to an existing MQSeries network.

� Application programmers who want to modify an existing MQSeries application to
run on Windows. This book explains those features of the IBM Message Queue
Interface (MQI) that are not supported on Windows.

� Experienced MQSeries application programmers who want to write a new
application to run under MQSeries for Windows.

What you need to know to understand this book
The knowledge you need to understand this book depends on what you want to use
MQSeries for Windows for:

� If you want to use MQSeries for Windows on your own workstation to run
MQSeries applications, you need basic skills in the Microsoft Windows operating
system to understand the descriptions and procedures in this book. Also, it is
helpful to have a basic understanding of TCP/IP and the local area network you will
use. You do not need experience of other MQSeries products.

� If you want to support other users of MQSeries for Windows, you need some
experience of system administration, in addition to the skills required by users.

 Copyright IBM Corp. 1994, 1996 ix

About this book

� If you want to write applications to run under MQSeries for Windows, you need
experience of designing and writing MQSeries applications. This book gives you
an introduction to writing MQSeries applications, and it describes how the
programming features of MQSeries for Windows differ from those of other
members of the MQSeries family, but for more detailed information you must read
the MQSeries Application Programming Guide and the MQSeries Application
Programming Reference.

How to use this book
This book is organized in a task-oriented way, so you should use the part of the book
appropriate to the task you are performing. The installation and set-up tasks are
described before the administration and programming tasks. The parts of the book are:

Part 1, Introduction
This part introduces MQSeries for Windows and the concepts of messaging
and queuing. It tells you what you need to know and what you need to do
before you start using MQSeries for Windows.

Part 2, Installing MQSeries for Windows
This part tells you how to install MQSeries for Windows on your
workstation, and explains how to install MQSeries for Windows on another
workstation remotely (that is, by issuing commands on your own
workstation). It also tells you how to verify that the system you have
created is working correctly.

Part 3, Setting up queue managers
This part tells you how to create MQSeries for Windows components and
how to make one queue manager communicate with another.

Part 4, Supporting users of MQSeries for Windows
This part tells you how to support other users who are running applications
on MQSeries for Windows. It tells you how to monitor and change the
queue managers they are running, and how to solve problems they may
have.

Part 5, Application programming
This part describes the application programming support that MQSeries for
Windows provides, and lists the MQI features that MQSeries for Windows
does not support. This book does not tell you how to write an MQSeries
application; for that information, it refers you to the MQSeries Application
Programming Guide and to the MQSeries Application Programming
Reference.

This part also describes the sample programs that are supplied with
MQSeries for Windows.

x User’s Guide

About this book

Part 6, Appendixes
This part provides reference information. It describes the differences
between MQSeries for Windows and other MQSeries products, and it
describes the reason codes and error messages returned by MQSeries for
Windows.

Part 7, Glossary and index
The glossary contains descriptions of the new terms introduced in this
book, and those terms used with other than their everyday meanings.

Appearance of text in this book
This book uses the following type styles:

Example Used for

channel In text, the first occurrence of a term that is defined in the
“Glossary of terms and abbreviations”

qmgrname In the syntax of a command, this is a placeholder for
information you must provide

Open The name of a command, option, or push button

Name=Sample_QM An example of text you see on the screen or in a program
listing

you must not Emphasizing a word or phrase

Terms used in this book
All new terms used in this book are defined in the “Glossary of terms and
abbreviations.” These terms are shown like this when they first occur in this book.

In the body of this book, Windows refers to Microsoft Windows Version 3.1 or later,
including Win-OS/2.

 About this book xi

MQSeries publications

MQSeries for Windows publications

The following information is available for MQSeries for Windows:

� MQSeries for Windows Version 2.0 User’s Guide, GC33-1822 (available as this
printed book and as an online book)

� MQSeries for Windows Version 2.0 Command Reference (available as an
online book only)

� An online Quick Tour that explains the MQSeries for Windows program group

� Online help for the utilities provided by MQSeries for Windows

To open the online books, click on their icons in the MQSeries for Windows
program group.

For information that became available after the books and the help were completed:

� Read the READ.ME file by clicking on its icon in the MQSeries for Windows
program group

� See the IBM MQSeries site on the Internet (see “Information about MQSeries
on the Internet” on page xv)

 MQSeries publications

 Evaluating products
MQSeries Brochure, G511-1908

MQSeries: An Introduction to Messaging and Queuing, GC33-0805

MQSeries Message Queue Interface Technical Reference, SC33-0850

 Planning
MQSeries Planning Guide, GC33-1349

MQSeries for MVS/ESA Version 1 Release 1.4 Licensed Program Specifications,
GC33-1350

MQSeries for OS/400 Version 3 Release 1 (and later) Licensed Program
Specifications, GC33-1360 (softcopy only)

xii User’s Guide

MQSeries publications

 Administration
MQSeries Clients, GC33-1632

MQSeries Command Reference, SC33-1369

MQSeries Programmable System Management, SC33-1482

MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for HP-UX Version 2.2.1 System Management Guide, GC33-1633

MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris Version 2.2 System Management Guide, GC33-1800

MQSeries for Windows NT Version 2.0 System Management Guide, SC33-1643

MQSeries for MVS/ESA Version 1 Release 1.4 Program Directory

MQSeries for MVS/ESA Version 1 Release 1.4 System Management Guide,
SC33-0806

MQSeries for OS/400 Version 3 Release 2 Administration Guide, GC33-1361

MQSeries for OS/400 Version 3 Release 6 Administration Guide, SC33-1361

MQSeries for OS/400 Version 3 Release 6 Programmable Command Formats,
SC33-1228

MQSeries Three Tier Administration Guide, SC33-1451

MQSeries Three Tier Reference Summary, SX33-6098

 Application programming
MQSeries Application Programming Guide, SC33-0807

MQSeries Application Programming Reference, SC33-1673

MQSeries Application Programming Reference Summary, SX33-6095

MQSeries for OS/400 Version 3 Release 1 (and later) Application Programming
Reference (RPG), SC33-1362

MQSeries for OS/400 Version 3 Release 6 Application Programming Reference (C
and COBOL), SC33-1363

MQSeries Three Tier Application Design, SC33-1636

MQSeries Three Tier Application Programming, SC33-1452

MQSeries Three Tier Reference Summary, SX33-6098

 About this book xiii

MQSeries publications

 Problem determination
MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for HP-UX Version 2.2.1 System Management Guide, GC33-1633

MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris Version 2.2 System Management Guide, GC33-1800

MQSeries for Windows NT Version 2.0 System Management Guide, SC33-1643

MQSeries for MVS/ESA Version 1 Release 1.4 Messages and Codes, GC33-0819

MQSeries for MVS/ESA Version 1 Release 1.4 Problem Determination Guide,
GC33-0808

MQSeries for OS/400 Version 3 Release 2 Administration Guide, GC33-1361

MQSeries for OS/400 Version 3 Release 6 Administration Guide, SC33-1361

MQSeries Three Tier Administration Guide, SC33-1451

 Special topics
MQSeries Distributed Queuing Guide, SC33-1139

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats. You
can view the softcopy books in IBM BookManager format using the following IBM
licensed programs:

 BookManager READ/2

 BookManager READ/6000

 BookManager READ/DOS

 BookManager READ/MVS

 BookManager READ/VM

BookManager READ for Windows

Other softcopy formats are available, depending on the platform being used.

xiv User’s Guide

MQSeries publications

Other MQSeries Version 1 publications
For information about other MQSeries platforms, see the following publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and Codes,
SC33-1754

MQSeries for Digital VMS VAX User’s Guide, SC33-1144

MQSeries for SCO UNIX User’s Guide, SC33-1378

MQSeries for Tandem NonStop Kernel User’s Guide, SC33-1755

MQSeries for UnixWare User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 3.1 Licensed Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 3.1 User’s Guide, SC33-1142

Information about MQSeries on the Internet

The MQSeries home page

The URL of the MQSeries product family home page is:

 http://www.hursley.ibm.com/mqseries/

 About this book xv

MQSeries publications

xvi User’s Guide

 Part 1. Introduction

Chapter 1. Introduction to MQSeries for Windows 3

Chapter 2. Planning for MQSeries for Windows 13

 Copyright IBM Corp. 1994, 1996 1

2 User’s Guide

Introduction

Chapter 1. Introduction to MQSeries for Windows

MQSeries for Windows is a lightweight messaging product that provides MQSeries
functions on workstations that run Microsoft Windows** 3.1 or Windows 95. It uses
significantly fewer resources than other MQSeries products, so it is a good choice to
use as a single-user queue manager running on a small or medium-sized personal
computer.

MQSeries for Windows is particularly well suited to users of messaging applications
who want to use a standard configuration. MQSeries for Windows provides a Create
and Go utility that automatically creates and starts the messaging components the
users need, and it can automatically start components when the users start their
workstations. These features reduce the need for users of applications to be aware of
the messaging product and allow them to concentrate on the applications they want to
use.

This chapter contains the following sections:

“Where to use MQSeries for Windows”
This explains the intended use of MQSeries for Windows.

“The features of MQSeries for Windows” on page 5
This introduces the features provided by MQSeries for Windows.

“Where to find the information you need” on page 8
This explains where to find the information you need to use MQSeries for
Windows.

“Introduction to messaging” on page 9
For new users of MQSeries, this section provides an introduction to the
concepts of messaging and queuing.

Where to use MQSeries for Windows
MQSeries for Windows is designed for use as a leaf node in a network of queue
managers; that is, it is intended for use by a single user on a workstation that is
connected to an MQSeries network of computers (see Figure 1 on page 4).

There are important differences between a leaf-node queue manager, an MQSeries
client, and a server-node queue manager:

� A leaf-node queue manager is a lightweight product that connects to a network of
one or more larger servers. It manages its own queues, so an application that
runs on a leaf-node queue manager can continue to work, even if there is a failure
in the messaging network.

� An MQSeries client provides no queue manager functions and it has no queues. It
is dependent on an MQSeries server (of the type that supports MQSeries clients).
The server owns the queues that the client uses, so if the communication link
between the client and the server is broken, the client cannot use those queues.

 Copyright IBM Corp. 1994, 1996 3

Introduction

Figure 1. A network of server queue managers and three leaf nodes. The leaf nodes run on
Windows; the server nodes run on any other MQSeries platform.

� A server-node queue manager is a product that manages the queues and
communication channels required to support the transfer of messages between
queue managers. The computer on which the server-node queue manager runs is
large enough to manage the volume of messages such a server might be required
to process, and it may also support MQSeries clients.

MQSeries for Windows typically runs on workstations that are not powerful enough to
act as a server. Like a server though, MQSeries for Windows manages its own queues
and the channels to communicate with other queue managers. However, because it is
intended to be a leaf node, MQSeries for Windows does not provide all the server
functions available on other MQSeries queue managers; these include media recovery,
two-phase commit, instrumentation events, and MQSeries client support. For a full list
of the MQSeries features that MQSeries for Windows does not support, see
Appendix A, “How MQSeries for Windows differs from the MQSeries family” on
page 163.

4 User’s Guide

Introduction

MQSeries for Windows is designed to run in the Windows environment, so it provides
Windows programs that help to make the queue manager easier to use. These utility
programs are not provided by other MQSeries products.

The features of MQSeries for Windows
MQSeries for Windows provides existing MQSeries features, but on the Windows
operating system:

� A queue manager that runs on Windows

� The MQSeries Message Queue Interface (MQI) for application development on
Windows

� Application development support for the C and Visual Basic programming
languages

� Communication between queue managers using TCP/IP

� Standard MQSeries message types and formats

� Persistent messages (which survive restarts of the workstation) and non-persistent
messages

� Standard MQSC commands to create, alter, or delete MQSeries objects (but
MQSeries for Windows does not support all the commands)

� Enablement for automatic installation using Configuration, Installation, and
Distribution (CID)

� Report generation, including confirm on arrival (COA), confirm on delivery (COD),
and message expiry

In addition, MQSeries for Windows provides these features:

� To help users of applications to get started quickly and easily the first time they
use the product, MQSeries for Windows provides a Create and Go utility that
automatically creates and starts the messaging components the users need.

� To help users of applications to get started when they start their workstations,
MQSeries for Windows can automatically start its components.

� To help you to set up and work with your queue managers, it provides utilities you
can access from the MQSeries for Windows program group in the Windows
Program Manager. They are Windows programs and have extensive online help.
For an introduction to these utilities, see “The MQSeries for Windows utilities” on
page 6.

� To make it easier to work with the message channels that you must use to send
messages between queue managers, MQSeries for Windows provides channel
groups. A channel group is a collection of channels that you start and stop at the
same time.

� To make it easier to work with dial-up devices (such as modems) when you
connect two queue managers, it provides transport links, which can help you to
control the duration (and hence the cost) of such a connection.

 Chapter 1. Introduction to MQSeries for Windows 5

Introduction

The MQSeries for Windows utilities
This section introduces the utilities, and shows the icons you must select in the
MQSeries for Windows program group to start them.

Verify Install utility
Use this utility to verify that you have installed MQSeries for Windows
correctly.

For more information, see “Verifying your installation” on page 35.

Create and Go utility
Use this utility to create and start MQSeries components automatically,
using definitions from an initialization file.

For more information, see “Creating components using the Create and Go
utility” on page 44.

Create Components utility
Use this utility to create any of the following components:

� A queue manager
 � A queue
 � A channel
� A channel group
� A transport link

For information on how to use this utility, see “Creating a queue manager”
on page 44.

Standard Controls utility
Use this utility to start a queue manager, a channel group, or a transport
link, and to monitor their status.

This utility is provided for end users who may, for example, be required to
start a queue manager and report diagnostic information about the status
of their local MQSeries installation to a central administrator.

For more information, see “Monitoring queue managers and queues using
the Standard Controls utility” on page 46.

6 User’s Guide

Introduction

Delete Components utility
Use this utility to delete any of the following components:

� A queue manager
 � A queue
 � A channel
� A channel group
� A transport link

For information on how to use this utility, see “Deleting queue managers
and queues using the Delete Components utility” on page 51.

Advanced Controls utility
Use this utility to start a queue manager, a channel group, or a transport
link, and to monitor their status.

This utility is intended for MQSeries administrators who support other
users. Like the Standard Controls utility, it allows them to view the status
of their MQSeries installation, but it also allows them to change it.

For more information, see “The Advanced Controls utility” on page 82.

MQSC Commands utility
Use this utility to issue MQSC commands either individually or from a
command file. When you issue commands individually, you can recall and
edit them as well.

For more information, see Chapter 10, “Using MQSC commands” on
page 85.

Service Information utility
Use this utility to display service information about an MQSeries for
Windows installation.

For more information, see “The Service Information utility” on page 119.

Service Trace utility
Use this utility to trace the operation of an MQSeries for Windows queue
manager.

For more information, see “The Service Trace utility” on page 119.

 Chapter 1. Introduction to MQSeries for Windows 7

Introduction

Where to find the information you need
The information you need when you use MQSeries for Windows depends on what you
want to use the product for and how much MQSeries experience you have:

If you want to run an MQSeries application
To run an MQSeries application without having to set up MQSeries for
Windows, see:

� “Creating components using the Create and Go utility” on page 44

If you want information on installing MQSeries for Windows
To learn more about how to install MQSeries for Windows, see:

� Part 2, “Installing MQSeries for Windows” on page 17

If you are new to MQSeries
For an introduction to MQSeries for Windows, see:

� Part 1, “Introduction” on page 1
� Part 2, “Installing MQSeries for Windows” on page 17
� Part 3, “Setting up queue managers” on page 41
� The online Quick Tour

If you have used MQSeries on other platforms
To understand how MQSeries for Windows differs, see:

� Part 1, “Introduction” on page 1
� Part 3, “Setting up queue managers” on page 41
� Part 4, “Supporting users of MQSeries for Windows” on page 79
� The differences described in Part 6, “Appendixes” on page 161
� The online Quick Tour
� The online MQSeries for Windows Command Reference

If you want to support other users of MQSeries for Windows
To learn about the facilities MQSeries for Windows provides to help you,
see:

� Part 1, “Introduction” on page 1
� Part 3, “Setting up queue managers” on page 41
� Part 4, “Supporting users of MQSeries for Windows” on page 79
� Part 6, “Appendixes” on page 161

If you are new to writing MQSeries applications
To learn how to write MQSeries applications, see:

� The MQSeries Application Programming Guide
� The MQSeries Application Programming Reference
� Part 5, “Application programming” on page 129
� The differences described in Part 6, “Appendixes” on page 161

8 User’s Guide

Messaging

If you have written MQSeries applications for other platforms
To learn how to migrate an existing MQSeries application to Windows, see:

� The programming restrictions described in Part 5, “Application
programming” on page 129

� The differences described in Part 6, “Appendixes” on page 161

Introduction to messaging
The IBM MQSeries range of products provides application programming services that
enable application programs to communicate with each other using messages and
queues. This form of communication is referred to as commercial messaging. It
provides assured, once-only delivery of messages. Using MQSeries means that you
can separate application programs, so that the program sending a message can
continue processing without having to wait for a reply from the receiver. If the receiver,
or the communication channel to it, is temporarily unavailable, the message can be
forwarded at a later time. MQSeries also provides mechanisms for providing
acknowledgements of messages received.

The programs that comprise an MQSeries application can be running on different
computers, on different operating systems, and at different locations. The applications
are written using a common programming interface known as the Message Queue
Interface (MQI), so that applications developed on one platform can be transferred to
another.

When two applications communicate using messages and queues, one application puts
a message on a queue, and the other application gets that message from the queue.

In MQSeries, queues are managed by a component called a queue manager. The
queue manager provides messaging services for the applications and processes the
MQI calls they issue. The queue manager ensures that messages are put on the
correct queue or that they are routed to another queue manager.

Before applications can send any messages, you must create a queue manager and
some queues. MQSeries for Windows provides some utilities to help you do this.

 Chapter 1. Introduction to MQSeries for Windows 9

Messaging

How applications identify themselves to queue managers
An application that issues MQI calls is referred to as an MQSeries application. When
this book refers to an application, it means an MQSeries application.

Any MQSeries application must make a successful connection to a queue manager
before it can make any other MQI calls. When the application successfully makes the
connection, the queue manager returns a connection handle. This is an identifier that
the application must specify each time it issues an MQI call. An application can
connect to only one queue manager at a time (known as its local queue manager), so
only one connection handle is valid (for that particular application) at a time. When the
application has connected to a queue manager, all the MQI calls it issues are
processed by that queue manager until it issues another MQI call to disconnect from
that queue manager.

Opening a queue
Before your application can use a queue for messaging, it must open the queue. If you
are putting a message on a queue, your application must open the queue for putting.
Similarly, if you are getting a message from a queue, your application must open the
queue for getting. You can specify that a queue is opened for both getting and putting,
if required. The queue manager returns an object handle if the open request is
successful. The application specifies this handle, together with the connection handle,
when it issues a put or a get call. This ensures that the request is carried out on the
correct queue.

Putting and getting messages
When the open request is confirmed, your application can put a message on the queue.
To do this, it uses another MQI call on which you have to specify a number of
parameters and data structures. These define all the information about the message
you are putting, including the message type, its destination, which options are set, and
so on. The message data (that is, the application-specific contents of the message
your application is sending) is defined in a buffer, which you specify in the MQI call.
When the queue manager processes the call, it adds a message descriptor, which
contains information that is needed to ensure the message can be delivered properly.
The message descriptor is in a format defined by MQSeries; the message data is
defined by your application (this is what you put into the message data buffer in your
application code).

The program that gets the messages from the queue must first open the queue for
getting messages. It must then issue another MQI call to get the message from the
queue. On this call, you have to specify which message you want to get.

Figure 2 on page 11 shows how messaging works in the simple case where the
program putting the message and the program getting the message are both on the
same computer and connected to the same queue manager.

10 User’s Guide

Messaging

Figure 2. Programs connected to the same queue manager. Program A puts messages on the
queue; program B gets messages from the queue. In this case, the programs and the queue
manager are running on the same workstation.

Messaging using more than one queue manager
The arrangement shown in Figure 2 is not typical for a real messaging application
because both programs are running on the same computer, and connected to the same
queue manager. In a commercial application, the putting and getting programs would
probably be on different computers, and so connected to different queue managers. In
this situation, you also need to create message channels to carry MQSeries messages
between the queue managers. This situation is described in Chapter 7, “Using more
than one queue manager” on page 53.

 Chapter 1. Introduction to MQSeries for Windows 11

Messaging

12 User’s Guide

Planning

Chapter 2. Planning for MQSeries for Windows

This chapter describes:

� The hardware and software you need to run MQSeries for Windows

� The differences between an MQSeries for Windows queue manager, an MQSeries
client, and an MQSeries server

 Suggested hardware
MQSeries for Windows is a 16-bit product, so it runs on computers that run Windows
3.1, and it runs in 16-bit compatibility mode on Windows 95. Table 1 suggests two
configurations: one for running applications and the other for developing applications.

Note: These recommendations are for guidance only. They do not take into account
the effects of any other software that may be running on the system at the same time.

Table 1. Suggested hardware configurations for MQSeries for Windows

Configuration Processor RAM Hard disk

For running
applications

386 16 MHz 4–8 MB 3.9 MB available

For developing
applications

486 66 MHz or
better.

8–16 MB 5 MB available

Note: The specification for developing applications does not include hardware requirements
for other development tools (for example, compilers).

 Required software
This section describes the software you require before you can use MQSeries for
Windows. This depends on whether you want to run MQSeries applications on
MQSeries for Windows, or develop your own applications for it.

For running MQSeries applications
For running applications on MQSeries for Windows, you need the following software (or
later versions):

� MS-DOS or PC DOS Version 3.3

� Microsoft Windows 3.1,
or Windows 95,
or Windows for Workgroups 3.11,
or Win-OS/2 on OS/2 Version 3.0 (Warp)

MQSeries for Windows runs in 16-bit compatibility mode on Windows 95.

� TCP/IP for the operating system you are using:

– For Microsoft Windows 3.1, you need IBM TCP/IP for DOS V2.1.1 with CSD
2.1.1.4.

 Copyright IBM Corp. 1994, 1996 13

Planning

– For Microsoft Windows 95, use the version of TCP/IP supplied with Windows
95.

– For Microsoft Windows for Workgroups 3.11, you need IBM TCP/IP for DOS
V2.1.1 with CSD 2.1.1.4.

– For Win-OS/2, you need IBM TCP/IP for OS/2 Version 2.

For developing MQSeries applications
To develop and test MQSeries applications that run on Windows, in addition to the
software listed in “For running MQSeries applications” on page 13 , you need only
the compiler for the programming language you will use:

For 16-bit C
Microsoft Visual C++ Version 1.5

For 32-bit C
Microsoft Visual C++ Version 2.0

For 16-bit BASIC
Microsoft Visual Basic Version 3.0
or Microsoft Visual Basic Version 4.0

For 32-bit BASIC
Microsoft Visual Basic Version 4.0

MQSeries for Windows runs in 16-bit compatibility mode on Windows 95, but you can
write 32-bit MQSeries for Windows applications.

14 User’s Guide

Comparison with clients

Comparing queue managers, clients, and servers
If you already use MQSeries clients, see Table 2 for a summary of the differences
between an MQSeries for Windows queue manager, an MQSeries client, and an
MQSeries server.

Table 2. Comparison of supported features

Feature MQSeries for
Windows

MQSeries client
on Windows

MQSeries for OS/2

Independent
operation

Yes No Yes

Queue manager Yes No Yes

Queues Yes No Yes

Message channels Yes No Yes

Run MQSC
commands

Utility or command
file

No Command line or
command file

Persistence of
MQSeries objects

Yes All objects are on
the server

Yes

Logging and media
recovery

No All objects are on
the server

Yes

Automatic
installation

Yes Yes Yes

Automatic start up Yes No No

Supports MQSeries
clients

No Not applicable Yes

 Chapter 2. Planning for MQSeries for Windows 15

Comparison with clients

16 User’s Guide

Part 2. Installing MQSeries for Windows

Chapter 3. Installing MQSeries for Windows from diskettes 19

Chapter 4. Installing MQSeries for Windows automatically 27

Chapter 5. Verifying your installation and configuration 35

 Copyright IBM Corp. 1994, 1996 17

18 User’s Guide

Installing the product

Chapter 3. Installing MQSeries for Windows from diskettes

This chapter tells you how to install MQSeries for Windows components on a single
workstation using the supplied diskettes. It contains the following sections:

� “Components you can install”
� “Installing the product” on page 20
� “Changing your installation” on page 23

If you want to install MQSeries for Windows automatically from a LAN, see Chapter 4,
“Installing MQSeries for Windows automatically” on page 27.

Components you can install
When you install MQSeries for Windows, you can select which components you install.
The components are:

Base component
This contains the MQSeries for Windows runtime code, which includes:

� The queue manager

� The channel support

� The administration utilities:

– Verify Install utility
– Create and Go utility
– Create Components utility
– Standard Controls utility
– Delete Components utility
– Advanced Controls utility
– MQSC Commands utility
– Service Trace utility
– Service Information utility

� The MQSC command file AMQSCOMW.TST, which creates the default
MQSeries objects

� The READ.ME file, which contains information that was not available
when this book was published

You must always install the Base component.

Online information
This contains:

� The online MQSeries for Windows Command Reference
� An online version of the MQSeries for Windows User’s Guide
� The Quick Tour

You should always install the Online information component.

 Copyright IBM Corp. 1994, 1996 19

Installing the product

Toolkit and samples
This provides the header files, libraries, and sample MQSC command files to
enable you to compile an MQSeries for Windows application. It also provides
a set of sample applications (in both source and executable forms) written in
the C language.

If you want to use MQSeries for Windows to run applications, you should
install at least the Base component and the Online Information component. If
you want to write applications, you need the Toolkit and Samples component
as well.

Note: This book describes procedures for testing that you have set up your
queue managers correctly. These procedures use the supplied sample
programs, so to follow them you must install the Toolkit and Samples
component.

If you are in any doubt about which components to install, install them all.

Disk space requirements
Table 3 shows the approximate disk space requirements for each component of
MQSeries for Windows.

Table 3. Disk space requirements for MQSeries components

Component Disk space

Base component 3.9 MB

Online information 600 KB

Toolkit and samples 410 KB

Installing the product
To ensure that MQSeries for Windows can find the required file paths, the file
AUTOEXEC.BAT must be updated on each workstation. When you use the Installation
Utility, you can specify whether this is done automatically, or whether you do it yourself
manually. If you specify automatic update, a copy of the existing AUTOEXEC.BAT is
taken as a backup. The backups are named AUTOEXEC.nnn, where nnn is the next
sequential number for backups.

Note: After installation, check the length of the PATH statement in AUTOEXEC.BAT
using a text editor. DOS allows a maximum of 127 characters, if this limit is reached,
you must consider reconfiguring your start-up procedures to accommodate this.

MQSeries for Windows is supplied on diskettes. However, it is enabled for
Configuration, Installation, and Distribution (CID), so you can put the installation files on
a LAN server for easier access. For more information on this, see Chapter 4,
“Installing MQSeries for Windows automatically” on page 27.

20 User’s Guide

Installing the product

Installing on Windows 3.1 or Win-OS/2
To install the product on Windows 3.1 or Win-OS/2:

1. Insert the first MQSeries for Windows diskette in your diskette drive.

2. In Program Manager, select Run... from the File menu.

3. In the resulting window, type:

 A:\INSTALL

and press Enter. If you are using a different drive (for example, drive B) for your
diskette drive, change this command accordingly.

4. When the MQSeries for Windows window appears, read the text in the Installation
window, then select Continue .

5. Proceed to “Completing the installation.”

Installing on Windows 95
To install the product on Windows 95:

1. From the Windows 95 desktop, select MyComputer .

2. Open the Control Panel.

3. Select Add/Remove Program .

 4. Select Install .

5. Insert the first MQSeries for Windows diskette in your diskette drive.

 6. Select Next .

7. Make sure that the INSTALL program is highlighted.

 8. Select Finish .

9. When the MQSeries for Windows window appears, read the text in the Installation
window, then select Continue .

10. Proceed to “Completing the installation.”

Completing the installation
When the MQSeries for Windows window appears, proceed as follows:

1. In the Install window, select the option that updates the CONFIG.SYS and
AUTOEXEC.BAT files, then select OK.

2. In the Install - Directories window, select the components you want to install.

To see a description of a product component, select the Descriptions... push
button.

If you are in any doubt about which components to select, install all the
components. To do this, choose Select All .

If you do not want to install the product on the default drives or paths, you can alter
the drive and directory paths in this window.

 Chapter 3. Installing MQSeries for Windows from diskettes 21

Installing the product

If you are not sure how much disk space you have on each drive on your
workstation, select the Disk space... push button. The Disk Space window shows
you the available space on each drive.

When you are ready to proceed, select the Install push button. An indicator shows
the progress of the installation process. The process takes only a few minutes.

The number of files that are transferred depends on which components you select.
The source and target file names are continually updated.

3. Follow the on-screen instructions, changing diskettes when prompted.

When the installation is complete, a confirmation message is displayed and Program
Manager displays the MQSeries for Windows program group. You should then use the
information in Chapter 5, “Verifying your installation and configuration” on page 35 to
test that the product has installed correctly, to create a test queue manager, and to run
the sample programs to test that queue manager.

Directories after installation
Figure 3 shows the directory structure after you have installed all the components of
MQSeries for Windows. If you do not install all the components, the directories
installed will be a subset of those shown.

 MQW ───┐
 │
 ├─── BIN
 │
 ├─── DATA
 │
 ├─── HELP
 │
 ├─── INCLUDE
 │
 ├─── LIB
 │
 ├─── QMGRS
 │
 └─── SAMPLES

Figure 3. The default directory structure

22 User’s Guide

Installing the product

In Figure 3 on page 22, the directories are:

Directory Function

BIN Executable files for the Base component.

DATA Data files for the Base component, including the log files.

HELP Online information.

INCLUDE Include files for the Toolkit and samples.

LIB Product libraries for the Toolkit and samples.

QMGRS This directory will contain a subdirectory for each queue manager
you subsequently create.

SAMPLES The source code and executable files for the sample programs.

Moving the product to another directory
Although you can move the product files to a new directory after installation, you are
recommended not to do this. The Installation Utility writes to the system initialization
(WIN.INI) file and to the AUTOEXEC.BAT file. These files contain configuration
parameters that include the location of the MQSeries product. To ensure the validity of
these files, use the Installation Utility to delete the installed components, then reinstall
the product at the new location. It is not sufficient simply to copy the files.

Changing your installation

After installing the product, you can use the Installation Utility to change your
installation. Its icon is located in the MQSeries for Windows program group. The
Installation Utility allows you to:

� Add any components of MQSeries for Windows you did not install initially
� Delete installed components that you no longer need
� Apply maintenance upgrades

To do any of these, you must have access to the MQSeries for Windows catalog file
(named AMQICATW.ICF) that the installation utility uses to locate the installation or
maintenance files. You do not need to understand the contents of the catalog file, but
you do need to select the correct file.

Selecting a catalog
Many IBM products use the same mechanism for installation, so each one has its own
catalog file. Therefore before you go any further, you must ensure that the current
catalog (this is the last one you used) is the one you want to work with.

To select a catalog, first start the Installation Utility by double-clicking on its icon in the
MQSeries for Windows program group.

 Chapter 3. Installing MQSeries for Windows from diskettes 23

Installing the product

From the Installation Utility window:

1. If your catalog and its associated files are on a diskette, insert the first diskette in
the drive.

2. Select Open catalog from the File menu.

3. In the Open Drive Catalog window, select the required drive and type the name of
the catalog you need. The name of the catalog for MQSeries for Windows is
AMQICATW.ICF.

4. When the name of the correct catalog file is in the Filename field, click on Open to
open the catalog file. The name of the new catalog is displayed in the Installation
Utility window.

This makes the file you selected in the last step the current catalog. Any further
actions, such as install, update, or delete, are performed using the files in this catalog.

Adding components after installation
If you have not installed all the components you need, you can add additional
components later by using the Installation Utility.

To do this:

1. Double-click on the Installation Utility icon.
2. Click on the Action choice on the menu bar.
3. Click on Install... , and you see the Install window.

In the Install window, select the components you want to add.

 Deleting components
To delete the product, or specific components:

1. Ensure that you have selected the correct catalog.

2. Double-click on the Installation Utility icon.

3. Select Action from the menu bar.

4. Select Delete... , and you see the Delete window.

5. Select the component or components you want to delete.

6. If you proceed with the delete, the Delete progress window is displayed.

7. When the product files have been deleted, exit from Windows and open a DOS
window.

8. From the root directory of the boot drive, type:

 EPFIDEFI

This runs the batch file EPFIDEFI.BAT to complete the delete process. This file is
automatically put into the root directory of the boot drive when you begin the delete
process, so do not expect to see it there normally.

24 User’s Guide

Installing the product

9. If you are using Win-OS/2, delete the QMGRS directory. To do this, you could use
the Win-OS/2 File Manager.

Applying maintenance updates
Maintenance updates are usually supplied on diskettes. You may choose to copy the
update disks to a LAN server and perform the updates from there. Whatever the
source of the updates, you must make the catalog associated with the updates the
current catalog; see “Selecting a catalog” on page 23.

Read the READ.ME file supplied with the maintenance update to find out whether the
update applies to your system and for instructions on how to apply it.

Reinstalling the product
You can reinstall the product if, for example, you are unsure of the status of an existing
installation. To do this:

1. Insert the first MQSeries for Windows diskette in your diskette drive.

2. In Program Manager, select Run... from the File menu.

3. In the displayed window, type:

 A:\INSTALL

and press Enter.

If you are using a different drive (for example, drive B) for your diskette drive,
change this command accordingly.

4. When the MQSeries for Windows window appears, select Continue .

5. Select Delete the installed components and re-install and click on the Continue
push button.

6. The Delete window is displayed; see “Deleting components” on page 24 for
information on how to proceed.

After the delete operation, the system continues automatically to the install operation.

 Chapter 3. Installing MQSeries for Windows from diskettes 25

Installing the product

26 User’s Guide

Automatic installation

Chapter 4. Installing MQSeries for Windows automatically

This chapter tells you how to install MQSeries for Windows components with little or no
user intervention. You will find this information especially useful if you have to install
MQSeries for Windows on a large number of workstations. You can do both the initial
installation and the installation of any maintenance updates in this way.

This chapter contains these sections:

� “What is automatic installation?”
� “Preparing for automatic installation” on page 28
� “Creating response files” on page 28
� “Creating an installation profile” on page 30
� “The automatic installation process” on page 32
� “Return codes from the installation process” on page 33

What is automatic installation?
MQSeries for Windows is enabled for IBM Configuration, Installation, and Distribution,
that is, it is CID-enabled. This means you can install MQSeries for Windows over a
local area network (LAN) with little or no user intervention.

For automatic installation, you need a response file. This is an ASCII text file that
contains a set of parameters (the responses) your installation requires. A response file
provides the same information that you would have to specify if you were carrying out a
normal (attended) installation.

You specify the parameters as keywords in the response file. These keywords
determine how the installation will proceed. For example, you can use a response file
to specify which components you are going to install on each workstation.

For a completely automatic installation, with no user intervention, you must use a
software distribution manager, for example, IBM’s NetView Distribution Manager. You
can use NetView Distribution Manager with any CID-enabled product. With this type of
installation you must use an installation profile file. This contains the INSTALL
command parameters and it refers to the relevant response files. Profile files are
described in “Creating an installation profile” on page 30 and the automatic installation
process is described in “The automatic installation process” on page 32.

 Copyright IBM Corp. 1994, 1996 27

Response files

Preparing for automatic installation
Before you can perform an automatic installation, you must copy the contents of the
MQSeries for Windows installation diskettes to a local or LAN drive. For example, use
the following command for each diskette:

XCOPY A:\\.\ C:\IBMNVDM2\SHARE_A\IMG\MQW

The directory to which you copy the files must be accessible to all the workstations on
which you want to install MQSeries for Windows.

Creating response files
An installation response file is an ASCII text file containing the options that control the
installation of an MQSeries for Windows system.

In an installation response file you can specify:

� Whether CONFIG.SYS and AUTOEXEC.BAT should be updated automatically
� The names of the components to be installed
� Whether existing files should be overwritten
� The path for installation or maintenance
� Whether only backup versions of the product should be deleted

Typically, you have only one response file. However, if you need to install or update
the product on a workstation with different options, you can use two files:

� A specific response file that contains options specific to a particular workstation
� A general response file that contains options common to all workstations

For example, you might use a general and a specific response file to install a particular
component only on some workstations. See “Creating an installation profile” on
page 30 for information about the INSTALL command parameters used to define
response files.

Structure of a response file
There are two types of line in a response file:

Comment lines
Comment lines are either blank, start with an asterisk (*), or start with a
semicolon (;).

Response lines
Response lines determine the options and configurations to install on the
target system. They have syntax of the form:

keyword = value

Keyword-value pairs can be in any order, but there can be only one pair on
each line. You can enter keywords in uppercase or lowercase letters; you
cannot include spaces within keywords.

The maximum line length in a response file is 255 characters.

28 User’s Guide

Response files

Keywords for response files
The following keywords are allowed in MQSeries for Windows response files:

CFGUPDATE
Specifies whether CONFIG.SYS and AUTOEXEC.BAT are updated automatically.
Valid values for this keyword are:

AUTO Automatically updates CONFIG.SYS and AUTOEXEC.BAT
MANUAL Does not update CONFIG.SYS and AUTOEXEC.BAT

COMP
Specifies the name of a component to be installed. Valid values are:

� COMP = Base component
� COMP = Online information
� COMP = Toolkit and samples

You must not enclose the component name within quotation marks. The values
you type are case sensitive, so type them exactly as they are shown.

You can specify multiple COMP keywords, one for each required component.

DELETEBACKUP
Specifies whether to delete the backup version of MQSeries for Windows. Valid
values are YES and NO.

FILE Specifies the drive and directory for the product code; for example, the C:\MQW
directory.

WORK
Specifies the drive and directory for the product data files. This keyword applies
to the installation action only.

INCLUDE
Specifies which general response files to include with a specific response file.
The format of this keyword is:

INCLUDE = filespec

where filespec specifies the name and path of the general response file to be
included. If the file specification contains any global characters (* or ?), the first
file found that matches the specification is included. If the specification is not
valid, no general response file is included.

Note: You should not have more than five levels of included response files.

OVERWRITE
Specifies whether to automatically overwrite files during installation. Valid values
for this keyword are YES and NO.

SAVEBACKUP
Specifies whether to save a backup version when the product is updated. Valid
values for this keyword are YES and NO.

 Chapter 4. Installing MQSeries for Windows automatically 29

Installation profile

Example response file
MQSeries for Windows provides an example response file, named AMQICATW.RSP. It
is supplied in the \MQW directory and it is shown in Figure 4.

 FILE = C:\MQW
 CFGUPDATE = AUTO
 OVERWRITE = YES

COMP = Base component
COMP = Online information
COMP = Toolkit and samples
DELETEBACKUP = NO

 SAVEBACKUP = NO

Figure 4. The supplied sample response file AMQICATW.RSP

Creating an installation profile
The installation profile is an ASCII file that contains the parameters of the INSTALL
command. These parameters provide the NetView installation instructions and point to
the required response files.

The installation and maintenance parameters are:

INSTALL /A:action
 /C:catalog
 /G:include path
 /L1:error log
 /L2:history log
 /R:response file
 /S:source location
 /T:install directory
 /X

Note: You can enter the parameters in any order. You can use equals signs (=)
instead of colons (:) in the parameters. Values can be uppercase or lowercase. The
parameters must all be on one line.

30 User’s Guide

Installation profile

 INSTALL parameters
/A:action

Specifies the action to be performed by the installation program. Valid values for
action are:

D Delete an installed MQSeries for Windows system
I Install a new MQSeries for Windows system
R Restore a backed up MQSeries for Windows system
U Update an installed MQSeries for Windows system

/C:catalog
Specifies the name of the catalog to be used. This is AMQICATW.ICF.

/G:include path
Specifies the drive and path of any general response file to be included by the
specific response file. For more information about response files, see “Creating
response files” on page 28.

/L1:error log
Specifies the drive, path, and file name of the error log file. The error log contains
messages associated with installation, including confirmations and error messages.
Messages are written to the error log only if you specify the /X parameter.

Specify a full drive and path; otherwise the error log is written to a temporary
directory and could be lost. If you do not specify the /L1 parameter, no error log is
maintained. If the file you specify already exists, log messages are added to it.

For example:

 /L1:D:\LOG\LOGMQW.OUT

/L2:history log
Specifies the drive, path, and file name of the history log file. The history log
contains entries for each file transferred, each object created, and each installation.

Specify a full drive and path; otherwise the history log is written to a temporary
directory and could be lost. If you do not specify the /L2 parameter, no history log
is maintained. If the file you specify already exists, log messages are added to it.

For example:

 /L2:D:\LOG\LOGMQW.HIS

/R:response file
Specifies the drive, path and file name of a response file; see “Creating response
files” on page 28.

For example:

 /R:L:\USER\TEST.RSP

 Chapter 4. Installing MQSeries for Windows automatically 31

Automatic installation

/S:source location
Specifies the drive and path containing the source files to be installed or updated.

/T:install directory
Specifies the drive and path on which the files are to be installed. If you specify
this parameter, it overrides the FILE path specified in the response files.

/X Specifies that the installation is fully automatic.

When you specify this parameter, no progress indicator panel is shown and error
messages are logged in the error log file. (You specify the path name of the error
log file using the /L1 parameter.) If you do not specify all the information required
for the action to complete, an error occurs.

If you do not specify the /X parameter, you are prompted for any information that
the install program needs to complete the action. In this interactive mode of
operation, progress indication is shown and error messages are displayed in
secondary windows.

The automatic installation process
To start the automatic installation process:

1. Create a profile (.PRO file) and the necessary response (.RSP) files.

2. In NetView Distribution Manager, click on the CDM Dialogs icon.

3. From the CDM Catalog box, select Build from profile from the File menu.

4. In the Build change file box, enter the profile name in the Change profile name
field. In the Target file field, type the required name of the change file that will be
created by NetView as part of the installation process. Click on the Build push
button.

5. When the change file has been built, select the change file from the CDM Catalog
box and click on Selected .

6. Select Install... from the menu.

7. Select either Force or No force .

8. Select your workstation and click on the Install push button. MQSeries for
Windows will be installed.

32 User’s Guide

Automatic installation

Return codes from the installation process
The installation process returns the following codes to a software distribution manager,
such as NetView Distribution Manager/2:

 � Successful termination.

00 00 No messages were logged.

 � Unsuccessful termination.

08 00 A required data resource was not found.

08 04 Access to a required data resource was denied because the resource
was already in use.

08 08 Access to a required data resource was denied because the appropriate
authorization was missing.

08 12 A required data path was not found.

08 16 The product was not configured.

 � Unsuccessful termination.

12 00 An I/O error (exception) occurred.

12 04 A device-not-ready exception occurred.

12 08 A not-enough-disk-space exception occurred.

 � Unsuccessful termination.

16 00 An incorrect program invocation error was encountered. A required
command line parameter was missing or was incorrect.

16 04 An unexpected condition was encountered, or an exit routine produced a
non-CID defined return code.

� Successful termination. For these return codes, restart the workstation operating
system before calling installation process again.

FE 00 No messages.

FE 04 Warning messages were logged.

FE 08 Error messages were logged.

FE 12 Severe error messages were logged.

FF yy The install operation is not complete. yy can vary from 00 to FF.

All return codes are shown as two-byte hexadecimal values.

 Chapter 4. Installing MQSeries for Windows automatically 33

Automatic installation

34 User’s Guide

Verifying your installation

Chapter 5. Verifying your installation and configuration

After you have installed MQSeries for Windows, use the procedures described in this
chapter to test the installation, to create a sample queue manager and some queues,
and to run the supplied sample programs to test that queue manager.

This chapter describes:

� “Verifying your installation”
� “Creating your test configuration” on page 37
� “Running the sample programs” on page 37

Note that to use the sample programs, you must have installed the Toolkit and Samples
component of MQSeries for Windows.

If, after following the procedures in this chapter, you need to reinstall any of the
components of MQSeries for Windows, first stop the active queue manager, then see
“Changing your installation” on page 23.

If you want to connect two queue managers together, see Chapter 8, “Setting up and
verifying two queue managers” on page 67.

Verifying your installation

When you have finished installing MQSeries for Windows, you should verify that the
installation was successful before you try to use the product. If you have installed at
least the base component, you can test the installation by using the Verify Install utility
in the MQSeries for Windows program group.

The Verify Install utility performs the following tasks:

� Creating a queue manager
� Starting a queue manager
� Connecting to a queue manager
� Opening a queue
� Putting messages on a queue
� Getting messages from a queue
� Closing a queue
� Disconnecting from a queue manager
� Stopping a queue manager
� Deleting a queue manager

To start the Verify Install utility, double click on its icon in the MQSeries for Windows
program group. The utility automatically starts the verification process; no further user
interaction is required. The test takes only a few minutes.

 Copyright IBM Corp. 1994, 1996 35

Verifying your installation

If the verification is successful, the Verify Install utility displays the message:

MQSeries for Windows has successfully installed.
The product is now ready to use. (AMQ3ððð)

If this message is displayed, close the utility by selecting the Exit push button.

If any of the verification tasks fail, the utility stops and displays the message:

MQSeries for Windows has failed to install correctly.
Please see the MQSeries for Windows User's Guide for more information.
Reason: task failed. AMQ3ðð1

The message shows the verification task that failed. The most likely reasons for failure
are:

� There is not enough space available to run the Verify Install utility on the disk on
which MQSeries for Windows is installed.

Make some space on the disk on which you have installed MQSeries for Windows,
then retry the Verify Install utility.

Note: The Service Information utility tells you which drive you have installed the
product on and how much disk space remains.

� The MQSC command file used to create the default queues is missing.

The file AMQSCOMW.TST must be in the \MQW\QMGRS directory. If you have
moved this file, move it back to this directory; otherwise reinstall MQSeries for
Windows.

� There are insufficient system resources available to run the Verify Install utility.

Close some of the programs you are running, the retry the Verify Install utility.

� A queue manager named SYSTEM.INSTALL.QUEUE.MANAGER already exists.

If you have created a queue manager of this name, you must delete it before you
run the Verify Install utility.

If you can rectify the problem, do so, then restart the verification by selecting Start
Verify from the File menu. Otherwise, you must uninstall the product and try again. If
the error persists, contact your service administrator.

If you need to change your installation, see “Changing your installation” on page 23.

Note: You can use the Verify Install utility at any time to test that your MQSeries for
Windows queue manager is working correctly.

36 User’s Guide

Running the samples

Creating your test configuration

MQSeries for Windows supplies files you can use to create a queue manager for test
purposes. To create this queue manager, use the Create and Go utility with the
supplied initialization file, CREATEMQ.INI.

Start the Create and Go utility by double-clicking on its icon in the MQSeries for
Windows program group. The first time you run the utility, you are prompted to provide
registration information for MQSeries for Windows.

The utility uses the supplied initialization file to:

� Create a queue manager named SAMPLE_QM

� Load the MQSC command file named AMQSCOSW.TST, which creates some
sample queues

� Start the queue manager

� Start the Standard Controls utility

You can then use the procedures described in the remainder of this chapter to put
some messages on a queue, and, with the queue manager still running, get the
messages from the queue.

Running the sample programs
To verify that the queue manager you have created is working correctly, run the sample
programs that are supplied with MQSeries for Windows. The sample programs you will
use are:

Putting Messages
The Putting Messages sample puts a message on a specified queue.

Getting Messages
The Getting Messages sample gets a message from a specified queue. By
specifying the same queue that you used with the Putting Messages
sample, you can retrieve the messages you put on the queue.

To run the sample programs, a queue manager must be active. If queue manager
SAMPLE_QM (that you started using the Create and Go utility) is not still running,
restart it by double clicking on the icon of the Standard Controls utility in the MQSeries
for Windows program group.

 Chapter 5. Verifying your installation and configuration 37

Running the samples

Putting messages on a queue

To put messages on a queue:

1. Start the Putting Messages sample by double-clicking on its icon in the MQSeries
for Windows program group.

This starts the program and connects it to the active queue manager.

2. In the Queue field of the Putting Messages Sample window, type the following
name in uppercase letters:

 SYSTEM.SAMPLE.LOCAL

3. Select the Open push button to open the queue. Check that the reason code
displayed in the API Return Code field is zero; if it is not, the computer beeps.

If the reason code is not zero, the program cannot open the queue. The reason
codes are listed in Appendix E, “Reason codes” on page 175. You are most likely
to see the following reason codes:

2059 This means the queue manager is not running. If this happens, close
the sample by selecting Exit from the File menu. Start a queue
manager using the Standard Controls utility before you retry the
Putting Messages sample.

2085 This means the queue does not exist. If this happens, check that you
have typed the name correctly, using uppercase letters.

4. Type some message text in the Data field.

5. Select the Put push button. This puts the message on the queue and the
message text also appears in the Log list box.

6. Check that the reason code displayed in the API Return Code field is zero.

7. Repeat steps 4 and 5 to put other messages on the queue.

You can leave the sample running so you can continue putting messages after you
have used the Getting Messages sample program to remove some from the queue.

When you have finished using the Putting Messages sample program:

1. Select the Close push button. This closes the queue and disconnects the sample
from the queue manager.

2. Close the window of the sample program.

38 User’s Guide

Running the samples

Getting messages from the queue

To get messages from a queue:

1. Start the Getting Messages sample by double-clicking on its icon in the MQSeries
for Windows program group.

This starts the program and connects it to the active queue manager.

2. In the Queue field of the Getting Messages Sample window, type the following
name in uppercase letters:

 SYSTEM.SAMPLE.LOCAL

3. Select the Open push button to open the queue. Check that the reason code
displayed in the API Return Code field is zero; if it is not, the computer beeps.

If the reason code is not zero, the program cannot open the queue. This is likely
to be for one of the reasons explained in “Putting messages on a queue” on
page 38.

4. Select the Get push button. This retrieves the oldest message from the queue and
displays it in the Data list box. The Length field shows the length of the message
data.

5. Check that the reason code displayed in the API Return Code field is zero.

You are most likely to see the following reason codes:

2033 This means there are no messages on the queue. If this happens,
you can use the Putting Messages sample to put more messages on
the queue.

2219 This means the sample is waiting for a message to arrive. If there are
no messages on the queue, the sample waits for 15 seconds, then it
returns reason code 2033. If you select the Get push button within
this waiting period, code 2219 tells you that the program is busy.

The reason codes are listed in Appendix E, “Reason codes” on page 175.

6. You can keep repeating step 4 to get any other messages from the queue.

You can leave the program running so you can continue getting messages after you
have used the Putting Messages sample program to put some more on the queue.

When you have finished using the Getting Messages sample program:

1. Select the Close push button. This closes the queue and disconnects the sample
from the queue manager.

2. Close the window of the sample program.

 Chapter 5. Verifying your installation and configuration 39

Running the samples

When you are using the Getting Messages sample program, remember:

� Getting the messages from the queue removes them from the queue.

� The messages are retrieved in the same order in which they were put on the
queue.

� The put and get operations are independent, so the put and get programs can
operate at the same time, or one at a time.

When you want to stop the queue manager:

� Go to the Standard Controls utility
� Select (highlight) the SAMPLE_QM queue manager
� Select Stop from the Selected menu

40 User’s Guide

Part 3. Setting up queue managers

Chapter 6. Working with a queue manager 43

Chapter 7. Using more than one queue manager 53

Chapter 8. Setting up and verifying two queue managers 67

 Copyright IBM Corp. 1994, 1996 41

42 User’s Guide

Utilities

Chapter 6. Working with a queue manager

After you have set up a test queue manager, and verified that it runs the supplied
sample programs correctly, you are ready to learn how to create your own queue
managers. This chapter tells you how to use the administration utilities supplied with
MQSeries for Windows to create your own queue managers and queues, and to
monitor your queue manager. This chapter covers:

� “Creating components using the Create and Go utility” on page 44

� “Creating queue managers and queues using the Create Components utility” on
page 44

� “Monitoring queue managers and queues using the Standard Controls utility” on
page 46

� “Deleting queue managers and queues using the Delete Components utility” on
page 51

� “Other MQSeries for Windows utilities” on page 52

There are two ways of creating queue managers and queues:

� You can use the Create and Go utility to create and start components automatically
using definitions supplied in an initialization file named CREATEMQ.INI. You used
this utility in “Creating your test configuration” on page 37 to create and test a
queue manager using the supplied definitions.

To use the Create and Go utility to create your own components, see “Creating
components using the Create and Go utility” on page 44.

� You can use the Create Components utility to create queue managers and queues
individually. This is described in “Creating queue managers and queues using the
Create Components utility” on page 44.

You can also use the Create and Go utility and the Create Components utility to create
the channels, channel groups, and transport links that you will need if you are going to
work with more than one queue manager. For further information, see:

� Chapter 7, “Using more than one queue manager” on page 53
� Chapter 12, “Working with transport links” on page 113

 Copyright IBM Corp. 1994, 1996 43

Create Components utility

Creating components using the Create and Go utility

To use the Create and Go utility, you need a new initialization (INI) file that contains
definitions of the components you want to create. The file must be named
CREATEMQ.INI.

If someone like your systems administrator gives you an INI file for this purpose, copy
the file to replace the one named CREATEMQ.INI that MQSeries for Windows supplies
in the \MQW directory. Then start the Create and Go utility by double clicking on its
icon in the MQSeries for Windows program group. The first time you run the utility, you
are prompted to provide registration information for MQSeries for Windows.

The utility uses the definitions in the INI file to create the components, then start them.
If you need to know how to create an INI file, see Chapter 11, “Creating an INI file for
the Create and Go utility” on page 95.

Creating queue managers and queues using the Create Components utility

To create queue managers and queues (and other MQSeries components) individually,
use the Create Components utility. To start the utility, click on its icon in the MQSeries
for Windows program group.

Creating a queue manager
When you have started the Create Components utility, to create a queue manager:

1. Select the Queue Manager push button.

This displays the Create Queue Manager window.

2. Complete the fields in this window as follows:

Queue Manager name
Specify the name of the queue manager you want to create.

When you run MQSeries applications, you need to use this name to
identify this queue manager. You can use a maximum of 48
characters.

Note: The name of a queue manager is case sensitive, so if you type
the name in uppercase letters when you create the queue manager,
you must always use uppercase letters whenever you type the name.

44 User’s Guide

Create Components utility

Queue Manager description
Specify a text description of the function or purpose of this queue
manager.

This field is optional. If you do not give a description, all subsequent
windows show: (no description). Remember that, at a later date, a
description could help you to identify the queue manager you want to
work with.

You can type any text you like in this field.

Load MQSC file for the sample programs
If you want to run the supplied sample programs after you have
created your queue manager, make sure this checkbox is marked.

If you do this, the Create Components utility, when it creates the
queue manager, runs the MQSC command file that generates the
queues and channels used by the sample programs.

The sample file is named AMQSCOSW.TST; for more information on
it, see “Objects for the sample programs” on page 172.

You can load this file only if you have installed the Toolkit and samples
component of MQSeries for Windows.

Load MQSC files for your application
Select the names of any MQSC command files you want to run when
you create the queue manager.

This field is optional. If you are using MQSeries for Windows for the
first time, or just running the samples, you can leave this field blank.

If your administrator gives you an MQSC command file to run when
you create your queue manager, specify its name in this field.

To find out more about MQSC commands, see Chapter 10, “Using
MQSC commands” on page 85.

3. When you have completed the input fields in this window, click on OK.

An indicator in the window shows the progress of the create process. When the
queue manager has been created, a confirmation message is displayed.

When you create a queue manager, it always runs one MQSC command file
automatically. This is AMQSCOMW.TST, which defines default and system queues
and channels. For more information on it, see “Default and system objects” on
page 171.

If an error occurs when any of the MQSC files are run, you are prompted to look at the
MQSC log to find out more about the error. The Create Components utility creates the
log file in a separate directory for each queue manager. For example, for a queue
manager named TEST, the log file is C:\MQW\QMGRS\TEST\MQSC.LOG (if you
installed MQSeries for Windows in directory C:\MQW). If the Create Components utility
cannot create a directory using the first eight characters of the queue manager name
(for example, if a directory of that name already exists), it creates a directory whose

 Chapter 6. Working with a queue manager 45

Standard Controls utility

name is based on those eight characters. The name of the queue manager appears
near the top of the log file. For information about these error messages, see
Appendix F, “Error messages” on page 179.

If you create only one queue manager, that queue manager is started automatically
when you use the Standard Controls utility or the Advanced Controls utility. If you
create more than one queue manager, you can use the Standard Controls utility or the
Advanced Controls utility to select which queue manager you want to start automatically
(see “The Queue Managers view” on page 49).

When you have created your queue manager, remember to close the Create
Components utility.

Creating a queue
To create a queue, use the Create Components utility. After you have started the
utility, select the Queue push button in the Create Components window, then complete
the fields in the Create Queue window. You must specify:

� The name of the queue manager for which you want to create a queue
� The name of the queue you want to create
� The type of queue you want to create

You can copy the queue definition from that of any of the existing queues (of the type
you have chosen) owned by the queue manager. If you do this, you can change the
attributes of the queue using the Create Queue window.

When you have created your queue, close the Create Components utility.

Monitoring queue managers and queues using the Standard Controls utility
The Standard Controls utility allows you to perform standard operations on your queue
manager and queues:

� Starting a queue manager

� Stopping a queue manager

� Specifying the name of the queue manager (if any) that is started automatically
when the utility is restarted

� Viewing the status of the local queue managers

� Viewing the attributes of the active queue manager

� Viewing the names and attributes of the queues owned by the active queue
manager

You can also use the Standard Controls utility to work with channels and channel
groups (see Chapter 7, “Using more than one queue manager” on page 53) and
transport links (see Chapter 12, “Working with transport links” on page 113).

46 User’s Guide

Standard Controls utility

Starting the Standard Controls utility

To start the Standard Controls utility, click on its icon in the MQSeries for Windows
program group. The first time you run the utility, you are prompted to provide
registration information for MQSeries for Windows.

The Standard Controls utility window tells you the status of the components you choose
to view. The window has three parts:

� A menu bar that provides access to the functions provided by the Standard
Controls utility

� A tool bar containing icons that let you switch between the four views of the
window

� The main area of the window, which shows the status of the components you are
viewing

There are four views of the Standard Controls utility. They each allow you to display
the status of different components. The four views are:

The Connection Monitor view shows the status of the connections to the
queue manager you select in the Queue Managers view. This is
described in “The Connection Monitor view” on page 48.

The Queue Managers view shows the status of all the queue managers
on the workstation. This is described in “The Queue Managers view” on
page 49.

The Channel Groups view shows the status of the channel groups of the
active queue manager. You use channel groups when you create
channels to communicate with another queue manager. For more
information on this view, see “The Channel Groups view” on page 61.

The Transport Links view shows the status of the transport links of the
active queue manager. Administrators use transport links to control the
costs of connections. For more information on this view, see “The
Transport Links view” on page 115.

The first time you use the Standard Controls utility, it shows the Connection Monitor
view. If you change the view (using the icons on the tool bar or using the View menu),
it remembers the view you used last and shows this next time you start the utility.

 Chapter 6. Working with a queue manager 47

Standard Controls utility

The Connection Monitor view
The Connection Monitor view shows the current status of all the components
associated with the selected queue manager. This is what the icons in the status
window mean:

The Leaf Node icon represents your workstation. This icon is always
present and its appearance does not change.

The Queue Manager icon represents the queue manager you are using.
If the icon contains a check mark, the queue manager is active (that is, it
is running). If there is no check mark, the queue manager is stopped.

The name to the right of this icon is the name of the queue manager.

This icon also represents your workstation. It is always present (and its
appearance does not change) when you are not communicating with other
queue managers. This is because you can send messages only to
applications that use the local queue manager.

When you want to communicate with other queue managers, you must define channels
to that queue manager. When you do this, the channels are also shown in this view,
together with the destination queue manager. This is described in “The Connection
Monitor view” on page 62.

48 User’s Guide

Standard Controls utility

The Queue Managers view
To move to the Queue Managers view, select Queue Managers from the View menu,
or select the Queue Managers icon on the tool bar.

The Queue Managers view displays a list of the queue managers you have created.
This is what the icons in the status window mean:

There is one Queue Manager icon for each queue manager you have
created. If the icon contains a check mark, the queue manager is active
(that is, it is running). If there is no check mark, the queue manager is
stopped.

The name to the right of this icon is the name of the queue manager.

The Monitor icon identifies the queue manager whose details are
displayed when you move to the Connection Monitor view.

To monitor a different queue manager, select that queue manager in the
Queue Managers view, then select Monitor from the Selected menu.

The Autostart icon identifies the queue manager that is started
automatically when you restart the Standard Controls utility.

To start a different queue manager automatically, select that queue
manager in the Queue Managers view, then select Autostart from the
Selected menu.

If you create only one queue manager, that queue manager is set to start
automatically. You can remove this setting if you want.

Starting a queue manager
In MQSeries for Windows, you can run only one queue manager at a time. If you
attempt to start a queue manager when another one is active, you are prompted to
confirm that you want to stop the active one.

To start a queue manager, select its name in the Queue Manager view of the Standard
Controls utility. Double click on the name, or select Start from the Selected menu.

Note: Alternatively, with the mouse pointer over the name of the queue manager you
want to use, click on mouse button 2. This shows a pop-up menu that contains the
same choices as the Selected menu.

You can also start a queue manager using the same methods in the Connection
Monitor view.

When the queue manager starts, its icon shows a check mark.

 Chapter 6. Working with a queue manager 49

Standard Controls utility

Stopping a queue manager
To stop a queue manager, select its name in the Queue Manager view of the Standard
Controls utility. Double click on the name, or select Stop from the Selected menu.

Note: Alternatively, with the mouse pointer over the name of the queue manager you
want to use, click on mouse button 2. This shows a pop-up menu that contains the
same choices as the Selected menu.

You do not have to stop a queue manager before you start another one; when you start
another queue manager, you are prompted to confirm that you want to stop the active
one.

When you stop a queue manager, you can no longer put messages on, or get them
from, any queues owned by that queue manager. Also, any channels that the queue
manager owns are stopped.

Note: The queue manager stops when you close the Standard Controls utility.

Specifying an autostart queue manager
Use the Autostart icon of the Queue Managers view to select the queue manager you
want to be started automatically when the Standard Controls utility starts. See “The
Queue Managers view” on page 49.

Viewing the status of the local queue manager
Use the Connection Monitor view to display the status of the local queue manager.
This view shows whether or not the queue manager is running. See “The Connection
Monitor view” on page 48.

To display the status of all your queue managers, use the Queue Managers view (see
“The Queue Managers view” on page 49).

Viewing the attributes of the active queue manager
You can view the attributes of the active queue manager. To do this, go to the Queue
Managers view and select the active queue manager. Then select Attributes... from
the Selected menu. In the resulting window, you can select each attribute to see its
value.

If you want to change the attributes, you must use the Advanced Controls utility. For
more information on these attributes, see the online help.

50 User’s Guide

Delete Components utility

Viewing the attributes of a queue
You can list the queues of the active queue manager and view their attributes. To do
this, go to the Queue Managers view and select the active queue manager. Then
select Queues from the Selected menu. The resulting Queues for Queue Manager
window shows all the queues that the active queue manager owns.

To view the attributes of a queue, select that queue, then select Attributes from the
Selected menu. In the resulting window, you can select each attribute to see its value.

If you want to change the attributes, you must use the Advanced Controls utility. For
more information on these attributes, see the online help.

Deleting queue managers and queues using the Delete Components utility

Each queue manager you create uses system resources, so you should delete a queue
manager you no longer use. Similarly, you should delete any queues that a queue
manager no longer uses. You can do both of these operations using the Delete
Components utility.

Deleting a queue manager
To delete a queue manager, use the following procedure:

1. Close any MQSeries for Windows utilities that are running.

2. Click on the icon of the Delete Components utility in the MQSeries for Windows
program group and select the Queue Manager push button.

This displays the Delete Queue Manager window.

3. Select from the list the queue manager you want to delete.

When you select a queue manager, its description is displayed if one was provided
when the queue manager was created. The description can be useful in helping
you to select the correct queue manager to delete.

Note: You can delete only one queue manager at a time.

4. Click on the OK push button to start the delete process.

You are prompted to confirm that you want to delete the queue manager, because
when the queue manager is deleted, any queues (and the messages on them) and
channels that it owns are also deleted.

When the queue manager has been successfully deleted, you can reuse its name when
you create another queue manager.

If you uninstall the product, all queue managers are automatically deleted.

 Chapter 6. Working with a queue manager 51

Utilities

Deleting a queue
To delete a queue, you use the Delete Components utility:

1. Select the Queue push button in the Delete Components window.

2. Complete the fields in the Delete Queue window.

3. Select the name of the queue manager that owns the queue you want to delete,
and the name of the queue.

When you delete a queue, the messages on it are deleted.

Deleting other components
You can also use the Delete Components utility to delete channels, channel groups,
and transport links.

Other MQSeries for Windows utilities
In addition to the utilities described in this chapter, MQSeries for Windows provides the
following to help you work with its components:

The Advanced Controls utility
Use this utility to start, stop, and view the status of MQSeries for Windows
components, just like the Standard Controls utility. In addition, the
Advanced Controls utility lets you change the attributes of the components.
It is described in “The Advanced Controls utility” on page 82.

The MQSC Commands utility
You can also use MQSC commands to create, alter, or delete MQSeries
objects when you have started a queue manager. MQSeries for Windows
provides the MQSC Commands utility to help you do this. To find out more
about this utility, see Chapter 10, “Using MQSC commands” on page 85.

Note: You can run only one utility at time.

52 User’s Guide

Many queue managers

Chapter 7. Using more than one queue manager

When you understand how you can work with a single queue manager, you are ready
to learn what is involved when you want to create or use a network of queue managers,
each one running on a different computer.

This chapter tells you how to set up those queue managers so that you can send
MQSeries messages between them. It assumes that the computers on which the
queue managers are running are already connected together using a local area network
(LAN) or other network that uses TCP/IP for its communication.

This chapter covers:

� “Connecting two queue managers”
� “An example of how to use two queue managers” on page 54
� “Starting a channel” on page 56
� “Channel definitions” on page 56
� “Using channel groups” on page 58
� “Creating channels and channel groups” on page 59
� “Monitoring channel groups” on page 61
� “Deleting channel groups and channels” on page 65

Connecting two queue managers
The queue manager to which an application is connected is known as its local queue
manager. Any other queue manager is known as a remote queue manager, whether it
is running on the same computer or on any other, no matter where that computer is
situated. So any queues owned by the local queue manager are known as local
queues and those owned by a remote queue manager are known as remote queues.

When an application issues a call to put a message on a remote queue, the local
queue manager first puts the message on one of its transmission queues. A
transmission queue is a special type of local queue. The local queue manager stores a
copy of the message on the transmission queue until the message is successfully
transmitted to the remote queue manager.

The local queue manager needs to know where the remote queue is. For this reason,
when you set up your queue manager you must provide a local definition of each
remote queue the queue manager will use. This definition includes the name of the
queue, the name of its owning queue manager, and the name of the transmission
queue you want to use on the local queue manager to store messages destined for the
remote queue. If you do not specify the name of a transmission queue, the local queue
manager looks for a transmission queue with the same name as the remote queue
manager. You can also define a default transmission queue for the local queue
manager to use.

 Copyright IBM Corp. 1994, 1996 53

Many queue managers

For example, the sample file MARS.TST that is used in Chapter 8, “Setting up and
verifying two queue managers” on page 67 uses the queue definitions shown in
Figure 5.

\ Define a local transmission queue.
DEFINE QLOCAL('SAMPLE.MARS.XMIT') REPLACE +

DESCR('Local transmission queue') +
 USAGE(XMITQ)

\ Define the remote queue.
DEFINE QREMOTE('SAMPLE.MARS.REMOTE') REPLACE +

DESCR('Remote queue defined on MARS') +
 DEFPSIST(YES) +
\ This is the name of the local queue on the remote machine.
 RNAME('SAMPLE.VENUS.LOCAL') +
\ This is the name of the queue manager on the remote machine.
 RQMNAME('VENUS') +
\ This is the name of the local transmission queue to be used.
 XMITQ('SAMPLE.MARS.XMIT')

...
\ Define the local queue where the remote machine will put its messages.
DEFINE QLOCAL('SAMPLE.MARS.LOCAL') REPLACE +

DESCR('Local queue') +
 DEFPSIST(YES) +
 SHARE

Figure 5. Queue definitions from the supplied file MARS.TST

The message is transferred from the transmission queue to the remote queue manager
through a message channel. A channel is a one-way communication link between two
queue managers. This means that MQSeries messages flow in only one direction
(although channel control messages flow in both directions). For two-way message
flow, you must have two channels running between the two queue managers. Each
end of a channel is controlled by an MQSeries-supplied program called a message
channel agent (MCA).

An example of how to use two queue managers
To help you to understand all these features, study the example shown in Figure 6 on
page 55. This shows the relationship between applications, queue managers, queues,
and channels. In this example, application A (which is connected to queue manager
MARS) wants to send a message, using Queue1, to application B (which is connected
to queue manager VENUS).

But to application A, Queue1 is a remote queue because it is not owned by MARS. So
for this communication to be successful, MARS must have:

� A local definition of remote queue Queue1
� A transmission queue to transfer messages to VENUS
� A message channel to VENUS

54 User’s Guide

Many queue managers

Figure 6. Communication between two queue managers. Application A puts a message on a local definition of
Queue1. Application B gets the message from Queue1.

When application A puts a message (specifying the local definition of Queue1), MARS
takes that message and moves it to the transmission queue. The MCA running on
MARS then transfers the message to the MCA running on VENUS. The receiving MCA
transfers the message from the channel to Queue1.

Note that this is a simple example, and application B cannot send replies or new
messages to application A. For application B to be able do this, there must also be:

� A transmission queue on VENUS to temporarily hold messages destined for MARS

� A second channel to carry messages from VENUS to MARS (remember that
message channels carry messages in one direction only)

� An MCA running on VENUS, and one on MARS, to run the new channel

� An application queue on MARS so that application A can get messages

In reality, you will probably need to use more than two queue managers in your work,
but the same principles apply. If there is no direct connection between the sending
queue manager and the target queue manager, the message may have to pass from

 Chapter 7. Using more than one queue manager 55

Channel definitions

one queue manager to another until it reaches the target. This is sometimes known as
multi-hopping. To ensure the message can reach its destination, you must create a
channel from each queue manager to the next one in the network, and there must be a
transmission queue on each queue manager to store messages until they can be
forwarded to the next queue manager in the network.

Starting a channel
An MCA can act either as a caller or as a responder . A caller MCA starts a channel
by sending a connection request to a responder MCA. MQSeries for Windows supplies
a program known as the channel listener, which listens for connection requests from
caller MCAs. The connection requests contain the address of the MCA for which the
request is aimed, so the listener can start the correct responder MCA. When a
responder MCA receives a connection request, it responds to the caller—the channel is
now ready to carry MQSeries messages.

 Channel definitions
A channel is defined by a pair of compatible definitions—one at each end of the
channel. The two definitions must have the same name to identify them as a pair. You
should consider using meaningful names for the definitions so it is easy to see their
purpose; for example, MARS.TO.VENUS and VENUS.TO.MARS.

The definitions of the channel determine which end sends messages and which end
receives them.

There are four types of channel definition:

� Sender (sends messages)
� Receiver (receives messages)
� Server (sends messages)
� Requester (receives messages)

Sender, server, and requester channels can be callers or responders. A receiver
channel can be a responder only, so it cannot start a channel.

You must use compatible channel definitions at each end, so one end must be a
sender or server (to move messages from a transmission queue and put them on the
channel), and the other end must be a receiver or requester (to move messages from
the channel to the destination queue).

56 User’s Guide

Channel definitions

You can use any of the following combinations when you define the two ends of a
channel:

Sender-receiver
The sender is the caller, and the receiver is the responder. The sender
calls the receiver to start the channel, then sends messages from its
transmission queue to the receiver. The receiver puts the messages on
the destination queues.

An example of an application that would use this type of channel is an
e-mail application that allows the user to send messages.

Requester-server
The requester is the caller, and the server is the responder. The requester
calls the server to start the channel. The server then sends messages
from its transmission queue to the requester.

An example of an application that would use this type of channel is a
mailing application that allows users to collect their mail by making a call.

You can also use a server-requester channel, which is similar, but the
server initiates it. An example of this is a mailing application that delivers
mail by making a call.

Requester-sender
Initially, the requester is the caller, and the sender is the responder. But
the sender terminates the connection, then it becomes the caller. The
sender calls back the requester, which becomes the responder. The
sender then sends messages from its transmission queue to the requester.
This arrangement is known as call back.

An example of an application that would use this type of channel is a
mailing application that allows users to request their mail by making an
initial call. The application then calls them back to deliver the mail, so the
users do not have to pay for the deliveries.

The remaining combinations perform the same as those already described:

Sender-requester
This performs like a sender-receiver channel.

Server-receiver
This performs like a sender-receiver channel.

Server-requester
This performs like a server-receiver channel.

The two ends of a channel are defined on different queue managers, so they can have
different attributes. Some attributes are compatible, but others are not. To resolve any
differences, there is a negotiation between the two MCAs when the channel starts. If
they cannot resolve the differences, the channel ends without transferring any
messages.

 Chapter 7. Using more than one queue manager 57

Channel groups

Using channel groups
In MQSeries for Windows, you can start, monitor, and stop channels only as a group,
so each channel must belong to a channel group. A channel group is an MQSeries for
Windows component; it is simply a named collection of channels and it is owned by a
queue manager. Each queue manager can own many channel groups, but only one
group can be active at a time. If you want to start another group, you must confirm that
you want to stop the one that is already running.

You must create a channel before you can add it to a channel group. A group can
contain a maximum of 32 channels, and all the channels in the group must belong to
the same queue manager. A channel can belong to more than one channel group.

You can create a channel group at any time using the Create Components utility, but
you must first stop the queue manager. To add a channel to an existing channel
group, or to change the attributes of the group, use the Advanced Controls utility.

You can specify that one channel group starts automatically when either the Standard
Controls utility or the Advanced Controls utility starts. All the channels in that group are
started automatically at that time.

Designing a channel group
When you add a channel to a channel group, you are defining a caller MCA that is
started when you start the group. You cannot add a responder to a group. This means
you cannot add a receiver to a group because a receiver is always a responder (it
cannot be a caller).

Instead of adding responder MCAs to a group, you add the MQSeries for Windows
channel listener. The listener starts any number of responder MCAs.

Here are some examples to help you.

For a sender-receiver channel
For a sender-receiver channel, you must create two channel groups:

The listener starts the receiver MCA.

Group at the calling end Group at the responding end

Group contains sender channel Group contains the listener

58 User’s Guide

Creating channels

For two channels
If there are two channels (allowing two-way communication), you still need two channel
groups. For example, if the two channels are a sender-receiver and a requester-server:

The listener starts the receiver MCA for the sender-receiver channel, and it starts the
server MCA for the requester-server channel.

Group at the calling end Group at the responding end

Group contains the sender channel and the
requester channel

Group contains the listener

For two channels using call back
If there are two channels using call back, you need two channel groups. The two
channels are a sender-receiver and a requester-sender.

The listener at the responding end starts the receiver MCA for the sender-receiver
channel, and it starts the sender MCA for the requester-sender channel. When the
sender MCA for the requester-sender channel ends the connection and calls back, the
listener on the original caller restarts the requester MCA.

Group at the calling end Group at the responding end

Group contains the sender channel and the
requester channel and the listener

Group contains the listener

Creating channels and channel groups
This section tells you how to create either a channel or a channel group using the
windows of the Create Components utility. You can also create channels using MQSC
commands, either when you create the queue manager using the Create Components
utility, or by using the MQSC Commands utility.

Creating a channel

The procedure for creating a channel is similar to that for creating a queue. When you
have started the Create Components utility, select the Channel push button in the
Create Components window, then complete the fields in the Create Channel window.
You must specify:

� The name of the queue manager for which you want to create a channel
� The name of the channel you want to create
� The type of channel you want to create

You can copy the channel definition from that of any of the existing channels (of the
type you have selected) owned by the queue manager. If you do this, you can change
the attributes of the channel using the Create Channel window.

 Chapter 7. Using more than one queue manager 59

Creating channels

If the channel you are creating can be a caller, make sure you specify some retries.
Retries allow the channel to recover from problems that occur during start up of the
channel. For example, the listener at the responding end could be busy starting
another responder MCA, so it could miss a connection request; retries give it more
chances to catch the request.

Note: You cannot specify retries for a requester channel.

When you have created your channel, remember to close the Create Components
utility.

Creating a channel group
To create a channel group, use the Create Components utility like you did when you
created a channel. Remember that you must create the channels first.

When you have started the Create Components utility, select the Channel Group push
button in the Create Components window, then complete the fields in the Create
Channel Group window. You must specify:

� The name of the queue manager for which you want to create a channel group
� The name of the channel group you want to create

You are prompted to select which existing channels you want to add to the channel
group. Initially, all the channels owned by the queue manager are selected. Deselect
those channels you do not want in the channel group.

You can have a maximum of 32 channels (or 31 and the listener) in a channel group.

If you need to add the listener to this channel group, make sure the Start Listener
checkbox is marked.

If you want to add more channels to the group after you have created it, you must use
the Advanced Controls utility.

When you have created your channel group, remember to close the Create
Components utility.

60 User’s Guide

Monitoring channels

Monitoring channel groups

The Standard Controls utility allows you to:

� View the status of a channel group using the Channel Groups and Connection
Monitor views

� Start a channel group

� Stop a channel group

� View the attributes of a channel group

� View the attributes of a channel

� View the status of each channel owned by the active channel group

If you want to change any attributes, you must use the Advanced Controls utility.

The Channel Groups view

The Channel Groups view of the Standard Controls utility shows the status of all the
channel groups owned by the active queue manager. This is what the icons in the
status window mean:

There is one Channel Group icon for each channel group you have
created. If the icon contains a status indicator (a check mark or an
exclamation mark), the channel group is active (that is, it is running). If
there is no status indicator, the channel group is stopped.

The name to the right of this icon is the name of the channel group.

The Monitor icon identifies the channel group whose details are displayed
when you move to the Connection Monitor view.

To monitor a different channel group, select that channel group in the
Channel Groups view, then select Monitor from the Selected menu.

The Autostart icon identifies the channel group that is started
automatically when you restart the Standard Controls utility.

To automatically start a different channel group, select that channel group
in the Channel Groups view, then select Autostart from the Selected
menu.

If you create only one channel group, that channel group is set to start
automatically. You can remove this setting if you want.

 Chapter 7. Using more than one queue manager 61

Monitoring channels

The Connection Monitor view
The Connection Monitor view shows the current status of all the components
associated with the selected queue manager. When we saw it in “The Connection
Monitor view” on page 48, this view contained icons for the leaf node and the queue
manager only. But now that you are using channels to communicate with another
queue manager, this view shows the channel group and that queue manager as well.
This is what the icons in the status window mean:

The Leaf Node icon represents your workstation—this is your end of the
connection.

The Queue Manager icon represents the queue manager you are using.
If the icon contains a check mark, the queue manager is active (that is, it
is running). If there is no check mark, the queue manager is stopped.

The name to the right of this icon is the name of the queue manager.

The Channel Group icon represents the channel group you are using.
The icon also shows the status of the channel group:

� If there is any status mark on the icon, the channel group is active. If
there is no mark, the channel group is stopped.

� If the icon contains a check mark, all the channels in the group are
running.

� If the icon contains an exclamation mark (!), one or more of the
channels in the group is stopped.

The name to the right of this icon is the name of the channel group.

The Server icon represents the server end of the connection. This is the
queue manager with which you are communicating.

For an MQSeries application (represented by the leaf node icon at the top of the status
window) to be able to communicate with a remote queue manager (represented by the
server icon at the bottom of the status window), all the components between them must
be in the active state. So for a successful connection, all the icons between the leaf
node and the server must contain check marks. This view can give a quick visual
confirmation that communication is possible.

62 User’s Guide

Monitoring channels

Starting a channel group
In MQSeries for Windows, only one channel group can be active (that is, running) at a
time. If you try to start a channel group when another one is active, you are prompted
to confirm that you want to stop the active one.

To start a channel group, select its name in the Channel Groups view of the Standard
Controls utility. Double click on the name, or select Start from the Selected menu.
Wait until the channel group starts. When it does, a check mark is added to the
channel group icon. You can also start a channel group using the same method in the
Connection Monitor view.

If there is a transport link defined on the active queue manager but that transport link is
not active when you start the channel group, the group is put into a quiesced state.
From this state, the channel group is started automatically when the transport link
starts. For information on transport links, see Chapter 12, “Working with transport
links” on page 113.

Stopping a channel group
To stop a channel group, select its name. Double-click on it, or select Stop from the
Selected menu.

You do not have to stop a channel group before you start another one; when you start
another channel group, you are prompted to confirm that you want to stop the active
one.

When you stop a channel group, its channels stop. If the channels are carrying any
messages, those messages are preserved on the transmission queue at the sending
end of the channel.

Note: The channel group stops when you close the Standard Controls utility.

Viewing the attributes of a channel group
You can view the attributes of any channel group at any time:

1. Go to the Channel Groups view and select the channel group you want to view.

2. Select Attributes... from the Selected menu.

In the resulting window, you can see which channels are included in the group, and
whether or not it includes the listener.

If you need to change which channels are included in the group, you must use the
Advanced Controls utility.

 Chapter 7. Using more than one queue manager 63

Monitoring channels

Viewing the attributes of a channel
You can list the channels in the active channel group and view their attributes:

1. Go to the Channel Groups view and select the active channel group.

2. Select Channels from the Selected menu. The resulting Channels for Channel
Group window shows all the channels that belong to the group.

To view the attributes of a channel:

1. Select the required channel.
2. Select Attributes from the Selected menu.
3. In the resulting window, select each attribute to see its value.

For more information on these attributes, see the online help. If you need to change
any of the attributes, you must use the Advanced Controls utility.

Viewing the status of a channel
In addition to the ordinary attributes of a channel (such as the maximum message
length and the name of the transmission queue), channels also have status attributes
that report transient information, such as the number of bytes sent or received.

You can list the channels in the active channel group and view their status:

1. Go to the Channel Groups view and select the active channel group.

2. Select Channels from the Selected menu.

The resulting Channels for Channel Group window shows all the channels that
belong to the group. The icon for each channel contains a status indicator that
gives a visual indication of the state of that channel:

� A check mark means that the channel is running.

� An exclamation mark (!) means that the channel is in an intermediate state
(such as retrying or stopping).

� A cross means that the channel has stopped.

� No status indicator means that the channel has not started.

To get more information about the status of a channel, select that channel, then select
Status from the Selected menu. In the resulting window, you can select each status
attribute to see its value.

For more information on these status attributes, see the online help. You cannot
change these status attributes because they report the current state of the channel.

64 User’s Guide

Deleting channels

Deleting channel groups and channels
When you no longer need to use a channel or channel group, delete it using the Delete
Components utility.

Deleting a channel group

To delete a channel group:

1. Close any MQSeries for Windows utilities that are running.

2. Click on the icon of the Delete Components utility in the MQSeries for Windows
program group and select the Channel Group button.

This displays the Delete Channel Group window.

3. Select from the list the name of the queue manager that owns the channel group
you want to delete.

4. Select from the list the channel group you want to delete.

When you select a channel group, its description is displayed. The description
may help you select the correct channel group to delete.

Note: You can delete only one channel group at a time.

5. Click on the OK push button to start the delete process.

You are prompted to confirm that you want to delete the channel group.

When the channel group has been successfully deleted, you can reuse its name when
you create another channel group.

If you uninstall the product, all channel groups are automatically deleted.

Deleting a channel
To delete a channel:

1. Select the Channel push button in the Delete Components window.

2. Complete the fields in the Delete Channel window. You must select the name of
the queue manager that owns the channel you want to delete, and the name of the
channel.

 Chapter 7. Using more than one queue manager 65

Deleting channels

66 User’s Guide

Two queue managers

Chapter 8. Setting up and verifying two queue managers

This chapter describes how to set up two queue managers so they can send messages
to each other. It then describes how to use the sample programs supplied with
MQSeries for Windows to verify that the two queue managers are set up correctly. It
includes:

� “Setting up the two queue managers on Windows”
� “Setting up the two queue managers yourself” on page 71
� “Verifying the configuration” on page 73
� “When one of your queue managers is on a different platform” on page 76
� “Other tests you may want to try” on page 77

Follow the procedure in this chapter to create a queue manager on each of two
workstations. In the examples in this chapter, the two queue managers are named
MARS and VENUS. MQSeries for Windows supplies files that contain definitions for
these two queue managers, and for the components they use. The channels are
initiated from MARS, but you can send messages from either of the queue managers.

The procedure involves:

1. Setting up the two queue managers.

If both of your queue managers are to run on MQSeries for Windows, see “Setting
up the two queue managers on Windows.”

If one of your queue managers is to run on another MQSeries product, see “When
one of your queue managers is on a different platform” on page 76.

2. Running the sample programs to verify your configuration.

This is described in “Verifying the configuration” on page 73.

Setting up the two queue managers on Windows
Before you can set up your two queue managers, install MQSeries for Windows on
each of the two workstations you are going to use. Make sure you install the Toolkit
and samples component on each one.

It is then advisable to use the TCP/IP ping command to test the TCP/IP connection
between them.

 Copyright IBM Corp. 1994, 1996 67

Two queue managers

Before you can use the ping command, you need to find the internet protocol (IP)
address of each workstation. This is also known as the network address, computer
name, host name, or machine name. The IP address has a dotted-decimal format,
but if your TCP/IP uses a domain name service, you can create a text alias for your
IP address (but note that this alias is case sensitive). If you are using IBM TCP/IP
for DOS, you can use the CUSTOM program to find your IP address.

When you know the addresses, try pinging each workstation by typing the ping
command at a DOS command prompt on the other one; for example:

 ping 152.78.1ð8.4

If the ping is successful, the command displays messages that show the time taken
for the test message to be delivered. If the ping is not successful, you need to
establish a TCP/IP connection between the two workstations before you proceed.

You are now ready to use the Create and Go utility to create a queue manager, and its
queues and channels, on each workstation.

Note: If you do not want to use the Create and Go utility to set up your queue
managers, see “Setting up the two queue managers yourself” on page 71.

Setting up VENUS
Set up VENUS as follows:

1. If you have installed MQSeries for Windows on a drive other than C:, edit the file
VENUS.INI (supplied in the directory \MQW\SAMPLES) to change references to
this drive.

2. Make a backup copy of the supplied file named CREATEMQ.INI.

For example:

copy C:\MQW\CREATEMQ.INI C:\MQW\CREATEMQ.OLD

3. Copy the file C:\MQW\SAMPLES\VENUS.INI to replace the supplied file
C:\MQW\CREATEMQ.INI.

This is because the Create and Go utility uses only a file named CREATEMQ.INI.

4. Select the Create and Go utility. This uses the definitions in the file
CREATEMQ.INI (supplied as VENUS.INI) to:

� Create and start a queue manager named VENUS.

� Run the MQSC command file named VENUS.TST. This creates the three
queues and two channel definitions on MARS that are shown in Figure 7 on
page 69.

� Create and start a channel group named VENUSGroup.

� Start the Advanced Controls utility.

� Start the listener.

68 User’s Guide

Two queue managers

Figure 7. The queues and channels that the supplied INI files create

If the Create and Go utility is successful, a confirmation message is displayed and the
Advanced Controls utility is started. If the Advanced Controls utility successfully starts
the listener, a check mark appears beside the Channel Group icon in the window of the
Advanced Controls utility.

VENUS is now ready to respond to incoming channel-connect requests.

Setting up MARS
On your second workstation, set up MARS as follows:

1. If you have installed MQSeries for Windows on a drive other than C:, edit the file
MARS.INI (supplied in the directory \MQW\SAMPLES) to change references to this
drive.

2. Make a backup copy of the supplied file named CREATEMQ.INI.

For example:

copy C:\MQW\CREATEMQ.INI C:\MQW\CREATEMQ.OLD

3. Copy the file C:\MQW\SAMPLES\MARS.INI to replace the supplied file
C:\MQW\CREATEMQ.INI.

This is because the Create and Go utility uses only a file named CREATEMQ.INI.

 Chapter 8. Setting up and verifying two queue managers 69

Two queue managers

4. Edit the MQSC command file named MARS.TST. (This file is in the
\MQW\SAMPLES subdirectory in a default installation.) Change the CONNAME
attribute on both the Sender and Requester channel definitions to the IP address of
the VENUS workstation:

DEFINE CHANNEL ('MARS.TO.VENUS') CHLTYPE(SDR) TRPTYPE(TCP) +
 XMITQ('SAMPLE.MARS.XMIT') +

CONNAME('VENUS TCP/IP machine name') +
DESCR('Sender channel for messages to queue manager VENUS') +

 REPLACE

DEFINE CHANNEL ('VENUS.TO.MARS') CHLTYPE(RQSTR) TRPTYPE(TCP) +
CONNAME('VENUS TCP/IP machine name') +
DESCR('Requester channel for messages from queue manager VENUS') +

 REPLACE

Note: The IP names you use for the CONNAME attribute are case sensitive.

5. Select the Create and Go utility. This uses the definitions in the file
CREATEMQ.INI (supplied as MARS.INI) to:

� Create and start a queue manager named MARS.

� Run the MQSC command file named MARS.TST. This creates the three
queues and two channel definitions that are shown in Figure 7 on page 69.

� Create and start a channel group named MARSGroup.

� Start the Advanced Controls utility.

When the Advanced Controls utility starts the MARSGroup channel group, this sends
channel-connect requests to VENUS. If this is successful, a check mark appears
beside the channel group icon in the window of the Advanced Controls utility.

If the check mark does not appear, or if an exclamation mark appears instead, the
channels have not started. The two most likely reasons for this are:

� In the MARS.TST file, the CONNAME attribute does not contain the correct IP
name for the VENUS workstation. For example, you may have typed the name
using lowercase letters, but the name should be in uppercase letters.

You can correct this error by changing the value of the ConnectionName attribute
for the appropriate channel using the Advanced Controls utility.

� There is a TCP/IP problem. Restart the workstation and try again. You do not
need to re-create the queue manager.

Now you can use the sample programs to verify that your queue managers are
operating correctly. Proceed to “Verifying the configuration” on page 73.

70 User’s Guide

Two queue managers

Setting up the two queue managers yourself

 Note

Read this section only if you do not want to use the Create and Go utility to set up
your queue managers. You may want to use the information supplied here to help
you understand how to create your own queues, channels, and channel groups.

Before you can set up your two queue managers, install MQSeries for Windows on
each of the two workstations you are going to use. Make sure you install the Toolkit
and samples component on each one.

It is then advisable to use the TCP/IP ping command to send a test message from one
workstation to the other to ensure that there is a TCP/IP connection between them. If
you need more information on how to do this, see “Setting up the two queue managers
on Windows” on page 67.

Setting up VENUS yourself
Set up VENUS as follows:

1. Create a queue manager called VENUS, using the Create Components utility.

Specify the MQSC command file VENUS.TST. In a default installation, this is in
the \MQW\SAMPLES subdirectory.

2. Create a channel group named VENUSGroup on the VENUS queue manager,
noting the following:

� Ensure that the group does not contain any channels. If there are already
some channels listed in the Name field, deselect them. To do this, select the
first name, press and hold down the Ctrl key, then select each of the
remaining names.

� Ensure that you mark the Start Listener box.

Setting up MARS yourself
On your second workstation, set up MARS as follows:

1. Edit the MQSC command file named MARS.TST to add the IP address of the
VENUS workstation. For information on how to do this, see “Setting up MARS” on
page 69.

2. Create a queue manager called MARS, using the Create Components utility.

Specify the MQSC command file MARS.TST.

 Chapter 8. Setting up and verifying two queue managers 71

Two queue managers

3. Create a channel group named MARSGroup on the MARS queue manager. Add
only the following two channels to the group:

� MARS.TO.VENUS (this is a sender channel)
� VENUS.TO.MARS (this is a requester channel)

Note: To add more than one channel to a group:

a. Select the first channel.
b. Press and hold down the Ctrl key.
c. Select every channel you want to add to the group.
d. Release the Ctrl key.

You do not need a listener.

Starting the two queue managers and their channel groups
When you have created the VENUS and MARS queue managers, and their channel
groups, you are ready to start them. Perform the following steps:

1. Use the Advanced Controls utility to start queue manager VENUS and channel
group VENUSGroup.

If this is successful, a check mark appears beside the channel group icon in the
window of the Advanced Controls utility.

This queue manager is now ready to respond to incoming channel-connect
requests.

2. Use the Advanced Controls utility to start queue manager MARS and channel
group MARSGroup.

This sends channel-connect requests to the VENUS queue manager. If this is
successful, a check mark appears beside the channel group icon in the window of
the Advanced Controls utility.

If the check marks do not appear, or an exclamation mark appears instead, there has
been an error in starting the channels. The two main reasons for failure are:

� In the MARS.TST file, the CONNAME attribute does not contain the correct IP
name for the VENUS workstation. For example, you may have typed the name
using lowercase letters, but the name uses uppercase letters.

Correct the error by changing the value of the ConnectionName attribute for the
appropriate channel using the Advanced Controls utility.

� There is a TCP/IP problem. Restart the workstation and try again. It is not
necessary to re-create the queue manager.

Now you can use the sample programs to verify that your queue managers are
operating correctly. Proceed to “Verifying the configuration” on page 73.

72 User’s Guide

Two queue managers

Verifying the configuration
When you have set up the two queue managers so that they can send messages to
each other, use the sample programs supplied with MQSeries for Windows to verify
that they are set up correctly:

The Putting Messages sample
Run the Putting Messages sample on MARS to put messages on the local
queue owned by VENUS.

The Getting Messages sample
Run the Getting Messages sample on VENUS to get messages from the
same queue.

Putting messages on a queue
On MARS, use the Putting Messages sample program to send messages to the queue
named SAMPLE.VENUS.LOCAL, which is owned by the VENUS queue manager.
Perform the following steps:

1. Start the Putting Messages sample by double-clicking on its icon in the MQSeries
for Windows program group.

The sample automatically connects to MARS because this is the active queue
manager.

2. In the Queue field of the Putting Messages Sample window, type the following
name in uppercase letters:

 SAMPLE.MARS.REMOTE

Notes:

a. The queue SAMPLE.MARS.REMOTE is defined in the file MARS.TST. It is a
remote queue.

b. This is not the true name of the destination queue—it is the name of the local
definition (on MARS) of the remote queue. MARS.TST resolves this name to
SAMPLE.VENUS.LOCAL. Figure 7 on page 69 shows these queues.

3. Select the Open push button to open the queue, and check that the reason code
displayed in the API Return Code field is zero.

If the reason code is not zero, this means the program cannot open the queue.
The reason codes are listed in Appendix E, “Reason codes” on page 175. You
are most likely to see the following reason codes:

2059 This means the queue manager is not running. If this happens, close
the sample by selecting Exit from the File menu. Start the queue
manager using the Standard Controls utility or the Advanced Controls
utility before you retry the Putting Messages sample.

2085 This means the queue does not exist. If this happens, check that you
have typed the name correctly, using uppercase letters.

4. Type some message text in the Data field.

 Chapter 8. Setting up and verifying two queue managers 73

Two queue managers

5. Select the Put push button. This puts the message on the queue and the
message text also appears in the Log list box.

6. Check that the reason code displayed in the API Return Code field is zero.

7. Repeat steps 4 and 5 to put other messages on the queue.

You can leave the sample running so you can continue putting messages after you
have used the Getting Messages sample program to remove some from the queue.

When you have finished using the Putting Messages sample program:

1. Select the Close push button. This closes the queue and disconnects the sample
from the queue manager.

2. Close the window of the sample program.

Getting messages from the queue
On VENUS, use the Getting Messages sample program to get messages from the
queue named SAMPLE.VENUS.LOCAL. Perform the following steps:

1. Start the Getting Messages sample by double-clicking on its icon in the MQSeries
for Windows program group.

The sample automatically connects to VENUS because this is the active queue
manager.

2. In the Queue field of the Getting Messages Sample window, type the following
name in uppercase letters:

 SAMPLE.VENUS.LOCAL

The queue SAMPLE.VENUS.LOCAL is defined in the file VENUS.TST. It is a local
queue.

3. Select the Open push button to open the queue, and check that the reason code
displayed in the API Return Code field is zero.

If the reason code is not zero, this means the program cannot open the queue.
This is likely to be for one of the reasons explained in “Putting messages on a
queue” on page 73.

4. Select the Get push button. This retrieves the oldest message from the queue and
displays it in the Data list box. The Length field shows the length of the message
data.

74 User’s Guide

Two queue managers

5. Check that the reason code displayed in the API Return Code field is zero.

You are most likely to see the following reason codes:

2033 This means there are no messages on the queue. If this happens,
you can use the Putting Messages sample to put more messages on
the queue.

2219 This means the sample is waiting for a message to arrive. If there are
no messages on the queue, the sample waits for 15 seconds, then it
returns reason code 2033. If you select the Get push button within
this waiting period, code 2219 tells you that the program is busy.

The reason codes are listed in Appendix E, “Reason codes” on page 175.

6. You can keep repeating step 4 to get any other messages from the queue.

You can leave the program running so you can continue getting messages after you
have used the Putting Messages sample program to put some more on the queue.

When you have finished using the Getting Messages sample program:

1. Select the Close push button. This closes the queue and disconnects the sample
from the queue manager.

2. Close the window of the sample program.

Notes:

1. The messages are retrieved in the same order in which they were put on the
queue.

2. The put and get operations are independent, so the put and get programs can
operate at the same time, or one at a time.

3. Getting the messages from the queue removes them from the queue.

Sending messages the other way
You should also test that you can send messages the other way, that is, from VENUS
to MARS. The configuration tasks you performed in “Setting up the two queue
managers on Windows” on page 67 allows you to do this without making any further
changes. All you need to do is:

1. Start the Putting Messages sample on VENUS.

2. Put some messages on the queue named SAMPLE.VENUS.REMOTE (which is a
remote queue whose name resolves to SAMPLE.MARS.LOCAL).

3. Start the Getting Messages sample on MARS.

4. Get the messages from the queue named SAMPLE.MARS.LOCAL.

 Chapter 8. Setting up and verifying two queue managers 75

Two queue managers

When one of your queue managers is on a different platform
If the workstation you are using for the VENUS queue manager is running MQSeries on
a platform (or operating system) other than Windows, use the following steps to verify
that they are configured correctly.

1. Create and start the queue manager VENUS, following the instructions given in the
documentation for the queue manager on the platform you are using.

2. Create all the queues and channels defined in the MQSC command file named
VENUS.TST, following the instructions for the platform you are using.

3. Start the listener on VENUS, following the instructions for the platform you are
using.

4. Set up the MARS queue manager on Windows by following the procedure
described in “Setting up MARS” on page 69.

5. Run the sample programs as described in “Verifying the configuration” on page 73.

If the workstation you are using for the MARS queue manager is running MQSeries on
a platform other than Windows, use the following steps to verify that they are
configured correctly.

1. Create and start the queue manager MARS, following the instructions given in the
documentation for the queue manager on the platform you are using.

2. Create all the queues and channels defined in the MQSC command file named
MARS.TST, following the instructions for the platform you are using.

You must edit MARS.TST to add the IP address of VENUS in the CONNAME
attributes of the two channel definitions. For information on how to do this, see
“Setting up MARS” on page 69.

3. Set up the VENUS queue manager on Windows by following the procedure
described in “Setting up VENUS” on page 68.

4. Start the two channels VENUS.TO.MARS and MARS.TO.VENUS, following the
instructions for the platform you are using.

5. Run the sample programs as described in “Verifying the configuration” on page 73.

Note: MQSeries for Windows does not perform any data conversion so, if the
operating system on which your other queue manager is running uses a code page or
integer representation that is different from that of Windows, you must make sure the
other queue manager does the required conversion. To make it do this before it sends
a message to your Windows queue manager, specify CONVERT(YES) in the definition of
the channel at the sending end.

76 User’s Guide

Two queue managers

Other tests you may want to try
When you are satisfied that your queue managers are operating as you would expect,
you may want to try some of these other tests:

Can I put messages when the destination queue manager, or the channel to it, is
not running?
Yes. When the queue manager, and the channel to it, start running,
MQSeries for Windows delivers the messages you have put.

Can I put messages at the same time as getting them?
Yes, you can run the Putting Messages and Getting Messages sample
programs at the same time. They both use the same queue, but note that
the Getting Messages always gets the oldest message from the queue.

Also, you can put messages from both queue mangers at the same time.
This is because there is a separate channel for messages flowing in each
direction.

How can I put messages on the local queue?
You might want to put messages on a queue that is local to the queue
manager that is running the Putting Messages sample, instead of sending
them to the other queue manager. To do this on MARS, in the Queue field
of the Putting Messages Sample window, type the name
SAMPLE.MARS.LOCAL.

 Chapter 8. Setting up and verifying two queue managers 77

Two queue managers

78 User’s Guide

Part 4. Supporting users of MQSeries for Windows

Chapter 9. Administering a queue manager 81

Chapter 10. Using MQSC commands . 85

Chapter 11. Creating an INI file for the Create and Go utility 95

Chapter 12. Working with transport links 113

Chapter 13. Service tools . 119

Chapter 14. Diagnosing problems . 123

 Copyright IBM Corp. 1994, 1996 79

80 User’s Guide

Administering a queue manager

Chapter 9. Administering a queue manager

If you have to support other users who are running MQSeries applications on Windows
workstations, MQSeries for Windows provides facilities to help you. This chapter
introduces those facilities and provides information on the Advanced Controls utility.

The administration facilities
The administration facilities that MQSeries for Windows provides are:

The Advanced Controls utility
This utility is intended for developers and administrators who may need to change
quickly the configuration of an MQSeries for Windows queue manager on a
workstation. You may need to do this for development, testing, or trouble-shooting
purposes. The Advanced Controls utility provides windows in which you can see
the current values of attributes, and that show you the values you can use. It is
described in “The Advanced Controls utility” on page 82.

The MQSC Commands utility
This utility allows you to change an MQSeries for Windows queue manager by
typing MQSC commands and by running an MQSC command file. It is described in
Chapter 10, “Using MQSC commands” on page 85.

The Create and Go utility
This utility allows you to provide a customized initialization file to your users so that
they can create a working queue manager without having to set it up themselves. It
is described in Chapter 11, “Creating an INI file for the Create and Go utility” on
page 95.

Transport links
You can provide a transport link program that is invoked when you use a dial-up
device (such as a modem) for your communications. You could use this program to
control the cost of such a connection.

Transport links are described in Chapter 12, “Working with transport links” on
page 113.

The Service Information utility
This utility provides information that may help you to solve a problem with an
MQSeries for Windows queue manager. It provides information about the version
of MQSeries for Windows that is installed and about the drive on which it is
installed.

The utility is described in “The Service Information utility” on page 119.

The Service Trace utility
This utility allows you to collect trace information to help you to isolate a problem. It
is intended primarily for use under the guidance of IBM Service personnel. It is
described in “The Service Trace utility” on page 119.

In addition, Chapter 14, “Diagnosing problems” on page 123 gives you help in solving
some common problems.

 Copyright IBM Corp. 1994, 1996 81

Advanced Controls utility

The Advanced Controls utility
The Advanced Controls utility performs the same functions as the Standard Controls
utility (described in “Monitoring queue managers and queues using the Standard
Controls utility” on page 46), but in addition, you can:

� Change the attributes of a queue manager
� Change the attributes of queues
� Change the attributes of channel groups
� Add channels to, and delete them from, channel groups
� Add the listener to, or remove it from, a channel group
� Change the attributes of channels
� Change the attributes of transport links
� Start the MQSC Commands utility

Changing an attribute

The Advanced Controls utility provides similar windows to those of the Standard
Controls utility so, if you have followed the instructions in Chapter 6, “Working with a
queue manager” on page 43, you should be familiar with them. The main difference is
that, after you have viewed the value of an attribute, you can select from a list the value
you want to set it to. You can also reset the attribute to the value it had when you
displayed the attributes.

For example, to block a queue so that users cannot put messages on it while you fix a
problem:

1. Start the Advanced Controls utility by clicking on its icon in the MQSeries for
Windows program group.

2. Go to the Queue Managers view of the Advanced Controls utility and select the
active queue manager.

3. Select Queues from the Selected menu.

The resulting Queues for Queue Manager window shows all the queues that the
active queue manager owns.

4. Select the queue you want to work with, then select Attributes from the Selected
menu.

5. In the resulting window, select the InhibitPut attribute. The current value of this
attribute is displayed.

6. Select the Change push button.

7. Change the value of the attribute by selecting the value PUT_INHIBITED from the
list box.

8. Select the OK push button.

If you want more information on the attributes, see the online help.

82 User’s Guide

Advanced Controls utility

Issuing MQSC commands
To issue MQSC commands, either singly or from a command file, use the MQSC
Commands utility. You can start this utility without leaving the Advanced Controls
utility. Select Redefine from the Selected menu, then use the MQSC Commands utility
as described in Chapter 10, “Using MQSC commands” on page 85.

 Chapter 9. Administering a queue manager 83

Advanced Controls utility

84 User’s Guide

Using MQSC commands

Chapter 10. Using MQSC commands

MQSeries provides commands (known as MQSC commands) with which you can
create, change, and delete MQSeries objects. This chapter describes how to use those
commands on MQSeries for Windows. It describes:

� “How to issue MQSC commands”
� “The MQSC Commands utility” on page 86
� “Writing MQSC command files” on page 89

MQSC commands are common across all MQSeries platforms, but MQSeries for
Windows does not support all the commands available on other MQSeries products. If
you are used to using MQSC commands on other operating systems, see Appendix C,
“MQSC commands supported by MQSeries for Windows” on page 169 to see if the
commands you want to use are available on Windows. For a description of each
MQSC command you can use on MQSeries for Windows, see the online MQSeries for
Windows Command Reference.

MQSeries for Windows does not support the MQSeries Command Server, so you
cannot run MQSC commands from programs (known as Programmable Command
Formats, or PCFs) and you cannot issue commands on one workstation to run them on
another (known as remote administration).

How to issue MQSC commands

You can type MQSC commands one at a time, or you can save many commands in a
file and run that file. MQSeries for Windows provides the MQSC Commands utility to
make both of these operations easy. This utility performs and extends the functions of
the RUNMQSC command that other MQSeries products provide. You can also run
MQSC command files using some of the other MQSeries for Windows utilities. Table 4
on page 86 shows which utilities you can use.

 Copyright IBM Corp. 1994, 1996 85

MQSC Commands utility

Table 4. How you can issue MQSC commands in MQSeries for Windows

 To type
MQSC
commands

To run an
MQSC
command
file

To use the
DISPLAY
command

To use the
DEFINE
command

Create Components utility No Yes No (1)

Create and Go utility No Yes No No

MQSC Commands utility Yes Yes No Yes

Standard Controls utility No No (2) No

Advanced Controls utility (3) No (2) No

Notes: :

1. You cannot type the DEFINE command in this utility, but you can use its windows to
create components.

2. You cannot type the DISPLAY command in this utility, but you can use its windows to
display the attributes of objects.

3. You cannot type MQSC commands in this utility, but you can use its windows to change
the attributes of existing MQSeries objects.

Specifying MQSeries object names
In the examples showing MQSC commands in this chapter, some of the objects have
long names. This is to help you identify the type of object you are dealing with.

When you are issuing MQSC commands, you need specify only the local name of the
object on which you are operating. In the examples, the queues have names such as
SAMPLE.VENUS.REMOTE. They have this format simply to show the function of the queue.
You do not need to use names of this form, but you are recommended to use a naming
scheme of some sort.

You can write MQSC commands and their attributes in uppercase or lowercase. But
the names of MQSeries objects are case sensitive, so always ensure you type them in
the same way in which they were defined.

The MQSC Commands utility
The MQSC Commands utility allows you to type MQSC commands and to run MQSC
command files. You can:

Edit and rerun a command
If a command results in an error, you can edit the command and rerun it
without having to type the whole command again.

Run an MQSC command file
You can run an MQSC command file. Any errors are reported and can be
viewed from the utility. You can then correct them and run the file again.

86 User’s Guide

MQSC Commands utility

Use the Windows clipboard
You can use the clipboard to transfer commands to and from other files.
You can save a complex command in the clipboard so you can load it next
time you use the utility (provided you have not added something else to the
clipboard or restarted your workstation).

Recall commands
The utility stores the last 10 successful commands. You can recall them
using the PageUp and PageDown keys, then rerun any of them.

Log commands in a window
The utility logs in its Result window the result of each command it
processes, and a summary of every MQSC file it runs. There is one log
message for each command issued and each file run. Each log message
also contains an icon, which provides a visual representation of the
success or failure of the command.

Log commands in a file
The utility logs in a file all the commands it processes from MQSC
command files. The log file is called MQSC.LOG and it is stored in the
directory of the active queue manager. The utility creates an empty log
every time it starts.

Save user preferences
Each time you end the utility, it saves your preferences (such as window
size and position) and the name of the directory containing the last MQSC
file you ran.

Look up descriptions of MQSC commands
The MQSC commands that MQSeries for Windows supports are described
in the online MQSeries for Windows Command Reference. You can open
this book without leaving the utility.

Differences from other platforms
The main differences between the MQSC Commands utility and the RUNMQSC utility
provided by other MQSeries products are:

� MQSeries for Windows does not support the DISPLAY command. To view the
attributes of MQSeries objects, use the Standard Controls utility or the Advanced
Controls utility.

� You cannot specify the name of a queue manager to run the MQSC commands
against. This is because MQSeries for Windows allows only one queue manager
to run at a time, so it runs your commands against the active queue manager.

� There are some small differences in how you must write commands in an MQSC
command file; see “The format of MQSC files” on page 89.

 Chapter 10. Using MQSC commands 87

MQSC Commands utility

Starting the MQSC Commands utility
You can start the MQSC Commands utility in two ways:

� Start either the Standard Controls utility or the Advanced Controls utility, then start
the queue manager you want to work with. Then double click on the icon of the
MQSC Commands utility in the MQSeries for Windows program group.

� Start the Advanced Controls utility and start the queue manager you want to work
with. Then select Redefine... from the Selected menu in the Advanced Controls
utility.

Note: You cannot start the MQSC Commands utility unless either the Standard
Controls utility or the Advanced Controls utility is running.

When the MQSC Commands utility starts, a message box warns you that any
commands you issue will affect the active queue manager. The name of the active
queue manager is shown in the title bar of the MQSC Commands utility.

If the MQSC Commands utility cannot start, MQSeries for Windows displays the
following error message:

A queue manager is not running. (AMQ3581).

If this happens, start a queue manager from either the Standard Controls utility or the
Advanced Controls utility, then try again.

Issuing MQSC commands from the utility
You can issue MQSC commands either interactively (by typing them in a field of the
MQSC Commands utility window) or by saving them in an MQSC command file and
running that file.

Issuing commands interactively
To issue a command interactively, type it in the Command window of the MQSC
Commands utility. You can split the command across multiple lines by ending each line
except the last one with a plus (+) sign. When you have finished typing the command,
press the Enter key to submit the command. A message indicating the success or
failure of the command is displayed in the Result window.

If the command is successful, the command is selected in the Command window. If
you press any keys other than the direction keys, the Command window is cleared.
The command is saved, and you can recall it using the PageUp and PageDown keys.

If the command is unsuccessful, it is not selected. You can correct it and resubmit it
without having to retype the whole command.

Running a command file
To run a command file, select Run MQSC File from the File menu. This displays a
window that allows you to select the file you want to run.

88 User’s Guide

MQSC command files

You can view MQSC files by selecting the View push button. This loads the file into
the Windows Notepad program. As well as viewing, Notepad allows limited editing.

When you have chosen the file you want to use, select the OK push button. This runs
the file against the active queue manager. If any errors or warnings occur, the utility
provides an option to view the log file. A message indicating the success or failure of
the command is displayed in the Result window.

Stopping the MQSC Commands utility
You can stop the MQSC Commands utility either by selecting Exit from the File menu,
or by selecting Close from the system menu. When you close the MQSC Commands
utility, the message box displayed by the Standard Controls utility or the Advanced
Controls utility is removed and the window is refreshed.

Note: You cannot close the Standard Controls utility or the Advanced Controls utility
while the MQSC Commands utility is running.

Writing MQSC command files
MQSC commands are written in ASCII text. By convention they have a file-name
extension of TST.

Figure 8 is an extract from the MQSC command file VENUS.TST that is supplied with
MQSeries for Windows in the \MQW\SAMPLES directory. This extract shows the
command DEFINE QLOCAL and its attributes.

...
DEFINE QLOCAL('SAMPLE.VENUS.LOCAL') REPLACE +

DESCR('Local queue') +
 DEFPSIST(YES) +
 SHARE

Figure 8. An extract from VENUS.TST

The format of MQSC files
If you are using MQSC files you have copied from other MQSeries platforms, be aware
that they may contain unrecognizable control characters, which the MQSC interpreter
will reject. You can prevent this happening by editing and resaving the .TST file before
you use it.

Most command files from other systems will work with MQSeries for Windows, but
Table 5 on page 90 shows differences you should note.

For more information on the format of command files, see the online MQSeries for
Windows Command Reference.

 Chapter 10. Using MQSC commands 89

MQSC command files

Table 5. The format of MQSC command files

On MQSeries for Windows On other MQSeries platforms

Lowercase characters are not changed to
uppercase.

MQSeries for Windows uses the characters
you type, regardless of whether or not they
are enclosed in single quotation marks.

Lowercase characters not enclosed in
quotation marks are changed to uppercase.

You cannot use commas as separators. You can use commas as separators.

You cannot use a minus sign (−) as a
continuation character.

You can use a minus sign (−) as a
continuation character.

The continuation character must be at the
end of a keyword, data value, or quoted
string.

The continuation character can appear
anywhere within the command.

A string that contains the following special
characters must be enclosed in single
quotation marks:

 Period (.)
Forward slash (/)

 Underscore (_)
 Percent (%)

For example:

DEFINE QLOCAL ('TEST.QUEUE')

A string that contains the following special
characters does not need to be enclosed in
single quotation marks:

 Period (.)
Forward slash (/)

 Underscore (_)
 Percent (%)

The description you specify using the
DESCR keyword cannot contain characters
from a double-byte character set (DBCS).

The DESCR keyword can use DBCS
characters.

Understanding errors in the MQSC log files
When you run an MQSC command file, the queue manager creates a log file called
MQSC.LOG in the directory for the active queue manager. For example, if your queue
manager is called TEST, the log file is C:\MQW\QMGRS\TEST\MQSC.LOG (if you
installed MQSeries for Windows in directory C:\MQW). If the name of the queue
manager is more than 8 characters long, MQSeries for Windows creates a directory
whose name is based on those 8 characters. The name of the queue manager
appears near the top of the log file.

To look at the contents of the log file, edit it using any editor.

If you get an error from an MQSC command that is run when you are creating a queue
manager, you are prompted to view the MQSC log. If there are errors in the syntax of
the command, the message in the log file tells you what is wrong.

Note: MQSeries parses MQSC commands from left to right, and it stops parsing when
it finds the first error. If your command still does not run after you have fixed the
reported errors, there are more errors following those first reported.

90 User’s Guide

MQSC command files

If you need more information about these errors, see Appendix F, “Error messages” on
page 179.

If a command fails even when its syntax is correct, this means that the queue manager
was unable to run the command. If this happens, the command returns a code that
shows the reason for its failure; Appendix E, “Reason codes” on page 175 lists these
codes.

Examples of MQSC command files
The following figures show simple MQSC command files that are supplied with
MQSeries for Windows:

� Figure 9 on page 92 shows the file MARS.TST
� Figure 10 on page 93 shows the file VENUS.TST

Both of these files are supplied in directory \MQW\SAMPLES. They define the queues
and channels you use if you follow the procedure described in Chapter 8, “Setting up
and verifying two queue managers” on page 67.

 Chapter 10. Using MQSC commands 91

MQSC command files

\ Define a local transmission queue - messages will be put here
\ before being sent to the remote queue manager.
DEFINE QLOCAL('SAMPLE.MARS.XMIT') REPLACE +

DESCR('Local transmission queue') +
 USAGE(XMITQ)

\ Define the remote queue.
\ The sample application should put messages on this queue.
DEFINE QREMOTE('SAMPLE.MARS.REMOTE') REPLACE +

DESCR('Remote queue defined on MARS') +
 DEFPSIST(YES) +
\ This is the name of the local queue on the remote machine
 RNAME('SAMPLE.VENUS.LOCAL') +
\ This is the name of the queue manager on the remote machine
 RQMNAME('VENUS') +
\ This is the name local transmission queue to be used
 XMITQ('SAMPLE.MARS.XMIT')

\ Define the channel that will remove messages from the transmission
\ queue SAMPLE.MARS.XMIT and send them to the machine specified
\ by CONNAME.
\
\ Change CONNAME to the TCP/IP name of the machine where
\ the remote queue manager is running.
\
DEFINE CHANNEL ('MARS.TO.VENUS') CHLTYPE(SDR) TRPTYPE(TCP) +
 XMITQ('SAMPLE.MARS.XMIT') +

CONNAME('VENUS TCP/IP machine name') +
DESCR('Sender channel for messages to queue manager VENUS') +

 REPLACE

\ Define the channel that will accept messages from the remote
\ queue manager on the machine specified by CONNAME.
\
\ Change CONNAME to the TCP/IP name of the machine where
\ the remote queue manager is running.
\
DEFINE CHANNEL ('VENUS.TO.MARS') CHLTYPE(RQSTR) TRPTYPE(TCP) +

CONNAME('VENUS TCP/IP machine name') +
DESCR('Requester channel for messages from queue manager VENUS') +

 REPLACE

\ Define the local queue where the remote machine will place
\ its messages.
\ The sample application should get messages from this queue.
DEFINE QLOCAL('SAMPLE.MARS.LOCAL') REPLACE +

DESCR('Local queue') +
 DEFPSIST(YES) +
 SHARE

Figure 9. The supplied file MARS.TST

92 User’s Guide

MQSC command files

\ Define a local transmission queue - messages will be put here
\ before being sent to the remote queue manager
DEFINE QLOCAL('SAMPLE.VENUS.XMIT') REPLACE +

DESCR('Local transmission queue') +
 USAGE(XMITQ)

\ Define the remote queue.
\ The sample application should put messages on this queue
DEFINE QREMOTE('SAMPLE.VENUS.REMOTE') REPLACE +

DESCR('Remote queue defined on VENUS') +
 DEFPSIST(YES) +
\ This is the name of the local queue on the remote machine
 RNAME('SAMPLE.MARS.LOCAL') +
\ This is the name of the queue manager on the remote machine
 RQMNAME('MARS') +
\ This is the name local transmission queue to be used
 XMITQ('SAMPLE.VENUS.XMIT')

\ Define the channel that will remove messages from the transmission
\ queue SAMPLE.VENUS.XMIT and send them to the remote queue
\ manager.
DEFINE CHANNEL ('VENUS.TO.MARS') CHLTYPE(SVR) TRPTYPE(TCP) +
 XMITQ('SAMPLE.VENUS.XMIT') +

DESCR('Server channel for messages to queue manager MARS') +
 REPLACE

\ Define the channel that will accept messages from the remote
\ queue manager.
DEFINE CHANNEL ('MARS.TO.VENUS') CHLTYPE(RCVR) TRPTYPE(TCP) +

DESCR('Receiver channel for messages from queue manager MARS') +
 REPLACE

\ Define the local queue where the remote machine will place
\ its messages.
\ The sample application should get messages from this queue
DEFINE QLOCAL('SAMPLE.VENUS.LOCAL') REPLACE +

DESCR('Local queue') +
 DEFPSIST(YES) +
 SHARE

Figure 10. The supplied file VENUS.TST

 Chapter 10. Using MQSC commands 93

MQSC command files

94 User’s Guide

Create and Go utility

Chapter 11. Creating an INI file for the Create and Go utility

This chapter describes how to create an initialization (INI) file for use with the Create
and Go utility. The user of an MQSeries for Windows application can use this utility to
create and configure automatically the MQSeries components they need on their
workstation.

Note: This chapter is for the MQSeries administrator who wants to create system
definitions that application users can run using the Create and Go utility on their
workstations. If you want to run the Create and Go utility yourself, you do not
need to read this chapter. Instead, see “Creating components using the Create
and Go utility” on page 44.

This chapter describes:

� “The format of the INI file” on page 96
� “Processing the INI file” on page 99
� “Defining a queue manager” on page 100
� “Defining a channel group” on page 104
� “Defining a transport link” on page 107
� “Defining controls” on page 110

When a user runs the Create and Go utility, the utility reads an initialization file that
contains definitions of the MQSeries components the user needs on their workstation
before they can run your application. The utility creates those MQSeries components,
so the user does not have to type values into the Create Components utility to create
their own components before they can run their applications. The utility can also either
add one of the MQSeries for Windows utilities to the user’s Windows StartUp group or
it can start one of the utilities.

When you have created your own INI file to define the components needed for your
users’ applications, you can replace the default INI file on the installation diskettes you
give to your users. All the users need to do is to run the installation program on the
diskettes, then run the Create and Go utility to create the MQSeries objects they need.
The Create and Go utility remembers the date, time, and size of the INI file. If they run
the Create and Go utility again and these values are the same as the previous time,
they are asked whether or not they want to proceed. If they do proceed, the Create
and Go utility re-creates the components defined in the INI file only if the file specifies
that the existing components should be replaced.

The names of queue managers must be unique on a workstation, so you must tailor the
INI file for a particular user. However, you can create the INI file in such a way that the
Create and Go utility prompts the user to type the name of their own queue manager.

Note: Chapter 5, “Verifying your installation and configuration” on page 35 uses the
default INI file to create a sample queue manager you can use to test an installation.
The procedures in that chapter will not work if you replace the default INI file.

 Copyright IBM Corp. 1994, 1996 95

Create and Go utility

You can create or change an INI file using any editor. Also, you can use the Create
Components utility to add to an INI file, or to replace the file.

The format of the INI file
The Create and Go utility uses only the INI file named CREATEMQ.INI, and this file
must be in the \MQW directory. To use another INI file, you must first rename it to
CREATEMQ.INI and copy it to this directory. A file of this name is supplied on the
MQSeries for Windows installation diskettes and the installation process puts the file
into the MQW directory. For a description of this file, see “Example INI files” on
page 98.

The INI file comprises one or more sections, each having the format:

 [component name]
 ComponentType=type
 keyword=value

...
 keyword=value

You can include comments in the INI file, but each line of comments must have an
asterisk (*) or a semicolon (;) in the first column.

Note: Always take a backup copy of an INI file before you edit it.

 Component names
The component names must be of the form [Component_n], where n is an integer. You
must enclose the component names in square brackets [].

There must be a Component_1 section in the INI file, but the sections do not have to be
in numeric order. The Create and Go utility processes the sections in numeric order
and stops when the next number in the sequence is missing.

96 User’s Guide

Create and Go utility

For example, consider this INI file:

 [Component_1]
 ComponentType=QueueManager

...

 [Component_3]
 ComponentType=TransportLink

...

 [Component_2]
 ComponentType=ChannelGroup

...

When the Create and Go utility processes this file, it first creates the queue manager,
then the channel group, then the transport link.

Now consider this INI file:

 [Component_1]
 ComponentType=QueueManager

...

 [Component_5]
 ComponentType=TransportLink

...

 [Component_2]
 ComponentType=ChannelGroup

...

 [Component_3]
 ComponentType=ChannelGroup

...

When the Create and Go utility processes this file, it first creates the queue manager,
then the first channel group, then the second channel group, then stops. It does not
create the transport link because there is a gap in the sequence of component
definitions.

 Chapter 11. Creating an INI file for the Create and Go utility 97

Create and Go utility

 Component types
You can define sections using the following component types:

QueueManager
Defines the properties of the queue manager.

ChannelGroup
Defines the properties of a channel group.

TransportLink
Defines the properties of a transport link.

Controls
Defines when the MQSeries for Windows utilities are started.

Note: To run an MQSeries application, you must have a queue manager running. So
unless the users of your applications are going to create their queue managers
themselves, you should always define a QueueManager component in the INI file.

 Keywords
The keyword=value statements define the attributes of the component. The keywords
you can use are described in this chapter; they must be followed immediately by an
equals (=) sign.

This chapter describes the keywords you can use within each section.

Example INI files
The following example is the supplied file CREATEMQ.INI. It creates the objects for
the sample programs to use.

 [Component_1]
 ComponentType=QueueManager
 Name=SAMPLE_QM

Description=Queue Manager for testing the samples
 LoadSamplesMQSC=yes
 Autostart=yes
 Replace=yes

 [Controls]
 RunOnCompletion=StandardControls

98 User’s Guide

Create and Go utility

The following example is the supplied sample file, MARS.INI:

 [Component_1]
 ComponentType=QueueManager
 Name=MARS

Description=Queue manager to communicate with Venus
 LoadUserMQSC_1=C:\MQW\SAMPLES\MARS.TST
 Autostart=yes
 Replace=yes

 [Component_2]
 ComponentType=ChannelGroup
 Name=MARSGroup

Description=Channel group to communicate with Venus
 QueueManagerName=MARS
 AllUserChannels=no
 Channel_1=MARS.TO.VENUS
 Channel_2=VENUS.TO.MARS
 Autostart=yes
 Replace=yes

 [Controls]
 RunOnCompletion=AdvancedControls

Processing the INI file
When the Create and Go utility processes the INI file, it writes any warning or error
messages to a log file named CREATEMQ.LOG in the \MQW directory. This file is
overwritten each time the Create and Go utility is started. If any errors or warnings
occur during the processing of the INI file, the Create and Go utility displays a window
which gives the following choices to the user:

� View the log file

� End the Create and Go utility (it deletes all components it has created, and
restores any components it has replaced to their former state)

� Continue with the Create and Go utility

 Chapter 11. Creating an INI file for the Create and Go utility 99

Create and Go utility

Defining a queue manager
To define a queue manager, use a section that starts with the lines:

 [Component_n]
 ComponentType=QueueManager

Note: To run an MQSeries application, you must have a queue manager running. So
unless the users of your applications are going to create their queue managers
themselves, you should always define a QueueManager component in the INI file.

The following list explains the keywords you can use within the section:

Use this keyword To do this

Name= Specify the name of the queue manager you want to
create.

The name of the queue manager must be unique on the
workstation. It can have a maximum of 48 characters.

If you use a nonvalid character, the Create and Go utility
replaces it with a period (.) and logs a warning.

To prompt the user to type the name of their queue
manager, specify the following in the INI file:

 Name=?

You can control the wording of the window that the user
sees by using the NamePrompt and NameInformationText
keywords.

If you do not specify a name, the Create and Go utility
selects the first name that has not already been used from
the following list:

 QueueManager
 QueueManager_1
 QueueManager_2

...
 QueueManager_n

NamePrompt= Specify the text that appears above the queue manager
name field.

This is valid only when you specify Name=? in the Name
keyword. You can use a maximum of 100 characters.

The default text is:

Enter the name of the queue manager

100 User’s Guide

Create and Go utility

NameInformationText= Specify the text that appears in the information line at the
bottom of the window.

This is valid only when you specify Name=? in the Name
keyword. You can use a maximum of 200 characters.

The default text is:

Type the name of the new queue manager.

Description= Describe the queue manager.

Use this keyword to add a text description of the queue
manager. You can use a maximum of 64 characters.

The default value is all blanks.

LoadSamplesMQSC= Specify whether or not to load the MQSC command file
that is needed to run the MQSeries for Windows sample
programs.

Specify either yes or no. The default value is no.

The MQSC command file for the sample programs is
named AMQSCOSW.TST.

LoadUserMQSC_ n= Specify the name of an MQSC command file you want
loaded.

You can specify this keyword many times, substituting
successive integers for n, starting with 1. The entries are
read in numeric order.

You can use these MQSC command files to define
MQSeries objects (such as queues and channels) that you
want the Create and Go utility to create when it creates the
queue manager.

If the Create and Go utility cannot find the specified file, it
logs an error and continues by processing the next
component.

If an error occurs while running an MQSC command file,
the Create and Go utility puts an entry in its log file, and
that entry refers you to an MQSC log file.

Autostart= Specify whether or not the queue manager is started
automatically when the Standard Controls utility or
Advanced Controls utility is started.

Specify either yes or no. The default value is yes.

Note: Only one queue manager can be started
automatically. If you specify Autostart=yes for more than
one queue manager, the last one you define is started
automatically.

 Chapter 11. Creating an INI file for the Create and Go utility 101

Create and Go utility

Replace= If a queue manager of this name already exists, specify
whether or not to replace it with this one.

Specify either yes or no. The default value is no.

Note: If you specify Replace=yes, all the queues,
channels, and messages associated with the first queue
manager are destroyed. If you have defined any queues
and channels in an MQSC command file that you specify in
the LoadUserMQSC_n keyword, those queues and
channels are created for the new queue manager.

Example queue manager components
The first example defines a queue manager named MY_QUEUE_MANAGER using the
default values:

 [Component_1]
 ComponentType=QueueManager
 Name=MY_QUEUE_MANAGER

This creates a queue manager that has the default queues and channels. It is started
automatically when the Standard Controls utility or the Advanced Controls utility starts,
but if there is already a queue manager of that name running on the workstation, it is
not replaced. The queue manager has no description.

The second example is from MARS.INI, the sample file that creates one of the queue
managers you can use to verify you have correctly configured two communicating
queue managers (see Chapter 8, “Setting up and verifying two queue managers” on
page 67):

 [Component_1]
 ComponentType=QueueManager
 Name=MARS

Description=Queue manager to communicate with VENUS
 LoadUserMQSC_1=C:\MQW\SAMPLES\MARS.TST
 Autostart=yes
 Replace=yes

When the queue manager in the second example is created, the file
C:\MQW\SAMPLES\MARS.TST is run, and this file defines the objects the queue
manager needs when it communicates with the queue manager named VENUS. The
queue manager is started automatically when either the Standard Controls utility or the
Advanced Controls utility is started, and if there is already a queue manager named
MARS on the workstation, it is replaced.

102 User’s Guide

Create and Go utility

The third example defines a queue manager using the name that the user is prompted
to supply:

 [Component_1]
 ComponentType=QueueManager
 Name=?

NamePrompt=Type the name given to you by Head Office
NameInformationText=Type the name, then press OK
Description=Queue manager for payroll application

 LoadUserMQSC_1=A:\PAYROLL.TST
 Autostart=yes
 Replace=yes

When the queue manager in the third example is created, the Create and Go utility
displays a window in which the user is prompted to type the name of the queue
manager they have been given by their head office.

 Chapter 11. Creating an INI file for the Create and Go utility 103

Create and Go utility

Defining a channel group
To define a channel group, use a section that starts with the lines:

 [Component_n]
 ComponentType=ChannelGroup

You can define zero or more channel group sections.

The following list explains the keywords you can use within the section:

Use this keyword To do this

Name= Specify the name of the channel group you want to create.

You can use a maximum of 48 characters. If you use a
nonvalid character, the Create and Go utility replaces it with a
period (.) and logs a warning.

If you do not specify a name, the Create and Go utility selects
the first name that has not already been used from the
following list:

 ChannelGroup
 ChannelGroup_1
 ChannelGroup_2

...
 ChannelGroup_n

Description= Describe the channel group.

Use this keyword to add a text description of the channel
group. You can use a maximum of 64 characters.

The default value is all blanks.

QueueManagerName= Specify the name of the queue manager to which the channel
group is to belong.

If the queue manager you specify does not exist, the Create
and Go utility logs an error.

If you do not specify the name of a queue manager, and the
Create and Go utility has created one during its current
operation, it uses that name; otherwise it uses the name of any
queue manager it can find. If there is no queue manager on
the workstation, the Create and Go utility logs an error.

StartListener= Specify whether or not a listener is started when the channel
group is started.

Specify either yes or no. The default value is no.

104 User’s Guide

Create and Go utility

AllUserChannels= Specify whether or not to include in the channel group all the
user-defined channels that are on the owning queue manager.

Specify either yes or no. The default value is yes.

Note: If you use the Create Components utility to create your
INI file, AllUserChannels=yes is added to your file. If you do
not want to include all the channels, you must edit the INI file
like this:

� Change the keyword to AllUserChannels=no

� Add a Channel_n keyword for each channel you want to
create

If you specify AllUserChannels=no, you must use Channel_n
keywords to specify one or more channel names.

Channel_ n= Specify the name of a channel to be included in the channel
group.

You can specify this keyword many times, substituting
successive integers for n, starting with 1. The entries are read
in numeric order.

If the Create and Go utility cannot find the specified channel, it
logs an error and continues processing the next component.

If you specify AllUserChannels=yes, the Create and Go utility
ignores all Channel_n keywords.

Autostart= Specify whether or not the channel group is started
automatically when the Standard Controls utility or Advanced
Controls utility is started.

Specify either yes or no. The default value is yes.

Note: Only one channel group can be started automatically.
If you specify Autostart=yes for more than one channel group,
the last one you define is started automatically.

Replace= If a channel group of this name already exists, specify whether
or not to replace it with this one.

Specify either yes or no. The default value is no.

 Chapter 11. Creating an INI file for the Create and Go utility 105

Create and Go utility

Example channel group components
The first example defines a channel group named MY_CHANNEL_GROUP on the
queue manager named MY_QUEUE_MANAGER, using all the default values:

 [Component_2]
 ComponentType=ChannelGroup
 Name=MY_CHANNEL_GROUP
 QueueManagerName=MY_QUEUE_MANAGER

This creates a channel group that includes all the user-defined channels. It is started
automatically when the Standard Controls utility or the Advanced Controls utility starts,
but if there is already a channel group of that name defined on the workstation, it is not
replaced. The channel group has no description.

The second example is from MARS.INI, the sample file that creates one of the channel
group you can use to verify you have correctly configured two communicating queue
managers (see Chapter 8, “Setting up and verifying two queue managers” on
page 67):

 [Component_2]
 ComponentType=ChannelGroup
 Name=MARSGroup

Description=Channel group to communicate with VENUS
 QueueManagerName=MARS
 AllUserChannels=no
 Channel_1=MARS.TO.VENUS
 Channel_2=VENUS.TO.MARS
 Autostart=yes
 Replace=yes

When the channel group in the second example is created, it includes only two
channels (named MARS.TO.VENUS and VENUS.TO.MARS). The channel group is
started automatically when either the Standard Controls utility or the Advanced Controls
utility is started, and if there is already a channel group named MARSGroup on the
workstation, it is replaced.

106 User’s Guide

Create and Go utility

Defining a transport link
To define a transport link, use a section that starts with the lines:

 [Component_n]
 ComponentType=TransportLink

You can define zero or more transport link sections.

The following list explains the keywords you can use within the section:

Use this keyword To do this

Name= Specify the name of the transport link you want to create.

You can use a maximum of 48 characters. If you use a
nonvalid character, the Create and Go utility replaces it with a
period (.) and logs a warning.

If you do not specify a name, the Create and Go utility selects
the first name that has not already been used from the
following list:

 TransportLink
 TransportLink_1
 TransportLink_2

...
 TransportLink_n

Description= Describe the transport link.

Use this keyword to add a text description of the transport link.
You can use a maximum of 64 characters.

The default value is all blanks.

StartFilename= Specify the name and full path of the program that is called
when the transport link is started.

If you do not specify a file name, the Create and Go utility
uses the file name C:\STRTLINK.BAT.

If the Create and Go utility cannot find the file you specify, it
logs a warning and continues processing the next component.

 Chapter 11. Creating an INI file for the Create and Go utility 107

Create and Go utility

StartTimeout= Specify the time (in seconds) that the Standard Controls utility
or the Advanced Controls utility wait after calling the program
you specify in the StartFilename keyword.

This timeout is to allow time for the transport link to start. After
this time, the Standard Controls utility or the Advanced
Controls utility reads the status file (STRTLINK.DAT) to see if
the link has started.

The default timeout is 60 seconds.

StopFilename= Specify the name and full path of the program that is called
when the transport link is stopped.

If you do not specify a file name, the Create and Go utility
uses the file name C:\STOPLINK.BAT.

If the Create and Go utility cannot find the file you specify, it
logs a warning and continues processing the next component.

StopTimeout= Specify the time (in seconds) that the Standard Controls utility
or the Advanced Controls utility wait after calling the program
you specify in the StopFilename keyword.

This timeout is to allow time for the transport link to stop. After
this time, the Standard Controls utility or the Advanced
Controls utility reads the status file (STOPLINK.DAT) to see if
the link has stopped.

The default timeout is 30 seconds.

Replace= If a transport link of this name already exists, specify whether
or not to replace it with this one.

Specify either yes or no. The default value is no.

108 User’s Guide

Create and Go utility

Example transport link components
The first example defines a transport link named PLANETS_TL, using all the default
values:

 [Component_3]
 ComponentType=TransportLink
 Name=PLANETS_TL

This creates a transport link that calls the default programs when it starts and stops,
and allows the default times for the programs to run. If there is already a transport link
of that name defined on the workstation, it is not replaced. The transport link has no
description.

The second example defines a transport link using other values of the keywords:

 [Component_3]
 ComponentType=TransportLink
 Name=JUPITER_TL

Description=Transport link for Jupiter
 StartFilename=STRTJUP.BAT
 StartTimeout=3ð
 StopFilename=STOPJUP.BAT
 StopTimeout=2ð
 Replace=yes

 Chapter 11. Creating an INI file for the Create and Go utility 109

Create and Go utility

 Defining controls
To define options for running the Standard Controls utility or the Advanced Controls
utility, use a section that starts with the line:

 [Controls]

The Controls section is optional, but if you do use it, you can define only one section.

The following list explains the keywords you can use within the section:

Use this keyword To do this

AutostartControls= Specify which utility is added to the Windows StartUp group.
The utility you specify is started automatically when Windows
is started.

You can specify only one of the following values:

None Add nothing to the StartUp group.

StandardControls Add the Standard Controls utility to
the StartUp group.

AdvancedControls Add the Advanced Controls utility to
the StartUp group.

If you specify anything else, the Create and Go utility logs a
warning and adds nothing to the StartUp group.

The default value is None.

If you specify None, or the Create and Go utility uses the
default value, and either of the utilities is already in the StartUp
group, it is removed.

RunOnCompletion= Specify which utility to run when the Create and Go utility has
completed processing.

You can specify only one of the following values:

None Run nothing.
StandardControls Run the Standard Controls utility.
AdvancedControls Run the Advanced Controls utility.

If you specify anything else, the Create and Go utility logs a
warning and runs nothing.

The default value is None.

110 User’s Guide

Create and Go utility

Examples of Control sections
The first example defines a control section that automatically starts the Standard
Controls utility every time Windows is started:

 [Controls]
 AutostartControls=StandardControls

The second example defines a control section that automatically runs the Advanced
Controls utility and adds the Standard Controls utility to the StartUp group:

 [Controls]
 RunOnCompletion=AdvancedControls
 AutostartControls=StandardControls

 Chapter 11. Creating an INI file for the Create and Go utility 111

Create and Go utility

112 User’s Guide

Transport links

Chapter 12. Working with transport links

This chapter describes how to set up and use transport links, which are named links to
other queue managers. When you are communicating with another queue manager
using a LAN connection, you need only a channel group. When you are
communicating using a dial-up device (such as a modem), you can use a transport link
in addition to a channel group.

The users of MQSeries for Windows can start and stop the transport link whenever they
like, so they can use it to control the duration (and hence the cost) of their dial-up
connection. When you define a transport link, you specify the names of two programs:
one that runs when you start the transport link, another that runs when you stop the
link. These programs can perform whatever functions you like, but they must at least
start and stop the dial-up device.

This chapter has the following sections:

� “Transport link programs”
� “Creating transport links” on page 114
� “Monitoring transport links” on page 114
� “Deleting a transport link” on page 118

Transport link programs
If you use a transport link, you need to provide two programs: one to start the dial-up
device and one to stop it. You must write these programs using the commands
provided by the device. In the definition of a transport link (see “Creating transport
links” on page 114), you must specify the names of these programs.

MQSeries for Windows provides two sample files. They are named STRTLINK.BAT
and STOPLINK.BAT, and they are supplied in the \MQW\SAMPLES directory. The
sample files contain comments that give guidance on how to write programs that control
transport links.

In the definition of the transport link, you must specify timeout values that define how
long MQSeries for Windows waits for your programs to run. Within these times, these
programs must write to status files to show whether or not they have completed
successfully. The default status files are named STRTLINK.DAT and STOPLINK.DAT.
If the program completes successfully, it must write the character ð to the status file; if
the program is unsuccessful, it must write any other integer.

Your programs are called by the Standard Controls utility or the Advanced Controls
utility: one when you start the transport link, the other when you stop it. The names of
the status files are passed as parameters to the programs.

 Copyright IBM Corp. 1994, 1996 113

Monitoring transport links

Creating transport links

The procedure for creating a transport link is similar to that for creating a queue. When
you have started the Create Components utility, select the Transport Link push button
in the Create Components window, then complete the fields in the Create Transport
Link window. You must specify:

� The name of the queue manager for which you want to create a transport link

� The name of the transport link you want to create

� The names of the programs you want to run when the transport link starts and
stops (examples of these are supplied in the \MQW\SAMPLES directory)

� The names of the status files that you want the programs to write to (examples of
these are supplied in the \MQW\SAMPLES directory)

� The timeout values that specify how long MQSeries for Windows allows for the
programs to run

When you have created your transport link, remember to close the Create Components
utility.

Monitoring transport links

The Standard Controls utility allows you:

� View the settings of a transport link, using the Transport Links view

� View the status of a transport link in relation to other components, using the
Connection Monitor view

� Start a transport link

� Stop a transport link

� View the attributes of a transport link

If you want to change any attributes, you must use the Advanced Controls utility.

114 User’s Guide

Monitoring transport links

The Transport Links view

The Transport Links view of the Standard Controls utility shows the status of all the
transport links owned by the active queue manager. This is what the icons in the
status window mean:

There is one Transport Link icon for each transport link you have
created. If the icon contains a status indicator (a check mark or an
exclamation mark), the transport link is active (that is, it is running). If
there is no status indicator, the transport link is stopped.

The name to the right of this icon is the name of the transport link.

The Monitor icon identifies the transport link whose details are displayed
when you move to the Connection Monitor view.

To monitor a different transport link, select that transport link in the
transport links view, then select Monitor from the Selected menu.

The Autostart icon identifies the transport link that is started automatically
when you restart the Standard Controls utility.

To automatically start a different transport link, select that transport link in
the transport links view, then select Autostart from the Selected menu.

 Chapter 12. Working with transport links 115

Monitoring transport links

The Connection Monitor view
The Connection Monitor view shows the current status of all the components
associated with the selected queue manager. When we saw it in “The Connection
Monitor view” on page 62, this view contained icons for the leaf node, the queue
manager, the channel group, and the server. But when you use transport links to
communicate using a dial-up device, this view shows the transport links as well. This is
what the icons in the status window mean:

The Leaf Node icon represents your workstation—this is your end of the
connection.

The Queue Manager icon represents the queue manager you are using.
The icon shows the status of the queue manager.

The name to the right of this icon is the name of the queue manager.

The Channel Group icon represents the channel group you are using.
The icon also shows the status of the channel group.

The name to the right of this icon is the name of the channel group.

The Transport Link icon represents the transport link you are using. If
the icon contains a check mark, the transport link is active. If there is no
check mark, the transport link is stopped.

The name to the right of this icon is the name of the transport link.

The Server icon represents the server end of the connection. This is the
queue manager with which you are communicating.

For an MQSeries application (represented by the leaf node icon at the top of the status
window) to be able to communicate with a remote queue manager (represented by the
server icon at the bottom of the Connection Monitor view), all the components between
them must be in the active state. So for a successful connection, all the icons between
the leaf node and the server must contain check marks. This view can give a quick
visual confirmation that communication is possible.

116 User’s Guide

Monitoring transport links

Starting a transport link
In MQSeries for Windows, only one transport link can be active (that is, running) at a
time. If you try to start a transport link when another one is active, you are prompted to
confirm that you want to stop the active one.

To start a transport link, select its name in the transport links view of the Standard
Controls utility. Double click on the name, or select Start from the Selected menu.
Wait until the transport link starts and the program you have specified starts the
communications device. When it does, a check mark is added to the transport link
icon. You can also start a transport link using the same method in the Connection
Monitor view.

Stopping a transport link
To stop a transport link, select its name. Double-click on it, or select Stop from the
Selected menu.

You do not have to stop a transport link before you start another one; when you start
another transport link, you are prompted to confirm that you want to stop the active
one.

When you stop a transport link, the program you have specified is called. This program
could stop the dial-up device.

When you stop a transport link, the active channel group is quiesced; that is, it is put
into a state from which it can automatically restart if you restart the transport link.

Note: The transport link stops when you close the Standard Controls utility.

Viewing the attributes of a transport link
You can view the attributes of any transport link at any time:

1. Go to the Transport Links view and select the transport link you want to view.

2. Select Attributes... from the Selected menu.

In the resulting window, you can see the names of the programs (and their timeout
values) associated with the transport link.

For more information on these attributes, see the online help. If you need to change
any of the attributes, you must use the Advanced Controls utility.

 Chapter 12. Working with transport links 117

Deleting transport links

Deleting a transport link
When you no longer need to use a transport link again, delete it using the Delete
Components utility.

To delete a transport link:

1. Close any MQSeries for Windows utilities that are running.

2. Click on the icon of the Delete Components utility in the MQSeries for Windows
program group and select the Transport Link push button.

This displays the Delete Transport Link window.

3. Select from the list the name of the queue manager that owns the transport link
you want to delete.

4. Select from the list the transport link you want to delete.

When you select a transport link, its description is displayed. The description may
help you select the correct transport link to delete.

Note: You can delete only one transport link at a time.

5. Click on the OK push button to start the delete process.

You are prompted to confirm that you want to delete the transport link.

When the transport link has been successfully deleted, you can reuse its name when
you create another transport link.

If you uninstall the product, all transport links are automatically deleted.

118 User’s Guide

Service trace

 Chapter 13. Service tools

This chapter describes the service tools that MQSeries for Windows provides:

� The Service Information utility
� The Service Trace utility

The Service Information utility

The Service Information utility displays information that may help you to solve the
problems of users of an MQSeries for Windows application. The information it displays
includes:

� The name of the directory in which MQSeries for Windows is installed

� The amount of free disk space remaining on the drive on which MQSeries for
Windows is installed

� The name of the national language version of MQSeries for Windows that is
installed

� The release levels of the MQSeries for Windows files, so you can determine if any
maintenance fixes have been applied

In addition, the utility writes the release levels of the MQSeries for Windows files to a
file named AMQLEVLW.LOG in the \MQW\DATA directory.

To start the Service Information utility, click on its icon in the MQSeries for Windows
program group.

The Service Trace utility

To trace the operation of an MQSeries for Windows application, use the Service Trace
utility. It can provide trace information that includes:

� The time of each trace event
� The identifiers of the processes that are running
� The names of the MQI calls that have been issued
� Information associated with control and data flow

 Note

The Service Trace utility is designed for use under the direction of IBM Service
personnel. This chapter does not describe all the features of the trace output.

 Copyright IBM Corp. 1994, 1996 119

Service trace

 Starting tracing
Before you use the Service Trace utility

Service Trace is active only for threads that are started after the utility itself.
Before using trace, close down all MQSeries for Windows applications on the
workstation on which you are going to use the trace. If you do not do this, the
trace output will be incomplete.

To start tracing, click on the icon for the Service Trace utility in the MQSeries for
Windows program group.

Controlling the trace output
You can choose to direct the trace output either to the window of the Service Trace
utility, to a file, or to both. You do this by selecting an option from the File menu in the
window of the Service Trace utility. At any time, you can change where the output is
sent. The default action is to send trace output to a file only.

Also, you can choose which trace points to trace, but you should do this only under the
guidance of IBM service personnel.

Tracing to a file
If you send trace output to a file, by default it is written to the file named
AMQTRACW.LOG in the trace output directory. In a default installation, this file is in
the C:\MQW\DATA directory.

To send the trace output to a different file, you must supply the file name, and the path
to it, after the start trace command. For example, to send trace output to the file
NEWTRACE.LOG in the C:\MTRACE directory:

1. In the Windows Program Manager, select Run... from the File menu.

2. In the Run window, type the following:

 AMQTRACW C:\MTRACE\NEWTRACE.LOG

The new file name is displayed in the title bar of the Service Trace utility.

Each time you start the Service Trace utility, the previous contents of the trace file are
overwritten. To save the trace, rename the trace output file before you restart the
Service Trace utility.

120 User’s Guide

Service trace

Controlling autosave when tracing to a file
If you send trace output to a file, you can control how often the trace output is written to
the disk file. This can be one of:

� After each line of trace output is generated
� After approximately every 50 trace records (these are 16 KB blocks)

To write the output after every line, select Autosave every line from the Options menu.

 Recommendation

The Autosave every line option can be extremely slow, especially during startup,
and it may cause timeouts in the application to be exceeded, resulting in failure of
the application. Use this option only under the direction of IBM service personnel.
You are advised not to use this option in production systems.

 Stopping tracing
Stop tracing either by selecting Exit from the File menu of the Service Trace utility, or
by pressing ALT+F4 in the window of the Service Trace utility.

When you do this, all tracing is stopped and the window of the Service Trace utility is
closed.

 Chapter 13. Service tools 121

Service trace

122 User’s Guide

Diagnosing problems

 Chapter 14. Diagnosing problems

This chapter suggests reasons for problems you may have with MQSeries for Windows.
You usually start with a symptom, or set of symptoms, and trace them back to their
cause.

Problem diagnosis is not problem solving. However, the process of problem diagnosis
often enables you to solve a problem. For example, if you find that the cause of the
problem is an error in an application program, you can solve the problem by correcting
that error.

You may not always be able to solve a problem after determining its cause. For
example, a performance problem may be caused by a limitation of your hardware, or
you may find that the cause of your problem is in MQSeries for Windows, in which case
you need to contact your IBM Support Center for a solution.

This chapter covers:

 � “Preliminary checks”
� “Problems with queues and queue managers” on page 124
� “Problems with channels and channel groups” on page 125
� “Problems with messages” on page 126

 Preliminary checks
Before you start problem determination in detail, it is worth looking for an obvious cause
of the problem, or a likely area in which to start your investigation.

Has MQSeries for Windows run successfully before?
Even if MQSeries for Windows has run successfully before, you should check that the
installation is correct. You can verify the installation at any time by running the Verify
Install utility. This tests the basic functions of MQSeries for Windows, so it can be a
useful first step for problem diagnosis. For information on how to use this utility, see
Chapter 5, “Verifying your installation and configuration” on page 35.

Is there enough disk space?
You may not have enough free disk space available to run MQSeries for Windows.
Use the Service Information utility to display the amount of free disk space on the
installed drive. Each new queue manager you create uses approximately 10 KB of disk
space to hold its configuration information (such as queue definitions), so consider
deleting any queue managers you no longer use.

 Copyright IBM Corp. 1994, 1996 123

Diagnosing problems

Problems with queues and queue managers
This section outlines some possible problems you may have with your queue managers
and queues.

Is the receiving queue full?
If the queue to which you are sending messages is full, you could increase the value of
its MaxDepth attribute. To do this use the Advanced Controls utility, or use the MQSC
Commands utility to run the MQSC command ALTER QUEUE.

Are some of your queues failing?
If you suspect the problem occurs with only some of your queues, examine the local
queues that you think are having problems:

1. Display the attributes of each queue, using either the Standard Controls utility or
the Advanced Controls utility.

2. Perform the following checks:

� If the CurDepth attribute has the same value as the MaxDepth attribute, the
queue is full and is not being processed. Check that the applications that
process the queue are running normally.

� If the value of the CurDepth attribute is less than that of the MaxDepth
attribute, check the following queue attributes to ensure that they are correct:

– The Shareability attribute defines whether or not the queue can be shared
by more than one program. If this attribute is set so that the queue
cannot be shared, another application could already have opened the
queue for input; this prevents other programs opening the queue.

– The InhibitGet and InhibitPut attributes define whether or not programs
can get and put messages on the queue. If these attributes are set to the
value INHIBITED, programs cannot use the queue.

� If there are no programs getting messages from the queue, determine why this
is so. It may be that the programs need to be started, a communications link
has been broken, or a program cannot open the queue.

Check the OpenInputCount and OpenOutputCount queue attributes. These
attributes indicate whether the queue has been opened for input or output. If a
value is zero, it indicates that no operations of that type can occur. Note that
the values may have changed—the queue may have been open, but it is now
closed.

You need to check the status at the time you expect to put or get a message.

Have data files been lost?
MQSeries for Windows does not support media recovery. If a disk error or disk failure
causes loss or corruption of the queue manager data files, you cannot recover this
data. You must re-create the queue manager and all the other objects you need.

124 User’s Guide

Diagnosing problems

Problems with channels and channel groups
This section outlines some possible problems with channels and channel groups. For
all problems with channels or channels groups, you should use the Standard Controls
utility or the Advanced Controls utility to check the status of the channels; for
information on how to do this, see “Viewing the status of a channel” on page 64.

Are the channels working?
You can see if a channel is currently sending messages by looking at the status
indicators in the Connection Monitor view of the Standard Controls utility or the
Advanced Controls utility. You can get more information by checking the status of the
channel. Amongst the status attributes you can check are:

� The number of messages processed by the channel
� The number of bytes sent
� The number of bytes received

Why does a channel stop request not work?
A problem can arise when the receiving end of a channel stops, but the sending end
does not. When this happens and there are no messages waiting to be sent, the
sending end of the channel is monitoring its transmission queue, and not the TCP/IP
connection. Therefore it does not recognize that the receiving end of the channel has
stopped. In this situation, you must use the Standard Controls utility or the Advanced
Controls utility to stop the sending end of the channel.

Why does the channel group not start?
If the channel group icon shows an exclamation mark status indicator when you start
the channel group, one or more of the channels in the group are not running correctly.
You should check the status of each channel. The following list shows status
messages and possible causes for each message:

Status Explanation

User exit error There is a problem associated with a user-written exit
program.

Invalid code page The code pages of the sending and receiving MCAs are
different. MQSeries for Windows does not convert
between the two code pages.

Configuration error There is a problem with the channel definition; for example,
the connection name is unknown.

Queue manager error The MCA has received an unexpected return code from
the queue manager.

TCP/IP error The network is not available, the remote system is not
responding, the listener is not running, or there is a
problem with TCP/IP.

 Chapter 14. Diagnosing problems 125

Diagnosing problems

System error There is either a resource error (for example, no memory
available) or an internal error in MQSeries for Windows.

Error at remote MCA The remote MCA has had a problem and has stopped the
channel, or bad data has been received.

Message sequence error The channel has received a message whose sequence
number does not match the one expected.

Unknown error Any situation not covered by the other status messages.

For each of the preceding status messages, you can do any of the following:

� Retry the operation
� Restart the workstation, then retry the operation
� Ask your system administrator for help

Unrecoverable system error
If you have an unrecoverable system error, for example a problem with the
synchronization file, you may need to reset the channel. The synchronization file is
named AMQRSYNA.DAT, and it is in the queue manager’s directory. You may need to
do one or more of the following, but only if you are an MQSeries administrator:

� Delete the synchronization file

� Reset the message sequence number using the MQSC command RESET
CHANNEL

� Resolve the status of any in-doubt messages using the MQSC command
RESOLVE CHANNEL

Problems with messages
This section outlines some possible problems with sending and receiving messages.

A message cannot be delivered?
MQSeries for Windows does not support dead-letter queues, therefore a message that
it cannot deliver can stop your system running.

If an MCA cannot deliver a message:

� The channel stops.

� Error messages are displayed on the workstations at both ends of the message
channel.

� The unit of work is backed out, and the messages reappear on the transmission
queue at the sending end of the channel. The sending channel is now blocked by
the undeliverable message.

If a message cannot be delivered to a remote queue, you should check that the remote
queue and its associated objects are defined to MQSeries for Windows.

126 User’s Guide

Diagnosing problems

Why are messages not being sent or received?
If your messages are not being sent or received, this indicates a problem with the
message channel. You can:

� Check the status of the channel in the Channel Status window of the Standard
Controls utility or the Advanced Controls utility

� Check that the queue, the transmission queue name (the XMITQ channel attribute),
and the channel definitions are correct

Why do messages not appear on the queue?
If messages do not appear when you are expecting them, check for the following.

Has the message been put on the queue successfully?
If the message has not been put on the queue successfully, check the following:

� Has the queue been defined correctly? For example, is the MaxMsgL attribute of
the queue large enough to allow a message of the required size?

� Is the queue enabled for putting?

� Is the queue already full? This could mean that an application was unable to put
the required message on the queue.

� Has another application got exclusive access to the queue?

Are you able to get any message from the queue?
If you cannot get any message from the queue, check the following:

� Can other applications get messages from the queue?
� Has another application got exclusive access to the queue?

If you are developing an application, check the following:

� Do you need to take a syncpoint?

If messages are being put or retrieved with syncpoint control, they are not available
to other tasks until the unit of recovery has been committed.

� Is your wait interval long enough?

You can set the wait interval as an option on the MQGET call. You should ensure
that you are waiting long enough for a response.

� Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or CorrelId)?

Check that you are waiting for a message with the correct MsgId or CorrelId. A
successful MQGET call will set both these values to that of the message retrieved,
so you may need to reset these values in order to get another message
successfully.

Also check if you can get another message from the queue.

 Chapter 14. Diagnosing problems 127

Diagnosing problems

� Was the message you are expecting defined as persistent?

If not, and MQSeries for Windows has been restarted, the message will have been
lost.

If many programs are serving the queue, they can conflict with one another. For
example, suppose one program issues an MQGET call with a buffer length of zero to
find out the length of the message, and then issues a specific MQGET call specifying
the MsgId of that message. However, in the meantime, another program issues a
successful MQGET call for that message, so the first program receives a completion
code of MQRC_NO_MSG_AVAILABLE. Applications must be designed to cope with
this situation.

Consider that the message could have been received, but that your application failed to
process it in some way. For example, did an error in the expected format of the
message cause your program to reject it?

The data is not converted
MQSeries for Windows does not convert data in messages to other code pages or
integer representations. Therefore, any data conversion must be done by the queue
manager that sends a message to an MQSeries for Windows queue manager.

128 User’s Guide

 Part 5. Application programming

Chapter 15. Writing applications using the MQI on Windows 131

Chapter 16. Application programming restrictions 149

Chapter 17. Sample programs . 155

 Copyright IBM Corp. 1994, 1996 129

130 User’s Guide

The MQI in C

Chapter 15. Writing applications using the MQI on Windows

When you write an MQSeries application to run on Windows, you need the following
information:

Information on how to design an application
For this information, see the MQSeries Application Programming Guide.

Information about the MQI
This chapter describes the MQI calls, data types, and structures in the
programming languages that MQSeries for Windows supports. It has the
following sections:

� “Using the C programming language”
� “Using the Visual Basic programming language” on page 141

Information about how to migrate an existing application to Windows
If you have written MQSeries applications before, or you are migrating an existing
MQSeries application to Windows from another operating system, note that
MQSeries for Windows does not support the full MQI. Make sure you read
Chapter 16, “Application programming restrictions” on page 149 to understand
the differences.

Examples of existing applications
Chapter 17, “Sample programs” on page 155 describes the sample programs
supplied with MQSeries for Windows.

You can write applications for MQSeries for Windows using either of the following
programming languages:

 � Visual C++
 � Visual Basic

For a list of the compilers you can use, see “Required software” on page 13.

Using the C programming language
This section contains:

� “Considerations for the C language”
� “MQI calls in C” on page 135
� “Elementary data types in C” on page 138
� “Structure data types in C” on page 139

Considerations for the C language
This section gives information you need before you start to use the MQI in the C
programming language.

 Copyright IBM Corp. 1994, 1996 131

The MQI in C

Header files in C
Header files are provided as part of the definition of the MQI to assist with the writing of
C application programs that use message queuing. These header files are summarized
in Table 6.

To improve the portability of applications, it is recommended that you code the name of
the header file in lowercase on the #include preprocessor directive:

 #include "cmqc.h"

For 16-bit applications, link the programs with the library MQM16.LIB. For 32-bit
applications, link the programs with the library MQM.LIB.

The include files (.H) are supplied in the \MQW\INCLUDE subdirectory (by default).
The library files are included in the \MQW\LIB subdirectory (by default).

Table 6. C header files

File name Contents

CMQC.H Call prototypes, data types, and named constants for the main MQI

CMQXC.H Call prototypes, data types, and named constants for the channel exits

Parameters of the MQI calls
Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG are
passed by value; for all other parameters, the address of the parameter is passed by
value.

Not all parameters that are passed by address need to be specified every time a
function is invoked. Where a particular parameter is not required, a null pointer can be
specified as the parameter on the function invocation, in place of the address of the
parameter data. Parameters for which this is possible are identified in the call
descriptions.

No parameter is returned as the value of the function; in C terminology, this means that
all functions return void .

The attributes of the function are defined by the MQENTRY macro variable; the value of
this macro variable depends on the environment.

Parameters with undefined data type
The MQGET, MQPUT, and MQPUT1 functions each have one parameter that has an
undefined data type, namely the Buffer parameter. This parameter is used to send
and receive the application’s message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. It is valid
to declare the parameters in this way, but it is usually more convenient to declare them
as the particular structure that describes the layout of the data in the message. The
function parameter is declared as a pointer-to-void, and so the address of any sort of
data can be specified as the parameter on the function invocation.

132 User’s Guide

The MQI in C

 Data types
All data types are defined by means of the C typedef statement. For each data type,
the corresponding pointer data type is also defined. The name of the pointer data type
is the name of the elementary or structure data type prefixed with the letter “P” to
denote a pointer. The attributes of the pointer are defined by the MQPOINTER macro
variable; the value of this macro variable depends on the environment. The following
illustrates how pointer data types are declared:

#define MQPOINTER _far \ /\ depends on environment \/
...
typedef MQLONG MQPOINTER PMQLONG; /\ pointer to MQLONG \/
typedef MQMD MQPOINTER PMQMD; /\ pointer to MQMD \/

Manipulating binary strings
Strings of binary data are declared as one of the MQBYTEn data types. Whenever
fields of this type are copied, compared, or set, the C functions memcpy , memcmp , or
memset should be used; for example:

#include <string.h>
#include "cmqc.h"

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /\ set "MsgId" field to nulls \/
MQMI_NONE, /\ ...using named constant \/

 sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /\ set "CorrelId" field to nulls \/
ðxðð, /\ ...using a different method \/

 sizeof(MQBYTE24));

Do not use the string functions strcpy , strcmp , strncpy , or strncmp , because these
do not work correctly for data declared with the MQBYTEn data types.

Manipulating character strings
When the queue manager returns character data to the application, the queue manager
always pads the character data with blanks to the defined length of the field; the queue
manager does not return null-terminated strings. Therefore, when copying, comparing,
or concatenating such strings, the string functions strncpy , strncmp , or strncat should
be used.

Do not use the string functions, which require the string to be terminated by a null
(strcpy , strcmp , strcat). Also, do not use the function strlen to determine the length
of the string; use instead the sizeof function to determine the length of the field.

 Chapter 15. Writing applications using the MQI on Windows 133

The MQI in C

Initial values for structures
The header file CMQC defines various macro variables that may be used to provide
initial values for the message queuing structures when instances of those structures are
declared. These macro variables have names of the form “MQXXX_DEFAULT”, where
“MQXXX” represents the name of the structure. They are used in the following way:

MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields (for example, the StrucId fields which occur in most
structures, or the Format field which occurs in MQMD), the MQI defines particular
values that are valid. For each of the valid values, two macro variables are provided:

� One macro variable defines the value as a string whose length excluding the
implied null matches exactly the defined length of the field. For example, for the
Format field in MQMD the following macro variable is provided (the symbol “␣”
represents a blank character):

#define MQFMT_STRING "MQSTR␣␣␣"

Use this form with the memcpy and memcmp functions.

� The other macro variable defines the value as an array of characters; the name of
this macro variable is the name of the string form suffixed with “_ARRAY”. For
example:

#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','␣','␣','␣'

Use this form to initialize the field when an instance of the structure is declared
with values different from those provided by the MQMD_DEFAULT macro variable.1

Initial values for dynamic structures
When a variable number of instances of a structure is required, the instances are
usually created in main storage obtained dynamically using the calloc or malloc
functions. To initialize the fields in such structures, the following technique is
recommended:

1. Declare an instance of the structure using the appropriate MQXXX_DEFAULT macro
variable to initialize the structure. This instance becomes the “model” for other
instances:

MQMD Model = {MQMD_DEFAULT}; /\ declare model instance \/

The static or auto keywords can be coded on the declaration in order to give the
model instance static or dynamic lifetime, as required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of the
structure:

PMQMD Instance;
Instance = malloc(sizeof(MQMD)); /\ get storage for dynamic instance \/

1 This is not always necessary; in some environments the string form of the value can be used in both situations. However, the array
form is recommended for declarations, since this is required for compatibility with the C++ programming language.

134 User’s Guide

The MQI in C

3. Use the memcpy function to copy the model instance to the dynamic instance:

memcpy(Instance,&Model,sizeof(MQMD)); /\ initialize dynamic instance \/

 Notational conventions
The sections that follow show how the:

� Calls should be invoked
� Parameters should be declared
� Various data types should be declared

In a number of cases, parameters are arrays whose size is not fixed. For these, a
lowercase ‘n’ is used to represent a numeric constant. When the declaration for that
parameter is coded, the ‘n’ must be replaced by the numeric value required.

MQI calls in C

 MQBACK
MQBACK (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQCLOSE
MQCLOSE (Hconn, &Hobj, Options, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG Options; /\ Options that control the action of MQCLOSE \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQCMIT
MQCMIT (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Writing applications using the MQI on Windows 135

The MQI in C

 MQCONN
MQCONN (Name, &Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 Name; /\ Name of queue manager \/
MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQDISC
MQDISC (&Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQGET
MQGET (Hconn, Hobj, &MsgDesc, &GetMsgOpts, BufferLength, Buffer,

&DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQMD MsgDesc; /\ Message descriptor \/
MQGMO GetMsgOpts; /\ Options that control the action of MQGET \/
MQLONG BufferLength; /\ Length in bytes of the Buffer area \/
MQBYTE Buffer[n]; /\ Area to contain the message data \/
MQLONG DataLength; /\ Length of the message \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQINQ
MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG SelectorCount; /\ Count of selectors \/
MQLONG Selectors[n]; /\ Array of attribute selectors \/
MQLONG IntAttrCount; /\ Count of integer attributes \/
MQLONG IntAttrs[n]; /\ Array of integer attributes \/
MQLONG CharAttrLength; /\ Length of character attributes buffer \/
MQCHAR CharAttrs[n]; /\ Character attributes \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

136 User’s Guide

The MQI in C

 MQOPEN
MQOPEN (Hconn, &ObjDesc, Options, &Hobj, &CompCode,
 &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQOD ObjDesc; /\ Object descriptor \/
MQLONG Options; /\ Options that control the action of MQOPEN \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQPUT
MQPUT (Hconn, Hobj, &MsgDesc, &PutMsgOpts, BufferLength, Buffer,
 &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQMD MsgDesc; /\ Message descriptor \/
MQPMO PutMsgOpts; /\ Options that control the action of MQPUT \/
MQLONG BufferLength; /\ Length of the message in Buffer \/
MQBYTE Buffer[n]; /\ Message data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQPUT1
MQPUT1 (Hconn, &ObjDesc, &MsgDesc, &PutMsgOpts,

BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQOD ObjDesc; /\ Object descriptor \/
MQMD MsgDesc; /\ Message descriptor \/
MQPMO PutMsgOpts; /\ Options that control the action of MQPUT1 \/
MQLONG BufferLength; /\ Length of the message in Buffer \/
MQBYTE Buffer[n]; /\ Message data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Writing applications using the MQI on Windows 137

The MQI in C

 MQSET
MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG SelectorCount; /\ Count of selectors \/
MQLONG Selectors[n]; /\ Array of attribute selectors \/
MQLONG IntAttrCount; /\ Count of integer attributes \/
MQLONG IntAttrs[n]; /\ Array of integer attributes \/
MQLONG CharAttrLength; /\ Length of character attributes buffer \/
MQCHAR CharAttrs[n]; /\ Character attributes \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

Elementary data types in C
Table 7. Elementary data types in C

Data type Representation

MQBYTE typedef unsigned char MQBYTE;

MQBYTE16 typedef MQBYTE MQBYTE16[16];

MQBYTE24 typedef MQBYTE MQBYTE24[24];

MQBYTE32 typedef MQBYTE MQBYTE32[32];

MQBYTE64 typedef MQBYTE MQBYTE64[64];

MQCHAR typedef char MQCHAR;

MQCHAR4 typedef MQCHAR MQCHAR4[4];

MQCHAR8 typedef MQCHAR MQCHAR8[8];

MQCHAR12 typedef MQCHAR MQCHAR12[12];

MQCHAR16 typedef MQCHAR MQCHAR16[16];

MQCHAR28 typedef MQCHAR MQCHAR28[28];

MQCHAR32 typedef MQCHAR MQCHAR32[32];

MQCHAR48 typedef MQCHAR MQCHAR48[48];

MQCHAR64 typedef MQCHAR MQCHAR64[64];

MQCHAR128 typedef MQCHAR MQCHAR128[128];

MQCHAR256 typedef MQCHAR MQCHAR256[256];

MQHCONN typedef MQLONG MQHCONN;

MQHOBJ typedef MQLONG MQHOBJ;

MQLONG typedef long MQLONG;

PMQLONG typedef MQLONG MQPOINTER PMQLONG;

138 User’s Guide

The MQI in C

Structure data types in C

 MQDLH–Dead-letter header
MQSeries for Windows does not support dead-letter queues, so you cannot use the
MQDLH structure.

 MQGMO–Get-message options
typedef struct tagMQGMO {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Options; /\ Options that control the action of

 MQGET \/
MQLONG WaitInterval; /\ Wait interval \/
MQLONG Signal1; /\ Signal \/
MQLONG Signal2; /\ Reserved \/

 MQCHAR48 ResolvedQName; /\ Resolved name of destination queue \/
 } MQGMO;

 MQMD–Message descriptor
typedef struct tagMQMD {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Report; /\ Report options \/
MQLONG MsgType; /\ Message type \/
MQLONG Expiry; /\ Expiry time \/
MQLONG Feedback; /\ Feedback or reason code \/
MQLONG Encoding; /\ Data encoding \/
MQLONG CodedCharSetId; /\ Coded character set identifier \/
MQCHAR8 Format; /\ Format name \/
MQLONG Priority; /\ Message priority \/
MQLONG Persistence; /\ Message persistence \/

 MQBYTE24 MsgId; /\ Message identifier \/
 MQBYTE24 CorrelId; /\ Correlation identifier \/
MQLONG BackoutCount; /\ Backout counter \/

 MQCHAR48 ReplyToQ; /\ Name of reply-to queue \/
 MQCHAR48 ReplyToQMgr; /\ Name of reply queue manager \/
 MQCHAR12 UserIdentifier; /\ User identifier \/
 MQBYTE32 AccountingToken; /\ Accounting token \/
 MQCHAR32 ApplIdentityData; /\ Application data relating to
 identity \/
MQLONG PutApplType; /\ Type of application that put the

 message \/
 MQCHAR28 PutApplName; /\ Name of application that put the
 message \/
MQCHAR8 PutDate; /\ Date when message was put \/
MQCHAR8 PutTime; /\ Time when message was put \/
MQCHAR4 ApplOriginData; /\ Application data relating to origin \/

 } MQMD;

 Chapter 15. Writing applications using the MQI on Windows 139

The MQI in C

 MQOD–Object descriptor
typedef struct tagMQOD {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG ObjectType; /\ Object type \/

 MQCHAR48 ObjectName; /\ Object name \/
 MQCHAR48 ObjectQMgrName; /\ Object queue manager name \/
 MQCHAR48 DynamicQName; /\ Dynamic queue name \/
 MQCHAR12 AlternateUserId; /\ Alternate user identifier \/
 } MQOD;

 MQPMO–Put-message options
typedef struct tagMQPMO {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Options; /\ Options that control the action of

MQPUT or MQPUT1 \/
MQLONG Timeout; /\ Reserved \/
MQHOBJ Context; /\ Object handle of input queue \/
MQLONG KnownDestCount; /\ Reserved \/
MQLONG UnknownDestCount; /\ Reserved \/
MQLONG InvalidDestCount; /\ Reserved \/

 MQCHAR48 ResolvedQName; /\ Resolved name of destination queue \/
 MQCHAR48 ResolvedQMgrName; /\ Resolved name of destination queue
 manager \/
 } MQPMO;

 MQTM–Trigger message
MQSeries for Windows does not support triggering, so you cannot use the MQTM
structure.

MQXQH–Transmission queue header
typedef struct tagMQXQH {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/

 MQCHAR48 RemoteQName; /\ Name of destination queue \/
 MQCHAR48 RemoteQMgrName; /\ Name of destination queue manager \/
MQMD MsgDesc; /\ Original message descriptor \/

 } MQXQH;

140 User’s Guide

The MQI in Visual Basic

Using the Visual Basic programming language
This section contains:

� “Considerations for the Visual Basic language”
� “MQI calls in Visual Basic” on page 142
� “Elementary data types in Visual Basic” on page 145
� “Structure data types in Visual Basic” on page 146

Considerations for the Visual Basic language
This section gives information you need before you start to use the MQI in the Visual
Basic programming language.

Header files in Visual Basic
Header (or form) files are provided as part of the definition of the MQI to assist with the
writing of Visual Basic application programs that use message queuing. These header
files are summarized in Table 8.

The form files (.BAS) are supplied in the \MQW\INCLUDE subdirectory (by default).
The library files are included in the \MQW\LIB subdirectory (by default).

Table 8. Visual Basic header files

File name Contents

CMQB3.BAS Call declarations, data types, and named constants for the 16-bit MQI.
Use this with Microsoft Visual Basic, Version 3.

CMQB4.BAS Call declarations, data types, and named constants for both the 16-bit
and 32-bit MQI. Use this with Microsoft Visual Basic, Version 4.

Parameters of the MQI calls
Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG are
passed by value; all other parameters are passed by address.

Initial values for structures
The supplied header files define various subroutines that may be invoked to initialize
the message queuing structures with the default values. These subroutines have
names of the form MQxxx_DEFAULTS , where MQxxx represents the name of the
structure. They are used in the following way:

MQMD_DEFAULTS (MyMsgDesc) 'Initialize message descriptor'
MQPMO_DEFAULTS (MyPutOpts) 'Initialize put-message options'

 Notational conventions
The sections that follow show how to:

� Invoke the calls
� Declare the parameters
� Declare the data types

 Chapter 15. Writing applications using the MQI on Windows 141

The MQI in Visual Basic

In some cases, parameters are arrays whose sizes are not fixed. For these, a
lowercase ‘n’ represents a numeric constant. When you code the declaration for that
parameter, you must replace the ‘n’ with the numeric value you require.

MQI calls in Visual Basic

 MQBACK
MQBACK (Hconn, CompCode, Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

 MQCLOSE
MQCLOSE (Hconn, Hobj, Options, CompCode, Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
Hobj As Long 'Object handle'
Options As Long 'Options that control the action of MQCLOSE'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

 MQCMIT
MQCMIT (Hconn, CompCode, Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

 MQCONN
MQCONN (Name, Hconn, CompCode, Reason)

Declare the parameters as follows:

Name As String\48 'Name of queue manager'
Hconn As Long 'Connection handle'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

142 User’s Guide

The MQI in Visual Basic

 MQDISC
MQDISC (Hconn, CompCode, Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

 MQGET
MQGET (Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer,

DataLength, CompCode, Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
Hobj As Long 'Object handle'
MsgDesc As MQMD 'Message descriptor'
GetMsgOpts As MQGMO 'Options that control the action of MQGET'
BufferLength As Long 'Length in bytes of the Buffer area'
Buffer As String 'Area to contain the message data'
DataLength As Long 'Length of the message'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

 MQINQ
MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, CompCode, Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
Hobj As Long 'Object handle'
SelectorCount As Long 'Count of selectors'
Selectors As Long 'Array of attribute selectors'
IntAttrCount As Long 'Count of integer attributes'
IntAttrs As Long 'Array of integer attributes'
CharAttrLength As Long 'Length of character attributes buffer'
CharAttrs As String 'Character attributes'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

 Chapter 15. Writing applications using the MQI on Windows 143

The MQI in Visual Basic

 MQOPEN
MQOPEN (Hconn, ObjDesc, Options, Hobj, CompCode, Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
ObjDesc As MQOD 'Object descriptor'
Options As Long 'Options that control the action of MQOPEN'
Hobj As Long 'Object handle'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

 MQPUT
MQPUT (Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer, CompCode,
 Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
Hobj As Long 'Object handle'
MsgDesc As MQMD 'Message descriptor'
PutMsgOpts As MQPMO 'Options that control the action of MQPUT'
BufferLength As Long 'Length of the message in Buffer'
Buffer As String 'Message data'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

 MQPUT1
MQPUT1 (Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer,
 CompCode, Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
ObjDesc As MQOD 'Object descriptor'
MsgDesc As MQMD 'Message descriptor'
PutMsgOpts As MQPMO 'Options that control the action of MQPUT1'
BufferLength As Long 'Length of the message in Buffer'
Buffer As String 'Message data'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

144 User’s Guide

The MQI in Visual Basic

 MQSET
MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, CompCode, Reason)

Declare the parameters as follows:

Hconn As Long 'Connection handle'
Hobj As Long 'Object handle'
SelectorCount As Long 'Count of selectors'
Selectors As Long 'Array of attribute selectors'
IntAttrCount As Long 'Count of integer attributes'
IntAttrs As Long 'Array of integer attributes'
CharAttrLength As Long 'Length of character attributes buffer'
CharAttrs As String 'Character attributes'
CompCode As Long 'Completion code'
Reason As Long 'Reason code qualifying CompCode'

Elementary data types in Visual Basic
Table 9. Elementary data types in Visual Basic

Data type Representation

MQBYTE String\1

MQBYTE24 String\24

MQBYTE32 String\32

MQCHAR String\1

MQCHAR4 String\4

MQCHAR8 String\8

MQCHAR12 String\12

MQCHAR28 String\28

MQCHAR32 String\32

MQCHAR48 String\48

MQCHAR64 String\64

MQCHAR128 String\128

MQCHAR256 String\256

MQHCONN Long

MQHOBJ Long

MQLONG Long

 Chapter 15. Writing applications using the MQI on Windows 145

The MQI in Visual Basic

Structure data types in Visual Basic

 MQDLH—Dead-letter header
MQSeries for Windows does not support dead-letter queues, so you cannot use the
MQDLH structure.

 MQGMO—Get-message options
Type MQGMO
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'
Options As Long 'Options that control the action of MQGET'

 WaitInterval As Long 'Wait interval'
 Signal1 As Long 'Signal'
 Signal2 As Long 'Reserved'
ResolvedQName As String\48 'Resolved name of destination queue'

End Type

 MQMD—Message descriptor
Type MQMD
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'

 Report As Long 'Report options'
 MsgType As Long 'Message type'
 Expiry As Long 'Expiry time'
Feedback As Long 'Feedback or reason code'

 Encoding As Long 'Data encoding'
CodedCharSetId As Long 'Coded character set identifier'

 Format As String\8 'Format name'
 Priority As Long 'Message priority'
 Persistence As Long 'Message persistence'
 MsgId(23) As Byte 'Message identifier'
 CorrelId(23) As Byte 'Correlation identifier'
 BackoutCount As Long 'Backout counter'
ReplyToQ As String\48 'Name of reply-to queue'
ReplyToQMgr As String\48 'Name of reply queue manager'
UserIdentifier As String\12 'User identifier'

 AccountingToken(31) As Byte 'Accounting token'
ApplIdentityData As String\32 'Application data relating to identity'
PutApplType As Long 'Type of application that put the message'
PutApplName As String\28 'Name of application that put the message'
PutDate As String\8 'Date when message was put'
PutTime As String\8 'Time when message was put'
ApplOriginData As String\4 'Application data relating to origin'

End Type

146 User’s Guide

The MQI in Visual Basic

 MQOD—Object descriptor
Type MQOD
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'

 ObjectType As Long 'Object type'
ObjectName As String\48 'Object name'

 ObjectQMgrName As String\48 'Object queue manager name'
DynamicQName As String\48 'Dynamic queue name'
AlternateUserId As String\12 'Alternate user identifier'

End Type

 MQPMO—Put-message options
Type MQPMO
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'
Options As Long 'Options that control the action of MQPUT or'

 'MQPUT1'
 Timeout As Long 'Reserved'
Context As Long 'Object handle of input queue'

 KnownDestCount As Long 'Reserved'
UnknownDestCount As Long 'Reserved'
InvalidDestCount As Long 'Reserved'
ResolvedQName As String\48 'Resolved name of destination queue'
ResolvedQMgrName As String\48 'Resolved name of destination queue manager'

End Type

 MQTM—Trigger message
MQSeries for Windows does not support triggering, so you cannot use the MQTM
structure.

MQXQH—Transmission queue header
Type MQXQH
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'
RemoteQName As String\48 'Name of destination queue'
RemoteQMgrName As String\48 'Name of destination queue manager'
MsgDesc As MQMD 'Original message descriptor'

End Type

 Chapter 15. Writing applications using the MQI on Windows 147

The MQI in Visual Basic

148 User’s Guide

MQI restrictions

Chapter 16. Application programming restrictions

The Message Queue Interface (MQI) is the MQSeries application programming
interface. MQSeries for Windows supports nearly all the features of the MQI; this
chapter uses the following sections to describe the features MQSeries for Windows
does not support:

� “Unsupported features of the MQI calls”
� “Unsupported features of the MQI structures” on page 150
� “MQI attributes on Windows” on page 152

For a description of the full MQI, see the MQSeries Application Programming
Reference.

Unsupported features of the MQI calls
For each MQI call, this section describes the differences in processing in MQSeries for
Windows.

 Pointers
MQSeries for Windows cannot verify that parameter pointers are valid. So if, for
example, the address you pass as the Buffer parameter on an MQGET call cannot be
accessed for the entire length given by the BufferLength parameter, an exception or
unpredictable result can occur. To avoid this problem, always ensure that any
parameters you pass on an MQI call are valid.

The MQCONN (Connect queue manager) call
If your application specifies a blank name in the Name parameter of the MQCONN call,
the request is serviced by the running queue manager. MQSeries for Windows allows
only one queue manager to run at a time, so the concept of a default queue manager
does not apply.

MQSeries for Windows does not support queue manager groups, so you cannot use an
asterisk (*) in the Name parameter of the MQCONN call.

The MQOPEN (Open object) call
MQSeries for Windows supports the following options on the MQOPEN call:

 � MQOO_INPUT_AS_Q_DEF
 � MQOO_INPUT_SHARED
 � MQOO_INPUT_EXCLUSIVE
 � MQOO_BROWSE
 � MQOO_OUTPUT
 � MQOO_INQUIRE
 � MQOO_SET
 � MQOO_SET_ALL_CONTEXT
 � MQOO_SET_IDENTITY_CONTEXT

 Copyright IBM Corp. 1994, 1996 149

MQI restrictions

If you have an existing MQSeries application that uses the following options, you do not
have to change the MQOPEN call because MQSeries for Windows ignores these
options:

 � MQOO_ALTERNATE_USER_AUTHORITY
 � MQOO_FAIL_IF_QUIESCING

The MQGET (Get message) call
When you issue an MQGET call using the MQGMO_WAIT option, the call completes
only when a suitable message arrives on the queue, or when the wait interval expires.
During the time that the call is waiting, Windows program messages (not MQSeries
messages) are still sent to the appropriate window procedure, so your program can
remain responsive to other requests.

You must ensure that your code that processes Windows program messages does not
assume that the MQGET call returns data to the application straightaway. If it attempts
to access data that is not yet available, errors can easily occur. Also, if you attempt to
make other MQI calls while the MQGET call is waiting, reason code 2219 is returned to
show that another call is busy.

For a list of the options that MQSeries for Windows supports for the MQGET call, see
“Get-message options structure (MQGMO).”

The MQPUT and MQPUT1 (Put message) calls
For a list of the options that MQSeries for Windows supports for the MQPUT and
MQPUT1 calls, see “Put-message options structure (MQPMO)” on page 151.

The MQSET and MQINQ (Set and inquire attribute) calls
For a list of the attributes that MQSeries for Windows supports, see “MQI attributes on
Windows” on page 152.

Unsupported features of the MQI structures
This section describes how MQSeries for Windows uses the MQI structures in different
ways from other MQSeries products.

Dead-letter header structure (MQDLH)
MQSeries for Windows does not support dead-letter queues, so you cannot use the
MQDLH structure.

Get-message options structure (MQGMO)
In the Options field of MQGMO structure:

� MQSeries for Windows supports the following values:

 – MQGMO_WAIT
 – MQGMO_NO_WAIT
 – MQGMO_SYNCPOINT
 – MQGMO_NO_SYNCPOINT

150 User’s Guide

MQI restrictions

 – MQGMO_BROWSE_FIRST
 – MQGMO_BROWSE_NEXT
 – MQGMO_BROWSE_MSG_UNDER_CURSOR
 – MQGMO_MSG_UNDER_CURSOR
 – MQGMO_ACCEPT_TRUNCATED_MSG
 – MQGMO_NONE

� MQSeries for Windows ignores the MQGMO_FAIL_IF_QUIESCING value.

MQSeries for Windows supports all the other fields of the MQGMO structure.

Put-message options structure (MQPMO)
In the Options field of MQPMO structure:

� MQSeries for Windows supports the following values:

 – MQPMO_SYNCPOINT
 – MQPMO_NO_SYNCPOINT
 – MQPMO_NO_CONTEXT
 – MQPMO_DEFAULT_CONTEXT
 – MQPMO_SET_IDENTITY_CONTEXT
 – MQPMO_SET_ALL_CONTEXT
 – MQPMO_NONE

� If you have an existing MQSeries application that uses the following options, you
do not have to change the MQPUT call because MQSeries for Windows ignores
these values:

 – MQPMO_ALTERNATE_USER_AUTHORITY
 – MQPMO_FAIL_IF_QUIESCING

MQSeries for Windows supports all the other fields of the MQPMO structure.

Message descriptor structure (MQMD)
MQSeries for Windows supports all the fields of the MQMD structure. Note the
following default values:

� PutApplType = MQAT_WINDOWS
� UserIdentifier = WINDOWS

 PutDate
On MQSeries for Windows, the queue manager uses the TZ environment variable to
calculate Greenwich Mean Time (GMT). You must set this variable to get the correct
time stamp in your message context. The value for the UK is GMT0BST.

Object descriptor structure (MQOD)
MQSeries for Windows supports all the fields of the MQOD structure, but it ignores the
contents of the AlternateUserId field.

 Chapter 16. Application programming restrictions 151

MQI attributes

Trigger message structure (MQTM)
MQSeries for Windows does not support triggering, so you cannot use the MQTM
structure.

MQI attributes on Windows
Queue managers, queues, and channels have properties called attributes. MQSeries
for Windows does not support all the attributes provided by other MQSeries products.
This section describes the attributes that MQSeries for Windows supports:

� The queue manager attributes are listed in Table 10.
� The queue attributes are listed in Table 11 on page 153.
� The channel attributes are listed in Table 12 on page 154.

MQSeries for Windows does not support process definitions.

For information about the attributes you can use with the MQSC commands, see the
online MQSeries for Windows Command Reference.

Table 10. Attributes of queue managers on Windows

Attribute Default value

QMgrName

QMgrDesc

Platform MQPL_WINDOWS (= 5)

CommandLevel 100

MaxPriority 9

CommandInputQName blanks

DefXmitQName blanks

CodedCharSetId

MaxHandles 256

MaxUncommittedMsgs 10000

MaxMsgLength 4 194 304 bytes

SyncPoint MQSP_AVAILABLE

152 User’s Guide

MQI attributes

Table 11. Attributes of queues on Windows

Attribute Default value

QName

QType

QDesc blank

InhibitGet MQQA_GET_ALLOWED

InhibitPut MQQA_PUT_ALLOWED

DefPriority 0

DefPersistence MQPER_NOT_PERSISTENT

MaxQDepth 5000

MaxMsgLength 4 194 304

BackoutThreshold 0

BackoutRequeueQName blank

Shareability MQQA_SHAREABLE

DefInputOpenOption

HardenGetBackout MQQA_BACKOUT_NOT_HARDENED

MsgDeliverySequence MQMDS_PRIORITY

RetentionInterval 999 999 999

DefinitionType

Usage MQUS_NORMAL

OpenInputCount

OpenOutputCount

CurrentQDepth

CreationDate

CreationTime

RemoteQName blank

RemoteQMgrName blank

XmitQName blank

BaseQName blank

 Chapter 16. Application programming restrictions 153

MQI attributes

Table 12. Attributes of channels on Windows

Attribute Default value

BatchSize 50

ChannelName

ChannelType

ConnectionName

Desc

DiscInterval 6000

LongRetryCount 999 999 999

LongRetryInterval 1200

MaxMsgLength 4 194 304

MCAUserIdentifier

MsgExit

MsgUserData

ReceiveExit

ReceiveUserExit

SecurityExit

SecurityUserExit

SendExit

SendUserExit

SeqNumberWrap 999 999 999

ShortRetryCount 10

ShortRetryInterval 60

TransportType MQXPT_TCP

XmitQName

154 User’s Guide

Sample programs

 Chapter 17. Sample programs

This chapter describes the design of the MQSeries for Windows sample programs. The
aim of the samples is to demonstrate the use of MQI calls inside Windows programs.
The sections in this chapter are:

� “General design” on page 156
� “The design of the Putting Messages sample program” on page 157
� “The design of the Getting Messages sample program” on page 157
� “The design of the Browsing Messages sample program” on page 158
� “Building the 16-bit executable files” on page 159
� “Generating 32-bit samples” on page 160

For information on how to run the sample programs, see Chapter 5, “Verifying your
installation and configuration” on page 35. That chapter tells you how to use two of the
samples to verify you have correctly installed and set up an MQSeries for Windows
queue manager. You can also use them to verify that you have correctly installed and
connected queue managers on two separate workstations (see Chapter 8, “Setting up
and verifying two queue managers” on page 67).

Both the source code and the executable files are supplied with MQSeries for Windows.
There is an icon for the executable file for each sample in the MQSeries for Windows
program group.

The sample programs are based on the MQSeries family samples:

The Putting Messages sample
The Putting Messages sample puts a message on a specified queue. The
executable file is named AMQSPUTW.EXE.

The Getting Messages sample
The Getting Messages sample gets a message from a specified queue. By
specifying the same queue that you used with the Putting Messages
sample, you can retrieve the messages you put on that queue. The
executable file is named AMQSGETW.EXE.

The Browsing Messages sample
The Browsing Messages sample browses (that is, copies and displays) a
message and its header. By specifying the same queue that you used with
the Putting Messages sample, you can browse the messages you put on
that queue. The executable file is named AMQSBCGW.EXE.

 Copyright IBM Corp. 1994, 1996 155

Sample programs

 General design
Each sample program uses a single window, and the design of this window is similar in
each program:

� The top part of the window is for working with queues.

� The middle part of the window is specific to the function of the sample (that is,
putting, getting, or browsing messages).

� The bottom part of the window is for displaying the completion codes and reason
codes for each of the MQI calls issued by the sample. This allows you to see a
log of all the MQI calls issued by the sample. The most recently issued completion
and reason codes are displayed at the top of the list.

Table 13 shows which MQI calls each sample program demonstrates.

Notes:

1. The sample programs do not contain much code to check Windows errors. This is
to make it easier to understand the MQSeries code. But this means you should
take care if you want to use these samples as a basis for your own application
development.

2. The MQSeries logic (including the MQI calls) is contained within conditional
compile directives:

Table 13. MQI calls used in the MQSeries for Windows sample programs

MQI call Putting
Messages

Getting
Messages

Browsing
Messages

MQCONN Yes Yes Yes

MQOPEN for output Yes No No

MQOPEN for input No Yes No

MQOPEN for browsing No No Yes

MQPUT Yes No No

MQGET No Yes No

MQGET for browsing No No Yes

MQCLOSE Yes Yes Yes

MQDISC Yes Yes Yes

 #ifdef MQSERIES_CALLS

 #endif

This is to enable you to identify the relevant sections of code more easily.
MQSERIES_CALLS itself is defined in the make (.MAK) files.

156 User’s Guide

Getting Messages sample

On MQSeries for Windows, there can be only one active queue manager, so there is
no need for the user of the sample to specify the name of a queue manager. The
connection to the active queue manager is done during the processing of the
WM_INITDIALOG message using the MQCONN call. The disconnection is done using
the MQDISC call during the processing of the WM_CLOSE message. This means that
the queue manager must be running before the sample starts; otherwise the connect
fails.

The design of the Putting Messages sample program
The Putting Messages sample program demonstrates putting short messages (a
maximum of 256 bytes) on a queue you specify when you start the program.

When the window is displayed, you must first decide which queue to open to put the
messages on. Type the name of the chosen queue and select the Open push button.
The sample then tries to open the queue for output using the MQOPEN call. The
completion and reason codes are displayed at the bottom of the window in the API
Return Code field. If successful, the Open push button is disabled, and the Close and
Put push buttons are enabled.

When the queue has been opened successfully, you can put a message on the queue
(using the MQPUT call) by typing the message in the Data field and selecting the Put
push button. The completion and reason codes are displayed in the API Return Code
field. If successful, the message data is also displayed in the Log list box. This is
useful for correlating messages you have put with those you have retrieved or browsed
using the other two samples. You can continue putting as many messages as you
want on the same queue.

If you want to put messages on another queue, select the Close push button. This
closes the queue using the MQCLOSE call. The completion and reason codes are
displayed in the API Return Code field. The Close and Put push buttons are now
disabled and the Open push button is enabled. Type in the name of the new queue to
be opened and select the Open push button. Put messages on this new queue using
the same method as before. When you want to end the sample program, first close
any open queue, then select the Exit menu item from the File menu.

The design of the Getting Messages sample program
The Getting Messages sample program demonstrates getting short messages from a
queue you specify when you start the program. The messages are removed from the
queue. If they are longer than 256 bytes, the messages are truncated and the
remainder discarded.

When the window is displayed, you must first decide which queue to open to get the
messages from. Type the name of the chosen queue and select the Open push
button. The sample then tries to open the queue for input using the MQOPEN call.
The completion and reason codes are displayed at the bottom of the window in the API

 Chapter 17. Sample programs 157

Browsing Messages sample

Return Code field. If successful, the Open push button is disabled, and the Close and
Get push buttons are enabled.

When you have successfully opened the queue, you can get a message from it (using
the MQGET call) by selecting the Get push button. The completion and reason codes
are displayed in the API Return Code field. If successful, the message data is
displayed in the Data list box and the message length is displayed in the Length field.
This is useful for correlating messages retrieved with messages put or browsed using
the other two samples. You can continue getting as many messages as there are on
the open queue.

If you want to get messages from another queue, select the Close push button. This
closes the queue using the MQCLOSE call. The completion and reason codes are
displayed in the API Return Code field. The Close and Get push buttons are now
disabled and the Open push button is enabled. Type in the name of the new queue to
be opened and select the Open push button. Get messages from this new queue
using the same method. When you want to close the sample, first close any open
queue, then select the Exit menu item from the File menu.

The design of the Browsing Messages sample program
The Browsing Messages sample program demonstrates browsing (that is, viewing)
messages on a queue you specify when you start the sample. You can browse only
the first 256 bytes of each message. The messages are not removed from the queue.

When the window is displayed, you must first decide which queue to open to browse
the messages from. Type the name of the chosen queue and select the Open push
button. The sample then tries to open the queue for browsing using the MQOPEN call.
The completion and reason codes are displayed at the bottom of the window in the API
Return Code field. If successful, the Open push button is disabled and the Close and
Browse push buttons are enabled.

If you have successfully opened the queue, you can browse a message from that
queue (using the MQGET call) by selecting the Browse push button. The completion
and reason codes are displayed in the API Return Code field. If successful, the
message header is displayed in the Header list box, the message data is displayed in
the Data field, and the message length is displayed in the Length field. The Data field
is useful for correlating messages browsed with messages put using the Putting
Messages sample. You can continue browsing as many messages as there are on the
opened queue.

If you want to browse messages from another queue, first select the Close push
button. This closes the queue using the MQCLOSE call. The completion and reason
codes are displayed in the API Return Code field. The Close and Browse push
buttons are now disabled and the Open push button is enabled. Type the name of the
new queue to be opened and select the Open push button. Browse messages on this
new queue using the same method. When you want to close the sample, first close
any open queue, then select Exit from the File menu.

158 User’s Guide

Building the samples

Building the 16-bit executable files
This section describes the files used by the sample programs. It also describes how to
build a program if you have modified the sample source code.

In addition to the source files, MQSeries for Windows supplies 16-bit executable and
make files for the samples. The file names are of the form AMQSxxxW, where xxx
represents the sample function (for example, GET). When you install MQSeries for
Windows using the default options, the files for the samples are put in the
\MQW\SAMPLES directory.

The following tables list the files that each sample program uses.

Table 14. Files for the Putting Messages sample

File name Purpose

AMQSPUTW.C Source file

AMQSPUTW.DEF Module definition file

AMQSPUTW.H Header file

AMQSPUTW.MAK Make file

AMQSPUTW.RC Resource file

AMQSPUTW.EXE Executable file

Table 15. Files for the Getting Messages sample

File name Purpose

AMQSGETW.C Source file

AMQSGETW.DEF Module definition file

AMQSGETW.H Header file

AMQSGETW.MAK Make file

AMQSGETW.RC Resource file

AMQSGETW.EXE Executable file

Table 16. Files for the Browsing Messages sample

File name Purpose

AMQSBCGW.C Source file

AMQSBCGW.DEF Module definition file

AMQSBCGW.H Header file

AMQSBCGW.MAK Make file

AMQSBCGW.RC Resource file

AMQSBCGW.EXE Executable file

 Chapter 17. Sample programs 159

32-bit samples

Note: If you rename a source file, you must edit the make file to refer to the new
name.

After you have made a backup copy, use the following procedure to rebuild a sample.
You must use the 16-bit Microsoft Visual C++ Compiler, Version 1.5.

1. Start a DOS session.

You can do this either by exiting from Windows or by clicking on the MS-DOS
command prompt. (If you are not familiar with Windows 3.1, the MS-DOS
command prompt is in the Main program group.)

2. If you have not already done so, run MSVCVARS (which is supplied with Microsoft
Visual C++) to ensure that the build environment is set up.

3. From the command prompt, type the appropriate NMAKE command. For example,
to build the Putting Messages sample, type:

NMAKE /A AMQSPUTW.MAK

This creates the executable file, AMQSPUTW.EXE.

Generating 32-bit samples
Although 32-bit samples are not supplied with MQSeries for Windows, you can
generate 32-bit programs from the supplied source files. You must provide an NMAKE
file for the 32-bit compiler you want to use. Other than specifying compiler and linker
options for the new compiler, the only thing to remember is to link the sample with the
library MQM.LIB, which provides the 32-bit entry points for the MQI calls.

The sample programs have been tested with Microsoft Visual C++ v2.0.

Note: Although the samples use 32-bit addressing, the MQI calls are passed straight
through to the 16-bit MQI. There is no 32-bit implementation of the MQI calls in
MQSeries for Windows.

160 User’s Guide

 Part 6. Appendixes

Appendix A. How MQSeries for Windows differs from the MQSeries family 163

Appendix B. MQSeries control commands 167

Appendix C. MQSC commands supported by MQSeries for Windows 169

Appendix D. Predefined queues and channels 171

Appendix E. Reason codes . 175

Appendix F. Error messages . 179

Appendix G. Notices . 187

 Copyright IBM Corp. 1994, 1996 161

162 User’s Guide

Family differences

Appendix A. How MQSeries for Windows differs from the MQSeries
family

MQSeries for Windows is the MQSeries queue manager for the Microsoft Windows
platform. It is designed to minimize system requirements so that workstations with
relatively modest specifications can use commercial messaging. This appendix
summarizes the differences between MQSeries for Windows and the other workstation
products in the MQSeries family. The features are listed in alphabetic order.

Attributes of queues and queue managers
MQSeries for Windows does not support all the attributes of queues and
queue managers (for example, it does not support those related to
instrumentation events). If you use an unsupported attribute in a command
or an MQI call, MQSeries for Windows returns a value to show that the
attribute is not supported.

Authority checking on the MQOPEN call
MQSeries for Windows does not support the SETMQAUT and DSPMQAUT
commands.

Command Server
MQSeries for Windows does not support the MQSeries Command Server,
so it does not support any MQSeries feature that uses the command server
(for example, PCF commands and remote administration).

Context passing
MQSeries for Windows does not copy context information from messages it
receives from other queue managers. This is because MQSeries for
Windows is intended to be a leaf node; it is not intended to be an
intermediate node in a network of queue managers, where messages
received from one queue manager are passed on to another.

Control commands
In other MQSeries products, you can issue control commands from the
command line. MQSeries for Windows provides utilities that perform the
functions of some of these commands; for example, they start and stop a
queue manager. For a comparison with the MQSeries control commands,
see Table 17 on page 167.

Data conversion
When an MQSeries for Windows queue manager receives data from a
queue manager running on a different platform, it cannot convert the
machine encoding, integer representation, or coded character set of the
application data. Also, it cannot run data conversion exits. This means
that any data conversion that is required must be performed by the other
queue manager.

 Copyright IBM Corp. 1994, 1996 163

Family differences

Dead-letter queues
MQSeries for Windows does not support dead-letter queues. A dead-letter
queue is a queue to which a queue manager or application sends
messages it cannot deliver to their correct destination. It is also known as
an undelivered-message queue.

Distributed Computing Environment (DCE) directories
MQSeries for Windows does not support DCE directories.

Events See instrumentation events.

Installable services
MQSeries for Windows does not support MQSeries installable services.
These are additional functions provided in other MQSeries products as
several independent components.

Instrumentation events
MQSeries for Windows does not support instrumentation events. These
are facilities that can be used in other MQSeries products to monitor the
operation of queue managers in a network of MQSeries systems.

Media recovery and logging
MQSeries for Windows does not support the creation of a sequence of log
records that contain an image of an object. Other MQSeries products
allow you to create such records and re-create objects from this image.

Message Queue Interface (MQI)
MQSeries for Windows supports a subset of the MQI.

To understand those features of the MQI that MQSeries for Windows does
not support, see Chapter 16, “Application programming restrictions” on
page 149.

Message retry exit
MQSeries for Windows does not support a message retry exit because you
use such an exit only when processing dead-letter queues.

MQI channels
MQSeries for Windows does not support MQI channels. These are client
connection and server connection channels. These are used with
MQSeries clients only, so MQSeries for Windows does not support them.

MQSC commands
MQSeries for Windows supports a subset of the MQSC commands. To
see which commands it supports, see Appendix C, “MQSC commands
supported by MQSeries for Windows” on page 169.

However, MQSeries for Windows provides the MQSC Commands utility,
which allows you to type MQSC commands in a window (and test and
reissue them) and run MQSC command files. This is described in
Chapter 10, “Using MQSC commands” on page 85.

164 User’s Guide

Family differences

MQSeries client and server support
You cannot use an MQSeries for Windows queue manager as an
MQSeries client, nor can you use it to support its own MQSeries clients.

Network support
MQSeries for Windows supports TCP/IP only.

Object Authority Manager (OAM)
MQSeries for Windows does not provide a security manager. It does not
support the SETMQAUT and DSPMQAUT commands.

Process definitions
Other MQSeries products use process definitions for setting up the
automatic triggering of applications. MQSeries for Windows does not
support triggering or process definitions.

Programmable Command Formats (PCFs)
MQSeries for Windows does not support PCFs.

Queue manager
MQSeries for Windows supports multiple queue manager definitions, but it
allows only one queue manager to run at any time.

Queue manager quiescing
MQSeries for Windows does not support the the quiescing of a queue
manager. This is the ability to allow applications to finish processing
before the queue manager is stopped, and to prevent any further
applications starting.

Sample programs
MQSeries for Windows provides Windows versions of some of the
MQSeries sample programs. The MQSeries for Windows samples are
described in Chapter 17, “Sample programs” on page 155.

Security manager
See object authority manager.

Signaling MQSeries for Windows does not support signaling. You cannot use the
MQGMO_SET_SIGNAL option with the MQGET call.

Triggering MQSeries for Windows does not support triggering, so it does not allow a
queue manager to start an application automatically when predetermined
conditions on a queue are satisfied. The following features of triggering
are also not supported:

 � Initiation queues
 � Process definitions
 � Trigger monitors

 Appendix A. How MQSeries for Windows differs from the MQSeries family 165

Family differences

Two-phase commit
MQSeries for Windows does not support two-phase commit. This is a
protocol for the coordination of changes to recoverable resources when
more than one resource manager is used by a single transaction.

However, MQSeries for Windows does allow the queue manager to commit
or back out of units of work.

166 User’s Guide

Control commands

Appendix B. MQSeries control commands

Control commands are commands that, in MQSeries for OS/2 or AIX, you type at a command prompt. In
MQSeries for Windows, you use the supplied utilities to perform the functions of some of these control
commands. To see which utilities to use, see Table 17.

Table 17 (Page 1 of 2). Control commands and MQSeries for Windows

MQSeries
command

Description Support on MQSeries for Windows

CRTMQCVX Create data conversion exit Not supported.

CRTMQM Create queue manager This function is provided by the Create
Components utility.

DLTMQM Delete queue manager This function is provided by the Delete
Components utility.

DSPMQAUT Display authority Not supported.

DSPMQCSV Display command server Not supported.

DSPMQTRN Display MQSeries transactions Not supported.

ENDMQM Stop queue manager This function is provided by the Standard
Controls utility and the Advanced Controls
utility.

RCDMQIMG Record media image Not supported.

RCRMQOBJ Recreate object Not supported.

RSVMQTRN Resolve MQSeries transactions Not supported.

RUNMQCHI Run channel initiator Not supported.

RUNMQCHL Run channel This function is provided by the Standard
Controls utility and the Advanced Controls
utility.

RUNMQLSR Run listener This function is provided by the Standard
Controls utility and the Advanced Controls
utility.

You must use either the Create
Components utility or the Create and Go
utility to create a channel group that
contains the listener. You can add the
listener to an existing channel group using
the Advanced Controls utility.

 Copyright IBM Corp. 1994, 1996 167

Control commands

Table 17 (Page 2 of 2). Control commands and MQSeries for Windows

MQSeries
command

Description Support on MQSeries for Windows

RUNMQSC Run MQSeries commands This function is provided by the MQSC
Commands utility. You can also run an
MQSC command file when you create a
queue manager using the Create
Components utility or the Create and Go
utility.

RUNMQTMC Start client trigger monitor Not supported.

RUNMQTRM Start trigger monitor Not supported.

SETMQAUT Set authority Not supported.

STRMQCSV Start command server Not supported.

STRMQM Start queue manager This function is provided by the Standard
Controls utility and the Advanced Controls
utility. An autostart facility is also
available.

168 User’s Guide

MQSC commands

Appendix C. MQSC commands supported by MQSeries for
Windows

MQSeries for Windows supports a subset of the MQSeries commands (MQSC). This subset is shown in
Table 18. For a description of the syntax of each command, see the online MQSeries for Windows
Command Reference.

Table 18 (Page 1 of 2). MQSC commands Table 18 (Page 1 of 2). MQSC commands

Command Available in
MQSeries

for Windows

Command Available in
MQSeries

for Windows

ALTER CHANNEL Yes DELETE QALIAS Yes

ALTER NAMELIST No DELETE QLOCAL Yes

ALTER PROCESS No DELETE QMODEL Yes

ALTER QALIAS Yes DELETE QREMOTE Yes

ALTER QLOCAL Yes DISPLAY CHANNEL No

ALTER QMGR Yes DISPLAY CHSTATUS No

ALTER QMODEL Yes DISPLAY DQM No

ALTER QREMOTE Yes DISPLAY CMDSERV No

ALTER SECURITY No DISPLAY MAXSMSGS No

ALTER TRACE No DISPLAY NAMELIST No

ARCHIVE LOG No DISPLAY PROCESS No

CLEAR QLOCAL Yes DISPLAY QMGR No

DEFINE BUFFPOOL No DISPLAY QUEUE No

DEFINE CHANNEL Yes DISPLAY SECURITY No

DEFINE MAXSMSGS No DISPLAY STGCLASS No

DEFINE NAMELIST No DISPLAY THREAD No

DEFINE PROCESS No DISPLAY TRACE No

DEFINE PSID No DISPLAY USAGE No

DEFINE QALIAS Yes PING CHANNEL No

DEFINE QLOCAL Yes PING QMGR No

DEFINE QMODEL Yes RECOVER BSDS No

DEFINE QREMOTE Yes REFRESH SECURITY No

DEFINE STGCLASS No RESET CHANNEL Yes

DELETE CHANNEL Yes RESOLVE CHANNEL Yes

DELETE NAMELIST No RESOLVE INDOUBT No

DELETE PROCESS No RVERIFY SECURITY No

 Copyright IBM Corp. 1994, 1996 169

MQSC commands

Table 18 (Page 2 of 2). MQSC commands

Command Available in
MQSeries

for Windows

START CHANNEL Yes

START CHINIT No

START CMDSERV No

START LISTENER No

START QMGR No

START TRACE No

STOP CHANNEL Yes

STOP CHINIT No

STOP CMDSERV No

STOP LISTENER No

STOP QMGR No

STOP TRACE No

170 User’s Guide

Default queues and channels

Appendix D. Predefined queues and channels

This appendix lists the queues and channels that the supplied MQSC command files
define.

Default and system objects
The sample MQSC command file AMQSCOMW.TST contains definitions for the
MQSeries for Windows default and system objects. The default object definitions
contain a complete set of attributes for that object. When you create a new object, its
attributes are inherited from the default object, except the ones you explicitly specify.

For example, SYSTEM.DEFAULT.LOCAL.QUEUE contains the default definitions for a
local queue. Consider what happens if you create a local queue using this MQSC
command:

DEFINE QLOCAL ('PINK.QUEUE') PUT(DISABLED)

The queue named PINK.QUEUE takes the attributes of the
SYSTEM.DEFAULT.LOCAL.QUEUE, with the exception that the PUT attribute has a
value of DISABLED, whereas the default is PUT(ENABLED).

The system objects are required for the operation of a queue manager or channel.
Table 19 lists the objects defined in the supplied AMQSCOMW.TST file. In a default
installation, the file is supplied in the directory C:\MQW\QMGRS.

The objects specified in AMQSCOMW.TST are created automatically when you create
a queue manager using the Create Components utility.

Note: You can modify these queues to change the default attributes. If you do,
remember to keep a copy of the original file.

Table 19. Objects defined in AMQSCOMW.TST

Object name Description

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue

SYSTEM.DEF.SENDER Default sender channel

SYSTEM.DEF.SERVER Default server channel

SYSTEM.DEF.RECEIVER Default receiver channel

SYSTEM.DEF.REQUESTER Default requester channel

SYSTEM.CHANNEL.SYNCQ Channel synchronization queue

 Copyright IBM Corp. 1994, 1996 171

Default queues and channels

Objects for the sample programs
The sample MQSC command file AMQSCOSW.TST contains the definition of a queue
you can use with the supplied sample programs. This queue is created automatically
when you create a queue manager if you select the Load MQSC file for the sample
programs option in the Create Queue Manager window of the Create Components
utility.

Table 20 shows the object defined in the supplied AMQSCOSW.TST file. In a default
installation, the file is supplied in the directory C:\MQW\SAMPLES.

Table 20. Object defined in AMQSCOSW.TST

Object name Description

SYSTEM.SAMPLE.LOCAL Sample local queue

Objects for verifying the configuration of two workstations
The sample MQSC command files VENUS.TST and MARS.TST contain definitions for
queues and channels you can use to connect two workstations. For information on
how to do this, see Chapter 8, “Setting up and verifying two queue managers” on
page 67.

These queues are created automatically when you create a queue manager if you
specify these TST files in the Load MQSC files for your application field in the
Create Queue Manager window of the Create Components utility.

Table 21 lists the objects defined in the file VENUS.TST. Table 22 on page 173 lists
the objects defined in the file MARS.TST. In a default installation, both files are
supplied in the directory C:\MQW\SAMPLES.

Table 21. Objects defined in VENUS.TST

Object name Description

SAMPLE.VENUS.XMIT Transmission queue

SAMPLE.VENUS.REMOTE Remote queue

SAMPLE.VENUS.LOCAL Local queue

VENUS.TO.MARS Server channel

MARS.TO.VENUS Receiver channel

172 User’s Guide

Default queues and channels

Table 22. Objects defined in MARS.TST

Object name Description

SAMPLE.MARS.XMIT Transmission queue

SAMPLE.MARS.REMOTE Remote queue

SAMPLE.MARS.LOCAL Local queue

MARS.TO.VENUS Sender channel

VENUS.TO.MARS Requester channel

 Appendix D. Predefined queues and channels 173

Default queues and channels

174 User’s Guide

Reason codes

 Appendix E. Reason codes

When an MQI call or MQSC command fails, it returns a reason code in numeric form. Use Table 23 to
look up the meaning of this code.

If you want more information about these reason codes:

� For those with a value of the form 2nnn (and a name that starts with the characters MQRC_), see the
MQSeries Application Programming Reference.

� For those with a value of the form 3nnn or 4nnn (and a name that starts with the characters
MQRCCF_), see the MQSeries Programmable System Management manual.

Table 23 (Page 1 of 4). Reason codes returned
by MQI calls and MQSC commands

Table 23 (Page 1 of 4). Reason codes returned
by MQI calls and MQSC commands

Numeric Literal Numeric Literal

2001 MQRC_ALIAS_BASE_Q_TYPE_ERROR 2030 MQRC_MSG_TOO_BIG_FOR_Q

2002 MQRC_ALREADY_CONNECTED 2031 MQRC_MSG_TOO_BIG_FOR_Q_MGR

2003 MQRC_BACKED_OUT 2033 MQRC_NO_MSG_AVAILABLE

2004 MQRC_BUFFER_ERROR 2034 MQRC_NO_MSG_UNDER_CURSOR

2005 MQRC_BUFFER_LENGTH_ERROR 2035 MQRC_NOT_AUTHORIZED

2006 MQRC_CHAR_ATTR_LENGTH_ERROR 2036 MQRC_NOT_OPEN_FOR_BROWSE

2007 MQRC_CHAR_ATTRS_ERROR 2037 MQRC_NOT_OPEN_FOR_INPUT

2008 MQRC_CHAR_ATTRS_TOO_SHORT 2038 MQRC_NOT_OPEN_FOR_INQUIRE

2009 MQRC_CONNECTION_BROKEN 2039 MQRC_NOT_OPEN_FOR_OUTPUT

2010 MQRC_DATA_LENGTH_ERROR 2040 MQRC_NOT_OPEN_FOR_SET

2011 MQRC_DYNAMIC_Q_NAME_ERROR 2041 MQRC_OBJECT_CHANGED

2012 MQRC_ENVIRONMENT_ERROR 2042 MQRC_OBJECT_IN_USE

2013 MQRC_EXPIRY_ERROR 2043 MQRC_OBJECT_TYPE_ERROR

2014 MQRC_FEEDBACK_ERROR 2044 MQRC_OD_ERROR

2016 MQRC_GET_INHIBITED 2045 MQRC_OPTION_NOT_VALID_FOR_TYPE

2017 MQRC_HANDLE_NOT_AVAILABLE 2046 MQRC_OPTIONS_ERROR

2018 MQRC_HCONN_ERROR 2047 MQRC_PERSISTENCE_ERROR

2019 MQRC_HOBJ_ERROR 2048 MQRC_PERSISTENT_NOT_ALLOWED

2020 MQRC_INHIBIT_VALUE_ERROR 2049 MQRC_PRIORITY_EXCEEDS_MAXIMUM

2021 MQRC_INT_ATTR_COUNT_ERROR 2050 MQRC_PRIORITY_ERROR

2022 MQRC_INT_ATTR_COUNT_TOO_SMALL 2051 MQRC_PUT_INHIBITED

2023 MQRC_INT_ATTRS_ARRAY_ERROR 2052 MQRC_Q_DELETED

2024 MQRC_SYNCPOINT_LIMIT_REACHED 2053 MQRC_Q_FULL

2025 MQRC_MAX_CONNS_LIMIT_REACHED 2055 MQRC_Q_NOT_EMPTY

2026 MQRC_MD_ERROR 2056 MQRC_Q_SPACE_NOT_AVAILABLE

2027 MQRC_MISSING_REPLY_TO_Q 2057 MQRC_Q_TYPE_ERROR

2029 MQRC_MSG_TYPE_ERROR 2058 MQRC_Q_MGR_NAME_ERROR

 Copyright IBM Corp. 1994, 1996 175

Reason codes

Table 23 (Page 2 of 4). Reason codes returned
by MQI calls and MQSC commands

Table 23 (Page 2 of 4). Reason codes returned
by MQI calls and MQSC commands

Numeric Literal Numeric Literal

2059 MQRC_Q_MGR_NOT_AVAILABLE 2111 MQRC_SOURCE_CCSID_ERROR

2061 MQRC_REPORT_OPTIONS_ERROR 2112 MQRC_SOURCE_INTEGER_ENC_ERROR

2062 MQRC_SECOND_MARK_NOT_ALLOWED 2113 MQRC_SOURCE_DECIMAL_ENC_ERROR

2063 MQRC_SECURITY_ERROR 2114 MQRC_SOURCE_FLOAT_ENC_ERROR

2065 MQRC_SELECTOR_COUNT_ERROR 2115 MQRC_TARGET_CCSID_ERROR

2066 MQRC_SELECTOR_LIMIT_EXCEEDED 2116 MQRC_TARGET_INTEGER_ENC_ERROR

2067 MQRC_SELECTOR_ERROR 2117 MQRC_TARGET_DECIMAL_ENC_ERROR

2068 MQRC_SELECTOR_NOT_FOR_TYPE 2118 MQRC_TARGET_FLOAT_ENC_ERROR

2069 MQRC_SIGNAL_OUTSTANDING 2119 MQRC_NOT_CONVERTED

2070 MQRC_SIGNAL_REQUEST_ACCEPTED 2120 MQRC_CONVERTED_MSG_TOO_BIG

2071 MQRC_STORAGE_NOT_AVAILABLE 2127 MQRC_ADAPTER_STORAGE_SHORTAGE

2072 MQRC_SYNCPOINT_NOT_AVAILABLE 2129 MQRC_ADAPTER_CONN_LOAD_ERROR

2075 MQRC_TRIGGER_CONTROL_ERROR 2130 MQRC_ADAPTER_SERV_LOAD_ERROR

2076 MQRC_TRIGGER_DEPTH_ERROR 2131 MQRC_ADAPTER_DEFS_ERROR

2077 MQRC_TRIGGER_MSG_PRIORITY_ERR 2132 MQRC_ADAPTER_DEFS_LOAD_ERROR

2078 MQRC_TRIGGER_TYPE_ERROR 2138 MQRC_ADAPTER_DISC_LOAD_ERROR

2079 MQRC_TRUNCATED_MSG_ACCEPTED 2140 MQRC_CICS_WAIT_FAILED

2080 MQRC_TRUNCATED_MSG_FAILED 2143 MQRC_SOURCE_LENGTH_ERROR

2082 MQRC_UNKNOWN_ALIAS_BASE_Q 2144 MQRC_TARGET_LENGTH_ERROR

2085 MQRC_UNKNOWN_OBJECT_NAME 2145 MQRC_SOURCE_BUFFER_ERROR

2086 MQRC_UNKNOWN_OBJECT_Q_MGR 2146 MQRC_TARGET_BUFFER_ERROR

2087 MQRC_UNKNOWN_REMOTE_Q_MGR 2150 MQRC_DBCS_ERROR

2090 MQRC_WAIT_INTERVAL_ERROR 2151 MQRC_TRUNCATED

2091 MQRC_XMIT_Q_TYPE_ERROR 2157 MQRC_ASID_MISMATCH

2092 MQRC_XMIT_Q_USAGE_ERROR 2160 MQRC_CONN_ID_IN_USE

2093 MQRC_NOT_OPEN_FOR_PASS_ALL 2161 MQRC_Q_MGR_QUIESCING

2094 MQRC_NOT_OPEN_FOR_PASS_IDENT 2162 MQRC_Q_MGR_STOPPING

2095 MQRC_NOT_OPEN_FOR_SET_ALL 2163 MQRC_DUPLICATE_RECOV_COORD

2096 MQRC_NOT_OPEN_FOR_SET_IDENT 2173 MQRC_PMO_ERROR

2097 MQRC_CONTEXT_HANDLE_ERROR 2182 MQRC_API_EXIT_NOT_FOUND

2098 MQRC_CONTEXT_NOT_AVAILABLE 2183 MQRC_API_EXIT_LOAD_ERROR

2099 MQRC_SIGNAL1_ERROR 2184 MQRC_REMOTE_Q_NAME_ERROR

2100 MQRC_OBJECT_ALREADY_EXISTS 2186 MQRC_GMO_ERROR

2101 MQRC_OBJECT_DAMAGED 2192 MQRC_PAGESET_FULL

2102 MQRC_RESOURCE_PROBLEM 2193 MQRC_PAGESET_ERROR

2103 MQRC_ANOTHER_Q_MGR_CONNECTED 2194 MQRC_NAME_NOT_VALID_FOR_TYPE

2104 MQRC_UNKNOWN_REPORT_OPTION 2195 MQRC_UNEXPECTED_ERROR

2109 MQRC_SUPPRESSED_BY_EXIT 2196 MQRC_UNKNOWN_XMIT_Q

2110 MQRC_FORMAT_ERROR 2197 MQRC_UNKNOWN_DEF_XMIT_Q

176 User’s Guide

Reason codes

Table 23 (Page 3 of 4). Reason codes returned
by MQI calls and MQSC commands

Table 23 (Page 3 of 4). Reason codes returned
by MQI calls and MQSC commands

Numeric Literal Numeric Literal

2198 MQRC_DEF_XMIT_Q_TYPE_ERROR 3006 MQRCCF_CFH_PARM_COUNT_ERROR

2199 MQRC_DEF_XMIT_Q_USAGE_ERROR 3007 MQRCCF_CFH_COMMAND_ERROR

2201 MQRC_NAME_IN_USE 3008 MQRCCF_COMMAND_FAILED

2202 MQRC_CONNECTION_QUIESCING 3009 MQRCCF_CFIN_LENGTH_ERROR

2203 MQRC_CONNECTION_STOPPING 3010 MQRCCF_CFST_LENGTH_ERROR

2204 MQRC_ADAPTER_NOT_AVAILABLE 3011 MQRCCF_CFST_STRING_LENGTH_ERR

2206 MQRC_MSG_ID_ERROR 3012 MQRCCF_FORCE_VALUE_ERROR

2207 MQRC_CORREL_ID_ERROR 3013 MQRCCF_STRUCTURE_TYPE_ERROR

2208 MQRC_FILE_SYSTEM_ERROR 3014 MQRCCF_CFIN_PARM_ID_ERROR

2209 MQRC_NO_MSG_LOCKED 3015 MQRCCF_CFST_PARM_ID_ERROR

2217 MQRC_CONNECTION_NOT_AUTHORIZED 3016 MQRCCF_MSG_LENGTH_ERROR

2218 MQRC_MSG_TOO_BIG_FOR_CHANNEL 3017 MQRCCF_CFIN_DUPLICATE_PARM

2219 MQRC_CALL_IN_PROGRESS 3018 MQRCCF_CFST_DUPLICATE_PARM

2222 MQRC_Q_MGR_ACTIVE 3019 MQRCCF_PARM_COUNT_TOO_SMALL

2223 MQRC_Q_MGR_NOT_ACTIVE 3020 MQRCCF_PARM_COUNT_TOO_BIG

2224 MQRC_Q_DEPTH_HIGH 3021 MQRCCF_Q_ALREADY_IN_CELL

2225 MQRC_Q_DEPTH_LOW 3022 MQRCCF_Q_TYPE_ERROR

2226 MQRC_Q_SERVICE_INTERVAL_HIGH 3023 MQRCCF_MD_FORMAT_ERROR

2227 MQRC_Q_SERVICE_INTERVAL_OK 3025 MQRCCF_REPLACE_VALUE_ERROR

2280 MQRC_HCONFIG_ERROR 3026 MQRCCF_CFIL_DUPLICATE_VALUE

2281 MQRC_FUNCTION_ERROR 3027 MQRCCF_CFIL_COUNT_ERROR

2282 MQRC_CHANNEL_STARTED 3028 MQRCCF_CFIL_LENGTH_ERROR

2283 MQRC_CHANNEL_STOPPED 3029 MQRCCF_QUIESCE_VALUE_ERROR

2284 MQRC_CHANNEL_CONV_ERROR 3030 MQRCCF_MSG_SEQ_NUMBER_ERROR

2285 MQRC_SERVICE_NOT_AVAILABLE 3031 MQRCCF_PING_DATA_COUNT_ERROR

2286 MQRC_INITIALIZATION_FAILED 3032 MQRCCF_PING_DATA_COMPARE_ERROR

2287 MQRC_TERMINATION_FAILED 3034 MQRCCF_CHANNEL_TYPE_ERROR

2288 MQRC_UNKNOWN_Q_NAME 3035 MQRCCF_PARM_SEQUENCE_ERROR

2289 MQRC_SERVICE_ERROR 3036 MQRCCF_XMIT_PROTOCOL_TYPE_ERR

2290 MQRC_Q_ALREADY_EXISTS 3037 MQRCCF_BATCH_SIZE_ERROR

2291 MQRC_USER_ID_NOT_AVAILABLE 3038 MQRCCF_DISC_INT_ERROR

2292 MQRC_UNKNOWN_ENTITY 3039 MQRCCF_SHORT_RETRY_ERROR

2293 MQRC_UNKNOWN_AUTH_ENTITY 3040 MQRCCF_SHORT_TIMER_ERROR

2294 MQRC_UNKNOWN_REF_OBJECT 3041 MQRCCF_LONG_RETRY_ERROR

3001 MQRCCF_CFH_TYPE_ERROR 3042 MQRCCF_LONG_TIMER_ERROR

3002 MQRCCF_CFH_LENGTH_ERROR 3043 MQRCCF_SEQ_NUMBER_WRAP_ERROR

3003 MQRCCF_CFH_VERSION_ERROR 3044 MQRCCF_MAX_MSG_LENGTH_ERROR

3004 MQRCCF_CFH_MSG_SEQ_NUMBER_ERR 3045 MQRCCF_PUT_AUTH_ERROR

3005 MQRCCF_CFH_CONTROL_ERROR 3046 MQRCCF_PURGE_VALUE_ERROR

 Appendix E. Reason codes 177

Reason codes

Table 23 (Page 4 of 4). Reason codes returned
by MQI calls and MQSC commands

Table 23 (Page 4 of 4). Reason codes returned
by MQI calls and MQSC commands

Numeric Literal Numeric Literal

3047 MQRCCF_CFIL_PARM_ID_ERROR 4032 MQRCCF_CHANNEL_NOT_FOUND

3048 MQRCCF_MSG_TRUNCATED 4033 MQRCCF_UNKNOWN_REMOTE_CHANNEL

3049 MQRCCF_CCSID_ERROR 4034 MQRCCF_REMOTE_QM_UNAVAILABLE

3050 MQRCCF_ENCODING_ERROR 4035 MQRCCF_REMOTE_QM_TERMINATING

3052 MQRCCF_DATA_CONV_VALUE_ERROR 4036 MQRCCF_MQINQ_FAILED

3053 MQRCCF_INDOUBT_VALUE_ERROR 4037 MQRCCF_NOT_XMIT_Q

3054 MQRCCF_ESCAPE_TYPE_ERROR 4038 MQRCCF_CHANNEL_DISABLED

3062 MQRCCF_CHANNEL_TABLE_ERROR 4039 MQRCCF_USER_EXIT_NOT_AVAILABLE

3063 MQRCCF_MCA_TYPE_ERROR 4040 MQRCCF_COMMIT_FAILED

3064 MQRCCF_CHL_INST_TYPE_ERROR 4042 MQRCCF_CHANNEL_ALREADY_EXISTS

3065 MQRCCF_CHL_STATUS_NOT_FOUND 4043 MQRCCF_DATA_TOO_LARGE

4001 MQRCCF_OBJECT_ALREADY_EXISTS 4044 MQRCCF_CHANNEL_NAME_ERROR

4002 MQRCCF_OBJECT_WRONG_TYPE 4045 MQRCCF_XMIT_Q_NAME_ERROR

4003 MQRCCF_LIKE_OBJECT_WRONG_TYPE 4047 MQRCCF_MCA_NAME_ERROR

4004 MQRCCF_OBJECT_OPEN 4048 MQRCCF_SEND_EXIT_NAME_ERROR

4005 MQRCCF_ATTR_VALUE_ERROR 4049 MQRCCF_SEC_EXIT_NAME_ERROR

4006 MQRCCF_UNKNOWN_Q_MGR 4050 MQRCCF_MSG_EXIT_NAME_ERROR

4007 MQRCCF_Q_WRONG_TYPE 4051 MQRCCF_RCV_EXIT_NAME_ERROR

4008 MQRCCF_OBJECT_NAME_ERROR 4052 MQRCCF_XMIT_Q_NAME_WRONG_TYPE

4009 MQRCCF_ALLOCATE_FAILED 4053 MQRCCF_MCA_NAME_WRONG_TYPE

4010 MQRCCF_HOST_NOT_AVAILABLE 4054 MQRCCF_DISC_INT_WRONG_TYPE

4011 MQRCCF_CONFIGURATION_ERROR 4055 MQRCCF_SHORT_RETRY_WRONG_TYPE

4012 MQRCCF_CONNECTION_REFUSED 4056 MQRCCF_SHORT_TIMER_WRONG_TYPE

4013 MQRCCF_ENTRY_ERROR 4057 MQRCCF_LONG_RETRY_WRONG_TYPE

4014 MQRCCF_SEND_FAILED 4058 MQRCCF_LONG_TIMER_WRONG_TYPE

4015 MQRCCF_RECEIVED_DATA_ERROR 4059 MQRCCF_PUT_AUTH_WRONG_TYPE

4016 MQRCCF_RECEIVE_FAILED 4061 MQRCCF_MISSING_CONN_NAME

4017 MQRCCF_CONNECTION_CLOSED 4062 MQRCCF_CONN_NAME_ERROR

4018 MQRCCF_NO_STORAGE 4063 MQRCCF_MQSET_FAILED

4019 MQRCCF_NO_COMMS_MANAGER 4064 MQRCCF_CHANNEL_NOT_ACTIVE

4020 MQRCCF_LISTENER_NOT_STARTED 4065 MQRCCF_TERMINATED_BY_SEC_EXIT

4024 MQRCCF_BIND_FAILED 4067 MQRCCF_DYNAMIC_Q_SCOPE_ERROR

4025 MQRCCF_CHANNEL_INDOUBT 4068 MQRCCF_CELL_DIR_NOT_AVAILABLE

4026 MQRCCF_MQCONN_FAILED

4027 MQRCCF_MQOPEN_FAILED

4028 MQRCCF_MQGET_FAILED

4029 MQRCCF_MQPUT_FAILED

4030 MQRCCF_PING_ERROR

4031 MQRCCF_CHANNEL_IN_USE

178 User’s Guide

AMQ3500 �AMQ3506

 Appendix F. Error messages

The error messages shown in this appendix are generated by the MQSC Commands
utility. They also appear in the file MQSC.LOG when you run an MQSC command file.

For explanations of the syntax of the MQSC commands, see the online MQSeries for
Windows Command Reference.

AMQ3500 primary-keyword secondary-keyword name was successful.

Explanation: The operation was successful.

Action: None required.

AMQ3501 character - string expected.

Explanation: The first quotation mark of a quoted string was expected, but the character
character was found.

Action: Enclose the string in quotation marks and retry the command.

AMQ3502 integer - value out of range.

Explanation: The specified integer value for an attribute is outside the allowed range.

Action: Change the integer to a value that is within the allowed range and retry the command.

AMQ3503 primary-keyword secondary-keyword name failed. Return code = code.

Explanation: The MQSC command is syntactically correct, but the queue manager could not
perform the command.

Action: Look up the return code in Appendix E, “Reason codes” on page 175, correct the
problem, then retry the command.

AMQ3504 string - attribute keyword expected.

Explanation: An attribute keyword was expected, but string was found.

Action: Ensure the attribute keyword is valid and spelled correctly, then retry the command.

AMQ3505 string - left parenthesis expected.

Explanation: A left parenthesis was expected, but string was found.

Action: Correct the command, adding a left parenthesis, then retry the command.

AMQ3506 string - number expected.

Explanation: An attribute requires an integer value, but string was found.

Action: Correct the attribute value, then retry the command.

 Copyright IBM Corp. 1994, 1996 179

AMQ3507 �AMQ3514

AMQ3507 string - right parenthesis expected.

Explanation: A right parenthesis was expected, but string was found.

Action: Correct the command by adding a right parenthesis. If you have used a name that
contains special characters, ensure that the name is enclosed in single quotation marks. Then
retry the command.

AMQ3508 string - string expected.

Explanation: A quoted string value was expected, but string found.

Action: Correct the string value, then retry the command.

AMQ3509 keyword not valid for this command.

Explanation: The keyword or attribute is not valid for this command.

Action: Correct the keyword or attribute, then retry the command.

AMQ3510 ACTION keyword required.

Explanation: A RESOLVE CHANNEL command was issued without the ACTION keyword.

Action: Specify the ACTION keyword and an appropriate parameter, then retry the command.

AMQ3511 CHLTYPE must be specified immediately after the channel name.

Explanation: On the DEFINE CHANNEL and ALTER CHANNEL commands, you must specify
the channel type immediately after the channel name. The validity of many of the following
parameters are determined by the channel type.

Action: Specify the CHLTYPE immediately after the channel name, then retry the command.

AMQ3512 CONNAME keyword required.

Explanation: The channel being defined has a channel type of SDR or RQSTR. With these
channel types, you must specify a connection name on the DEFINE CHANNEL command.

Action: Specify the CONNAME keyword, then retry the command.

AMQ3513 Channel already exists - specify REPLACE.

Explanation: The channel being defined already exists and the replace option has not been
specified.

Action: If you want to replace the existing channel, specify the REPLACE keyword; otherwise
choose a different channel name.

AMQ3514 Channel not found.

Explanation: The channel specified in the ALTER CHANNEL command does not exist.

Action: Correct the channel name, then retry the command.

180 User’s Guide

AMQ3515 �AMQ3523

AMQ3515 LIKE channel not found.

Explanation: The LIKE channel name specified on the DEFINE CHANNEL command does not
exist.

Action: Correct the LIKE channel name, then retry the command.

AMQ3516 Primary keyword string not valid.

Explanation: A primary keyword was expected, but string was found.

Action: Correct the primary keyword, then retry the command.

AMQ3517 Error opening channel definition file.

Explanation: The operating system could not open the channel definition file.

Action: Try the command again. If the error persists, reinstall MQSeries for Windows, then try
the command again. If this does not solve the problem, contact your MQSeries administrator.

AMQ3518 Error reading channel definition file.

Explanation: The operating system could not read the channel definition file.

Action: Try the command again. If the error persists, reinstall MQSeries for Windows, then try
the command again. If this does not solve the problem, contact your MQSeries administrator.

AMQ3519 Secondary keyword string not valid.

Explanation: A secondary keyword was expected, but string was found.

Action: Correct the secondary keyword, then retry the command.

AMQ3520 TRPTYPE keyword required.

Explanation: When you define a channel of this type, you must specify the transport type.

Action: Specify the TRPTYPE keyword on the DEFINE CHANNEL command, then retry the
command.

AMQ3521 Cannot read continuation line.

Explanation: The operating system cannot read the line following the plus (+) character.

Action: A plus character means that the command continues on the following line. Ensure the
continuation character is required, correct the continuation line, then retry the command. If the
error persists, reinstall MQSeries for Windows, then try the command again. If this does not solve
the problem, contact your MQSeries administrator.

AMQ3522 Unexpected comma.

Explanation: A keyword was expected, but a comma (,) was found.

Action: Correct the keyword, then retry the command.

AMQ3523 Unexpected left parenthesis.

Explanation: A keyword was expected, but a left parenthesis was found.

Action: Correct the keyword, then retry the command.

 Appendix F. Error messages 181

AMQ3524 �AMQ3531

AMQ3524 Unexpected number number.

Explanation: A keyword was expected, but number was found.

Action: Correct the keyword, then retry the command.

AMQ3525 Unexpected right parenthesis.

Explanation: A keyword was expected, but a right parenthesis was found.

Action: Correct the keyword, then retry the command.

AMQ3526 Value type type not supported.

Explanation: There may be a fault in the MQSC Commands utility.

Action: Restart the MQSC Commands utility. If the error persists, reinstall MQSeries for
Windows, then restart the MQSC Commands utility. If this does not solve the problem, contact
your MQSeries administrator.

AMQ3527 Keyword keyword is not valid for given channel type.

Explanation: The keyword keyword is not valid for use with the channel type specified by the
CHLTYPE keyword.

Action: Correct the keyword, then retry the command.

AMQ3528 Wrong CHLTYPE for LIKE channel.

Explanation: The channel type for the channel defined by the LIKE keyword is different from that
specified by the CHLTYPE keyword. In the DEFINE CHANNEL command, the channel types must
match.

Action: Either correct the LIKE keyword to specify a channel of the required type, or correct the
CHLTYPE keyword to match the channel type of the LIKE channel. Then retry the command.

AMQ3529 Wrong CHLTYPE for given definition.

Explanation: The channel type of the named channel is different from the CHLTYPE specified.
In the ALTER CHANNEL command, the channel types must match.

Action: Correct the CHLTYPE keyword to match the channel type of the named channel, then
retry the command.

AMQ3530 XMITQ keyword required.

Explanation: The channel being defined has a channel type of SDR or SVR. With these channel
types, you must specify a transmission queue name on the DEFINE CHANNEL command.

Action: Specify the XMITQ keyword, then retry the command.

AMQ3531 Character attribute buffer exceeded.

Explanation: A character attribute is greater than 2000 characters in length.

Action: Correct the attribute, then retry the command. If the error persists, reinstall MQSeries for
Windows, then try the command again. If this does not solve the problem, contact your MQSeries
administrator.

182 User’s Guide

AMQ3532 �AMQ3540

AMQ3532 File ended unexpectedly.

Explanation: The file ended unexpectedly while reading a continuation line.

Action: Ensure that the command correctly uses the continuation character, then retry the
command.

AMQ3533 Character character not valid.

Explanation: While parsing the keywords and attributes, character was found. It is not valid in
this context.

Action: Correct the character. If you have used a name that contains special characters, ensure
that the name is enclosed in single quotation marks. Then retry the command.

AMQ3534 Keyword keyword not valid.

Explanation: You cannot use this keyword in this situation.

Action: Correct the syntax of the command, then retry it.

AMQ3535 LIKE channel name too long.

Explanation: The length of the channel name specified with the LIKE keyword is too long.
Channel names can be a maximum of 20 characters.

Action: Correct the channel name, then retry the command.

AMQ3536 Terminator of number number not valid.

Explanation: The characters following the number number are not valid.

Action: Correct the number, then retry the command.

AMQ3537 Keyword beginning keyword too long.

Explanation: The length of the keyword keyword is more than 10 characters.

Action: Correct the keyword, then retry the command.

AMQ3538 Name type is not a string.

Explanation: There may be a fault in the MQSC Commands utility.

Action: Restart the MQSC Commands utility. If the error persists, reinstall MQSeries for
Windows, then restart the MQSC Commands utility. If this does not solve the problem, contact
your MQSeries administrator.

AMQ3539 Number beginning number is too long.

Explanation: The number beginning with number is longer than the maximum of 9 digits.

Action: Correct the number, then retry the command.

AMQ3540 Keyword DEADQ (string) must be blank.

Explanation: MQSeries for Windows does not support dead-letter queues. You can set this
keyword to blanks only.

Action: Remove the DEADQ keyword, then retry the command.

 Appendix F. Error messages 183

AMQ3541 �AMQ3548

AMQ3541 String string ended unexpectedly.

Explanation: The string string ended with a new-line character instead of a quotation mark.

Action: Correct the string, then retry the command.

AMQ3542 String beginning string is too long.

Explanation: The string string is too long for its associated keyword.

Action: Correct the string, then retry the command.

AMQ3543 Too many attributes, ignoring this one.

Explanation: You can specify a maximum of 256 attributes on one command; any more are
ignored.

Action: Correct the number of attributes associated with the command, then retry it. If the error
persists, reinstall MQSeries for Windows, then try the command again. If this does not solve the
problem, contact your MQSeries administrator.

AMQ3544 Keyword MCANAME (name) must be blank.

Explanation: MQSeries for Windows does not support the MCANAME keyword. You can set it
to blanks only.

Action: Remove the MCANAME keyword, then retry the command.

AMQ3545 Internal error number = return code

Explanation: There may be a fault in the MQSC Commands utility.

Action: Restart the MQSC Commands utility. If the error persists, reinstall MQSeries for
Windows, then restart the MQSC Commands utility. If this does not solve the problem, contact
your MQSeries administrator.

AMQ3546 Secondary keyword not specified.

Explanation: The command must have a secondary keyword, but none has been specified.

Action: Specify the secondary keyword, then retry the command.

AMQ3547 String length of string string is not valid.

Explanation: Each string associated with a keyword can be of a certain length only. The length
of string string is not valid for its associated keyword.

Action: Correct the string, then retry the command.

AMQ3548 Line too long - MQSC file error

Explanation: The MQSC file did not end with the expected new-line character.

Action: Edit the file and ensure that the final command ends correctly. If necessary, add a blank
line to the end of the file. Then run the MQSC command file again.

184 User’s Guide

AMQ3549 �AMQ3551

AMQ3549 MQSC file filename ran successfully.

Explanation: The MQSC command file ran successfully.

Action: None required.

AMQ3550 MQSC file filename did not run successfully. See MQSC.LOG for more details.

Explanation: Some of the commands in the MQSC command file filename contained errors.

Action: Correct the commands in the file, then run the file again.

AMQ3551 string contains characters not valid for MQSeries objects.

Explanation: The name string contains characters that are not valid for MQSeries objects. When
you name MQSeries objects, you can use only the following characters:

 � Uppercase A-Z
 � Lowercase a-z
 � Integers 0-9
 � Period (.)
� Forward slash (/)

 � Underscore (_)
 � Percent sign(%)

Action: Replace the nonvalid characters in the string, then retry the command.

 Appendix F. Error messages 185

186 User’s Guide

Notices

 Appendix G. Notices

The following paragraph does not apply to any country where such provisions
are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used.

Any functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product, program,
or service. The evaluation and verification of operation in conjunction other products,
except those expressly designated by IBM, are the responsibility of the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact Laboratory Counsel, MP151, IBM United Kingdom
Laboratories, Hursley Park, Winchester, Hampshire, England SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

AIX IBM NetView
AIX/6000 MQ OS/2
BookManager MQSeries Win-OS/2
CICS

 Copyright IBM Corp. 1994, 1996 187

Notices

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, and the Windows 95 Logo are trademarks or registered
trademarks of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

188 User’s Guide

Part 7. Glossary and index

 Copyright IBM Corp. 1994, 1996 189

190 User’s Guide

Glossary

Glossary of terms and abbreviations

This glossary describes terms used in this book and
words used with other than their everyday meaning. In
some cases, a definition may not be the only one
applicable to a term, but it gives the particular sense in
which the word is used in this book.

If you do not find the term you are looking for, see the
Index or the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

A
Advanced Controls utility . In MQSeries for Windows,
a utility for administrators to start or stop queue
managers, channel groups, channels, and transport
links. With the utility you can view the status and
attributes of these components, and you can change
their values. See also Standard Controls utility.

alias queue . An MQSeries object that enables MQI
applications to specify aliases for queue names. At run
time, the alias is resolved and the requested operation is
performed on the queue with the resolved name.

APAR . Authorized program analysis report.

application queue . A local queue used by an
application, as opposed to special-purpose queues (for
example, transmission queues).

attribute . One of a set of properties that defines the
characteristics of an MQSeries queue manager, queue,
or channel.

authorized program analysis report (APAR) . A report
of a problem caused by a suspected defect in a current,
unaltered, release of a product.

autostart . A facility for starting a queue manager,
channel group, or transport link.

B
back out . To reverse all the changes made during the
current unit of recovery or unit of work.

browse . In message queuing, to copy a message
without removing it from the queue. See also get.

browse cursor . An identifier that specifies the next
message on a queue to be browsed when an application
issues a ‘get with browse’ call.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCSID. Coded character-set identifier.

channel . See message channel.

channel group . A named collection of channels,
owned by one queue manager, that you can start and
stop as a group.

channel initiator . In MQSeries, a program that starts
one end of a message channel. The other end of the
channel must be listening for incoming connection
requests.

MQSeries for Windows does not use the MQSeries
channel initiator program.

channel listener . A program that monitors connection
requests from queue managers on other workstations.

COA. Confirm on arrival. See report message.

COD. Confirm on delivery. See report message.

coded character-set identifier (CCSID) . The name of
a coded set of characters and their code-point
assignments.

command processor . The part of the queue manager
that processes commands.

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes on the valid ones for
processing by the command processor. MQSeries for
Windows does not have a command server.

commercial messaging . A messaging strategy that
allows distributed applications, particularly commercial
applications, to communicate using messages.
MQSeries for Windows is an example of a commercial
messaging product.

 Copyright IBM Corp. 1994, 1996 191

Glossary

commit . See single-phase commit and two-phase
commit.

completion code . A return code indicating whether or
not an MQI call was successful. If the call failed, or
partially succeeded, a reason code provides more
information about the cause. See also reason code.

component . (1) In the MQSeries for Windows utilities,
a component is a queue manager, queue, channel,
channel group, or transport link. (2) When installing
MQSeries for Windows, a component is a separately
installable part of the product.

connect . In MQSeries, a processing sequence in which
an application issues an MQI connect call (MQCONN)
and where the queue manager specified on the call
returns a connection handle. The application uses this
connection handle on subsequent MQI calls.

connection handle . The identifier, or token, by which a
program accesses the queue manager to which it is
connected.

Connection Monitor . The initial dialog within the
Standard Controls and Advanced Controls utilities that
shows the current status of queue managers, channel
groups, and transport links.

context . In MQSeries, context information is included in
the message header to show the origin of the message.
MQSeries for Windows does not copy context
information from messages it receives from other queue
managers.

Create and Go utility . In MQSeries for Windows, a
utility that allows users to create automatically the
MQSeries components they require. An administrator
must supply the user with an initialization (INI) file that
contains definitions of those components.

Create Components utility . In MQSeries for Windows,
a utility that allows you to create queue managers,
queues, channels, channel groups, or transport links.

D
dead-letter queue . A queue to which a queue manager
or application sends messages it cannot deliver to their
correct destination. MQSeries for Windows does not
allow dead-letter queues.

default object . A definition of an object (for example, a

queue) with all its attributes defined. If you define an
object, but do not specify all the possible attributes that
object could have, the queue manager uses these
default attributes for the missing ones.

Delete Components utility . In MQSeries for Windows,
a utility that allows you to delete queue managers,
queues, channels, channel groups, or transport links.

distributed queue management . In message queuing,
the setup and control of message channels to queue
managers on other systems.

dynamic queue . A local queue that is created when a
program opens a model queue object.

E
exit program . In MQSeries for Windows, a program
that contains device commands for starting or stopping a
communication device, such as a modem. The program
is called by the transport link when the link is started or
stopped.

F
FFST. First Failure Support Technology. A program
used by MQSeries to indicate possible software
problems.

FIFO. First in, first out.

first in, first out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time.

G
get . In message queuing, to retrieve a message by
removing the message from a queue or by browsing the
message. See also browse.

H
handle . The identifier, or token, by which a program
accesses an MQSeries object. See connection handle
and object handle.

192 User’s Guide

Glossary

I
initiator . See channel initiator.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

input/output parameter . A parameter of an MQI call in
which you supply information when you make the call,
and in which the queue manager changes the
information when the call completes or fails.

L
leaf node . In a network, a leaf node is a node
connected to a server that is on the outer edge of the
network. It is intended for use by a single user, and not
as an intermediate node between other nodes.

listener . See channel listener.

local definition . An MQSeries object that belongs to a
local queue manager.

local definition of a remote queue . An MQSeries
object that belongs to the local queue manager. This
object defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . To a program, the queue
manager to which the program is connected. This is the
queue manager that provides message queuing services
to that program. Queue managers to which a program
is not connected are called remote queue managers,
even if they are running on the same system as the
program.

logical unit of work (LUW) . See unit of work.

M
MCA. Message channel agent.

message . In message queuing applications, a
communication sent from a program to another program.

message channel . A named unidirectional network

transport mechanism along which MQSeries messages
are sent between two queue managers.

message channel agent (MCA) . In MQSeries, a
program that either transmits prepared messages from a
transmission queue to a network, or takes messages
from the network and puts them on a destination queue.

message descriptor . Control information that is carried
as part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
are retrieved from a queue.

message queue . Synonym for queue.

Message Queue Interface (MQI) . The application
programming interface provided by the MQSeries queue
managers. This interface allows application programs to
access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them on a queue in the
original order, and to discard duplicate messages.

messaging . A method for communication between
programs. Messaging can be synchronous or
independent of time.

model queue . An MQSeries object that contains a set
of queue attributes that act as a template when a
program creates a dynamic queue.

MQI. Message queue interface.

MQI channel . A special channel that connects an
MQSeries client to an MQSeries server (queue
manager) and transfers only MQI calls and responses.
MQSeries for Windows does not support MQI channels.

MQSC commands . Commands in a specific format
that change the attributes of MQSeries objects.

MQSC Commands utility . In MQSeries for Windows, a
utility that allows you to type and edit MQSC commands,
and to run MQSC files.

 Glossary of terms and abbreviations 193

Glossary

MQSeries client . A runtime component of MQSeries
for OS/2, AIX, and UNIX systems. MQSeries for
Windows does not support MQSeries clients.

N
name transformation . In MQSeries, a process that
creates file names for MQSeries objects so that they are
unique and valid for the system being used.

O
object . In MQSeries, an entity that defines the
properties of a queue manager, a queue, or a channel.

object descriptor . A data structure that identifies a
particular MQSeries object. It includes the object name
and its type.

object handle . The identifier, or token, by which a
program accesses the MQSeries object with which it is
working.

output parameter . A parameter of an MQI call in which
the queue manager returns information when the call
completes or fails.

P
permanent queue . A queue that is not erased when
the queue manager stops. Contrast with temporary
queue.

persistent message . A message that survives a restart
of the queue manager.

ping . In distributed queue management, a diagnostic
aid that uses the exchange of a test message to confirm
that a message channel is functioning.

platform . In MQSeries, the operating system on which
a queue manager is running.

program temporary fix (PTF) . A solution or by-pass of
a problem diagnosed by IBM service engineering as the
result of a defect in a current, unaltered, release of a
product.

PTF. Program temporary fix.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Queues can be of type local, alias,
model, or remote. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages; they point to other
queues.

queue manager . A program that provides messaging
services to applications. It provides an application
programming interface so that programs can access
messages on the queues that the queue manager owns.

queuing . See message queuing.

R
reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on the specified local
queue.

remote queue . A queue that belongs to a remote
queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager . To an MQI application, a
queue manager is remote if it is not the queue manager
to which the program is connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues that belong to other queue managers.

reply message . A type of message used for replies to
request messages.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A message that provides information
about the delivery (or non-delivery) of an MQSeries

194 User’s Guide

Glossary

message that was put on a queue by an application
issuing an MQPUT call. A report message can indicate
the original message:

� Has arrived on the target queue; this is a Confirm
on Arrival (COA) report.

� Was retrieved by an application and deleted from
the queue; this is a Confirm on Delivery (COD)
report.

� Could not be delivered because, for example, a
channel is not available; this is an Exception report.

� Has been deleted from the queue because its expiry
date has elapsed; this is an Expiry report.

requester channel . In MQSeries, a channel that may
be started remotely by a sender channel. The requester
channel accepts messages from the sender channel
over a communication link and puts the messages on
the local queue designated in the message.

request message . A type of message used for
requesting a reply from another program.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

S
sender channel . In MQSeries, a channel that initiates
transfers of messages, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
when messages must be delivered only once, and in the
correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server . The program that responds to requests for
information in the particular two-program information-flow
model of client/server.

server channel . In MQSeries, a channel that responds
to a requester channel, removes messages from a
transmission queue, and moves them over the network
to the requester channel.

Service Information utility . In MQSeries for Windows,
a utility that displays service information about an
MQSeries for Windows installation. The information
includes the amount of free disk space remaining and
the release levels of the product files.

Service Trace utility . In MQSeries for Windows, a
utility that traces the operation of an MQSeries for
Windows queue manager. Use it to help you debug an
MQSeries application.

single-phase backout . A method in which an action
that is in progress must not be allowed to finish, and all
changes that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.

Standard Controls utility . In MQSeries for Windows, a
utility that lets end users start or stop queue managers,
channel groups, channels, and transport links. It also
shows the status of these components and allows you to
find out the current values of the attributes of queue
managers, queues, and channels. It does not allow you
to change any of the values. See also Advanced
Controls utility.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

T
temporary queue . A queue that is deleted when the
queue manager is stopped. It can contain only
nonpersistent messages.

thread . In MQSeries, the lowest level of parallel
execution available on an operating system.

time-independent messaging . A method for
communication between programs in which the
requesting program proceeds with its own processing
without waiting for a reply to its request.

 Glossary of terms and abbreviations 195

Glossary

trace . A facility for recording MQSeries activity.

transmission program . See message channel agent.

transmission queue . A local queue on which prepared
messages destined for a remote queue manager are
stored temporarily.

transport link . In MQSeries for Windows, a named link
to another queue manager over a dial-up device. The
transport link program calls an exit program that starts or
stops the dial-up device.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
MQSeries for Windows does not support two-phase
commit.

U
unit of recovery . A recoverable sequence of
operations within a single resource manager. Compare
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or at a user-requested syncpoint. It ends either at
a user-requested syncpoint or at the end of a
transaction. Compare with unit of recovery.

V
Verify Install utility . In MQSeries for Windows, a utility
that tests that your installation was successful. The
utility creates a queue manager, puts messages on a
queue, reads the messages from a queue, then deletes
the queue manager.

196 User’s Guide

Index

 Index

A
adding additional components 23
adding new components 24
administration utilities

See utilities
Advanced Controls utility 7, 82

equivalent control commands 167
issuing MQSC commands 86
options for 110

AllUserChannels keyword 105
AMQ3001 message 36
AMQ3581 message 88
AMQICATW.ICF 23, 31
AMQLEVLW.LOG 119
AMQRSYNA.DAT 126
AMQSBCGW.EXE 155, 159
AMQSCOMW.TST 19, 171
AMQSCOSW.TST 172
AMQSGETW.EXE 155, 159
AMQSPUTW.EXE 155, 159
AMQTRACW command 120
AMQTRACW.LOG 120
applying maintenance updates 23, 25
attributes

changing channel 82
changing channel group 82
changing queue 82
changing queue manager 82
changing transport link 82
channel 154
queue 153
queue manager 152
viewing channel 64
viewing channel group 63
viewing channel status 64
viewing transport link 117

authority checking 163
AUTOEXEC.BAT

automatic updating 28, 29
backups 20
updating 20, 21

automatic channel group start 61
automatic installation 15, 27, 32
automatic queue manager start 49
automatic start up 15

automatic transport link start 115
autosave, trace 121
autostart

icon 49, 61, 115
keyword 101, 105

AutostartControls keyword 110

B
backups

AUTOEXEC.BAT 20
initialization file 96

base components 19, 23
data files 23
executable files 23

bibliography xii
BookManager xiv
Browsing Messages sample 155

design 158

C
C programming language 131

binary strings 133
character strings 133
data types 133
dynamic structures 134
initial values, structures 134
MQI calls 132
notational conventions 135
parameters 132
undefined data type 132

call back 57
caller 56
catalog, selecting 23
changing

associating the listener 82
channel attributes 82
channel group attributes 82
installation 23
queue attributes 82
queue manager attributes 82
transport link attributes 82

channel 54
attributes 154
creating 59

 Copyright IBM Corp. 1994, 1996 197

Index

channel (continued)
defining 56
deleting 65
listener 56
MCA 54
message channel agent 54
predefined 171
receiver 56
requester 56
sender 56
server 56
starting 56
types of 56

channel group 47, 58
adding and deleting channels 82
attributes 63
changing attributes 82
creating 60
defining 104
deleting 65
examples 58
monitoring 61
running 58, 63
starting 63
starting channels 58
status of 47
stopping 63
stopping channels 58
viewing attributes 63
viewing using the Standard Controls utility 61

channel group icon 62, 116
Channel Group Status icon 63
Channel Groups view 61
Channel_ keyword 105
ChannelGroup component 98, 104, 106
checking currently installed components 23
CID

See Configuration, Installation, and Distribution
client

MQSeries 3, 165
support 15, 165

CMQB3.BAS 141
CMQB4.BAS 141
CMQC.H 132
CMQXC.H 132
COA

See confirm on arrival
COD

See confirm on delivery

command server 163
commands 21

CRTMQCVX 167
CRTMQM 167
DLTMQM 167
DSPMQAUT 167
DSPMQCSV 167
DSPMQTRN 167
ENDMQM 167
INSTALL 21, 27
RCDMQIMG 167
RCRMQOBJ 167
RSVMQTRN 167
RUNMQCHI 167
RUNMQCHL 167
RUNMQLSR 167
RUNMQSC 168
RUNMQTMC 168
RUNMQTRM 168
SETMQAUT 168
STRMQCSV 168
STRMQM 168

commercial messaging 9
communications protocol 165
compilers supported 14
component storage requirements 20
component types, initialization file 98
components

currently installed 23
deleting 24
of MQSeries for Windows 19
reinstalling 25
samples 35
Toolkit 35

CONFIG.SYS
automatic updating 28, 29
updating 21

Configuration, Installation, and Distribution 3, 20, 27
confirm on arrival 5
confirm on delivery 5
connect queue manager call 149
connection handle 10
Connection Monitor view 48, 62, 116
connection status 47
context passing 163
control commands 163, 167
Controls component 98, 110, 111
CONVERT keyword 76
copying the product image 28

198 User’s Guide

Index

Create and Go utility 6, 44, 95
creating a queue manager 37
issuing MQSC commands 86
log file 101

Create Components utility 6, 44
creating channel groups 60
creating channels 59
creating queue manager 44
creating transport links 114
issuing MQSC commands 86

CREATEMQ.INI 44, 96, 98
CREATEMQ.LOG 99
creating

channel groups 60
channels 59
MQSeries objects 43
queue manager 37, 44
transport links 114

CRTMQCVX command 167
CRTMQM command 167

D
data conversion 76, 163
data conversion exits 163, 167
data types

See elementary data types, structure data types
DBCS characters 90
DCE directories 164
dead-letter header (MQDLH)

See structure data types
dead-letter queue 139, 164
dead-letter structure 150
default objects 171

system objects 171
default queue and channels 45
defining message channels 56
Delete Components utility 7, 51
deleting

channel 65
channel group 65
installed components 23, 24
installed product 31
queue 52
queue manager 51
transport link 118

Description keyword 101, 104, 107
development configuration 13
development tools 19

diagnosing problems 123
differences 163—166
directories

moving 23
structure of 22

disk space requirements 20
diskette installation 20
display authority 167
display command server 167
display MQSeries transactions 167
DLQ 139, 164
DLTMQM command 167
DSPMQAUT command 163, 165, 167
DSPMQCSV command 167
DSPMQTRN command 167

E
elementary data types

MQBYTE
BASIC syntax 145
C syntax 138

MQBYTE16
C syntax 138

MQBYTE24
BASIC syntax 145
C syntax 138

MQBYTE32
BASIC syntax 145
C syntax 138

MQBYTE64
C syntax 138

MQCHAR
BASIC syntax 145
C syntax 138

MQCHAR12
BASIC syntax 145
C syntax 138

MQCHAR128
BASIC syntax 145
C syntax 138

MQCHAR16 138
C syntax 138

MQCHAR256
BASIC syntax 145
C syntax 138

MQCHAR28
BASIC syntax 145
C syntax 138

MQCHAR32
BASIC syntax 145

 Index 199

Index

elementary data types (continued)
MQCHAR32 (continued)

C syntax 138
MQCHAR4

BASIC syntax 145
C syntax 138

MQCHAR48
BASIC syntax 145
C syntax 138

MQCHAR64
BASIC syntax 145
C syntax 138

MQCHAR8
BASIC syntax 145
C syntax 138

MQHCONN
BASIC syntax 145
C syntax 138

MQHOBJ
BASIC syntax 145

MQLONG
BASIC syntax 145
C syntax 138

PMQLONG 138
C syntax 138

Visual Basic 145
end-user configuration 13
ENDMQM command 167
EPFIDEFI.BAT 24
error logs

Create and Go utility 99
installation 31
MQSC 90, 101

error messages 179
events 164
examples

Channel Group component 106
channel groups 58
CID response file 30
Control section 111
INI files 98
MQSC command files 91
queue manager components 102
transport link components 109

exit
data conversion 163
message retry 164

F
family differences 163
fault finding 123
features of MQSeries for Windows 5, 15
files

catalog, AMQICATW.ICF 23
EPFIDEFI.BAT 24
product 23
READ.ME xii
system initialization (WIN.INI) 23

finding out the installed components 23
fonts in this book xi
form files (.BAS) 141
format of MQSC command file 89

G
general response file

See response files
get message call 150
get message options (MQGMO)

See structure data types
getting messages 10, 39
Getting Messages sample 39, 74, 155

design 157
glossary 191
Greenwich Mean Time (GMT) 151

H
hard disk storage 13, 20
hardware requirements 13
header files 19

C 132
Visual Basic 141

history log 31

I
icons 6

Autostart 49, 61, 115
Channel Group 62, 116
Channel Group Status 63
Channel Groups 47, 61
Connection Monitor 47
Delete Components 65
leaf node 48, 62, 116
Monitor 49, 61, 115
MQSC Commands utility 88

200 User’s Guide

Index

icons (continued)
Queue Manager 48, 62, 116
Queue Managers 47, 49
server 62, 116
Service Trace 120
Standard Controls utility 47
transport link 116
transport link Status 117
Transport Links 47, 115

in-doubt messages 126
include files (.H) 132
INI files

See initialization file
initialization file 44

AllUserChannels keyword 105
Autostart keyword 101, 105
AutostartControls keyword 110
backup 96
Channel_ keyword 105
ChannelGroup component 98, 104
ChannelGroup examples 106
comments in 96
component 96
component types 98
Controls component 98, 110
CREATEMQ.INI 44, 96
defining a queue manager 100
Description keyword 101, 104, 107
directory 96
error log, CREATEMQ.LOG 99
example 97, 98
examples of Control section 111
format 96
keywords 98
LoadSamplesMQSC keyword 101
LoadUserMQSC keyword 101
MARS.INI 99
Name keyword 100, 104, 107
name of 96
NameInformationText keyword 101
NamePrompt keyword 100
processing 99
QueueManager component 98, 100
QueueManager component examples 102
QueueManagerName keyword 104
Replace keyword 102, 105, 108
RunOnCompletion keyword 110
section 96
StartFilename keyword 107
StartListener keyword 104

initialization file (continued)
StartTimeout keyword 108
StopFilename keyword 108
StopTimeout keyword 108
supplied 96, 98
transport link component 107
transport link examples 109
TransportLink component 98
VENUS.INI 68

Inquire attribute call 150
INSTALL command 21, 30

parameters 30
installable services 164
installation 19

adding new components 24
automatic 27
base components 19
changing 23
components 19
copying the diskettes 28
currently installed products 23
deleting components 24
directory structure 22
error log 31
from diskettes 21
installation parameters 30
Installation Utility 23, 24
installed components 23
moving 23
NetView Distribution Manager 27
new product 19
online information 19
over a LAN 27
profile parameters 30
reinstallation 25
return codes 33
samples 19
Toolkit 19
using response files

See response files
utility 20, 23
verifying 35
Win-OS/2 21
Windows 3.1 21
Windows 95 21

installation response files
See response files

Installation Utility 23, 24
instrumentation events 164

 Index 201

Index

Internet xv

K
keywords

ChannelGroup component 104
Controls component 110
for response files 29
initialization file 98
QueueManager component 100
transport link component 107

L
LAN

installation over 27
testing 67

leaf node 3
leaf node icon 48, 62, 116
libraries 19, 23, 132
listener 56, 82, 167
LoadSamplesMQSC keyword 101
LoadUserMQSC keyword 101
local definition of remote queue 53
local queue 53
local queue manager 53, 147

message descriptor (MQMD) 147
log files

Create and Go utility 99
installation 31
MQSC 90
Service Information utility 119
Service Trace utility 120

M
maintenance updates 25
MARS.INI 99
MARS.TST 70, 92, 172
MCA

See message channel agent (MCA)
media recovery and logging 15, 164
message 9

Browsing Messages sample 155, 158
confirm on arrival 5
confirm on delivery 5
data 10
expiry 5
Getting Messages sample 39, 155, 157
in-doubt 126

message (continued)
message descriptor 10
non-persistent message 5
persistent message 5
Putting Messages sample 38, 155, 157
report 5
sequence number 126

message channel
See channel

message channel agent (MCA) 54
message descriptor (MQMD)

See structure data types
Message Queue Interface (MQI) 131, 149, 164

attributes 152
calls in C 131
calls in Visual Basic 141
for sample programs 156
initial values, structures (C) 134
initial values, structures (Visual Basic) 141
invoking calls (C) 135—138
invoking calls (Visual Basic) 142—145
MQCONN 157
MQDISC 157
MQDLH 150
MQGMO 150
MQI channels 164
MQMD 151
MQOD 151
MQOPEN 163
MQPMO 151
MQTM 152
structures 141, 150
structures (C) 139—140
structures (Visual Basic) 146—147

message retry exit 164
message sequence number 126
messaging 9
moving the product 23
MQBACK

See MQI calls
MQBYTE

See elementary data types
MQBYTE16

See elementary data types
MQBYTE24

See elementary data types
MQBYTE32

See elementary data types
MQCHAR

See elementary data types

202 User’s Guide

Index

MQCHAR12
See elementary data types

MQCHAR128
See elementary data types

MQCHAR256
See elementary data types

MQCHAR28
See elementary data types

MQCHAR32
See elementary data types

MQCHAR4
See elementary data types

MQCHAR48
See elementary data types

MQCHAR64
See elementary data types

MQCHAR8
See elementary data types

MQCLOSE
See MQI calls

MQCMIT
See MQI calls

MQCONN
See MQI calls

MQCONN call
See MQI calls

MQDISC
See MQI calls

MQDISC call
See MQI calls

MQDLH
See structure data types

MQGET
See MQI calls

MQGMO
See structure data types

MQHCONN
See elementary data types

MQHOBJ
See elementary data types

MQI
See Message Queue Interface (MQI)

MQI calls 10, 135—138, 142—145, 149
MQBACK

BASIC syntax 142
C syntax 135

MQCLOSE
BASIC syntax 142
C syntax 135

MQCMIT
BASIC syntax 142

MQI calls (continued)
MQCMIT (continued)

C syntax 135
MQCONN

BASIC syntax 142
C syntax 136
restrictions 149

MQDISC
BASIC syntax 143
C syntax 136

MQGET
BASIC syntax 143
C syntax 136
restrictions 150

MQINQ
BASIC syntax 143
C syntax 136
restrictions 150

MQOPEN
BASIC syntax 144
C syntax 137
restrictions 149

MQPUT
BASIC syntax 144
C syntax 137
restrictions 150

MQPUT1
BASIC syntax 144
C syntax 137
restrictions 150

MQSET
BASIC syntax 145
C syntax 138
restrictions 150

reason codes 175
MQI channels 164
MQINQ

See MQI calls
MQLONG

See elementary data types
MQM.LIB 132
MQM16.LIB 132
MQMD

See structure data types
MQOD

See structure data types
MQOPEN

See MQI calls
MQOPEN call

See MQI calls

 Index 203

Index

MQPMO
See structure data types

MQPUT
See MQI calls

MQPUT1
See MQI calls

MQSC command files 19, 171
AMQSCOMW.TST 171
AMQSCOSW.TST 172
error messages 179
errors in 90
format 89
format of 89
MARS.TST 70, 172
sample 171, 172
VENUS.TST 68, 172
writing 89

MQSC commands 15, 164
CREATE 85
DEFINE QLOCAL 89
DISPLAY 85
examples 91
issuing 85
reason codes 175
RESET CHANNEL 126
RESOLVE CHANNEL 126
running 168
supported commands 169

MQSC Commands utility 86—89, 168
issuing commands 88
issuing MQSC commands 86
starting 88

MQSC error log 90, 101, 179
MQSC.LOG 90
MQSeries applications 10
MQSeries client 3, 15, 165
MQSeries objects 10

administering local 85
changing 85
creating 6, 43, 85
default 19, 171
deleting 85
for verifying the sample configuration 172
in AMQSCOMW.TST 171
object handle 10
opening 10
persistence of 15
recreating 167
specifying 86
system 171

MQSeries publications xii
MQSET

See MQI calls
MQTM

See structure data types
MQXQH

See structure data types

N
Name keyword 100, 104, 107
NameInformationText keyword 101
NamePrompt keyword 100
NetView Distribution Manager 27, 33

return codes for 33
non-persistent message 5
notational conventions

C language 135
Visual Basic 141

O
OAM

See Object Authority Manager
Object Authority Manager 165
object descriptor (MQOD)

See structure data types
object handle 10
online help 23
open object call 149
opening a queue 10
options, data structures 150—152

P
parameter pointers 149
parameters, for installation 30
PATH statement 20
PCF 85, 165
persistent message 5
ping command 67
pointers 149
prerequisite software 13
problem diagnosis 123
process definitions 165
product image, copying 28
product status window 23
production configuration 13
profile (.PRO) 30

204 User’s Guide

Index

Programmable Command Formats 85, 165
programming languages supported 131
programming restrictions 149
publications

MQSeries xii
put message calls 150
put message options (MQPMO)

See structure data types
PutDate 151
putting messages 10, 38
Putting Messages sample 38, 73, 155

design 157

Q
queue 9

attributes 153, 163
attributes, viewing 51
changing attributes 82
dead-letter 139, 164
deleting 52
local definition of remote queue 53
local queue 53
MQOPEN 10
opening 10
predefined 171
remote queue 53
transmission 53

queue manager
administering 81
attributes 152, 163
attributes, viewing 50
autostart 49
changing attributes 82
connection status of 47
creating 37, 44, 167
defining 100
deleting 51, 167
description 9, 45
for sample programs 37
icon 48, 62, 116
local 53
multiple queue managers 11
name of 44, 95
Queue Managers window 49
quiescing 165
remote 53
setting up 35, 71
setting up MARS 71
setting up VENUS 71

queue manager (continued)
starting 49, 168
starting automatically 49
status of 47
status of transport links 47
stopping 50, 167
subdirectory 23

Queue Managers view 47
QueueManager component 98, 100, 102
QueueManagerName keyword 104
quiescing 165

R
RAM storage 13
RCDMQIMG command 167
RCRMQOBJ command 167
READ.ME file xii
reason codes 175
receiver channel 56
recommended software

application development 13
end-users 13

record media image 167
reinstalling MQSeries 25
remote queue 53

See also queue
remote queue manager 53
Replace keyword 102, 105, 108
report generation 5
report messages 5
requester channel 56
RESET CHANNEL command 126
RESOLVE CHANNEL command 126
resolving MQSeries transactions 167
responder 56
response files 28

comments in 28
creating 28
drive and path for 31
example 30
general 28, 29, 31
keywords 27, 29
parameters 27
specific 28, 29, 31
structure 28
syntax 28

restoring backed up product 31
retries 60

 Index 205

Index

return codes
from automatic installation 33
from MQI calls 175
from MQSC commands 175

RSVMQTRN command 167
RUNMQCHI command 167
RUNMQCHL command 167
RUNMQLSR command 167
RUNMQSC command 85, 168
RUNMQTMC command 168
RUNMQTRM command 168
running

channel 167
channel group 63
channel initiator 167
command file 88
listener 167
MQSC commands 168
transport link 117

RunOnCompletion keyword 110

S
sample programs 19, 23, 165

32-bit support 160
Browsing Messages 155
Browsing Messages files 159
building the executable files 159
configuring 35
configuring on two workstations 73
design of Browsing Messages 158
design of Getting Messages 157
design of Putting Messages 157
Getting Messages 39, 74, 155
Getting Messages files 159
objects for 172
Putting Messages 38, 73, 155
Putting Messages files 159
starting 37

security manager 165
selecting a catalog 23
sender channel 56
server

channel 56
command 163
copying the product image 28
MQSeries 3
node 3
support 15, 165

server icon 62, 116
service information 119
Service Information utility 119
service tools 119
Service Trace utility 119

controlling 120
controlling autosave 121
output 120
output to file 120
starting 120
stopping 121

Set attribute call 150
SETMQAUT command 163, 165, 168
setting authority 168
setting up a queue manager 35
signaling 165
softcopy books xiv
software requirements 13
specific response file

See response files
specifying MQSeries objects 86
Standard Controls utility 6, 46

Channel Groups view 61
Connection Monitor view 62, 116
equivalent control commands 167
icon 47
issuing MQSC commands 86
options for 110
transport links view 115

StartFilename keyword 107
starting

channel group 63, 72
client trigger monitor 168
command server 168
MQSC Commands utility 88
queue manager 49, 72, 168
Standard Controls utility 47
transport link 117
trigger monitor 168

StartListener keyword 104
StartTimeout keyword 108
status of channel groups 47
status of transport links 47
StopFilename keyword 108
STOPLINK.BAT 113
STOPLINK.DAT 113
stopping

channel group 63
queue manager 50
stopping MQSC Commands utility 89

206 User’s Guide

Index

stopping (continued)
transport link 117

StopTimeout keyword 108
storage requirements 13
STRMQCSV command 168
STRMQM command 168
STRTLINK.BAT 113
STRTLINK.DAT 113
structure data types

dynamic 134
initial values (C) 134
MQGMO

BASIC syntax 146
C syntax 139
options 150

MQMD
BASIC syntax 146
C syntax 139
options 151

MQOD
BASIC syntax 147
C syntax 140

MQPMO
BASIC syntax 147
C syntax 140
options 151

MQXQH
BASIC syntax 147
C syntax 140

options 150—152
trigger message 140

supplied MQSC command file 45, 171
synchronization file 126
syntax, data structures

See structure data types
system error, unrecoverable 126
system queue and channels 45

T
TCP/IP 53, 165
terminology used in this book xi
testing a LAN connection 67
Toolkit 20, 23, 35
trace file, AMQTRACW.LOG 120
tracing

See Service Trace utility
transmission queue 53
transmission queue header (MQXQH)

See structure data types

transport link 113
attributes 117
autostart 61, 115
changing attributes 82
creating 114
defining 107
deleting 118
examples 109
icon 116
monitoring 114
starting 117
starting automatically 61, 115
stopping 117
viewing attributes 117
viewing using the Standard Controls utility 115

Transport Links view 47
TransportLink component 98
trigger message (MQTM) 147
triggering 152, 165
two-phase commit 166
type styles in this book xi
TZ environment variable 151

U
undelivered message 139, 164
unrecoverable system error 126
updates

applying 25
automatic 27

updating installed product 31
catalog, AMQICATW.ICF 31

using MQSC commands 85
using multiple queue managers 11
utilities

Advanced Controls utility 7, 82
equivalent control commands 167
issuing MQSC commands 86
options for 110

Create and Go utility 6, 44, 95
issuing MQSC commands 86
queue manager 37

Create Components utility 6, 44
creating channel groups 60
creating channels 59
creating queue manager 44
creating transport links 114
equivalent control commands 167
issuing MQSC commands 86

Delete Components utility 7, 51
equivalent control commands 167

 Index 207

Index

utilities (continued)
Installation Utility 23
MQSC Commands utility 7, 86, 168

issuing MQSC commands 86
Service Information utility 7, 119
Service Trace utility 7, 119
Standard Controls utility 6, 46

equivalent control commands 167
issuing MQSC commands 86
options for 110
viewing channel groups 61
viewing transport links 115

Verify Install utility 6, 35

V
VENUS.INI 68
VENUS.TST 68, 93, 172
Verify Install utility 6, 35
verifying

configuration 35
installation 35
parameter pointers 149
queue manager 37
sample configuration 172

viewing
channel attributes 64
channel group attributes 63
channel status 64
queue attributes 51
queue manager attributes 50
transport link attributes 117

Visual Basic programming language
declaring data types 141
declaring MQI parameters 141
elementary data types 145
form files 141
header files 141
invoking MQI calls 141
MQI calls 141
notational conventions 141
structure data types 146—147

W
World Wide Web (WWW) xv
writing applications 131

208 User’s Guide

Sending your comments to IBM
MQSeries for Windows**

User’s Guide

GC33-1822-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the
accuracy, organization, subject matter, or completeness of this book. Please limit your
comments to the information in this book and the way in which the information is
presented.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form (RCF)

 � By fax:

– From outside the U.K., after your international access code use
44 1962 870229

– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name/address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries for Windows**

User’s Guide

GC33-1822-00

Use this form to tell us what you think about this manual. If you have found errors in it,
or if you want to express your opinion about it (such as organization, subject matter,
appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer. This form is provided for comments about the
information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries for Windows**
User’s Guide GC33-1822-00

IBM

NameFrom:

Fold along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

Fold along this line

C
ut along this line

IBM

Program Number: 5622-960

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC33-1822-ðð

