

IB
M

MQSeries for Digital OpenVMS

System Management Guide

Version 2 Release 2

GC33-1791-00

IBM MQSeries for Digital OpenVMS

System Management Guide

Version 2 Release 2

GC33-1791-00

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix O, “Notices”
on page 345.

First edition (May 1997)

This edition applies to the following product:

� MQSeries for Digital OpenVMS Version 2 Release 2

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . xi
Who this book is for . xi
What you need to know to understand this book xi
How to use this book . xi
MQSeries publications . xii

Evaluating products . xii
Planning . xii
Administration . xii
Application programming . xiii
Problem determination . xiii
Special topics . xiv
Other MQSeries Version 1 publications . xiv

Information about MQSeries on the Internet . xiv

Part 1. Guidance . 1

Chapter 1. Introduction . 3
MQSeries and message queuing . 3
Messages and queues . 4
Objects . 5
System default objects . 10
Administration . 10
Clients and servers . 11
Extending queue manager facilities . 11
Security . 12

Chapter 2. Installing MQSeries for Digital OpenVMS 13
Components you can install . 13
Installation requirements . 14
Installation on Digital OpenVMS Version 6.2 . 15
Post-installation tasks . 19
System configuration . 21
Directories that exist after installation . 21
Translated messages . 22
Verifying your installation . 22
Installing clients . 26

Chapter 3. Customizing your system . 27
Things you can customize . 28

 Copyright IBM Corp. 1995, 1997 iii

 Contents

Chapter 4. Understanding administration command sets 33
Control commands . 33
MQSeries commands (MQSC) . 34
PCF commands . 35
Comparing command sets . 36

Chapter 5. Managing queue managers . 39
Getting started . 39
Guidelines for creating queue managers . 39
Understanding MQSeries file names . 42
Working with queue managers . 43
Managing the command server for remote administration 47

Chapter 6. Administering local MQSeries objects 49
Supporting application programs that use the MQI 49
Issuing MQSC commands for administration . 50
Running MQSC commands from text files . 53
If you have problems with MQSC . 56
Working with local queues . 58
Working with alias queues . 65
Working with model queues . 67
Managing objects for triggering . 68

Chapter 7. Administering remote MQSeries objects 71
Understanding channels and remote queuing 71
Remote administration . 72
Creating a local definition of a remote queue . 78
Using remote queue definitions as aliases . 81

Chapter 8. Security . 83
Before you begin . 83
Why you need to protect MQSeries resources 84
Understanding the Object Authority Manager . 84
Using the Object Authority Manager commands 87
Object Authority Manager guidelines . 89
Understanding the authorization specification tables 93
Understanding authorization files . 98

Chapter 9. Using the name service . 103
Using DCE to share queues on different queue managers 103
DCE configuration . 104

Chapter 10. The MQSeries dead-letter queue handler 107
Invoking the DLQ handler . 107
The DLQ handler rules table . 108
How the rules table is processed . 115
An example DLQ handler rules table . 117

Chapter 11. Instrumentation events . 119
What instrumentation events are . 119
Why use events? . 120

iv MQSeries for Digital OpenVMS V2R2 System Management Guide

 Contents

Chapter 12. Recovery and restart . 125
Making sure that messages are not lost (logging) 125
Checkpointing – ensuring complete recovery 128
Managing logs . 130
Using the log for recovery . 132
Backup and restore . 134
Recovery scenarios . 136

Chapter 13. Configuration files . 139
What configuration files are . 139
MQSeries configuration file . 139
Queue manager configuration file . 141
Editing configuration files . 143
Configuring the logs . 143
Specifying log file sizes . 147

Chapter 14. Problem determination . 149
Preliminary checks . 149
Common programming errors . 152
What to do next . 153
Application design considerations . 156
Incorrect output . 157
Error logs . 160
Dead-letter queues . 163
Configuration files and problem determination 164
Using MQSeries trace . 164
First failure support technology (FFST) . 165
Problem determination with clients . 166

 Contents v

 Contents

Part 2. Reference . 169

Chapter 15. MQSeries control commands 171
Names . 171
How to read syntax diagrams . 171
Syntax help . 172
MQSeries return codes . 173
crtmqcvx (Data conversion) . 174
crtmqm (Create queue manager) . 176
dltmqm (Delete queue manager) . 180
dspmqaut (Display authority) . 182
dspmqcsv (Display command server) . 186
dspmqfls (Display MQSeries files) . 187
dspmqtrc (Display MQSeries formatted trace output) 189
endmqcsv (End command server) . 190
endmqm (End queue manager) . 192
endmqtrc (End MQSeries trace) . 194
rcdmqimg (Record media image) . 195
rcrmqobj (Recreate object) . 197
rsvmqtrn (Resolve MQSeries transactions) . 199
runmqchi (Run channel initiator) . 201
runmqchl (Run channel) . 202
runmqdlq (Run dead-letter queue handler) . 203
runmqlsr (Run listener) . 205
runmqsc (Run MQSeries commands) . 206
runmqtmc (Start client trigger monitor) . 209
runmqtrm (Start trigger monitor) . 210
setmqaut (Set/reset authority) . 211
strmqcsv (Start command server) . 217
strmqm (Start queue manager) . 218
strmqtrc (Start MQSeries trace) . 219

Part 3. Appendixes . 223

Appendix A. MQSeries for Digital OpenVMS at a glance 225

Appendix B. System defaults . 227

Appendix C. Directory structure . 229
Queue manager log directory structure . 231

Appendix D. Sample MQI programs and MQSC files 233

Appendix E. Codeset support on MQSeries for Digital OpenVMS 235

Appendix F. Fast messages and trusted applications. 237
Fast messages . 237
Trusted applications . 237
Restrictions on Trusted Applications . 239
Building applications . 240
Integrity . 240

vi MQSeries for Digital OpenVMS V2R2 System Management Guide

 Contents

Appendix G. Code page conversion tables 241
Code page conversion tables . 242
MVS single byte conversion support . 268

Appendix H. Stopping and removing queue managers manually 275
Stopping queue managers manually . 275
Removing queue managers manually . 276

Appendix I. Building your application on Digital OpenVMS 279
MQSeries for Digital OpenVMS data definition files 279
Preparing C programs . 283
Preparing COBOL programs . 283
User exits . 284

Appendix J. Monitoring and controlling DQM on OS/2, Windows NT,
UNIX systems and Digital OpenVMS . 285

The DQM channel control function . 285
Functions available . 286
Getting started . 288
Channel attributes and channel types . 291
Channel functions . 292

Appendix K. Setting up communication in Digital OpenVMS systems . 297
Deciding on a connection . 297
Defining a TCP/IP connection . 297
Receiving channels using Attachmate** PathWay for OpenVMS 299
Defining an LU 6.2 connection . 300

Appendix L. Defining DECnet Phase IV and Phase V connections . . . 305

Appendix M. Ancilliary information . 307
MQSeries Command Reference . 307
MQSeries Distributed Queuing Guide . 307

Appendix N. Messages . 309
Message format . 309
Structure of messages . 309
MQSeries messages . 310

Appendix O. Notices . 345
Trademarks . 346

Part 4. Glossary and index . 347

Glossary of terms and abbreviations . 349

Index . 359

 Contents vii

 Contents

viii MQSeries for Digital OpenVMS V2R2 System Management Guide

 Tables

 Figures

1. Example installation . 15
2. Queues, messages, and applications . 49
3. Extract from the MQSC command file, myprog.in 54
4. Extract from the MQSC report file, myprog.out. 55
5. Remote administration . 73
6. Setting up channels and queues for remote administration 74
7. An example rule from a DLQ handler rules table 110
8. Understanding instrumentation events 120
9. Monitoring queue managers across different platforms, on a single node 121

10. Checkpointing . 128
11. Checkpointing with a long-running transaction 129
12. Example MQSeries configuration file . 140
13. Example queue manager configuration file 142
14. Sample MQSeries for Digital OpenVMS trace 165
15. Sample MQSeries for Digital OpenVMS First Failure Symptom Report. 166
16. Default directory structure after a queue manager has been started . . 229
17. Example of COBOL code for including the CMQMDV copy file 281
18. Example of COBOL code for including two instances of CMQMDV . . 281
19. Example of COBOL code for declaring constants 282
20. Example of COBOL code using the GLOBAL clause 282

 Tables

1. Commands for queue manager administration 36
2. Commands for command server administration 36
3. Commands for queue administration . 36
4. Commands for process administration . 37
5. Commands for channel administration . 37
6. Other control commands . 37
7. Security authorization needed for MQI calls 94
8. MQSC commands and security authorization needed 96
9. PCF commands and security authorization needed 97

10. Log overhead sizes . 147
11. How to read syntax diagrams . 172
12. Security authorities from the dspmqaut command 183
13. Specifying authorizations for different object types 214
14. Objects included in amqscoma.tst . 227
15. MQSC command files . 233
16. Sample programs - source files . 233
17. Miscellaneous files . 234
18. Locales and CCSIDs . 235
19. Conversion support: US ENGLISH . 243
20. Conversion support: GERMAN . 244
21. Conversion support: DANISH and NORWEGIAN 245
22. Conversion support: FINNISH and SWEDISH 246
23. Conversion support: ITALIAN . 247
24. Conversion support: SPANISH . 248

 Copyright IBM Corp. 1995, 1997 ix

 Tables

25. Conversion support: UK ENGLISH / GAELIC 249
26. Conversion support: FRENCH . 250
27. Conversion support: MULTILINGUAL . 251
28. Conversion support: PORTUGUESE . 252
29. Conversion support: ICELANDIC . 253
30. Conversion support: EASTERN EUROPEAN Languages 254
31. Conversion support: CYRILLIC . 255
32. Conversion support: GREEK . 256
33. Conversion support: TURKISH . 257
34. Conversion support: HEBREW . 258
35. Conversion support: ARABIC . 259
36. Conversion support: JAPANESE LATIN SBCS 260
37. Conversion support: JAPANESE KATAKANA SBCS 261
38. Conversion support: JAPANESE KANJI / LATIN MIXED 262
39. Conversion support: JAPANESE KANJI / KATAKANA MIXED 263
40. Conversion support: KOREAN . 264
41. Conversion support: SIMPLIFIED CHINESE 265
42. Conversion support: TRADITIONAL CHINESE 266
43. Codeset names and CCSIDs . 267
44. MVS V1.1.4 single byte CCSID conversion support. 268
45. C include files for MQSeries for Digital OpenVMS 279
46. COBOL copy files for MQSeries for Digital OpenVMS 281
47. Functions available in MQSeries for OS/2, Windows NT, UNIX systems

and Digital OpenVMS systems . 286
48. Channel attributes for the channel types in OS/2, Windows NT, UNIX

systems and Digital OpenVMS . 291

x MQSeries for Digital OpenVMS V2R2 System Management Guide

 About this book

About this book

MQSeries for Digital OpenVMS Version 2.2—referred to in this book as MQSeries
for Digital OpenVMS or simply MQSeries, as the context permits—is part of the
MQSeries family of products. These products provide application programming
services that enable application programs to communicate with each other using
message queues. This form of communication is referred to as commercial
messaging. The applications involved can exist on different nodes on a wide
variety of machine and operating system types. They use a common application
programming interface, called the Message Queuing Interface or MQI, so that
programs developed on one platform can be readily transferred to another.

This book describes the system administration aspects of MQSeries for Digital
OpenVMS Version 2.2 and the services it provides to support commercial
messaging in an OpenVMS environment. This includes managing the queues that
applications use to receive their messages, and ensuring that applications have
access to the queues that they require.

Who this book is for
Primarily, this book is for system administrators, and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book
To use this book, you should have a good understanding of the OpenVMS
operating system, and utilities associated with it. You do not need to have worked
with message queuing products before, but you should have an understanding of
the basic concepts of message queuing.

At the back of the book there are some appendixes giving information on the
following topics:

 � Building applications
� Monitoring, controlling and setting up communications
� Code page conversion tables
� Other ancilliary information you may need

This information has been taken from other books in the MQSeries library and will
be reinstated in the appropriate books at the next available opportunity.

How to use this book
Read Chapter 1, “Introduction” on page 3 first for an understanding of MQSeries
for Digital OpenVMS.

The sections of this book contain information about:

� How to manage your MQSeries system, including information on:

– Install and set up the product

 Copyright IBM Corp. 1995, 1997 xi

 MQSeries publications

– Manage queue managers and queues
– Monitor queue managers using instrumentation events
– Set up security
– Recover from a system failure
– Analyze any problems that arise

� The MQSeries control commands, including railroad syntax diagrams.

� Sample resource definitions.

 MQSeries publications

 Evaluating products
MQSeries Brochure, G511-1908

MQSeries: An Introduction to Messaging and Queuing, GC33-0805

MQSeries Message Queue Interface Technical Reference, SC33-0850

 Planning
MQSeries Planning Guide, GC33-1349

MQSeries for MVS/ESA Version 1 Release 1.4 Licensed Program
Specifications, GC33-1350

MQSeries for OS/400 Version 3 Release 2 (and later) Licensed Program
Specifications, GC33-1360 (softcopy only)

 Administration
MQSeries Clients, GC33-1632

MQSeries Command Reference, SC33-1369

MQSeries Programmable System Management, SC33-1482

MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for HP-UX Version 2.2.1 System Management Guide, GC33-1633

MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris Version 2.2 System Management Guide, GC33-1800

MQSeries for Windows NT Version 2.0 System Management Guide,
SC33-1643

MQSeries for MVS/ESA Version 1 Release 1.4 Program Directory

MQSeries for MVS/ESA Version 1 Release 1.4 System Management Guide,
SC33-0806

MQSeries for OS/400 Version 3 Release 2 and later Administration Guide,
GC33-1361

xii MQSeries for Digital OpenVMS V2R2 System Management Guide

 MQSeries publications

MQSeries for Tandem Nonstop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries link for R/3 Version 1.0 User’s Guide, GC33-1934

MQSeries Three Tier Administration Guide, SC33-1451

MQSeries Three Tier Reference Summary, SX33-6098

MQSeries for Windows Version 2.0 User’s Guide, GC33-1822

 Application programming
MQSeries Application Programming Guide, SC33-0807

MQSeries Application Programming Reference, SC33-1673

MQSeries Application Programming Reference Summary, SX33-6095

MQSeries for OS/400 Version 3 Release 2 (and later) Application Programming
Reference (RPG), SC33-1362

MQSeries Three Tier Application Design, SC33-1636

MQSeries Three Tier Application Programming, SC33-1452

MQSeries Three Tier Reference Summary, SX33-6098

 Problem determination
MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for HP-UX Version 2.2.1 System Management Guide, GC33-1633

MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris Version 2.2 System Management Guide, GC33-1800

MQSeries for Windows NT Version 2.0 System Management Guide,
SC33-1643

MQSeries for MVS/ESA Version 1 Release 1.4 Messages and Codes,
GC33-0819

MQSeries for MVS/ESA Version 1 Release 1.4 Problem Determination Guide,
GC33-0808

MQSeries for OS/400 Version 3 Release 2 and later Administration Guide,
GC33-1361

MQSeries for Tandem Nonstop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries Three Tier Administration Guide, SC33-1451

 About this book xiii

 MQSeries on the Internet

 Special topics
MQSeries Distributed Queuing Guide, SC33-1139

Other MQSeries Version 1 publications
For information about other MQSeries platforms, see the following publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for Digital VMS VAX Version 1 Release 5 User’s Guide, SC33-1144

MQSeries for SCO UNIX Version 1 Release 4 User’s Guide, SC33-1378

MQSeries for Tandem NonStop Kernel Version 1 Release 5.1 User’s Guide,
SC33-1755

MQSeries for UnixWare Version 1 Release 4.1 User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 4 Licensed Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 4 User’s Guide, SC33-1142

Information about MQSeries on the Internet
The MQSeries home page

The URL of the MQSeries product family home page is:

 http://www.hursley.ibm.com/mqseries/

xiv MQSeries for Digital OpenVMS V2R2 System Management Guide

 Part 1. Guidance

 Copyright IBM Corp. 1995, 1997 1

2 MQSeries for Digital OpenVMS V2R2 System Management Guide

 MQSeries and message queuing

 Chapter 1. Introduction

This chapter introduces MQSeries for Digital OpenVMS from an administrator’s
perspective, and describes the basic concepts of MQSeries and messaging. It
contains these sections:

� “MQSeries and message queuing”
� “Messages and queues” on page 4
� “Objects” on page 5
� “System default objects” on page 10
� “Administration” on page 10
� “Clients and servers” on page 11
� “Extending queue manager facilities” on page 11
� “Security” on page 12

MQSeries and message queuing
MQSeries lets OpenVMS applications use message queuing to participate in
message-driven processing. Applications can communicate across different
platforms by using the appropriate message queuing software products. For
example, OpenVMS and MVS/ESA applications can communicate through
MQSeries for OpenVMS and MQSeries for MVS/ESA respectively. The
applications are shielded from the mechanics of the underlying communications.

MQSeries products implement a common application programming interface
(message queue interface or MQI) whatever platform the applications are run on.
This makes it easier to port applications from one platform to another.

The MQI is described in detail in the MQSeries Application Programming Reference
manual.

 Time-independent applications
With message queuing, the exchange of messages between the sending and
receiving programs is time independent. This means that the sending and
receiving applications are decoupled so that the sender can continue processing
without having to wait for the receiver to acknowledge the receipt of the message.
In fact, the target application does not even have to be running when the message
is sent. It can retrieve the message after it is started.

 Message-driven processing
Applications can be automatically started by messages arriving on a queue using a
mechanism known as triggering. If necessary, the applications can be stopped
when the message or messages have been processed.

 Copyright IBM Corp. 1995, 1997 3

 Messages and queues

Messages and queues
Messages and queues are the basic components of a message queuing system.

What messages are
A message is a string of bytes that has meaning to the applications that use it.
Messages are used for transferring information from one application to another (or
to different parts of the same application). The applications can be running on the
same platform, or on different platforms.

MQSeries messages have two parts; the application data and a message
descriptor. The content and structure of the application data is defined by the
application programs that use them. The message descriptor identifies the
message and contains other control information, such as the type of message and
the priority assigned to the message by the sending application.

The format of the message descriptor is defined by MQSeries for Digital OpenVMS.
For a complete description of the message descriptor, see the MQSeries
Application Programming Reference manual.

 Message lengths
In MQSeries for Digital OpenVMS, the maximum message length is 4 MB (where 1
MB equals 1 048 576 bytes). In practice, the message length may be limited by:

� The maximum message length defined for the receiving queue.

� The maximum message length defined for the queue manager.

� The maximum message length defined by either the sending or receiving
application.

� The amount of storage available for the message.

It may take several messages to send all the information that an application
requires.

What queues are
A queue is a data structure that stores zero or more messages. The messages
may be put on the queue by applications or by a queue manager as part of its
normal operation.

Each queue belongs to a queue manager, which is responsible for maintaining it.
The queue manager puts the messages it receives on the appropriate queues.

Applications send and receive messages using MQI calls. For example, one
application can put a message on a queue, and another application can retrieve the
message from the same queue. The sending application opens the queue for put
operations by making an MQOPEN call. Then it issues an MQPUT call to put the
message onto that queue. When the receiving application opens the same queue
for gets, it can retrieve the message from the queue by issuing an MQGET call.

For more information about MQI calls, see the MQSeries Application Programming
Reference manual.

4 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Objects

Predefined and dynamic queues
Queues can be characterized by the way they are created:

� Predefined queues are created by an administrator using the appropriate
command set. For example, the MQSC command DEFINE QLOCAL creates a
predefined local queue. Predefined queues are permanent; they exist
independently of the applications that use them and survive MQSeries for
Digital OpenVMS restarts.

� Dynamic queues are created when an application issues an open request
specifying the name of a model queue. The queue created is based on a
template queue definition, which is the model queue. You can create a model
queue using the MQSC command DEFINE QMODEL. The attributes of a
model queue, for example the maximum number of messages that can be
stored on it, are inherited by any dynamic queue that is created from it.

Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues can be lost or damaged by a restart.

Retrieving messages from queues
In MQSeries for Digital OpenVMS, suitably authorized applications can retrieve
messages from a queue according to these retrieval algorithms:

 � First-in-first-out (FIFO).

� Message priority, as defined in the message descriptor. Messages that have
the same priority are retrieved on a FIFO basis.

� A program request for a specific message.

The MQGET request from the application determines the method used.

 Objects
Many of the tasks described in this book involve manipulating MQSeries objects. In
MQSeries for Digital OpenVMS, there are four different types of objects:

� Queue managers; see “MQSeries queue managers” on page 6.
� Queues; see “MQSeries queues” on page 7.
� Process definitions; see “Process definitions” on page 9.
� Channels; see “Channels” on page 10.

 Object names
Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any given
message should be sent.

For the other types of objects, each object has a name associated with it and can
be referenced in MQSeries for Digital OpenVMS by that name. These names must
be unique within one queue manager and object type. For example, you can have
a queue and a process with the same name, but you cannot have two queues with
the same name.

 Chapter 1. Introduction 5

 Objects

In MQSeries, names can have a maximum of 48 characters, with the exception of
channels, that have a maximum of 20 characters. For more information about
names see “Names” on page 171.

 Managing objects
MQSeries provides commands for creating, altering, displaying, and deleting
objects. These include:

� MQSeries commands (MQSC), which can be typed in from a keyboard or read
from a file.

� Programmable Command Format (PCF) commands, which can be used in a
program.

For more information, see Chapter 4, “Understanding administration command
sets” on page 33.

 Object attributes
The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a
queue can accommodate is defined by its MaxMsgLength attribute; you can specify
this attribute when you create a queue. The DefinitionType attribute specifies how
the queue was created; you can only display this attribute.

In MQSeries, there are two ways of referring to an attribute:

� Using its PCF name, for example, MaxMsgLength.

� Using its MQSC name, for example, MAXMSGL.

The formal name of an attribute is its PCF name. Because using the MQSC facility
is an important part of this book, you are more likely to see the MQSC name in
examples than the PCF name of a given attribute.

MQSeries queue managers
A queue manager provides queuing services to applications, and manages the
queues that belong to it. It ensures that:

� Object attributes are changed according to the commands received.

� Special events such as trigger events or instrumentation events are generated
when the appropriate conditions are met.

� Messages are put on the correct queue, as requested by the application
making the MQPUT call. The application is informed if this cannot be done,
and an appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager. The queue manager to which an application is connected is
said to be the local queue manager for that application. For the application, the
queues that belong to its local queue manager are local queues. A remote queue
is simply a queue that belongs to another queue manager. A remote queue
manager is any queue manager other than the local queue manager. A remote
queue manager may exist on a remote machine across the network or it may exist
on the same machine as the local queue manager. MQSeries for Digital OpenVMS
supports multiple queue managers on the same machine.

6 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Objects

 MQI calls
A queue manager object may be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MQINQ.

Note: You cannot put messages on a queue manager object; messages are
always put on queue objects, not on queue manager objects.

 MQSeries queues
Queues are defined to MQSeries using the appropriate MQSC DEFINE command
or the PCF Create Queue command. The command specifies the type of queue
and its attributes. For example, a local queue object has attributes that specify
what happens when applications reference that queue in MQI calls. Examples of
attributes are:

� Whether applications can retrieve messages from the queue (GET enabled).

� Whether applications can put messages on the queue (PUT enabled).

� Whether access to the queue is exclusive to one application or shared between
applications.

� The maximum number of messages that can be stored on the queue at the
same time (maximum queue depth).

� The maximum length of messages that can be put on the queue.

For further details about defining queue objects, see the MQSeries Command
Reference or the MQSeries Programmable System Management manual.

Using queue objects
In MQSeries, there are four types of queue object. Each type of object can be
manipulated by the product commands and is associated with real queues in
different ways:

1. A local queue object identifies a local queue belonging to the queue manager
to which the application is connected. All queues are local queues in the sense
that each queue belongs to a queue manager and, for that queue manager, the
queue is a local queue.

2. A remote queue object identifies a queue belonging to another queue manager.
This queue must be defined as a local queue to that queue manager. The
information you specify when you define a remote queue object allows the local
queue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager.

You must also define a transmission queue and channels between the queue
managers, before applications can send messages to a queue on another
queue manager.

3. An alias queue object allows applications to access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call, the
name is resolved to the name of either a local or a remote queue at run time.
This allows you to change the queues that applications use without changing
the application in any way—you merely change the alias queue definition to
reflect the name of the new queue to which the alias resolves.

An alias queue is not a queue, but an object that you can use to access
another queue.

 Chapter 1. Introduction 7

 Objects

4. A model queue object defines a set of queue attributes that are used as a
template for creating a dynamic queue. Dynamic queues are created by the
queue manager when an application issues an MQOPEN request specifying a
queue name that is the name of a model queue. The dynamic queue that is
created in this way is a local queue whose attributes are taken from the model
queue definition. The dynamic queue name can be specified by the application
or the queue manager can generate the name and return it to the application.

Dynamic queues defined in this way may be temporary queues, which do not
survive product restarts, or permanent queues, which do.

Specific local queues used by MQSeries
MQSeries uses some local queues for specific purposes related to its operation.
You must define them before MQSeries can use them.

Application queues: A queue that is used by an application (through the MQI) is
referred to as an application queue. This can be a local queue on the queue
manager to which an application is linked, or it can be a remote queue that is
owned by another queue manager.

Applications can put messages on local or remote queues. However, they can only
get messages from a local queue.

Initiation queues: Initiation queues are queues that are used in triggering. A
queue manager puts a trigger message on an initiation queue when a trigger event
occurs. A trigger event is a logical combination of conditions that is detected by a
queue manager. For example, a trigger event may be generated when the number
of messages on a queue reaches a predefined depth. This event causes the
queue manager to put a trigger message on a specified initiation queue. This
trigger message is retrieved by a trigger monitor, a special application that monitors
an initiation queue. The trigger monitor then starts up the application program that
was specified in the trigger message.

If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.

See “Managing objects for triggering” on page 68, and “runmqtrm (Start trigger
monitor)” on page 210. For more information about triggering, see the MQSeries
Application Programming Guide.

Transmission queues: A transmission queue temporarily stores messages that
are destined for a remote queue manager. You must define at least one
transmission queue for each remote queue manager to which the local queue
manager is to send messages directly. These queues are also used in remote
administration; see “Remote administration” on page 72. For information about the
use of transmission queues in distributed queuing, see the MQSeries Distributed
Queuing Guide.

Dead-letter queues: A dead-letter queue stores messages that cannot be routed
to their correct destinations. This occurs when, for example, the destination queue
is full. The supplied dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.
These queues are also referred to as undelivered-message queues on other
platforms.

8 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Objects

For distributed queuing, you should define a dead-letter queue on each queue
manager involved.

Command queues: The command queue, named
SYSTEM.ADMIN.COMMAND.QUEUE, is a local queue to which suitably authorized
applications can send MQSeries for Digital OpenVMS commands for processing.
These commands are then retrieved by an MQSeries component called the
command server. The command server validates the commands, passes the valid
ones on for processing by the queue manager, and returns any responses to the
appropriate reply-to queue.

You can define a command queue for each queue manager by running the
supplied command file amqscoma.tst.

Reply-to queues: When an application sends a request message, the application
that receives the message can send back a reply message to the sending
application. This message is put on a queue, called a reply-to queue, which is
normally a local queue to the sending application. The name of the reply-to queue
is specified by the sending application as part of the message descriptor.

Event queues: MQSeries for Digital OpenVMS supports instrumentation events,
which can be used to monitor queue managers independently of MQI applications.
instrumentation events can be generated in several ways, for example:

� An application attempting to put a message on a queue that is not available or
does not exist.

� A queue becoming full.

� A channel being started.

When an instrumentation event occurs, the queue manager puts an event message
on an event queue. This message can then be read by a monitoring application
which may inform an administrator or initiate some remedial action if the event
indicates a problem.

Note: Trigger events are quite different from instrumentation events in that trigger
events are not caused by the same conditions, and do not generate event
messages.

For more information about instrumentation events, see the MQSeries
Programmable System Management manual.

 Process definitions
A process definition object defines an application that is to be started in response
to a trigger event on an MQSeries for Digital OpenVMS queue manager. See
“Initiation queues” on page 8 for more information.

The process definition attributes include the application ID, the application type, and
data specific to the application.

Use the MQSC command DEFINE PROCESS or the PCF command Create
Process to create a process definition.

 Chapter 1. Introduction 9

 Administration

 Channels
Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers may exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages,
and another, complementary one, at the queue manager that is to receive them.

For information on channels and how to use them, see the MQSeries Distributed
Queuing Guide, and also “Preparing channels and transmission queues for remote
administration” on page 73.

System default objects
The system default objects are a set of object definitions that can be created for
each queue manager, using the command file amqscoma.tst, which is supplied with
MQSeries. You can copy and modify any of these object definitions for use in
applications at your installation. Default object names have the stem
SYSTEM.DEF; for example, the default local queue is
SYSTEM.DEFAULT.LOCAL.QUEUE; the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of
these names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, the attributes you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

 Administration
In MQSeries, you carry out administration tasks by issuing commands. Three
command sets are provided, depending on which tasks you want to perform and
how you want to perform them. The command sets are described in Chapter 4,
“Understanding administration command sets” on page 33. Administration tasks
include:

� Starting and stopping queue managers.

� Creating objects, particularly queues, for applications.

� Working with channels to create communication paths to queue managers on
other (remote) systems. This is described in detail in the MQSeries Distributed
Queuing Guide.

Local and remote administration
Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet , and carry out
administration there. In MQSeries, you can consider this as local administration
because no channels are involved, that is, the communication is managed by the
operating system.

10 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Extending facilities

MQSeries supports administration from a single point through what is known as
remote administration. This allows you to issue commands from your local system
that are processed on another system. You do not have to log on to that system,
although you do need to have the appropriate channels defined. The queue
manager and command server on the target system must be running. For
example, you can issue a remote command to change a queue definition on a
remote queue manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

Clients and servers
MQSeries for Digital OpenVMS supports client-server configurations for MQSeries
applications.

An MQSeries client is a part of the MQSeries product that is installed on a machine
to accept MQI calls from applications and pass them to an MQI server machine.
There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the MQSeries objects, for example queues, exist only on the queue
manager machine, that is, on the MQI server machine. A server can support
normal local MQSeries applications as well.

The difference between an MQI server and an ordinary queue manager is that a
server has a dedicated communications link with each client. For more information
about creating channels for clients and servers, see the MQSeries Distributed
Queuing Guide

MQSeries applications in a client-server environment
When linked to a server, client MQSeries applications can issue MQI calls in the
same way as local applications. The client application issues an MQCONN call to
connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
queue manager. You must link your applications to the appropriate client libraries.
See the MQSeries Application Programming Guide for further information.

Extending queue manager facilities
The facilities provided by a queue manager can be extended by:

 � User exits
 � Installable services

 Chapter 1. Introduction 11

 Security

 User exits
User exits provide a mechanism for users to insert their own code into a queue
manager function. Two types of user exits are supported:

� Channel exits, which change the way that channels operate.

� Data conversion exits, that can be called from application programs to convert
data from one format to another.

Both types of exit are related to distributed queueing. For more information about
these exits and how to use them, see the MQSeries Distributed Queuing Guide.

 Installable services
Installable services are more extensive than exits in that they have formalized
interfaces (an API) with multiple entry points.

An implementation of an installable service is called a service component. You can
use the components supplied with the product, or you can write your own
component to perform the functions that you require. Currently, the following
installable services are provided:

� The authorization service , which allows you to build your own security facility.
The default service component that implements the service is the Object
Authority Manager (OAM), which is supplied with the product. By default, the
OAM is active, that is, you do not have to do anything to configure it. You can
use the authorization service interface to create other components to replace or
augment the OAM.

� The name service , which allows queue managers to share queues. The
default service component that implements the service uses the Open Software
Foundation (OSF) Distributed Computing Environment (DCE). This component
enables a queue manager to determine the owner of a queue.

You can also write your own name service component, for example, if you do
not have DCE.

See Chapter 9, “Using the name service” on page 103 and also the MQSeries
Programmable System Management manual.

 Security
Authorization for using MQI calls, commands, and access to objects is provided by
the Object Authority Manager (OAM), which by default is enabled. Access to
MQSeries entities is controlled through MQSeries for Digital OpenVMS user groups
and the OAM. A command line interface is provided to enable administrators to
grant or revoke authorizations as required.

12 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Installation

Chapter 2. Installing MQSeries for Digital OpenVMS

This chapter tells you how to install MQSeries for Digital OpenVMS and how to
verify that your installation has been successful. It contains the following topics:

� “Components you can install”
� “Installation requirements” on page 14
� “Installation on Digital OpenVMS Version 6.2” on page 15
� “Post-installation tasks” on page 19
� “System configuration” on page 21
� “Directories that exist after installation” on page 21
� “Translated messages” on page 22
� “Verifying your installation” on page 22
� “Installing clients” on page 26

The MQSeries product is installed into SYS$SYSTEM and various other places
including SYS$SYSROOT, SYS$HELP, SYS$STARTUP, and SYS$LIBRARY.

MQS_ROOT:[MQM] contains the data files. MQS_ROOT is a logical name whose
location is decided at install time.

Components you can install
When you install MQSeries for Digital OpenVMS you can choose which
components to install. The components are as follows:

Base product and runtime
The MQSeries for Digital OpenVMS base code.

Server
Support for servers. Requires the base product to be installed.

Help
Help files for control commands, MQI calls, and MQSC commands.

OpenVMS client
Support for Digital OpenVMS clients.

Desktop clients
Support for:

� DOS clients with a Digital OpenVMS server. To install a DOS client, the
DOS code must be copied to the DOS client machine or machines.

� OS/2 clients with a Digital OpenVMS server. To install an OS/2 client, the
OS/2 code must be copied to the OS/2 client machine or machines.

� Windows 3.1 clients with a Digital OpenVMS server. To install a Windows
client, the Windows code must be copied to the Windows 3.1 client
machine or machines.

Samples
Samples

French
MQSeries messages - French

 Copyright IBM Corp. 1995, 1997 13

 Installation requirements

German
MQSeries messages - German

Japanese
MQSeries messages - Japanese

Spanish
MQSeries messages - Spanish

Typically, a particular Digital OpenVMS machine is designated as either an
MQSeries client or server. This means that in most cases you install either the
Digital OpenVMS client component or the base product and server component.

 Installation requirements
The installation requirements depend on which components you install and how
much working space you need. This, in turn, depends on the number of queues
that you use, the number and size of the messages on the queues, and whether
the messages are persistent or not. You also require archiving capacity on disk,
tape, or other media.

 Disk storage
These are the approximate storage requirements:

� Base code and server product code and data:

– VAX – 16 MB of disk space
– AXP – 18 MB of disk space

 � Clients:

If you are installing client code, the storage required on the client machines is:

DEC-OVMS
820 KB on the VAX machine

935 KB on the AXP machine

DOS 240 KB on the DOS machine

OS/2 1.2 MB on the OS/2 machine

Windows 552 KB on the Windows machine

Working data for MQSeries for Digital OpenVMS is stored by default in
MQS_ROOT:[MQM]. See Figure 16 on page 229 for the directory structure.

Note: For added confidence in the integrity of your data, you are strongly advised
to put your logs onto a different physical drive from the one that you use
for the queues.

 Memory requirements
� VAX – 16 MB of memory
� AXP – 32 MB of memory

14 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Installation procedure

 Disk quotas
If disk quotas are enabled on the volume where MQSeries is going to store its data
(that is, the MQS_ROOT device) the MQM identifier requires a quota.

Note: First failure support technology (FFST) files also use disk quota.

Installation on Digital OpenVMS Version 6.2
Use the Digital OpenVMS VMSINSTAL program. For further details see the Digital
OpenVMS System Manager’s Guide.

From the OpenVMS command prompt type:

$ @SYS$UPDATE:VMSINSTAL MQSERIESð22 device

where device is the location for the installation save sets, for example
dka4ðð:[MQSERIESð22.KIT].

Select the items you require when prompted. Refer to Figure 1 for examples.

Note: The words in the square parentheses are the default selections. To accept
the default, press the Enter key. To change the selection, type Y for yes,
or N for no, as appropriate.

$ @sys$update:vmsinstal

OpenVMS AXP Software Product Installation Procedure V6.2

It is 14-MAR-1997 at 12:14.

Enter a question mark (?) at any time for help.

\ Are you satisfied with the backup of your system disk [YES]?

\ Where will the distribution volumes be mounted:DKA4ðð:[MQSERIESð22.KIT]

Enter the products to be processed from the first distribution volume set.

\ Products: mqseriesð22

\ Enter installation options you wish to use (none):

The following products will be processed:

 MQSERIES V2.2

Beginning installation of MQSERIES V2.2 at 12:14

%VMSINSTAL-I-RESTORE, Restoring product save set A ...

%VMSINSTAL-I-RELMOVED, Product's release notes have been moved to SYS$HELP.

\ Do you want to purge files replaced by this installation [YES]?

 Licensed Materials - Property of IBM

 5697-27ð/5697-271

(C) Copyright International Business Machines Corp. 1994, 1996

 All rights reserved.

 US Government Users Restricted Rights - Use, duplication or disclosure

 restricted by GSA ADP Schedule Contract with IBM Corp.

Figure 1 (Part 1 of 5). Example installation

 Chapter 2. Installing MQSeries for Digital OpenVMS 15

 Installation procedure

Please choose which of the following components to install:

- all the MQSeries components

- MQSeries Client for OpenVMS (684 blocks)

- MQSeries Server (1ð852 blocks)

- MQSeries Base Kit for Client and Server (118ð blocks)

- MQSeries Runtime for Client and Server (112ð4 blocks)

- MQSeries Examples (2ð44 blocks)

- MQSeries Message Catalogs - Spanish (424 blocks)

- MQSeries Message Catalogs - French (424 blocks)

- MQSeries Message Catalogs - German (444 blocks)

- MQSeries Message Catalogs - Japanese (364 blocks)

- MQSeries Clients for OS/2, DOS, and Windows 3.1 (93ð8 blocks)

\ Do you want all the MQSeries components [NO]? YES

\ Are you sure you want to install all the options [YES]?

%MQSERIES-I-FREEBLKS, Checking for 2644ð free blocks

\ Do you want to run the IVP after the installation [YES]?

%MQSERIES-I-UCX, TCP/IP Services for OpenVMS is installed

%MQSERIES-I-LU62, SNA LU6.2 Services for OpenVMS is installed

\ Enter the root device for the MQSeries datafiles

[SYS$COMMON]: DKAð

%VMSINSTAL-I-ACCOUNT, This installation adds an identifier named MQM.

%UAF-I-RDBADDMSG, identifier MQM value %X8ðð1ðð1D added to rights database

%UAF-I-GRANTMSG, identifier MQM granted to SYSTEM

 \\

The installation procedure will create an account called MQM

to run the MQSeries server processes. The account will be

created with the MQM resource identifier granted and the

 following privileges:

 TMPMBX,NETMBX

You must specify a unique group UIC for this account in

order to ensure proper security of the network. The

password for this account will be generated. You do not

need to know the password, since the account is disabled.

If this scenario violates your security policies, you may

change it after the installation has finished via the

OpenVMS AUTHORIZE utility.

 \\

\ Enter the UIC of the new MQM account [4ðð,4ðð]:

%VMSINSTAL-I-ACCOUNT, This installation creates an ACCOUNT named MQM.

%UAF-I-ADDMSG, user record successfully added

%VMSINSTAL-I-ACCOUNT, This installation adds an identifier named

MQS_SERVER.

%UAF-I-RDBADDMSGU, identifier MQS_SERVER value [ððð4ðð,ððð4ðð]

added to rights database

%VMSINSTAL-I-SYSDIR, This product creates system specific directory

[MQS_SERVER].

%VMSINSTAL-I-ACCOUNT, This installation updates an ACCOUNT named MQM.

%UAF-I-MDFYMSG, user record(s) updated

%UAF-I-GRANTMSG, identifier MQM granted to MQS_SERVER

Figure 1 (Part 2 of 5). Example installation

16 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Installation procedure

All questions have been answered. MQSeries installation for

OpenVMS will continue.

%VMSINSTAL-I-RESTORE, Restoring product save set B ...

%VMSINSTAL-I-RESTORE, Restoring product save set C ...

%VMSINSTAL-I-SYSDIR, This product creates system directory

[MQS_INCLUDE].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.BIN].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.DLQ].

%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories...

%VMSINSTAL-I-RESTORE, Restoring product save set E ...

%VMSINSTAL-I-RESTORE, Restoring product save set F ...

%VMSINSTAL-I-RESTORE, Restoring product save set G ...

%VMSINSTAL-I-RESTORE, Restoring product save set H ...

%VMSINSTAL-I-RESTORE, Restoring product save set I ...

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.MSG].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.LIB].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.BIN].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.INC].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.SAMP.BIN].

%VMSINSTAL-I-RESTORE, Restoring product save set J ...

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.MSG].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.DLL].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.BIN].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.LIB].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.INC].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.SAMP.BIN].

%VMSINSTAL-I-RESTORE, Restoring product save set K ...

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.MSG].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.DLL].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.LIB].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.BIN].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.INC].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.SAMP].

%VMSINSTAL-I-SYSDIR, This product creates system directory

[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.SAMP.BIN].

Figure 1 (Part 3 of 5). Example installation

 Chapter 2. Installing MQSeries for Digital OpenVMS 17

 Installation procedure

 \\

The MQSeries environment is setup by the command procedure

SYS$STARTUP:MQS_STARTUP.COM. It should be invoked during

system startup to define the MQSeries system logicals and

install all MQSeries shared libraries.

The following command line can be added to the system

startup command file SYS$MANAGER:SYSTARTUP_VMS.COM:

 $ @SYS$STARTUP:MQS_STARTUP.COM

Or the MQSeries command file can be executed from SYSMAN by

adding it to the startup command list with the following

 command:

$ MCR SYSMAN STARTUP ADD FILE MQS_STARTUP.COM

 \\

The installation will now execute the installation verification procedure

\\\Creating the IVP queue manager

MQSeries queue manager created.

\\\Starting the IVP queue manager

MQSeries queue manager started.

\\\Creating the base queues with RUNMQSC

83H8439, 5697-27ð (C) Copyright IBM Corp. 1996. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ð1ð: MQSeries process created.

AMQ8ð14: MQSeries channel created.

AMQ8ð14: MQSeries channel created.

AMQ8ð14: MQSeries channel created.

AMQ8ð14: MQSeries channel created.

AMQ8ð14: MQSeries channel created.

AMQ8ð14: MQSeries channel created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

AMQ8ðð6: MQSeries queue created.

21 MQSC commands read.

ð commands have a syntax error.

ð commands cannot be processed.

\\\Creating the IVP Test queue

83H8439, 5697-27ð (C) Copyright IBM Corp. 1996. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

Figure 1 (Part 4 of 5). Example installation

18 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Post installation

AMQ8ðð6: MQSeries queue created.

1 MQSC commands read.

ð commands have a syntax error.

ð commands cannot be processed.

\\\Writing to the IVP Test queue

Sample AMQSPUTð start

target queue is testq

Sample AMQSPUTð end

\\\Reading from the IVP Test queue

Sample AMQSGETð start

message <This is an IVP test message being read from the test queue.>

no more messages

Sample AMQSGETð end

\\\Ending the IVP queue manager

MQSeries queue manager ending.

MQSeries queue manager ended.

\\\Deleting the IVP queue manager

MQSeries queue manager deleted.

\\\IVP Completed Successfully

Installation of MQSERIES V2.2 completed at 12:24

Adding history entry in VMI$ROOT:[SYSUPD]VMSINSTAL.HISTORY

Creating installation data file: VMI$ROOT:[SYSUPD]MQSERIESð22.VMI_DATA

Enter the products to be processed from the next distribution volume set.

\ Products:

VMSINSTAL procedure done at 12:24

$

Figure 1 (Part 5 of 5). Example installation

 Post-installation tasks
After installing MQSeries you may want to do one or more of the following:

� Set up one or more separate MQSeries Administrator accounts
� Create identifiers for groups that use MQSeries

Setting up a separate MQSeries Administrator account
MQSeries Administration can be performed through the SYSTEM account on Digital
OpenVMS. The MQSeries installation procedure provides all required quotas and
grants all required privileges to the SYSTEM account for this purpose.

However, rather than the VMS System Manager, you may want to have another
person, or just a separate account, to administer MQSeries functions at your
enterprise.

You must perform the following steps to set up the MQSeries Administrator
account:

1. Use the Digital OpenVMS Authorize utility to setup an interactive account as
your MQSeries Administrator, with the identical privileges and quotas as the
MQM account created by the installation procedure.

Note: No special privileges are required.

In this example the name of the account is MQADMIN.

 Chapter 2. Installing MQSeries for Digital OpenVMS 19

 Post installation

2. Grant the MQM identifier to your MQSeries Administrator as follows:

a. $ RUN AUTHORIZE

b. UAF> GRANT/IDENTIFIER/ATTRIBUTE=RESOURCE MQM MQADMIN

c. Exit authorize using <Ctrl Z>

In the preceding example, the name of the identifier being granted to the
account is MQM and the actual user name being granted to the administrator
account is MQADMIN, set in Step 1.

Note: You can verify that you have set up the account correctly, using the
command:

 $ @SYS$MANAGER:MQS_CHECKADMIN

Creating identifiers for groups that use MQSeries
The MQM identifier is created during installation and essentially grants access to
MQSeries Administrative functions. If MQSeries security is being used, you will
need to create additional identifiers to represent the groups of VMS accounts that
can be granted access to MQSeries objects. These identifiers will be granted to
application groups using the VMS Authorize utility.

See Chapter 8, “Security” on page 83 for further information about using MQSeries
security features.

For example, users whose VMS accounts are in different UIC groups may want to
share MQSeries resources, for example, queues. The users of these common
queues may be granted the identifier called PAYROLL. To do this, you:

1. Add the PAYROLL identifier as a resource as follows:

a. $ RUN AUTHORIZE

b. UAF> ADD/IDENTIFIER/ATTRIBUTE=RESOURCE PAYROLL

c. Exit authorize using <Ctrl Z>.

2. Grant the PAYROLL identifier to the desired user accounts (in this case,
DOMESTIC and OVERSEAS) as follows:

a. $ RUN AUTHORIZE

b. UAF> GRANT/IDENTIFIER/ PAYROLL DOMESTIC

c. UAF> GRANT/IDENTIFIER/ PAYROLL OVERSEAS

d. Exit authorize using <Ctrl Z>.

3. Grant appropriate MQSeries authorizations for the grouped user accounts,
using the SETMQAUT command, according to the capabilities required:

setmqaut -m qmð -t qmgr -g payroll +connect

setmqaut -m qmð -t queue -n 4ð1k.q -g payroll +inq +put +get

Use +connect to allow the user group to connect to a desired queue manager.

+inq, +put, +get to allow the user group to inquire upon, put messages to, and
get messages from a desired queue.

20 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Directory structure

 System configuration
MQSeries makes use of shared memory to communicate between processes and it
is, therefore, likely that the default SYSGEN configuration is not adequate.

The minimum recommended values of the SYSGEN parameters are:

GBLSECTIONS
Add 15 for each queue manager and 2 for each defined queue

GBLPAGES
Add 4000 for each queue manager

GBLPAGFIL
Set to at least 8000 on Alpha and 16000 on VAX.

Add 4000 for each queue manager after the first two.

See the OpenVMS System Manager’s Manual for details on how to change these
values.

 System limitations
MQSeries for Digital OpenVMS V2.2 has a limitation on the number of processes
that MQSeries can support on a single machine. Each queue manager requires
three or four basic processes, and each application or channel that connects to a
queue manager normally requires two processes – one for the application (or
channel) and one for its agent process.

See Appendix F, “Fast messages and trusted applications.” on page 237 for details
of trusted applications, which eliminate the need for agent processes.

The limitations on processes are as follows:

Number of queue managers Number of applications or channels

1 124
2 120
5 108
10 84

Directories that exist after installation
When you install MQSeries for Digital OpenVMS, the following directories are
created (if required) and populated with the MQSeries product files:

SYS$SYSTEM All executable files
SYS$LIBRARY All shared library files
MQS_ROOT:[MQM] Base directory for all queue manager and queue files
MQS_INCLUDE Include files for building MQSeries applications
MQS_EXAMPLES Source files for sample programs

Under MQS_EXAMPLES are the following directories:

[.BIN] Executable versions of the sample programs
[.DLQ] Sample dead letter queue handling source
[.OS2_CLIENT] Root for the OS/2 MQSeries client
[.DOS_CLIENT] Root for the DOS MQSeries client
[.WIN_CLIENT] Root for the Windows 3.1 MQSeries client

 Chapter 2. Installing MQSeries for Digital OpenVMS 21

 Verifying your installation

When you install the product you also receive additions to the HELPLIB.HLP file to
supply help for the following topics:

� MQSeries control commands
� MQSeries commands (MQSC)
� Message Queue Interface (MQI) calls

Also provided on the product CD under the [MQSERIES022.DOCUMENTATION]
directory is a set of MQSeries books in PostScript format, enabling you to print the
books on a Postscript printer, or view the book with a suitable viewer. The
filenames of the files and the names of the corresponding books are:

Filename Book
MQAPG.PS MQSeries Application Programming Guide
MQAPRM.PS MQSeries Application Programming Reference
MQAPRS.PS MQSeries Application Programming Reference Summary
MQCLIENT.PS MQSeries Clients
MQCMDREF.PS MQSeries Command Reference
MQDQMGDE.PS MQSeries Distributed Queuing Guide
MQPLNGDE.PS MQSeries Planning Guide
MQPSM.PS MQSeries Programmable System Management
MQOVMSMG.PS MQSeries for Digital OpenVMS Version 2 System Management

Guide

 Translated messages
Messages in US English are always available. If you require another of the
languages that is supported by MQSeries for Digital OpenVMS Version 2, you
must ensure that your SYS$NLSPATH logical name includes the appropriate
directory. This is normally done automatically by the MQSeries startup procedure.
Furthermore, the SYS$LC_ALL logical name must specify the correct locale for the
language, country and codeset.

For example, to select messages in German:

$ DEFINE/SYSTEM SYS$LC_ALL DE_DE_ISO8859-1.LOCALE

Verifying your installation
After installation the “MQM” identifier owns the directories and files that contain the
resources associated with the product. The “MQM” resource and “MQM” user
account must be defined on any machine on which the MQSeries software is to be
installed, whether the machine is a client or a server machine.

If you want to run any administration commands, for example, crtmqm (create
queue manager) or strmqm (start queue manager), your account must be granted
the “MQM” identifier by the system manager. The installation procedure creates
the “MQM” identifier and grants it to the system manager as well as to the “MQM”
account.

When you have installed the MQSeries for Digital OpenVMS base, server and
samples components, you should verify that the installation has completed
successfully.

22 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Verifying your installation

Note: The installation process automatically runs the Installation Verification
Procedure (see “Installation on Digital OpenVMS Version 6.2” on page 15)
which reports the success or failure of basic MQSeries operation.

You should also perform these steps manually, using the MQSC command file
amqscoma.tst, as described on page 24. The commands in this file initialize your
MQSeries system and set up the default objects that your system requires. The
objects that amqscoma.tst creates for you are listed in Appendix B, “System
defaults” on page 227.

When you have completed the verification, you should delete the queue manager to
leave a ‘clean’ system, that is, a system with no objects, including queue
managers, defined.

Note: Deleting the queue manager does not delete the installation. You can,
therefore, use this procedure even if it has been run before.

 Case sensitivity
MQSeries object names are case sensitive. For example, MYQUEUE and
MyQueue are unique names for different queues.

In contrast, Digital OpenVMS does not automatically preserve the case of
parameters passed to commands. All parameters are by default converted by the
DCL command interpreter to uppercase. For example:

$ crtmqm A.QUEUE.MGR

and

$ crtmqm a.queue.mgr

perform the same operation, that is, create a queue manager with the name
“A.QUEUE.MGR” in uppercase.

To enter a lowercase or mixedcase name as a parameter, it must be enclosed in
quotation marks. For example:

$ crtmqm “New.Queue.Mgr”

creates a queue manager with the name in mixed case.

Invoking MQSeries commands from DCL
MQSeries commands are implemented as DCL “foreign” commands. You should
note that the names of DCL commands are not case sensitive.

In order to invoke MQSeries commands, which reside in the SYS$SYSTEM
directory) as if they were native DCL commands, you must invoke the command
file SYS$MANAGER:MQS_SYMBOLS.COM in the system-wide login file
SYS$MANAGER:SYSLOGIN.COM, or in the login files for all users who need to issue
MQSeries commands.

 Chapter 2. Installing MQSeries for Digital OpenVMS 23

 Verifying your installation

Redirection of SYS$INPUT, SYS$OUTPUT, and SYS$ERROR
To improve the ease of migration from other operating systems to VMS, MQSeries
supports the UNIX style of redirection indicators for sys$input, sys$output, and
sys$error, as follows:

< specifies the source for SYS$INPUT
> specifies the output for SYS$OUTPUT
> > specifies the output for SYS$ERROR

Follow these steps to verify your installation
These instructions assume that you are creating a queue manager called
QMNAME. If you are creating a different queue manager, replace each occurrence
of QMNAME with the chosen name in the following steps. Remember that a queue
manager name must be unique within your network.

1. Create a queue manager called QMNAME using this command:

crtmqm -q QMNAME

Notes:

a. The queue manager name is case-sensitive.

b. The -q flag denotes that this is the default queue manager. It is not
essential to have a default queue manager, but it is recommended practice
to have one.

c. For a detailed description of the crtmqm command and options see
“crtmqm (Create queue manager)” on page 176.

2. Start the queue manager using this command:

strmqm QMNAME

The strmqm command returns control when the queue manager has started
and is ready to accept connect requests.

3. Create the default objects for this queue manager by typing this command:

runmqsc QMNAME < MQS_EXAMPLES:AMQSCOMA.TST > DEFOBJ.OUT

The file AMQSCOMA.TST contains a series of MQSC commands that define
the system default objects for the queue manager QMNAME. The output from
the MQSC commands is sent to a report file DEFOBJ.OUT. Examine the last two
lines of the output file to verify that all commands were processed without error.
If errors have occurred, you should examine the rest of this file, checking the
confirmation messages for each MQSC command. For example:

AMQ8ðð6 MQSeries queue created

If no errors are indicated, all commands were successful and you have verified
that your installation was successful.

24 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Verifying your installation

You may want to modify a copy of AMQSCOMA.TST to meet your own
requirements for system defaults.

4. Stop the queue manager using the command:

endmqm QMNAME

5. Delete the queue manager using the command:

dltmqm QMNAME

This command deletes the queue manager and its associated objects including
the system default objects that you created in step 3.

If your installation was not a success?
If any of the commands, including those run from the file amqscoma.tst, were not
successful, look at the following:

� Did you type in the commands correctly?

Try running one or more of the commands again. Remember that these
commands and most parameters are casesensitive. If you create a queue
manager with an uppercase name, you must specify this as an uppercase
name in any commands referring to this queue manager. For example, if you
create a queue manager called QMNAME, you cannot use ‘qmname’ or
‘QMname’.

� Do you have enough disk space or memory to run the verification?

Check any error messages for an indication of this. If error message AMQ7ð65

Insufficient space on disk is returned, use the SHOW DEVICE command
to display the free blocks on the MQS_ROOT device. If there are fewer than
32,000 free blocks, you must free some space on that device.

� Do the required directories for the installed product exist?

If they do not exist, attempt to reinstall.

� Do you have the required authority to run the commands?

Check that your account has been granted the MQM resource by entering the
SHOW PROCESS/PRIVILEGE command.

� Have you performed a SYSGEN to prepare your system for MQSeries

See “System configuration” on page 21 for more information.

 Chapter 2. Installing MQSeries for Digital OpenVMS 25

 Installing clients

 Installing clients
When you install MQSeries for Digital OpenVMS, the files for the following clients
are also provided. They are:

 � OS/2
 � DOS
 � Windows 3.1

You can install Digital OpenVMS client software directly from CD-ROM or from the
LAN.

Note: For VAX machines this software is also available on tape.

To install client software, other than that for Digital OpenVMS install the component
on a Digital OpenVMS machine in the usual way and then copy the client files to
the client platform.

The required files are located in these directories:

� The DOS files are in these directories:

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.LIB]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.BIN]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.INC]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.DOS_CLIENT.MSG]

� The OS/2 files are in these directories:

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.LIB]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.BIN]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.DLL]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.INC]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.OS2_CLIENT.MSG]

� The Windows files are in these directories:

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.LIB]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.BIN]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.DLL]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.INC]

SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES.WIN_CLIENT.MSG]

Note: The logical name MQS_EXAMPLES is assigned to
SYS$COMMON:[SYSHLP.EXAMPLES.MQSERIES].

Further information about clients can be found in the MQSeries Clients book.

26 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Customization

Chapter 3. Customizing your system

This chapter lists the tasks involved in customizing a queue manager to meet your
requirements.

Do I need to customize?
When you have installed the product, you can use it without having to
customize it in any way. The default configuration provides all the facilities
you need to build a working system that can participate in message queuing
with other MQSeries systems.

When do I customize?
Some customization tasks must be performed before you create a queue
manager; others require you to stop and restart the queue manager. Check
each task in turn, to see when you need to perform it.

What are configuration files?
There are two types of configuration files. One contains information about
the way your MQSeries system is set up or configured; this file is created
when MQSeries is installed. The other contains information about the
attributes of an individual queue manager. This file is generated when a
queue manager is created.

“Things you can customize” on page 28 specifies which of these files to
modify for each relevant configuration task. For more information about the
files themselves, see Chapter 13, “Configuration files” on page 139.

What do I do now?
Check each item in the list on page 28 to see if any of the things that you
can customize apply to you. If not, you do not need to do anything else at
this time and you can go on to the next chapter.

 Copyright IBM Corp. 1995, 1997 27

 Customizable entities

Things you can customize
Read through the following list to determine if any of the following aspects apply to
systems within your enterprise:

� Implementing data conversion; see page 28.

� Defining the default and system objects; see page 29.

� Changing the location of queue manager objects; see page 30.

� Specifying logging parameters; see page 30.

� Configuring a queue manager; see page 31.

� Specifying user groups for security administration; see page 31.

The terms in this list are explained in the following sections.

Implementing data conversion

� This task is not normally required on your first pass through this book.
� You do not need data conversion to communicate between similar nodes.

If you are using MQSeries with systems that have different encodings, you need to
use a data conversion exit. The conversion of messages is based on message
formats—specified in the message descriptor—and all IBM message queuing
formats are converted automatically. However, user formats are not converted so
that even ASCII-to-EBCDIC conversion must be done using an exit (one per
format).

You can use the supplied conversion exit utility if you wish to communicate with
queue managers using MQI calls or remote commands, where the systems
involved have formats outside those supported by MQSeries. The conversion exit
utility allows you to create the required conversions as C source code. Refer to the
MQSeries Distributed Queuing Guide for more information. You can leave this task
until run time. However, if you do, you may not be able to communicate between
the two different machines until then.

Supported code sets
MQSeries for Digital OpenVMS supports most of the code sets used by the locales
that are provided as standard on OpenVMS.

Details of the supported code sets are given in Appendix E, “Codeset support on
MQSeries for Digital OpenVMS” on page 235.

Adding information about coded character sets on Digital
OpenVMS
MQSeries stores information about the coded character sets that your operating
system supports. If future versions of your operating system support additional
coded character sets, you may need to update the information that MQSeries
stores.

To update coded character set information edit the file ccsid.tbl in the directory
MQS_ROOT:[MQM.CONV.TABLE].

28 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Customizable entities

Example of ccsid.tbl

Licensed Materials - Property of IBM

#

(C) Copyright IBM Corp. 1994, 1995

#

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

#

This file is used to add newly supported CCSID values to the system.

To be used the file should be placed in the [MQM.CONV.TABLE]

directory. CCSID and encoding values van be found in the CDRA

documentation (SCð9-139ð). For mixed CCSIDs the "SBCS part" field

should be set to the SBCS CCSID, otherwise this field should be ð.

The codeset name is the name by which this CCSID is known on this

operating system.

#

The file can also be used to modify data stored for existing CCSIDs.

#

Decimal Hexadecimal Decimal Codeset

CCSID Encoding system SBCS part name

85ð ðx21ðð ð ib85ð

437 ðx21ðð ð ib437

Defining the default and system objects

� This task is required, but is part of the standard administration procedures,
see Chapter 5, “Managing queue managers” on page 39.

MQSeries for OpenVMS provides an MQSC command file that you can use to set
up the default and system objects. Typically, when you define an object, you do
not define all the possible attributes. The ones you do not specify are inherited
from the corresponding default object. The supplied command file amqscoma.tst,
when used with the runmqsc command, creates a set of default and system
objects. See “Running the supplied MQSC command files” on page 55 for
information about running this sample.

If you change the attributes of the default object, any objects of the same type you
create inherit the new values.

Do not attempt this if you are not familiar with the different commands and
command sets provided on MQSeries for OpenVMS.

Modifying the amqscoma.tst command file
You should consider modifying the command file amqscoma.tst if, for example:

� You have a large number of objects to create that have similar, but not
identical, values to those in the amqscoma.tst file.

� You have some specific requirements or limitations on the size of certain
resources.

 Chapter 3. Customizing your system 29

 Customizable entities

To modify amqscoma.tst, make a backup copy, make the required changes, and
then use the new version of the file to create the default objects. See also
“Creating the default and system objects” on page 44.

Changing the location of queue manager objects

� This task is not normally required on your first pass through this book.

� By default, the prefixes are already set.

� You should not perform this task if you have existing MQSeries objects.

The name of a queue manager object is prefixed with the first part of the
associated queue manager file path. You specify this when you install the product
and the prefix is used for each queue manager created. Then, when you create
any objects for this queue manager, this prefix is the first part of the path to the
files associated with those objects. The prefix is specified in the QueueManager
stanza in the MQSeries configuration file, mqs.ini.

If you change this prefix, all the objects are created at the locations specified by the
new prefix. Unless you change it, the default prefix for queue manager objects is:
MQS_ROOT:[MQM].

Attention: To modify the locations of queue manager objects, you must update the
QueueManager stanza in mqs.ini file before you create any objects. Do not change
this stanza if you have already created objects for this queue manager.

Changing the default prefix
You can change the default prefix, so that when you create a new queue manager
its prefix is taken from the new default. The default prefix is specified in the
DefaultPrefix stanza in the mqs.ini file. Unless you have changed it, the default
prefix is: MQS_ROOT:[MQM].

Specifying logging parameters

� This task is not normally required on your first pass through this book.

� By default, the logging parameters are adequate.

� You must stop and restart the queue manager to perform this task.

The logging parameters determine the type and size of the logs your system will
use. These are specified in the configuration files mqs.ini and qm.ini, which are
read when a queue manager is started. See “Log configuration stanzas” on
page 144 for more information.

Note: MQM must own the log files and they should contain an ACL allowing full
access by the MQM identifier. If you change the locations of these files,
you must set the security yourself. This is not required if the log files are in
the default locations supplied with the product.

30 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Customizable entities

Configuring a queue manager

� This task is required, but is part of the standard administration
procedures. See Chapter 5, “Managing queue managers” on page 39.

When you create a queue manager, using the crtmqm command, you can specify
certain properties for that queue manager. For example, you can specify the name
of the dead-letter queue, and the default transmission queue.

Once you have created a queue manager, you may need to modify its properties.
For more information, see “Guidelines for creating queue managers” on page 39
and Chapter 13, “Configuration files” on page 139.

Specifying user groups for security administration

� You must perform this task before you install the queue manager.

The user account and resource MQM are created when you install the product.

At this stage, you should also consider creating groups and user IDs for
applications and administrators. You can, however, perform this task at any time.

 Chapter 3. Customizing your system 31

 Customizable entities

32 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Control commands

Chapter 4. Understanding administration command sets

Read this chapter for an overview of the different methods that you can use to
perform system administration tasks on MQSeries objects. This chapter also helps
you to understand the different methods, and when each should be used.

Administration tasks include creating, starting, altering, viewing, stopping, and
deleting MQSeries objects, that is, queue managers, queues, processes, and
channels. To perform these tasks, you must select the appropriate command from
one of the supplied command sets.

MQSeries for Digital OpenVMS provides three command sets for invoking
administration tasks:

 � Control commands
 � MQSC commands
 � PCF commands

This chapter describes the command sets that are available and provides a
summary of the different commands in “Comparing command sets” on page 36.

 Control commands
Control commands fall into three categories:

� Queue manager commands, including commands for creating, starting,
stopping, and deleting queue managers and command servers.

� Channel commands, including commands for starting and ending channels and
channel initiators.

� Utility commands, including commands associated with:

– Running MQSC commands
 – Conversion exits
 – Authority management

– Recording and recovering media images of queue manager resources
– Displaying and resolving transactions

 – Trigger monitors
– Displaying the file names of MQSeries objects

Using control commands
You type in control commands at a DCL prompt. The command name is not case
sensitive, but the arguments are. For example, in the command:

crtmqm -u SYSTEM.DEAD.LETTER.QUEUE “jupiter.queue.manager”

� The flag must be -u, not -U.

� The dead-letter queue is SYSTEM.DEAD.LETTER.QUEUE.

� The argument is specified as “jupiter.queue.manager”; this is different from
“JUPITER.queue.manager”.

 Copyright IBM Corp. 1995, 1997 33

 MQSeries commands

Therefore, take care to type the commands exactly as you see them in the
examples.

Chapter 15, “MQSeries control commands” on page 171 describes the syntax and
purpose of each command.

MQSeries commands (MQSC)
You use the MQSeries (MQSC) commands to manage queue manager objects,
including the queue manager itself, channels, queues, and process definitions. For
example, there are commands to define, alter, display, and delete a specified
queue.

When you display a queue, using the DISPLAY QUEUE command, you display the
queue attributes. For example, the MAXMSGL attribute specifies the maximum
length of a message that can be put on the queue. The command does not show
you the messages on the queue.

MQSC commands are available on other platforms including OS/2, AS/400, and
MVS/ESA.

These commands are summarized in “Comparing command sets” on page 36. For
detailed information about each MQSC command, see MQSeries Command
Reference.

Running MQSC commands
You run MQSC commands by invoking the control command runmqsc from an
OpenVMS DCL prompt. You can run MQSC commands:

� Interactively by typing them at the keyboard. See “Using the MQSC facility
interactively” on page 51.

� As a sequence of commands from an ASCII text file. See “Running MQSC
commands from text files” on page 53.

You can run the runmqsc command in three modes, depending on the flags set on
the command:

� Verification mode, where the MQSC commands are verified on a local queue
manager, but are not actually run.

� Direct mode, where the MQSC commands are run on a local queue manager.

� Indirect mode, where the MQSC commands are run on a remote queue
manager.

For more information about using the MQSC facility and text files, see “Using the
MQSC facility interactively” on page 51. For more information about the runmqsc
command, see “runmqsc (Run MQSeries commands)” on page 206.

34 MQSeries for Digital OpenVMS V2R2 System Management Guide

 PCF commands

 PCF commands
The purpose of the MQSeries programmable command format (PCF) commands is
to allow administration tasks to be programmed into an administration program. In
this way you can create queues and process definitions, and change queue
managers, from a program. In fact, PCF commands cover the same range of
functions that are provided by the MQSC facility. You can therefore write a
program to issue PCF commands to any queue manager in the network from a
single node. In this way, you can both centralize and automate administration
tasks.

Each PCF command is a data structure that is embedded in the application data
part of an MQSeries message. Each command is sent to the target queue
manager using the MQI function MQPUT in the same way as any other message.
The command server on the queue manager receiving the message interprets it as
a command message and runs the command. To get the replies, the application
issues an MQGET call and the reply data is returned in another data structure.
The application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things the application programmer must specify to
create a PCF command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:

Message type specifies a management request.
Message format specifies administration commands.

Application data
Contains the PCF message including the PCF header, in which:

The PCF message type specifies command.

The command identifier specifies the command, for example, Change Queue.

For a complete description of the PCF data structures and how to implement them,
see the MQSeries Programmable System Management manual.

Attributes in MQSC and PCFs
Object attributes specified in MQSC are shown in this book in uppercase, for
example RQMNAME, although they are not case-sensitive. These attribute names
are limited to eight characters, so it is not easy to work out the meaning of some of
them, for example, QDPHIEV. Object attributes in PCF are shown in italics, are not
limited to eight characters, and are therefore easier to read. The PCF equivalent of
RQMNAME, is RemoteQMgrName and of QDPHIEV is QDepthHighEvent.

 Escape PCFs
Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see the MQSeries Programmable
System Management manual.

 Chapter 4. Understanding administration command sets 35

 Comparing command sets

Comparing command sets
The following tables compare the facilities available from the different administration
command sets.

Note: Only MQSC commands that apply to MQSeries for Digital OpenVMS are
shown.

Table 1. Commands for queue manager administration

PCF MQSC Control

Change Queue Manager ALTER QMGR –

(Create queue manager)ñ – crtmqm

(Delete queue manager)ñ – dltmqm

Inquire Queue Manager DISPLAY QMGR –

(Stop queue manager)ñ – endmqm

Ping Queue Manager PING QMGR –

(Start queue manager)ñ – strmqm

Note: ñ Not available as PCF commands.

Table 2. Commands for command server administration

Description Control

Display command server dspmqcsv

Start command server strmqcsv

Stop command server endmqcsv

Note: Functions in this group are available only as control commands. There are no
equivalent MQSC or PCF commands in this group.

Table 3. Commands for queue administration

PCF MQSC

Change Queue ALTER QLOCAL
ALTER QALIAS
ALTER QMODEL
ALTER QREMOTE

Clear Queue CLEAR QUEUE

Copy Queue DEFINE QLOCAL(x) LIKE(y)
DEFINE QALIAS(x) LIKE(y)
DEFINE QMODEL(x) LIKE(y)
DEFINE QREMOTE(x) LIKE(y)

Create Queue DEFINE QLOCAL
DEFINE QALIAS
DEFINE QMODEL
DEFINE QREMOTE

Delete Queue DELETE QLOCAL
DELETE QALIAS
DELETE QMODEL
DELETE QREMOTE

Inquire Queue DISPLAY QUEUE

Inquire Queue Names DISPLAY QUEUE

Note: There are no equivalent control commands in this group.

36 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Comparing command sets

Table 4. Commands for process administration

PCF MQSC

Change Process ALTER PROCESS

Copy Process DEFINE PROCESS(x) LIKE(y)

Create Process DEFINE PROCESS

Delete Process DELETE PROCESS

Inquire Process DISPLAY PROCESS

Inquire Process Names DISPLAY PROCESS

Note: There are no equivalent control commands in this group.

Table 5. Commands for channel administration

PCF MQSC Control

Change Channel ALTER CHANNEL –

Copy Channel DEFINE CHANNEL(x) LIKE(y) –

Create Channel DEFINE CHANNEL –

Delete Channel DELETE CHANNEL –

Inquire Channel DISPLAY CHANNEL –

Inquire Channel Names DISPLAY CHANNEL –

Ping Channel PING CHANNEL –

Reset Channel RESET CHANNEL –

Resolve Channel RESOLVE CHANNEL –

Start Channel START CHANNEL runmqchl

Start Channel Initiator START CHINIT runmqchi

Start Channel Listener – runmqlsr

Stop Channel STOP CHANNEL –

Table 6. Other control commands

Description Control

Create MQSeries conversion exit crtmqcvx

Display authority dspmqaut

Display files used by objects dspmqfls

Display MQSeries formatted trace output dspmqtrc

End MQSeries trace endmqtrc

Record media image rcdmqimg

Recreate media object rcrmqobj

Resolve MQSeries transactions rsvmqtrn

Run MQSC commands runmqsc

Run trigger monitor runmqtrm

Run client trigger monitor runmqtmc

Set or reset authority setmqaut

Start MQSeries trace strmqtrc

Note: Functions in this group are available only as control commands. There are no
direct PCF or MQSC equivalents.

 Chapter 4. Understanding administration command sets 37

 Comparing command sets

38 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Creating queue managers

Chapter 5. Managing queue managers

This chapter describes how you can perform operations on queue managers and
command servers. It contains these sections:

 � “Getting started”
� “Guidelines for creating queue managers”
� “Understanding MQSeries file names” on page 42
� “Working with queue managers” on page 43
� “Managing the command server for remote administration” on page 47

 Getting started
Before you can do anything with messages and queues, you must create at least
one queue manager. Once the installation process is complete, you can use the
MQSeries control commands to create a queue manager and start it. Then you
can use MQSC commands to create the required default objects and system
objects. Default objects form the basis of any object definitions that you make;
system objects are required for queue manager operation. You must create these
objects for each queue manager you create. The supplied command file
amqscoma.tst, when used with the runmqsc command, creates a set of default
and system objects. See “Running the supplied MQSC command files” on page 55
for information about running this sample.

See Chapter 4, “Understanding administration command sets” on page 33 for more
information about commands that can be used with MQSeries for Digital OpenVMS,
and the different methods of invoking them.

Guidelines for creating queue managers
A queue manager manages the resources associated with it, in particular the
queues that it owns. It provides queueing services to applications for Message
Queuing Interface (MQI) calls and commands to create, modify, display, and delete
MQSeries objects. You create a queue manager using the crtmqm command.
However, before you try this, especially in a production environment, work through
this checklist:

Ø Specifying a unique queue manager name.

Ø Limiting the number of queue managers.

Ø Specifying a default queue manager.

Ø Specifying a dead-letter queue.

Ø Specifying a default transmission queue.

Ø Specifying the required logging parameters.

Ø Backing up configuration files after creating a queue manager.

The tasks in this list are explained in the sections that follow.

 Copyright IBM Corp. 1995, 1997 39

 Creating queue managers

Specifying a unique queue manager name
When you create a queue manager, you must ensure that no other queue manager
has the same name, anywhere in your network. Queue manager names are not
checked at create time, and non-unique names will prevent you from using
channels for distributed queuing.

One method of ensuring uniqueness is to prefix each queue manager name with its
own (unique) node name. For example, if a node is called accounts, you could
name your queue manager accounts.saturn.queue.manager, where saturn
identifies a particular queue manager and queue.manager is an extension you can
give to all queue managers. Alternatively, you can omit this, but note that
accounts.saturn and accounts.saturn.queue.manager are different queue manager
names.

If you are using MQSeries for communicating with other enterprises, you can also
include your own enterprise as a prefix. We do not actually do this in the
examples, because it makes them more difficult to follow.

Note: Queue manager names in control commands are case-sensitive. This
means that you could create two queue managers with the names
jupiter.queue.manager and JUPITER.queue.manager. Such complications are best
avoided.

Limiting the number of queue managers
In MQSeries for Digital OpenVMS, you can create as many queue managers as
resources allow. However, because each queue manager requires its own
resources, it is generally better to have one queue manager with 100 queues than
ten queue managers with ten queues each. In production systems, many nodes
will be run with a single queue manager, but larger server machines may run with
multiple queue managers.

See “System limitations” on page 21 for further information.

Specifying the default queue manager
Each node should have a default queue manager, though it is possible to configure
MQSeries on a node without one.

To create a queue manager use the crtmqm command. For a detailed description
of this command and its parameters, see “crtmqm (Create queue manager)” on
page 176.

What is a default queue manager?
The default queue manager is the queue manager that applications connect
to if they do not specify a queue manager name in an MQCONN call. It is
also the queue manager that processes MQSC commands when you invoke
the runmqsc command without specifying a queue manager name.

How do you specify a default queue manager?
You include the -q flag on the crtmqm command to specify that the queue
manager you are creating is the default queue manager. Omit this flag if
you do not want to create a default queue manager.

Specifying a queue manager as the default replaces any existing default
queue manager specification for the node.

40 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Creating queue managers

What happens if I make another queue manager the default?
If you change the default queue manager, this can affect other users or
applications. The change has no effect on currently-connected applications,
because they can use the handle from their original connect call in any
further MQI calls. This handle ensures that the calls are directed to the
same queue manager. Any applications connecting after the change
connect to the new default queue manager.

This may be what you intend, but you should take this into account before
you change the default.

Specifying a dead-letter queue
The dead-letter queue is a local queue where messages are put if they cannot be
routed to their correct destination.

Attention: It is vitally important to have a dead-letter queue on each queue
manager in your network. Failure to do so may mean that errors in application
programs cause channels to be closed or that replies to administration commands
are not received.

For example, if an application attempts to put a message on a queue on another
queue manager, but the wrong queue name is given, the channel is stopped, and
the message remains on the transmission queue. Other applications cannot then
use this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues.
The undelivered message is simply put on the dead-letter queue at the receiving
end, leaving the channel and its transmission queue available.

Therefore, when you create a queue manager you should use the -u flag to specify
the name of the dead-letter queue. You can also use an MQSC command to alter
the attributes of a queue manager and specify the dead-letter queue to be used.
See “Altering queue manager attributes” on page 53 for an example of an MQSC
ALTER command.

A sample dead-letter queue definition is provided with the supplied sample
amqscoma.tst. The queue is called SYSTEM.DEAD.LETTER.QUEUE. See
“Creating the default and system objects” on page 44 for information about running
this sample. When you find messages on a dead-letter queue, you can use the
dead-letter queue handler, supplied with MQSeries, to process these messages.
See Chapter 10, “The MQSeries dead-letter queue handler” on page 107 for
further information about the dead-letter queue handler itself, and how to reduce
the number of messages that might otherwise be placed on the dead-letter queue.

Specifying a default transmission queue
A transmission queue is a local queue on which messages in transit to a remote
queue manager are queued pending transmission. The default transmission queue
is the queue that is used when no transmission queue is explicitly defined. Each
queue manager can be assigned a default transmission queue.

When you create a queue manager you should use the -d flag. to specify the
name of the default transmission queue. This does not actually create the queue;
you have to do this explicitly later on. See “Working with local queues” on page 58
for more information.

 Chapter 5. Managing queue managers 41

 Understanding MQSeries names

Specifying the required logging parameters
You can specify logging parameters on the crtmqm command, including the type of
logging, and the path and size of the log files. In a development environment, the
default logging parameters should be adequate. However, you can change the
defaults if, for example:

� You have a low-end system configuration that cannot support large logs.

� You anticipate a large number of long messages being on your queues at the
same time.

For more information about specifying logging parameters:

� On the crtmqm command, see “crtmqm (Create queue manager)” on
page 176.

� Using configuration files, see “Log configuration stanzas” on page 144.

Backing up configuration files after creating a queue manager
There are two configuration files to consider:

1. When you install the product, the MQSeries configuration file (mqs.ini) is
created. It contains a list of queue managers, which is updated each time you
create or delete a queue manager. There is one mqs.ini file per node.

2. When you create a new queue manager, a new queue manager configuration
file (qm.ini) is automatically created. This contains configuration parameters for
the queue manager.

You should make a backup of these files. If, later on, you create another queue
manager that causes you problems, you can reinstate the backups when you have
removed the source of the problem. As a general rule, you should back up your
configuration files each time you create a new queue manager.

For more information about configuration files, see Chapter 13, “Configuration files”
on page 139.

Understanding MQSeries file names
The path to a queue manager directory is formed from the following:

� A prefix - the first part of the name:

MQS_ROOT:[MQM]

This prefix is defined in the queue manager configuration file.

 � A literal:

QMGRS

� A coded queue manager name, which is the queue manager name transformed
into a valid directory name. For example, the queue manager:

QUEUE.MANAGER

would be represented as:

QUEUE$MANAGER

This process is referred to as name transformation.

42 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Working with queue managers

Queue manager name transformation
In MQSeries you can give a queue manager a name containing up to 48
characters. For example, you could name a queue manager:

QUEUE.MANAGER.ACCOUNTING.SERVICES

However, each queue manager is represented by a file and there are limitations to
the maximum length a file name can be, and to the characters that can be used in
the name. As a result, the names of files representing objects are automatically
transformed to meet the requirements of the file system.

The rules governing the transformation of a queue manager name, using the
example of a queue manager with the name queue.manager, are as follows:

1. Transform individual characters:

. becomes $
/ becomes _
% becomes _

2. If the name is still not valid:

a. Truncate it to eight characters
b. Append a three-character numeric suffix

For example, assuming the default prefix, the queue manager name becomes:

MQS_ROOT:[MQM.QMGRS.QUEUE$MANAGER]

The transformation algorithm also allows distinction between names that differ only
in case, on file systems that are not case sensitive.

Object name transformation
Object names are not necessarily valid file system names. Therefore the object
names may need to be transformed. The method used is different from that for
queue manager names because, although there only a few queue manager names
per machine, there can be a large number of other objects for each queue
manager. Only process definitions and queues are represented in the file system;
channels are not affected by these considerations.

When a new name is generated by the transformation process there is no simple
relationship with the original object name. You can use the dspmqfls command to
convert between real and transformed object names.

The queue files names start with the letter “Q”.

Working with queue managers
MQSeries provides control commands for creating, starting, ending, and deleting
queue managers. You can also display a queue manager’s attributes using the
MQSC command DISPLAY QMGR and change them using ALTER QMGR. See
“Displaying queue manager attributes” on page 51 and “Altering queue manager
attributes” on page 53.

 Chapter 5. Managing queue managers 43

 Working with queue managers

Creating a default queue manager
The following command creates a default queue manager called
saturn.queue.manager and specifies the names of both its default transmission
queue and its dead-letter queue:

crtmqm -q -d MY.DEFAULT.XMIT.QUEUE -u SYSTEM.DEAD.LETTER.QUEUE “saturn.queue.manager”

where:

-q Indicates that this queue manager is the default queue
manager.

-d MY.DEFAULT.XMIT.QUEUE
is the name of the default transmission queue.

-u SYSTEM.DEAD.LETTER.QUEUE
Is the name of the dead-letter queue.

“saturn.queue.manager” Is the name of this queue manager. For crtmqm , this
must be the last parameter in the command.

Starting a queue manager
Although you have created a queue manager, it cannot process commands or MQI
calls until it has been started. Start the queue manager by typing in this command:

strmqm “saturn.queue.manager”

The strmqm command does not return control until the queue manager has started
and is ready to accept connect requests.

Creating the default and system objects
You must create a set of default and system objects for each queue manager you
create. To do this, use the runmqsc command specifying both the name of the
queue manager and the name of the command file containing the commands.
(You can specify amqscoma.tst, which is supplied as part of the product.) The
following command creates the default and system objects:

runmqsc “saturn.queue.manager” < MQS_EXAMPLES:amqscoma.tst > defobj.out

You can run this command immediately after the strmqm command has
completed.

The file DEFOBJ.OUT is created, if it does not already exist. When the command
has completed, DEFOBJ.OUT contains the output from the MQSC file. You should
check that all the commands ran successfully before continuing.

For more information about running the MQSC facility (runmqsc), see “Running
MQSC commands from text files” on page 53.

44 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Working with queue managers

Looking at object files
Each MQSeries queue, queue manager, or process object is represented by a file.
Because these object names are not necessarily valid file names, the queue
manager converts the object name into a valid file name, where necessary. This is
described in “Understanding MQSeries file names” on page 42.

To find out how to display the real file name of an object, see “dspmqfls (Display
MQSeries files)” on page 187.

Stopping a queue manager
To stop a queue manager, use the endmqm command. For example, to stop a
queue manager called saturn.queue.manager use this command:

endmqm “saturn.queue.manager”

By default, this command performs a controlled or quiesced shutdown of the
specified queue manager. This may take a while to complete—a controlled
shutdown waits until all connected applications have disconnected.

Optionally, this endmqm command can have a flag that specifies how the
shutdown is to be carried out.

If you have problems
Problems in shutting down a queue manager are often caused by applications. For
example, when applications:

� Do not check MQI return codes properly.
� Do not request a notification of a quiesce.
� Terminate without disconnecting from the queue manager (by issuing an

MQDISC call).

Immediate and preemptive queue manager shutdowns
If a shutdown of a queue manager is very slow, or you believe that the queue
manager is not going to stop, you can break out of the endmqm command using
Ctrl-Y. You can then issue another endmqm command, but this time with a flag
specifying either an immediate or a preemptive shutdown.

For an immediate shutdown any current MQI calls are allowed to complete, but any
new calls fail. This type of shutdown does not wait for applications to disconnect
from the queue manager. For an immediate shutdown, the command is:

endmqm -i “saturn.queue.manager”

If an immediate shutdown does not work, you must resort to a preemptive
shutdown, specifying the -p flag. For example:

endmqm -p “saturn.queue.manager”

 Chapter 5. Managing queue managers 45

 Working with queue managers

Attention: Do not use this method unless all other attempts to stop the queue
manager using the endmqm command have failed. This method can have
unpredictable consequences for connected applications.

If this method still does not work, see “Stopping queue managers manually” on
page 275 for an alternative.

For a detailed description of the endmqm command and its options, see “endmqm
(End queue manager)” on page 192.

Restarting a queue manager
To restart a queue manager, use the command:

strmqm “saturn.queue.manager”

Making an existing queue manager the default
When you create a default queue manager, the name of the default queue
manager is inserted in the DefaultQueueManager stanza in the MQSeries
configuration file (mqs.ini). The stanza and its contents are automatically created if
they do not exist.

You may need to edit this stanza:

� To make an existing queue manager the default. To do this you have to
change the queue manager name in this stanza to the name of the new default
queue manager. You must do this manually, using a text editor.

� If you do not have a default queue manager on the node, and you want to
make an existing queue manager the default. To do this you must create the
DefaultQueueManager stanza—with the required name—yourself.

� If you accidentally make another queue manager the default and wish to revert
to the original default queue manager. To do this, edit the
DefaultQueueManager stanza in the MQSeries configuration file, replacing the
name of the unwanted default queue manager with that of the one you do
want.

See Chapter 13, “Configuration files” on page 139 for information about
configuration files.

When the stanza contains the required information, stop the queue manager and
restart it.

Deleting a queue manager
To delete a queue manager, first stop it, then use the following command:

dltmqm “saturn.queue.manager”

Attention: Deleting a queue manager is a drastic step, because you also delete all
the resources associated with it. This includes not only all queues and their
messages, but also all object definitions.

46 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Command server remote administration

For a description of the dltmqm command and its options, see “dltmqm (Delete
queue manager)” on page 180. You should ensure that only trusted administrators
have the authority to use this command.

If the usual methods for deleting a queue manager do not work, see “Removing
queue managers manually” on page 276 for an alternative.

Managing the command server for remote administration
Each queue manager has a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command. There are separate control commands for starting and
stopping the command server.

Note: For remote administration, you must ensure that the target queue manager
is running. Otherwise, the messages containing commands cannot leave the
queue manager from which they are issued. Instead, these messages are queued
in the local transmission queue that serves the remote queue manager. This
situation should be avoided, if at all possible.

Starting the command server
To start the command server use this command:

strmqcsv “saturn.queue.manager”

where saturn.queue.manager is the queue manager for which the command server
is being started.

Displaying the status of the command server
For remote administration, you must ensure that the command server on the target
queue manager is running. If it is not running, no remote commands can be
processed. Any messages containing commands are queued in the target queue
manager’s command queue.

To display the status of the command server for a queue manager, called here
saturn.queue.manager, the command is:

dspmqcsv “saturn.queue.manager”

You must issue this command on the target machine. If the command server is
running, the following message is returned:

AMQ8ð27 MQSeries Command Server Status ..: Running

 Chapter 5. Managing queue managers 47

 Command server remote administration

Stopping a command server
To end a command server, the command, using the previous example is:

endmqcsv “saturn.queue.manager”

You can stop the command server in two different ways:

� For a controlled stop, use the endmqcsv command with the -c flag. This is the
default.

� For an immediate stop, use the endmqcsv command with the -i flag.

48 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Application programs

Chapter 6. Administering local MQSeries objects

This chapter describes how to administer local MQSeries objects to support
application programs that use the Message Queuing Interface (MQI). In this
context, local administration means creating, displaying, changing, copying, and
deleting MQSeries objects.

This chapter contains these sections:

� “Supporting application programs that use the MQI”
� “Issuing MQSC commands for administration” on page 50
� “Running MQSC commands from text files” on page 53
� “If you have problems with MQSC” on page 56
� “Working with local queues” on page 58
� “Working with alias queues” on page 65
� “Working with model queues” on page 67
� “Managing objects for triggering” on page 68

Supporting application programs that use the MQI
MQSeries application programs need certain objects before they can run
successfully. For example, Figure 2 shows an application that removes messages
from a queue, processes them, and then sends some results to another queue on
the same queue manager.

Application

Queue Manager

From other
applications

To other
applications

getput

putget

Figure 2. Queues, messages, and applications

Whereas applications can put (using MQPUT) messages on local or remote
queues, they can only get (using MQGET) messages directly from local queues.

Before this application can be run, these conditions must be satisfied:

� The queue manager must exist and be running.

� The first application queue, from which the messages are to be removed, must
be defined.

� The second queue, on which the application puts the messages, must also be
defined.

 Copyright IBM Corp. 1995, 1997 49

 Issuing MQSC commands

� The application must be able to connect to the queue manager. To do this it
must be linked to the product code. See the MQSeries Application
Programming Guide for more information.

� The applications that put the messages on the first queue must also connect to
a queue manager. If they are remote, they must also be set up with
transmission queues and channels. This part of the system is not shown in
Figure 2 on page 49.

Issuing MQSC commands for administration
In this section, we assume that you will be issuing commands using the runmqsc
command. You can do this interactively—entering the commands at the
keyboard—or you can redirect SYS$INPUT to run a sequence of commands from
an ASCII text file. In both cases, the format of the commands is the same.

The MQSeries Command Reference manual contains a description of each MQSC
command and its syntax.

Before you start
Before you can run MQSC commands, you must have created and started the
queue manager that is going to run the commands, see “Creating a default queue
manager” on page 44.

MQSeries object names
In examples, we use some long names for objects. This is to help you identify
what type of object it is you are dealing with.

When you are issuing MQSC commands, you need only specify the local name of
the queue. In our examples, we use queue names such as:

ORANGE.LOCAL.QUEUE

The LOCAL.QUEUE part of the name is simply to illustrate that this queue is a
local queue. It is not required for the names of local queues in general.

We also use the name saturn.queue.manager as a queue manager name.

The queue.manager part of the name is simply to illustrate that this object is a
queue manager. It is not required for the names of queue managers in general.

You do not have to use these names, but if you do not, you must modify any
commands in examples that specify them.

Case-sensitivity in MQSC commands
MQSeries control commands, for example, runmqsc that invokes the MQSC facility
is not case-sensitive; see “Using control commands” on page 33.

MQSC commands, including their attributes, can be written in upper or lower case.
Object names in MQSC commands are folded (that is, QUEUE and queue are not
differentiated), unless the names are put in quotation marks. If quotation marks are
not used, the object is processed with a name in uppercase. See the MQSeries
Command Reference manual for more information.

50 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Issuing MQSC commands

Redirecting input and output
See “Redirection of SYS$INPUT, SYS$OUTPUT, and SYS$ERROR” on page 24
for details of the redirection indicators that MQSeries for Digital OpenVMS V2.2
supports.

Using the MQSC facility interactively
To enter commands interactively, at a DCL prompt type:

runmqsc

In this command, a queue manager name has not been specified, therefore the
MQSC commands will be processed by the default queue manager. Now you can
type in any MQSC commands, as required. For example, try this one:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

Feedback from MQSC commands
When you issue commands from the MQSC facility, the queue manager returns
operator messages that confirm your actions or tell you about the errors you have
made. For example:

AMQ8ðð6: MQSeries queue created

 .

 .

 .

AMQ84ð5: Syntax error detected at or near end of command segment below:-

The first message confirms that a queue has been created; the second indicates
that you have made a syntax error. These messages are sent to the standard
output device. If you have not entered the command correctly, refer to the
MQSeries Command Reference manual for the correct syntax.

Ending interactive input to MQSC
If you are using MQSC interactively, you can exit by typing the EOF character
CTRL+Z.

If you are redirecting input from other sources, such as a text file, you do not have
to do this.

Displaying queue manager attributes
To display the attributes of the queue manager specified on the runmqsc
command, use the following MQSC command:

DISPLAY QMGR ALL

 Chapter 6. Administering local MQSeries objects 51

 Issuing MQSC commands

A typical output is:

1 : display qmgr all

AMQ84ð8: Display Queue Manager details.

 DESCR()

 DEADQ(SYSTEM.DEAD.LETTER.QUEUE)

 DEFXMITQ(MY.DEFAULT.XMIT.QUEUE)

 COMMANDQ(SYSTEM.ADMIN.COMMAND.QUEUE)

 QMNAME(“saturn.queue.manager”)

 TRIGINT(999999999)

 MAXHANDS(256)

 MAXUMSGS(1ðððð)

 AUTHOREV(DISABLED)

 INHIBTEV(DISABLED)

 LOCALEV(DISABLED)

 REMOTEEV(DISABLED)

 PERFMEV(DISABLED)

 STRSTPEV(ENABLED)

 MAXPRTY(9)

 CCSID(85ð)

 MAXMSGL(41943ð4)

 CMDLEVEL(1ðð)

 PLATFORM(UNIX)

 SYNCPT

The ALL parameter on the DISPLAY QMGR command causes all the queue
manager attributes to be displayed. In particular, because no queue manager
name was specified when the command was run, the output tells us the default
queue manager name (“saturn.queue.manager”), and the names of the dead-letter
queue (SYSTEM.DEAD.LETTER.QUEUE) and the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE). Both these queues should have been
created when you ran the sample amqscoma.tst; see “Creating the default and
system objects” on page 44.

Before you go further, confirm that these queues have been created by typing the
command:

DISPLAY QUEUE (SYSTEM.\)

This displays a list of queues that match the stem ‘SYSTEM.*’. The parentheses
are required.

Using a queue manager that is not the default
You can specify the queue manager name on the runmqsc command to run
MQSC commands on a local queue manager other than the default. For example,
to run MQSC commands on queue manager jupiter.queue.manager, use the
command:

runmqsc “jupiter.queue.manager”

52 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Running MQSC commands

After this, all the MQSC commands you type in are processed by this queue
manager—assuming that it is on the same node and is already running.

You can also run MQSC commands on a remote queue manager; see “Issuing
MQSC commands remotely” on page 76.

Altering queue manager attributes
To alter the attributes of the queue manager specified on the runmqsc command,
use the MQSC command ALTER QMGR, specifying the attributes and values that
you want to change. For example, use the following commands to alter the
attributes of jupiter.queue.manager:

runmqsc “jupiter.queue.manager”

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

The ALTER QMGR command changes the dead-letter queue used, and enables
inhibit events.

Running MQSC commands from text files
Running MQSC commands interactively is suitable for quick tests, but if you have
very long commands, or commands that you want to repeat, over again, you should
provide input from a text file. (See “Redirection of SYS$INPUT, SYS$OUTPUT,
and SYS$ERROR” on page 24 for information about redirection indicators.) To do
this, first create a text file containing the MQSC commands using your familiar text
editor. For example, the following command runs a sequence of commands
contained in the text file myprog.in:

runmqsc < myprog.in

Similarly, you can also redirect the output to a file. A file containing the MQSC
commands for input is called an MQSC command file. The output file containing
replies from the queue manager is called the report file.

To redirect both SYS$INPUT and SYS$OUTPUT on the runmqsc command, use this
form of the command:

runmqsc < myprog.in > myprog.out

This command invokes the MQSC commands contained in the MQSC command
file myprog.in. Because we have not specified a queue manager name, the
MQSC commands are run against the default queue manager. The output is sent
to the report file myprog.out. Figure 3 on page 54 shows an extract from the
MQSC command file myprog.in and Figure 4 on page 55 shows the
corresponding extract of the output in myprog.out.

 Chapter 6. Administering local MQSeries objects 53

 Running MQSC commands

To redirect SYS$INPUT and SYS$OUTPUT on the runmqsc command, for a queue
manager (saturn.queue.manager) that is not the default, use this form of the
command:

runmqsc saturn.queue.manager < myprog.in > myprog.out

MQSC command files
MQSC commands are written in human-readable form, that is, in ASCII text.
Figure 3 is an extract from an MQSC command file showing an MQSC command
(DEFINE QLOCAL) with its attributes. The MQSeries Command Reference manual
contains a description of each MQSC command and its syntax.

 .

 .

 .

DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +

DESCR(' ') +

 PUT(ENABLED) +

 DEFPRTY(ð) +

 DEFPSIST(NO) +

 GET(ENABLED) +

 MAXDEPTH(5ððð) +

 MAXMSGL(1ð24) +

 DEFSOPT(SHARED) +

 NOHARDENBO +

 USAGE(NORMAL) +

 NOTRIGGER

 .

 .

 .

Figure 3. Extract from the MQSC command file, myprog.in

You must limit lines to a maximum of 80 characters. The plus sign indicates that
the command is continued on the next line.

 MQSC reports
The runmqsc command returns a report, which is sent to SYS$OUTPUT. The report
contains:

� A header identifying MQSC as the source of the report:

Starting MQSeries Commands.

� An optional numbered listing of the MQSC commands issued. By default, the
text of the input is echoed to the output. Within this output, each command is
prefixed by a sequence number, as shown in Figure 4 on page 55. However,
you can use the -e flag on the runmqsc command to suppress the output.

� A syntax error message for any commands found to be in error.

� An operator message indicating the outcome of running each command. For
example, the operator message for the successful completion of a DEFINE
QLOCAL command is:

54 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Running MQSC commands

AMQ8ðð6: MQSeries queue created.

� Other messages resulting from general errors when running the script file.

� A brief statistical summary of the report indicating the number of commands
read, the number of commands with syntax errors, and the number of
commands that could not be processed.

Note: The queue manager only attempts to process those commands that
have no syntax errors.

Starting MQSeries Commands.

 .

 .

 12: DEFINE QLOCAL('RED.LOCAL.QUEUE') REPLACE +

: DESCR(' ') +

 : PUT(ENABLED) +

 : DEFPRTY(ð) +

 : DEFPSIST(NO) +

 : GET(ENABLED) +

 : MAXDEPTH(5ððð) +

 : MAXMSGL(1ð24) +

 : DEFSOPT(SHARED) +

 : USAGE(NORMAL) +

 : NOTRIGGER

AMQ8ðð6: MQSeries queue created.

 :

 .

 .

15 MQSC commands read.

ð commands have a syntax error.

ð commands cannot be processed.

Figure 4. Extract from the MQSC report file, myprog.out.

Running the supplied MQSC command files
When you install MQSeries for OpenVMS, these MQSC command files are
supplied:

amqscoma.tst Default and system objects.

amqscos0.tst Definitions of objects used by sample programs.

The files are located in the directory MQS_EXAMPLES:.

You should already have run runmqsc against the command file amqscoma.tst. If
you have not done this, or if you have deleted any of the objects created from it,
run it again by typing:

runmqsc < MQS_EXAMPLES:amqscoma.tst

The DEFINE commands in amqscoma.tst specify the REPLACE option ,
which overwrites the existing definitions, if possible. See the MQSeries Command
Reference manual for more information about REPLACE.

 Chapter 6. Administering local MQSeries objects 55

 Problems with MQSC

Using runmqsc to verify commands
You can use the runmqsc command to verify MQSC commands on a local queue
manager without actually running them. To do this, set the -v flag in the runmqsc
command, for example:

runmqsc -v < myprog.in > myprog.out

When you invoke runmqsc against an MQSC command file, the queue manager
verifies each command and returns a report without actually running the MQSC
commands. This allows you to check the syntax of all the commands in your
command file. This is particularly important if you are running a large number of
commands from a command file.

This report is similar to that shown in Figure 4 on page 55.

You cannot use this method to verify MQSC commands remotely. For example, if
you attempt this command:

runmqsc -w 3ð -v “jupiter.queue.manager” < myprog.in > myprog.out

the -w flag is ignored, and the command is run locally.

If you have problems with MQSC
If you cannot get your MQSC commands to run, use the following checklist to see if
any of these common problems apply to you. It is not always obvious what the
problem is when you read the error generated.

When you use the runmqsc command, remember:

Ø Use the indirection operator < when redirecting input from a file. Otherwise, the
queue manager interprets the file name as a queue manager name. For
example:

runmqsc amqscoma.tst

5697-27ð (C) Copyright IBM Corp. 1995. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

AMQ8118: MQSeries queue manager does not exist.

ð MQSC commands read.

ð commands have a syntax error.

ð commands cannot be processed.

Ø If you redirect output to a file, use the > indirection operator. By default, the
output goes to the directory from which you ran the runmqsc command.
Specify a fully-qualified file name to send your output to a specific file and
directory. For example:

56 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Problems with MQSC

runmqsc < MQS_EXAMPLES:amqscoma.tst > DKAð:[ZONE]myfile.output

Ø Check that you really have created the queue manager that is going to run the
commands.

To do this, look in the configuration file mqs.ini, which by default is located in
the MQS_ROOT:[MQM] directory. This file contains the names of the queue
managers and the name of the default queue manager, if you have one.

Ø The queue manager should already be started, if it is not, start it; see “Starting
a queue manager” on page 44. You get an error message if it is already
started.

Ø Specify a queue manager name on the runmqsc command if you have not
defined a default queue manager, otherwise you get this error:

runmqsc <amqscoma.tst

5697-27ð (C) Copyright IBM Corp. 1995. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

AMQ8146: MQSeries queue manager not available.

ð MQSC commands read.

ð commands have a syntax error.

ð commands cannot be processed.

To correct this type of problem, see “Making an existing queue manager the
default” on page 46.

Ø You cannot specify an MQSC command as a runmqsc parameter:

runmqsc DEFINE QLOCAL(FRED)

Ø You cannot enter MQSC commands from DCL before you issue the runmqsc
command. For example:

DEFINE QLOCAL(QUEUE1)

%DCL-W-PARMDEL, invalid parameter delimiter - check use of special characters

Ø You cannot run control commands from runmqsc . For example, you cannot
start a queue manager once you are running MQSC interactively:

 Chapter 6. Administering local MQSeries objects 57

 Working with local queues

runmqsc

5697-27ð (C) Copyright IBM Corp. 1996. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

strmqm saturn.queue.manager

1 : strmqm saturn.queue.manager

AMQ84ð5: Syntax error detected at or near end of command segment below: -

s

See also “If you have problems using MQSC remotely” on page 77.

Working with local queues
This section contains examples of some of the MQSC commands that you can use.
Refer to the MQSeries Command Reference for a complete description of these
commands.

Defining a local queue
For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager
are said to be local to that queue manager.

Use the MQSC command DEFINE QLOCAL to create a definition of a local queue
and also to create the data structure that is called a queue. You can also modify
the queue characteristics from those of the default local queue.

In this example, the queue we define, ORANGE.LOCAL.QUEUE, is specified to
have these characteristics:

� It is enabled for gets, disabled for puts, and operates on a first-in-first-out
(FIFO) basis.

� It is an ‘ordinary’ queue, that is, it is not an initiation queue or a transmission
queue, and it does not generate trigger messages.

� The maximum queue depth is 1000 messages; the maximum message length
is 2000 bytes.

The following MQSC command does this:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +

DESCR('Queue for messages from other systems') +

PUT (DISABLED) +

GET (ENABLED) +

 NOTRIGGER +

MSGDLVSQ (FIFO) +

MAXDEPTH (1ððð) +

MAXMSGL (2ððð) +

 USAGE (NORMAL)

58 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Working with local queues

Notes:

1. Most of these attributes are the defaults as supplied with the product.
However, they are shown here for purposes of illustration. You can omit them
if you are sure that the defaults are what you want or have not been changed.
See also “Displaying default object attributes” on page 59.

2. USAGE (NORMAL) indicates that this queue is not a transmission queue.

3. If you already have a local queue on the same queue manager with the name
ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute, if
you want to overwrite the existing definition of a queue, but see also “Changing
local queue attributes” on page 61.

Defining a dead-letter queue
Each queue manager should have a local queue to be used as a dead-letter queue
so that messages that cannot be delivered to their correct destination can be stored
for later retrieval. You must explicitly tell the queue manager about the dead-letter
queue. You can do this by specifying a dead-letter queue on the crtmqm
command or you can use the ALTER QMGR command to specify one later. You
must also define the dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
with the product in the file amqscoma.tst. This queue is automatically created
when you run the sample. You can modify this definition if required. There is no
need to rename it, although you can if you like.

A dead-letter queue has no special requirements except that it must be a local
queue and its MAXMSGL (maximum message length) attribute must enable the
queue to accommodate the largest messages that the queue manager has to
handle.

MQSeries provides a dead-letter queue handler that allows you to specify how
messages found on a dead-letter queue are to be processed or removed. For
further information, see Chapter 10, “The MQSeries dead-letter queue handler” on
page 107.

Displaying default object attributes
When you define an MQSeries object, it takes any attributes that you do not specify
from the default object. For example, when you define a local queue, the queue
inherits any attributes that you omit in the definition from the default local queue,
which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what these
attributes are, use the following command:

DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE) ALL

Note: The syntax of this command is different from that of the corresponding
DEFINE command.

You can selectively display attributes by specifying them individually. For example:

 Chapter 6. Administering local MQSeries objects 59

 Working with local queues

DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +

 MAXDEPTH +

 MAXMSGL +

 CURDEPTH

This command displays the three specified attributes as follows:

AMQ84ð9: Display Queue details.

 QUEUE(ORANGE.LOCAL.QUEUE)

 MAXDEPTH(1ððð)

 MAXMSGL(2ððð)

 CURDEPTH(ð)

CURDEPTH is the current queue depth, that is, the number of messages on the
queue. This is a useful attribute to display, because by monitoring the queue depth
you can ensure that the queue does not become full.

Copying a local queue definition
You can copy a queue definition using the LIKE attribute on the DEFINE command.
For example:

DEFINE QLOCAL (MAGENTA.QUEUE) +

 LIKE (ORANGE.LOCAL.QUEUE)

This command creates a queue with the same attributes as our original queue
ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.

You can also use this form of the DEFINE command to copy a queue definition,
and substitute one or more changes to the attributes of the original. For example:

DEFINE QLOCAL (THIRD.QUEUE) +

LIKE (ORANGE.LOCAL.QUEUE) +

 MAXMSGL(1ð24)

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the
queue THIRD.QUEUE, but specifies that the maximum message length on the new
queue is to be 1024 bytes, rather than 2000.

Notes:

1. When you use the LIKE attribute on a DEFINE command, you are copying the
queue attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as
DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE).

60 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Working with local queues

Changing local queue attributes
You can change queue attributes in two ways, using either the ALTER QLOCAL
command or the DEFINE QLOCAL command with the REPLACE attribute. In
“Defining a local queue” on page 58, we defined the queue
ORANGE.LOCAL.QUEUE. Suppose, for example, you wanted to increase the
maximum message length on this queue to 10 000 bytes.

� Using the ALTER command:

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(1ðððð)

This command changes a single attribute, that of the maximum message
length; all the other attributes remain the same.

� Using the DEFINE command with the REPLACE option, for example:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(1ðððð) REPLACE

This command changes not only the maximum message length, but all the
other attributes, which are given their default values. The queue is now put
enabled whereas previously it was put inhibited. Put enabled is the default, as
specified by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have
changed it.

If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Clearing a local queue
To delete all the messages from a local queue called MAGENTA.QUEUE, use the
following command:

CLEAR QLOCAL (MAGENTA.QUEUE)

You cannot clear a queue if:

� There are uncommitted messages that have been put on the queue under
syncpoint.

� An application currently has the queue open.

Deleting a local queue
Use the MQSC command DELETE QLOCAL to delete a local queue. A queue
cannot be deleted if it has uncommitted messages on it. However, if the queue has
one or more committed messages, and no uncommitted messages, it can only be
deleted if you specify the PURGE option. For example:

DELETE QLOCAL (PINK.QUEUE) PURGE

 Chapter 6. Administering local MQSeries objects 61

 Working with local queues

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it
contains any committed messages.

 Browsing queues
If you need to look at the contents of the messages on a queue, MQSeries for
OpenVMS provides a sample queue browser for this purpose. The browser is
supplied both as source and as a module that can be run. By default, the file
names and paths are:

Source MQS_EXAMPLES:AMQSBCGð.C

Executable :[.BIN]AMQSBCG.EXE, under MQS_EXAMPLES.

The sample takes two parameters, which are the:

� Queue name, for example, SYSTEM.ADMIN.RESPQ.tppð1.
� Queue manager name, for example, snooker

as shown in the following command:

amqsbcg “SYSTEM.ADMIN.RESPQ.tppð1” “snooker”

There are no defaults; both parameters are required. Typical results from this
commands are:

AMQSBCGð - starts here

\\\\\\\\\\\\\\\\\\\\\\

 MQCONN to snooker

 MQOPEN - 'SYSTEM.ADMIN.RESPQ.tppð1'

 MQGET of message number 1

\\\\Message descriptor\\\\

 StrucId : 'MD ' Version : 1

Report : ð MsgType : 8

Expiry : -1 Feedback : ð

Encoding : 273 CodedCharSetId : 85ð

Format : 'AMQMRESP'

Priority : 5 Persistence : 1

MsgId : X'414D512ð736E6F6F6B65722ð2ð2ð2ð2ð2ED4769ðð71A6Dðð'

CorrelId : X'ðð'

BackoutCount : ð

 ReplyToQ : ' '

 ReplyToQMgr : 'snooker '

\\ Identity Context

UserIdentifier : 'tppð1 '

 AccountingToken :

 X'ð4373ð373ððð'

ApplIdentityData : ' '

\\ Origin Context

 PutApplType : '6'

 PutApplName : ' '

 PutDate : '19941124' PutTime : '11184ð15'

ApplOriginData : ' '

\\\\ Message \\\\

62 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Working with local queues

 length - 268 bytes

ðððððððð: 736E 6F6F 6B65 722ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 'snooker '

ðððððð1ð: 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð ' '

ðððððð2ð: 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð ' '

ðððððð3ð: 534E 4F4F 4B45 522E 5749 4748 542E 5443 'SNOOKER.WIGHT.TC'

ðððððð4ð: 5ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 'P '

ðððððð5ð: 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð ' '

ðððððð6ð: ðððð ððð1 ðððð ðð24 ðððð ððð1 ðððð ðð15 '.......¢........'

ðððððð7ð: ðððð ððð1 ðððð ððð1 ðððð ðððð ðððð ðððð '................'

ðððððð8ð: ðððð ððð3 ðððð ððð4 ðððð ðð28 ðððð ðDAD '...........(....'

ðððððð9ð: ðððð ðððð ðððð ðð14 534E 4F4F 4B45 522E '........SNOOKER.'

ððððððAð: 5749 4748 542E 5443 5ð2ð 2ð2ð ðððð ððð3 'WIGHT.TCP'

ððððððBð: ðððð ðð1ð ðððð ð5E7 ðððð ððð1 ðððð ððð4 '................'

ððððððCð: ðððð ðð5ð ðððð ðDAE ðððð ðððð ðððð ðð39 '...P...........9'

ððððððDð: 2ð66 726F 6D2ð 736E 6F6F 6B65 722ð 746F ' from snooker to'

ððððððEð: 2ð77 6967 6874 2ð76 6961 2ð74 637ð 2F69 ' wight via tcp/i'

ððððððFð: 7ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 'p '

ððððð1ðð: 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ððð ðððð ' ... '

 MQGET of message number 2

\\\\Message descriptor\\\\

 StrucId : 'MD ' Version : 1

Report : ð MsgType : 2

Expiry : -1 Feedback : ð

Encoding : 273 CodedCharSetId : 85ð

Format : 'MQADMIN '

Priority : 8 Persistence : 1

MsgId : X'414D512ð736E6F6F6B65722ð2ð2ð2ð2ð2ED4769ð1524D2ðð'

CorrelId : X'414D512ð736E6F6F6B65722ð2ð2ð2ð2ð2ED4769ðð71A6Dðð'

BackoutCount : ð

 ReplyToQ : ' '

 ReplyToQMgr : 'snooker '

\\ Identity Context

UserIdentifier : 'tppð1 '

 AccountingToken :

 X'ð4373ð373ððð'

ApplIdentityData : ' '

\\ Origin Context

 PutApplType : '6'

 PutApplName : ' '

 PutDate : '19941124' PutTime : '11184ð35'

ApplOriginData : ' '

\\\\ Message \\\\

 length - 36 bytes

ðððððððð: ðððð ððð2 ðððð ðð24 ðððð ððð1 ðððð ðð15 '.......¢........'

ðððððð1ð: ðððð ððð1 ðððð ððð1 ðððð ðððð ðððð ðððð '................'

ðððððð2ð: ðððð ðððð '.... '

 MQGET of message number 3

\\\\Message descriptor\\\\

 Chapter 6. Administering local MQSeries objects 63

 Working with local queues

 StrucId : 'MD ' Version : 1

Report : ð MsgType : 8

Expiry : -1 Feedback : ð

Encoding : 273 CodedCharSetId : 85ð

Format : 'AMQMRESP'

Priority : 5 Persistence : 1

MsgId : X'414D512ð736E6F6F6B65722ð2ð2ð2ð2ð2ED477D62A9EA1ðð'

CorrelId : X'ðð'

BackoutCount : ð

 ReplyToQ : ' '

 ReplyToQMgr : 'snooker '

\\ Identity Context

UserIdentifier : 'trevor '

 AccountingToken :

 X'ð4373ð373ððð'

ApplIdentityData : ' '

\\ Origin Context

 PutApplType : '6'

 PutApplName : ' '

 PutDate : '19941124' PutTime : '1124ð678'

ApplOriginData : ' '

\\\\ Message \\\\

 length - 188 bytes

ðððððððð: 736E 6F6F 6B65 722ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 'snooker '

ðððððð1ð: 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð ' '

ðððððð2ð: 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð ' '

ðððððð3ð: 534E 4F4F 4B45 522E 5749 4748 542E 5443 'SNOOKER.WIGHT.TC'

ðððððð4ð: 5ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 'P '

ðððððð5ð: 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð ' '

ðððððð6ð: ðððð ððð1 ðððð ðð24 ðððð ððð1 ðððð ðð15 '.......¢........'

ðððððð7ð: ðððð ððð1 ðððð ððð1 ðððð ðððð ðððð ðððð '................'

ðððððð8ð: ðððð ððð2 ðððð ððð4 ðððð ðð28 ðððð ðDAD '...........(....'

ðððððð9ð: ðððð ðððð ðððð ðð14 534E 4F4F 4B45 522E '........SNOOKER.'

ððððððAð: 5749 4748 542E 5443 5ð2ð 2ð2ð ðððð ððð3 'WIGHT.TCP'

ððððððBð: ðððð ðð1ð ðððð ð5E7 ðððð ððð1 '............ '

 MQGET of message number 4

\\\\Message descriptor\\\\

 StrucId : 'MD ' Version : 1

Report : ð MsgType : 2

Expiry : -1 Feedback : ð

Encoding : 273 CodedCharSetId : 85ð

Format : 'MQADMIN '

Priority : 8 Persistence : 1

MsgId : X'414D512ð736E6F6F6B65722ð2ð2ð2ð2ð2ED477D63826Cððð'

CorrelId : X'414D512ð736E6F6F6B65722ð2ð2ð2ð2ð2ED477D62A9EA1ðð'

BackoutCount : ð

 ReplyToQ : ' '

 ReplyToQMgr : 'snooker '

\\ Identity Context

UserIdentifier : 'tiger '

 AccountingToken :

 X'ð4373ð373ððð'

ApplIdentityData : ' '

64 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Working with alias queues

\\ Origin Context

 PutApplType : '6'

 PutApplName : ' '

 PutDate : '19941124' PutTime : '1124ð694'

ApplOriginData : ' '

\\\\ Message \\\\

 length - 36 bytes

ðððððððð: ðððð ððð2 ðððð ðð24 ðððð ððð1 ðððð ðð15 '.......¢........'

ðððððð1ð: ðððð ððð1 ðððð ððð1 ðððð ðððð ðððð ðððð '................'

ðððððð2ð: ðððð ðððð '.... '

 No more messages

 MQCLOSE

 MQDISC

Working with alias queues
An alias queue (also known as a queue alias) provides a method of redirecting MQI
calls. An alias queue is not a real queue but a definition that resolves to a real
queue. The alias queue definition contains a target queue name which is specified
by the TARGQ attribute (BaseQName in PCF). When an application specifies an
alias queue in an MQI call, the queue manager resolves the real queue name at
run time.

For example, an application has been developed to put messages on a queue
called MY.ALIAS.QUEUE. It specifies the name of this queue when it makes an
MQOPEN request and, indirectly, if it puts a message on this queue. The
application is not aware that the queue is an alias queue. For each MQI call using
this alias, the queue manager resolves the real queue name, which could be either
a local queue or a remote queue defined at this queue manager.

By changing the value of the TARGQ attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for
maintenance, migration, and load-balancing.

Defining an alias queue
The following command creates an alias queue:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (YELLOW.QUEUE)

This command redirects MQI calls that specify MY.ALIAS.QUEUE, to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls
fail if the queue YELLOW.QUEUE does not exist at run time.

 Chapter 6. Administering local MQSeries objects 65

 Working with alias queues

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE) REPLACE

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear
to have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:

� Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed
to get messages from it.

� Application BETA can get messages from YELLOW.QUEUE, but is not allowed
to put messages on it.

You can do this using the following commands:

\ This alias is put enabled and get disabled for application ALPHA

DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +

TARGQ (YELLOW.QUEUE) +

PUT (ENABLED) +

 GET (DISABLED)

\ This alias is put disabled and get enabled for application BETA

DEFINE QALIAS (BETAS.ALIAS.QUEUE) +

TARGQ (YELLOW.QUEUE) +

PUT (DISABLED) +

 GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses
the queue name BETAS.ALIAS.QUEUE. They both access the same queue, but in
different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in
the same way that you use them with local queues.

Using other commands with queue aliases
You can use the appropriate MQSC commands to display or alter queue alias
attributes, or delete the queue alias object. For example:

66 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Working with model queues

\ Display the queue alias' attributes

\ ALL = Display all attributes

DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE) ALL

\ ALTER the base queue name, to which the alias resolves.

\ FORCE = Force the change even if the queue is open.

ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

\ Delete this queue alias, if you can.

DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

You cannot delete a queue alias if, for example, an application currently has the
queue open or has a queue open that resolves to this queue. See the MQSeries
Command Reference manual for more information about this and other queue alias
commands.

Working with model queues
A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue
You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not). For example:

DEFINE QMODEL (GREEN.MODEL.QUEUE) +

DESCR('Queue for messages from application X') +

PUT (DISABLED) +

GET (ENABLED) +

 NOTRIGGER +

MSGDLVSQ (FIFO) +

MAXDEPTH (1ððð) +

MAXMSGL (2ððð) +

USAGE (NORMAL) +

 DEFTYPE (PERDYN)

 Chapter 6. Administering local MQSeries objects 67

 Managing objects for triggering

This command creates a model queue definition. From the DEFTYPE attribute, the
actual queues created from this template are permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in
the same way that you use them with local queues.

Using other commands with model queues
You can use the appropriate MQSC commands to display or alter a model queue’s
attributes, or delete the model queue object. For example:

\ Display the model queue's attributes

\ ALL = Display all attributes

DISPLAY QUEUE (GREEN.MODEL.QUEUE) ALL

\ ALTER the model to enable puts on any

\ dynamic queue created from this model.

ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

\ Delete this model queue:

DELETE QMODEL (RED.MODEL.QUEUE)

Managing objects for triggering
MQSeries provides a facility for starting an application automatically when certain
conditions on a queue are met. One example of the conditions is when the number
of messages on a queue reaches a specified number. This facility is called
triggering and is described in detail in the MQSeries Application Programming
Guide. This section describes how to set up the required objects to support
triggering on MQSeries for Digital OpenVMS.

Defining an application queue for triggering
An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the Trigger attribute
(TRIGGER in MQSC).

In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or greater on the local queue MOTOR.INS.QUEUE, as follows:

68 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Managing objects for triggering

DEFINE QLOCAL (MOTOR.INS.QUEUE) +

PROCESS (MOTOR.INS.PROC) +

MAXMSGL (2ððð) +

DEFPSIST (YES) +

INITQ (MOTOR.INS.INT.Q) +

 TRIGGER +

TRIGTYPE (DEPTH) +

 TRIGDPTH (1ðð)+

 TRIGMPRI (5)

Where:

QLOCAL (MOTOR.INS.QUEUE)

Specifies the name of the application queue being defined.

PROCESS (MOTOR.INS.PROC)

Specifies the name of the application to be started by a trigger monitor
program.

MAXMSGL (2ððð)

Specifies the maximum length of messages on the queue.

DEFPSIST (YES)

Specifies that messages are persistent on this queue.

INITQ (MOTOR.INS.INT.Q)

Is the name of the initiation queue on which the queue manager is to put the
trigger message.

TRIGGER

Is the trigger attribute value.

TRIGTYPE (DEPTH)

Specifies that a trigger event is generated when the number of messages of
the required priority (TRIMPRI) reaches the number specified in TRIGDPTH.

TRIGDPTH (1ðð)

Specifies the number of messages required to generate a trigger event.

TRIGMPRI (5)

Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority 5
or higher are counted.

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues have
no special settings, but you can use the following definition of the local queue
MOTOR.INS.INT.Q for guidance:

DEFINE QLOCAL(MOTOR.INS.INT.Q) +

GET (ENABLED) +

 NOSHARE +

 NOTRIGGER +

MAXMSGL (2ððð) +

 MAXDEPTH (1ð)

 Chapter 6. Administering local MQSeries objects 69

 Managing objects for triggering

Creating a process definition
Use the DEFINE PROCESS command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PROCESS attribute on the
application queue MOTOR.INS.QUEUE. The following MQSC command defines
the required process, MOTOR.INS.PROC, identified in this example:

DEFINE PROCESS (MOTOR.INS.PROC) +

DESCR (‘Insurance request message processing’) +

APPLTYPE (OpenVMS) +

APPLICID (‘DKAð:[MQM.ADMIN.TEST]IRMPð1.EXE’) +

USERDATA (‘open, close, 235’)

Where:

MOTOR.INS.PROC

Is the name of the process definition, limited to 15 characters.

DESCR ('Insurance request message processing')
Is the descriptive text of the application program to which the definition
relates, following the keyword. This text is displayed when you use the
DISPLAY PROCESS command. This can help you to identify what the
process does. If you use spaces in the string, you must enclose the string in
single quotes.

APPLTYPE (OpenVMS)

Is the type of the application that runs on OpenVMS

APPLICID ('[MQM.ADMIN.TEST]IRMP01.EXE')
Is the name of the application executable program.

USERDATA ('open, close, 235')
Is user-defined data, which can be used by the application.

Displaying your process definition
Use the DISPLAY PROCESS command, with the ALL keyword, to examine the
results of your definition. For example:

DISPLAY PROCESS (MOTOR.INS.PROC) ALL

24 : DISPLAY PROCESS (MOTOR.INS.PROC) ALL

AMQ84ð7: Display Process details.

DESCR (‘Insurance request message processing’) +

APPLICID (‘DKAð:[MQM.ADMIN.TEST]IRMPð1.EXE’) +

USERDATA (open, close, 235) +

PROCESS (MOTOR.INS.PROC) +

 APPLTYPE (OpenVMS)

You can also use the MQSC command ALTER PROCESS to alter an existing
process definition and DELETE PROCESS to delete a process definition.

70 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Channels and remote queuing

Chapter 7. Administering remote MQSeries objects

This chapter describes how to administer MQSeries objects on another queue
manager. It also describes how you can use remote queue objects to control the
destination of messages and reply messages.

It contains these sections:

� “Understanding channels and remote queuing”
� “Remote administration” on page 72
� “Creating a local definition of a remote queue” on page 78
� “Using remote queue definitions as aliases” on page 81

For more information about channels, their attributes, and how to set them up, refer
to the MQSeries Distributed Queuing Guide.

Understanding channels and remote queuing
Queue managers communicate with each other using channels. For example, if an
application is to put a message on a queue managed by a remote queue manager,
a channel must be set up between the two queue managers. The channel is
defined to the queue managers at each end of the connection. Each channel is
named and has a number of attributes that define, for example, the type of channel
and the protocol to be used for communication.

Channels are used for sending messages between queue managers. These
messages may originate from:

� User-written application programs that transfer data from one node to another.

� User-written administration applications that use PCFs.

� Queue managers sending:

– Instrumentation event messages to another queue manager.

– MQSC commands issued from a runmqsc command in indirect
mode—where the commands are run on another queue manager.

Channels are unidirectional, that is, messages can only be sent in one direction.
Channel definitions are made in complementary pairs, one at each end of the
connection. For example, if one end is a sender, the other must be a receiver.

Channels are ‘linked’ to queue managers (and therefore the applications they
serve) by transmission queues and remote queue definitions. A transmission
queue is used to forward messages (through a channel) to another queue
manager. A remote queue definition identifies a queue on another queue manager.
To give you an idea of how these things can fit together:

� A remote queue definition specifies a transmission queue.

� A channel serves a transmission queue, which is specified when the channel is
defined.

“Preparing channels and transmission queues for remote administration” on
page 73 shows how to use these definitions to set up remote administration.

 Copyright IBM Corp. 1995, 1997 71

 Remote administration

You define a channel using the DEFINE CHANNEL MQSC command. Channels,
their attributes, and how you use them in distributed queuing, are discussed at
length in the MQSeries Distributed Queuing Guide. In this section, the examples
concerned with channels use the default channel attributes unless otherwise
specified.

 Remote administration
This section tells you how to administer a remote queue manager from a local
queue manager. You can implement remote administration from a local node
using:

 � MQSC commands
 � PCF commands

Preparing the queues and channels is essentially the same for both methods. In
this book, the examples show MQSC commands, because they are easier to
understand. However, you can convert the examples to PCFs if you wish. For
more information about writing administration programs using PCFs, see the
MQSeries Programmable System Management.

In remote administration you send MQSC commands to a remote queue
manager—either interactively or from a text file containing the commands. The
remote queue manager may be on the same machine or, more typically, on a
different machine. You can remotely administer queue managers in different
MQSeries environments, including AIX, AS/400, MVS/ESA, and OS/2.

To implement remote administration, you must create certain objects. Unless you
have specialized requirements, you should find that the default values (for example,
for message length) are sufficient.

Preparing queue managers for remote administration
Figure 5 on page 73 shows the configuration of queue managers and channels
that are required for remote administration. source.queue.manager is the source
queue manager from which you can issue MQSC commands and to which the
results of these commands (operator messages) are returned, if possible.
target.queue.manager is the destination queue manager, which processes the
commands and generates any operator messages.

Note: source.queue.manager must be the default queue manager. For further
information on creating a queue manager, see “crtmqm (Create queue manager)”
on page 176.

72 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Remote administration

runmqsc

MQSC commands

repl ies

Process commands
for example:
DEFINE QLOCAL

Local system Remote system

source.queue.manager target.queue.manager

Figure 5. Remote administration

On both systems, if you have not already done so, you must:

� Create the queue manager, using the crtmqm command.
� Start the queue manager, using the strmqm command.
� Run the sample amqscoma.tst, using the runmqsc command.

See “Creating the default and system objects” on page 44 for more information
about these steps. You have to run these commands locally or over a network
facility, for example Telnet.

On the destination queue manager:

� The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present.
This is created from the sample command file amqscoma.tst.

� The command server must be started, using the strmqcsv command.

Preparing channels and transmission queues for remote
administration

To run MQSC commands remotely, you must set up two channels, one for each
direction, and their associated transmission queues. This example assumes that
TCP/IP is being used as the transport type and that you know the TCP/IP address
involved.

The channel source.to.target is for sending MQSC commands from the source
queue manager to the destination. Its sender is at source.queue.manager and its
receiver is at queue manager target.queue.manager. The channel
target.to.source is for returning the output from commands and any operator
messages that are generated to the source queue manager. You must also define
a transmission queue for each sender. This queue is a local queue that is given
the name of the receiving queue manager. Figure 6 on page 74 summarizes this
configuration. However, you should be aware that the
SYSTEM.MQSC.REPLY.QUEUE is the name of the model queue in

 Chapter 7. Administering remote MQSeries objects 73

 Remote administration

AMQSCOMA.TST that is used by MQSC to develop its own dynamic reply queue.
This queue name varies and is internal to MQSC.

repl ies

runmqsc

Local system Remote system

source.queue.manager target.queue.manager

XMITQ=target.queue.manager

source.to.target

target.to.source

XMITQ=source.queue.manager

SYSTEM.ADMIN.COMMAND.QUEUE

SYSTEM.MQSC.REPLY.QUEUE

commands

Figure 6. Setting up channels and queues for remote administration

See the MQSeries Distributed Queuing Guide for more information about setting up
remote channels.

Defining channels and transmission queues
On the source queue manager, issue these MQSC commands to define the
channels and the transmission queue:

\ Define the sender channel at the source queue manager

DEFINE CHANNEL ('source.to.target') +

 CHLTYPE(SDR) +

CONNAME (RHX5498) +

XMITQ ('target.queue.manager') +

 TRPTYPE(TCP)

\ Define the receiver channel at the source queue manager

DEFINE CHANNEL ('target.to.source') +

 CHLTYPE(RCVR) +

 TRPTYPE(TCP)

\ Define the transmission queue on the source

DEFINE QLOCAL ('target.queue.manager') +

 USAGE (XMITQ)

Issue these commands on the destination queue manager (target.queue.manager),
to create the channels and the transmission queue there:

74 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Remote administration

\ Define the sender channel on the destination queue manager

DEFINE CHANNEL ('target.to.source') +

 CHLTYPE(SDR) +

CONNAME (RHX7721) +

XMITQ ('source.queue.manager') +

 TRPTYPE(TCP)

\ Define the receiver channel on the destination queue manager

DEFINE CHANNEL ('source.to.target') +

 CHLTYPE(RCVR) +

 TRPTYPE(TCP)

\ Define the transmission queue on the destination queue manager

DEFINE QLOCAL ('source.queue.manager') +

 USAGE (XMITQ)

Note: The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the network name of the
machine at the other end of the connection. Use the values appropriate for your
network.

Start the channels
The following description assumes that both ends of the channel are running on
MQSeries for Digital OpenVMS. If this is not the case, refer to the relevant
documentation for the non-OpenVMS end of the channel.

To start the two channels, first ensure that the TCP/IP services have been
configured for MQSeries on both nodes, and are running at both ends of the
connections.

Then start the channels, again as background processes:

� On the source queue manager, type:

runmqchl -c “source.to.target” -b

� On the destination queue manager, type:

runmqchl -c “target.to.source” -b

The runmqchl command is an MQSeries for Digital OpenVMS control command.
It cannot be issued using runmqsc .

 Chapter 7. Administering remote MQSeries objects 75

 Remote administration

Issuing MQSC commands remotely
The command server must be running on the destination queue manager, if it is
going to process MQSC commands remotely. (This is not necessary on the source
queue manager.)

� On the destination queue manager, type:

 strmqcsv “target.queue.manager”

� On the source queue manager, you can then run MQSC interactively in queued
mode by typing:

runmqsc -w 3ð “target.queue.manager”

This form of the runmqsc command—with the -w flag—runs the MQSC commands
in queued mode, where commands are put (in a modified form) on the
command-server input queue and executed in order.

When you type in an MQSC command, it is redirected to the remote queue
manager, in this case, target.queue.manager. The timeout is set to 30 seconds; if
a reply is not received within 30 seconds, the following message is generated on
the local (source) queue manager:

AMQ8416: MQSC timed out waiting for a response from the command server.

At the end of the MQSC session, the local queue manager displays any timed-out
responses that have arrived. When the MQSC session is finished, any further
responses are discarded.

In queued mode, you can also run an MQSC command file on a remote queue
manager. For example:

runmqsc -w 6ð “target.queue.manager” < mycomds.in > report.out

where mycomds.in is a file containing MQSC commands and report.out is the
report file.

Working with queue managers on MVS/ESA
You can issue MQSC commands to an MVS/ESA queue manager from an
MQSeries for Digital OpenVMS queue manager. However, to do this, you must
modify the runmqsc command and the channel definitions at the sender.

In particular, you add the -x flag to the runmqsc command on an OpenVMS node:

runmqsc -w 3ð -x “target.queue.manager”

76 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Remote administration

On the sender channel, set the CONVERT attribute to YES. This specifies that the
required data conversion between the systems is performed at the OpenVMS end.
The channel definition command now becomes:

\ Define the sender channel at the source queue manager on OpenVMS

DEFINE CHANNEL ('source.to.target') +

 CHLTYPE(SDR) +

CONNAME (RHX5498) +

XMITQ ('target.queue.manager') +

 TRPTYPE(TCP) +

 CONVERT (YES)

You must also define the receiver channel and the transmission queue at the
source queue manager as before. Again, this example assumes that TCP/IP is the
transmission protocol being used.

Recommendations for remote queuing
When you are implementing remote queuing:

1. Put the MQSC commands to be run on the remote system in a command file.

2. Verify your MQSC commands locally, by specifying the -v flag on the runmqsc
command.

You cannot use runmqsc to verify MQSC commands on another queue
manager.

3. Check, as far as possible, that the command file runs locally without error.

4. Finally, run the command file against the remote system.

If you have problems using MQSC remotely
If you have difficulty in running MQSC commands remotely, use the following
checklist to see if you have:

Ø Started the command server on the destination queue manager.

Ø Defined a valid transmission queue.

Ø Defined the two ends of the message channels for both:

– The channel along which the commands are being sent.
– The channel along which the replies are to be returned.

Ø Specified the correct connection name (CONNAME) in the channel definition.

Ø Started the listeners before you started the message channels.

Ø Checked that the disconnect interval has not expired, for example, if a channel
started but then shut down after some time. This is especially important if you
start the channels manually.

See also “If you have problems with MQSC” on page 56.

 Chapter 7. Administering remote MQSeries objects 77

 Local definition of remote queue

Creating a local definition of a remote queue
You can use a remote queue definition as a local definition of a remote queue.
You create a remote queue object on your local queue manager to identify a local
queue on another queue manager.

Understanding how local definitions of remote queues work
An application connects to a local queue manager and then issues an MQOPEN
call. In the open call, the queue name specified is that of a remote queue definition
on the local queue manager. The remote queue definition supplies the names of
the destination queue, the destination queue manager, and optionally, a
transmission queue. To put a message on the remote queue, the application
issues an MQPUT call, specifying the handle returned from the MQOPEN call. The
queue manager appends the remote queue name and the remote queue manager
name to a transmission header in the message. This information is used to route
the message to its correct destination in the network.

As administrator, you can control the destination of the message by altering the
remote queue definition.

 Example
Purpose: An application is required to put a message on a queue owned by a
remote queue manager.

How it works: The application connects to a queue manager, for example,
saturn.queue.manager. The destination queue is owned by another queue
manager.

On the MQOPEN call, the application specifies these fields:

After this, the application issues an MQPUT call to put a message on to this queue.

Field value Description

ObjectName
 CYAN.REMOTE.QUEUE

Specifies the local name of the remote queue object.
This defines the destination queue and the
destination queue manager.

ObjectType
 (Queue)

Identifies this object as a queue.

ObjectQmgrName
 Blank
 or
 saturn.queue.manager

This field is optional.

If blank, the name of the local queue manager is
assumed. (This is the queue manager on which the
remote queue definition was made and to which the
application is connected).

If not blank, the name of the local queue manager
must be specified.

78 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Local definition of remote queue

On the local queue manager, you can create a local definition of a remote queue
using the following MQSC commands:

DEFINE QREMOTE (CYAN.REMOTE.QUEUE) +

DESCR ('Queue for auto insurance requests from the branches') +

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE) +

RQMNAME (jupiter.queue.manager) +

 XMITQ (INQUOTE.XMIT.QUEUE)

Where:

QREMOTE (CYAN.REMOTE.QUEUE)

Specifies the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the MQOPEN
call to open the queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the
remote queue manager jupiter.queue.manager.

DESCR ('Queue for auto insurance requests from the branches')
Additional text that describes the use of the queue.

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE)

Specifies the name of the destination queue on the remote queue manager.
This is the real destination queue for messages that are sent by applications
that specify the queue name CYAN.REMOTE.QUEUE. The queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE must be defined as a local
queue on the remote queue manager.

RQMNAME (jupiter.queue.manager)
Specifies the name of the remote queue manager that owns the destination
queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE.

XMITQ (INQUOTE.XMIT.QUEUE)
Specifies the name of the transmission queue. This is optional; if not
specified, a queue with the same name as the remote queue manager is
used.

In either case, the appropriate transmission queue must be defined as a
local queue with a Usage attribute specifying that it is a transmission queue
(USAGE(XMIT) in MQSC).

An alternative way of putting messages on a remote queue
Using a local definition of a remote queue is not the only way of putting messages
on a remote queue. Applications can specify the full queue name, which includes
the remote queue manager name, as part of the MQOPEN call. In this case, a
local definition of a remote queue is not required. However, this alternative means
that applications must either know or have access to the name of the remote queue
manager at run time.

 Chapter 7. Administering remote MQSeries objects 79

 Local definition of remote queue

Using other commands with remote queues
You can use the appropriate MQSC commands to display or alter the attributes of a
remote queue object, or you can delete the remote queue object. For example:

\ Display the remote queue's attributes.

\ ALL = Display all attributes

DISPLAY QUEUE (CYAN.REMOTE.QUEUE) ALL

\ ALTER the remote queue to enable puts.

\ This does not affect the destination queue,

\ only applications that specify this remote queue.

ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

\ Delete this remote queue

\ This does not affect the destination queue

\ only its local definition

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: If you delete a remote queue, you only delete the local representation of the
remote queue. You do not delete the remote queue itself or any messages
on it.

Creating a transmission queue
A transmission queue is a local queue that is used when a queue manager
forwards messages to a remote queue manager through a message channel. The
channel provides a one-way link to the remote queue manager. Messages are
queued at the transmission queue until the channel can accept them. When you
define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The Usage attribute (USAGE in MQSC) defines whether a queue is a transmission
queue or a normal queue.

Default transmission queues
Optionally, you can specify a transmission queue in a remote queue object, using
the XmitQName attribute (XMITQ in MQSC). If no transmission queue is defined, a
default is used. When applications put messages on a remote queue, if a
transmission queue with the same name as the destination queue manager exists,
that queue is used. If this queue does not exist, the queue specified by the
DefaultXmitQ attribute (DEFXMITQ in MQSC) on the local queue manager is used.

80 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Aliases

For example, the following MQSC command creates a default transmission queue
on source.queue.manager for messages going to target.queue.manager:

DEFINE QLOCAL ('target.queue.manager') +

DESCR ('Default transmission queue for target qm') +

 USAGE (XMITQ)

Applications can put messages directly on a transmission queue, with an
appropriate header, or they can be put there indirectly, for example, through a
remote queue definition. See also “Creating a local definition of a remote queue”
on page 78.

Using remote queue definitions as aliases
In addition to locating a queue on another queue manager, you can also use a
local definition of a remote queue for both:

� Queue manager aliases
� Reply-to queue aliases

Both types of aliases are resolved through the local definition of a remote queue.

As usual in remote queuing, the appropriate channels must be set up if the
message is to arrive at its destination.

Queue manager aliases
An alias is the process by which the name of the destination queue manager—as
specified in a message—is modified by a queue manager on the message route.
Queue manager aliases are important because you can use them to control the
destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the
point of control. The sending application is not aware that the queue manager
name specified is an alias.

For more information about queue manager aliases, see the MQSeries Distributed
Queuing Guide.

Reply-to queue aliases
Optionally, an application can specify the name of a reply-to queue when it puts a
request message on a queue. If the application that processes the message
extracts the name of the reply-to queue, it knows where to send the reply message,
if required.

A reply-to queue alias is the process by which a reply-to queue – as specified in a
request message – is altered by a queue manager on the message route. The
sending application is not aware that the reply-to queue name specified is an alias.

 Chapter 7. Administering remote MQSeries objects 81

 Aliases

A reply-to queue alias lets you alter the name of the reply-to queue and optionally
its queue manager. This in turn lets you control which route is used for reply
messages.

For more information about request messages, reply messages, and reply-to
queues, see the MQSeries Application Programming Reference. For more
information about reply-to queue aliases, see the MQSeries Distributed Queuing
Guide.

82 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Before you begin

 Chapter 8. Security

This chapter describes the features of security control in MQSeries for Digital
OpenVMS and how you can implement this control.

It contains these sections:

� “Before you begin”
� “Why you need to protect MQSeries resources” on page 84
� “Understanding the Object Authority Manager” on page 84
� “Using the Object Authority Manager commands” on page 87
� “Object Authority Manager guidelines” on page 89
� “Understanding the authorization specification tables” on page 93
� “Understanding authorization files” on page 98

Before you begin
All queue manager resources run with the VMS Rights Identifier:

 MQM

This rights identifier is created during MQSeries installation and you must grant this
resource attribute to all users who need to control MQSeries resources.

User IDs in MQSeries for Digital OpenVMS with resource identifier
MQM

If your user ID holds the MQM OpenVMS rights identifier, you have all authorities to
all MQSeries resources. Your user ID must hold the OpenVMS MQM rights
identifier to be able to use all the MQSeries for Digital OpenVMS control commands
except crtmqcvx . In particular, you need this authority to:

� Use the runmqsc command to run MQSC commands.
� Administer authorities on MQSeries for Digital OpenVMS using the setmqaut

command.

If you are sending channel commands to queue managers on a remote system,
you must ensure that your user ID holds the OpenVMS rights identifier MQM on the
target system. For a list of PCF and MQSC channel commands, see “Channel
command security” on page 92.

It is not essential for your user ID to hold the rights identifier MQM for issuing:

� PCF commands—including Escape PCFs—from an administration program
� MQI calls from an application program

For more information
For more information about:

� MQSeries for Digital OpenVMS command sets, see Chapter 4, “Understanding
administration command sets” on page 33.

� MQSeries for Digital OpenVMS control commands, see Chapter 15, “MQSeries
control commands” on page 171.

 Copyright IBM Corp. 1995, 1997 83

 Object authority manager

� PCF commands and Escape PCFs, see the MQSeries Programmable System
Management manual.

� MQI calls, see the MQSeries Application Programming Guide and MQSeries
Application Programming Reference manuals.

Why you need to protect MQSeries resources
Because MQSeries queue managers handle the transfer of information that is
potentially valuable, you need the safeguard of an authority system. This ensures
that the resources that a queue manager owns and manages are protected from
unauthorized access, which could lead to the loss or disclosure of the information.
In a secure system, it is essential that none of the following are accessed or
changed by any unauthorized user or application:

� Connections to a queue manager.

� Access to MQSeries objects such as queues, channels, and processes.

� Commands for queue manager administration, including MQSC commands and
PCF commands.

� Access to MQSeries messages.

� Context information associated with messages.

You should develop your own policy with respect to which users have access to
which resources.

Understanding the Object Authority Manager
By default, access to queue manager resources is controlled through an
authorization service installable component. This component is formally called the
Object Authority Manager (OAM) for MQSeries for Digital OpenVMS. It is supplied
with MQSeries for Digital OpenVMS and is automatically installed and enabled for
each queue manager you create, unless you specify otherwise. In this chapter, the
term OAM is used to denote the Object Authority Manager supplied with this
product.

The OAM is an installable component of the authorization service. Providing the
OAM as an installable service gives you the flexibility to:

� Replace the supplied OAM with your own authorization service component
using the interface provided.

� Augment the facilities supplied by the OAM with those of your own
authorization service component, again using the interface provided.

� Remove or disable the OAM and run with no authorization service at all.

For more information on installable services, see the MQSeries Programmable
System Management manual.

The OAM manages users’ authorizations to manipulate MQSeries objects, including
queues, process definitions, and channels. It also provides a command interface
through which you can grant or revoke access authority to an object for a specific
group of users. The decision to allow access to a resource is made by the OAM,
and the queue manager follows that decision. If the OAM cannot make a decision,
the queue manager prevents access to that resource.

84 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Object authority manager

How the OAM works
The OAM works by exploiting the security features of the underlying OpenVMS
operating system. In particular, the OAM uses OpenVMS user, group IDs, and
rights identifiers. Users can access queue manager objects only if they have the
required authority.

Managing access through rights identifiers
In the command interface, we use the term principal rather than user ID. The
reason for this is that authorities granted to a user ID can also be granted to other
entities, for example, an application program that issues MQI calls, or an
administration program that issues PCF commands. In these cases, the principal
associated with the program is not necessarily the user ID that was used when the
program was started. However, in this discussion, principals and user IDs are
always OpenVMS user IDs.

Rights identifiers and the primary rights identifier
Managing access permissions to MQSeries resources is based on OpenVMS rights
identifiers, that is, identifiers held by principals. A principal can hold one or more
OpenVMS rights identifiers. A group is defined as the set of all principals that have
been granted a specific rights identifier.

The OAM maintains authorizations at the level of rights identifiers rather than
individual principals. The mapping of principals to identifier names is carried out
within the OAM and operations are carried out at the rights identifier level. You
can, however, display the authorizations of an individual principal.

When a principal holds more than one rights identifier
The authorizations that a principal has are the union of the authorizations of all the
rights identifiers that it holds, that is, its process rights. Whenever a principal
requests access to a resource, the OAM computes this union, and then checks the
authorization against it. You can use the control command setmqaut to set the
authorizations for a specific principal, or identifier.

Note: Any changes made using the setmqaut command take immediate effect,
unless the object is in use. In this case, the change comes into force when
the object is next opened. However, changes to a principal’s rights
identifier list do not come into effect until a queue manager is reset, that is,
stopped and restarted.

The authorizations associated with a principal are cached when they are computed
by the OAM. Any changes made to an identifier’s authorizations after it has been
cached are not recognized until the queue manager is restarted. Avoid changing
any authorizations while the queue manager is running.

Default rights identifier
The OAM recognizes a default to which all users are nominally assigned. This
group is defined by the pseudo rights identifier of 'NOBODY'. 'NOBODY' can be
used as if it were a valid rights identifier to assign authorizations using MQSeries
commands. By default, no authorizations are given to this identifier. Users without
specific authorizations can be granted access to MQSeries resources through this
rights identifier.

 Chapter 8. Security 85

 Object authority manager

Resources you can protect with the OAM
Through OAM you can control:

� Access to MQSeries objects through the MQI. When an application program
attempts to access an object, the OAM checks if the user ID making the
request has the authorization (through the identifier held) for the operation
requested.

In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

� Permission to use MQSC commands; only principals which hold rights identifier
mqm can execute queue manager administration commands, for example, to
create a queue.

� Permission to use control commands; only principals which hold rights identifier
mqm can execute control commands, for example, creating a queue manager,
starting a command server, or using runmqsc .

� Permission to use PCF commands.

Different users may be granted different kinds of access authority to the same
object. For example, for a specific queue, users holding one identifier may be
allowed to perform both put and get operations; users with another identifier may
only be allowed to browse the queue (MQGET with browse option). Similarly,
users with identifiers may have get and put authority to a queue, but are not
allowed to alter or delete the queue.

Using rights identifiers for authorizations
Using identifiers, rather than individual principals, for authorization reduces the
amount of administration required. Typically, a particular kind of access is required
by more than one principal. For example, you might define an identifier consisting
of end users who want to run a particular application. New users can be given
access simply by granting the appropriate identifier to their OpenVMS user ID.

Try to keep the number of identifiers as small as possible. For example, dividing
principals into one group for application users and one for administrators is a good
place to start.

Disabling the object authority manager
By default, the OAM is enabled. You can disable it by setting the logical name
MQSNOAUT before the queue manager is created, as follows:

$ DEFINE/SYSTEM MQSNOAUT TRUE

However, if you do this you cannot, in general, restart the OAM later. A much
better approach is to have the OAM enabled and ensure that all users and
applications have access through an appropriate user ID.

You can also disable the OAM for testing purposes only by removing the
authorization service stanza in the queue manager configuration file (qm.ini).

86 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Using OAM commands

Using the Object Authority Manager commands
The OAM provides a command interface for granting and revoking authority.
Before you can use these commands, you must be suitably authorized – your user
ID must hold the OpenVMS rights identifier MQM. This identifier should have been
set up when you installed the product.

If your user ID holds identifier mqm, you have a ‘super user’ authority to the queue
manager. This means that you are authorized to issue any MQI request or
command from your user ID.

The OAM provides two commands that you can invoke from your OpenVMS DCL
to manage the authorizations of users. These are:

� setmqaut (Set or reset authority)
� dspmqaut (Display authority)

Authority checking occurs in the following calls: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE.

Authority checking is only performed at the first instance of any of these calls, and
authority is not amended until you reset (that is, close and reopen) the object.

Therefore, any changes made to the authority of an object using setmqaut do not
take effect until you reset the object.

What you specify when you use the OAM commands
The authority commands apply to the specified queue manager; if you do not
specify a queue manager, the default queue manager is used. On these
commands, you must specify the object uniquely, that is, you must specify the
object name and its type. You also have to specify the principal or identifier name
to which the authority applies.

 Authorization lists
On the setmqaut command you specify a list of authorizations. This is simply a
shorthand way of specifying whether authorization is to be granted or revoked, and
which resources the authorization applies to. Each authorization in the list is
specified as a lowercase keyword, prefixed with a + or − sign. Use a + sign to add
the specified authorization or a − sign to remove the authorization. You can specify
any number of authorizations in a single command. For example:

+browse -get +put

Using the setmqaut command
Provided you have the required authorization, you can use the setmqaut command
to grant or revoke authorization of a principal or rights identifier to access a
particular object. The following example shows how the setmqaut command is
used:

 Chapter 8. Security 87

 Using OAM commands

setmqaut -m “saturn.queue.manager” -t queue -n RED.LOCAL.QUEUE -g GROUPA +browse -get +put

In this example:

This term... Specifies the...

saturn.queue.manager Queue manager name.

queue Object type.

RED.LOCAL.QUEUE Object name.

GROUPA ID of the group to be given the authorizations.

+browse -get +put Authorization list for the specified queue. There must
be no spaces between the ‘+’ or ‘−’ signs and the
keyword.

The authorization list specifies the authorizations to be given, where:

This term... Does this...

+browse Adds authorization to browse (MQGET with browse option)
messages on the queue.

-get Removes authorization to get (MQGET) messages from the queue.

+put Adds authorization to put (MQPUT) messages on the queue.

This means that applications started with user IDs that hold OpenVMS identifier
GROUPA have these authorizations.

You can specify one or more principals and, at the same time, one or more
identifiers. For example, the following command revokes put authority on the
queue MyQueue to the principal FVUSER and to identifiers GROUPA and groupb.

setmqaut -m “saturn.queue.manager” -t queue -n “MyQueue” -p FVUSER -g GROUPA -g GROUPB -put

Note: This command also revokes put authority for all rights identifiers held by
FVUSER, that is, all groups to which FVUSER belongs.

For a formal definition of the command and its syntax, see “setmqaut (Set/reset
authority)” on page 211.

Authority commands and installable services
The setmqaut command takes an additional parameter that specifies the name of
the installable service component to which the update applies. You must specify
this parameter if you have multiple installable components running at the same
time. By default, this is not the case. If the parameter is omitted, the update is
made to the first installable service of that type, if one exists. By default, this is the
supplied OAM.

88 MQSeries for Digital OpenVMS V2R2 System Management Guide

 OAM guidelines

 Access authorizations
Authorizations defined by the authorization list associated with the setmqaut
command can be categorized as follows:

� Authorizations related to MQI calls
� Authorization related administration commands

 � Context authorizations
� General authorizations, that is, for MQI calls, for commands, or both

Each authorization is specified by a keyword used with the setmqaut and
dspmqaut commands. These are described in “setmqaut (Set/reset authority)” on
page 211.

Display authority command
You can use the command dspmqaut to view the authorizations that a specific
principal or identifier has for a particular object. The flags have the same meaning
as those in the setmqaut command. Authorization can only be displayed for one
identifier or principal at a time. See “dspmqaut (Display authority)” on page 182 for
a formal specification of this command.

For example, the following command displays the authorizations that the group
GpAdmin has to a process definition named Annuities on queue manager
QueueMan1.

dspmqaut -m “QueueMan1” -t process -n “Annuities” -g GPADMIN

The keywords displayed as a result of this command identify the authorizations that
are active.

Object Authority Manager guidelines
Some operations are particularly sensitive and should be limited to privileged users.
For example,

� Starting and stopping queue managers.

� Accessing certain special queues, such as transmission queues or the
command queue SYSTEM.ADMIN.COMMAND.QUEUE.

� Programs that use full MQI context options.

� In general, creating and copying application queues.

 User IDs
The special user ID MQM that you created during product installation is intended
for use by the product only. It should never be available to non-privileged users.

The user ID used for authorization checks, associated with an MQ process, is the
OpenVMS user ID.

 Chapter 8. Security 89

 OAM guidelines

Queue manager directories
The directory containing queues and other queue manager data is private to the
product. Objects in this directory have OpenVMS user authorizations that relate to
their OAM authorizations. However, do not use standard OpenVMS commands to
grant or revoke authorizations to MQI resources because:

� MQSeries objects are not necessarily the same as the corresponding system
object name. See “Understanding MQSeries file names” on page 42 for more
information about this.

� All objects are owned by resource ID mqm.

 Queues
The authority to a dynamic queue is based on—but not necessarily the same
as—that of the model queue from which it is derived. See page 95 for more
information.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is, therefore, possible
to authorize a user ID to access an alias queue that resolves to a local queue to
which the user ID has no access permissions.

You should limit the authority to create queues to privileged users. If you do not,
some users may bypass the normal access control simply by creating an alias.

Alternate user authority
Alternate user authority controls whether one user ID can use the authority of
another user ID when accessing an MQSeries object. This is essential where a
server receives requests from a program and the server wishes to ensure that the
program has the required authority for the request. The server may have the
required authority, but it needs to know whether the program has the authority for
the actions it has requested.

For example:

� A server program running under user ID PAYSERV retrieves a request
message from a queue that was put on the queue by user ID USER1.

� When the server program gets the request message, it processes the request
and puts the reply back into the reply-to queue specified with the request
message.

� Instead of using its own user ID (PAYSERV) to authorize opening the reply-to
queue, the server can specify some other user ID, in this case, USER1. In this
example, you can use alternate user authority to control whether PAYSERV is
allowed to specify USER1 as an alternate user ID when it opens the reply-to
queue.

The alternate user ID is specified on the AlternateUserId field of the object
descriptor.

Note: You can use alternate user IDs on any MQSeries object. Use of an
alternate user ID does not affect the user ID used by any other resource
managers.

90 MQSeries for Digital OpenVMS V2R2 System Management Guide

 OAM guidelines

 Context authority
Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message. The context information
comes in two sections:

Identity section This part specifies who the message came from. It consists
of the following fields:

 � UserIdentifier
 � AccountingToken
 � ApplIdentityData

Origin section This section specifies where the message came from, and
when it was put onto the queue. It consists of the following
fields:

 � PutApplType
 � PutApplName
 � PutDate
 � PutTime
 � ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT
call is made. This data may be generated by the application, it may be passed on
from another message, or it may be generated by the queue manager by default.
For example, context data can be used by server programs to check the identity of
the requester, testing whether the message came from an application, running
under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an
alternate user.

You use context authorization to control whether the user can specify any of the
context options on any MQOPEN or MQPUT1 call. For information about the
context options, see the MQSeries Application Programming Guide. For
descriptions of the message descriptor fields relating to context, see the MQSeries
Application Programming Reference manual.

Remote security considerations
For remote security, you should consider:

Put authority For security across queue managers you can specify the put
authority that is used when a channel receives a message sent
from another queue manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user ID. This is the user ID that the message
channel agent is running under.

CTX The user ID in the message context.

Transmission queues
Queue managers automatically put remote messages on a
transmission queue; no special authority is required for this.
However, putting a message directly on a transmission queue
requires special authorization; see Table 7 on page 94.

 Chapter 8. Security 91

 OAM guidelines

Channel exits Channel exits can be used for added security.

For more information, see the MQSeries Distributed Queuing Guide.

Channel command security
Channel commands can be issued as PCF commands, MQSC commands, and
control commands.

 PCF commands
You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote OpenVMS system. The user
ID, as specified in the message descriptor of the PCF message, must hold rights
identifer mqm on the target system. These commands are:

 � ChangeChannel
 � CopyChannel
 � CreateChannel
 � DeleteChannel
 � PingChannel
 � ResetChannel
 � StartChannel
 � StartChannelInitiator
 � StopChannel
 � ResolveChannel

See the MQSeries Programmable System Management manual for the PCF
security requirements.

MQSC channel commands
You can issue MQSC channel commands to a remote OpenVMS system either by
sending the command directly in a PCF escape message or by issuing the
command using runmqsc in indirect mode. The user ID as specified in the
message descriptor of the associated PCF message must hold rights identifier mqm
on the target system. (PCF commands are implicit in MQSC commands issued
from runmqsc in indirect mode.) These commands are:

 � ALTER CHANNEL
 � DEFINE CHANNEL
 � DELETE CHANNEL
 � PING CHANNEL
 � RESET CHANNEL
 � START CHANNEL
 � START CHINIT
 � STOP CHANNEL
 � RESOLVE CHANNEL

For MQSC commands issued from the runmqsc command, the user ID in the PCF
message is normally that of the current user.

92 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Authorization specification tables

Control commands for channels
For the control commands for channels, the user ID that issues them must hold
rights identifier mqm. These commands are:

� runmqchi (Run channel initiator)
� runmqchl (Run channel)

Understanding the authorization specification tables
The authorization specification tables starting on page 94 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these
situations:

� Applications that issue MQI calls.
� Administration programs that issue MQSC commands as escape PCFs.
� Adminstration programs that issue PCF commands.

In this section, the information is presented as a set of tables that specify the
following:

Action to be performed MQI option, MQSC command, or PCF command.

Access control object Queue, process, or queue manager.

Authorization required Expressed as an ‘MQZAO_’ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in the
authorization list for the setmqaut command for the particular entity. For example,
MQZAO_BROWSE corresponds to the keyword +browse; similarly, the keyword
MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall and so on.
These constants are defined in the header file cmqzc.h, which is supplied with the
product. See “What the authorization files contain” on page 99 for more
information.

 MQI authorizations
An application is only allowed to issue certain MQI calls and options if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls may require authorization checks: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the object
being opened, and not on the name, or names, resulting after a name has been
resolved. For example, an application may be granted authority to open an alias
queue without having authority to open the base queue to which the alias resolves.
The rule is that the check is carried out on the first definition encountered during
the process of name resolution that is not a queue-manager alias, unless the
queue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the
particular object being opened; in some cases additional queue-independent
authority—which is obtained through an authorization for the queue-manager
object—is required.

Table 7 on page 94 summarizes the authorizations needed for each call.

 Chapter 8. Security 93

 Authorization specification tables

Table 7. Security authorization needed for MQI calls

Authorization required for : Queue object (1) Process object Queue manager object

MQCONN option Not applicable Not applicable MQZAO_CONNECT

MQOPEN Option

MQOO_INQUIRE MQZAO_INQUIRE (2) MQZAO_INQUIRE (2) MQZAO_INQUIRE (2)

MQOO_BROWSE MQZAO_BROWSE Not applicable No check

MQOO_INPUT_* MQZAO_INPUT Not applicable No check

MQOO_SAVE_ ALL_CONTEXT (3) MQZAO_INPUT Not applicable No check

MQOO_OUTPUT (Normal queue) (4) MQZAO_OUTPUT Not applicable No check

MQOO_PASS_ IDENTITY_CONTEXT (5) MQZAO_PASS_
IDENTITY_ CONTEXT

Not applicable No check

MQOO_PASS_ ALL_CONTEXT (5, 6) MQZAO_PASS
_ALL_CONTEXT

Not applicable No check

MQOO_SET_ IDENTITY_CONTEXT (5,
6)

MQZAO_SET_
IDENTITY_ CONTEXT

Not applicable MQZAO_SET_
IDENTITY_ CONTEXT
(7)

MQOO_SET_ ALL_CONTEXT (5, 8) MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

MQOO_OUTPUT (Transmission queue)
(9)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

MQOO_SET MQZAO_SET Not applicable No check

MQOO_ALTERNATE_
USER_AUTHORITY

(10) (10) MQZAO_ALTERNATE_
USER_ AUTHORITY
(10, 11)

MQPUT1 Option

MQPMO_PASS_ IDENTITY_CONTEXT MQZAO_PASS_
IDENTITY_ CONTEXT
(12)

Not applicable No check

MQPMO_PASS_ ALL_CONTEXT MQZAO_PASS_
ALL_CONTEXT (12)

Not applicable No check

MQPMO_SET_ IDENTITY_CONTEXT MQZAO_SET_
IDENTITY_ CONTEXT
(12)

Not applicable MQZAO_SET_
IDENTITY_ CONTEXT
(7)

MQPMO_SET_ ALL_CONTEXT MQZAO_SET_
ALL_CONTEXT (12)

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

(Transmission queue) (9) MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

MQPMO_ALTERNATE_
USER_AUTHORITY

(13) Not applicable MQZAO_ALTERNATE_
USER_ AUTHORITY
(11)

MQCLOSE Option

MQCO_DELETE MQZAO_DELETE (14) Not applicable Not applicable

MQCO_DELETE_PURGE MQZAO_DELETE (14) Not applicable Not applicable

94 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Authorization specification tables

Specific notes:

1. If a model queue is being opened:

� MQZAO_DISPLAY authority is needed for the model queue, in addition to
whatever other authorities (also for the model queue) are required for the
open options specified.

� MQZAO_CREATE authority is not needed to create the dynamic queue.

� The user identifier used to open the model queue is automatically granted
all of the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

2. Either the queue, process, or queue manager object is checked, depending on
the type of object being opened.

3. MQOO_INPUT_* must also be specified. This is valid for a local, model, or
alias queue.

4. This check is performed for all output cases, except the case specified in note
9.

5. MQOO_OUTPUT must also be specified.

6. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.

7. This authority is required for both the queue manager object and the particular
queue.

8. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and
MQOO_SET_IDENTITY_CONTEXT are also implied by this option.

9. This check is performed for a local or model queue that has a Usage queue
attribute of MQUS_TRANSMISSION, and is being opened directly for output. It
does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

10. At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must
also be specified. The check carried out is as for the other options specified,
using the supplied alternate user identifier for the specific-named object
authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

11. This authorization allows any AlternateUserId to be specified.

12. An MQZAO_OUTPUT check is also carried out, if the queue does not have a
Usage queue attribute of MQUS_TRANSMISSION.

13. The check carried out is as for the other options specified, using the supplied
alternate user identifier for the specific-named queue authority, and the current
application authority for the MQZAO_ALTERNATE_USER_IDENTIFIER check.

14. The check is carried out only if both of the following are true:

� A permanent dynamic queue is being closed and deleted.

� The queue was not created by the MQOPEN which returned the object
handle being used.

Otherwise, there is no check.

 Chapter 8. Security 95

 Authorization specification tables

General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that
are relevant to the object type:

 � MQZAO_CONNECT
 � MQZAO_INQUIRE
 � MQZAO_SET
 � MQZAO_BROWSE
 � MQZAO_INPUT
 � MQZAO_OUTPUT
 � MQZAO_PASS_IDENTITY_CONTEXT
 � MQZAO_PASS_ALL_CONTEXT
 � MQZAO_SET_IDENTITY_CONTEXT
 � MQZAO_SET_ALL_CONTEXT
 � MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note 14 on page 95) and MQZAO_DISPLAY are
classed as administration authorizations. They are not therefore included in
MQZAO_ALL_MQI.

3. ‘No check’ means that no authorization checking is carried out.

4. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue an MQPUT call to a process object.

 Administration authorizations
These authorizations allow a user to issue administration commands. This can be
an MQSC command as an escape PCF message or as a PCF command itself.
These methods allow a program to send an administration command as a message
to a queue manager, for execution on behalf of that user.

Authorizations for MQSC commands in escape PCFs
Table 8 summarizes the authorizations needed for each MQSC command that is
contained in Escape PCF.

Table 8. MQSC commands and security authorization needed

(2) Authorization required for: Queue object Process object Queue manager object

MQSC command

ALTER object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

CLEAR QLOCAL MQZAO_CLEAR Not applicable Not applicable

DEFINE object NOREPLACE (3) MQZAO_CREATE (4) MQZAO_CREATE (4) Not applicable

DEFINE object REPLACE (3, 5) MQZAO_CHANGE MQZAO_CHANGE Not applicable

DELETE object MQZAO_DELETE MQZAO_DELETE Not applicable

DISPLAY object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Specific notes:

1. The user identifier, under which the program (for example, runmqsc) which
submits the command is running, must also have MQZAO_CONNECT authority
to the queue manager.

2. Either the queue, process, or queue manager object is checked, depending on
the type of object.

96 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Authorization specification tables

3. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the
LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT.xxx
object if LIKE is omitted.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the SETMQAUT command.

5. This applies if the object to be replaced does in fact already exist. If it does
not, the check is as for DEFINE object NOREPLACE.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue
manager object.

Authorizations for PCF commands
Table 9 summarizes the authorizations needed for each PCF command.

Table 9. PCF commands and security authorization needed

(2) Authorization required for: Queue object Process object Queue manager object

PCF command

Change object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

Clear Queue MQZAO_CLEAR Not applicable Not applicable

Copy object (without replace) (3) MQZAO_CREATE (4) MQZAO_CREATE (4) Not applicable

Copy object (with replace) (3, 6) MQZAO_CHANGE MQZAO_CHANGE Not applicable

Create object (without replace) (5) MQZAO_CREATE (4) MQZAO_CREATE (4) Not applicable

Create object (with replace) (5, 6) MQZAO_CHANGE MQZAO_CHANGE Not applicable

Delete object MQZAO_DELETE MQZAO_DELETE Not applicable

Inquire object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Inquire object names No check No check No check

Reset queue statistics MQZAO_DISPLAY and
MQZAO_CHANGE

Not applicable Not applicable

Specific notes:

1. The user identifier under which the program submitting the command is running
must also have authority to connect to its local queue manager, and to open
the command admin queue for output.

2. Either the queue, process, or queue-manager object is checked, depending on
the type of object.

3. For Copy commands, MQZAO_DISPLAY authority is also needed for the From
object.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the SETMQAUT command.

 Chapter 8. Security 97

 Authorization files

5. For Create commands, MQZAO_DISPLAY authority is also needed for the
appropriate SYSTEM.DEFAULT.* object.

6. This applies if the object to be replaced already exists. If it does not, the check
is as for Copy or Create without replace.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The special authorization MQZAO_ALL_ADMIN includes all of the following that
are relevant to the object type:

 � MQZAO_CHANGE
 � MQZAO_CLEAR
 � MQZAO_DELETE
 � MQZAO_DISPLAY

MQZAO_CREATE is not included, because it is not specific to a particular
object or object type.

3. ‘No check’ means that no authorization checking is carried out.

4. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot use a Clear Queue command on a
process object.

Understanding authorization files
Note: The information in this section is given for problem determination. Under
normal circumstances, use authorization commands to view and change
authorization information.

MQSeries for Digital OpenVMS uses a specific file structure to implement security.
You do not have to do anything with these files, except to ensure that all the
authorization files are themselves secure.

Security is implemented by authorization files. From this perspective, there are
three types of authorization:

� Authorizations applying to single object, for example, the authority to put a
message on an queue.

� Authorizations applying to a class of objects, for example, the authority to
create a queue.

� Authorizations applying across all classes of objects, for example, the authority
to perform operations on behalf of different users.

Authorization file paths
The path to an authorization file depends on its type. When you specify an
authorization for an object, for example, the queue manager creates the appropriate
authorization files. It puts these files into a sub-directory, the path of which is
defined by the queue manager name, the type of authorization, and where
appropriate, the object name.

Not all authorizations apply directly to instances of objects. For example, the
authorization to create an object applies to the class of objects rather than to an

98 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Authorization files

individual instance. Also, some authorizations apply across the entire queue
manager, for example, alternate user authority means that a user can assume the
authorities associated with another user.

 Authorization directories
By default, the authorization directories, for a queue manager called saturn are:

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH.QUEUES]

Authorization files for queues.

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH.PROCDEF]

Authorization files for process definitions.

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH.QMANAGER]

Authorization files for the queue manager.

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH]$ACLASS

Authorizations applying to all classes.

In the object directories, the $CLASS files hold the authorizations related to the
entire class.

Note: There is a difference between $CLASS (the authorization file that specifies
authorization for a particular class) and $ACLASS (the directory that contains a file
that specifies authorizations to all classes)

The paths of the object authorization files are based on those of the object itself,
where auth is inserted ahead of the object type directory. You can use the
dspmqfls command to display the path to a specified object.

For example, if the name and path of SYSTEM.DEFAULT.LOCAL.QUEUE is:

MQS_ROOT:[MQM.QMGRS.SATURN.QUEUES.SYSTEM$DEFAULT$LOCAL$QUEUE]

the name and path of the corresponding authorization file is:

MQS_ROOT:[MQM.QMGRS.SATURN.AUTH.QUEUES.SYSTEM$DEFAULT$LOCAL$QUEUE]

Note: In this case, the actual names of the files associated with the queue are not
the same as the name of the queue itself. See “Understanding MQSeries file
names” on page 42 for details.

What the authorization files contain
The authorizations of a particular identifier are defined by a set of stanzas in the
authorization file. See “Understanding authorization files” on page 98 for more
information. The authorizations apply to the object associated with this file. For
example:

 groupb:

 Authority=ðxðð4ððð7

This stanza defines the authority for the identifier groupb. The authority
specification is the union of the individual bit patterns based on the following
assignments:

 Chapter 8. Security 99

 Authorization files

 Authorization Formal name Hexadecimal

 keyword Value

 connect MQZAO_CONNECT ðxððððððð1

 browse MQZAO_BROWSE ðxððððððð2

 get MQZAO_INPUT ðxððððððð4

 put MQZAO_OUTPUT ðxððððððð8

 inq MQZAO_INQUIRE ðxðððððð1ð

 set MQZAO_SET ðxðððððð2ð

 passid MQZAO_PASS_IDENTITY_CONTEXT ðxðððððð4ð

 passall MQZAO_PASS_ALL_CONTEXT ðxðððððð8ð

 setid MQZAO_SET_IDENTITY_CONTEXT ðxððððð1ðð

 setall MQZAO_SET_ALL_CONTEXT ðxððððð2ðð

 altusr MQZAO_ALTERNATE_USER_AUTHORITY ðxððððð4ðð

 allmqi MQZAO_ALL_MQI ðxððððð7FF

 crt MQZAO_CREATE ðxððð1ðððð

 dlt MQZAO_DELETE ðxððð2ðððð

 dsp MQZAO_DISPLAY ðxððð4ðððð

 chg MQZAO_CHANGE ðxððð8ðððð

 clr MQZAO_CLEAR ðxðð1ððððð

 chgaut MQZAO_AUTHORIZE ðxðð8ððððð

 alladm MQZAO_ALL_ADMIN ðxðð9Eðððð

 none MQZAO_NONE ðxðððððððð

 all MQZAO_ALL ðxðð9Eð7FF

These definitions are made in the header file cmqzc.h. In the following example,
groupb has been granted authorizations based on the hexadecimal number
ðx4ððð7. This corresponds to:

 MQZAO_CONNECT ðxððððððð1

 MQZAO_BROWSE ðxððððððð2

 MQZAO_INPUT ðxððððððð4

 MQZAO_DISPLAY ðxððð4ðððð

 Authority is: ðxððð4ððð7

These access rights mean that anyone in groupb can issue the MQI calls:

 MQCONN
MQGET (with browse)

 MQPUT

They also have DISPLAY authority for the object associated with this authorization
file.

Class authorization files
The class authorization files hold authorizations that relate to the entire class.
These files are called “$CLASS” and exist in the same directory as the files for
specific objects. The entry MQZAO_CRT in the $CLASS file gives authorization to
create an object in the class. This is the only class authority.

100 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Authorization files

All class authorization files
The all class authorization file holds authorizations that apply to an entire queue
manager. This file is called $ACLASS and exists in the auth subdirectory of the
queue manager.

The following authorizations apply to the entire queue manager and are held in the
all class authorization file:

The entry...
Gives authorization to...

MQZAO_ALTERNATE_USER_AUTHORITY
Assume the identity of another user when interacting with MQSeries objects.

MQZAO_SET_ALL_CONTEXT
Set the context of a message when issuing MQPUT.

MQZAO_SET_IDENTITY_CONTEXT
Set the identity context of a message when issuing MQPUT.

Managing authorization files
Here are some pointers that you need to take into consideration when managing
your authorization files:

1. You must ensure that the authorization files are secure and not write-accessible
by non-trusted general users. See “Authorizations to authorization files.”

2. To be able to reproduce your file authorizations, ensure that you do at least
one of the following:

� Backup the auth subdirectory after any significant updates
� Retain DCL command files containing the commands used

3. You can copy and edit authorization files. However, you should not normally
have to create or repair them manually. Should an emergency occur, you can
use the information given here to recover lost or damaged authorization files.

Authorizations to authorization files
Authorization files must be readable by any principal. However, only the system
manager and user with the mqm identifier should be allowed to update these files.

The permissions on authorization files, created by the OAM, are:

S:RWED,W:R (ID=MQM,ACCESS=R+W+D)

Do not alter these permissions without reviewing carefully whether there are any
security exposures.

To alter authorizations using the command supplied with MQSeries for Digital
OpenVMS, your process must have the MQM rights identifier.

 Chapter 8. Security 101

 Authorization files

102 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Sharing queues

Chapter 9. Using the name service

The name service is an installable service that enables an application connected to
one queue manager to open what it thinks are local queues. These queues are
actually queues defined on another queue manager – on another machine – with
the SCOPE attribute set to CELL.

The application can perform all the operations permitted for remote queues on
queues opened in this way. The supplied implementation uses DCE (Distributed
Computing Environment), although you are free to write your own component that
does not use DCE.

To use the supplied name service component, you must define the name service
and its installed component to the queue manager. You do this by inserting the
appropriate stanza in the queue manager configuration file (qm.ini) file. See the
MQSeries Programmable System Management manual for details. You will also
need to do some DCE configuration.

Using DCE to share queues on different queue managers
If your queue managers are located on nodes within a Distributed Computing
Environment (DCE) cell, you can configure them to share queues. Applications can
then connect to one queue manager and open a queue on another queue manager
on another node. To the application, this is transparent; it is not aware that the
queue actually resides on another queue manager. (Normally, the queue manager
rejects open requests from a local application if the queue does not exist on that
queue manager.)

Configuration tasks for shared queues
This section describes how you set up shared queues on queue managers that
reside on nodes that are within the DCE cell.

For each queue manager:

1. Configure the name service by adding the required name service stanza to the
queue manager configuration file. The contents of this stanza are described in
MQSeries Programmable System Management. To invoke the name service,
you have to restart the queue manager.

2. Use the endmqm command to stop the queue manager if it is running.

3. Use the strmqm to restart the queue manager.

4. Set up channels for messaging between queue managers; see “Preparing
channels and transmission queues for remote administration” on page 73.

For any queue that you want to be shared, specify the SCOPE attribute as CELL.
For example, use these MQSC commands:

DEFINE QLOCAL (GREY.PUBLIC.QUEUE) SCOPE(CELL)

or

ALTER QLOCAL (PINK.LOCAL.QUEUE) SCOPE(CELL)

 Copyright IBM Corp. 1995, 1997 103

 DCE configuration

The queue created or altered must belong to a queue manager on a node within
the DCE cell.

 DCE configuration
To use the supplied name service component, you must have the OSF Distributed
Computing Environment (DCE) installed. This service enables applications that
connect to one queue manager to open queues that belong to another queue
manager in the same DCE cell.

The following DCL shell script sets up the DCE namespace so that the supplied
name service can run.

 $!/\\\/

 $!/\ Module Name: setup.com \/

 $!/\ \/

 $!/\ Module Type: Command File \/

 $!/\ \/

 $!/\ Function : Set up the DCE namespace so that the DCE Name Service \/

 $!/\ can run \/

 $!/\ \/

 $!/\ Version : 2.ð \/

 $!/\ Automatic binding using the namespace \/

 $!/\ \/

 $!/\ Usage : Run this script \/

 $!/\ $ @setup.com \/

 $!/\ \/

 $!/\ Source : New code \/

 $!/\ \/

 $!/\ Notes : \/

 $!/\ 1) You must be logged into VMS as the user who will run the DCE \/

 $!/\ Naming service \/

 $!/\ 2) You must be logged into DCE as cell_admin to run this \/

 $!/\ 3) This needs to be done only once \/

 $!/\ \/

 $!/\ (c) Copyright International Business Machines Corporation 1997 \/

 $!/\\\/

 $!

 $ ECHO := WRITE SYS$OUTPUT

 $ MKDIR := CREATE/DIRECTORY

 $ RM := DELETE/NOLOG

 $!

 $ PRINC := mqm

 $ PASSW := pwd

 $ MYPASSW := mypwd

 $ DIRECTORY1 := MQSeries

 $ DIRECTORY2 := NamingService

 $!

 $!/\\\/

 $!/\ Set up the queue manager prefix - should come from mqs.ini \/

 $!/\\\/

 $!

 $!

 $ PREFIX := MQS_ROOT:[MQM]

 $!

 $!/\\\/

 $!/\ Check that the prefix directory already exists \/

 $!/\ If it does, get the name of the DCE directory, the name of the \/

 $!/\ DCE keytab directory & the name of the keytab file \/

 $!/\\\/

 $!

 $!

 $ if f$parse (PREFIX) .eqs ""

 $ then

 $ echo "ERROR: The directory ''PREFIX' must already exist"

 $ exit

 $ else

 $ MQMDCE = PREFIX - "]" + ".dce]"

104 MQSeries for Digital OpenVMS V2R2 System Management Guide

 DCE configuration

 $ DCEKEYTAB = MQMDCE - "]" + ".keytabs]"

 $ KEYTAB = DCEKEYTAB + "keytab"

 $ endif

 $!

 $!

 $!/\\\/

 $!/\ If DCE directory does not exist, create it \/

 $!/\ otherwise If DCE keytab directory does not exist, create it \/

 $!/\ otherwise make sure the keytab file does not exist \/

 $!/\\\/

 $!

 $!

 $ if f$parse(MQMDCE) .eqs. ""

 $ then

 $ echo "Creating the directory ''MQMDCE'"

 $ mkdir 'MQMDCE

 $ endif

 $!

 $!

 $ if f$parse(dcekeytab) .eqs. ""

 $ then

 $ echo "Creating the directory ''DCEKEYTAB'"

 $ mkdir 'DCEKEYTAB

 $ else

 $ if f$search(keytab) .nes. ""

 $ then

 $ echo "Deleting the file ''KEYTAB'"

 $ rm 'KEYTAB';\

 $ endif

 $ endif

 $!

 $!/\\\/

 $!/\ Add entries to define the principal and account for the server \/

 $!/\ Then we add the password to the private keytab file. Access to the \/

 $!/\ keytab file lets the server retrieve the password for the account \/

 $!/\ and authenticate with it. \/

 $!/\\\/

 $!

 $!

 $ @sys$manager:dce$define_required_commands

 $!

 $ open/write outf rgy_cfg.com

 $ write outf "$ rgy_edit"

 $ write outf " domain principal"

 $ write outf " add ''PRINC'"

 $ write outf " domain account

 $ write outf " add ''PRINC' -g none -o none -pw ""''PASSW'"" -mp""''MYPASSW'"""

 $ write outf " ktadd -p ''PRINC' -f ''KEYTAB' -pw ''PASSW'"

 $ write outf " quit"

 $ write outf "$ exit"

 $ close outf

 $!

 $ @rgy_cfg.com

 $ rm rgy_cfg.com;\

 $ echo "Principal and account added & the keytab file created"

 $!

 $!

 $!/\\\/

 $!/\ Change the keytab file permissions so MQM can read it \/

 $!/\\\/

 $!

 $!

 $ if f$search(KEYTAB) .nes. ""

 $ then

 $ set file 'KEYTAB' /prot=(o:r,g:r)

 $ set file 'KEYTAB' /own=mqm

 $ echo "Keytab file permission modes changed"

 $ endif

 $!

 $!/\\\/

 $!/\ Build the directories to hold the server entries \/

 $!/\\\/

 Chapter 9. Using the name service 105

 DCE configuration

 $!

 $!

 $ open/write outf cds_cfg.com

 $ write outf "$ cdscp create dir /.:/subsys/''DIRECTORY1'"

 $ write outf "$ cdscp create dir /.:/subsys/''DIRECTORY1'/''DIRECTORY2'"

 $ close outf

 $!

 $ @cds_cfg.com

 $ rm cds_cfg.com;\

 $ echo "CDS directories for server entries complete"

 $!

 $!/\\\/

 $!/\ Give the account some privileges so it can access the directories \/

 $!/\\\/

 $!

 $!

 $ open/write outf acl_cfg.com

 $ write outf "$ acl_edit /.:/ -m user:''PRINC':rwdtcia"

 $ write outf "$ acl_edit /.:/subsys -m user:''PRINC':rwdtcia"

 $ write outf "$ acl_edit /.:/subsys/'' DIRECTORY1' -m user:''PRINC':rwdtcia"

 $ write outf "$ acl_edit /.:/subsys/'' DIRECTORY1'/''DIRECTORY2' -m user:''PRINC':rwdtcia"

 $ close outf

 $!

 $ @acl_cfg.com

 $ rm acl_cfg.com;\

 $ echo "Account given privileges to access directories"

 $!

 $ exit

106 MQSeries for Digital OpenVMS V2R2 System Management Guide

 DLQ handler

Chapter 10. The MQSeries dead-letter queue handler

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message
queue, is a holding queue for messages that cannot be delivered to their
destination queues. Every queue manager in a network should have an associated
DLQ.1

Messages can be put on the DLQ by queue managers, by message channel
agents (MCAs), and by applications. All messages on the DLQ should be prefixed
with a dead-letter header structure, MQDLH. Messages put on the DLQ by a
queue manager or by a message channel agent always have an MQDLH;
applications putting messages on the DLQ are strongly recommended to supply an
MQDLH. The Reason field of the MQDLH structure contains a reason code that
identifies why the message is on the DLQ.

In all MQSeries environments, there should be a routine that runs regularly to
process messages on the DLQ. MQSeries supplies a default routine, called the
dead-letter queue handler (the DLQ handler), which you invoke using the
runmqdlq command. Instructions for processing messages on the DLQ are
supplied to the DLQ handler by means of a user-written rules table. That is, the
DLQ handler matches messages on the DLQ against entries in the rules table:
when a DLQ message matches an entry in the rules table, the DLQ handler
performs the action associated with that entry.

This chapter contains the following sections:

� “Invoking the DLQ handler”
� “The DLQ handler rules table” on page 108
� “How the rules table is processed” on page 115
� “An example DLQ handler rules table” on page 117

Invoking the DLQ handler
You invoke the DLQ handler using the runmqdlq command. You can name the
DLQ you want to process and the queue manager you want to use in two ways:

� As parameters to runmqdlq from the command prompt. For example:

runmqdlq ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER < qrule.rul

� In the rules table. For example:

INPUTQ(ABC1.DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE.MANAGER)

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

1 It is often preferable to avoid placing messages on a DLQ. For information about the use and avoidance of DLQs, see the
MQSeries Application Programming Guide.

 Copyright IBM Corp. 1995, 1997 107

 DLQ handler

If you do not specify the DLQ or the queue manager as shown above, the default
queue manager for the installation is used along with the DLQ belonging to that
queue manager.

The runmqdlq command takes its input from SYS$INPUT: you associate the rules
table with runmqdlq by redirecting SYS$INPUT from the rules table.

Attention Running the DLQ handler without redirecting SYS$INPUT to a rule file
causes the DLQ handler to loop.

In order to run the DLQ handler, you must be authorized to access both the DLQ
itself and any message queues to which messages on the DLQ are forwarded.
Furthermore, if the DLQ handler is to be able to put messages on queues with the
authority of the user ID in the message context, you must be authorized to assume
the identity of other users.

For more information about the runmqdlq command, see “runmqdlq (Run
dead-letter queue handler)” on page 203.

The sample DLQ handler, amqsdlq
In addition to the DLQ handler invoked using the runmqdlq command, MQSeries
provides the source of a sample DLQ handler, amqsdlq, whose function is similar to
that provided via runmqdlq . You can customize amqsdlq to provide a DLQ
handler that meets specific, local requirements. For example, you might decide
that you want a DLQ handler that can process messages without dead-letter
headers. (Both the default DLQ handler and the sample, amqsdlq, process only
those messages on the DLQ that begin with a dead-letter header, MQDLH.
Messages that do not begin with an MQDLH are identified as being in error, and
remain on the DLQ indefinitely.)

The source of amqsdlq is supplied in the directory:

 [.DLQ], under MQS_EXAMPLES

and the compiled version is supplied in the directory:

 [.BIN], under MQS_EXAMPLES

The DLQ handler rules table
The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:

� The first entry in the table, which is optional, contains control data.

� All other entries in the table are rules for the DLQ handler to follow. Each rule
consists of a pattern (a set of message characteristics) that a message is
matched against, and an action to be taken when a message on the DLQ
matches the specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

108 MQSeries for Digital OpenVMS V2R2 System Management Guide

 DLQ handler

 Control data
This section describes the keywords that you can include in a control-data entry in
a DLQ handler rules table. Please note the following:

� The default value for a keyword, if any, is underlined.
� The vertical line (|) separates alternatives, only one of which can be specified.
� All keywords are optional.

INPUTQ (QueueName|' ')
Allows you to name the DLQ you want to process:

1. If you specify an INPUTQ value as a parameter to the runmqdlq
command, this overrides any INPUTQ value in the rules table.

2. If you do not specify an INPUTQ value as a parameter to the
runmqdlq command but you do specify a value in the rules table, the
INPUTQ value in the rules table is used.

3. If no DLQ is specified or you specify INPUTQ(' ') in the rules table, the
name of the DLQ belonging to the queue manager whose name is
supplied as a parameter to the runmqdlq command is used.

4. If you do not specify an INPUTQ value as a parameter to the
runmqdlq command or as a value in the rules table, the DLQ
belonging to the queue manager named on the INPUTQM keyword in
the rules table is used.

INPUTQM (QueueManagerName|' ')
Allows you to name the queue manager that owns the DLQ named on the
INPUTQ keyword:

1. If you specify an INPUTQM value as a parameter to the runmqdlq
command, this overrides any INPUTQM value in the rules table.

2. If you do not specify an INPUTQM value as a parameter to the
runmqdlq command, the INPUTQM value in the rules table is used.

3. If no queue manager is specified or you specify INPUTQM(' ') in the
rules table, the default queue manager for the installation is used.

RETRYINT (Interval|60)
Is the interval, in seconds, at which the DLQ handler should attempt to
reprocess messages on the DLQ that could not be processed at the first
attempt, and for which repeated attempts have been requested. By
default, the retry interval is 60 seconds.

WAIT (YES|NO|nnn)
Indicates whether the DLQ handler should wait for further messages to
arrive on the DLQ when it detects that there are no further messages that
it can process.

YES Causes the DLQ handler to wait indefinitely.

NO Causes the DLQ handler to terminate when it detects that the
DLQ is either empty or contains no messages that it can
process.

 Chapter 10. The MQSeries dead-letter queue handler 109

 DLQ handler

nnn Causes the DLQ handler to wait for nnn seconds for new
work to arrive before terminating, after it detects that the
queue is either empty or contains no messages that it can
process.

You are recommended to specify WAIT (YES) for busy DLQs, and WAIT
(NO) or WAIT (nnn) for DLQs that have a low level of activity. If the DLQ
handler is allowed to terminate, you are recommended to reinvoke it by
means of triggering.

As an alternative to including control data in the rules table, you can supply the
names of the DLQ and its queue manager as input parameters of the runmqdlq
command. If any value is specified both in the rules table and on input to the
runmqdlq command, the value specified on the runmqdlq command takes
precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry
in the table.

Rules (patterns and actions)
Figure 7 shows an example rule from a DLQ handler rules table.

 PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +

ACTION (RETRY) RETRY (3)

Figure 7. An example rule from a DLQ handler rules table. This rule instructs the DLQ
handler to make 3 attempts to deliver to its destination queue any persistent message that
was put on the DLQ because MQPUT and MQPUT1 were inhibited.

All keywords that you can use on a rule are described in the remainder of this
section. Please note the following:

� The default value for a keyword, if any, is underlined. For most keywords, the
default value is * (asterisk), which matches any value.

� The vertical line (|) separates alternatives, only one of which can be specified.

� All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched), and then describes the action
keywords (those that determine how the DLQ handler is to process a matching
message).

The pattern-matching keywords
The pattern-matching keywords, which you use to specify values against which
messages on the DLQ are matched, are described below. All pattern-matching
keywords are optional.

APPLIDAT (ApplIdentityData|*)
Is the ApplIdentityData value specified in the message descriptor, MQMD,
of the message on the DLQ.

110 MQSeries for Digital OpenVMS V2R2 System Management Guide

 DLQ handler

APPLNAME (PutApplName|*)
Is the name of the application that issued the MQPUT or MQPUT1 call, as
specified in the PutApplName field of the message descriptor, MQMD, of
the message on the DLQ.

APPLTYPE (PutApplType|*)
Is the PutApplType value specified in the message descriptor, MQMD, of
the message on the DLQ.

DESTQ (QueueName|*)
Is the name of the message queue for which the message is destined.

DESTQM (QueueManagerName|*)
Is the name of the queue manager of the message queue for which the
message is destined.

FEEDBACK (Feedback|*)
When the MsgType value is MQFB_REPORT, Feedback describes the
nature of the report.

Symbolic names can be used. For example, you can use the symbolic
name MQFB_COA to identify those messages on the DLQ that require
confirmation of their arrival on their destination queues.

FORMAT (Format|*)
Is the name that the sender of the message uses to describe the format of
the message data.

MSGTYPE (MsgType|*)
Is the message type of the message on the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQMT_REQUEST to identify those messages on the DLQ that
require replies.

PERSIST (Persistence|*)
Is the persistence value of the message. (The persistence of a message
determines whether it survives restarts of the queue manager.)

Symbolic names can be used. For example, you can use the symbolic
name MQPER_PERSISTENT to identify those messages on the DLQ that
are persistent.

REASON (ReasonCode|*)
Is the reason code that describes why the message was put to the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQRC_Q_FULL to identify those messages placed on the DLQ
because their destination queues were full.

REPLYQ (QueueName|*)
Is the name of the reply-to queue specified in the message descriptor,
MQMD, of the message on the DLQ.

REPLYQM (QueueManagerName|*)
Is the name of the queue manager of the reply-to queue, as specified in
the message descriptor, MQMD, of the message on the DLQ.

 Chapter 10. The MQSeries dead-letter queue handler 111

 DLQ handler

USERID (UserIdentifier|*)
Is the user ID of the user who originated the message on the DLQ, as
specified in the message descriptor, MQMD.

The action keywords
The action keywords, which you use to describe how a matching message is to be
processed, are described below.

ACTION (DISCARD|IGNORE|RETRY|FWD)
Is the action to be taken for any message on the DLQ that matches the
pattern defined in this rule.

DISCARD Causes the message to be deleted from the DLQ.

IGNORE Causes the message to be left on the DLQ.

RETRY Causes the DLQ handler to try again to put the message on
its destination queue.

FWD Causes the DLQ handler to forward the message to the
queue named on the FWDQ keyword.

The ACTION keyword must be specified. The number of attempts made
to implement an action is governed by the RETRY keyword. The interval
between attempts is controlled by the RETRYINT keyword of the control
data.

FWDQ (QueueName|&DESTQ|&REPLYQ)
Is the name of the message queue to which the message should be
forwarded when ACTION (FWD) is requested.

QueueName
Is the name of a message queue. FWDQ(' ') is not valid.

&DESTQ Causes the queue name to be taken from the DestQName
field in the MQDLH structure.

&REPLYQ Causes the name to be taken from the ReplyToQ field in the
message descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ
(&REPLYQ) matches a message with a blank ReplyToQ
field, you can specify REPLYQ (?*) in the message pattern.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM| ' ')
Identifies the queue manager of the queue to which a message is to be
forwarded.

QueueManagerName
Is the name of the queue manager of the queue to which a
message is to be forwarded when ACTION (FWD) is requested.

&DESTQM
Causes the queue manager name to be taken from the
DestQMgrName field in the MQDLH structure.

&REPLYQM
Causes the name to be taken from the ReplyToQMgr field in the
message descriptor, MQMD.

112 MQSeries for Digital OpenVMS V2R2 System Management Guide

 DLQ handler

' ' FWDQM(' '), which is the default value, identifies the local
queue manager.

HEADER (YES|NO)
Specifies whether the MQDLH should remain on a message for which
ACTION (FWD) is requested. By default, the MQDLH remains on the
message. The HEADER keyword is not valid for actions other than FWD.

PUTAUT (DEF|CTX)
Defines the authority with which messages should be put by the DLQ
handler:

DEF Causes messages to be put with the authority of the DLQ handler
itself.

CTX Causes the messages to be put with the authority of the user ID
in the message context. If you specify PUTAUT (CTX), you must
be authorized to assume the identity of other users.

RETRY (RetryCount|1)
Is the number of times, in the range 1–999,999,999, that an action should
be attempted (at the interval specified on the RETRYINT keyword of the
control data).

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If the DLQ handler is restarted, the
count of attempts made to apply a rule is reset to zero.

Rules table conventions
The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:

� A rules table must contain at least one rule.

� Keywords can occur in any order.

� A keyword can be included once only in any rule.

� Keywords are not case-sensitive.

� A keyword and its parameter value must be separated from other keywords by
at least one blank or comma.

� Any number of blanks can occur at the beginning or end of a rule, and between
keywords, punctuation, and values.

� Each rule must begin on a new line.

� For reasons of portability, the significant length of a line should not be greater
than 72 characters.

� Use the plus sign (+) as the last nonblank character on a line to indicate that
the rule continues from the first nonblank character in the next line. Use the
minus sign (−) as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

� Comment lines, which begin with an asterisk (*), can occur anywhere in the
rules table.

� Blank lines are ignored.

 Chapter 10. The MQSeries dead-letter queue handler 113

 DLQ handler

� Each entry in the DLQ handler rules table comprises one or more keywords
and their associated parameters. The parameters must follow these syntax
rules:

– Each parameter value must include at least one significant character. The
delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:

FORMAT('ABC') 3 significant characters
FORMAT(ABC) 3 significant characters
FORMAT('A') 1 significant character
FORMAT(A) 1 significant character
FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant
characters:

FORMAT('')

FORMAT()

FORMAT()

FORMAT

– Wildcard characters are supported: you can use the question mark (?) in
place of any single character, except a trailing blank; you can use the
asterisk (*) in place of zero or more adjacent characters. The asterisk (*)
and the question mark (?) are always interpreted as wildcard characters in
parameter values.

– Wildcard characters cannot be included in the parameters of these
keywords: ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard
matches. However, leading and embedded blanks within strings in
quotation marks are significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard
character. The asterisk (*) can be used in place of an entire numeric
parameter, but cannot be included as part of a numeric parameter. For
example, these are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible
MSGTYPE(\) Any message type is eligible
MSGTYPE('\') Any message type is eligible

However, MSGTYPE('2\') is not valid, because it includes an asterisk (*) as
part of a numeric parameter.

– Numeric parameters must be in the range 0–999,999,999. If the parameter
value is in this range, it is accepted, even if it is not currently valid in the
field to which the keyword relates. Symbolic names can be used for
numeric parameters.

– If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8-character
field:

'ABCDEFGH' 8 characters
'A\C\E\G\I' 5 characters excluding asterisks

114 MQSeries for Digital OpenVMS V2R2 System Management Guide

 DLQ handler

'\A\C\E\G\I\K\M\O\' 8 characters excluding asterisks

– Strings that contain blanks, lowercase characters, or special characters
other than period (.), forward slash (/), underscore (_), and percent sign (%)
must be enclosed in single quotation marks. Lowercase characters not
enclosed in quotation marks are folded to uppercase. If the string includes
a quotation, two single quotation marks must be used to denote both the
beginning and the end of the quotation. When the length of the string is
calculated, each occurrence of double quotation marks is counted as a
single character.

How the rules table is processed
The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When a rule with a matching pattern is
found, the action from that rule is attempted. The DLQ handler increments the retry
count for a rule by 1 whenever it attempts to apply that rule. If the first attempt
fails, the attempt is repeated until the count of attempts made matches the number
specified on the RETRY keyword. If all attempts fail, the DLQ handler searches for
the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is
successful. When each matching rule has been attempted the number of times
specified on its RETRY keyword, and all attempts have failed, ACTION (IGNORE)
is assumed. ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule may consist of
an action only. Note, however, that action-only rules are applied to all
messages on the queue that have MQDLHs and that have not already been
processed in accordance with other rules in the table.

3. The rules table is validated when the DLQ handler is started, and errors are
flagged at that time. (Error messages issued by the DLQ handler are
described in Appendix N, “Messages” on page 309.) You can make changes
to the rules table at any time, but those changes do not come into effect until
the DLQ handler is restarted.

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
queues with the message option MQPMO_PASS_ALL_CONTEXT.

5. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

6. Multiple instances of the DLQ handler could run concurrently against the same
queue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

 Chapter 10. The MQSeries dead-letter queue handler 115

 DLQ handler

Ensuring that all DLQ messages are processed
The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still has to keep a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ will be seen, even if the DLQ is
defined as first-in-first-out (FIFO). Therefore, if the queue is not empty, a periodic
rescan of the DLQ is performed to check all messages. For these reasons, you
should try to ensure that the DLQ contains as few messages as possible; if
messages that cannot be discarded or forwarded to other queues (for whatever
reason) are allowed to accumulate on the queue, the workload of the DLQ handler
increases and the DLQ itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not
explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
queue. For example:

 ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Similarly, the final rule in the table should be a catchall to process messages that
have not been addressed by earlier rules in the table. For example, the final rule in
the table could be something like this:

 ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This action causes messages that fall through to the final rule in the table to be
forwarded to the queue REALLY.DEAD.QUEUE, where they can be processed
manually. If you do not have such a rule, messages are likely to remain on the
DLQ indefinitely.

116 MQSeries for Digital OpenVMS V2R2 System Management Guide

 DLQ handler

An example DLQ handler rules table
Here is an example rules table that contains a single control-data entry and several
rules:

\\\

\ An example rules table for the runmqdlq command \

\\\

\ Control data entry

\ ------------------

\ If no queue manager name is supplied as an explicit parameter to

\ runmqdlq, use the default queue manager for the machine.

\ If no queue name is supplied as an explicit parameter to runmqdlq,

\ use the DLQ defined for the local queue manager.

\

inputqm(' ') inputq(' ')

\ Rules

\ -----

\ We include rules with ACTION (RETRY) first to try to

\ deliver the message to the intended destination.

\ If a message is placed on the DLQ because its destination

\ queue is full, attempt to forward the message to its

\ destination queue. Make 5 attempts at approximately

\ 6ð-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

\ If a message is placed on the DLQ because of a put inhibited

\ condition, attempt to forward the message to its

\ destination queue. Make 5 attempts at approximately

\ 6ð-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

\ The AAAA corporation are always sending messages with incorrect

\ addresses. When we find a request from the AAAA corporation,

\ we return it to the DLQ (DEADQ) of the reply-to queue manager

\ (&REPLYQM).

\ The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.\) +

ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

\ The BBBB corporation never do things by half measures. If

\ the queue manager BBBB.1 is unavailable, try to

\ send the message to BBBB.2

DESTQM(bbbb.1) +

action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

\ The CCCC corporation considers itself very security

\ conscious, and believes that none of its messages

\ will ever end up on one of our DLQs.

\ Whenever we see a message from a CCCC queue manager on our

\ DLQ, we send it to a special destination in the CCCC organization

\ where the problem is investigated.

 Chapter 10. The MQSeries dead-letter queue handler 117

 DLQ handler

REPLYQM(CCCC.\) +

ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

\ Messages that are not persistent run the risk of being

\ lost when a queue manager terminates. If an application

\ is sending nonpersistent messages, it should be able

\ to cope with the message being lost, so we can afford to

\ discard the message.

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

\ For performance and efficiency reasons, we like to keep

\ the number of messages on the DLQ small.

\ If we receive a message that has not been processed by

\ an earlier rule in the table, we assume that it

\ requires manual intervention to resolve the problem.

\ Some problems are best solved at the node where the

\ problem was detected, and others are best solved where

\ the message originated. We don't have the message origin,

\ but we can use the REPLYQM to identify a node that has

\ some interest in this message.

\ Attempt to put the message onto a manual intervention

\ queue at the appropriate node. If this fails,

\ put the message on the manual intervention queue at

\ this node.

REPLYQM('?\') +

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

118 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Instrumentation events

 Chapter 11. Instrumentation events

You can use the MQSeries instrumentation events to monitor the operation of
queue managers. This chapter provides a short introduction to instrumentation
events. For a more complete description, see the section on instrumentation
events in the MQSeries Programmable System Management manual.

What instrumentation events are
Instrumentation events cause special messages, called event messages, to be
generated whenever the queue manager detects a predefined set of conditions.
For example, the following conditions give rise to a Queue Full event:

� Queue Full events are enabled for a specified queue.

� An application issues an MQPUT call to put a message on that queue, but the
call fails because the queue is full.

Other conditions that can give rise to instrumentation events include:

� A threshold limit for the number of messages on a queue being reached.

� A queue not being serviced within a specified time period.

� A channel instance being started or stopped.

� In MQSeries for an OpenVMS system, an application attempting to open a
queue specifying a user ID that is not authorized.

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

 Copyright IBM Corp. 1995, 1997 119

 Use of events

Queue Manager

For example:
Queue full

+ event enabled1. Event conditions

2. Event message
put on event queue

3. Event message
processed by a
user application

Event message

Event queue

User Application

Figure 8. Understanding instrumentation events. When a queue manager detects that the
conditions for an event have been met, it puts an event message on the appropriate event
queue.

The event message, which contains information about the conditions giving rise to
the event, is put onto an event queue. An application can retrieve the event
message from this queue for analysis.

Why use events?
If you specify your event queues as remote queues, you can put all the event
queues on a single queue manager (for those nodes that support instrumentation
events). You can then use the events generated to monitor a network of queue
managers from a single node. Figure 9 on page 121 illustrates this.

120 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Use of events

Event monitoring
from a single node

Event
messages

MQSeries
for MVS/ESA

MQSeries
for OS/2

MQSeries for
UNIX
OPERATING SYSTEMS

Figure 9. Monitoring queue managers across different platforms, on a single node

Types of events
MQSeries events may be categorized as follows:

Queue manager events
These events are related to the definitions of resources within queue managers.
For example, an application attempts to put a message to a queue that does not
exist.

Performance events
These events are notifications that a threshold condition has been reached by a
resource. For example, a queue depth limit has been reached or, following a
get, the queue was not serviced within a predefined time limit.

Channel events
These events are reported by channels as a result of conditions detected during
their operation. For example, when a channel instance is stopped.

 Chapter 11. Instrumentation events 121

 Use of events

 Trigger events

When we discuss triggering in this and other MQSeries books, we sometimes
refer to a trigger event. This occurs when a queue manager detects that the
conditions for a trigger event have been met. For example, a queue can be
configured to generate a trigger event each time a message arrives. (The
conditions for trigger events and instrumentation events are quite different.)

A trigger event causes a trigger message to be put on an initiation queue and,
optionally, an application program is started.

Event notification through event queues
When an event occurs, the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:

� Gets the message from the queue.

� Processes the message to extract the event data. For a description of event
message formats, see the MQSeries Programmable System Management
manual.

Each category of event has its own event queue. All events in that category result
in an event message being put onto the same queue.

This event queue... Contains messages from...

SYSTEM.ADMIN.QMGR.EVENT Queue manager events

SYSTEM.ADMIN.PERFM.EVENT Performance events

SYSTEM.ADMIN.CHANNEL.EVENT Channel events

You can define event queues as either local or remote queues. If you define all
your event queues as remote queues on the same queue manager, you can
centralize your monitoring activities.

Using triggered event queues
You can set up the event queues with triggers so that, when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, certain events may require that an operator be
informed, other events may start an application that performs some administration
tasks automatically.

Enabling and disabling events
You enable and disable events by specifying the appropriate values for the queue
manager, or queue attributes, or both, depending on the type of event. You do this
using either of the following:

� MQSC commands. For more information, see the MQSeries Command
Reference manual.

� PCF commands for queue managers on UNIX systems, OpenVMS systems,
and OS/2. For more information, see the MQSeries Programmable System
Management manual.

122 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Use of events

Enabling an event depends on the category of the event:

� Queue manager events are enabled by setting attributes on the queue
manager.

� Performance events as a whole must be enabled on the queue manager, or no
performance events can occur. You then enable the specific performance
events by setting the appropriate queue attribute. You also have to specify the
conditions that give rise to the event, for example, a queue depth high limit.

� Channel events occur automatically; they do not need to be enabled. If you do
not want to monitor channel events, you can put-inhibit the channel event
queue.

 Event messages
Event messages contain information relating to the origin of an event, including the
type of event, the name of the application that caused the event, and for
performance events a short statistics summary for the queue.

The format of event messages is similar to that of PCF response messages. The
message data can be retrieved from them by user-written administration programs
using the data structures described in the MQSeries Programmable System
Management manual.

 Chapter 11. Instrumentation events 123

 Use of events

124 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Logging

Chapter 12. Recovery and restart

A messaging system ensures that messages entered into the system are delivered
to their destination. This means that it must provide a method of tracking the
messages in the system, and of recovering messages if the system fails for any
reason.

MQSeries ensures that messages are not lost by maintaining records (logs) of the
activities of the queue managers that handle the receipt, transmission, and delivery
of messages. It uses these logs for three types of recovery:

1. Restart recovery, when you stop MQSeries in a planned way.
2. Crash recovery, when MQSeries is stopped by an unexpected failure.
3. Media recovery, to restore damaged objects.

In all cases, the recovery restores the queue manager to the state it was in when
the queue manager stopped. Any in-flight transactions are rolled back, removing
from the queues any messages that were not committed at the time the queue
manager stopped. Recovery restores all persistent messages; non-persistent
messages are lost during the process.

The rest of this chapter introduces the concepts of recovery and restart in more
detail and then tells you how to recover if problems occur. It covers the following
topics:

� “Making sure that messages are not lost (logging)”
� “Checkpointing – ensuring complete recovery” on page 128
� “Managing logs” on page 130
� “Using the log for recovery” on page 132
� “Backup and restore” on page 134
� “Recovery scenarios” on page 136

Making sure that messages are not lost (logging)
MQSeries records all significant changes to the data controlled by the queue
manager in a log. This includes the creation and deletion of objects, all persistent
message updates, transaction states, changes to object attributes, and channel
activities. Therefore, the log contains the information you need to recover all
updates to message queues by:

� Keeping records of queue manager changes.
� Keeping records of queue updates for use by the restart process.
� Enabling you to restore data after a hardware or software failure.

This section tells you more about logs, including:

� “What logs look like” on page 126
� “Types of logging” on page 126
� “Checkpointing – ensuring complete recovery” on page 128
� “Media recovery” on page 132
� “Managing logs” on page 130
� “Managing log files” on page 131

 Copyright IBM Corp. 1995, 1997 125

 Logging

What logs look like
An MQSeries log consists of two components:

1. One or more files of log data
2. A log control file

There are a number of log files which contain the data being recorded. You can
define the number and size (as explained in Chapter 13, “Configuration files” on
page 139), or take the system default of 3 files, each 4MB in size.

When you create a queue manager, the number of log files you define is the
number of primary log files allocated. If you do not specify a number, the default
value is used. If you have not changed the log path, they are created in the
directory:

MQS_ROOT:[MQM.LOG.QmName.ACTIVE]

MQSeries starts with these primary log files, but, if the log starts to get full,
allocates secondary log files. It does this dynamically, and removes them when the
demand for log space reduces. By default, up to 2 secondary log files can be
allocated, providing a further 8MB of disk space. The default number can also be
changed, see Chapter 13, “Configuration files” on page 139.

The log control file contains the information needed to monitor the use of log files:
their size and location, the name of the next available file, and so on.

Note: You should ensure that the logs created when you start a queue manager
are large enough to accommodate the size and volume of messages that
your applications will handle. The default log numbers and sizes will require
modification to meet your requirements. How to change the default values
is described on page 143.

Types of logging
In MQSeries, the number of files that are used for logging depends on the file size,
the number of messages you have received, and the length of the messages.
There are two ways of maintaining records of queue manager activities: circular
logging and linear logging.

 Circular logging
Use circular logging if all you want is restart recovery, using the log to roll back
transactions that were in progress when the system stopped.

Circular logging keeps all restart data in a ring of log files. Logging fills the first file
in the ring, then moves on to the next, and so on, until all the files are filled. It then
goes back to the first file in the ring and starts again. This continues as long as the
product is in use and has the advantage that you never run out of log files.

The above is a simple explanation of circular logging. However, there is a
complication. The log entries required to restart the queue manager without loss of
data are kept until they are no longer required to ensure queue manager data
recovery. The mechanism for releasing log files for reuse is described in
“Checkpointing – ensuring complete recovery” on page 128. For now, you should
know that MQSeries uses secondary log files to extend the log capacity as
necessary.

126 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Logging

 Linear logging
Use linear logging if you want both restart recovery and media or forward recovery
(recreating lost or damaged data by replaying the contents of the log).

Linear logging keeps the log data in a continuous sequence of files. Space is not
reused, so you can always retrieve any record logged from the time that the queue
manager was created.

As disk space is finite, you may have to think about some form of archiving. It is
an administrative task to manage your disk space for the log, reusing or extending
the existing space as necessary.

The number of log files used with linear logging can be very large depending on
your message flow and the age of your queue manager. However, there are a
number of files which are said to be active. Active files contain the log entries
required to restart the queue manager. The number of active log files is usually the
same as the number of primary log files as defined in the configuration files. (See
Chapter 13, “Configuration files” on page 139 for further details of how to define
the number.)

The key event that controls whether a log file is termed active or not is a
checkpoint. An MQSeries checkpoint is a group of log records containing
information to allow a successful restart of the queue manager. Any information
recorded previously is not required to restart the queue manager and can therefore
be termed inactive. (See “Checkpointing – ensuring complete recovery” on
page 128 for further information about checkpointing.)

You must decide when inactive log files are no longer required. You may select to
archive them, or you may delete them as being no longer of interest to your
operation. Refer to “Managing logs” on page 130 for further information about the
disposition of log files.

If a new checkpoint is recorded in the second, or later, primary log file, then the first
file becomes inactive and a new primary file is formatted and added to the end of
the primary pool, restoring the number of primary files available for logging. In this
way the primary log file pool can be seen to be a current set of files in an ever
extending list of log files. Again, it is an administrative task to manage the inactive
files according to the requirements of your operation.

Although secondary log files are defined for linear logging, they are not used in
normal operation. If a situation should arise when, probably due to long-lived
transactions, it is not possible to free a file from the active pool because it may still
be required for a restart, secondary files are formatted and added to the active log
file pool.

If the number of secondary files available is used up, requests for most further
operations requiring log activity will be refused with an
MQRC_RESOURCE_PROBLEM being returned to the application.

Both types of logging can cope with unexpected loss of power assuming that there
is no hardware failure.

 Chapter 12. Recovery and restart 127

 Checkpointing

Checkpointing – ensuring complete recovery
Persistent updates to message queues happen in two stages. First, the records
representing the update are written to the log, then the queue file is updated. The
log files can thus become more up-to-date than the queue files. To ensure that
restart processing begins from a consistent point, MQSeries uses checkpoints. A
checkpoint is a point in time when the record described in the log is the same as
the record in the queue. The checkpoint itself consists of the series of log records
needed to restart the queue manager; for example, the state of all transactions
active at the time of the checkpoint.

Checkpoints are generated automatically by MQSeries. They are taken when the
queue manager starts, at shutdown, when logging space is running low, and after
every 1000 operations logged. As the queues handle further messages, the
checkpoint record becomes inconsistent with the current state of the queues.

When MQSeries is restarted, it locates the latest checkpoint record in the log. This
information is held in the checkpoint file that is updated at the end of every
checkpoint. The checkpoint record represents the most recent point of consistency
between the log and the data. The data from this checkpoint is used to rebuild the
queues as they existed at the checkpoint time. When the queues are recreated,
the log is then played forward to bring the queues back to the state they were in
before system failure or close down.

MQSeries maintains internal pointers to the head and tail of the log. It moves the
head pointer to the most recent checkpoint that is consistent with recovering
message data.

Checkpoints are used to make recovery more efficient, and to control the reuse of
primary and secondary log files.

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put Put GetGetGet

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

Figure 10. Checkpointing. For simplicity, only the ends of the log files are shown.

128 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Checkpointing

In Figure 10, all records before the latest checkpoint, checkpoint 2, are no longer
needed by MQSeries. The queues can be recovered from the checkpoint
information and any later log entries. For circular logging, any freed files prior to
the checkpoint can be reused. For a linear log, the freed log files no longer need
to be accessed for normal operation and become inactive. In the example, the
queue head pointer is moved to point at the latest checkpoint, Checkpoint 2, which
then becomes the new queue head, head 2. Log File 1 can now be reused.

Checkpoint

1

Put PutGetGet

Get Get PutPut

Put PutGetCheckpoint

3

Get

Checkpoint

2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

LR 1

LR 2

Figure 11. Checkpointing with a long-running transaction. For simplicity, only the ends of
the log files are shown.

Figure 11 shows how a long-running transaction affects reuse of log files. In the
example, a long-running transaction has caused an entry to the log, shown as LR
1, after the first checkpoint shown. The transaction does not complete, shown as
LR 2, until after the third checkpoint. All the log information from LR 1 onwards is
retained to allow recovery of that transaction, if necessary, until it has completed.

After the long-running transaction has completed, at LR 2, the head of the log is
moved to checkpoint 3, the latest logged checkpoint. The files containing log
records prior to checkpoint 3, Head 2, are no longer needed. If you are using
circular logging, the space can be reused.

If the primary log files are completely filled before the long-running transaction
completes, secondary log files are used to avoid the risk of a log full situation if
possible.

When the log head is moved and you are using circular logging, the primary log
files may become eligible for reuse and the logger, after filling the current file,
reuses the first primary file available to it. If instead you are using linear logging,
the log head is still moved down the active pool and the first file becomes inactive.

 Chapter 12. Recovery and restart 129

 Managing logs

A new primary file is formatted and added to the bottom of the pool in readiness for
future logging activities.

 Managing logs
Over time, some of the log records written become unnecessary for restarting the
queue manager, and the queue manager reclaims freed space in the log files. This
activity is transparent to the user and you do not usually see the amount of disk
space used reduce because the space allocated is quickly reused.

Of the log records, only those written since the start of the last complete
checkpoint, and those written by any active transactions, are needed to restart the
queue manager. Thus, the log may fill if a checkpoint has not been taken for a
long time, or if a long-running transaction wrote a log record a long time ago. The
queue manager tries to take checkpoints sufficiently frequently to avoid the first
problem.

When a long-running transaction fills the log, attempts to write log records fail and
some MQI calls return MQRC_RESOURCE_PROBLEM. (Space is reserved to
commit or rollback all in-flight transactions, so MQCMIT or MQBACK should not
fail.)

The queue manager rolls back transactions that consume too much log space. An
application whose transaction is rolled back in this way is unable to perform
subsequent MQPUT or MQGET operations specifying syncpoint under the same
transaction. An attempt to put or get a message under syncpoint in this state
returns MQRC_BACKED_OUT. The application may then issue MQCMIT, which
returns MQRC_BACKED_OUT, or MQBACK and start a new transaction. When
the transaction consuming too much log space has been rolled back, its log space
is released and the queue manager continues to operate normally.

If the log fills, a message is issued (AMQ7463). In addition, if the log fills because
a long-running transaction has prevented the space being released, message
AMQ7465 is issued.

Finally, if records are being written to the log faster than the asynchronous
housekeeping processes can handle them, message AMQ7466 is issued. If you
see this message, you should increase the number of log files or reduce the
amount of data being processed by the queue manager.

What happens when a disk gets full
The queue manager logging component can cope with a full disk, and with full log
files. If the disk containing the log fills, the queue manager issues message
AMQ6708 and an error record is taken.

The log files are created at their maximum size, rather than being extended as log
records are written to them. This means that MQSeries can only run out of disk
space when it is creating a new file. It therefore cannot run out of space when it is
writing a record to the log. MQSeries always knows how much space is available
in the existing log files and manages the space within the files accordingly.

If you fill the drive containing the log files, you may be able to free some disk
space. If you are using a linear log, there may be some inactive log files in the log

130 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Managing logs

directory which you can copy to another drive or device. If you still run out of
space, check that the configuration of the log in the queue manager configuration
file is correct. You may be able to reduce the number of primary or secondary log
files so that the log does not outgrow the available space. Note that it is not
possible to alter the size of the log files for an existing queue manager. The queue
manager assumes that all log files are the same size.

Managing log files
If you are using circular logging, ensure that there is sufficient space to hold the log
files. You do this when you configure your system (see “Log configuration stanzas”
on page 144). The amount of disk space used by the log, including the space
required for secondary files to be created when required, is limited by the
configured size of the disk.

If you are using a linear log, the log files are added continually as data is logged,
and the amount of disk space used increases with time. If the rate of data being
logged is high, disk space is consumed rapidly by new log files.

Over time, the older log files for a linear log are no longer required to restart the
queue manager or perform media recovery of any damaged objects. Periodically,
the queue manager issues a pair of messages to indicate which of the log files is
required:

� Message AMQ7467 gives the name of the oldest log file needed to restart the
queue manager. This log file and all newer log files must be available during
queue manager restart.

� Message AMQ7468 gives the name of the oldest log file needed to do media
recovery.

Any log files older than these do not need to be online. You can copy them to an
archive medium such as tape for disaster recovery, and remove them from the
active log directory. Any log files needed for media recovery but not for restart can
also be off-loaded to an archive.

If any log file that is needed cannot be found, operator message AMQ6767 is
issued. Make the log file, and all subsequent log files, available to the queue
manager and retry the operation.

Note: When performing media recovery, all the required log files must be available
in the log file directory at the same time. Make sure that you take regular
media images of any objects you may wish to recover to avoid running out
of disk space to hold all the required log files.

Log file location
When choosing a location for your log files, remember that operation is severely
impacted if MQSeries fails to format a new log because of lack of disk space.

If you are using a circular log, ensure that there is sufficient space on the drive for
at least the configured primary log files. You should also leave space for at least
one secondary log file which is needed if the log has to grow.

If you are using a linear log, you should allow considerably more space; the space
consumed by the log increases continuously as data is logged.

 Chapter 12. Recovery and restart 131

 Using the log

Ideally, the log files should be placed on a separate disk drive from the queue
manager data. This has benefits in terms of performance. It may also be possible
to place the log files on multiple disk drives in a mirrored arrangement. This gives
protection against failure of the drive containing the log. Without mirroring, you
could be forced to go back to the last backup of your MQSeries system.

Using the log for recovery
There are several ways that your data can be damaged. MQSeries for Digital
OpenVMS helps you recover from:

� A damaged data object
� A power loss in the system
� A communications failure
� A damaged log volume

This section looks at how the logs are used to recover from these problems.

Recovering from problems
MQSeries can recover from both communications failures and loss of power. In
addition, it is sometimes possible to recover from other types of problem, such as
inadvertent deletion of a file.

In the case of a communications failure, messages remain on queues until they are
removed by a receiving application. If the message is being transmitted, it remains
on the transmission queue until it can be successfully transmitted. To recover from
a communications failure, it is normally sufficient simply to restart the channels
using the link that failed.

If you lose power, when the queue manager is restarted MQSeries restores the
queues to their state at the time of the failure. This ensures that no persistent
messages are lost. Nonpersistent messages are discarded; they do not survive
when MQSeries stops.

There are ways in which an MQSeries object can become unusable, for example
due to inadvertent damage. You then have to recover either your complete system
or some part of it. The action required depends on when the damage is detected,
whether the log method selected supports media recovery, and which objects are
damaged.

 Media recovery
Media recovery means recreating objects from information recorded in a linear log.
For example, if an object file is inadvertently deleted, or becomes unusable for
some other reason, media recovery can be used to recreate it. The information in
the log required for media recovery of an object is called a media image. Media
images can be recorded manually, using the rcdmqimg command, or automatically
in certain circumstances.

A media image is a sequence of log records containing an image of an object from
which the object itself can be recreated.

The first log record required to recreate an object is known as its media recovery
record; it is the start of the latest media image for the object. The media recovery

132 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Using the log

record of each object is one of the pieces of information recorded during a
checkpoint.

When recreating an object from its media image, it is also necessary to replay any
log records describing updates performed on the object since the last image was
taken.

Consider, for example, a local queue that has an image of the queue object taken
before a persistent message is put onto the queue. In order to recreate the latest
image of the object, it is necessary to replay the log entries recording the putting of
the message to the queue, as well as replaying the image itself.

When an object is created, the log records written contain enough information to
completely recreate the object. These records make up the object’s first media
image. Subsequently, media images are recorded automatically by the queue
manager when:

� Images of all process objects and non-local queues are taken at each
shutdown.

� Local queue images are taken when the queue becomes empty.

Media images can also be recorded manually using the rcdmqimg command,
described in “rcdmqimg (Record media image)” on page 195.

Recovering media images
MQSeries automatically recovers some objects from their media image if it finds
that they are corrupt or damaged. In particular, this applies to objects found to be
damaged during the normal queue manager startup. If any transaction was
incomplete at the time of the last shutdown of the queue manager, any queue
affected is also recovered automatically in order to complete the startup operation.

You must recover other objects manually, using the rcrmqobj command. This
command replays the records in the log to recreate the MQSeries object. The
object is recreated from its latest image found in the log, together with all applicable
log events between the time the image was saved and the time the recreate
command is issued. Should an MQSeries object become damaged, the only valid
actions that can be performed are either to delete it or to recreate it by this method.
Note, however, that nonpersistent messages cannot be recovered in this way.

See “rcrmqobj (Recreate object)” on page 197 for further details of the rcrmqobj
command.

It is important to remember that you must have the log file containing the media
recovery record, and all subsequent log files, available in the log file directory when
attempting media recovery of an object. If a required file cannot be found, operator
message AMQ6767 is issued and the media recovery operation fails. If you do not
take regular media images of the objects that you may wish to recreate, you can
get into the situation where you have insufficient disk space to hold all the log files
required to recreate an object.

 Chapter 12. Recovery and restart 133

 Backup and restore

Recovering damaged objects during startup
If the queue manager discovers a damaged object during startup, the action it takes
depends on the type of object and whether the queue manager is configured to
support media recovery.

If the queue manager object is damaged, the queue manager cannot start unless it
can recover the object. If the queue manager is configured with a linear log, and
thus supports media recovery, MQSeries automatically tries to recreate the
MQSeries object from its media images. If the log method selected does not
support media recovery, you can either restore a backup of the queue manager or
delete the queue manager.

If any transactions were active when the queue manager stopped, the local queues
containing the persistent, uncommitted messages put or got inside these
transactions are also needed to start the queue manager successfully. If any of
these local queues are found to be damaged, and the queue manager supports
media recovery, it automatically attempts to recreate them from their media images.
If any of the queues cannot be recovered, MQSeries cannot start.

If any damaged local queues containing uncommitted messages are discovered
during startup processing on a queue manager that does not support media
recovery, the queues are marked as damaged objects and the uncommitted
messages on them are ignored. This is because it is not possible to perform media
recovery of damaged objects on such a queue manager and the only action left is
to delete them. Message AMQ7472 is issued to report any damage.

Recovering damaged objects at other times
Media recovery of objects is only automatic during startup. At other times, when
object damage is detected, operator message AMQ7472 is issued and most
operations using the object fail. If the queue manager object is damaged at any
time after the queue manager has started, the queue manager performs a
preemptive shutdown. When an object has been damaged you may delete it or, if
the queue manager is using a linear log, attempt to recover it from its media image
using the rcrmqobj command (see “rcrmqobj (Recreate object)” on page 197 for
further details).

Backup and restore
Periodically, you may want to take a backup of your queue manager data to
provide protection against possible corruption due to hardware failures. However,
because message data is often short-lived, you may choose not to take backups.

Backing up MQSeries
To take a backup of a queue manager’s data, you must:

1. Ensure that the queue manager is not running.

If your queue manager is running, stop it with the endmqm command.

Note: If you try to take a backup of a running queue manager, the backup
may not be consistent due to updates in progress when the files were copied.

2. Locate the directories under which the queue manager places its data and its
log files.

134 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Backup and restore

You can use the information in the configuration files to determine these
directories. For more information about this, see Chapter 13, “Configuration
files” on page 139.

Note: You may have some difficulty in understanding the names that appear
in the directory. This is because the names are transformed to ensure that
they are compatible with the platform on which you are using MQSeries. For
more information about name transformations, see “Understanding MQSeries
file names” on page 42.

3. Take copies of all the queue manager’s data and log file directories, including
all subdirectories.

Make sure that you do not miss any of the files, especially the log control file
and the configuration files. Some of the directories may be empty, but they will
all be required if you restore the backup at a later date, so it is advisable to
save them too.

4. Ensure that you preserve the ownerships of the files. You can do this with the
BACKUP COMMAND and the /BY_OWNER parameter.

 Restoring MQSeries
To restore a backup of a queue manager’s data, you must:

1. Ensure that the queue manager is not running.

2. Locate the directories under which the queue manager places its data and its
log files. This information is held in the configuration file.

3. Clear out the directories into which you are going to place the backed up data.

4. Copy the backed up queue manager data and log files into the correct places.

Check the resulting directory structure to ensure that you have all of the required
directories.

See Appendix C, “Directory structure” on page 229 for more information about
MQSeries directories and subdirectories.

Make sure that you have a log control file as well as the log files. Also check that
the MQSeries and queue manager configuration files are consistent so that
MQSeries can look in the correct places for the restored data.

If the data was backed up and restored correctly, the queue manager will now start.

Note: Even though the queue manager data and log files are held in different
directories, you should back up and restore the directories at the same time.
If the queue manager data and log files have different ages, the queue
manager is not in a valid state and will probably not start. If it does start,
your data will almost certainly be corrupt.

 Chapter 12. Recovery and restart 135

 Recovery scenarios

 Recovery scenarios
This section looks at a number of possible problems and indicates how to recover
from them.

Disk drive failures
You may suffer problems with a disk drive containing either the queue manager
data, the log, or both. Problems can include data loss or corruption. The three
cases differ only in the part of the data that survives, if any.

In all cases you must first check the directory structure for any damage and, if
necessary, repair such damage. If you lose queue manager data, there is a danger
that the queue manager directory structure has been damaged. If so, you must
recreate the directory tree manually before you try to restart the queue manager.
Having checked for structural damage, there are a number of alternative things you
can do, depending on the type of logging that you use.

� Where there is major damage to the directory structure or any damage to
the log , remove all the old files back to the QMgrName level, including the
configuration files, the log, and the queue manager directory, restore the last
backup, and try to restart the queue manager.

� For linear logging with media recovery , ensure the directory structure is
intact and try to restart the queue manager. If the queue manager does not
restart, restore a backup. If the queue manager restarts, check whether any
other objects have been damaged using MQSC. Recover the ones you find,
using the rcrmqobj command, for example:

rcrmqobj -m QMgrName -t \ \

where QMgrName is the queue manager being recovered. -t * * indicates that
any object of any type will be recovered. If only one or two objects have been
reported as damaged, you may want to specify those objects by name and type
here.

Note: These commands do not apply to channels.

� For linear logging with media recovery and with an undamaged log , you
may be able to restore a backup of the queue manager data leaving the
existing log files and log control file unchanged. Starting the queue manager
applies the changes from the log to bring the queue manager back to its state
when the failure occurred.

This method relies on two facts. Firstly, it is vital that the checkpoint file be
restored as part of the queue manager data. This file contains the information
determining how much of the data in the log must be applied to give a
consistent queue manager.

Secondly, you must have the oldest log file which was required to start the
queue manager at the time of the backup, and all subsequent log files,
available in the log file directory.

If this is not possible, you must restore a backup of both the queue manager
data and the log, both of which were taken at the same time.

136 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Recovery scenarios

� For circular logging, or linear logging without media recovery , you must
restore the queue manager from the latest backup that you have. Once you
have restored the backup, restart the queue manager and check as above for
damaged objects. However, because you do not have media recovery, you
must find other ways of recreating the damaged objects.

Damaged queue manager object
If the queue manager object has been reported as damaged during normal
operation, the queue manager performs a preemptive shutdown. There are two
ways of recovering in these circumstances depending on the type of logging you
use:

� For linear logging only , manually delete the file containing the damaged
object and restart the queue manager. Media recovery of the damaged object
is automatic.

� For circular or linear logging , restore the last backup of the queue manager
data and log and restart the queue manager.

Damaged single object
If a single object is reported as damaged during normal operation, there are two
ways of recovering, depending on the type of logging you use:

� For linear logging , recreate the object from its media image.

� For circular logging , restore the last backup of the queue manager data and
log and restart the queue manager.

Automatic media recovery failure
If a local queue required for queue manager startup with a linear log is damaged,
and the automatic media recovery fails, restore the last backup of the queue
manager data and log and restart the queue manager.

 Chapter 12. Recovery and restart 137

 Recovery scenarios

138 MQSeries for Digital OpenVMS V2R2 System Management Guide

 MQSeries configuration file

 Chapter 13. Configuration files

MQSeries for Digital OpenVMS uses configuration files to hold basic product
configuration information. This chapter describes what they are and how you can
use them to change the way that queue managers operate. It contains the
following sections

� “What configuration files are”
� “MQSeries configuration file”
� “Queue manager configuration file” on page 141
� “Editing configuration files” on page 143
� “Configuring the logs” on page 143
� “Specifying log file sizes” on page 147

What configuration files are
Configuration files define optional values for individual queue managers and for
MQSeries on the node as a whole. These files have file name extensions of “ini”
and are also referred to as ini files or stanza files.

A configuration file contains one or more stanzas, where a stanza is simply a group
of lines in the file that together have a common function or define part of a system.
For example, there are stanzas associated with logs, with channels, and installable
services.

Configuration files may be modified automatically by commands that change the
configuration of queue managers on the node and also by editing them manually.

Configuration files can be one of the following:

� The MQSeries configuration file, which specifies values for the MQSeries on
the node as a whole. There is one MQSeries configuration file per node.

� Queue manager configuration files, which specify values for specific queue
managers. There is one queue manager configuration file for each queue
manager on the node.

MQSeries configuration file
The MQSeries configuration file mqs.ini contains information relevant to all the
queue managers on a node. It is created automatically during installation. In
particular, the MQSeries configuration file is used to locate the data associated with
each queue manager. The MQSeries configuration file is located in the mqm
directory, by default MQS_ROOT:[MQM].

What the MQSeries configuration file contains
The mqs.ini file contains the names of the queue managers, the name of the
default queue manager, and the location of the files associated with each of them.
The following stanzas can appear in mqs.ini:

AllQueueManagers
Specifies the path to the qmgrs directory where the files associated with a queue
manager are stored.

 Copyright IBM Corp. 1995, 1997 139

 MQSeries configuration file

DefaultQueueManager
Specifies the default queue manager for the node. This queue manager
processes any commands where a queue manager name is not explicitly
specified. The stanza is automatically updated if you create a new default
queue manager. If you inadvertently create a default queue manager and then
wish to revert to the original, you must alter this stanza manually.

QueueManager
There is one such stanza for each queue manager. This specifies the queue
manager name and the location of the files associated with that queue manager.
The names of these files are based on the queue manager name but are
transformed if the queue manager name is not a valid filename. See
“Understanding MQSeries file names” on page 42.

LogDefaults
Specifies the default log parameters for the node. The DefaultPrefix and
DefaultPath entries allow for the queue manager and its log to be on different
physical drives. This is recommended, although by default they are on the
same drive. See “Configuring the logs” on page 143 for more information about
the log file stanzas.

Figure 12 shows an example of an MQSeries configuration file.

#\\\#

#\ Module Name: mqs.ini \#

#\ Type : MQSeries Configuration File \#

#\ Function : Define MQSeries resources for the node \#

#\\\#

#\ Notes : \#

#\ 1) This is an example MQSeries configuration file \#

#\\\#

AllQueueManagers:

#\\\#

#\ The path to the qmgrs directory, below which queue manager data \#

#\ is stored \#

#\\\#

DefaultPrefix=mqs_root:[mqm]

LogDefaults:

 LogPrimaryFiles=3

 LogSecondaryFiles=2

 LogFilePages=1ð24

 LogType=CIRCULAR

 LogBufferPages=17

 LogDefaultPath=mqs_root[mqm.log]

QueueManager:

 Name=saturn.queue.manager

 Prefix=mqs_root:[mqm]

 Directory=saturn!queue!manager

QueueManager:

 Name=pluto.queue.manager

 Prefix=mqs_root:[mqm]

 Directory=pluto$queue$manager

DefaultQueueManager:

 Name=saturn.queue.manager

Figure 12. Example MQSeries configuration file

140 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Queue manager configuration file

In Figure 12, MQSeries on the node is using the default locations for queue
managers and for the logs.

The queue manager saturn.queue.manager is the default queue manager for the
node. The directory for files associated with this queue manager has been
automatically transformed into a valid file name for the file system.

Attention Because the MQSeries configuration file is used to locate the data
associated with queue managers, a nonexistent or incorrect configuration file can
cause some or all MQSeries commands to fail. Also, applications cannot connect
to a queue manager that is not defined in the MQSeries configuration file.

Queue manager configuration file
A queue manager configuration file, qm.ini, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager. It is created automatically when the queue manager with which it
is associated is created.

The file is held in the root of the directory tree occupied by the queue manager.
For example, the path and name for a configuration file for a queue manager called
QMNAME is:

MQS_ROOT:[MQM.QMGRS.QMNAME]QM.INI

Note: The queue manager name can be up to 48 characters in length. However,
this does not guarantee that the name is valid or unique. Therefore, a
directory name is generated based on the queue manager name. This
process is known as name transformation; for a description, see
“Understanding MQSeries file names” on page 42.

What the queue manager configuration file contains
The stanzas that can appear in a queue manager configuration file, qm.ini are as
follows:

Log
Specifies the default log parameters for this queue manager. The fields in this
stanza are same as those in the LogDefaults stanza in the mqs.ini file. The
values can be changed, if required. See “Configuring the logs” on page 143 for
more information about the log file stanzas.

Channels
This stanza contains information about the channels. As well as defining the
maximum number of channels (MaxChannels) that can be defined for the queue
manager, a second parameter (MaxActiveChannels) limits the number of
channels that can be active at any time.

See the MQSeries Distributed Queuing Guide for more information about
channels.

LU6.2 and TCP
Specifies network protocol configuration parameters. These stanzas override
the default parameters for channels. Only stanzas representing changed default
values are actually present.

KeepAlive, if specified, causes TCP/IP to periodically check that the other end of
the connection is still available. If it is not, the channel is closed.

 Chapter 13. Configuration files 141

 Queue manager configuration file

See the MQSeries Distributed Queuing Guide for more information.

Figure 13 shows how the stanzas might be arranged in a queue manager
configuration file.

#\\\#

#\ Module Name: qm.ini \#

#\ Type : MQSeries queue manager configuration file \#

Function : Define the configuration of a single queue manager \#

#\ \#

#\\\#

#\ Notes : \#

#\ 1) This file defines the configuration of the queue manager \#

#\ \#

#\\\#

Service:

 Name=AuthorizationService

 EntryPoints=9

ServiceComponent:

 Service=AuthorizationService

 Name=MQSeries.UNIX.auth.service

 Module=amqzfu

 ComponentDataSize=ð

Service:

 Name=NameService

 EntryPoints=9

ServiceComponent:

 Service=NameService

 Name=MQSeries.UNIX.name.service

 Module=abctest

 ComponentDataSize=128

Log:

 LogPrimaryFiles=3

 LogSecondaryFiles=2

 LogFilePages=1ð24

 LogType=CIRCULAR

 LogBufferPages=17

 LogPath=mqs_root:[mqm.log.SATURN$QUEUE$MANAGER]

CHANNELS:

MaxChannels = 2ð ; Maximum number of Channels allowed,

; the default number is 1ðð

MaxActiveChannels = 1ð ; Maximum number of Channels allowed to be

; active at any time. The default is the

; value of MaxChannels.

TCP: ; TCP/IP entries

Port = 18ðð ; use port 18ðð instead of the default 1414

KeepAlive = Yes ; Switch KeepAlive on

Figure 13. Example queue manager configuration file

142 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Configuring logs

Editing configuration files
You can edit the default configuration files to alter the system defaults. However,
before editing any configuration file, make sure that you have a backup that you
can revert to.

In some circumstances, you may have to edit your configuration files. For example:

� If you lose a configuration file; recover from backup if possible.

� If you need to move one or more queue managers to a new directory.

� If you need to change your default queue manager; this could happen if you
accidentally delete the existing queue manager.

� When advised to do so by your IBM Support Center.

Changing the default prefix
If you change the default prefix, DefaultPrefix, for the message queue manager,
you must replicate the directory structure that was created at installation time (see
Figure 16 on page 229). In particular, the qmgrs structure must be created. You
must stop MQSeries before changing the default prefix. Only restart MQSeries
after the structures have been moved to the new location and the default prefix has
been changed.

Implementing changes to configuration files
If you edit a configuration file, the changes are not implemented immediately by the
queue manager. Changes made to the MQSeries configuration file are only
implemented when MQSeries is started. Changes made to a queue manager
configuration file are implemented when the queue manager is started. If the
queue manager is running when you make the changes, you must stop and then
restart the queue manager for any changes to be recognized by the system.

Recommendations for configuration files
When you create a new queue manager, you should:

� Back up the MQSeries configuration file
� Back up the new queue manager configuration file

Configuring the logs
The log parameters in the MQSeries configuration file are used as default values
when you create a queue manager. These defaults can be overridden if you
specify the log parameters on the crtmqm command. See “crtmqm (Create queue
manager)” on page 176 for details of this command.

The values specified in the queue manager configuration file are read when the
queue manager is started. The file is created when the queue manager is created.

The values in a configuration file are set according to these priorities:

1. Parameters entered on the command line override both the queue manager
configuration file and the MQSeries configuration file.

2. The queue manager configuration file overrides the MQSeries configuration file.

 Chapter 13. Configuration files 143

 Configuring logs

3. The MQSeries configuration file contains the supplied default values.

Note: Resource “MQM” must have full authorities to the log files. If you change
the locations of these files, you must give these authorities yourself. This is
not required if the logs files are in the default locations supplied with the
product.

If you use a value that is not valid in a configuration file, it is ignored. The effect is
the same as missing out the value entirely. An operator message is issued to
indicate the problem.

You can edit the MQSeries configuration file after installation and change the
default values to your own requirements.

Log configuration stanzas
The size and location of the log is configured by stanzas in the MQSeries and
queue manager configuration files. These stanzas specify the type of logging to be
used, the log file size, and the log path.

The MQSeries configuration file contains a stanza called LogDefaults with the
following format:

LogDefaults:

 LogPrimaryFiles=3

 LogSecondaryFiles=2

 LogFilePages=1ð24

 LogType=CIRCULAR

 LogBufferPages=17

 LogDefaultPath=MQS_ROOT:[MQM.LOG]

The values specified in the MQSeries configuration file are read whenever a queue
manager is created, started, or deleted.

Each queue manager configuration file has a stanza called Log, which has the
following format:

Log:

 LogPrimaryFiles=3

 LogSecondaryFiles=2

 LogFilePages=1ð24

 LogType=CIRCULAR

 LogBufferPages=17

 LogPath=MQS_ROOT:[MQM.LOG.<QM_Dir_Name>]

<QM_Dir_Name> is the subdirectory name for this queue manager, providing a
unique path to the logs. This is the queue manager name if it is valid for the file
system; otherwise, it is a transformed name. See “Understanding MQSeries file
names” on page 42.

144 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Configuring logs

LogPrimaryFiles
Primary log files are the log files allocated during creation for future use.

The default number is 3. The default can be overridden by editing the
LogPrimaryFiles value in the product and queue manager configuration files.

The value is examined when the queue manager is created or started. You can
increase or decrease it after the queue manager has been created. However, a
change in the value is not effective until the queue manager is restarted and the
effect may not be immediate.

The minimum number of primary log files is 2 and the maximum is 62. The total
number of primary and secondary log files must not exceed 63, and must not be
less than 3.

LogSecondaryFiles
Secondary log files are the log files allocated when the primary files are
exhausted.

The default number is 2. The default can be overridden using the
LogSecondaryFiles value in the product and queue manager configuration files.

The value is examined when the queue manager is created or started. You can
change this value, but changes are not effective until the queue manager is
restarted, and the effect may not be immediate.

The minimum number of secondary log files is 1 and the maximum is 61. The
total number of primary and secondary log files must not exceed 63, and must
not be less than 3.

LogFilePages
The log data is held in a series of files called log files.

The default number of log file pages is 1024, equating to a log file size of 4 MB.
The minimum number of log file pages 64 and the maximum is 16 384.

The log file size is specified in units of 4 KB pages. It can be specified only
during queue manager creation and the value used is obtained by taking the
default (1024) and overriding it with the value in the LogFilePages attribute in
the MQSeries configuration file, or by overriding with the value specified on the
crtmqm command using the -lf flag.

Note: The size of the log files is specified during queue manager creation and
cannot be changed for an existing queue manager.

LogType
The LogType parameter is used to define the type to be used, either
CIRCULAR or LINEAR. The default is CIRCULAR.

If you want to change the default, you can either edit the MQSeries
configuration file or specify linear logging with the crtmqm command. You
cannot change the logging method after a queue manager has been created.

LogBufferPages
The amount of memory allocated to buffer records for writing is configurable.
The size of the buffers is specified in units of 4 KB pages.

The default number of buffer pages is 17, equating to 68 KB.

The default can be overridden using the LogBufferPages value in the MQSeries
and queue manager configuration files.

 Chapter 13. Configuration files 145

 Configuring logs

The value is examined when the queue manager is created or started and may
be increased or decreased at either of these times. However, a change in the
value is not effective until the queue manager is restarted.

The minimum number of buffer pages is 4 and the maximum is 32. Larger
buffers lead to higher throughput, especially for larger messages.

LogPath
You can specify the directory in which the log files for a queue manager reside.
The directory should exist on a local device to which the queue manager can
write and, preferably, should be on a different drive from the message queues.
Specifying a different drive gives added protection in case of system failure.

The default is MQS_ROOT:[MQM.LOG]

You can specify the name of a directory in the crtmqm command using the -ld

flag. When a queue manager is created, a directory is also created under the
queue manager directory, and this is used to hold the log files. The name of
this directory is based on the queue manager name. This ensures that the Log
File Path is unique, and also that it conforms to any limitations on directory
name lengths.

If you do not specify -ld on the crtmqm command, the value of the
LogDefaultPath attribute in the MQSeries configuration file is used. If this
attribute is missing, the default of MQS_ROOT:[MQM.LOG] is used. The queue
manager name is appended to the directory name to ensure that multiple queue
managers use different log directories.

When the queue manager has been created, a LogPath value is created in the
log stanza in the queue manager configuration file giving the complete directory
name for the queue manager’s log. This value is used to locate the log when
the queue manager is started or deleted.

146 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Specifying log file sizes

Specifying log file sizes
The size of the log file that you require depends on the number and size of
messages that are to be handled by your system. Each operation adds an
overhead to the size of the log. For example, when a persistent message is put to
a queue, the message data must be written to the log to make recovery of the
message possible. The message descriptor is also logged together with some
internal information that describes the effect of putting the message on the queue.

There is a trade-off between the size of your log files and the number of files that
you have. Larger files are more difficult to handle but are more efficient.

Table 10 shows approximate values for the header information required for various
types of operation.

Table 10. Log overhead sizes. (All values are approximate.)

Operation Size

Put persistent message 600 bytes + message length

If the message is large, it is divided into segments of
15700 bytes, each with a 300-byte overhead.

Get message 260 bytes

Syncpoint, commit 750 bytes

Syncpoint, roll-back 1000 bytes + 12 bytes for each get or put to be rolled
back

Create object 1500 bytes

Delete object 300 bytes

Alter attributes 1024 bytes

Record media image 800 bytes + image

The image is divided into segments of 15700 bytes, each
having a 300-byte overhead.

Checkpoint 750 bytes + 200 bytes for each active unit of work.

Additional data may be logged for any uncommitted puts
or gets that have been buffered for performance reasons.

 Chapter 13. Configuration files 147

 Specifying log file sizes

148 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Preliminary checks

 Chapter 14. Problem determination

This chapter suggests reasons for some of the problems you may have using
MQSeries for Digital OpenVMS. The process of problem determination is that you
start with the symptoms and trace them back to their cause.

Not all problems can be solved immediately, for example, performance problems
caused by the limitations of your hardware. Also, if you think that the cause of the
problem is in the MQSeries code, contact your IBM Support Center. This chapter
contains these sections:

 � “Preliminary checks”
� “Common programming errors” on page 152
� “What to do next” on page 153
� “Application design considerations” on page 156
� “Incorrect output” on page 157
� “Error logs” on page 160
� “Dead-letter queues” on page 163
� “Configuration files and problem determination” on page 164
� “Using MQSeries trace” on page 164
� “First failure support technology (FFST)” on page 165
� “Problem determination with clients” on page 166

 Preliminary checks
The cause of your problem could be in:

 � MQSeries
 � The network
 � The application

The sections that follow raise some fundamental questions that you need to
consider. Work through the questions, making a note of anything that might be
relevant to the problem.

Has MQSeries run successfully before?
If MQSeries has not run successfully before, it is likely that you have not yet set it
up correctly. See Chapter 2, “Installing MQSeries for Digital OpenVMS” on
page 13 to check that you have carried out all the steps correctly.

Are there any error messages?
MQSeries uses error logs to capture messages concerning the operation of
MQSeries itself, any queue managers that you start, and error data coming from
the channels that are in use. Check the error logs to see if any messages have
been recorded that are associated with your problem.

See “Error logs” on page 160 for information about the contents of the error logs,
and their locations.

 Copyright IBM Corp. 1995, 1997 149

 Preliminary checks

Are there any return codes explaining the problem?
If your application gets a return code indicating that a Message Queue Interface
(MQI) call has failed, refer to the MQSeries Application Programming Reference
manual for a description of that return code.

Can you reproduce the problem?
If you can reproduce the problem, consider the conditions under which it is
reproduced:

� Is it caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

� Is it caused by a program? Does it fail on all MQSeries systems and all queue
managers, or only on some?

� Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application to see if it is in error.

Have any changes been made since the last successful run?
When you are considering changes that might recently have been made, think
about the MQSeries system, and also about the other programs it interfaces with,
the hardware, and any new applications. Consider also the possibility that a new
application that you are not aware of might have been run on the system.

� Have you changed, added, or deleted any queue definitions?

� Have you changed or added any channel definitions? Changes may have
been made to either MQSeries channel definitions or any underlying
communications definitions required by your application.

� Do your applications deal with return codes that they might get as a result of
any changes you have made?

Has the application run successfully before?
If the problem appears to involve one particular application, consider whether the
application has run successfully before.

Before you answer Yes to this question, consider the following:

� Have any changes been made to the application since it last ran successfully?

If so, it is likely that the error lies somewhere in the new or modified part of the
application. Take a look at the changes and see if you can find an obvious
reason for the problem. Is it possible to retry using a back level of the
application?

� Have all the functions of the application been fully exercised before?

Could it be that the problem occurred when part of the application that had
never been invoked before was used for the first time? If so, it is likely that the
error lies in that part of the application. Try to find out what the application was
doing when it failed, and check the source code in that part of the program for
errors.

150 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Preliminary checks

If a program has been run successfully on many previous occasions, check the
current queue status, and the files that were being processed when the error
occurred. It is possible that they contain some unusual data value that causes
a rarely used path in the program to be invoked.

� Does the application check all return codes?

Has your MQSeries system been changed, perhaps in a minor way, such that
your application does not check the return codes it receives as a result of the
change. For example, does your application assume that the queues it
accesses can be shared? If a queue has been redefined as exclusive, can
your application deal with return codes indicating that it can no longer access
that queue?

� Does the application run on other MQSeries systems?

Could it be that there is something different about the way that this MQSeries
system is set up which is causing the problem? For example, have the queues
been defined with the same message length or priority?

If the application has not run successfully before
If your application has not yet run successfully, you need to examine it carefully to
see if you can find any errors.

Before you look at the code, and depending upon which programming language the
code is written in, examine the output from the translator, or the compiler and
linker, if applicable, to see if any errors have been reported.

If your application fails to translate, compile, or link, it will also fail to run if you
attempt to invoke it. See the MQSeries Application Programming Reference
manual for information about building your application.

If the documentation shows that each of these steps was accomplished without
error, you should consider the coding logic of the application. Do the symptoms of
the problem indicate the function that is failing and, therefore, the piece of code in
error? See “Common programming errors” on page 152 for some examples of
common errors that cause problems with MQSeries applications.

Does the problem affect specific parts of the network?
You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the
intercommunication component of MQSeries has been started.

Check that messages are reaching the transmission queue, and check the local
queue definition of the transmission queue and any remote queues.

Have you made any network-related changes, or changed any MQSeries
definitions, that might account for the problem?

 Chapter 14. Problem determination 151

 Common programming errors

Does the problem occur at specific times of the day?
If the problem occurs at specific times of day, it could be that it is dependent on
system loading. Typically, peak system loading is at mid-morning and
mid-afternoon, so these are the times when load-dependent problems are most
likely to occur. (If your MQSeries network extends across more than one time
zone, peak system loading might seem to occur at some other time of day.)

Is the problem intermittent?
An intermittent problem could be caused by failing to take into account the fact that
processes can run independently of each other. For example, a program may
issue an MQGET call, without specifying a wait option, before an earlier process
has completed. An intermittent problem may also be seen if your application tries
to get a message from a queue while the call that put the message is in-doubt (that
is, before it has been committed or backed out).

Have you applied any service updates?
If a service update has been applied to MQSeries, check that the update action
completed successfully and that no error message was produced.

� Did the update have any special instructions?

� Was any test run to verify that the update had been applied correctly and
completely?

� Does the problem still exist if MQSeries is restored to the previous service
level?

� If the installation was successful, check with the IBM Support Center for any
patch error.

� If a patch has been applied to any other program, consider the effect it might
have on the way MQSeries interfaces with it.

Common programming errors
The errors in the following list illustrate the most common causes of problems
encountered while running MQSeries programs. You should consider the possibility
that the problem with your MQSeries system could be caused by one or more of
these errors:

� Assuming that queues can be shared, when they are in fact exclusive.

� Passing incorrect parameters in an MQI call.

� Passing insufficient parameters in an MQI call. This may mean that MQI
cannot set up completion and reason codes for your application to process.

� Failing to check return codes from MQI requests.

� Passing variables with incorrect lengths specified.

� Passing parameters in the wrong order.

� Failing to initialize MsgId and CorrelId correctly.

152 MQSeries for Digital OpenVMS V2R2 System Management Guide

 What next

What to do next
Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of other books in
the MQSeries library (see “MQSeries publications” on page xii) and in the libraries
of other licensed programs.

If you have not yet found the cause, you must start to look at the problem in
greater detail.

The purpose of this section is to help you identify the cause of your problem if the
preliminary checks have not enabled you to find it.

When you have established that no changes have been made to your system, and
that there are no problems with your application programs, choose the option that
best describes the symptoms of your problem.

� “Have you obtained incorrect output?”
� “Have you failed to receive a response from a PCF command?”
� “Does the problem affect only remote queues?” on page 155
� “Is your application or MQSeries for Digital OpenVMS running slowly?” on

page 156

If none of these symptoms describe your problem, consider whether it might have
been caused by another component of your system.

Have you obtained incorrect output?
In this book, “incorrect output” refers to your application:

� Not receiving a message that it was expecting.

� Receiving a message containing unexpected or corrupted information.

� Receiving a message that it was not expecting, for example, one that was
destined for a different application.

In all cases, check that any queue or queue manager aliases that your applications
are using are correctly specified and accommodate any changes that have been
made to your network.

If an MQSeries error message is generated, all of which are prefixed with the
letters “AMQ,” you should look in the error log. See “Error logs” on page 160 for
further information.

Have you failed to receive a response from a PCF command?
If you have issued a command but you have not received a response, consider the
following questions:

� Is the command server running?

Work with the dspmqcsv command to check the status of the command
server.

– If the response to this command indicates that the command server is not
running, use the strmqcsv command to start it.

 Chapter 14. Problem determination 153

 What next

– If the response to the command indicates that the
SYSTEM.ADMIN.COMMAND.QUEUE is not enabled for MQGET requests,
enable the queue for MQGET requests.

� Has a reply been sent to the dead-letter queue?

The dead-letter queue header structure contains a reason or feedback code
describing the problem. See the MQSeries Application Programming
Reference manual for information about the dead-letter queue header structure
(MQDLH).

If the dead-letter queue contains messages, you can use the provided browse
sample application (amqsbcg) to browse the messages using the MQGET call.
The sample application steps through all the messages on a named queue for
a named queue manager, displaying both the message descriptor and the
message context fields for all the messages on the named queue.

� Has a message been sent to the error log?

See “Error logs” on page 160 for further information.

� Are the queues enabled for put and get operations?

� Is the WaitInterval long enough?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a
reason code of MQRC_NO_MSG_AVAILABLE are returned. (See the
MQSeries Application Programming Reference manual for information about
the WaitInterval field, and completion and reason codes from MQGET.)

� If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to take a syncpoint?

Unless you have specifically excluded your request message from syncpoint,
you need to take a syncpoint before attempting to receive reply messages.

� Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

� Are you using the CorrelId and MsgId fields correctly?

Set the values of MsgId and CorrelId in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with either a queue
manager or the whole of the MQSeries system. First try stopping individual queue
managers to try and isolate a failing queue manager. If this does not reveal the
problem, try stopping and restarting MQSeries, responding to any messages that
are produced in the error log.

If the problem still occurs after restart, contact your IBM Support Center for help.

154 MQSeries for Digital OpenVMS V2R2 System Management Guide

 What next

Are some of your queues failing?
If you suspect that the problem occurs with only a subset of queues, check the
local queues that you think are having problems:

1. Display the information about each queue. You can use the MQSC command
DISPLAY QUEUE to display the information.

2. Use the data displayed to do the following checks:

� If CURDEPTH is at MAXDEPTH, this indicates that the queue is not being
processed. Check that all applications are running normally.

� If CURDEPTH is not at MAXDEPTH, check the following queue attributes
to ensure that they are correct:

– If triggering is being used:

- Is the trigger monitor running?
- Is the trigger depth too great? That is, does it generate a trigger

event often enough?
- Is the process name correct?
- Is the process available and operational?

– Can the queue be shared? If not, another application could already
have it open for input.

– Is the queue enabled appropriately for GET and PUT?

� If there are no application processes getting messages from the queue,
determine why this is so. It could be because the applications need to be
started, a connection has been disrupted, or the MQOPEN call has failed
for some reason.

Check the queue attributes IPPROCS and OPPROCS. These attributes
indicate whether the queue has been opened for input and output. If a
value is zero, it indicates that no operations of that type can occur. Note
that the values may have changed and that the queue was open but is now
closed.

You need to check the status at the time you expect to put or get a
message.

If you are unable to solve the problem, contact your IBM Support Center for help.

Does the problem affect only remote queues?
If the problem affects only remote queues, check the following:

� Check that required channels have been started and are triggerable, and that
any required initiators are running.

� Check that the programs that should be putting messages to the remote
queues have not reported problems.

� If you use triggering to start the distributed queuing process, check that the
transmission queue has triggering set on. Also, check that the channel initiator
is running.

� Check the error logs for messages indicating channel errors or problems.

� If necessary, start the channel manually. See the MQSeries Distributed
Queuing Guide for information about how to do this.

 Chapter 14. Problem determination 155

 Application design considerations

See the MQSeries Distributed Queuing Guide for information about how to define
channels.

Is your application or MQSeries for Digital OpenVMS running slowly?
If your application is running slowly, this could indicate that it is in a loop, or waiting
for a resource that is not available.

This could also be caused by a performance problem. Perhaps it is because your
system is operating near the limits of its capacity.

A performance problem may be caused by a limitation of your hardware.

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly designed
application program is probably to blame. This could manifest itself as a problem
that only occurs when certain queues are accessed.

The following symptoms might indicate that MQSeries is running slowly:

� Your system is slow to respond to MQSeries commands.

� Repeated displays of the queue depth indicate that the queue is being
processed slowly for an application with which you would expect a large
amount of queue activity.

If the performance of your system is still degraded after reviewing the above
possible causes, the problem may lie with MQSeries for Digital OpenVMS itself. If
you suspect this, you need to contact your IBM Support Center for assistance.

Application design considerations
There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well,
while impacting the performance of other tasks. Several problems specific to
programs making MQSeries calls are discussed in the following sections.

For more information about application design, see the MQSeries Application
Programming Guide.

Effect of message length
Although MQSeries allows messages to hold up to 4MB of data, the amount of data
in a message affects the performance of the application that processes the
message. To achieve the best performance from your application, you should send
only the essential data in a message; for example, in a request to debit a bank
account, the only information that may need to be passed from the client to the
server application is the account number and the amount of the debit.

Effect of message persistence
Persistent messages are logged. Logging messages reduces the performance of
your application, so you should use persistent messages for essential data only. If
the data in a message can be discarded if the queue manager stops or fails, use a
nonpersistent message.

156 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Incorrect output

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (MsgId and CorrelId) in the message descriptor
to specify a particular message, the queue manager has to search the queue until it
finds that message. Using the MQGET call in this way affects the performance of
your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a
message, your application could use the MQGET call with the BufferLength field
set to zero so that, even though the call fails, it returns the size of the message
data. The application could then repeat the call, specifying the identifier of the
message it measured in its first call and a buffer of the correct size. However, if
there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends
time searching for a message that another application has retrieved in the time
between your two calls.

If your application cannot use messages of a fixed length, another solution to this
problem is to use the MQINQ call to find the maximum size of messages that the
queue can accept, then use this value in your MQGET call. The maximum size of
messages for a queue is stored in the MaxMsgLength attribute of the queue. This
method could use large amounts of storage, however, because the value of this
queue attribute could be as high as 4MB, the maximum allowed by MQSeries for
Digital OpenVMS.

Frequency of syncpoints
Programs that issue numerous MQPUT calls within syncpoint, without committing
them, can cause performance problems. Affected queues can fill up with
messages that are currently inaccessible, while other tasks might be waiting to get
these messages. This has implications in terms of storage, and in terms of threads
tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

 Incorrect output
The term “incorrect output” can be interpreted in many different ways. For the
purpose of problem determination within this book, the meaning is explained in
“Have you obtained incorrect output?” on page 153.

 Chapter 14. Problem determination 157

 Incorrect output

Two types of incorrect output are discussed in this section:

� Messages that do not appear when you are expecting them

� Messages that contain the wrong information, or information that has been
corrupted

Additional problems that you might find if your application includes the use of
distributed queues are also discussed.

Messages that do not appear on the queue
If messages do not appear when you are expecting them, check for the following:

� Has the message been put on the queue successfully?

– Has the queue been defined correctly. For example, is MAXMSGL
sufficiently large?

– Is the queue enabled for putting?

– Is the queue already full? This could mean that an application was unable
to put the required message on the queue.

� Are you able to get any messages from the queue?

– Do you need to take a syncpoint?

If messages are being put or retrieved within syncpoint, they are not
available to other tasks until the unit of recovery has been committed.

– Is your wait interval long enough?

You can set the wait interval as an option for the MQGET call. You should
ensure that you are waiting long enough for a response.

– Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or CorrelId)?

Check that you are waiting for a message with the correct MsgId or
CorrelId. A successful MQGET call sets both these values to that of the
message retrieved, so you may need to reset these values in order to get
another message successfully.

Also, check whether you can get other messages from the queue.

– Can other applications get messages from the queue?

– Was the message you are expecting defined as persistent?

If not, and MQSeries has been restarted, the message has been lost.

– Has another application got exclusive access to the queue?

If you are unable to find anything wrong with the queue, and MQSeries is running,
make the following checks on the process that you expected to put the message on
to the queue:

� Did the application get started?

If it should have been triggered, check that the correct trigger options were
specified.

� Did the application stop?

� Is a trigger monitor running?

158 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Incorrect output

� Was the trigger process defined correctly?

� Did the application complete correctly?

Look for evidence of an abnormal end in the job log.

� Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another.
For example, suppose one transaction issues an MQGET call with a buffer length
of zero to find out the length of the message, and then issues a specific MQGET
call specifying the MsgId of that message. However, in the meantime, another
transaction issues a successful MQGET call for that message, so the first
application receives a reason code of MQRC_NO_MSG_AVAILABLE. Applications
that are expected to run in a multi-server environment must be designed to cope
with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages that contain unexpected or corrupted information.”

Messages that contain unexpected or corrupted information
If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following points:

� Has your application, or the application that put the message onto the queue,
changed?

Ensure that all changes are simultaneously reflected on all systems that need
to be aware of the change.

For example, the format of the message data may have been changed, in
which case, both applications must be recompiled to pick up the changes. If
one application has not been recompiled, the data will appear corrupt to the
other.

� Is an application sending messages to the wrong queue?

Check that the messages your application is receiving are not really intended
for an application servicing a different queue. If necessary, change your
security definitions to prevent unauthorized applications from putting messages
on to the wrong queues.

If your application has used an alias queue, check that the alias points to the
correct queue.

� Has the trigger information been specified correctly for this queue?

Check that your application should have been started; or should a different
application have been started?

If these checks do not enable you to solve the problem, you should check your
application logic, both for the program sending the message, and for the program
receiving it.

 Chapter 14. Problem determination 159

 Error logs

Problems with incorrect output when using distributed queues
If your application uses distributed queues, you should also consider the following
points:

� Has MQSeries been correctly installed on both the sending and receiving
systems, and correctly configured for distributed queuing?

� Are the links available between the two systems?

Check that both systems are available, and connected to MQSeries. Check
that the connection between the two systems, and the channels between the
two queue managers, are active.

� Is triggering set on in the sending system?

� Is the message you are waiting for a reply message from a remote system?

Check that triggering is activated in the remote system.

� Is the queue already full?

This could mean that an application was unable to put the required message
onto the queue. If this is so, check if the message has been put onto the
dead-letter queue.

The dead-letter queue header contains a reason or feedback code explaining
why the message could not be put onto the target queue. See the MQSeries
Application Programming Reference manual for information about the
dead-letter queue header structure.

� Is there a mismatch between the sending and receiving queue managers?

For example, the message length could be longer than the receiving queue
manager can handle.

� Are the channel definitions of the sending and receiving channels compatible?

For example, a mismatch in sequence number wrap stops the distributed
queuing component. See the MQSeries Distributed Queuing Guide for more
information about distributed queuing.

� Is data conversion involved? If the data formats between the sending and
receiving applications differ, data conversion is necessary. Automatic
conversion occurs when the MQGET is issued if the format is recognized as
one of the built-in formats.

If the data set is not recognized for conversion, the data conversion exit is
taken to allow you to perform the translation with your own routines.

An exception to the above occurs if you are sending data to MQSeries for
MVS/ESA.

Refer to the MQSeries Distributed Queuing Guide for further details of data
conversion.

 Error logs
MQSeries uses a number of error logs to capture messages concerning the
operation of MQSeries itself, any queue managers that you start, and error data
coming from the channels that are in use.

160 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Error logs

The location of the error logs depends on whether the queue manager name is
known and whether the error is associated with a client.

� If the queue manager name is known and the queue manager is available:

MQS_ROOT:[MQM.QMGRS.QMgrName.ERRORS]AMQERRð1.LOG

� If the queue manager is not available:

MQS_ROOT:[MQM.QMGRS.$SYSTEM.ERRORS]AMQERRð1.LOG

� If an error has occurred with a client application:

AMQERRð1.LOG

in MQS_ROOT:[MQM.ERRORS]

� First Failure Support Technology (FFST) – see “How to examine the FFSTs” on
page 165.

 Log files
At installation time an [MQM.QMGRS.$SYSTEM.ERRORS] directory is created in the
QMGRS file path. The errors subdirectory can contain up to three error log files
named:

 � AMQERR01.LOG
 � AMQERR02.LOG
 � AMQERR03.LOG

After you have created a queue manager, three error log files are created when
they are needed by the queue manager. These files have the same names as the
$SYSTEM ones, that is AMQERR01, AMQERR02, and AMQERR03, and each has
a capacity of 256KB. The files are placed in the errors subdirectory of each queue
manager that you create.

As error messages are generated they are placed in AMQERR01. When
AMQERR01 gets bigger than 256KB it is copied to AMQERR02. Before the copy,
AMQERR02 is copied to AMQERR03.LOG. The previous contents, if any, of
AMQERR03 are discarded.

The latest error messages are thus always placed in AMQERR01, the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager’s errors files unless the name of their queue manager is unknown or the
queue manager is unavailable. When the queue manager name is unavailable or
its name cannot be determined, channel-related messages are placed in the
[MQM.QMGRS.$SYSTEM.ERRORS] subdirectory.

To examine the contents of any error log file, use your usual OpenVMS editor.

Batch-job log files
Commands that initiate batch jobs (runmqchl , runmqchi , runmqdlq , and
runmqlsr) create error logs in the MQS_ROOT:[MQM.ERRORS] directory.

 Chapter 14. Problem determination 161

 Error logs

 Early errors
There are a number of special cases where the above error logs have not yet been
established and an error occurs. MQSeries attempts to record any such errors in
an error log. The location of the log depends on how much of a queue manager
has been established.

If, due to a corrupt configuration file for example, no location information can be
determined, errors are logged to an errors directory that is created at installation
time on the root directory, mqm.

If the MQSeries configuration file is readable, and the DefaultPrefix attribute of the
AllQueueManagers stanza is readable, errors are logged in the
DefaultPrefix[.errors] directory.

For further information about configuration files, see Chapter 13, “Configuration
files” on page 139.

 Operator messages
In MQSeries for Digital OpenVMS, operator messages identify normal errors,
typically caused directly by users doing things like using parameters that are not
valid on a command. Operator messages are national language (NLS) enabled,
with message catalogs installed in standard locations.

These messages are written to the associated window, if any, and are also written
to the error log AMQERR01.LOG in the queue manager directory. For example:

MQS_ROOT:[MQM.QMGRS.QUEUE$MANAGER.ERRORS]

Some errors are logged to the AMQERR01.LOG file in the queue manager
directory and others to the $SYSTEM directory copy of the error log.

162 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Dead-letter queues

Example error log
This example shows part of an MQSeries for Digital OpenVMS error log:

 ...

ð8/ð1/95 11:41:56 AMQ8ðð3: MQSeries queue manager started.

EXPLANATION: MQSeries queue manager janet started.

ACTION: None.

ð8/ð1/95 11:56:52 AMQ9ðð2: Channel program started.

EXPLANATION: Channel program 'JANET' started.

ACTION: None.

ð8/ð1/95 11:57:26 AMQ92ð8: Error on receive from host 'camelot

(9.2ð.12.34)'.

EXPLANATION: An error occurred receiving data from 'camelot

(9.2ð.12.34)' over TCP/IP. This may be due to a communications failure.

ACTION: Record the TCP/IP return code 232 (X'E8') and tell the

systems administrator.

ð8/ð1/95 11:57:27 AMQ9999: Channel program ended abnormally.

EXPLANATION: Channel program 'JANET' ended abnormally.

ACTION: Look at previous error messages for channel program

'JANET' in the error files to determine the cause of the failure.

ð8/ð1/95 14:28:57 AMQ8ðð4: MQSeries queue manager ended.

EXPLANATION: MQSeries queue manager janet ended.

ACTION: None.

ð8/ð2/95 15:ð2:49 AMQ9ðð2: Channel program started.

EXPLANATION: Channel program 'JANET' started.

ACTION: None.

ð8/ð2/95 15:ð2:51 AMQ9ðð1: Channel program ended normally.

EXPLANATION: Channel program 'JANET' ended normally.

ACTION: None.

ð8/ð2/95 15:ð9:27 AMQ7ð3ð: Request to quiesce the queue manager

accepted. The queue manager will stop when there is no further

work for it to perform.

EXPLANATION: You have requested that the queue manager end when

there is no more work for it. In the meantime, it will refuse

new applications that attempt to start, although it allows those

already running to complete their work.

ACTION: None.

ð8/ð2/95 15:ð9:32 AMQ8ðð4: MQSeries queue manager ended.

EXPLANATION: MQSeries queue manager janet ended.

ACTION: None.

 ...

 Dead-letter queues
Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by issuing an
MQSC DISPLAY QUEUE command. If the queue contains messages, you can use
the provided browse sample application (amqsbcg) to browse messages on the
queue using the MQGET call. The sample application steps through all the
messages on a named queue for a named queue manager, displaying both the
message descriptor and the message context fields for all the messages on the
named queue.

 Chapter 14. Problem determination 163

 Using MQSeries trace

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems may occur if you do not have a dead-letter queue on each queue
manager you are using. The supplied sample program amqscoma.tst creates the
default objects for a queue manager, including a dead-letter queue called
SYSTEM.DEAD.LETTER.QUEUE.

Configuration files and problem determination
Configuration file errors typically prevent queue managers from being found and
result in “queue manager unavailable” type errors.

There are several checks you can make on the configuration files:

� Ensure that the configuration files exist.

� Ensure that they have appropriate permissions, for example:

MQS.INI;1 MQM (RWED, RWED, RWED, RE)

 (identifier=MQM, access=READ+WRITE+EXECUTE+DELETE+CONTROL).

� Ensure that the MQSeries configuration file references the correct queue
manager and log directories.

Using MQSeries trace
MQSeries for Digital OpenVMS uses the following commands for the trace facility:

� strmqtrc – see “strmqtrc (Start MQSeries trace)” on page 219
� dspmqtrc – see “dspmqtrc (Display MQSeries formatted trace output)” on

page 189
� endmqtrc – see “endmqtrc (End MQSeries trace)” on page 194

The trace facility uses one file for each entity being traced, with the trace
information being recorded in the appropriate file.

Files associated with trace are created in the directory MQS_ROOT:[MQM.TRACE].

The files in this directory include details of queue managers, as well as all early
tracing and all $SYSTEM tracing.

Trace file names
Trace file names are constructed in the following way:

AMQppppp.TRC

where ppppp is the process identifier (PID) of the process producing the trace.

Notes:

1. The value of the process identifier can contain fewer, or more, digits than
shown in the example.

2. There will be one trace file for each process running as part of the entity being
traced.

164 MQSeries for Digital OpenVMS V2R2 System Management Guide

 FFST

Sample trace data
The following sample is an extract from a Digital OpenVMS trace:

 ...

ID ELAPSED_MSEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

3ðd ð ð MQS CEI Exit!. 12484.1 xcsWaitEventSem rc=1ð8ð6ð2ð

3ðd ð ð MQS CEI Exit! 12484.1 zcpReceiveOnLink rc=2ð8ð5311

3ðd ð ð MQS FNC Entry 12484.1 zxcProcessChildren

3ðd ð ð MQS CEI Entry. 12484.1 xcsRequestMutexSem

3ðd 1 ð MQS CEI Entry.. 12484.1 xcsHSHMEMBtoPTR

3ðd 1 ð MQS CEI Exit... 12484.1 xcsHSHMEMBtoPTR rc=ðððððððð

3ðd 1 ð MQS FNC Entry.. 12484.1 xllSemGetVal

3ðd 1 ð MQS FNC Exit... 12484.1 xllSemGetVal rc=ðððððððð

3ðd 1 ð MQS FNC Entry.. 12484.1 xllSemReq

3ðd 1 ð MQS FNC Exit... 12484.1 xllSemReq rc=ðððððððð

3ðd 1 ð MQS CEI Exit.. 12484.1 xcsRequestMutexSem rc=ðððððððð

3ðd 2 ð MQS CEI Entry. 12484.1 xcsReleaseMutexSem

3ðd 2 ð MQS CEI Entry.. 12484.1 xcsHSHMEMBtoPTR

3ðd 2 ð MQS CEI Exit... 12484.1 xcsHSHMEMBtoPTR rc=ðððððððð

3ðd 2 ð MQS FNC Entry.. 12484.1 xllSemRel

3ðd 2 ð MQS FNC Exit... 12484.1 xllSemRel rc=ðððððððð

3ðd 2 ð MQS CEI Exit.. 12484.1 xcsReleaseMutexSem rc=ðððððððð

3ðd 2 ð MQS CEI Entry. 12484.1 xcsHSHMEMBtoPTR

 ...

Figure 14. Sample MQSeries for Digital OpenVMS trace

Notes:

1. In this example the data is truncated. In a real trace, the complete function
names and return codes are present.

2. The return codes are given as values, not literals.

First failure support technology (FFST)
Information which, on the OS/2 and AIX platforms, is normally recorded in FFST
logs is, on MQSeries for Digital OpenVMS, recorded in a file in the
MQS_ROOT:[MQM.ERRORS] directory.

These errors are normally severe, unrecoverable errors and indicate either a
configuration problem with the system or an MQSeries internal error.

How to examine the FFSTs
The files are named AMQnnnnn_mm.FDC, where:

nnnnn Is the process id reporting the error
mm Is a sequence number, normally 0

When a process creates an FFST it also writes an entry in the system error log.
The record contains the name of the FFST file to assist in automatic problem
tracking.

A typical FFST is shown in Figure 15.

 Chapter 14. Problem determination 165

 Client problem determination

+---+

| |

| MQSeries First Failure Symptom Report |

| ===================================== |

| |

| Date/Time :- Friday July 14 14:ð6:52 BST 1995 |

| Host Name :- unknown |

| PIDS :- 5697175 |

| LVLS :- 22ð |

| Product Long Name :- MQSeries for Digital OpenVMS |

| Vendor :- IBM |

| Probe Id :- XC13ððð3 |

| Application Name :- MQM |

| Component :- xehExcepti |

| Build Date :- Jul 14 1995 |

| Userid :- ððððð231 (mqm) |

| Process :- ððð15967 |

| Major Errorcode :- xecSTOP |

| Minor Errorcode :- OK |

| Probe Type :- HALT61ð9 |

| Probe Severity :- 1 |

| Probe Description :- AMQ6125: An internal MQSeries error has occurred. |

| Arith1 :- 11 b |

| |

+---+

MQM Function Stack

xllTidyUpSems

xcsFFST

MQM Trace History

 ...

Figure 15. Sample MQSeries for Digital OpenVMS First Failure Symptom Report.

The Function Stack and Trace History are used by IBM to assist in problem
determination. In most cases there is little that the system administrator can do
when an FFST is generated, apart from raising problems through the support
centers.

However, there is one set of problems that they may be able to solve. If the FFST
shows “quota exceeded” or “out of space on device” descriptions when calling one
of the internal functions, it is likely that the relevant SYSGEN parameter limit has
been exceeded.

To resolve the problem, adjust the system parameters to increase the internal
limits. See “System configuration” on page 21 for further details.

Problem determination with clients
An MQI client application receives MQRC_* reason codes in the same way as
non-client MQI applications. However, there are now additional reason codes for
error conditions associated with clients. For example:

� Remote machine not responding
� Communications line error
� Invalid machine address

The most common time for errors to occur is when an application issues an
MQCONN and receives the response MQRC_Q_MQR_NOT_AVAILABLE. An error
message, written to the client log file, explains the cause of the error. Messages
may also be logged at the server depending on the nature of the failure.

166 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Client problem determination

 Terminating clients
Even though a client has terminated it is still possible for the process at the server
to be holding its queues open. Normally, this will only be for a short time until the
communications layer detects that the partner has gone.

Error messages with clients
When an error occurs with a client system, error messages are put into the error
files associated with the server, if possible. If an error cannot be placed there, the
client code attempts to place the error message in an error log in the root directory
of the client machine.

OS/2, UNIX and OpenVMS systems clients
Error messages for OS/2, and UNIX systems, clients are placed in the error logs on
their respective MQSeries server systems. Typically, these files appear in the
MQS_ROOT:[MQM.ERRORS] directory.

DOS and Windows clients
The location of the log file AMQERR01.LOG is set by the MQDATA environment
variable. The default location, if not overridden by MQDATA, is:

C:\

Working in the DOS environment involves the environment variable MQDATA.

This is the default library used by the client code to store trace and error
information; it also holds the directory name in which the qm.ini file is stored.
(needed for NetBIOS setup). If not specified, it defaults to the C drive.

The names of the default files held in this library are:

AMQERR01.LOG For error messages.

AMQERR01.FDC For First Failure Data Capture messages.

 Chapter 14. Problem determination 167

 Client problem determination

168 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Part 2. Reference

 Copyright IBM Corp. 1995, 1997 169

170 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Reading syntax diagrams

Chapter 15. MQSeries control commands

This chapter contains reference material for the control commands used with
MQSeries for Digital OpenVMS. All commands in this chapter can be issued from
an OpenVMS DCL prompt. These commands are case-sensitive.

 Names
In general, the names of MQSeries objects can have up to 48 characters. This rule
applies to all the following objects:

 � Queue managers
 � Queues
 � Process definitions

The maximum length of channel names is 20 characters.

The characters that can be used for all MQSeries names are:

 � Uppercase A–Z
 � Lowercase a–z
 � Numerics 0–9
 � Period (.)
 � Underscore (_)
� Forward slash (/) (see note 1)
� Percent sign (%) (see note 1)

Notes:

1. Forward slash and percent are special characters. If you use either of these
characters in a name, the name must be enclosed in double quotation marks
whenever it is used.

2. Leading or embedded blanks are not allowed.

3. National language characters are not allowed.

4. Names may be enclosed in double quotation marks, but this is only essential if
special characters are included in the name, or if case needs to be preserved.

How to read syntax diagrams
This chapter contains syntax diagrams (sometimes referred to as “railroad”
diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and left
arrow pair. Lines beginning with a single right arrow are continuation lines. You
read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

 Copyright IBM Corp. 1995, 1997 171

 syntax help

Table 11. How to read syntax diagrams

Convention Meaning

55──A──B──C─────5 You must specify values A, B, and C. Required values are shown on
the main line of a syntax diagram.

5─ ──┬ ┬─── ───────5
 └ ┘─A─

You may specify value A. Optional values are shown below the main
line of a syntax diagram.

5─ ──┬ ┬─A─ ───────5
 ├ ┤─B─
 └ ┘─C─

Values A, B, and C are alternatives, one of which you must specify.

5─ ──┬ ┬─── ───────5
 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

Values A, B, and C are alternatives, one of which you may specify.

 ┌ ┐─,───
5─ ───

6
┴┬ ┬─── ─────5

 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

You may specify one or more of the values A, B, and C. Any
required separator for multiple or repeated values (in this example,
the comma (,)) is shown on the arrow.

 ┌ ┐──┬ ┬───
 │ │└ ┘─,─
5─ ───

6
┴┬ ┬───── ───5

 └ ┘─A───

You may specify value A multiple times. The separator in this
example is optional.

 ┌ ┐─A─
5─ ──┼ ┼─── ──────5%
 ├ ┤─B─
 └ ┘─C─

Values A, B, and C are alternatives, one of which you may specify. If
you specify none of the values shown, the default A (the value
shown above the main line) is used.

55──┤ Name ├───5%

Name:
├──A─ ──┬ ┬─── ────┤
 └ ┘─B─

The syntax fragment Name is shown separately from the main syntax
diagram.

Punctuation and
uppercase values

Specify exactly as shown.

Lowercase values
(for example, name)

Supply your own text in place of the name variable.

 Syntax help
You can obtain help about the syntax of any of the commands in this chapter by
entering the command followed by a question mark. MQSeries responds by listing
the syntax required for the selected command. The syntax shows all the
parameters and variables associated with the command. Different forms of
parentheses are used to indicate whether a parameter is required or not. For
example:

CmdName [-x OptParam] (-c | -b) { -p principal } argument

where:

CmdName Is the command name for which help has been requested.

[-x OptParam] The square brackets indicate that this is an optional parameter.

(-c | -b) A mandatory field. In this case, you must select one of the flags c
or b.

172 MQSeries for Digital OpenVMS V2R2 System Management Guide

{ -p principal }

An optional list of variables that you may supply, but, if this is
shown, at least one variable must be provided when you enter the
command.

argument An argument required to be supplied with this command,
mandatory if shown on the response to the query.

 Examples
1. Result of entering endmqm ?

endmqm [-z][-c | -i | -p] QMgrName

2. Result of entering rcdmqimg ?

rcdmqimg [-z] [-m QMgrName] -t ObjType [GenericObjName]

MQSeries return codes
Most of the MQSeries commands, for example crtmqm , write a status line when
ending to indicate the success or failure of the command.

If the status of a command is to be tested in a DCL command file, it may be
necessary to interpret the status value returned from an MQSeries program.

The MQSeries return codes are defined in a message file called
SYS$MESSAGE:MQS_MSG.EXE.

In order to access the message text associated with a return code in the file, you
must use the DCL SET MESSAGE command. This command loads the message
codes into the message table of your process. For example:

 $ SET MESSAGE SYS$MESSAGE:MQS_MSG.EXE

After this, you can use the F$MESSAGE lexical function to print the text of an
MQSeries return code. For example:

 $ strmqm)(\bad-qm-name&%$#

 The queue manager name is either not valid or not known

 $ WRITE SYS$OUTPUT F$MESSAGE($STATUS)

 %MQS-F-CSPRC_Q_MGR_NAM, Queue manager name error

In order to convert the OpenVMS return code to a return code value used in
MQSeries for OS/2 or UNIX systems, you can use the following DCL equation:

 $ RC = $STATUS / 8 .AND. %xFFF

For example:

 $ crtmqm &\)\(

 The queue manager name is either not valid or not known

 $ RC = $STATUS / 8 .AND. %xFFF

 $ SHOW SYMBOL RC

RC = 72 Hex = ðððððð48 Octal = ðððððððð11ð

 Chapter 15. MQSeries control commands 173

 crtmqcvx

crtmqcvx (Data conversion)

 Purpose
Use the crtmqcvx command to create a fragment of code that performs data
conversion on data type structures. The command generates a C function that can
be used in an exit to convert your C structures.

The command reads an input file containing a structure or structures to be
converted. It then writes an output file containing a code fragment or fragments to
convert those structures.

For further information about this command and how to use it, refer to the
MQSeries Application Programming Guide.

 Syntax

55──crtmqcvx──SourceFile──TargetFile───────────────────────────────────────5%

 Required parameters
SourceFile

Specifies the input file containing the C structures to be converted.

TargetFile
Specifies the output file containing the code fragments generated to convert
the structures.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following example shows the results of using the data conversion command
against a source C structure. The command issued is:

crtmqcvx source.tmp target.c

174 MQSeries for Digital OpenVMS V2R2 System Management Guide

 crtmqcvx

The input file, source.tmp looks like this:

 /\ This is a test C structure which can be converted by the \/

 /\ crtmqcvx utility \/

 struct my_structure

 {

 int code;

 MQLONG value;

 };

The output file, target.c, produced by the command is shown below. You can use
these code fragments in your applications to convert data structures. However, if
you do so, you should understand that the fragment uses macros supplied in the
MQSeries header file amqsvmha.h.

 MQLONG Convertmy_structure(

 PMQBYTE \in_cursor,

 PMQBYTE \out_cursor,

 PMQBYTE in_lastbyte,

 PMQBYTE out_lastbyte,

 MQHCONN hConn,

 MQLONG opts,

 MQLONG MsgEncoding,

 MQLONG ReqEncoding,

 MQLONG MsgCCSID,

 MQLONG ReqCCSID,

 MQLONG CompCode,

 MQLONG Reason)

 {

MQLONG ReturnCode = MQRC_NONE;

ConvertLong(1); /\ code \/

 AlignLong();

ConvertLong(1); /\ value \/

 Fail:

 return(ReturnCode);

 }

 Chapter 15. MQSeries control commands 175

 crtmqm

crtmqm (Create queue manager)

 Purpose
Use the crtmqm command to create a local queue manager. Once a queue
manager has been created, use the strmqm command to start it.

 Syntax

 ┌ ┐────────────────────────────────────
55──crtmqm─ ───

6
┴┬ ┬──────────────────────────────── ───────────────────────────5

├ ┤── -c Text ──────────────────────
├ ┤── -d DefaultTransmissionQueue ──
├ ┤── -h MaximumHandleLimit ────────
├ ┤─ -q ───────────────────────────
├ ┤── -t IntervalValue ─────────────
├ ┤── -u DeadLetterQueue ───────────
├ ┤── -x MaximumUncommittedMessages
└ ┘─ -z ───────────────────────────

 ┌ ┐─ -lc ─ ┌ ┐──────────────────────────────
5─ ──┼ ┼─────── ───

6
┴──┬ ┬──────────────────────── ─QMgrName─────────────────────5%

└ ┘─ -ll ─ ├ ┤── -lf LogFileSize ──────
├ ┤── -ld LogPath ──────────
├ ┤── -lp LogPrimaryFiles ──
└ ┘── -ls LogSecondaryFiles

 Required parameters
QMgrName

Specifies the name of the queue manager to be created. The name can
contain up to 48 characters. This must be the last item in the command.

 Optional parameters
-c Text

Specify some descriptive text for this queue manager. The default is all
blanks.

You can use up to 64 characters. If mixed case is required, the description
must be enclosed in double quotes.

-d DefaultTransmissionQueue
Specifies the name of the local transmission queue that remote messages are
placed on if a transmission queue is not explicitly defined for their destination.
There is no default.

-h MaximumHandleLimit
Specifies the maximum number of handles that any one application can have
open at the same time.

Specify a value in the range 1 through 999 999 999. The default value is
256.

-q Specifies that this queue manager is to be made the default queue manager.
The new queue manager replaces any existing queue manager as the default.

If you accidentally use this flag and wish to revert to an existing queue
manager as the default queue manager, you can edit the
DefaultQueueManager stanza in the MQSeries configuration file. See

176 MQSeries for Digital OpenVMS V2R2 System Management Guide

 crtmqm

Chapter 13, “Configuration files” on page 139 for information about
configuration files.

-t IntervalValue
Specifies the trigger time interval in milliseconds for all queues controlled by
this queue manager. This value specifies the time after the receipt of a
trigger generating message when triggering is suspended. That is, if the
arrival of a message on a queue causes a trigger message to be put on the
initiation queue, any message arriving on the same queue within the specified
interval does not generate another trigger message.

You can use the trigger time interval to ensure that your application is allowed
sufficient time to deal with a trigger condition before it is alerted to deal with
another on the same queue. You may wish to see all trigger events that
happen; if so, set a low or zero value in this field.

Specify a value in the range 0 through 999 999 999. The default is
999 999 999 milliseconds, a time of more than 11 days. Allowing the default
to be taken effectively means that triggering is disabled after the first trigger
message. However, triggering can be reenabled by an application servicing
the queue using an alter queue command to reset the trigger attribute.

-u DeadLetterQueue
Specifies the name of the local queue that is to be used as the dead-letter
(undelivered-message) queue. Messages are put on this queue if they cannot
be routed to their correct destination.

The default if the attribute is omitted is no dead-letter queue.

-x MaximumUncommittedMessages
Specifies the maximum number of uncommitted messages under any one
syncpoint. That is, the sum of:

� The number of messages that can be retrieved from queues
� The number of messages that can be put on queues
� Any trigger messages generated within this unit of work

This limit does not apply to messages that are retrieved or put outside a
syncpoint.

Specify a value in the range 1 through 10 000. The default value is 1000
uncommitted messages.

-z Suppresses error messages.

This flag is normally used within MQSeries to suppress unwanted error
messages. As use of this flag could result in loss of information, it is
recommended that you do not use it when entering commands on a
command line.

The following set of flags is used to define the logging to be used by the queue
manager being created. For more information about logs, see “Using the log for
recovery” on page 132.

-lc Circular logging is to be used. This is the default logging method.

-ll Linear logging is to be used.

 Chapter 15. MQSeries control commands 177

 crtmqm

-lf LogFileSize
Specifies the size of the log files in units of 4 KB. The minimum value is 64,
and the maximum is 16384 The default value is 1024, giving a default log size
of 4 MB.

-ld LogPath
Specifies the directory to be used to hold the log files. The default is
[MQM.LOG] The default can also be changed when MQSeries is customized.

User ID mqm and group mqm must have full authorities to the log files. If you
change the locations of these files, you must give these authorities yourself.
This is done automatically if the logs files are in their default locations.

-lp LogPrimaryFiles
Specifies the number of primary log files to be allocated. The default value is
3, the minimum is 2, and the maximum is 62.

-ls LogSecondaryFiles
Specifies the number of secondary log files to be allocated. The default value
is 2, the minimum is 1, and the maximum is 61.

Note: The total number of log files is restricted to 63, regardless of the
number requested.

 Return codes
0 Queue manager created

8 Queue manager already exists

49 Queue manager stopping

69 Storage not available

70 Queue space not available

71 Unexpected error

72 Queue manager name error

100 Log location invalid

111 Queue manager created. However, there was a problem processing the
default queue manager definition in the product configuration file. The default
queue manager specification may be incorrect.

115 Invalid log size

178 MQSeries for Digital OpenVMS V2R2 System Management Guide

 crtmqm

 Examples
1. This command creates a default queue manager named Paint.queue.manager,

which is given a description of Paint shop. It also specifies that linear logging
is to be used:

crtmqm -c “Paint shop” -ll -q “Paint.queue.manager”

2. This example requests a number of log files. Two primary and three secondary
log files are specified.

crtmqm -c “Paint shop” -ll -lp 2 -ls 3 -q “Paint.queue.manager”

3. In this example, another queue manager, travel, is created. The trigger
interval is defined as 5000 milliseconds (or 5 seconds) and its dead-letter
queue is specified as SYSTEM.DEAD.LETTER.QUEUE.

crtmqm -t 5ððð -u SYSTEM.DEAD.LETTER.QUEUE travel

Once a trigger event has been generated, further trigger events are disabled for
five seconds.

 Related commands
strmqm Start queue manager

endmqm End queue manager

dltmqm Delete queue manager

 Chapter 15. MQSeries control commands 179

 dltmqm

dltmqm (Delete queue manager)

 Purpose
Use the dltmqm command to delete a specified queue manager. All objects
associated with this queue manager are also deleted. Before you can delete a
queue manager you must end it using the endmqm command.

 Syntax

55──dltmqm─ ──┬ ┬────── ─QMgrName───5%
 └ ┘─ -z ─

 Required parameters
QMgrName

Specifies the name of the queue manager to be deleted.

 Optional parameters
-z Suppresses error messages.

 Return codes
0 Queue manager deleted

3 Queue manager being created

5 Queue manager running

16 Queue manager does not exist

49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name error

100 Log location invalid

112 Queue manager deleted. However, there was a problem processing the
default queue manager definition in the product configuration file. The default
queue manager specification may be incorrect.

 Examples
1. The following command deletes the queue manager saturn.queue.manager.

dltmqm saturn.queue.manager

2. The following command deletes the queue manager travel and also
suppresses any messages caused by the command.

180 MQSeries for Digital OpenVMS V2R2 System Management Guide

 dltmqm

dltmqm -z travel

 Related commands
crtmqm Create queue manager

strmqm Start queue manager

endmqm End queue manager

 Chapter 15. MQSeries control commands 181

 dspmqaut

dspmqaut (Display authority)

 Purpose
Use the dspmqaut command to display the current authorizations to a specified
object. Only one group may be specified.

If a user ID is a member of more than one group, examine the authorizations of
each group to determine all the authorizations that apply to the user ID.

 Syntax

55──dspmqaut─ ──┬ ┬────────────── ──┬ ┬──────────────── ── -t ObjectType ─────────5
 └ ┘── -m QMgrName └ ┘── -n ObjectName

5─ ──┬ ┬── -g GroupName ──── ──┬ ┬────────────────────── ────────────────────────5%
└ ┘── -p PrincipalName └ ┘── -s ServiceComponent

 Required parameters
-t ObjectType

Specifies the type of object on which the inquiry is to be made. Possible
values are:

queue or q A queue or queues matching the object type parameter

qmgr A queue manager object

process or prcs A process

 Optional parameters
-m QMgrName

Specifies the name of the queue manager on which the inquiry is to be made.

-n ObjectName
Specifies the name of the object on which the inquiry is to be made.

This is a required parameter unless it is the queue manager itself.

You must specify the name of a queue manager, queue, or process definition.

-g GroupName
Specifies the name of the user group on which the inquiry is to be made.
You can only specify one name, which must be the name of an existing rights
identifier

-p PrincipalName
Specifies the name of a user whose authorizations to the specified object are
to be displayed.

-s ServiceComponent
This parameter only applies if you are using installable authorization services,
otherwise it is ignored.

If installable authorization services are supported, this parameter specifies the
name of the authorization service to which the authorizations apply. This
parameter is optional; if it is not specified, the authorization update is made to
the first installable component for the service.

182 MQSeries for Digital OpenVMS V2R2 System Management Guide

 dspmqaut

 Returned parameters
This command returns an authorization list, which can contain none, one, or more
authorization parameters. Each authorization parameter returned means that any
user ID in the specified group has the authority to perform the operation defined by
that parameter.

Table 12 shows the authorities that can be given to the different object types.

The following list defines the authorizations associated with each parameter:

all Use all operations relevant to the object.

alladm Perform all administration operations relevant to the object.

allmqi Use all MQI calls relevant to the object.

altusr Specify an alternate user ID on an MQI call.

browse Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

chg Change the attributes of the specified object, using the appropriate
command set.

Table 12. Security authorities from the dspmqaut command

Authority Queue Process Qmgr

all √ √ √

alladm √ √ √

allmqi √ √ √

altusr √

browse √

chg √ √ √

clr √

connect √

cpy √ √ √

crt √ √ √

dlt √ √ √

dsp √ √ √

put √

inq √ √ √

get √

passall √

passid √

set √ √ √

setall √ √

setid √ √

 Chapter 15. MQSeries control commands 183

 dspmqaut

chgaut Specify authorizations for other groups of users on the object, using
the setmqaut command.

clr Clear a queue (PCF command Clear queue only).

connect Connect the application to the specified queue manager by issuing an
MQCONN call.

cpy Copy the definition of an object, for example, the PCF Copy queue
command.

crt Create objects of the specified type, using the appropriate command
set.

dlt Delete the specified object, using the appropriate command set.

dsp Display the attributes of the specified object, using the appropriate
command set.

get Retrieve a message from a queue by issuing an MQGET call.

inq Make an inquiry on a specific queue by issuing an MQINQ call.

passall Pass all context.

passid Pass the identity context.

put Put a message on a specific queue by issuing an MQPUT call.

set Set attributes on a queue from the MQI by issuing an MQSET call.

setall Set all context on a queue.

setid Set the identity context on a queue.

The authorizations for administration operations, where supported, apply to these
command sets:

 � Control commands
 � MQSC commands
 � PCF commands

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing

184 MQSeries for Digital OpenVMS V2R2 System Management Guide

 dspmqaut

 Examples
The following example shows a command to display the authorizations on queue
manager saturn.queue.manager associated with user group staff:

dspmqaut -m saturn.queue.manager -t qmgr -g staff

The results from this command are:

Entity staff has the following authorizations for object:

 get

 browse

 put

 inq

 set

 connect

 altusr

 passid

 passall

 setid

 Related commands
setmqaut Set or reset authority

 Chapter 15. MQSeries control commands 185

 dspmqcsv

dspmqcsv (Display command server)

 Purpose
Use the dspmqcsv command to display the status of the command server for the
specified queue manager.

The status can be one of the following:

 � Starting
 � Running
� Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets

 � Ending
 � Stopped

 Syntax

55──dspmqcsv──QMgrName───5%

 Required parameters
QMgrName

Specifies the name of the local queue manager for which the command
server status is being requested.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following command displays the status of the command server associated with
venus.q.mgr:

dspmqcsv venus.q.mgr

 Related commands
strmqcsv Start a command server

endmqcsv End a command server

186 MQSeries for Digital OpenVMS V2R2 System Management Guide

 dspmqfls

dspmqfls (Display MQSeries files)

 Purpose
Use the dspmqfls command to display the real file system name for all MQSeries
objects that match a specified criterion. You can use this command to identify the
files associated with a particular MQSeries object. This is useful for backing up
specific objects. See “Understanding MQSeries file names” on page 42 for further
information about name transformation.

 Syntax

55──dspmqfls─ ──┬ ┬────────────── ──┬ ┬───────────── ─GenericObjName────────────5%
 └ ┘── -m QMgrName └ ┘── -t ObjType

 Required parameters
GenericObjName

Specifies the name of the MQSeries object. The name is a string with no flag
and is a required parameter. If the name is omitted an error is returned.

This parameter supports a wild card character * at the end of the string.

 Optional parameters
-m QMgrName

Specifies the name of the queue manager for which files are to be examined.
If omitted, the command operates on the default queue manager.

-t ObjType
Specifies the MQSeries object type. The following list shows the valid object
types. The abbreviated name is shown first followed by the full name.

* or all All object types; this is the default

q or queue A queue or queues matching the object name parameter

ql or qlocal A local queue

qa or qalias An alias queue

qr or qremote A remote queue

qm or qmodel A model queue

qmgr A queue manager object

prcs or process A process

Note: The dspmqfls command displays the directory containing the queue, not
the name of the queue itself.

 Chapter 15. MQSeries control commands 187

 dspmqfls

 Return codes
0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

 Examples
1. The following command displays the details of all objects with names beginning

SYSTEM.ADMIN that are defined on the default queue manager.

dspmqfls SYSTEM.ADMIN\

2. The following command displays file details for all processes with names
beginning PROC defined on queue manager RADIUS.

dspmqfls -m RADIUS -t prcs PROC\

188 MQSeries for Digital OpenVMS V2R2 System Management Guide

 dspmqtrc

dspmqtrc (Display MQSeries formatted trace output)

 Purpose
Use the dspmqtrc command to display MQSeries formatted trace output.

 Syntax

55──dspmqtrc─ ──┬ ┬──────────────────── ─InputFileName────────────────────────5%
└ ┘── -t FormatTemplate

 Required parameters
InputFileName

Specifies the name of the file containing the unformatted trace. For example
MQS_ROOT:[MQM.TRACE]AMQ12345.TRC.

 Optional parameters
-t FormatTemplate

Specifies the name of the template file containing details of how to display the
trace. The default value is SYS$SHARE:AMQTRC.FMT.

 Related commands
endmqtrc End MQSeries trace

strmqtrc Start MQSeries trace

 Chapter 15. MQSeries control commands 189

 endmqcsv

endmqcsv (End command server)

 Purpose
Use the endmqcsv command to stop the command server on the specified queue
manager.

 Syntax

 ┌ ┐─ -c ─
55──endmqcsv─ ──┼ ┼────── ─QMgrName───5%

└ ┘─ -i ─

 Required parameters
QMgrName

Specifies the name of the queue manager for which the command server is to
be ended.

 Optional parameters
-c Specifies that the command server is to be stopped in a controlled manner.

The command server is allowed to complete the processing of any command
message that it has already started. No new message is read from the
command queue.

This is the default.

-i Specifies that the command server is to be stopped immediately. Actions
associated with a command message currently being processed may not be
completed.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
1. The following command stops the command server on queue manager

saturn.queue.manager:

endmqcsv -c saturn.queue.manager

The command server can complete processing any command it has already
started before it stops. Any new commands received remain unprocessed in
the command queue until the command server is restarted.

190 MQSeries for Digital OpenVMS V2R2 System Management Guide

 endmqcsv

2. The following command stops the command server on queue manager pluto
immediately:

endmqcsv -i pluto

 Related commands
strmqcsv Start a command server

dspmqcsv Display the status of a command server

 Chapter 15. MQSeries control commands 191

 endmqm

endmqm (End queue manager)

 Purpose
Use the endmqm command to end (stop) a specified local queue manager. This
command stops a queue manager in one of three modes:

� Normal or quiesced shutdown
 � Immediate shutdown
 � Preemptive shutdown

The attributes of the queue manager and the objects associated with it are not
affected. You can restart the queue manager using the strmqm (Start queue
manager) command.

To delete a queue manager, you must stop it and then use the dltmqm (Delete
queue manager) command.

 Syntax

 ┌ ┐─ -c ─
55──endmqm─ ──┼ ┼────── ──┬ ┬────── ─QMgrName───────────────────────────────────5%

├ ┤─ -i ─ └ ┘─ -z ─
└ ┘─ -p ─

 Required parameters
QMgrName

Specifies the name of the message queue manager to be stopped.

 Optional parameters
-c Controlled (or quiesced) shutdown. The queue manager stops but only after

all applications have disconnected. Any MQI calls currently being processed
are completed. This is the default.

-i Immediate shutdown. The queue manager stops after it has completed all the
MQI calls currently being processed. Any MQI requests issued after the
command has been issued fail. Any incomplete units of work are rolled back
when the queue manager is next started.

-p Preemptive shutdown.

Use this type of shutdown only in exceptional circumstances. For
example, when a queue manager does not stop as a result of a normal
endmqm command.

The queue manager stops without waiting for applications to disconnect or for
MQI calls to complete. This can give unpredictable results for MQSeries
applications. All processes in the queue manager that fail to stop are
terminated 30 seconds after the command is issued.

-z Suppresses error messages on the command.

192 MQSeries for Digital OpenVMS V2R2 System Management Guide

 endmqm

 Return codes
0 Queue manager ended
3 Queue manager being created
16 Queue manager does not exist
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error

 Examples
The following examples show commands that end (stop) the specified queue
managers.

1. This command ends the queue manager named mercury.queue.manager in a
controlled way. All applications currently connected are allowed to disconnect.

endmqm mercury.queue.manager

2. This command ends the queue manager named saturn.queue.manager

immediately. All current MQI calls complete, but no new ones are allowed.

endmqm -i saturn.queue.manager

 Related commands
crtmqm Create a queue manager

strmqm Start a queue manager

dltmqm Delete a queue manager

 Chapter 15. MQSeries control commands 193

 endmqtrc

endmqtrc (End MQSeries trace)

 Purpose
Use the endmqtrc command to end tracing for the specified entity or all entities.

 Syntax

55──endmqtrc─ ──┬ ┬──────────────────────────── ──────────────────────────────5%
├ ┤─ -a ───────────────────────

 └ ┘─── -m ──QMgrName─ ──┬ ┬──────
 └ ┘─ -e ─

 Optional parameters
-m QMgrName

Is the name of the queue manager for which tracing is to be ended.

A maximum of one -m flag and associated queue manager name can be
supplied on the command.

A queue manager name and -m flag can be specified on the same command
as the -e flag.

-e If this flag is specified, early tracing is ended.

-a If this flag is specified all tracing is ended.

This flag must be specified alone.

 Return codes
AMQ5611

This message is issued if arguments that are not valid are supplied to the
command.

 Examples
This command ends tracing of data for a queue manager called QM1.

endmqtrc -m QM1

 Related commands
dspmqtrc Display formatted trace output

strmqtrc Start MQSeries trace

194 MQSeries for Digital OpenVMS V2R2 System Management Guide

 rcdmqimg

rcdmqimg (Record media image)

 Purpose
Use the rcdmqimg command to write an image of an MQSeries object, or group of
objects, to the log for use in media recovery. Use the associated command
rcrmqobj to recreate the object from the image.

This command is used with an active queue manager. Further activity on the
queue manager is logged so that, although the image becomes out of date, the log
records reflect any changes to the object.

 Syntax

55──rcdmqimg─ ──┬ ┬──────────────── ──┬ ┬────── ─-t ObjectType───────────────────5
 └ ┘─ -m ──QMgrName─ └ ┘─ -z ─

5─ ──┬ ┬──────────────── ───5%
 └ ┘ ─GenericObjName─

 Required parameters
-t ObjectType

Specifies the type of objects whose images are to be recorded. Valid object
types are:

prcs or process Processes

q or queue All types of queue

ql or qlocal Local queues

qa or qalias Alias queues

qr or qremote Remote queues

qm or qmodel Model queues

qmgr Queue manager object

* or all All of the above

 Optional parameters
-m QMgrName

Specifies the name of the queue manager for which images are to be
recorded. If omitted, the command operates on the default queue
manager.

-z Suppresses error messages.

GenericObjName
Specifies the name of the object that is to be recorded. This parameter
may have a trailing asterisk to indicate that any objects with names
matching the portion of the name prior to the asterisk are to be recorded.

This parameter is required unless you are recording a queue manager.

 Chapter 15. MQSeries control commands 195

 rcdmqimg

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
68 Media recovery is not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
131 Resource problem
132 Object damaged
135 Temporary object cannot be recorded

 Examples
The following command records an image of the queue manager object
saturn.queue.manager in the log.

rcdmqimg -t qmgr -m saturn.queue.manager

 Related commands
rcrmqobj Recreate a queue manager object

196 MQSeries for Digital OpenVMS V2R2 System Management Guide

 rcrmqobj

rcrmqobj (Recreate object)

 Purpose
Use the rcrmqobj command to recreate an object, or group of objects, from their
images contained in the log. Use the associated command, rcdmqimg , to record
the object images to the log.

This command must be used on a running queue manager. All activity on the
queue manager after the image was recorded is logged. To recreate an object you
must replay the log to recreate events that occurred after the object image was
captured.

 Syntax

55──rcrmqobj─ ──┬ ┬──────────────── ──┬ ┬────── ─-t ObjectType───────────────────5
 └ ┘─ -m ──QMgrName─ └ ┘─ -z ─

5─ ──┬ ┬──────────────── ───5%
 └ ┘ ─GenericObjName─

 Required parameters
-t ObjectType

Specifies the type of objects to be recreated. Valid object types are:

prcs or process Processes

q or queue All types of queue

ql or qlocal Local queues

qa or qalias Alias queues

qr or qremote Remote queues

qm or qmodel Model queues

* or all All the above

syncfil e The channel synchronization file

Note: Using this flag causes the channel
synchronization file to be regenerated for the
queue manager specified. This is necessary
because the file is not saved by the rcdmqimg
command.

 Optional parameters
-m QMgrName

Specifies the name of the queue manager for which objects are to be
recreated. If omitted, the command operates on the default queue manager.

-z Suppresses error messages.

GenericObjName
Specifies the name of the object that is to be recreated. This parameter may
have a trailing asterisk to indicate that any objects with names matching the
portion of the name prior to the asterisk are to be recreated.

 Chapter 15. MQSeries control commands 197

 rcrmqobj

This parameter is required unless the object type is the channel
synchronization file. If an object name is supplied for this type, it is ignored.

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
66 Media image not available
68 Media recovery is not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
135 Temporary object cannot be recovered
136 Object in use

 Examples
1. The following command recreates all local queues for the default queue

manager:

rcrmqobj -t ql \

2. The following command recreates all remote queues associated with queue
manager store:

rcrmqobj -m store -t qr

 Related commands
rcdmqimg Record an MQSeries object in the log

198 MQSeries for Digital OpenVMS V2R2 System Management Guide

 rsvmqtrn

rsvmqtrn (Resolve MQSeries transactions)

 Purpose
Use the rsvmqtrn command to give a commit or backout decision to an in-doubt
transaction.

Notes:

1. This command must be used only in situations where you are certain that the
transaction will not be resolved by the normal protocols. Issuing this command
may result in the loss of transactional integrity between resource managers for
a distributed transaction.

2. The only time that you can expect to use this command is if you are using an
external transaction manager and are involved with two-phase commitment
procedures.

If you do not use two-phase commit, do not use this command.

This command should be used only if the syncpoint manager has failed to
resolve a transaction.

 Syntax

55──rsvmqtrn─ ──┬ ┬─ -c ─ ─ -m ──QMgrName──Transaction────────────────────────5%
└ ┘─ -b ─

 Required parameters
-c Specifies a commit decision.

-b Specifies a backout decision.

There is no default; you must supply one of these options.

-m QMgrName
Specifies the name of the queue manager whose transactions are to be
resolved. The queue manager name must be specified.

Transaction
Specifies the transaction number of the transaction of interest. The number
can be determined by using the dspmqtrn command to display all
transactions on a queue manager that have been left in a prepared (in-doubt)
state.

 Chapter 15. MQSeries control commands 199

 rsvmqtrn

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
85 Transactions not known

 Related commands
dspmqtrn Display list of prepared transactions

200 MQSeries for Digital OpenVMS V2R2 System Management Guide

 runmqchi

runmqchi (Run channel initiator)

 Purpose
Use the runmqchi command to run a channel initiator process. For more
information about the use of this command, refer to the MQSeries Distributed
Queuing Guide.

 Syntax

55──runmqchi─ ──┬ ┬────── ──┬ ┬───────────────────── ──┬ ┬────────────── ─────────5%
 └ ┘─ -b ─ └ ┘── -q InitiationQName └ ┘── -m QMgrName

 Optional parameters
-b The default is to run the command in the foreground. This flag runs the

command in batch (background) operation. The default batch queue is
SYS$BATCH and you can override the default with the logical name
MQS_BATCH.

-q InitiationQName
Specifies the name of the initiation queue to be processed by this channel
initiator. If not specified, SYSTEM.CHANNEL.INITQ is used.

-m QMgrName
Specifies the name of the queue manager on which the initiation queue
exists. If the name is omitted, the default queue manager is used.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If errors occur that result in return codes of either 10 or 20, you should review the
queue manager error log that the channel is associated with for the error
messages. You should also review the $SYSTEM error log, as problems that occur
before the channel is associated with the queue manager are recorded there. For
more information about error logs, see “Error logs” on page 160.

 Chapter 15. MQSeries control commands 201

 runmqchl

runmqchl (Run channel)

 Purpose
Use the runmqchl command to run a Sender (SDR), a Requester (RQSTR), or a
fully-qualified server (SVR) channel.

The channel runs synchronously. To stop the channel, issue the MQSC command
STOP CHANNEL.

 Syntax

55──runmqchl─ ──┬ ┬────── ── -c ChannelName ──┬ ┬────────────── ─────────────────5%
 └ ┘─ -b ─ └ ┘── -m QMgrName

 Required parameters
-c ChannelName

Specifies the name of the channel to run.

 Optional parameters
-b The default is to run the command in the foreground. This flag runs the

command in batch (background) operation. The default batch queue is
SYS$BATCH and you can override the default with the logical name
MQS_BATCH.

-m QMgrName
Specifies the name of the queue manager with which this channel is
associated. If no name is specified, the default queue manager is used.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If return codes 10 or 20 are generated, review the error log of the associated queue
manager for the error messages. You should also review the $SYSTEM error log
because problems that occur before the channel is associated with the queue
manager are recorded there.

202 MQSeries for Digital OpenVMS V2R2 System Management Guide

 runmqdlq

runmqdlq (Run dead-letter queue handler)

 Purpose
Use the runmqdlq command to start the dead-letter queue (DLQ) handler, a utility
that you can run to monitor and handle messages on a dead-letter queue.

The dead-letter queue handler can be used to perform various actions on selected
messages by specifying a set of rules that can both select a message and define
the action to be performed on that message.

The runmqdlq command takes its input from SYS$INPUT When the command is
processed, the results and a summary are put into a report that is sent to
SYS$OUTPUT

By taking SYS$INPUT from the keyboard, you can enter runmqdlq rules
interactively.

By redirecting the input from a file, you can apply a rules table to the specified
queue. The rules table must contain at least one rule.

If the DLQ handler is used in foreground mode without redirecting SYS$INPUT from a
file, (the rules table) the DLQ handler:

� Reads its input from the keyboard.

� Does not start to process the named queue until it receives an end_of_file
(ctrl-Z) character.

If used in batch mode SYS$INPUT must be redirected from a file.

For more information about rules tables and how to construct them, see “The DLQ
handler rules table” on page 108.

 Syntax

55──runmqdlq─ ──┬ ┬────── ──┬ ┬───────────────────────── ───────────────────────5%
 └ ┘─ -b ─ └ ┘─ QName ─ ──┬ ┬────────────
 └ ┘─ QMgrName ─

 Optional parameters
The MQSC rules for comment lines and for joining lines also apply to the DLQ
handler input parameters.

QName Specifies the name of the queue to be processed.

If no name is specified the dead letter queue defined for the local queue
manager is used. If one or more blanks (' ') are used, the dead letter
queue of the local queue manager is explicitly assigned.

A DLQ handler can be used to select particular messages on a dead-letter
queue for special processing. For example, you could redirect the
messages to different dead-letter queues. Subsequent processing with
another instance of the DLQ handler might then process the messages,
according to a different rules table.

 Chapter 15. MQSeries control commands 203

 runmqdlq

QMgrName
The name of the queue manager that owns the queue to be processed.

If no name is specified, the default queue manager for the installation is
used. If one or more blanks (' ') are used, the default queue manager
for this installation is explicitly assigned.

204 MQSeries for Digital OpenVMS V2R2 System Management Guide

 runmqlsr

runmqlsr (Run listener)

 Purpose
The runmqlsr (Run listener) command starts a listener batch job for inbound LU 6.2
channels.

The default is to run the command in the foreground. This flag runs the command
in batch (background) operation. The default batch queue is SYS$BATCH and you
can override the default with the logical name MQS_BATCH.

 Syntax

55──runmqlsr─ ── -g GatewayName(AccessName) ── -n TpName ──┬ ┬────────────── ───5%
└ ┘── -m QMgrName

 Required parameters
-g GatewayName(AccessName)

Specifies the gateway name of the machine on which runmqlsr is being
run.

AccessName
Specifies the access name on the gateway that defines the LUs serviced
by the listener.

-n TpName
Specifies the tpname.

 Optional parameters
-m QMgrName

Specifies the name of the queue manager with which the listener is
associated. If no name is specified, the command operates on the default
queue manager.

 Return codes
0 Command completed normally

10 Command completed with unexpected results

20 An error occurred during processing

 Chapter 15. MQSeries control commands 205

 runmqsc

runmqsc (Run MQSeries commands)

 Purpose
Use the runmqsc command to issue MQSC commands to a queue manager.
MQSC commands enable you to perform administration tasks, for example defining,
altering, or deleting a local queue object. MQSC commands and their syntax are
described in the MQSeries Command Reference.

 Syntax

 ┌ ┐────────────────────────────
55──runmqsc─ ───

6
┴┬ ┬──────────────────────── ──┬ ┬────────── ───────────────────5%

├ ┤─ -e ─────────────────── └ ┘ ─QMgrName─
├ ┤─ -v ───────────────────

 └ ┘── -w WaitTime ──┬ ┬──────
 └ ┘─ -x ─

 Description
You can invoke the runmqsc command in three modes:

Verify mode MQSC commands are verified but not actually run. An output
report is generated indicating the success or failure of each
command. This mode is only available on a local queue
manager.

Direct mode MQSC commands are sent directly to a local queue manager.

Indirect mode MQSC commands are run on a remote queue manager. These
commands are put on the command queue on a remote queue
manager and are run in the order in which they were queued.
Reports from the commands are returned to the local queue
manager.

The runmqsc command takes its input from SYS$INPUT. When the commands are
processed, the results and a summary are put into a report that is sent to
SYS$OUTPUT.

By taking SYS$INPUT from the keyboard, you can enter MQSC commands
interactively.

By redirecting the input from a file you can run a sequence of frequently-used
commands contained in the file. You can also redirect the output report to a file.

 Optional parameters
-e Prevents source text for the MQSC commands from being copied into a

report. This is useful when you enter commands interactively.

-v Specifies verification mode; this verifies the specified commands without
performing the actions. This mode is only available locally. The -w and -x
flags are ignored if they specified at the same time.

-w WaitTime
Specifies indirect mode, that is, the MQSC commands are to be run on
another queue manager. You must have the required channel and

206 MQSeries for Digital OpenVMS V2R2 System Management Guide

 runmqsc

transmission queues set up for this. See “Preparing channels and
transmission queues for remote administration” on page 73 for more
information.

WaitTime Specifies the time, in seconds, that runmqsc waits for replies.
Any replies received after this are discarded, however, the
MQSC commands are still run. Specify a time between 1 and
999 999 seconds.

Each command is sent as an Escape PCF to the command
queue (SYSTEM.ADMIN.COMMAND.QUEUE) of the target
queue manager.

The replies are received on queue
SYSTEM.MQSC.REPLY.QUEUE and the outcome is added to
the report. This can be defined as either a local queue or a
model queue.

Indirect mode operation is performed through the default queue
manager.

This flag is ignored if the -v flag is specified.

-x Specifies that the target queue manager is running under MVS/ESA. This
flag applies only in indirect mode. The -w flag must also be specified. In
indirect mode, the MQSC commands are written in a form suitable for the
MQSeries for MVS/ESA command queue.

QMgrName
Specifies the name of the target queue manager on which the MQSC
commands are to be run. If omitted, the MQSC commands run on the default
queue manager.

 Return codes
0 MQSC command file processed successfully.

10 MQSC command file processed with errors—report contains reasons for
failing commands.

20 Error—MQSC command file not run.

 Examples
1. Type in this command at the OpenVMS command prompt:

runmqsc

Now you can type MQSC commands directly at the OpenVMS command
prompt. No queue manager name was specified, therefore, the MQSC
commands are processed on the default queue manager.

 Chapter 15. MQSeries control commands 207

 runmqsc

2. Use this command to specify that MQSC commands are verified only:

runmqsc -v “BANK” < DKAð:[USERS]COMMFILE.IN

This verifies the MQSC command file commfile.in in directory DKAð:[USERS].
The queue manager name is BANK. The output is displayed in the current
window.

3. This command runs the MQSC command file MQS_ROOT:[MQM.MQSC]MQSCFILE.IN

against the default queue manager.

runmqsc < MQS_ROOT:[MQM.MQSC]MQSCFILE.IN > MQS_ROOT:[MQM.MQSC]MQSCFILE.OUT

In this example, the output is directed to file
MQS_ROOT:[MQM.MQSC]MQSCFILE.OUT.

208 MQSeries for Digital OpenVMS V2R2 System Management Guide

 runmqtmc

runmqtmc (Start client trigger monitor)

 Purpose
Use the runmqtmc command to invoke a trigger monitor for a client. For further
information about using trigger monitors, refer to the MQSeries Application
Programming Guide.

Note: This command is available only on VMS, OS/2, and AIX clients.

 Syntax

55──runmqtmc─ ──┬ ┬────── ──┬ ┬────────────── ──┬ ┬───────────────────── ─────────5%
 └ ┘─ -b ─ └ ┘── -m QMgrName └ ┘── -q InitiationQName

 Optional parameters
-b The default is to run the command in the foreground. This flag runs the

command in batch (background) operation. The default batch queue is
SYS$BATCH and you can override the default with the logical name
MQS_BATCH.

-m QMgrName
Specifies the name of the queue manager on which the client trigger monitor
operates. If omitted, the client trigger monitor operates on the default queue
manager.

-q InitiationQName
Specifies the name of the initiation queue to be processed. If omitted,
SYSTEM.DEFAULT.INITIATION.QUEUE is used.

 Return codes
0 Not used. The client trigger monitor is designed to run continuously and

therefore not to end. The value is reserved.

10 Client trigger monitor interrupted by an error.

20 Error—client trigger monitor not run.

 Chapter 15. MQSeries control commands 209

 runmqtrm

runmqtrm (Start trigger monitor)

 Purpose
Use the runmqtrm command to invoke a trigger monitor. For further information
about using trigger monitors, refer to the MQSeries Application Programming
Guide.

 Syntax

55──runmqtrm─ ──┬ ┬────── ──┬ ┬────────────── ──┬ ┬───────────────────── ─────────5%
 └ ┘─ -b ─ └ ┘── -m QMgrName └ ┘── -q InitiationQName

 Optional parameters
-b The default is to run the command in the foreground. This flag runs the

command in batch (background) operation. The default batch queue is
SYS$BATCH and you can override the default with the logical name
MQS_BATCH.

-m QMgrName
Specifies the name of the queue manager on which the trigger monitor
operates. If omitted, the trigger monitor operates on the default queue
manager.

-q InitiationQName
Specifies the name of the initiation queue to be processed. If omitted,
SYSTEM.DEFAULT.INITIATION.QUEUE is used.

 Return codes
0 Not used. The trigger monitor is designed to run continuously and therefore

not to end. Hence a value of 0 would not be seen. The value is reserved.

10 Trigger monitor interrupted by an error.

20 Error—trigger monitor not run.

210 MQSeries for Digital OpenVMS V2R2 System Management Guide

 setmqaut

setmqaut (Set/reset authority)

 Purpose
Use the setmqaut command to change the authorizations to an object or to a class
of objects. Authorizations can be granted to, or revoked from, any number of
principals or groups.

 Syntax

55──setmqaut─ ── -m QMgrName ──┬ ┬──────────────── ── -t ObjectType ─────────────5
└ ┘── -n ObjectName

 ┌ ┐───────────────────────────
5─ ──┬ ┬────────────────────── ───

6
┴──┬ ┬─ -p ──PrincipalName─ ───────────────────5

└ ┘── -s ServiceComponent └ ┘─ -g ──GroupName─────

 ┌ ┐───
5─ ───

6
┴──┬ ┬─┤ MQI authorizations ├──────────── ──────────────────────────────5%

 ├ ┤─┤ Context authorizations ├────────
 ├ ┤─┤ Administration authorizations ├─
 └ ┘─┤ Generic authorizations ├────────

MQI authorizations:
 ┌ ┐──────────────────────
├─ ───

6
┴─── ───┬ ┬─ +get ───── ──┤

├ ┤─ –get ─────
├ ┤─ +browse ──
├ ┤─ –browse ──
├ ┤─ +put ─────
├ ┤─ –put ─────
├ ┤─ +inq ─────
├ ┤─ –inq ─────
├ ┤─ +set ─────
├ ┤─ –set ─────
├ ┤─ +connect ─
├ ┤─ –connect ─
├ ┤─ +altusr ──
└ ┘─ –altusr ──

Context authorizations:
 ┌ ┐──────────────────────
├─ ───

6
┴─── ───┬ ┬─ +passid ── ──┤

├ ┤─ –passid ──
├ ┤─ +passall ─
├ ┤─ –passall ─
├ ┤─ +setid ───
├ ┤─ –setid ───
├ ┤─ +setall ──
└ ┘─ –setall ──

 Chapter 15. MQSeries control commands 211

 setmqaut

Administration authorizations:
 ┌ ┐──────────────────
├─ ───

6
┴─── ───┬ ┬─ +crt ─ ──┤

├ ┤─ –crt ─
├ ┤─ +dlt ─
├ ┤─ –dlt ─
├ ┤─ +chg ─
├ ┤─ –chg ─
├ ┤─ +dsp ─
├ ┤─ –dsp ─
├ ┤─ +cpy ─
├ ┤─ –cpy ─
├ ┤─ +clr ─
└ ┘─ –clr ─

Generic authorizations:
 ┌ ┐─────────────────────
├─ ───

6
┴─── ───┬ ┬─ +allmqi ─ ───┤

├ ┤─ –allmqi ─
├ ┤─ +alladm ─
├ ┤─ –alladm ─
├ ┤─ +all ────
└ ┘─ –all ────

 Description
You can use this command both to set an authorization, that is, give a user group
or principal permission to perform an operation, and to reset an authorization, that
is, remove the permission to perform an operation. You must specify the user
groups and principals to which the authorizations apply and also the queue
manager, object type, and object name of the object. You can specify any number
of groups and principals in a single command.

Attention: If you specify a set of authorizations for a principal, the same
authorizations are given to all principals in the same primary group.

The authorizations that can be given are categorized as follows:

� Authorizations for issuing MQI calls
� Authorizations for MQI context
� Authorizations for issuing commands for administration tasks

 � Generic authorizations

Each authorization to be changed is specified in an authorization list as part of the
command. Each item in the list is a string prefixed by ‘+’ or ‘−’. For example, if
you include +put in the authorization list, you are giving authority to issue MQPUT
calls against a queue. Alternatively, if you include −put in the authorization list, you
are removing the authorization to issue MQPUT calls.

Authorizations can be specified in any order provided that they do not clash. For
example, specifying allmqi with set causes a clash.

You can specify as many groups or authorizations as you require in a single
command.

If a user ID is a member of more than one group, the authorizations that apply are
the union of the authorizations of each group to which that user ID belongs.

212 MQSeries for Digital OpenVMS V2R2 System Management Guide

 setmqaut

 Required parameters
-m QMgrName

Specifies the name of the queue manager of the object for which the
authorizations are to be changed. The name can contain up to 48 characters.

-t ObjectType
Specifies the type of object for which the authorizations are to be changed.

Possible values are:

� q or queue
� prcs or process

 � qmgr

 Optional parameters
-n ObjectName

Specifies the name of the object for which the authorizations are to be
changed.

This is a required parameter unless it is the queue manager itself. You
must specify the name of a queue manager, queue, or process, but must
not use a generic name.

-p PrincipalName
Specifies the name of the principal for which the authorizations are to be
changed.

You must have at least one principal or one group.

-g GroupName
Specifies the name of the rights identifier representing the user group
whose authorizations are to be changed. You can specify more than one
rights identifier name, but each name must be prefixed by the -g flag.

-s ServiceComponent
This parameter applies only if you are using installable authorization
services, otherwise it is ignored.

If installable authorization services are supported, this parameter specifies
the name of the authorization service to which the authorizations apply.
This parameter is optional; if it is not specified, the authorization update is
made to the first installable component for the service.

Authorizations
Specifies the authorizations to be given or removed. Each item in the list
is prefixed by a ‘+’ indicating that authority is to be given, or a ‘−’,
indicating that authorization is to be removed. For example, to give
authority to issue an MQPUT call from the MQI, specify +put in the list.
To remove authority to issue an MQPUT call, specify −put.

Table 13 on page 214 shows the authorities that can be given to the
different object types.

 Chapter 15. MQSeries control commands 213

 setmqaut

Authorizations for MQI calls

altusr Use an alternate user ID in a message.

See the MQSeries Application Programming Guide for more
information about alternate user IDs.

browse Retrieve a message from a queue by issuing an MQGET call with
the BROWSE option.

connect Connect the application to the specified queue manager by issuing
an MQCONN call.

get Retrieve a message from a queue by issuing an MQGET call.

inq Make an inquiry on a specific queue by issuing an MQINQ call.

put Put a message on a specific queue by issuing an MQPUT call.

set Set attributes on a queue from the MQI by issuing an MQSET call.

Note: If you open a queue for multiple options, you have to be authorized for
each of them.

Table 13. Specifying authorizations for different object types

Authority Queue Process Qmgr

all √ √ √

alladm √ √ √

allmqi √ √ √

altusr √

browse √

chg √ √ √

clr √

connect √

crt √ √ √

dlt √ √ √

dsp √ √ √

put √

inq √ √ √

get √

passall √

passid √

set √ √ √

setall √ √

setid √ √

214 MQSeries for Digital OpenVMS V2R2 System Management Guide

 setmqaut

Authorizations for context

passall Pass all context on the specified queue. All the context fields are
copied from the original request.

passid Pass identity context on the specified queue. The identity context
is the same as that of the request.

setall Set all context on the specified queue. This is used by special
system utilities.

setid Set identity context on the specified queue. This is used by
special system utilities.

Authorizations for commands

chg Change the attributes of the specified object.

clr Clear the specified queue (PCF Clear queue command only).

cpy Copy the attributes of the specified object (PCF Copy commands
only).

crt Create objects of the specified type.

dlt Delete the specified object.

dsp Display the attributes of the specified object.

Authorizations for generic operations

all Use all operations applicable to the object.

alladm Perform all administration operations applicable to the object.

allmqi Use all MQI calls applicable to the object.

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing
150 Authorization specification missing
151 Invalid authorization specification

 Chapter 15. MQSeries control commands 215

 setmqaut

 Examples
1. This example shows a command that specifies that the object on which

authorizations are being given is the queue orange.queue on queue manager
saturn.queue.manager.

setmqaut -m saturn.queue.manager -n orange.queue -t queue -g tango +inq +alladm

The authorizations are being given to user group tango and the associated
authorization list specifies that user group tango:

� Can issue MQINQ calls.
� Has authority to perform all administration operations on that object.

2. In this example, the authorization list specifies that user group foxy:

� Cannot issue any calls from the MQI to the specified queue.
� Has authority to perform all administration operations on the specified

queue.

setmqaut -m saturn.queue.manager -n orange.queue -t queue -g foxy -allmqi +alladm

 Related commands
dspmqaut Display authority

216 MQSeries for Digital OpenVMS V2R2 System Management Guide

 strmqcsv

strmqcsv (Start command server)

 Purpose
Use the strmqcsv command to start the command server for the specified queue
manager. This enables MQSeries to process commands sent to the command
queue.

 Syntax

55──strmqcsv──QMgrName───5%

 Required parameters
QMgrName

Specifies the name of the queue manager for which the command server is to
be started.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following command starts a command server for queue manager earth:

strmqcsv earth

 Related commands
endmqcsv End a command server

dspmqcsv Display the status of a command server

 Chapter 15. MQSeries control commands 217

 strmqm

strmqm (Start queue manager)

 Purpose
Use the strmqm command to start a local queue manager.

 Syntax

55──strmqm─ ──┬ ┬────── ──┬ ┬────────── ──5%
 └ ┘─ -z ─ └ ┘ ─QMgrName─

 Optional parameters
QMgrName

Specifies the name of a local queue manager to be started. If omitted, the
default queue manager is started.

-z Suppresses error messages.

This flag is used within MQSeries to suppress unwanted error messages.
Because using this flag could result in loss of information, you should not use
it when entering commands on a command line.

 Return codes
0 Queue manager started
3 Queue manager being created
5 Queue manager running
16 Queue manager does not exist
23 Log not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
100 Log location invalid

 Examples
The following command starts the queue manager account:

strmqm account

 Related commands
crtmqm Create a queue manager

dltmqm Delete a queue manager

endmqm End a queue manager

218 MQSeries for Digital OpenVMS V2R2 System Management Guide

 strmqtrc

strmqtrc (Start MQSeries trace)

 Purpose
Use the strmqtrc command to enable tracing. This command can be run whether
tracing is enabled or not. If tracing is already enabled, the trace options in effect
are modified to those specified on the latest invocation of the command.

 Syntax

55──strmqtrc─ ──┬ ┬────────────── ──┬ ┬────── ──┬ ┬─────────────── ───────────────5%
 └ ┘── -m QMgrName └ ┘─ -e ─ └ ┘── -t TraceType

 Optional parameters
-m QMgrName

Is the name of the queue manager to be traced.

A queue manager name and the -m flag can be specified on the same
command as the -e flag. If more than one trace specification applies to a
given entity being traced, the actual trace includes all of the specified options.

It is an error to omit the -m flag and queue manager name, unless the -e flag
is specified.

-e If this flag is specified, early tracing is requested. Consequently, it is possible
to trace the creation or startup of a queue manager. This involves trace
information being written, before the processes know to which MQSeries
component they belong. Any process, belonging to any component of any
queue manager, traces its early processing if this flag is specified. The
default, if this flag is not specified, is not to perform early tracing.

-t TraceType
Defines which points during processing can be traced. If this flag is omitted,
all trace points are enabled and a full trace generated.

Alternatively, one or more of the options in the following list can be supplied.

Note: If multiple trace types are supplied, each must have its own -t flag.
Any number of -t flags can be specified, as long as each has a valid
trace type associated with it.

It is not an error to specify the same trace type on multiple -t flags.

all Output data for every trace point in the system. This is also the default if the
-t flag is not specified.

api Output data for trace points associated with the MQI and major queue
manager components.

comms
Output data for trace points associated with data flowing over communications
networks.

csflows
Output data for trace points associated with processing flow in common
services.

 Chapter 15. MQSeries control commands 219

 strmqtrc

lqmflows
Output data for trace points associated with processing flow in the local queue
manager.

remoteflows
Output data for trace points associated with processing flow in the
communications component.

otherflows
Output data for trace points associated with processing flow in other
components.

csdata
Output data for trace points associated with internal data buffers in common
services.

lqmdata
Output data for trace points associated with internal data buffers in the local
queue manager.

remotedata
Output data for trace points associated with internal data buffers in the
communications component.

otherdata
Output data for trace points associated with internal data buffers in other
components.

versiondata
Output data for trace points associated with the version of MQSeries running.

commentary
Output data for trace points associated with comments in the MQSeries
components.

 Return codes
AMQ7024

This message is issued if arguments that are not valid are supplied to the
command.

AMQ8304
The maximum number of nine concurrent traces is already running.

 Examples
This command enables tracing of data from common services and the local queue
manager, for a queue manager called QM1.

strmqtrc -m QM1 -t csdata -t lqmdata

220 MQSeries for Digital OpenVMS V2R2 System Management Guide

 strmqtrc

 Related commands
dspmqtrc Display formatted trace output

endmqtrc End MQSeries trace

 Chapter 15. MQSeries control commands 221

 strmqtrc

222 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Part 3. Appendixes

 Copyright IBM Corp. 1995, 1997 223

224 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Overview

Appendix A. MQSeries for Digital OpenVMS at a glance

Program and part number
� 5697-271 MQSeries for Digital OpenVMS VAX Version 2 Release 2 (Europe,

the Middle East and Africa only), part numbers 83H8438 for TK50 tape and
83H8440 for CD-ROM.

� 5697-270 MQSeries for Digital OpenVMS AXP Version 2 Release 2 (Europe,
the Middle East and Africa only), part number 83H8439.

 Hardware requirements
 � MQSeries Servers:

Any Digital VAX or AXP machine

Minimum system disk space 16 MB on a VAX machine and 18 MB on an
AXP machine.

 Software requirements
Software requirements are identical for server and client Digital OpenVMS
environments unless otherwise stated.

Minimum supported levels are shown. Later levels, if any, will be supported unless
otherwise stated.

� Digital OpenVMS Version 6.2 or later

 � MQSeries Clients:

Client code for Digital OpenVMS, OS/2, DOS and Windows 3.1 workstations is
distributed with the server code.

The Windows 3.1 client can operate under Windows 3.1, Windows 95 or within
the WIN-OS/2 environment under OS/2.

Client software provides a remote interface to a LAN server. It may reside at
the server or at a file server and be dynamically copied to the client for use, or
it may reside on the client disk space.

Client support does not result in distributed coordination of units of work.

 Connectivity
Network protocols supported are SNA LU6.2, TCP/IP, DECnet Phase IV, and
DECnet Phase V.

For SNA connectivity:

SNA APPC LU6.2 Programming Interface software and license must be
installed, and access to a suitably configured DECnet SNA gateway.

For TCP/IP connectivity:

DEC TCP/IP Services for OpenVMS Version 4.0 or higher or
Cisco Multinet Version 3.5 or higher

 Copyright IBM Corp. 1995, 1997 225

 Overview

Compilers supported for MQSeries for Digital OpenVMS applications
� Programs can be written using C, C++ or COBOL
� C programs can use the DEC C compiler
� C++ programs can use the DEC C++ compiler
� COBOL programs can use the DEC COBOL compiler

 Delivery
CD-ROM containing MQSeries for Digital OpenVMS installation images.

MQSeries for OpenVMS VAX is also available on TK50 tape.

 Installation
MQSeries for Digital OpenVMS is installed with the OpenVMS VMSINSTAL utility.
Installation takes approximately 10 minutes.

226 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Defaults

 Appendix B. System defaults

The sample MQSC command file amqscoma.tst contains definitions for the
MQSeries for Digital OpenVMS default and system objects. The default object
definitions contain a complete set of attributes for that object. When you create an
object, its attributes are inherited from the default object, except the ones you
explicitly specify. The system objects are required for the operation of a queue
manager or channel. Table 14 lists the objects defined in amqscoma.tst.

You should create these objects for each queue manager on a given node. To
create these objects, see “Running the supplied MQSC command files” on
page 55.

Table 14. Objects included in amqscoma.tst

Object name Description

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

SYSTEM.DEAD.LETTER.QUEUE Sample dead-letter
(undelivered-message) queue.

SYSTEM.DEFAULT.PROCESS Default process definition.

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SVRCONN Default server connection channel.

SYSTEM.DEF.CLNTCONN Default client connection channel.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ Channel synchronization queue.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used
for remote MQSC commands, and PCF
commands.

SYSTEM.MQSC.REPLY.QUEUE MQSC reply-to queue. This is a model
queue that creates a temporary dynamic
queue for replies to remote MQSC
commands.

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channel events.

 Copyright IBM Corp. 1995, 1997 227

 Defaults

228 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Directory structure

 Appendix C. Directory structure

Figure 16 shows the general layout of the data and log directories associated with
a specific queue manager. The directories shown apply to the default installation.
If you change this, the locations of the files and directories will be modified
accordingly.

[.log]

[.qmname]

[$ SYSTEM]

mqs.ini

[.qmgrs] [. errors]

amqalchk.fil

[.auth]

[.qmname] amqhlctl.lfh

[.active]

[.dce]

[.errors]

[.$ ipcc]

[.plugcomp]

[.procdef]

[.qmanager]

qm.ini

[.queues]

[.startprm]

[.esem]

[.isem]

[.msem]

[.shmem]

[.ssem]

[.esem]

[.isem]

[.msem]

[.shmem]

[.ssem]

mqs_ root: [mqm]

$ class

$ class

self

$ class

QMANAGER

QMQMOBJCAT

AMQCLCHL.TAB

AMQRFCDA.DAT

AMQRSYNA.DAT

[.PerQUEUE]

S0000000.LOG

S0000001.LOG

S0000002.LOG

AMQERR01.LOG

AMQERR02.LOG

AMQERR03.LOG

[.PerQUEUE]

$ aclass

[.procdef]

[.qmanager]

[.queues]

QAADMIN

Figure 16. Default directory structure after a queue manager has been started

 Copyright IBM Corp. 1995, 1997 229

 Directory structure

In Figure 16, the layout is representative of MQSeries after a queue manager has
been in use for some time. The actual structure that you have depends on which
operations have occurred on the queue manager.

By default, the following directories and files located in the directory
MQS_ROOT:[MQM.QMGRS.QMNAME].

AMQALCHK.FIL
Checkpoint file containing information about last checkpoint.

AUTH. This directory contains subdirectories and files associated with
authority.

$ACLASS This file contains the authority stanzas for all
classes.

PROCDEF This directory contains a file for each process
definition. Each file contains the authority stanzas
for the associated process definition.

$CLASS This file contains the authority stanzas
for the process definition class.

QMANAGER

$CLASS This file contains the authority stanzas
for the queue manager class.

SELF This file contains the authority stanzas
for the queue manager object.

QUEUES This directory contains a file for each queue. Each
file contains the authority stanzas for the associated
queue.

$CLASS This file contains the authority stanzas
for the queue class.

QAADMIN File used internally for controlling authorizations.

DCE Empty directory reserved for use by DCE support.

ERRORS The operator message files, from newest to oldest:

 AMQERR01.LOG
 AMQERR02.LOG
 AMQERR03.LOG

PLUGCOMP Empty directory reserved for use by installable services.

PROCDEF Each MQSeries process definition is associated with a file in this
directory. The file name matches the process definition
name—subject to certain restrictions; see “Understanding
MQSeries file names” on page 42.

QMANAGER

QMANAGER The queue manager object.

QMQMOBJCAT The object catalogue containing the list of all
MQSeries objects—used internally.

QM.INI Queue manager configuration file.

230 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Directory structure

QUEUES Each queue has a directory in here containing a single file
called ‘q’.

The file name matches the queue name—subject to certain
restrictions; see “Understanding MQSeries file names” on
page 42.

STARTPRM Directory containing temporary files used internally.

ESEM Directories containing files used internally.
ISEM
MSEM
SHMEM

PerQUEUE Directory containing files used internally.

SSEM Directory containing files used internally.
$IPCC

AMQCLCHL.TAB Client channel table file.
AMQRFCDA.DAT Channel table file.
AMQRSYNA.DAT Channel synchronization file.
ESEM Directories containing files used
MSEM internally.
SSEM
ISEM
SHMEM

PerQUEUE Directory containing files
used internally.

Queue manager log directory structure
By default, the following directories and files are found in
MQS_ROOT:[MQM.LOG.qmname].

The following subdirectories and files exist after you have installed MQSeries,
created and started a queue manager, and have been using that queue manager
for some time.

AMQHLCTL.LFH
Log control file.

ACTIVE This directory contains the log files, numbered as follows:

 S0000000.LOG
 S0000001.LOG
 S0000002.LOG

... and so on.

 Appendix C. Directory structure 231

 Directory structure

232 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Samples

Appendix D. Sample MQI programs and MQSC files

MQSeries for Digital OpenVMS provides a set of short sample MQI programs and
MQSC command files that you can use and experiment with.

MQSC command file samples
Table 15 lists the MQSC command file samples. These are simply ASCII text files
containing MQSC commands. You can invoke the runmqsc command against
each file in turn to create the objects specified in the file. See “Running the
supplied MQSC command files” on page 55.

By default, these files are located in directory MQS_EXAMPLES.

Table 15. MQSC command files

File name Purpose

AMQSCOMA.TST Contains definitions of the default and system objects. These are required. Any object you
define inherits attributes from the default objects except the attributes that you specify. The
system objects are support the operation of a queue manager.

AMQSCOS0.TST Creates a set of MQI objects for use with the C and COBOL program samples.

C and COBOL program samples
Table 16 lists the sample MQI source files. By default, the source files are located
in directory MQS_EXAMPLES and the compiled versions in directory [BIN] under
MQS_EXAMPLES. To find out more about what the programs do and how to use them,
see the MQSeries Application Programming Guide.

Table 16 (Page 1 of 2). Sample programs - source files

C COBOL Purpose

AMQSBCG0.C – Reads and then outputs both the message descriptor and message
context fields of all the messages on a specified queue.

AMQSECHA.C AMQVECHX.COB Echoes a message from a message queue to the reply-to queue.
Can be run as a triggered application program.

AMQSGBR0.C AMQ0GBR0.COB Writes messages from a queue to SYS$OUTPUT leaving the
messages on the queue. Uses MQGET with the browse option.

AMQSGET0.C AMQ0GET0.COB Removes the messages from the named queue (using MQGET) and
writes them to SYS$OUTPUT

AMQSINQA.C AMQVINQX.COB Reads the triggered queue; each request read as a queue name;
responds with information about that queue.

AMQSPUT0.C AMQ0PUT0.COB Copies SYS$INPUT to a message and then puts this message on a
specified queue.

AMQSREQ0.C AMQ0REQ0.COB Puts request messages on a specified queue and then displays the
reply messages.

AMQSSETA.C AMQVSETX.COB Inhibits puts on a named queue and responds with a statement of
the result. Runs as a triggered application.

 Copyright IBM Corp. 1995, 1997 233

 Samples

Table 16 (Page 2 of 2). Sample programs - source files

C COBOL Purpose

AMQSTRG0.C – A trigger monitor that reads a named initiation queue and then starts
the program associated with each trigger message. Provides a
subset of the full triggering function of the supplied runmqtrm
command.

AMQSVFCX.C – A sample C skeleton of a Data Conversion exit routine.

Note: You can create the objects required by these samples using the MQSC command file amqscosð.tst.

 Miscellaneous tools
These tool files are provided to support the formatter and code conversion.

Table 17. Miscellaneous files

File name Location Purpose

AMQTRC.FMT SYS$LIBRARY Defines MQSeries trace formats.

CCSID.TBL MQS_ROOT:[MQM.CONV.TABLE] Edit this file to add any newly supported
CSSID values to your MQSeries system.
For more information about CCSID, see the
CDRA documentation.

234 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Supported codesets

Appendix E. Codeset support on MQSeries for Digital
OpenVMS

MQSeries for Digital OpenVMS supports most of the codesets used by the locales
– that is, the subsets of the user’s environment which define the conventions for a
specific culture – that are provided as standard on MQSeries for Digital OpenVMS.

If the locale is not set the CCSID used is 819 - the ISO8859-1 codeset.

The CCSID (Coded Character Set Identifier) used in MQSeries to identify the
codeset used for the message and message header data is obtained by analyzing
the LC_CTYPE category of the locale configuration.

Table 18 shows the locales and the CCSIDs that are registered for the codeset
used by the locale.

Table 18 (Page 1 of 2). Locales and CCSIDs

Locale Language codeset CCSID

C English ISO8859-1 819

CS_CZ_ISO8859-2 Czech ISO8859-2 912

DA_DK_ISO8859-1 Danish ISO8859-1 819

DE_DE_ISO8859-1 German ISO8859-1 819
DE_CH_ISO8859-1 German - Switzerland ISO8859-1 819

EL_GR_ISO8859-7 Greek ISO8859-7 813

EN_GB_ISO8859-1 English - United Kingdom ISO8859-1 819
EN_US_ISO8859-1 English - USA ISO8859-1 819

ES_ES_ISO8859-1 Spanish ISO8859-1 819

FI_FI_ISO8859-1 Finnish ISO8859-1 819

FR_FR_ISO8859-1 French - France ISO8859-1 819
FR_BE_ISO8859-1 French - Belgium ISO8859-1 819
FR_CA_ISO8859-1 French - Canada ISO8859-1 819
FR_CH_ISO8859-1 French - Switzerland ISO8859-1 819

HU_HU_ISO8859-2 Hungarian ISO8859-2 912

IS_IS_ISO8859-1 Icelandic ISO8859-1 819

IT_IT_ISO8859-1 Italian - Italy ISO8859-1 819

IW_IL_ISO8859-8 Hebrew ISO8859-8 916

JA_JP_EUCJP Japanese eucJP 954
JA_JP_SDECKANJI Japanese SDECKANJI 954**
JA_JP_SJIS Japanese SJIS 932

KO_KR_DECKOREAN Korean DECKOREAN 970**

NL_NL_ISO8859-1 Dutch - Netherlands ISO8859-1 819
NL_BE_ISO8859-1 Dutch - Belgium ISO8859-1 819

NO_NO_ISO8859-1 Norwegian ISO8859-1 819

PL_PL_ISO8859-2 Polish ISO8859-2 912

PT_PT_ISO8859-1 Portuguese ISO8859-1 819

 Copyright IBM Corp. 1995, 1997 235

 Supported codesets

Table 18 (Page 2 of 2). Locales and CCSIDs

Locale Language codeset CCSID

SK_SK_ISO8859-2 Slovak ISO8859-2 912

RU_RU_ISO8859-5 Cyrillic ISO8859-5 915

SV_SE_ISO8859-1 Swedish ISO8859-1 819

TR_TR_ISO8859-9 Turkish ISO8859-9 920

ZH_CN_DECHANZI Chinese - Simplified DECHANZI 1383**
ZH_HK_DECHANZI Chinese - Simplified DECHANZI 1383**

ZH_HK_EUCTW Chinese - Traditional eucTW 964
ZH_TW_EUCTW Chinese - Traditional eucTW 964
ZH_HK_DECHANYU Chinese - Traditional DECHANYU 964**
ZH_TW_DECHANYU Chinese - Traditional DECHANYU 964**
ZH_HK_BIG5 Chinese - Traditional big5 950
ZH_TW_BIG5 Chinese - Traditional big5 950

Note:

** The CCSID used is the nearest registered IBM CCSID.

For further information listing inter-platform support for these locales, see the
MQSeries Application Programming Reference manual.

236 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Trusted applications

Appendix F. Fast messages and trusted applications.

 Note

The information in this appendix will be inserted into the MQSeries Application
Programming Guide the next time that this book is refreshed.

 Fast messages
Fast messages are nonpersistent messages sent by channels outside of batches of
persistent messages.

The performance implication is that the batch size can be set to a large number to
efficiently move the persistent messages, while the nonpersistent messages do not
wait for batch completion. In a lightly loaded system, nonpersistent messages can
travel between applications 80% faster than normal-speed channels.

To enable fast messages on a particular channel of type sender, server, receiver,
or requester, set the following definitions at both ends of the channel after the
CHLTYPE line:

DESCR(‘>>> whatever’) +

The ‘>>>’ as the first characters in the channel description defines this channel as
fast for nonpersistent messages.

Note: If the other end of the channel does not support the option, the channel
runs at normal speed.

 Trusted applications
Applications that have been shown to behave properly can be defined as “Trusted”
and will not need an agent process to interface with the queue manager.

Therefore, the process AMQZLAAO will not exist for these applications. These
applications become an extension to the queue manager and there is no protection
from them overwriting queue manager storage.

The time to process MQPUT and MQGET calls of nonpersistent messages is
reduced by 75%. The MQSeries channel programs can be defined as “Trusted”.

Setting up “trusted” applications
Trusted applications connect directly to queue manager resources, and may need
to create certain resources like shared memory.

The resources can be modified or deleted by another queue manager process and,
therefore, must be owned by the same UIC.

The queue manager processes all run under the MQS_SERVER UIC, and so
trusted applications must also run under this UIC.

 Copyright IBM Corp. 1995, 1997 237

 Trusted applications

An application runs in “trusted” mode if the logical name MQ_CONNECT_TYPE is
defined as FAST.

To set up a trusted application, carry out the following procedure:

1. Run your application from the MQS_SERVER UIC. Either, login to the MQM
account, or issue the following command:

$ SET UIC MQS_SERVER

2. Define the logical name MQ_CONNECT_TYPE as FAST, so that your
application program can access the server, as follows:

$ DEFINE MQ_CONNECT_TYPE FAST

Note: FAST is case sensitive.

Your application will now run as a trusted application.

Trusted channel programs
Channel programs started using the runmqsc start channel command run under
the MQS_SERVER UIC. Channel receiver programs started by incoming TCP (or
DECnet connect) run under the MQS_SERVER UIC, because the definition of the
TCP service (or DECnet object) specifies that the process is to run under the MQM
account.

If the runmqchl command is used to start channels you must either login to the
MQM account, or issue the command:

$ set uic MQS_SERVER

so that the channel program runs under the MQS_SERVER UIC.

To set up a trusted channel:

1. Define the logical name MQ_CONNECT_TYPE to be FAST, so that the
channel program can access the logical.

If you want to have all channels run as trusted applications, you can define the
logical name in the group table for the MQS_SERVER UIC.

The group for the MQS_SERVER UIC defaults to 400 during installation of
MQSeries.

For example:

$ DEFINE/TABLE=LNM$GROUP_ððð4ðð MQ_CONNECT_TYPE FAST

Note: All applications running in the same group as the MQS_SERVER UIC
will attempt to run as trusted applications. If they are not running under
the MQS_SERVER UIC they will fail when they attempt to connect to
the queue manager.

2. Start your channels using the runmqsc start channel command. This starts
the channel processes under the MQS_SERVER UIC. The channel programs
will find the connection type to be FAST from the logical defined in the group
logical name table.

3. If you use the runmqchl command to start your channels, login to the MQM
account, or issue the command:

$ set uic MQS_SERVER

238 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Restrictions

Note: If you use the -b flag to indicate that the channel program should be
submitted as a batch job, you must login to the MQM account because
the batch job runs under the account that submitted it.

4. For SNA listener processes, started using the runmqlsr command, you must
also login to the MQM account, because the listener process runs as a batch
job under the account that submitted it.

Restrictions on Trusted Applications
There are restrictions to the following when using trusted applications:

 � Threaded applications
 � Security
 � Usage
 � Fast channels

 Threaded applications
On Digital OVMS, trusted applications cannot be threaded.

 Security
Trusted applications run MQSeries code directly and use resources owned by
MQS_SERVER, and so must run under the MQS_SERVER UIC.

 Usage
You must stop trusted applications before ending the queue manager with the
endmqm command. This is because Trusted applications are part of the
MQSeries environment.

Unless the application is ended, MQSeries resources will not be freed and the
queue manager cannot be restarted.

If the application has been started under a system service and MQSeries queue
managers are being started automatically, it is necessary to end the application
before shutting the operating system down, because the order of process
termination cannot be guaranteed.

For this reason, when the queue manager is ended with the command endmqm -p

<queue manager>, the queue manager ends trusted applications that are still
connected to the queue manager before closing.

 Fast Channels
You should not stop channels running as trusted applications with mode FORCE. If
you do, the queue manager may be left in an undefined state.

 Appendix F. Fast messages and trusted applications. 239

 Building applications
On Digital OVMS there is a limited number of shared memory segments.
MQSeries uses two additional shared memory segments for trusted applications,
which reduces the amount of shared storage available to Trusted MQSeries
applications.

 Integrity
Before you make an application run as a trusted application check that the
application itself, as well as the user exits and installable services are behaving
properly.

For example, when making channel programs run Trusted, all the channel exits
must also be checked to make sure they behave properly.

240 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Appendix G. Code page conversion tables

 Note

The information in this appendix will be inserted into the MQSeries Application
Programming Reference the next time that this book is refreshed.

Each of the tables shows the conversion support for the characters used by one
language.

Some of the coded character set identifiers (CCSIDs) are used by many languages,
for example CCSID 819 (ISO8859-1 Western European), and appear in many
tables. Other CCSIDs, for example CCSID 273 (German EBCDIC), appear in only
one table.

The following terms are used in the tables:

ISO Indicates that the CCSID is for an ISO 8859 codeset

pc-A Indicates in the AIX and GIS rows that the CCSID is an IBM
defined CCSID used in AIX, AT&T, and OS/2.

-8 Indicates in the HP-UX rows that the CCSID is for the HP-UX
defined codeset roman8

GIS Indicates MQSeries for AT&T GIS UNIX

NT Indicates MQSeries for Windows NT

Solaris Indicates MQSeries for Sun Solaris

SunOS Indicates MQSeries for SunOS

SINIX, DC/OSx Indicates MQSeries for SINIX and DC/OSx

DEC OpenVMS
Indicates MQSeries for Digital OpenVMS and MQSeries for Digital
VMS VAX

Tandem Indicates MQSeries for Tandem NonStop Kernel V2.2

The following codes are used in the tables:

Y Conversion at target supported going to and from source
y No conversion is required because the different MQSeries products are

operating in the same CCSID

The default for data conversion is for the conversion to be performed at the target
(receiving) system.

Where a cell in a table is blank, conversion is not supported by the target product.

If the source product supports the conversion a channel can be set up and data
exchanged by setting the channel attribute DataConversion to YES at the source.
To determine if the source product supports the conversion, read the relevant table
with source and target reversed. If conversion is shown as supported, it is possible
to do conversion in the source product.

 Copyright IBM Corp. 1995, 1997 241

 Code page conversion tables

Notes:

1. If you have MQSeries for MVS/ESA V1.1.3 and have installed APAR PN73611,
you can change the default CCSID. If you have an earlier release, or have not
applied this APAR, CCSID 500 is always used; this means that you can only
use the multilingual code page (Table 27 on page 251).

2. Conversion for MQSeries client information takes place in the server, so the
server must support conversion from the client CCSID to the server CCSID.

3. The OS/2 and Solaris rows include information from some country specific
versions. Not all of the conversions shown in the OS/2 and Solaris rows are
supported by all OS/2 and Solaris versions.

For an extended list of CCSIDs, see the Character Data Representation Reference.
See Table 43 on page 267 for a cross reference between some of the CCSID
numbers and some industry codeset names.

MQSeries for MVS/ESA V1.1.4 provides conversions between single byte CCSIDs
in addition to those listed in the language tables. A complete list of conversions
provided is shown in Table 44 on page 268.

Code page conversion tables

242 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 19. Conversion support: US ENGLISH

Target
│
á

Source ─5 MVS,
OS/400

OS/2, GIS,
NT

AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

AIX, GIS,
NT

HP-UX

 CCSID 37 437 819 850 1051

MVS 37 y Y† Y† Y† Y†

OS/400 37 y Y Y Y

OS/2 437 Y y Y

AIX (pc-A) 850 Y Y Y y Y*

AIX (ISO) 819 Y Y* y Y Y*

HP-UX (ISO) 819 Y Y y Y Y

HP-UX (-8) 1051 Y Y Y Y y

GIS (ISO) 819 Y Y y Y Y

GIS (pc-A) 437 Y y Y Y Y

GIS (pc-A) 850 Y Y Y y Y

NT 437 Y y Y Y Y

NT 850 Y Y Y y Y

Solaris 819 Y Y y Y Y

SunOS 819 Y Y y Y

SINIX, DC/OSx 819 Y Y y Y Y

DEC-OVMS 819 Y Y y Y Y

Tandem 819 Y Y y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

 Appendix G. Code page conversion tables 243

 Code page conversion tables

Table 20. Conversion support: GERMAN

Target
│
á

Source ─5 MVS,
OS/400

GIS, NT AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

OS/2, AIX,
GIS, NT

HP-UX

CCSID 273 437 819 850 1051

MVS 273 y Y† Y† Y† Y†

OS/400 273 y Y Y Y

OS/2 850 Y Y y

AIX (pc-A) 850 Y Y Y y Y*

AIX (ISO) 819 Y Y* y Y Y*

HP-UX (ISO) 819 Y Y y Y Y

HP-UX (-8) 1051 Y Y Y Y y

GIS (ISO) 819 Y Y y Y Y

GIS (pc-A) 437 Y y Y Y Y

GIS (pc-A) 850 Y Y Y y Y

NT 437 Y y Y Y Y

NT 850 Y Y Y y Y

Solaris 819 Y Y y Y Y

SunOS 819 Y Y y Y

SINIX, DC/OSx 819 Y Y y Y Y

DEC-OVMS 819 Y Y y Y Y

Tandem 819 Y Y y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

244 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 21. Conversion support: DANISH and NORWEGIAN

Target
│
á

Source ─5 MVS,
OS/400

AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

OS/2, AIX,
GIS, NT

OS/2, GIS,
NT

HP-UX

 CCSID 277 819 850 865 1051

MVS 277 y Y† Y† Y† Y†

OS/400 277 y Y Y Y

OS/2 850 Y y Y

OS/2 865 Y Y y

AIX (pc-A) 850 Y Y y Y*

AIX (ISO) 819 Y y Y Y*

HP-UX (ISO) 819 Y y Y Y Y

HP-UX (-8) 1051 Y Y Y y

GIS (ISO) 819 Y y Y Y Y

GIS (pc-A) 850 Y Y y Y Y

GIS (pc-A) 865 Y Y Y y

NT 850 Y Y y Y Y

NT 865 Y Y Y y

Solaris 819 Y y Y Y Y

SunOS 819 Y y Y

SINIX, DC/OSx 819 Y y Y Y Y

DEC-OVMS 819 Y y Y Y Y

Tandem 819 Y y Y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

 Appendix G. Code page conversion tables 245

 Code page conversion tables

Table 22. Conversion support: FINNISH and SWEDISH

Target
│
á

Source ─5 MVS,
OS/400

GIS, NT AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

OS/2,
AIX, GIS,

NT

OS/2, NT HP-UX

 CCSID 278 437 819 850 865 1051

MVS 278 y Y† Y† Y† Y† Y†

OS/400 278 y Y Y Y Y

OS/2 850 Y Y y Y

OS/2 865 Y Y Y Y

AIX (pc-A) 850 Y Y Y y Y*

AIX (ISO) 819 Y Y* y Y Y*

HP-UX (ISO) 819 Y Y y Y Y Y

HP-UX (-8) 1051 Y Y Y Y y

GIS (ISO) 819 Y Y y Y Y Y

GIS (pc-A) 437 Y y Y Y Y Y

GIS (pc-A) 850 Y Y Y y Y Y

NT 437 Y y Y Y Y Y

NT 850 Y Y Y y Y Y

NT 865 Y Y Y Y y

Solaris 819 Y Y y Y Y Y

SunOS 819 Y Y y Y

SINIX, DC/OSx 819 Y Y y Y Y Y

DEC-OVMS 819 Y Y y Y Y Y

Tandem 819 Y Y y Y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

246 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 23. Conversion support: ITALIAN

Target
│
á

Source ─5 MVS,
OS/400

GIS, NT AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

OS/2, AIX,
GIS, NT

HP-UX

 CCSID 280 437 819 850 1051

MVS 280 y Y† Y† Y† Y†

OS/400 280 y Y Y Y

OS/2 850 Y Y y

AIX (pc-A) 850 Y Y Y y Y*

AIX (ISO) 819 Y Y* y Y Y*

HP-UX (ISO) 819 Y Y y Y Y

HP-UX (-8) 1051 Y Y Y Y y

GIS (ISO) 819 Y Y y Y Y

GIS (pc-A) 437 Y y Y Y Y

GIS (pc-A) 850 Y Y Y y Y

NT 437 Y y Y Y Y

NT 850 Y Y Y y Y

Solaris 819 Y Y y Y Y

SunOS 819 Y Y y Y

SINIX, DC/OSx 819 Y Y y Y Y

DEC-OVMS 819 Y Y y Y Y

Tandem 819 Y Y y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

 Appendix G. Code page conversion tables 247

 Code page conversion tables

Table 24. Conversion support: SPANISH

Target
│
á

Source ─5 MVS,
OS/400

GIS, NT AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

OS/2, AIX,
GIS, NT

HP-UX

 CCSID 284 437 819 850 1051

MVS 284 y Y† Y† Y† Y†

OS/400 284 y Y Y Y

OS/2 850 Y Y y

AIX (pc-A) 850 Y Y Y y Y*

AIX (ISO) 819 Y Y* y Y Y*

HP-UX (ISO) 819 Y Y y Y Y

HP-UX (-8) 1051 Y Y Y Y y

GIS (ISO) 819 Y Y y Y Y

GIS (pc-A) 437 Y y Y Y Y

GIS (pc-A) 850 Y Y Y y Y

NT 437 Y y Y Y Y

NT 850 Y Y Y y Y

Solaris 819 Y Y y Y Y

SunOS 819 Y Y y Y

SINIX, DC/OSx 819 Y Y y Y Y

DEC-OVMS 819 Y Y y Y Y

Tandem 819 Y Y y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

248 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 25. Conversion support: UK ENGLISH / GAELIC

Target
│
á

Source ─5 MVS,
OS/400

GIS, NT AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

OS/2, AIX,
GIS, NT

HP-UX

 CCSID 285 437 819 850 1051

MVS 285 y Y† Y† Y† Y†

OS/400 285 y Y Y Y

OS/2 850 Y Y y

AIX (pc-A) 850 Y Y Y y Y*

AIX (ISO) 819 Y Y* y Y Y*

HP-UX (ISO) 819 Y Y y Y Y

HP-UX (-8) 1051 Y Y Y Y y

GIS (ISO) 819 Y Y y Y Y

GIS (pc-A) 437 Y y Y Y Y

GIS (pc-A) 850 Y Y Y y Y

NT 437 Y y Y Y Y

NT 850 Y Y Y y Y

Solaris 819 Y Y y Y Y

SunOS 819 Y Y y Y

SINIX, DC/OSx 819 Y Y y Y Y

DEC-OVMS 819 Y Y y Y Y

Tandem 819 Y Y y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

 Appendix G. Code page conversion tables 249

 Code page conversion tables

Table 26. Conversion support: FRENCH

Target
│
á

Source ─5 MVS,
OS/400

GIS, NT AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

OS/2, AIX,
GIS, NT

HP-UX

 CCSID 297 437 819 850 1051

MVS 297 y Y† Y† Y† Y†

OS/400 297 y Y Y Y

OS/2 850 Y Y y

AIX (pc-A) 850 Y Y Y y Y*

AIX (ISO) 819 Y Y* y Y Y*

HP-UX (ISO) 819 Y Y y Y Y

HP-UX (-8) 1051 Y Y Y Y y

GIS (ISO) 819 Y Y y Y Y

GIS (pc-A) 437 Y y Y Y Y

GIS (pc-A) 850 Y Y Y y Y

NT 437 Y y Y Y Y

NT 850 Y Y Y y Y

Solaris 819 Y Y y Y Y

SunOS 819 Y Y y Y

SINIX, DC/OSx 819 Y Y y Y Y

DEC-OVMS 819 Y Y y Y Y

Tandem 819 Y Y y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

250 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 27. Conversion support: MULTILINGUAL

Target
│
á

Source ─5 GIS, NT MVS,
OS/400

AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

OS/2, AIX,
GIS, NT

HP-UX

 CCSID 437 500 819 850 1051

MVS 500 Y† y Y† Y† Y†

OS/400 500 Y y Y Y

OS/2 850 Y Y y

AIX (pc-A) 850 Y Y Y y Y*

AIX (ISO) 819 Y* Y y Y Y*

HP-UX (ISO) 819 Y Y y Y Y

HP-UX (-8) 1051 Y Y Y Y y

GIS (ISO) 819 Y Y y Y Y

GIS (pc-A) 437 y Y Y Y Y

GIS (pc-A) 850 Y Y Y y Y

NT 437 y Y Y Y Y

NT 850 Y Y Y y Y

Solaris 819 Y Y y Y Y

SunOS 819 Y Y y Y

SINIX, DC/OSx 819 Y Y y Y Y

DEC-OVMS 819 Y Y y Y Y

Tandem 819 Y Y y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

 Appendix G. Code page conversion tables 251

 Code page conversion tables

Table 28. Conversion support: PORTUGUESE

Target
│
á

Source ─5 OS/400 MVS,
OS/400

AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-
OVMS
DEC-
OVMS

OS/2,
AIX, GIS,

NT

OS/2,
GIS, NT

HP-UX

 CCSID 37 500 819 850 860 1051

MVS 500 Y† y Y† Y† Y† Y†

OS/400 37 y Y Y Y Y

OS/400 500 Y y Y Y Y

OS/2 850 Y Y y Y

OS/2 860 Y Y Y y

AIX (pc-A) 850 Y Y Y y Y*

AIX (ISO) 819 Y Y y Y Y*

HP-UX (ISO) 819 Y Y y Y Y Y

HP-UX (-8) 1051 Y Y Y Y y

GIS (ISO) 819 Y Y y Y Y Y

GIS (pc-A) 850 Y Y Y y Y Y

GIS (pc-A) 860 Y Y Y Y y

NT 850 Y Y Y y Y Y

NT 860 Y Y Y Y y

Solaris 819 Y Y y Y Y Y

SunOS 819 Y Y y Y

SINIX, DC/OSx 819 Y Y y Y Y Y

DEC-OVMS 819 Y Y y Y Y Y

Tandem 819 Y Y y Y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

252 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 29. Conversion support: ICELANDIC

Target
│
á

Source ─5 AIX,
HP-UX,

GIS,
Solaris,
SunOS,

DEC-OVMS
Tandem

OS/2, GIS,
NT

OS/2, AIX,
NT

MVS,
OS/400

HP-UX

 CCSID 819 850 861 871 1051

MVS 871 Y† Y† Y† y Y†

OS/400 871 Y Y Y y

OS/2 850 y Y Y

OS/2 861 Y y Y

AIX (pc-A) 850 Y y Y Y*

AIX (ISO) 819 y Y Y Y*

HP-UX (ISO) 819 y Y Y Y Y

HP-UX (-8) 1051 Y Y Y y

GIS (ISO) 819 y Y Y Y Y

GIS (pc-A) 850 Y y Y Y Y

NT 850 Y y Y Y Y

NT 861 Y Y y Y

Solaris 819 y Y Y Y Y

SunOS 819 y Y Y

SINIX, DC/OSx 819 y Y Y Y Y

DEC-OVMS 819 y Y Y Y Y

Tandem 819 y Y Y Y Y

Note:

* Supported on MQSeries for AIX version 2.2.1 or later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

 Appendix G. Code page conversion tables 253

 Code page conversion tables

Table 30. Conversion support: EASTERN EUROPEAN Languages

Target
│
á

Source ─5 OS/2, NT MVS, OS/400 AIX, HP-UX, GIS,
Solaris, DEC-OVMS

Tandem

 CCSID 852 870 912

MVS 870 Y† y Y†

OS/400 870 Y y Y

OS/2 852 y Y

AIX (ISO) 912 Y* Y* y

HP-UX (ISO) 912 Y Y y

GIS (ISO) 912 Y Y y

NT 852 y Y Y

Solaris 912 Y Y y

SunOS

SINIX, DC/OSx 912 Y Y y

DEC-OVMS 912 Y Y y

Tandem 912 Y Y y

Note: The typical languages which use these CCSIDS include Albanian, Croatian, Czech, Hungarian, Polish,
Romanian, Serbian, Slovakian, and Sloven.

Note:

* Only on AIX V4.1 and later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.

254 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 31. Conversion support: CYRILLIC

Target
│
á

Source ─5 OS/2, NT OS/2, NT OS/400 AIX,
HP-UX,

GIS,
Solaris,

DEC-OVMS
Tandem

MVS,
OS/400

 CCSID 855 866 880 915 1025

MVS 1025 Y† Y† Y† Y† y

OS/400 880 y Y Y

OS/400 1025 Y Y Y Y y

OS/2 855 y Y Y Y

OS/2 866 Y y Y Y

AIX (ISO) 915 Y+ Y* Y+ y Y+

HP-UX (ISO) 915 Y Y** Y y Y

GIS (ISO) 915 Y Y Y y Y

NT 855 y Y Y Y Y

NT 866 Y y Y Y Y

Solaris 915 Y Y Y y Y

SunOS

SINIX, DC/OSx 915 Y Y Y y Y

DEC-OVMS 915 Y Y Y y Y

Tandem 915 Y Y Y y Y

Note: The typical languages which use these CCSIDS include Byelorussia (Belarus), Bulgarian, Macedonian,
Russian, and Serbian.

Note:

+ Only on AIX V4.1 and later.
† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
* Supported on MQSeries for AIX version 2.2.1 or later.
** Supported on MQSeries for HP version 2.2.1 or later.

 Appendix G. Code page conversion tables 255

 Code page conversion tables

Table 32. Conversion support: GREEK

Target
│
á

Source ─5 OS/2, AIX, HP-UX,
GIS, Solaris,

DEC-OVMS Tandem

OS/2, NT MVS, OS/400

 CCSID 813 869 875

MVS 875 Y† Y† y

OS/400 875 Y Y y

OS/2 813 y Y Y

OS/2 869 Y y Y

AIX (ISO) 813 y Y Y

HP-UX (ISO) 813# y Y Y

GIS (ISO) 813 y Y Y

NT 869 Y y Y

Solaris 813 y Y Y

SunOS

SINIX, DC/OSx 813 y Y Y

DEC-OVMS 813 y Y Y

Tandem 813 y Y Y

Note:

† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
Only the ISO codeset on HP-UX is supported. The HP-UX proprietary greek8 codeset has no registered

CCSID and is not supported.

256 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 33. Conversion support: TURKISH

Target
│
á

Source ─5 OS/2, NT AIX, HP-UX, Solaris,
DEC-OVMS Tandem

MVS, OS/400

 CCSID 857 920 1026

MVS 1026 Y† Y† y

OS/400 1026 Y Y y

OS/2 857 y Y

AIX (ISO) 920 Y y Y

HP-UX (ISO) 920# Y y Y

GIS

NT 857 y Y Y

Solaris 920 Y y Y

SunOS

SINIX, DC/OSx 920 Y y Y

DEC-OVMS 920 Y y Y

Tandem 920 Y y Y

Note:

† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
Only the ISO codeset on HP-UX is supported. The HP-UX proprietary turkish8 codeset has no registered

CCSID and is not supported.

 Appendix G. Code page conversion tables 257

 Code page conversion tables

Table 34. Conversion support: HEBREW

Target
│
á

Source ─5 MVS, OS/400 AIX OS/2, NT AIX, HP-UX,
Solaris,

DEC-OVMS
Tandem

 CCSID 424 856 862 916

MVS 424 y Y† Y† Y†

OS/400 424 y Y# Y Y

OS/2 862 Y y

AIX (pc-A) 856 Y+ y Y+ Y+

AIX (ISO) 916 Y+ Y+ Y+ y

HP-UX (ISO) 916§ Y Y Y y

GIS

NT 862 Y Y y Y

Solaris 916 Y Y Y y

SunOS

SINIX, DC/OSx 916 Y Y Y y

DEC-OVMS 916 Y Y Y y

Tandem 916 Y Y Y y

Note:

† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
Only to/from CCSID 4952 (a variant of 856).
+ Only on AIX V4.1 and later.
§ Only the ISO codeset on HP-UX is supported. The HP-UX proprietary hebrew8 codeset has no registered

CCSID and is not supported.

258 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 35. Conversion support: ARABIC

Target
│
á

Source ─5 MVS, OS/400 OS/2, NT AIX AIX, HP-UX,
Solaris,

DEC-OVMS
Tandem

 CCSID 420 864 1046 1089

MVS 420 y Y† Y† Y†

OS/400 420 y Y Y

OS/2 864 Y y

AIX (pc-A) 1046 Y# Y# y Y#

AIX (ISO) 1089 Y# Y# Y# y

HP-UX (ISO) 1089§ Y Y Y y

GIS

NT 864 Y y Y Y

Solaris 1089 Y Y Y y

SunOS

SINIX, DC/OSx 1089 Y Y Y y

DEC-OVMS 1089 Y Y Y y

Tandem 1089 Y Y Y y

Note:

† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
Only on AIX V4.1 and later.
§ Only the ISO codeset on HP-UX is supported. The HP-UX proprietary arabic8 codeset has no registered

CCSID and is not supported.

 Appendix G. Code page conversion tables 259

 Code page conversion tables

Table 36. Conversion support: JAPANESE LATIN SBCS

Target
│
á

Source ─5 OS/2, AIX OS/2 MVS, OS/400 AIX

 CCSID 932 942 1027 5050 33722

MVS 1027 y

OS/400 1027 Y y

OS/2 932 y Y

OS/2 942 Y y

AIX (pc-A) 932 y Y Y

AIX (euc) 5050
33722*

Y Y y

HP-UX

GIS

NT 932 y Y Y

Solaris

SunOS

SINIX, DC/OSx

DEC-OVMS

Tandem

Note: On AIX conversion from mixed DBCS to SBCS (OS/400 and MVS) will only convert the SBCS subset.

* 5050 and 33722 are CCSIDs related to base code page 954 = eucJP on AIX. On AIX V3.2.5 MQSeries
codes this code page as CCSID 5050 for compatibility with OS/400. On AIX V4.1 the CCSID reported by the
operating system is 33722.

260 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 37. Conversion support: JAPANESE KATAKANA SBCS

Target
│
á

Source ─5 MVS, OS/400 OS/2, HP-UX AIX AIX

 CCSID 290 897 932 5050 33722

MVS 290 y Y

OS/400 290 y Y

OS/2 897 Y y

AIX (pc-A) 932 Y y Y

AIX (euc) 5050
33722*

Y Y y

HP-UX (kana8) 897 Y y

GIS

NT 932 Y Y y

Solaris

SunOS

SINIX, DC/OSx

DEC-OVMS

Tandem

Note: On AIX conversion from mixed DBCS to SBCS (OS/400 and MVS) will only convert the SBCS subset.

* 5050 and 33722 are CCSIDs related to base code page 954 = eucJP on AIX. On AIX V3.2.5 MQSeries
codes this code page as CCSID 5050 for compatibility with OS/400. On AIX V4.1 the CCSID reported by the
operating system is 33722.

 Appendix G. Code page conversion tables 261

 Code page conversion tables

Table 38. Conversion support: JAPANESE KANJI / LATIN MIXED

Target
│
á

Source ─5 OS/2, AIX,
HP-UX,

DEC-OVMS
Tandem

OS/2 HP-UX,
DEC-OVMS

Tandem

MVS,
OS/400

AIX

 CCSID 932 942 954 5035 5050 33722

MVS 5035# Y† Y† y

OS/400 5035# Y Y y Y

OS/2 932 y Y Y

OS/2 942 Y y Y

AIX (pc-A) 932 y Y Y Y

AIX (ISO) 5050
33722*

Y y Y y

HP-UX (euc) 954 Y y Y** y

HP-UX (-15§) 932 y Y Y** Y

GIS

NT 932 y Y Y

Solaris

SunOS

SINIX, DC/OSx

DEC-OVMS 932 y Y Y Y

DEC-OVMS 954 Y y Y y

Tandem 932 y Y Y Y

Tandem 954 Y y Y y

Note:

† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
* 5050 and 33722 are CCSIDs related to base code page 954 = eucJP on AIX. On AIX V3.2.5 MQSeries

codes this code page as CCSID 5050 for compatibility with OS/400. On AIX V4.1 the CCSID reported by the
operating system is 33722.

5035 is a CCSID related to code page 939.
§ Defined by HP-UX as japan15 and SJIS. Note that about 74 DBCS characters have different representations

in japan15 and 932 so may not be converted correctly if the conversion is performed on a non-HP-UX system.
** Supported on HP-UX V10 or later.

262 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 39. Conversion support: JAPANESE KANJI / KATAKANA MIXED

Target
│
á

Source ─5 OS/2, AIX,
HP-UX,

DEC-OVMS
Tandem

OS/2 HP-UX,
DEC-OVMS

Tandem

MVS,
OS/400

AIX,
Solaris

 CCSID 932 942 954 5026 5050 33722

MVS 5026# Y† Y† y

OS/400 5026# Y Y y Y

OS/2 932 y Y Y

OS/2 942 Y y Y

AIX (pc-A) 932 y Y Y Y

AIX (euc) 5050
33722*

Y y Y y

HP-UX (euc) 954 Y y Y** y

HP-UX (-15§) 932 y Y Y Y

GIS

NT 932 y Y Y

Solaris 5050 Y y Y y

SunOS

SINIX, DC/OSx

DEC-OVMS
(sjis)

932 y Y Y Y

DEC-OVMS
(euc)

954 Y y Y y

Tandem (sjis) 932 y Y Y Y

Tandem (euc) 954 Y y Y y

Note:

† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
* 5050 and 33722 are CCSIDs related to base code page 954 = eucJP on AIX. On AIX V3.2.5 MQSeries

codes this code page as CCSID 5050 for compatibility with OS/400. On AIX V4.1 the CCSID reported by the
operating system is 33722.

5026 is a CCSID related to code page 930. CCSID 5026 is the CCSID reported to the user on OS/400 when
the Japanese Katakana (DBCS) feature is selected.

§ Defined by HP-UX as japan15 and SJIS. Note that about 74 DBCS characters have different representations
in japan15 and 932 so may not be converted correctly if the conversion is performed on a non-HP-UX system.

** Supported on HP-UX V10 or later.

 Appendix G. Code page conversion tables 263

 Code page conversion tables

Table 40. Conversion support: KOREAN

Target
│
á

Source ─5 MVS, OS/400 OS/2, NT AIX, HP-UX,
DEC-OVMS Tandem

 CCSID 933 949 970

MVS 933 y Y†

OS/400 933 y Y Y

OS/2 949 Y y

AIX (euc) 970 Y y

HP-UX (-15) 949§ Y y

HP-UX (euc) 970§ Y y

GIS

NT 949 Y y

Solaris

SunOS

SINIX, DC/OSx

DEC-OVMS 970 Y Y y

Tandem 970 Y Y y

Note:

† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
§ On HP-UX9 949 is used, but on HP-UX10 970 is used.

264 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 41. Conversion support: SIMPLIFIED CHINESE

Target
│
á

Source ─5 MVS, OS/400 OS/2, HP-UX, NT AIX, DEC-OVMS
Tandem

 CCSID 935 1381 1383

MVS 935 y Y†

OS/400 935 y Y Y+

OS/2 1381 Y y

AIX (euc) 1383* Y* Y* y

HP-UX (-15) 1381§ Y** y

GIS

NT 1381## Y Y

Solaris

SunOS

SINIX, DC/OSx

DEC-OVMS 1383 Y Y y

Tandem 1383 Y Y y

Note:

† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
+ Supported on OS/400 V3R6 or later.
* Supported on country AIX version only.
§ Is called prc15 and hp15CN on HP-UX.
** Supported on HP-UX V10 or later.
##

NT uses the code page number 936, but this is best represented by the CCSID of 1381.

 Appendix G. Code page conversion tables 265

 Code page conversion tables

Table 42. Conversion support: TRADITIONAL CHINESE

Target
│
á

Source ─5 MVS,
OS/400

OS/2,
HP-UX

OS/2 OS/2, AIX,
HP-UX, NT,
DEC-OVMS

Tandem

AIX,
HP-UX,

DEC-OVMS
Tandem

 CCSID 937 938 948 950 964

MVS 937 y Y† Y† Y†

OS/400 937 y Y Y Y Y

OS/2 (PS/55) 938 Y y

OS/2 (PS/55) 948 Y y

OS/2 (big5) 950 Y y

AIX (euc) 964 Y Y Y y

AIX (big5) 950 Y Y y Y

HP-UX (-15§) 938 Y y Y Y**

HP-UX (big5) 950 Y** Y y Y**

HP-UX
(eucTW)

964 Y** Y** Y** y

GIS

NT 950 Y Y Y y

Solaris

SunOS

SINIX, DC/OSx

DEC-OVMS
(euc)

964 Y Y Y Y y

DEC-OVMS
(big5)

950 Y Y Y y Y

Tandem (euc) 964 Y Y Y Y y

Tandem (big5) 950 Y Y Y y Y

Note:

† Supported on MQSeries for MVS/ESA version 1.1.4 or later.
§ Is called roc15 and eucTW on HP-UX.
** Supported on HP-UX V10 or later.

266 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 43. Codeset names and
CCSIDs

Codeset
names

CCSIDs

ISO 8859-1 819

ISO 8859-2 912

ISO 8859-5 915

ISO 8859-6 1089

ISO 8859-7 813

ISO 8859-8 916

ISO 8859-9 920

eucJP 954 5050 33722

eucKR 970

eucTW 964

eucCN 1383

 Appendix G. Code page conversion tables 267

 Code page conversion tables

MVS single byte conversion support

Table 44 (Page 1 of 6). MVS V1.1.4 single byte CCSID conversion support.

CCSID Converts to and from CCSIDS

37 256, 273, 275, 277, 278, 280, 284, 285, 290, 297, 367, 420, 423,
424, 437, 500, 813, 819, 833, 836, 838, 850, 852, 855, 857, 860-865,
869-871, 874, 875, 880, 897, 903-905, 912, 916, 920, 1009,
1025-1027, 1040-1043, 1047, 1051, 1088, 1097, 1100, 1114, 1252,
1275

256 37, 273, 277, 278, 280, 284, 285, 290, 297, 367, 420, 423, 424, 437,
500, 819, 833, 836, 838, 850, 852, 857, 860-866, 869-871, 875, 880,
905, 1025-1027, 1251, 1252, 1275

259 437, 850-852, 855-857, 860-865, 869, 874, 899, 915, 1098, 1251

273 37, 256, 277, 278, 280, 284, 285, 290, 297, 367, 423, 437, 500, 813,
819, 833, 836, 838, 850, 852, 855-857, 860-865, 869-871, 874, 875,
880, 897, 903, 912, 916, 920, 1009, 1025-1027, 1040-1043, 1047,
1051, 1088, 1100, 1252, 1275

274 500, 1047

275 37, 500, 1047

277 37, 256, 273, 278, 280, 284, 285, 290, 297, 367, 423, 437, 500, 813,
819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874, 875,
880, 897, 903, 912, 916, 920, 1009, 1025-1027, 1040-1043, 1047,
1051, 1088, 1100, 1252, 1275

278 37, 256, 273, 277, 280, 284, 285, 290, 297, 367, 423, 437, 500, 813,
819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874, 875,
880, 897, 903, 912, 916, 920, 1009, 1025-1027, 1040-1043, 1047,
1051, 1088, 1100, 1252, 1275

280 37, 256, 273, 277, 278, 284, 285, 290, 297, 367, 423, 437, 500, 813,
819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874, 875,
880, 897, 903, 912, 916, 920, 1009, 1025-1027, 1040-1043, 1047,
1051, 1088, 1100, 1252, 1275

281 1047

282 500, 1047

284 37, 256, 273, 277, 278, 280, 285, 290, 297, 367, 423, 437, 500, 813,
819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874, 875,
880, 897, 903, 912, 916, 920, 1009, 1025-1027, 1040-1043, 1047,
1051, 1088, 1100, 1252, 1275

285 37, 256, 273, 277, 278, 280, 284, 290, 297, 423, 437, 500, 813, 819,
833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874, 875, 880,
897, 903, 912, 916, 920, 1025-1027, 1040-1043, 1047, 1051, 1088,
1100, 1252, 1275

290 37, 256, 273, 277, 278, 280, 284, 285, 297, 367, 437, 500, 819, 833,
836, 850, 852, 855, 857, 860-865, 870, 871, 895-897, 1009,
1025-1027, 1040-1043, 1088

297 37, 256, 273, 277, 278, 280, 284, 285, 290, 367, 423, 437, 500, 813,
819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874, 875,
880, 897, 903, 912, 916, 920, 1009, 1025-1027, 1040-1043, 1047,
1051, 1088, 1100, 1252, 1275

367 37, 256, 273, 277, 278, 280, 284, 290, 297, 500, 833, 836, 871, 875,
1009, 1026, 1027, 1041, 1088, 1115

268 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 44 (Page 2 of 6). MVS V1.1.4 single byte CCSID conversion support.

CCSID Converts to and from CCSIDS

420 37, 256, 424, 437, 500, 819, 850, 852, 857, 860-865, 1008, 1046,
1089, 1098, 1256

423 37, 256, 273, 277, 278, 280, 284, 285, 297, 437, 500, 813, 819, 838,
850-852, 857, 860-865, 869-871, 874, 875, 880, 897, 903, 912, 916,
920, 1009, 1025-1027, 1041-1043, 1253, 1280

424 37, 256, 420, 437, 500, 803, 819, 836, 850, 852, 856, 857, 860-865,
916, 1255

437 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
500, 813, 819, 833, 836, 838, 850, 852, 855, 857, 860-863, 865, 866,
869-871, 874, 875, 880, 897, 903, 905, 912, 915, 916, 920,
1025-1027, 1040-1043, 1051, 1097, 1098, 1252, 1275, 4946, 28709

500 37, 256, 273-275, 277, 278, 280, 282, 284, 285, 290, 297, 367, 420,
423, 424, 437, 813, 819, 833, 836, 838, 850-852, 855-857, 860-866,
869-871, 874, 875, 880, 891, 895, 897, 903-905, 912, 915, 916, 920,
1004, 1009-1021, 1023, 1025-1027, 1040-1043, 1046, 1047, 1051,
1088, 1089, 1097, 1100-1107, 1114, 1115, 1250-1256, 1275

803 424, 856, 862, 916

813 37, 273, 277, 278, 280, 284, 285, 297, 423, 437, 500, 819, 838, 850,
852, 857, 860, 861, 863, 869-871, 874, 875, 880, 897, 903, 912, 916,
920, 1025-1027, 1041-1043, 1253, 1280

819 37, 256, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424, 437,
500, 813, 833, 836, 838, 850, 852, 857, 860, 861, 863, 865, 869-871,
874, 875, 880, 897, 903, 912, 916, 920, 1025-1027, 1041-1043,
1047, 1051, 1097, 1098, 1114, 1252, 1275

833 37, 256, 273, 277, 278, 280, 284, 285, 290, 297, 367, 437, 500, 819,
836, 850, 852, 855, 857, 860-865, 870, 871, 891, 1009, 1025-1027,
1040-1043, 1088

836 37, 256, 273, 277, 278, 280, 284, 285, 290, 297, 367, 424, 437, 500,
819, 833, 850, 852, 855, 857, 870, 871, 875, 903, 1009, 1025-1027,
1040-1043, 1088, 1115

838 37, 256, 273, 277, 278, 280, 284, 285, 297, 423, 437, 500, 813, 819,
850, 852, 857, 860-865, 869-871, 874, 875, 880, 897, 903, 912, 916,
920, 1025-1027, 1041-1043

850 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
437, 500, 813, 819, 833, 836, 838, 852, 855-857, 860-866, 869-871,
874, 875, 880, 897, 903, 905, 912, 915, 916, 920, 1025-1027,
1040-1043, 1047, 1051, 1088, 1097, 1098, 1100, 1114, 1252, 1275,
4953

851 259, 423, 500, 875

852 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
437, 500, 813, 819, 833, 836, 838, 850, 855, 857, 860, 861, 863,
869-871, 874, 875, 880, 897, 903, 905, 912, 916, 920, 1025-1027,
1040-1043, 1088, 1097, 1250, 1282, 28709

855 37, 259, 273, 277, 278, 280, 284, 285, 290, 297, 437, 500, 833, 836,
850, 852, 857, 866, 870, 871, 880, 912, 915, 1025-1027, 1040-1043,
1088, 1251, 1283

856 259, 273, 424, 500, 803, 850, 862, 916, 1255

 Appendix G. Code page conversion tables 269

 Code page conversion tables

Table 44 (Page 3 of 6). MVS V1.1.4 single byte CCSID conversion support.

CCSID Converts to and from CCSIDS

857 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
437, 500, 813, 819, 833, 836, 838, 850, 852, 855, 860, 861, 863,
869-871, 874, 875, 880, 897, 903, 905, 912, 916, 920, 1025-1027,
1040-1043, 1088, 1097, 1254, 1281, 28709

860 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
437, 500, 813, 819, 833, 838, 850, 852, 857, 861, 863, 865, 869-871,
874, 875, 880, 897, 903, 905, 912, 916, 920, 1025-1027, 1041-1043,
1097, 28709

861 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
437, 500, 813, 819, 833, 838, 850, 852, 857, 860, 863, 869-871, 874,
875, 880, 897, 903, 905, 912, 916, 920, 1025-1027, 1041-1043,
1097, 28709

862 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
437, 500, 803, 833, 838, 850, 856, 870, 871, 875, 880, 905, 916,
1025-1027, 1097, 1255, 28709

863 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
437, 500, 813, 819, 833, 838, 850, 852, 857, 860, 861, 865, 869-871,
874, 875, 880, 897, 903, 905, 912, 916, 920, 1025-1027, 1041-1043,
1051, 1097, 1252, 1275, 28709

864 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
500, 833, 838, 850, 870, 871, 875, 880, 905, 918, 1008, 1025-1027,
1046, 1089, 1097, 1256, 28709

865 37, 256, 259, 273, 277, 278, 280, 284, 285, 290, 297, 420, 423, 424,
437, 500, 819, 833, 838, 850, 860, 863, 870, 871, 875, 880, 905,
1025-1027, 1097, 28709

866 256, 437, 500, 850, 855, 870, 880, 915, 1025, 1251, 1283

868 918

869 37, 256, 259, 273, 277, 278, 280, 284, 285, 297, 423, 437, 500, 813,
819, 838, 850, 852, 857, 860, 861, 863, 870, 871, 874, 875, 880,
897, 903, 912, 916, 920, 1025-1027, 1041-1043, 1253, 1254, 1280

870 37, 256, 273, 277, 278, 280, 284, 285, 290, 297, 423, 437, 500, 813,
819, 833, 836, 838, 850, 852, 855, 857, 860-866, 869, 871, 874, 875,
880, 897, 903, 912, 915, 916, 920, 1009, 1025-1027, 1040-1043,
1088, 1250, 1282

871 37, 256, 273, 277, 278, 280, 284, 285, 290, 297, 367, 423, 437, 500,
813, 819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869, 870, 874,
875, 880, 897, 903, 912, 916, 920, 1009, 1025-1027, 1040-1043,
1047, 1051, 1088, 1252, 1275

874 37, 259, 273, 277, 278, 280, 284, 285, 297, 423, 437, 500, 813, 819,
838, 850, 852, 857, 860, 861, 863, 869-871, 875, 880, 897, 903, 912,
916, 920, 1025-1027, 1041-1043

875 37, 256, 273, 277, 278, 280, 284, 285, 297, 367, 423, 437, 500, 813,
819, 836, 838, 850-852, 857, 860-865, 869-871, 874, 880, 897, 903,
912, 916, 920, 1009, 1025-1027, 1041-1043, 1047, 1088, 1253, 1280

880 37, 256, 273, 277, 278, 280, 284, 285, 297, 423, 437, 500, 813, 819,
838, 850, 852, 855, 857, 860-866, 869-871, 874, 875, 897, 903, 912,
915, 916, 920, 1009, 1025-1027, 1041-1043, 1251, 1283

891 500, 833, 1088

270 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 44 (Page 4 of 6). MVS V1.1.4 single byte CCSID conversion support.

CCSID Converts to and from CCSIDS

895 290, 500, 1027, 1041

896 290, 1027, 1041

897 37, 273, 277, 278, 280, 284, 285, 290, 297, 423, 437, 500, 813, 819,
838, 850, 852, 857, 860, 861, 863, 869-871, 874, 875, 880, 903, 912,
916, 920, 1025-1027, 1041-1043

899 259

903 37, 273, 277, 278, 280, 284, 285, 297, 423, 437, 500, 813, 819, 836,
838, 850, 852, 857, 860, 861, 863, 869-871, 874, 875, 880, 897, 912,
916, 920, 1025-1027, 1041-1043, 1115

904 37, 500, 1114

905 37, 256, 437, 500, 850, 852, 857, 860-865, 920, 1026, 1254, 1281

912 37, 273, 277, 278, 280, 284, 285, 297, 423, 437, 500, 813, 819, 838,
850, 852, 855, 857, 860, 861, 863, 869-871, 874, 875, 880, 897, 903,
916, 920, 1025-1027, 1041-1043, 1250, 1282

915 259, 437, 500, 850, 855, 866, 870, 880, 1025, 1251, 1283

916 37, 273, 277, 278, 280, 284, 285, 297, 423, 424, 437, 500, 803, 813,
819, 838, 850, 852, 856, 857, 860-863, 869-871, 874, 875, 880, 897,
903, 912, 920, 1025-1027, 1041-1043, 1255

918 864, 868

920 37, 273, 277, 278, 280, 284, 285, 297, 423, 437, 500, 813, 819, 838,
850, 852, 857, 860, 861, 863, 869-871, 874, 875, 880, 897, 903, 905,
912, 916, 1025, 1026, 1254, 1281

932 942

942 932

1004 500

1008 420, 864

1009 37, 273, 277, 278, 280, 284, 290, 297, 367, 423, 500, 833, 836, 870,
871, 875, 880, 1025, 1026

1010 500

1011 500

1012 500

1013 500

1014 500

1015 500

1016 500

1017 500

1018 500

1019 500

1020 500

1021 500

1023 500

 Appendix G. Code page conversion tables 271

 Code page conversion tables

Table 44 (Page 5 of 6). MVS V1.1.4 single byte CCSID conversion support.

CCSID Converts to and from CCSIDS

1025 37, 256, 273, 277, 278, 280, 284, 285, 290, 297, 423, 437, 500, 813,
819, 833, 836, 838, 850, 852, 855, 857, 860-866, 869-871, 874, 875,
880, 897, 903, 912, 915, 916, 920, 1009, 1026, 1027, 1040-1043,
1051, 1088, 1251, 1283

1026 37, 256, 273, 277, 278, 280, 284, 285, 290, 297, 367, 423, 437, 500,
813, 819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874,
875, 880, 897, 903, 905, 912, 916, 920, 1009, 1025, 1027,
1040-1043, 1047, 1088, 1254, 1281

1027 37, 256, 273, 277, 278, 280, 284, 285, 290, 297, 367, 423, 437, 500,
813, 819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874,
875, 880, 895-897, 903, 912, 916, 1025, 1026, 1040-1043, 1047,
1088

1040 37, 273, 277, 278, 280, 284, 285, 290, 297, 437, 500, 833, 836, 850,
852, 855, 857, 870, 871, 1025-1027, 1041-1043, 1088

1041 37, 273, 277, 278, 280, 284, 285, 290, 297, 367, 423, 437, 500, 813,
819, 833, 836, 838, 850, 852, 855, 857, 860, 861, 863, 869-871, 874,
875, 880, 895-897, 903, 912, 916, 1025-1027, 1040, 1042, 1043,
1088

1042 37, 273, 277, 278, 280, 284, 285, 290, 297, 423, 437, 500, 813, 819,
833, 836, 838, 850, 852, 855, 857, 860, 861, 863, 869-871, 874, 875,
880, 897, 903, 912, 916, 1025-1027, 1040, 1041, 1043, 1088

1043 37, 273, 277, 278, 280, 284, 285, 290, 297, 423, 437, 500, 813, 819,
833, 836, 838, 850, 852, 855, 857, 860, 861, 863, 869-871, 874, 875,
880, 897, 903, 912, 916, 1025-1027, 1040-1042, 1088, 1114

1046 420, 500, 864, 1089, 1256

1047 37, 273-275, 277, 278, 280-282, 284, 285, 297, 500, 819, 850, 871,
875, 1026, 1027

1051 37, 273, 277, 278, 280, 284, 285, 297, 437, 500, 819, 850, 863, 871,
1025, 1097, 1252, 1275

1088 37, 273, 277, 278, 280, 284, 285, 290, 297, 367, 500, 833, 836, 850,
852, 855, 857, 870, 871, 875, 891, 1025-1027, 1040-1043

1089 420, 500, 864, 1046, 1256

1097 37, 437, 500, 819, 850, 852, 857, 860-865, 1051, 1098

1098 259, 420, 437, 819, 850, 1097

1100 37, 273, 277, 278, 280, 284, 285, 297, 500, 850

1101 500

1102 500

1103 500

1104 500

1105 500

1106 500

1107 500

1114 37, 500, 819, 850, 904, 1043

1115 367, 500, 836, 903

1250 500, 852, 870, 912, 1282

272 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Code page conversion tables

Table 44 (Page 6 of 6). MVS V1.1.4 single byte CCSID conversion support.

CCSID Converts to and from CCSIDS

1251 256, 259, 500, 855, 866, 880, 915, 1025, 1283

1252 37, 256, 273, 277, 278, 280, 284, 285, 297, 437, 500, 819, 850, 863,
871, 1051, 1275

1253 423, 500, 813, 869, 875, 1280

1254 500, 857, 869, 905, 920, 1026, 1281

1255 424, 500, 856, 862, 916

1256 420, 500, 864, 1046, 1089

1275 37, 256, 273, 277, 278, 280, 284, 285, 297, 437, 500, 819, 850, 863,
871, 1051, 1252

1280 423, 813, 869, 875, 1253

1281 857, 905, 920, 1026, 1254

1282 852, 870, 912, 1250

1283 855, 866, 880, 915, 1025, 1251

4946 437

4953 850

28709 437, 852, 857, 860-865

 Appendix G. Code page conversion tables 273

 Code page conversion tables

274 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Stopping queue managers

Appendix H. Stopping and removing queue managers
manually

If the normal methods for stopping and removing queue managers fail, you can
resort to the more drastic methods described here.

Stopping queue managers manually
Attention Both the MQ interprocess communication monitor (ipc) commands and
the VMS STOP command are powerful functions. As a system manager you
should use extreme care in using them.

In exceptional circumstances, if endmqm fails, use the following procedure to stop
it manually:

1. Find the process Ids of the queue manager programs that are still running, by
using the MQ ipc monitor. To do this, type $ monmq active.

Suppose that there are two active queue managers, “qm0” and “qm1”. The
following is an example of what might be displayed:
id pid ch us st hb sm wp to lk nq we sp wk ws estat prog

 ððð ðððf6ð 11 1 ð ð ð ð ð ð ð ð ð ð 78fð8ð54 / MONMQIPC.EXE

 ðð1 ðð1ð39 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qmð/ AMQZXMAð.EXE

 ðð2 ðð1ð3b 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qmð/ AMQHASMX.EXE

 ðð3 ðð1ð3c 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qmð/ AMQZLLPð.EXE

 ð1ð ðð1ð45 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qm1/ AMQZXMAð.EXE

 ð11 ðð1ð46 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qm1/ AMQHASMX.EXE

 ð12 ððð247 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qm1/ AMQZLLPð.EXE

 ð18 ðð1ð82 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qmð/ AMQZLAAð.EXE

 Proc:117 Next:126 MsgW Val/Cnt:24ð/ð MsgR Val/Cnt:ð/ð WakCnt:1 Evt:49ð Region Ower Pidx:ð Tid:ð

All the processes associated with a given queue manager have the name of
that queue manager appear before the “/” under the prog column – the last
column in the 'active' display.

2. End the queue manager by stopping its 'execution (processing) controller'.
Use the ipc monitor kill command to do this as follows.

Enter:

� monmq kill id

� The id as shown under the id column for the program named AMQZXMAð, for
the queue manager you want to stop.

For queue manager qm1, in the example shown, you enter

monmq kill 1ð

to stop the execution controller for queue manager qm1. Subsequently, the
other sub-processes will stop.

3. Continue to display all processes until you are certain that all processes for the
desired queue manager have stopped. Use the ipc monitor again to find these
active processes, by typing $ monmq active

When queue manager, qm1, has gone the following will display:
id pid ch us st hb sm wp to lk nq we sp wk ws estat prog

 ððð ðððf6ð 11 1 ð ð ð ð ð ð ð ð ð ð 78fð8ð54 / MONMQIPC.EXE

 ðð1 ðð1ð39 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qmð/ AMQZXMAð.EXE

 ðð2 ðð1ð3b 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qmð/ AMQHASMX.EXE

 ðð3 ðð1ð3c 11 1 ð 1 1 ð ð ð 1 ð ð ð ðððð qmð/ AMQZLLPð.EXE

 Copyright IBM Corp. 1995, 1997 275

 Removing queue managers

The example shows that only queue manager qmð is still active.

In the extremely rare case, where not all of the queue manager processes stop
for the desired queue manager, so that they still appear in the display, you can
use the VMS stop command, as follows:

$ stop proc/id=aaaa

where aaaa is the pid found under the pid column in the monmq active display.

Note: Use the pid in column two, not the id in column one.

End the processes in the following order:

1. amqhasmx – logger
2. amqharmx – log formatter, used only if the queue manager has linear logging

selected
3. amqzllpð – checkpoint processor
4. amqzlaað – queue manager agents
5. amqzxmað – processing controller

Note: Manual ending of the queue manager may result in FFSTs being generated,
and the production of FDC files in MQS_ROOT:[MQM.ERRORS]. This
should not be regarded as a defect in the queue manager.

The queue manager should restart normally, even if it was ended by using the
preceding method.

If you want to delete the queue manager after stopping it manually, use the
dltmqm command as normal. If, for some reason, this command fails to delete the
queue manager, the manual process detailed in “Removing queue managers
manually” can be used.

Removing queue managers manually
You should note that manual removal of a queue manager is potentially very
disruptive, particularly if multiple queue managers are being used on a single
system. This is because complete removal of a queue manager requires deletion
of files, shared memory and semaphores. As it is impossible to identify which
shared memory, and semaphores belong to a particular queue manager, it is
necessary to stop all running queue managers.

If you need to delete a queue manager manually, use the following procedure:

1. Stop all queue managers running on the machine from which you need to
remove the queue manager.

2. Look in MQS_ROOT:[MQM]MQS.INI for the stanza relating to the queue
manager that you want to delete.

Use the prefix and directory fields to identify the location of the queue manager
directory structure, by concatenating the prefix and directory fields as follows:

 <Prefix>.QMGRS.<DIRECTORY>

3. Locate the queue manager log directory from the qm.ini configuration file in the
queue manager directory. The LogPath attribute of the Log stanza identifies
this directory.

4. Delete the queue manager directory, all subdirectories and files.

276 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Removing queue managers

5. Delete the queue manager log directory, all subdirectories and files.

6. Remove the queue manager’s QueueManager stanza from the
MQS_ROOT:[MQM]MQS.INI configuration file.

7. If the queue manager being deleted is also the default queue manager, remove
the DefaultQueueManager stanza from the MQS_ROOT:[MQM]MQS.INI
configuration file.

8. Stop all queue managers.

9. Either, delete all global sections by using monmq delete, or IPL the machine.

 Appendix H. Stopping and removing queue managers manually 277

 Removing queue managers

278 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Data definition files

Appendix I. Building your application on Digital OpenVMS

 Note

The information in this appendix will be inserted into the MQSeries Application
Programming Guide the next time that this book is refreshed.

This appendix describes the additional tasks, and the changes to the standard
tasks, you must perform when building MQSeries for Digital OpenVMS applications
to run under Digital OpenVMS. C and COBOL are supported.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files—their names, and a brief description of their contents are given in the
following section.

MQSeries for Digital OpenVMS data definition files
MQSeries for Digital OpenVMS provides data definition files to assist you with the
writing of your applications. These data definition files are also known as:

Language Data definitons
C Include files or header files
COBOL Copy files

See the Application Programming Guide for the compilers that are supported and
suitable for use with these data definition files.

The data definition files to assist with the writing of channel exits are described in
the Distributed Queuing Guide.

The data definition files to assist with the writing of installable services exits are
described in the MQSeries Programmable System Management Guide.

C language include files
The MQSeries for Digital OpenVMS C include files are listed in Table 45. They are
installed in the MQS_INCLUDE directory.

Table 45. C include files for MQSeries for Digital OpenVMS

File name Contents

<cmqc.h> Call prototypes, data types, structures, return
codes, and constants

<cmqcfc.h> Definitions for programmable commands

<cmqxc.h> Definitions for channel exits and data conversion
exits

<cmqzc.h> Definitions for installable services exits

 Copyright IBM Corp. 1995, 1997 279

 Data definition files

 Data types
All data types are defined by means of the typedef statement. For each data type,
the corresponding pointer data type is also defined. The name of the pointer data
type is the name of the elementary or structure data type prefixed with the letter “P”
to denote a pointer; for example:

typedef MQLONG MQPOINTER PMQLONG; /\ pointer to MQLONG \/

typedef MQMD MQPOINTER PMQMD; /\ pointer to MQMD \/

Initial values for structures
The include file <cmqc.h> defines various macro variables that may be used to
provide initial values for the structures when instances of those structures are
declared. These macro variables have names of the form MQxxx_DEFAULT,
where MQxxx represents the name of the structure. Use them like this:

MQMD MyMsgDesc = {MQMD_DEFAULT};

MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields, the MQI defines particular values that are valid (for
example, for the StrucId fields or for the Format field in MQMD). For each of the
valid values, two macro variables are provided:

� One macro variable defines the value as a string whose length, excluding the
implied null, matches exactly the defined length of the field. For example, (the
symbol ␣ represents a blank character):

#define MQMD_STRUC_ID "MD␣␣"

#define MQFMT_STRING "MQSTR␣␣␣"

Use this form with the memcpy and memcmp functions.

� The other macro variable defines the value as an array of char; the name of
this macro variable is the name of the string form suffixed with “_ARRAY”. For
example:

#define MQMD_STRUC_ID_ARRAY 'M','D','␣','␣'

#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','␣','␣','␣'

Use this form to initialize the field when an instance of the structure is declared
with values different from those provided by the MQMD_DEFAULT macro
variable.

COBOL copy files
For COBOL, MQSeries for Digital OpenVMS provides separate copy files
containing the named constants, and two copy files for each of the structures.
There are two copy files for each structure because each is provided both with and
without initial values:

� In the WORKING-STORAGE SECTION of a COBOL program, use the files that
initialize the structure fields to default values. These structures are defined in
the copy files that have names suffixed with the letter “V” (values).

� In the LINKAGE SECTION of a COBOL program, use the structures without
initial values. These structures are defined in copy files that have names
suffixed with the letter “L” (linkage).

280 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Data definition files

The MQSeries for Digital OpenVMS COBOL copy files are listed in Table 46. They
are installed in the MQS_INCLUDE directory.

Include in your program only those files you need. Do this with one or more COPY
statements after a level-01 declaration (see Figure 17 for an example). This
means you can include multiple versions of the structures in a program if
necessary. However, note that CMQV is a large file.

Table 46. COBOL copy files for MQSeries for Digital OpenVMS

File name
(with initial
values)

File name
(without initial
values)

Contents

CMQDLHV.LIB CMQDLHL.LIB Dead-letter (undelivered-message)
header structure (MQDLH)

CMQGMOV.LIB CMQGMOL.LIB Get-message options structure
(MQGMO)

CMQMDV.LIB CMQMDL.LIB Message descriptor structure
(MQMD)

CMQODV.LIB CMQODL.LIB Object descriptor structure (MQOD)

CMQPMOV.LIB CMQPMOL.LIB Put-message options structure
(MQPMO)

CMQTMC2V.LIB CMQTMC2L.LIB Trigger-message structure (character
format) (MQTMC)

CMQTMV.LIB CMQTML.LIB Trigger-message structure (MQTM)

CMQV.LIB not applicable Named constants for the MQI

CMQXQHV.LIB CMQXQHL.LIB Transmission-queue header structure
(MQXQH)

ð1-MQM-MESSAGE-DESCRIPTOR.

 COPY “MQS_INCLUDE:CMQMDV”

Figure 17. Example of COBOL code for including the CMQMDV copy file

Each structure declaration begins with a level-10 item; this means you can declare
several instances of the structure by coding the level-01 declaration followed by a
COPY statement to copy in the remainder of the structure declaration. To refer to
the appropriate instance, use the IN keyword, as shown in Figure 18.

\ Declare two instances of MQMD

 ð1 MY-CMQMD.

 COPY “MQS_INCLUDE:CMQMDV”

 ð1 MY-OTHER-CMQMD.

 COPY “MQS_INCLUDE:CMQMDV”

\

\ Set MSGTYPE field in MY-OTHER-CMQMD

MOVE MQMT-REQUEST TO MQMD-MSGTYPE IN MY-OTHER-CMQMD.

Figure 18. Example of COBOL code for including two instances of CMQMDV

 Appendix I. Building your application on Digital OpenVMS 281

 Data definition files

The structures should be aligned on 4-byte boundaries. If you use the COPY
statement to include a structure following an item that is not the level-01 item, try to
ensure that the structure is a multiple of 4-bytes from the start of the level-01 item.
If you do not do this, you may get a reduction in the performance of your
application.

In the descriptions of the fields of structures in the MQSeries Application
Programming Reference fields are shown without a prefix. In COBOL programs
you must prefix the field names with the name of the structure followed by a
hyphen; this is shown in the COBOL declarations in the MQSeries Application
Programming Reference. The fields in the structure copy files are prefixed this
way.

The field names in the declarations in the MQSeries Application Programming
Reference. and in the structure copy files are in uppercase. You can use mixed
case or lowercase instead. For example, the field StrucId of the MQGMO
structure is shown as MQGMO-STRUCID in the COBOL declaration and in the
copy file.

The V-suffix structures are declared with initial values for all of the fields, so you
need to set only those fields where the value required is different from the initial
value.

 Named constants
In this book, the names of constants are shown containing the underscore
character (_) as part of the name. In COBOL, you must use the hyphen character
(-) in place of the underscore.

The copy file CMQV contains declarations of the named constants as level-10
items. To use the constants, declare the level-01 item explicitly, then use the
COPY statement to copy in the declarations of the constants (see Figure 19).

 WORKING-STORAGE SECTION.

 ð1 MQM-CONSTANTS.

 COPY “MQS_INCLUDE:CMQV”

Figure 19. Example of COBOL code for declaring constants

However, this method causes the constants to occupy storage in the program even
if they are not referred to. If the constants are included in many separate programs
within the same run unit, multiple copies of the constants will exist—this may result
in a significant amount of main storage being used. You can avoid this situation by
adding the GLOBAL clause to the level-01 declaration (see Figure 20).

\ Declare a global structure to hold the constants

 ð1 MQM-CONSTANTS GLOBAL.

 COPY “MQS_INCLUDE:CMQV”

Figure 20. Example of COBOL code using the GLOBAL clause

This causes storage to be allocated for only one set of constants within the run
unit; the constants, however, can be referred to by any program within the run unit,
not just the program that contains the level-01 declaration.

282 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Preparing COBOL programs

Preparing C programs
This section explains the compiler and libraries you need to prepare your C
programs.

C Compiler version
You must use the DEC C compiler. To invoke the compiler, enter:

 $ CC/DECC

This is the default.

C compiler flags
The include files for MQSeries for Digital OpenVMS are located in the
MQS_INCLUDE directory. The following is an example of how to build the sample
program AMQSPUT0:

 $ CC/INCLUDE_DIRECTORY=MQS_INCLUDE AMQSPUTð

$ LINK AMQSPUTð.OBJ,SYS$INPUT/OPTIONS

 SYS$SHARE: MQM/SHAREABLE

Ctrl + Z

 Linking libraries
You need to link your programs with the appropriate library provided by MQSeries.
The libraries are found in SYS$SHARE.

You must link to one or more of the following libraries:

Library file Program/exit type
mqm.exe C
mqic.exe MQSeries client (C only)
mqmzf.exe installable service

Preparing COBOL programs
This section explains the compiler and libraries you need to prepare your COBOL
programs.

COBOL compiler flags
You must compile the programs in ANSI mode using the /ANSI switch to the DEC
COBOL compiler. The following is an example of how to build the sample program
AMQ0PUT0:

 $ COBOL/ANSI AMQðPUTð.COB

$ LINK AMQðPUTð.OBJ,SYS$INPUT/OPTIONS

 SYS$SHARE: MQMCB/SHAREABLE

Ctrl + Z

 Linking libraries
You need to link your program with one of the following:

MQMCB.EXE COBOL
MQICB.EXE COBOL MQSeries client

 Appendix I. Building your application on Digital OpenVMS 283

 User exits

 User exits
The user exit is a dynamically loaded shareable image whose name is taken from
the format of the message. The object’s name must be in uppercase, for example
MYFORMAT. The shareable image must be placed in sys$share or a location defined
by a logical name at executive level for it to be loaded.

User exits must be installed as known images.

In the example, MQSTART is the initialization routine entry point for the
MYFORMAT shareable image. The names of the routines which are called by the
data-conversion exit must be made universal.

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE AMQSVFCX.C

$ LINK /SHARE=SYS$SHARE:MYFORMAT AMQSVFCX.OBJ,MYFORMAT/OPTIONS

The contents of MYFORMAT.OPT vary depending on what platform you are
working on:

On AXP:

 SYS$SHARE:MQM/SHAREABLE

 SYMBOL_VECTOR=(MQSTART=PROCEDURE)

On VAX:

 SYS$SHARE:MQM/SHAREABLE

 UNIVERSAL=MQSTART

If you are using threaded applications linked with the pthread library, you must also
build a second copy of the data-conversion exit with the thread options and
libraries:

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE AMQSVFCX.C

$ LINK /SHARE=SYS$SHARE:MYFORMAT AMQSVFCX.OBJ,MYFORMAT/OPTIONS

Again, the contents of MYFORMAT.OPT vary depending on what platform you are
working on:

On AXP:

 SYS$SHARE:MQM_R/SHAREABLE

 SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE

 SYMBOL_VECTOR=(MQSTART=PROCEDURE)

On VAX:

 SYS$SHARE:MQM_R/SHAREABLE

 SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE

 UNIVERSAL=MQSTART

See the Application Programming Guide for more details on data-conversion exits.

284 MQSeries for Digital OpenVMS V2R2 System Management Guide

 The DQM channel control function

Appendix J. Monitoring and controlling DQM on OS/2,
Windows NT, UNIX systems and Digital OpenVMS

 Note

The information in this appendix will be inserted into the MQSeries Distributed
Queuing Guide the next time that this book is refreshed.

For DQM you need to create, monitor, and control the channels to remote queue
managers. You can use the following types of commands to do this:

The MQSeries commands (MQSC)
You can use the MQSC as single commands in an MQSC session in
OS/2, Windows NT, UNIX systems and Digital OpenVMS systems..
To issue more complicated, or multiple commands, the MQSC can be
built into a file that you then run from the command line. For full
details see the MQSeries Command Reference manual.

This chapter gives some simple examples of using MQSC for
distributed queuing.

Control commands
You can also issue control commands at the command line for some
of these functions. Reference material for these commands is
contained in the MQSeries System Management Guide for your
platform.

Programmable command format commands
See the MQSeries Programmable System Management manual for
information about using these commands.

Each queue manager has a DQM component for controlling interconnections to
compatible remote queue managers.

For a list of the functions available to you when setting up and controlling message
channels, using the two types of commands, see Table 47 on page 286.

The DQM channel control function
The channel control function provides the interface and function for administration
and control of message channels between systems.

It consists of commands, programs, a synchronization queue and file, and a file for
the channel definitions. The following is a brief description of the components:

� The channel definition file (CDF):

– Is indexed on channel name
– Holds channel definitions

� The channel commands are a subset of the MQSeries Commands.

� You use MQSC and the control commands to:

– Create, copy, display, change, and delete channel definitions

 Copyright IBM Corp. 1995, 1997 285

 Functions available

– Start and stop channels, ping, reset channel sequence numbers, and
resolve in-doubt messages when links cannot be re-established

– Display status information about channels

� A synchronization queue and file hold sequence numbers and logical unit of
work (LUW) identifiers. They are used for channel synchronization purposes.

 Functions available
Table 47 is the full list of MQSeries functions that you may need when setting up,
and controlling channels. The channel functions are explained in this chapter.

For more details of the control commands that you issue at the command line, see
the MQSeries System Management Guide for your platform.

The MQSC commands are fully described in the MQSeries Command Reference.

Table 47 (Page 1 of 2). Functions available in MQSeries for OS/2, Windows NT, UNIX
systems and Digital OpenVMS systems

Function Control commands MQSC

Queue manager functions

Change queue manager ALTER QMGR

Create queue manager crtmqm

Delete queue manager dltmqm

Display queue manager DISPLAY QMGR

End queue manager endmqm

Ping queue manager PING QMGR

Start queue manager strmqm

Command server functions

Display command server dspmqcsv

End command server endmqcsv

Start command server strmqcsv

Queue functions

Change queue ALTER QALIAS
ALTER QLOCAL
ALTER QMODEL
ALTER QREMOTE

Clear queue CLEAR QLOCAL

Create queue DEFINE QALIAS
DEFINE QLOCAL
DEFINE QMODEL
DEFINE QREMOTE

Delete queue DELETE QALIAS
DELETE QLOCAL
DELETE QMODEL
DELETE QREMOTE

286 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Functions available

Table 47 (Page 2 of 2). Functions available in MQSeries for OS/2, Windows NT, UNIX
systems and Digital OpenVMS systems

Function Control commands MQSC

Display queue DISPLAY QUEUE

Process functions

Change process ALTER PROCESS

Create process DEFINE PROCESS

Delete process DELETE PROCESS

Display process DISPLAY PROCESS

Channel functions

Change channel ALTER CHANNEL

Create channel DEFINE CHANNEL

Delete channel DELETE CHANNEL

Display channel DISPLAY CHANNEL

Display channel status DISPLAY CHSTATUS

End channel STOP CHANNEL

Ping channel PING CHANNEL

Reset channel RESET CHANNEL

Resolve channel RESOLVE CHANNEL

Run channel runmqchl START CHANNEL

Run channel initiator runmqchi START CHINIT

Run listener (OS/2 and
Windows NT only)

runmqlsr START LISTENER

Other functions

Display the files used by
MQSeries objects

dspmqfls

Record MQSeries object image rcdmqimg

Recreate MQSeries object rcrmqobj

Run MQSC runmqsc

Create MQSeries conversion exit crtmqcvx

Run trigger monitor runmqtrm

Display transaction dspmqtrn

Resolve transaction rsvmqtrn

 Appendix J. Monitoring and controlling DQM on OS/2, Windows NT, UNIX systems and Digital OpenVMS 287

 Getting started

 Getting started
Use the MQSeries commands (MQSC) to:

1. Define message channels and associated objects
2. Monitor and control message channels

The objects you need to define are:

 � Transmission queues
� Remote queue definitions
� Queue manager alias definitions
� Reply-to queue alias definitions
� Reply-to local queues
� Processes for triggering (MCAs)
� Message channel definitions

Channels must be completely defined, and their associated objects must exist and
be available for use, before a channel can be started. This chapter shows you how
to do this.

In addition, the particular communication link for each channel must be defined and
available before a channel can be run. For a description of how LU 6.2, TCP/IP,
and DECnet links are defined, see the particular communication guide for your
installation.

 Creating objects
Use MQSC to create the queue and alias objects: transmission queues, remote
queue definitions, queue manager alias definitions, reply-to queue alias definitions,
and reply-to local queues.

Also create the definitions of processes for triggering (MCAs) in a similar way.

For an example showing how to create all the required objects, in one particular
situation, see the Distributed Queuing Guide.

Creating a channel
To create a new channel you have to create two channel definitions, one at each
end of the connection. You create the first channel definition at the first queue
manager. Then you create the second channel definition at the second queue
manager, on the other end of the link.

Both ends must be defined using the same channel name.

The two ends must have compatible channel types, for example: Sender and
Receiver.

To create a channel definition for one end of the link use MQSC DEFINE
CHANNEL. Include the name of the channel, the channel type for this end of the
connection, a description (if required), the name of the transmission queue, and the
transmission protocol. Also include any other attributes that you want to be
different from the system default values for the required channel type, using the
information you have gathered previously.

288 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Getting started

You are provided with help in deciding on the values of the channel attributes. See
the MQSeries Distributed Queuing Guide.

Note: You are very strongly recommended to name all the channels in your
network uniquely. Including the source and target queue manager names in the
channel name is a good way to do this.

Create channel example
DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) +

DESCR('Sender channel to QM2') +

CONNAME(QM2) TRPTYPE(TCP) XMITQ(QM2) CONVERT(YES)

In all the examples of MQSC the command is shown as it would appear in a file of
commands, and as it would be typed in OS/2, Windows NT, UNIX systems. or
Digital OpenVMS. The two methods look identical, except that to issue a command
in OS/2, Windows NT, or UNIX systems you must first start an MQSC session.
Type runmqsc, for the default queue manager, or runmqsc QMNAME where QMNAME is
the name of the required queue manager. Then type any number of commands, as
shown in the examples.

There is an 80-character limit to the line length. Use a concatenation character as
shown to continue over more than one line. On OS/2 Windows NT, or Digital
OpenVMS use Ctrl-z to end the input at the command line. On UNIX systems, use
Ctrl-d to end the input at the command line.

Displaying a channel
Use MQSC DISPLAY CHANNEL, specifying the channel name, the channel type
(optional) and the attributes you want to see, or specifying that all attributes are
displayed.

The attributes are described in the MQSeries Distributed Queuing Guide.

Display channel examples
DISPLAY CHANNEL(QM1.TO.QM2) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.\) TRPTYPE,CONVERT

DISPLAY CHANNEL(\) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.QMR34) ALL

 Appendix J. Monitoring and controlling DQM on OS/2, Windows NT, UNIX systems and Digital OpenVMS 289

 Getting started

Display channel status
Use MQSC DISPLAY CHSTATUS specifying the channel name and whether you
want the current status of channels or the status of saved information.

Display channel status examples
DISPLAY CHSTATUS(QM1.TO.\) SAVED

DISPLAY CHSTATUS(\) CURRENT

Starting a channel
For applications to be able to exchange messages you must start a listener
program for inbound connections (create a listener attachment in UNIX systems).
In OS/2 and Windows NT you can use the runmqlsr command to start channels
as threads.

For outbound connections you must start the channel. Use MQSC START
CHANNEL , specifying the channel name, to start the channel as a process or a
thread, based on the MCATYPE parameter. Alternatively you can start channels as
processes using the control command runmqchl .

Start channel examples
START CHANNEL(QM1.TO.QM2)

runmqchl -c QM1.TO.QM2 -m QM1

Renaming a channel
To rename a message channel, use MQSC to carry out the following steps:

1. Use STOP CHANNEL to stop the channel.

2. Use DEFINE CHANNEL to create a duplicate channel definition with the new
name.

3. Use DISPLAY CHANNEL to check that it has been created correctly.

4. Use DELETE CHANNEL to delete the original channel definition.

If you decide to rename a message channel, remember that a channel has two
channel definitions, one at each end. Make sure you rename the channel at both
ends at the same time.

290 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Channel attributes and channel types

Channel attributes and channel types
The channel attributes that are required for each type of channel are shown here in
Table 48.

The channel attributes are described in detail in the MQSeries Distributed Queuing
Guide.

Table 48 (Page 1 of 2). Channel attributes for the channel types in OS/2, Windows NT, UNIX systems and
Digital OpenVMS

Attribute field Sender Server Receiver Requester Client-
connection

Server-
connection

Batch size √ √ √ √

Channel name √ √ √ √ √ √

Channel type √ √ √ √ √ √

Connection name √ O O √

Convert message √ √

Disconnect interval √ √

Long retry wait interval √ √

Long retry count √ √

LU 6.2 Transaction program
name

O O O O

LU 6.2 Transmission
program name

O O O O

Maximum message length √ √ √ √

Message channel agent
type

√ √ √ √

Message channel agent
user

O O O O O O

Message exit name O O O O

Message exit user data O O O O

Message-retry exit name O O

Message-retry exit user data O O

Message retry count O O

Message retry interval O O

Mode name O O O O

Password O O O O

Queue manager name √

PUT authority √ √

Receive exit O O O O O O

Receive exit user data O O O O O O

Security exit O O O O O O

Security exit user data O O O O O O

Send exit O O O O O O

Send exit user data O O O O O O

Sequence number wrap √ √ √ √

Short retry wait interval √ √

Short retry count √ √

 Appendix J. Monitoring and controlling DQM on OS/2, Windows NT, UNIX systems and Digital OpenVMS 291

 Channel functions

Table 48 (Page 2 of 2). Channel attributes for the channel types in OS/2, Windows NT, UNIX systems and
Digital OpenVMS

Attribute field Sender Server Receiver Requester Client-
connection

Server-
connection

Transport type √ O O √

Transmission queue √ √

User ID O O O O

Note: √ = Required attribute, O = Optional attribute

 Channel functions
The channel functions available are shown in Table 47 on page 286. Here some
more detail is given about the channel functions.

 Create
You can create a new channel definition using the default values supplied by
MQSeries, specifying the name of the channel, the type of channel you are
creating, the communication method to be used, the transmission queue name and
the connection name.

The channel name must be the same at both ends of the channel, and unique
within the network. However, you should restrict the characters used to those that
are valid for MQSeries object names.

 Change
Use MQSC ALTER CHANNEL to change an existing channel definition, except for
the channel name, or channel type.

 Delete
Use MQSC DELETE CHANNEL to delete a named channel.

 Display
Use MQSC DISPLAY CHANNEL to display the current definition for the channel.

 Display Status
The MQSC DISPLAY CHSTATUS displays the status of a channel whether the
channel is active or inactive. It applies to all message channels, but not to MQI
channels. See “Display channel status” on page 290.

Information displayed includes:

 � Channel name
� Communication connection name
� In-doubt status of channel (where appropriate)
� Last sequence number
� Transmission queue name (where appropriate)
� The in-doubt identifier (where appropriate)
� The last committed sequence number
� Logical unit of work identifier

 � Process ID
� Thread ID (OS/2 and Windows NT only)

292 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Channel functions

 Ping
Use MQSC PING CHANNEL to exchange a fixed data message with the remote
end. This gives some confidence to the system supervisor that the link is available
and functioning.

Ping does not involve the use of transmission queues and target queues. It uses
channel definitions, the related communication link, and the network setup.

It is available from sender and server channels, only. The corresponding channel
is started at the far side of the link, and performs the start up parameter
negotiation. Errors are notified normally.

The result of the message exchange is presented as Ping complete or an error
message.

Ping with LU 6.2: When Ping is invoked, by default no USERID or password
flows to the receiving end. If USERID and password are required, they can be
created at the initiating end in the channel definition. If a password is entered into
the channel definition, it is encrypted by MQSeries before being saved. It is then
decrypted before flowing across the conversation.

 Start
Use MQSC START CHANNEL for sender, server, and requester channels. It
should not be necessary where a channel has been set up with queue manager
triggering.

The START CHANNEL command is also used for receiver channels that have a
disabled status. Starting a receiver channel that is in disabled status resets the
channel and allows it to be started from the remote channel.

When started, the sending MCA reads the channel definition file and opens the
transmission queue. A channel start-up sequence is executed, which remotely
starts the corresponding MCA of the receiver or server channel. When they have
been started, the sender and server processes await messages arriving on the
transmission queue and transmit them as they arrive.

When you use triggering or run channels as threads, you will need to start the
trigger process to monitor the initiation queue. Use the runmqchi command for this.

For OS/2 and Windows NT, MQSeries provides a listener process for TCP/IP, LU
6.2, and NetBIOS. This process listens for incoming channel startup requests and
services them. The advantage of using this process is that each new channel is
started as a thread rather than as a new process.

However, TCP/IP and LU 6.2 do provide other capabilities:

� For TCP/IP on OS/2, UNIX systems, and Digital OpenVMS inetd (or an
equivalent TCP/IP service on OpenVMS) can be configured to start a channel.
This will be started as a separate process.

� For LU 6.2 in OS/2, using Communications Manager/2 it is possible to
configure the Attach Manager to start a channel. This will be started as a
separate process.

� For LU 6.2 in UNIX systems, configure your SNA product to start the LU 6.2
responder process.

 Appendix J. Monitoring and controlling DQM on OS/2, Windows NT, UNIX systems and Digital OpenVMS 293

 Channel functions

� For LU6.2 in Windows NT, using SNA Server you can use TpStart (a utility
provided with SNA Server) to start a channel. This will be started as a
separate process.

� For LU6.2 in Digital OpenVMS systems, use RUNMQLSR to start the LU6.2
responder process.

Use of the Start option always causes the channel to re-synchronize, where
necessary.

For the start to succeed:

� Channel definitions, local and remote must exist.
� Transmission queue must exist, and have no other channels using it.
� MCAs, local and remote must exist.
� Communication link must be available.
� Queue managers must be running, local and remote.
� Message channel must not be already running.

A message is returned to the screen confirming that the request to start a channel
has been accepted. For confirmation that the start command has succeeded,
check the error log, or use DISPLAY CHSTATUS. The error logs are:

OS/2 and Windows NT

\mqm\qmgrs\qmname\errors\AMQERRð1.LOG (for each queue manager
called qmname)

\mqm\qmgrs\@SYSTEM\errors\AMQERRð1.LOG (for general errors)

Note: On Windows NT, you still also get a message in the Windows NT
application event log.

UNIX systems

/var/mqm/qmgrs/qmname/errors/AMQERRð1.LOG (for each queue manager
called qmname)

/var/mqm/qmgrs/@SYSTEM/errors/AMQERRð1.LOG (for general errors)

Digital OpenVMS

MQS_ROOT:[MQM.QMGRS.QMNAME.ERRORS]AMQERRð1.LOG (for each queue
manager called qmname)

MQS_ROOT:[MQM.QMGRS.$SYSTEM.ERRORS]AMQERRð1.LOG (for general errors)

 Stop
Use the MQSC STOP CHANNEL to request the channel to stop activity. Any
channel type is disabled by this command. The channel will not start a new batch
of messages until the operator starts the channel again. (For information about
restarting stopped channels, see the MQSeries Distributed Queuing Guide.)

You can select the type of stop you require:

Stop quiesce example

STOP CHANNEL(QM1.TO.QM2) MODE(QUIESCE)

294 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Channel functions

This command requests the channel to close down in an orderly way, the current
batch of messages is completed, and the syncpoint procedure is carried out with
the other end of the channel.

Note: If the channel is idle this command will not terminate a receiving channel.

Stop force example

STOP CHANNEL(QM1.TO.QM2) MODE(FORCE)

Normally, this option should not be used. It will terminate the channel process or
thread. The channel will not complete processing the current batch of messages,
and could, therefore, leave the channel in doubt. In general, it is recommended
that operators use the quiesce stop option.

 Reset
Use MQSC RESET CHANNEL to change the message sequence number. This
command is available for any message channel, but not for MQI channels
(client-connection or server-connection). The first message starts the new
sequence the next time the channel is started.

If the command is issued on a sender or server channel, it will inform the other side
of the change when the channel is restarted.

 Resolve
Use MQSC RESOLVE CHANNEL to request a channel to commit or backout
in-doubt messages. This is used when the other end of the link has terminated,
and there is no prospect of it returning. Any outstanding unit of work needs to be
resolved with either backout or commit. Backout restores messages to the
transmission queue, while Commit discards them.

The RESOLVE CHANNEL command may be needed when messages are held
in-doubt by a sender or server. The option accepts one of two parameters:
BACKOUT or COMMIT.

The channel program does not try to establish a session with a partner. Instead, it
determines the logical unit of work identifier (LUWID) which represents the in-doubt
messages. It then issues, as requested, either:

� BACKOUT to restore the messages to the transmission queue; or
� COMMIT to delete the messages from the transmission queue.

For the resolution to succeed:

� The channel must be inactive
� The channel must be in doubt
� The channel type must be sender or server
� A local channel definition must exist
� Local queue manager must be running

 Appendix J. Monitoring and controlling DQM on OS/2, Windows NT, UNIX systems and Digital OpenVMS 295

 Channel functions

296 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Defining a TCP/IP connection

Appendix K. Setting up communication in Digital OpenVMS
systems

Distributed queue management (DQM) is a remote queuing facility for MQSeries. It
provides channel control programs for the queue manager that form the interface to
communication links, controllable by the system operator. The channel definitions
held by distributed queue management use these connections.

When a distributed queue management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this.

Deciding on a connection
There are four forms of communication for MQSeries on Digital OpenVMS systems:

 � TCP/IP
 � LU 6.2
� DECnet Phase IV
� DECnet Phase V

Each channel definition must specify one only as the transmission protocol
(Transport Type) attribute. One or more protocols may be used by a queue
manager.

For MQSeries clients, it may be useful to have alternative channels using different
transmission protocols. There is an example of this in the MQSeries Clients book.

Defining a TCP/IP connection
The channel definition at the sending end specifies the address of the target. The
TCP/IP service is configured for the connection at the receiving end.

 Sending end
Specify the host name, or the TCP/IP address of the target machine, in the
Connection Name field of the channel definition. Port number 1414 is assigned by
the Internet Assigned Numbers Authority to MQSeries.

To use a port number other than the default, change the connection name field
thus:

Connection Name REMHOST(1822)

where REMHOST is the hostname of the remote machine and 1822 is the port number
required. (This must be the port that the listener at the receiving end is listening
on.)

Alternatively you can change the default sending port number by specifying it in the
queue manager configuration file (qm.ini):

TCP:

 Port=1822

 Copyright IBM Corp. 1995, 1997 297

 Defining a TCP/IP connection

Using the TCP/IP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option you must the add the following entry
to your queue manager configuration file (QM.INI):

TCP:

 KeepAlive=yes

Receiving channels using Digital TCP/IP services (UCX) for OpenVMS
To use Digital TCP/IP Services (UCX) for OpenVMS, you must configure a UCX
service as follows:

1. Create a file consisting of one line and containing the DCL command to start
the TCP/IP receiver program, amqcrsta.exe:

$ mcr amqcrsta [-m Queue_Man_Name]

Place this file in the SYS$MANAGER directory. In this example the name of
the file is MQRECV.COM.

Notes:

a. If you have multiple queue managers you must make a new file and UCX
service for each queue manager.

b. Ensure that the protection on the file and its parent directory allow it to be
executable, that is, the protection is /PROT=W:RE.

2. Create a UCX service to start the receiving channel program automatically:

$ UCX

UCX> set service MQSeries/port=1414/protocol=TCP/user_name=MQM -

UCX> /process=MQSERIES/file=SYS$MANAGER:MQRECV.COM/limit=6

UCX> enable service MQSeries

UCX> exit

If a receiving channel does not start when the sending end starts, it is probably
due to the permissions on the file being incorrect.

3. To enable the service upon every system IPL (reboot), issue the command

$ UCX SET CONFIGURATION ENABLE SERVICE MQSERIES

Receiving channels using Cisco MultiNet for OpenVMS
To use Cisco MultiNet for OpenVMS, you must configure a Multinet service as
follows:

1. Create a file consisting of one line and containing the DCL command to start
the TCP/IP receiver program, amqcrsta.exe:

$ mcr amqcrsta.exe [-m Queue_Man_Name]

Place this file in the SYS$MANAGER directory.

Notes:

a. If you have multiple queue managers you must make a new file and
MultiNet service for each queue manager.

b. Ensure that the protection on the file and its parent directory allow it to be
executable, that is, the protection is /PROT=W:RE.

298 MQSeries for Digital OpenVMS V2R2 System Management Guide

2. Create a MultiNet service to start the receiving channel program automatically:
$ multinet configure/server

MultiNet Server Configuration Utility 3.5 (1ð1)

[Reading in configuration from MULTINET:SERVICES.MASTER_SERVER]

SERVER-CONFIG> add MQSeries

[Adding new configuration entry for service “MQSERIES”]

Protocol: [TCP]

TCP Port number: 1414

Program to run: sys$manager:mqrecv.com

[Added service MQSERIES to configuration]

[Selected service is now MQSERIES]

SERVER-CONFIG> set flags UCX_SERVER

 MQSERIES flags set to <UCX_SERVER>]

SERVER-CONFIG> set username MQM

[Username for service MQSERIES set to MQM]

SERVER-CONFIG> exit

[Writing configuration to MULTINET_COMMON_ROOT:SERVICES.MASTER_SERVER]

$

The service is enabled automatically after the next system IPL (reboot). To enable
the service immediately, issue the command

'MULTINET CONFIGURE /SERVER RESTART'.

Receiving channels using Attachmate** PathWay for OpenVMS
To use Attachmate PathWay for OpenVMS to start channels, you must configure a
PathWay service as follows:

1. Create a file consisting of one line and containing the DCL command to start
the TCP/IP receiver program, amqcrsta.exe:

$ mcr amqcrsta [-m Queue_Manager_Name]

Place this file in the SYS$MANAGER directory. In this example the name
mqrecv.com is used.

2. Create an Attachmate service to start the receiving channel program
automatically.

You do this by adding the following lines to the file
TWG$COMMON:[NETDIST.ETC]SERVERS.DAT.

 # MQSeries

 service-name MQSeries

 program SYS$MANAGER:MQRECV.COM

 socket-type SOCK_STREAM

socket-options SO_ACCEPTCONN | SO_KEEPALIVE

socket-address AF_INET , 1414

 working-set 512

 priority 4

 INIT TCP_Init

 LISTEN TCP_Listen

 CONNECTED TCP_Connected

 SERVICE Run_Program

 username MQM

 device-type UCX

 Appendix K. Setting up communication in Digital OpenVMS systems 299

 Defining an LU 6.2 connection

Defining an LU 6.2 connection
MQSeries for Digital OpenVMS uses the DECnet SNA APPC/LU 6.2 Programming
Interface. This interface requires access through DECnet to a suitably configured
SNA Gateway, for example, the SNA Gateway-ST, or SNA Gateway-CT.

 SNA configuration
To enable MQSeries to work with DECnet APPC/LU6.2 you must complete your
Gateway SNA configuration first. The DEC SNA configuration must be in
agreement with the Host SNA configuration.

Notes:

1. When configuring your host system, be aware that the VMS SNA Gateway
supports PU 2 and not Node type 2.1. This means that the LUs configured on
the mainframe for the DEC must be dependent LUs and that the mode
specified must specify a single session.

2. Ensure that the SNA libraries are installed as shared images upon each system
IPL by running the command @SYS$STARTUP:SNALU62$STARTUP.COM in the system
startup procedure.

To configure your SNA Gateway, set up the SNAGATEWAY_<node>_SNA.COM file,

where <node> is replaced with the node name of your DECnet SNA gateway.

Do this by responding to the configuration prompts in the Gateway installation
procedure, or by directly editing the file.

The SNA Gateway installation procedure creates the file in the directory
SYS$COMMON:[SNA$CSV].

The configuration information in this file is downloaded to the Gateway when you
run the NCP LOAD NODE command.

Notes:

1. SNANCP commands can be used to make online changes to the current
Gateway configuration.

2. SNAP can be used to monitor SNA resources.

A sample SNA configuration follows:

$!+-+

$! Start of file: SYS$COMMON:[SNA$CSV]SNAGATEWAY_SNAGWY_SNA.COM

$! DECnet SNA Gateway-ST SNA configuration file

$! Created: 23-FEB-1996 19:1ð:43.68 by SNACST$CONFIGURE V1.2

$! Host node: CREAMP User$ CHO

$!+-+

$ v = f$verify(1)

$ RUN SYS$SYSTEM:SNANCP

SET LINE SYN-ð -

DUPLEX FULL -

PROTOCOL SDLC POINT -

SIGNALLING NORMAL -

CLOCK EXTERNAL -

MODEM TYPE NORMAL -

RECEIVE BUFFERS 34 -

LOGGING INFORMATIONAL -

300 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Defining an LU 6.2 connection

BUFFER SIZE 265

SET CIRCUIT SDLC-ð -

LINE SYN-ð -

DUPLEX FULL -

RESPONSE MODE NORMAL -

STATION ADDRESS C1 -

LOGGING INFORMATIONAL -

STATION ID ð714ðð2A // XID

SET PU SNA-ð CIRCUIT SDLC-ð -

LU LIST 1-32 -

SEGMENT SIZE 265 - // must equal MAXDATA on Host PU definition

 LOGGING WARNING

SET CIRCUIT SDLC-ð STATE ON

SET LINE SYN-ð STATE ON

SET SERVER SNA-ACCESS -

LOGGING WARNING -

NOTE “Gateway Access Server” -

 STATE ON

SET ACCESS NAME VTAMSDR PU SNA-ð LU 2 APPL IYZIZCB1 LOGON MQMODE

SET ACCESS NAME VTAMRQST PU SNA-ð LU 3 APPL IYZIZCB1 LOGON MQMODE

SET ACCESS NAME VTAMSVR PU SNA-ð LU 4 APPL IYZIZCB1 LOGON MQMODE

SET ACCESS NAME VTAMRCVR PU SNA-ð LU 5 APPL IYZIZCB1 LOGON MQMODE

$ EXIT $STATUS + (ð \ 'f$verify(v)')

$!+-+

$! End of file: SYS$COMMON:[SNA$CSV]SNAGATEWAY_SNAGWY_SNA.COM

$!+-+

Defining access names
You should set up a separate Access name for each MQSeries channel. This
ensures that the VMS system and the remote system agree on the LU used for the
channel. If you use a single access name, with a range of LUs specified, the
Gateway selects the LUs in a circular order. Therefore the LU selected by the
Gateway will not correspond with the LU used by the Host channel, because the
Host associates a specific LU with a channel.

The access name is used only to communicate between the DECnet SNA APPC
program and the Gateway. It has no network meaning.

Notes:

1. The LUs are single session. You must define a separate LU for requester and
sender channel pairs.

2. You are advised to use names that associate the access name to the
corresponding channel, but you can choose any name.

3. The APPL is the ACBNAME in the VBUILD statement defining the APPL in
VTAM.

4. The LU must correspond to the LOCADDR in the LU definition statement in
VTAM.

5. The LOGON must specify the logmode entry on the host that specifies
parameters acceptable to the SNA Gateway.

The DECnet SNA Gateway Guide to IBM Parameters details the parameters
expected by the Gateway.

 Appendix K. Setting up communication in Digital OpenVMS systems 301

 Defining an LU 6.2 connection

Specifying SNA configuration parameters to MQSeries
MQSeries obtains knowledge of the SNA resources by passing the Gateway Node
name and the Access name to the channel program.

Passing parameters to sender and requester channel pairs
For sender and requester channel pairs specify the Gateway Node and Access
Name in the CONNAME string in the channel definition.

The CONNAME also includes the TPNAME that is used by the SNA Allocate verb
to invoke the remote program.

The format of the CONNAME is: CONNAME('GatewayNode.AccessName(TpName)').

For example: CONNAME('SNAGWY.VMSREQUESTER(HOSTSVR)'),

where SNAGWY is the Gateway node, VMSREQUESTER is the access name, and
HOSTSVR is the TPNAME.

The TPNAME must be agreed on by the OpenVMS network manager and the Host.
MQSeries does not require a specific name.

Running senders and requesters
Senders, requesters, and fully qualified servers can be explicitly run by performing
a START CHANNEL command in runmqsc.

Senders and requesters on Digital OpenVMS initiate a session by issuing an
INIT-SELF to request a BIND from the host. In issuing the Allocate verb, the
MQSeries channel program takes the LU name and the Mode Name from the
Access Name.

MQSeries then allocates a conversation using the specified TPNAME.

Passing parameters to servers and receivers
For servers and receivers, specify the Gateway Node, Access Name, and TPNAME
as command line parameters to the runmqlsr command.

Running servers and receivers
Servers and receivers are started by running the runmqlsr command.

$ RUNMQLSR -m QMname-n TPname -g GatewayNode(AccessName)

Note: Each server and receiver channel requires its own listener process.

You can include these commands in the MQSeries startup file,
SYS$STARTUP:MQS_STARTUP.

Receivers and servers issue the ACTIVATE_SESSION request to the Gateway in
passive mode. In passive mode the channel program waits for a BIND from the
remote system, which puts the LU into the active-listening state, waiting for a bind
from the host.

You can check the LU status using SNANCP to make sure that you are in
active-listening state on the correct LU. If a BIND from the host arrives specifying
the LU that is in active-listening state, the session will be established. After
establishing the session, the host attempts to allocate a conversation.

302 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Defining an LU 6.2 connection

The TPNAME used by the host must be the same name as that specified in the
command line to establish the conversation.

Ending the SNA Listener process
To find the batch job number for the SNA listener process, type: $ show queue /

all

To end the SNA Listener process type:

$ delete /entry=<jobnumber>

where <jobnumber> is the job number of the listener batch job.

Sample MQSeries configuration
\

\ channel configuration for saturn.queue.manager for LU6.2

\

def ql('HOST_SENDER_TQ') usage(xmitq)

def ql('HOST_SERVER_TQ') usage(xmitq)

def chl('HOST.TO.VMS') chltype(rcvr) trptype(lu62) +

 seqwrap(999999999)

def chl('VMS.TO.HOST') chltype(svr) trptype(lu62) +

 xmitq('HOST_SERVER_TQ') seqwrap(999999999)

def chl('VMS.TO.VTAM') chltype(sdr) trptype(lu62) +

 conname('SNAGWY.VMSSENDER(HOSTRCV)') +

 xmitq('HOST_SENDER_TQ') seqwrap(999999999)

def chl('VTAM.TO.VMS') chltype(rqstr) trptype(lu62) +

 conname('SNAGWY.VMSREQUESTER(HOSTSVR)') seqwrap(999999999)

In this example four channels, one for each channel type – sender, requester,
server, and receiver – have been set up.

On the remote system you need to configure four corresponding channels.
Channels that talk to each other must have the same name.

� The OpenVMS sender, VMS.TO.VTAM, talks to a receiver called
VMS.TO.VTAM on the host.

� The OpenVMS requester, VTAM.TO.VMS talks to a server VTAM.TO.VMS on
the host.

� The OpenVMS server, VMS.TO.HOST talks to a requester VMS.TO.HOST on
the host.

� The OpenVMS receiver, HOST.TO.VMS talks to a sender HOST.TO.VMS on
the Host.

The commands to start each channel are:

$ runmqchl -m “saturn.queue.manager” -c “VTAM.TO.VMS”

$ runmqchl -m “saturn.queue.manager” -c “VMS.TO.VTAM”

$ runmqlsr -m “saturn.queue.manager” -n “HOSTSDR” -g SNAGWY(VMSRECEIVER)

$ runmqlsr -m “saturn.queue.manager” -n “HOSTRQSTR” -g SNAGWY(VMSSERVER)

 Appendix K. Setting up communication in Digital OpenVMS systems 303

 Defining an LU 6.2 connection

 Problem solving
Error PUNOTAVA - PU has not been activated

This error indicates a lack of connectivity between the two machines. Make sure
your line and circuit are set to state ON. Use SNATRACE at the circuit level to
verify that the Digital OpenVMS machine is polling. If no response is received for
the poll, check that the PU on the host is enabled. If the line will not go to the ON
STATE check your physical line. If the trace shows the host responding to the poll,
but the PU still does not become active, check your setting of the STATION ID.

Failure to allocate conversation

This error is returned by a sender or requester to indicate that allocate failed. Run
trace to verify that the session can be established. Verify that the Digital OpenVMS
machine sends the INIT-SELF (010681). If there is no response to the INIT-SELF
make sure that the host MQSeries channel is started. If the BIND from the host is
rejected by the Digital OpenVMS machine analyze the DEC bind response. Use
the Guide to IBM Parameters to see what is set incorrectly in the mode. If a
session is established and the conversation allocate request is rejected verify that
the TPNAMEs are configured the same on both systems.

For receivers and servers verify that a BIND is sent by the host. If not, enable the
Host MQSeries channel. If the BIND is rejected check the reason for rejection.
Make sure that the Digital OpenVMS listener LU is the LU with which the host is
trying to establish a session.

MQSeries connection failure

After establishing a conversation the two MQSeries channels engage in a protocol
to establish an MQSeries channel connection. If this fails, the reason for failure
should be indicated in the error logs on the two systems. Check both logs and
correct the indicated problem. For example the connection fails if one system has
a SEQWRAP value of 999999999 and the other 999999. In the SNATRACE you
will see that the allocate succeeded and that MQ is trying to establish a channel
connection. At this point the MQSeries logs are the best aid in resolving problems.

304 MQSeries for Digital OpenVMS V2R2 System Management Guide

 DECnet Phase IV connections

Appendix L. Defining DECnet Phase IV and Phase V
connections

 Note

The information in this appendix will be inserted into the MQSeries Distributed
Queuing Guide the next time that this book is refreshed.

Defining a DECnet Phase IV connection
The channel definition at the sending end specifies the address of the target. The
DECnet network object is configured for the connection at the receiving end.

 Sending end
Specify the DECnet node name and the DECNET object name in the Connection
Name field of the channel definition. You need a different DECnet object for each
separate queue manager that is defined. For example, to specify DECnet object
MQSERIES on node FOONT enter the following when defining the channel:

CONNAME('FOONT(MQSERIES)')

Receiving on DECnet Phase IV
To use DECnet Phase IV to start channels, you must configure a DECnet object as
follows:

1. Create a file consisting of one line and containing the DCL command to start
the DECnet receiver program, amqcrsta.exe:

$ mcr amqcrsta [-m Queue_Man_Name] -t DECnet

Place this file in the SYS$MANAGER directory. In this example the file is
named MQRECVDECNET.COM.

Notes:

a. If you have multiple queue managers you must make a new file and
DECnet object for each queue manager.

b. If a receiving channel does not start when the sending end starts, it is
probably due to the permissions on this file being incorrect.

2. Create a DECnet object to start the receiving channel program automatically.
You must supply the correct password for MQSeries.
$ MCR NCP

NCP> define object MQSERIES

Object number (ð-255): ð

File name (filename):sys$manager:mqrecvdecnet.com

Privileges (List of VMS privileges):

Outgoing connect privileges (List of VMS privileges):

User ID (1-39 characters): mqm

Password (1-39 characters): mqseries

Account (1-39 characters):

Proxy access (INCOMING, OUTGOING, BOTH, NONE, REQUIRED):

NCP> set known objects all

NCP> exit

Note: You could use proxy user identifiers rather than actual user identifiers.
This will prevent any unauthorized access to the database. Information on how
to set up proxy identifiers is given in the Digital DECnet for OpenVMS
Networking Manual.

 Copyright IBM Corp. 1995, 1997 305

 DECnet Phase V connections

3. Ensure that all known objects are set when DECnet is started.

Defining a DECnet Phase V connection
Set up the MQSeries configuration for channel objects:

1. Start the NCL configuration interface by issuing the following command:

$ MC NCL

 NCL>

2. Create a session control application entity by issuing the following commands:

NCL> create session control application MQSERIES
NCL> set sess con app MQSERIES address {name=MQSERIES}

NCL> set sess con app MQSERIES image name -

 _ SYS$MANAGER:MQRECVDECNET.COM

NCL> set sess con app MQSERIES user name “MQM”

NCL> set sess con app MQSERIES node synonym true

NCL> show sess con app MQSERIES all [characteristics]

Note: User-defined values are in uppercase .

3. Create the command file as for DECnet PhaseIV.

4. The log file for the object is net$server.log in the sys$login directory for the
application-specified user name.

5. To enable the session control application upon every system IPL (reboot), add
the preceding NCL commands to the file
SYS$MANAGER:NET$APPLICATION_LOCAL.NCL.

306 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Ancilliary information

 Appendix M. Ancilliary information

This appendix lists any ancilliary information that you need to setup MQSeries for
Digital OpenVMS.

The information contained in this appendix will be inserted into the identified book,
the next time that the book is refreshed.

MQSeries Command Reference
The TRPTYPE for DECnet is DECNET. This change applies to the ALTER
CHANNEL, DEFINE CHANNEL, and DISPLAY CHANNEL commands.

MQSeries Distributed Queuing Guide
The TRPTYPE for DECnet is DECNET when setting up channels.

The channel program amqcrsta supports DECnet in addition to TCP/IP. See
Appendix L, “Defining DECnet Phase IV and Phase V connections” on page 305
for further information.

 Copyright IBM Corp. 1995, 1997 307

 Ancilliary information

308 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Message structure

 Appendix N. Messages

This appendix describes the format of the messages issued by MQSeries and how
they are documented.

 Message format
The format of the MQSeries messages is as follows:

� The message identifier, where the identifier has two components:

1. The characters “AMQ,” which identify the message as originating from
MQSeries

2. A four-digit decimal code.

� Text of the message

Structure of messages
This section describes the structure of MQSeries messages.

 Message variables
Some messages display text or numbers that vary according to the circumstances
giving rise to the message; these are known as message variables.

In this book, the message variables are shown as an '&' symbol, followed by a
number.

Where there is more than one variable in a message, a different number is added
to each '&' symbol.

Note: You should always look at the extended help for a message before carrying
out any other action, because, in certain cases, the variables are displayed in the
extended help only.

 Message information
Where applicable, this information is also provided:

Explanation: Why the message was issued.

User action: Instructions to the user.

Note: The message file may contain the explanation of the message, in addition
to the message itself.

 Copyright IBM Corp. 1995, 1997 309

 MQSeries messages

 MQSeries messages
MQSeries messages are numbered 5000 through 9999, and they are listed in this
book in numeric order. However, not all numbers have been used, and therefore,
the list is not continuous.

 Message groups
MQSeries messages are grouped according to the part of MQSeries from which
they originate:

5000 through 5999 Installable services – see page 311.

6000 through 6999 Common services – see page 315.

7000 through 7999 The MQSeries product – see page 318.

8000 through 8999 Administering MQSeries – see page 326.

9000 through 9999 Remote – see page 337.

310 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ5006 � AMQ5710

Installable services messages

AMQ5006 Unexpected error: rc = &1
Explanation: An unexpected error occurred in an internal
function of the product.
User action: Save the generated output files and contact
your IBM support center.

AMQ5501 There was not enough storage to satisfy the
request

Explanation: An internal function of the product attempted
to obtain storage, but there was none available.
User action: Stop the product and restart it. If this does not
resolve the problem, save the generated output files and
contact your IBM support center.

AMQ5511 Installable service component '&3' returned
'&4'.

Explanation: The internal function, that adds a component
to a service, called the component initialization process. This
process returned an error.
User action: Check the component was installed correctly.
If it was, and the component was supplied by IBM, then save
the generated output files and contact your IBM support
center. If the component was not supplied by IBM, save the
generated output files and follow the support procedure for
that component.

AMQ5512 Installable service component '&3' returned
'&4' for queue manager name = '&5'.

Explanation: An installable service component returned an
unexpected return code.
User action: Check the component was installed correctly.
If it was, and the component was supplied by IBM, then save
the generated output files and contact your IBM support
center. If the component was not supplied by IBM, save the
generated output files and follow the support procedure for
that component.

AMQ5513 '&3' returned &1.
Explanation: An unexpected error occurred.
User action: Save the generated output files and contact
your IBM support center.

AMQ5600 Usage: crtmqm [-z] [-q] [-c Text] [-d DefXmitQ]
[-h MaxHandles]

AMQ5603 Usage: dltmqm [-z] QMgrName
AMQ5604 Usage: dspmqaut [-m QMgrName] [-n

ObjName] -t ObjType [-p Principal | -g Group]
[-s ServiceName]

AMQ5605 Usage: endmqm [-z] [-c | -i | -p] QMgrName
AMQ5606 Usage: setmqaut -m QMgrName [-n ObjName]

-t ObjType [-p Principal | -g Group] [-s
ServiceName] Authorizations

AMQ5607 Usage: strmqm [-z] [QMgrName]
AMQ5608 Usage: dspmqtrn QMgrName
AMQ5609 Usage: rsvmqtrn -m QMgrName (-c | -b)

Transaction,Number
AMQ5700 Queue manager name '&3', work queue name

'&4'.
Explanation: These are the values of the parameters with
which the add-in task was started.
User action: None.

Programmer response: None.

AMQ5701 Checking mail-in database &3
Explanation: The add-in task is performing a periodic check
for mail memos that have arrived in the mail-in database
called &3.
User action: None.
Programmer response: None.

AMQ5702 Checking for replies.
Explanation: The add-in task is checking the reply queues
for responses from MQSeries applications.
User action:
Programmer response: None.

AMQ5703 MQSeries add-in task ended.
Explanation: Termination of the MQSeries add-in task has
completed.
User action: None.
Programmer response: None.

AMQ5704 Terminating.
Explanation: The add-in task is terminating, either due to a
user request or an error.
User action: None.
Programmer response: None.

AMQ5705 Initializing.
Explanation: The add-in task is initializing. It processes the
link database and connects to the queue manager in
preparation to receive requests.
User action: None.
Programmer response: None.

AMQ5706 Mail-in database '&3', link database '&4', wait
time &1 seconds.

Explanation: These are the values of the parameters with
which the add-in task was started.
User action: None.
Programmer response: None.

AMQ5707 Add-in task initialization complete.
Explanation: The add-in task has finished reading the link
database and is now ready to process requests.
User action: None.
Programmer response: None.

AMQ5708 Only two-byte integer values are supported
for S390 format.

Explanation: The add-in task supports conversion of
two-byte integers from S390 systems.
User action: Ensure that the entry in the link database uses
fields of only two bytes in length if they are in the S390
format.
Programmer response: None.

AMQ5710 Text of user document causing previous
message: '&3'.

Explanation: The add-in task generated the previous
message in response to an error. This message contains the
text of the user note associated with the error.
User action: None.
Programmer response: None.

 Appendix N. Messages 311

 AMQ5711 � AMQ5727

AMQ5711 An error occurred in reading the link
database.

Explanation: The add-in task detected an error while
reading the link database.
User action: Use the information in previous error
messages to diagnose the error. Then, correct the contents
of the link database and restart the add-in task.
Programmer response: None.

AMQ5712 An error occurred while setting field '&5' in
user document, return code &3

Explanation: The add-in task was trying to update a
document in response to a reply from an MQSeries
application. An error was encountered during the update of
the field '&5'. The link database entry '&4' was being used to
perform the update.
User action: Make sure that the entry in the link database
matches the description of the form being used for the
update.
Programmer response: None.

AMQ5714 Field '&4' not found in link database entry.
Explanation: The add-in task could not find a field called
'&4' during processing of the link database. This field is a
required field.
User action: Examine the definition of the link database
being used to ensure that all of the required fields are
supplied. Refer to the IBM-supplied sample link database for
an example of a valid link database.
Programmer response: None.

AMQ5715 Data type '&4' not supported.
Explanation: The add-in task does not support the data
type '&4'.
User action: Consult the MQSeries documentation for a
description of the list of supported data types. Update the
entry in the link database using the unsupported data type.
Then, stop and restart the add-in task.
Programmer response: None.

AMQ5716 An error occurred connecting to MQSeries
queue manager '&4', reason code &3

Explanation: The add-in task could not connect to
MQSeries queue manager '&4'. The reason code from
MQCONN was &3.
User action: Look up the reason code in the MQSeries
documentation to establish the cause of the error. Ensure
that the queue manager exists and is running. If the add-in
task is running as an MQSeries client, ensure that it can
communicate with the server queue manager.
Programmer response: None.

AMQ5717 An error occurred disconnecting from
MQSeries queue manager '&4', return code
'&3'.

Explanation: The add-in task encountered an error
disconnecting from the MQSeries queue manager '&4'. The
reason code from MQDISC was &3.
User action: Look up the reason code in the MQSeries
documentation to establish the cause of the error.
Programmer response: None.

AMQ5718 An error occurred during processing of a
request in the mail-in database.

Explanation: The add-in task encountered an error during
processing of a request in the mail-in database. The
processing involves transforming the contents of the mail
memo into a message which is placed on an MQSeries
queue. If the message has a reply, an additional message is
formatted and placed on the internal work queue.
User action: Use the information in previous error
messages to diagnose the error.
Programmer response: None.

AMQ5720 Errors detected in response message from
MQSeries application.

Explanation: The response from an MQSeries application to
a message sent by the add-in task satisfied the error
conditions specified in the corresponding link database entry.
The error data is '&4'.
User action: Examine the error conditions in the link
database entry to establish why the error conditions were
satisfied. If an invalid request message was sent to the
MQSeries application, correct the request messages being
sent. If the problem was due to an error encountered by the
MQSeries application, correct the cause of the error and retry
the request.
Programmer response: None.

AMQ5721 An error occurred opening internal work file
'&4'.

Explanation: The add-in task could not open the internal
work file used to hold the contents of a mail memo during
processing. Possible causes include more than one program
trying to use the same file.
User action: Ensure that there is only one copy of the
MQSeries add-in task running.
Programmer response: None.

AMQ5723 Memory allocation failed.
Explanation: The add-in task was unable to allocate
storage.
User action: Try to free up some system memory and retry
the operation.
Programmer response: None.

AMQ5725 Empty mail memo received from mail-in
database.

Explanation: The add-in task found a mail memo with an
empty body in the mail-in database. Mail memos in the
mail-in database must contain the information required to
generate a message to place on an MQSeries queue.
User action: Ensure that all entries placed in the mail-in
database have the expected contents. None.
Programmer response: None.

AMQ5727 Link database entry '&4' cannot be found.
Explanation: The add-in task received a request without a
corresponding entry in the link database. The name of the
required entry is '&4'.
User action: Either add an entry of the correct name to the
link database or change the request being generated to use
an existing entry in the link database. If you add an entry to
the link database, you will have to stop and restart the add-in
task before the change takes effect.
Programmer response: None.

312 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ5729 � AMQ5742

AMQ5729 An error was encountered by the add-in task.
Check the mail for details.

Explanation: This message is inserted into the
error_field_msg field of a user document if an error is
encountered by the add-in task during the processing of the
document's associated mail memo.
User action: None.
Programmer response: None.

AMQ5730 Error encountered by MQSeries add-in task
Explanation: This is the subject line of mail memos sent by
the add-in task.
User action: None.
Programmer response: None.

AMQ5731 Idle.
Explanation: The add-in task is waiting for the configured
time interval to elapse before checking the mail-in database
for new requests and checking the reply queues for new
replies.
User action: None.
Programmer response: None.

AMQ5732 LOAD MQLINK -t“ -q WorkQName“ -w
WaitTime“ -d MailInDB“ -l LinkDB“
QMgrName“

Explanation: This is a summary of the correct syntax for
invoking the MQSeries add-in task in Lotus Notes. If you
specify a queue manager name, it must the last parameter.
The order of the other parameters is not significant.
User action: None.
Programmer response: None.

AMQ5733 MQSeries add-in task loading.
Explanation: The add-in task has been started and is
accessing the link database in preparation to receive
requests.
User action: None.
Programmer response: None.

AMQ5734 An error occurred opening the database '&4'.
The error code was &3.

Explanation: The add-in task could not open the named
database. This could be because the database does not
exist.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

AMQ5735 An error occurred opening the mail file '&4'.
The error code was &3.

Explanation: The add-in task could not open the named
mail file.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

AMQ5736 An error occurred searching the database
'&4'. The error code was &3.

Explanation: The add-in task could not search the named
database.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

AMQ5737 An error occurred deleting an entry from the
database '&4'. The error code was &3.

Explanation: The add-in task could not delete an entry from
the named database.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

AMQ5738 An error occurred extracting the contents of a
mail memo in the mail-in database '&5' to the
file called '&4'. The error code was &3.

Explanation: The add-in task could not extract the body of
a mail memo into the named file. Possible causes include
being unable to create the file or another program already
using the file.
User action: Ensure that there is only one copy of the
MQSeries add-in task running. If the problem was due to the
configuration in which you are operating Lotus Notes, refer to
the Lotus Notes documentation for information to resolve the
problem.
Programmer response: None.

AMQ5739 An error occurred opening a mail memo in the
mail-in database '&4'. The error code was &3.

Explanation: The add-in task could not open a mail memo
in the named mail-in database.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

AMQ5740 An error occurred opening an entry in the link
database '&4'. The error code was &3.

Explanation: The add-in task could not open an entry in the
link database.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

AMQ5741 An error occurred creating a mail memo. The
error code was &3.

Explanation: The add-in task could not create a mail memo.
This is probably due to a shortage of resources.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

AMQ5742 Could not send a mail memo to user '&4'. The
error code was &3.

Explanation: The add-in task could not send a mail memo
to the named user to report an error condition.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

 Appendix N. Messages 313

 AMQ5743 � AMQ5747

AMQ5743 Could not find entry with ID '&5' in database
'&4'. The error code was &3.

Explanation: The add-in task could not find an entry in the
database '&4' which it was to update in response to a reply
from an MQSeries application. This may indicate that the
entry has been manually deleted or that another application
has already updated the entry.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

AMQ5744 Could not update an entry in database '&4'.
The error code was &3.

Explanation: The add-in task could not update an entry in
the database '&4' in response to a reply from an MQSeries
application.
User action: Refer to the Lotus Notes documentation for
information to resolve the problem.
Programmer response: None.

AMQ5745 An error occurred opening MQSeries queue
'&4', reason code &3.

Explanation: The add-in task could not open MQSeries
queue '&4'. MQOPEN was called with open options &5. The
reason code from MQOPEN was &3.
User action: Look up the reason code in the MQSeries
documentation to establish the cause of the error.
Programmer response: None.

AMQ5746 An error occurred putting a message on
MQSeries queue '&4', reason code &3.

Explanation: The add-in task could not put a message on
MQSeries queue '&4'. The reason code from MQPUT was
&3.
User action: Look up the reason code in the MQSeries
documentation to establish the cause of the error.
Programmer response: None.

AMQ5747 An error occurred getting a message from
MQSeries queue '&4', reason code &

Explanation: The add-in task could not get a message from
MQSeries queue '&4'. The reason code from MQGET was
&3.
User action: Look up the reason code in the MQSeries
documentation to establish the cause of the error.
Programmer response: None.

314 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ6004 � AMQ6090

Common services messages

AMQ6004 An error occurred during MQSeries
initialization or ending.

Explanation: An error was detected during initialization or
ending of MQSeries. The MQSeries error recording routine
has been called.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6025 Program not found.
Explanation: MQSeries is unable to start program &3
because it was not found.
User action: Check the program name is correctly specified
and rerun the program.

AMQ6026 A resource shortage prevented the creation of
an MQSeries process.

Explanation: An attempt to create an MQSeries process
was rejected by the operating system due to a process limit
(either the number of processes for each user or the total
number of processes running system wide), or because the
system does not have the resources necessary to create
another process.
User action: Investigate if a process limit is preventing the
creation of the process and if so why the system is
constrained in this way. Consider raising this limit or reducing
the workload on the system.

AMQ6035 MQSeries failed, no storage available.
Explanation: An internal function of the product attempted
to obtain storage, but there was none available.
User action: Stop the product and restart it. If this does not
resolve the problem, save the generated output files and
contact your IBM support center.

AMQ6037 MQSeries was unable to obtain enough
storage.

Explanation: The product is unable to obtain enough
storage. The product's error recording routine may have
been called.
User action: Stop the product and restart it. If this does not
resolve the problem see if a problem has been recorded. If a
problem has been recorded, use the standard facilities
supplied with your system to record the problem identifier,
and to save the generated output files. Contact your IBM
support center. Do not discard these files until the problem
has been resolved.

AMQ6047 Conversion not supported.
Explanation: MQSeries is unable to convert string data
tagged in CCSID &1 to data in CCSID &2.
User action: Check the appropriate National Language
Support publications to see if the CCSIDs are supported by
your system.

AMQ6048 DBCS error
Explanation: MQSeries is unable to convert string data due
to a DBCS error. Conversion is from CCSID &1 to CCSID
&2.
User action: Check the appropriate National Language
Support publications to see if the CCSIDs are supported by
your system.

AMQ6049 DBCS only string not valid.
Explanation: MQSeries is unable to convert string data in
CCSID &1 to data in CCSID &2. Message descriptor data
must be in single byte form. CCSID &2 is a DBCS only
CCSID.
User action: Check the CCSID of your job or system and
change it to one supporting SBCS or mixed character sets.
Refer to the appropriate National Language Support
publications for character sets and CCSIDs supported.

AMQ6050 CCSID error.
Explanation: MQSeries is unable to convert string data in
CCSID &1 to data in CCSID &2.
User action: Check the appropriate National Language
Support publications to see if the CCSIDs are supported by
your system.

AMQ6051 Conversion length error.
Explanation: MQSeries is unable to convert string data in
CCSID &1 to data in CCSID &2, due to an input length error.

AMQ6052 Conversion length error.
Explanation: MQSeries is unable to convert string data in
CCSID &1 to data in CCSID &2.

AMQ6053 CCSID error
Explanation: MQSeries is unable to convert string data in
CCSID &1 to data in CCSID &2.
User action: One of the CCSIDs is not supported by the
system. Check the appropriate National Language Support
publications to see if the CCSIDs are supported by your
system.

AMQ6064 An internal MQSeries error has occurred.
Explanation: An error has been detected, and the
MQSeries error recording routine has been called.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6090 MQSeries was unable to display an error
message.

Explanation: MQSeries has attempted to display the
message associated with return code &6. The return code
indicates that there is no message text associated with the
message. Associated with the request are inserts &1 : &2 :
&3 : &4 : &5.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

 Appendix N. Messages 315

 AMQ6091 � AMQ6708

AMQ6091 An internal MQSeries error has occurred.
Explanation: Private memory has detected an error, and is
abending due to &3. The error data is &1.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6100 An internal MQSeries error has occurred.
Explanation: MQSeries has detected an error, and is
abending due to &3. The error data is &1.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6107 CCSID not supported.
Explanation: MQSeries is unable to convert string data in
CCSID &1 to data in CCSID &2, because one of the CCSIDs
is not recognized.
User action: Check the appropriate National Language
Support publications to see if the CCSIDs are supported by
your system.

AMQ6115 An internal MQSeries error has occurred.
Explanation: An error has been detected, and the
MQSeries error recording routine has been called.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6118 An internal MQSeries error has occurred.
Explanation: An error has been detected, and the
MQSeries error recording routine has been called.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6119 An internal MQSeries error has occurred.
Explanation: MQSeries detected an unexpected error when
calling the operating system. The MQSeries error recording
routine has been called.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6120 An internal MQSeries error has occurred.
Explanation: An error has been detected, and the
MQSeries error recording routine has been called.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6121 An internal MQSeries error has occurred.
Explanation: An error has been detected, and the
MQSeries error recording routine has been called.
User action: MQSeries has detected a parameter count of
&1 that is not valid. Use the standard facilities supplied with
your system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6122 An internal MQSeries error has occurred.
Explanation: An error has been detected, and the
MQSeries error recording routine has been called.
User action: MQSeries has detected parameter &1 that is
not valid, having value &2&3. Use the standard facilities
supplied with your system to record the problem identifier,
and to save the generated output files. Contact your IBM
support center. Do not discard these files until the problem
has been resolved.

AMQ6125 An internal MQSeries error has occurred.
Explanation: An internal error has occurred with identifier
&1. This message is issued in association with other
messages.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6148 An internal MQSeries error has occurred.
Explanation: MQSeries has detected an error, and is
abending due to &3. The error data is &1.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6172 No codeset found for current locale.
Explanation: No codeset could be determined for the
current locale. Check that the locale in use is supported.
User action: None.

AMQ6173 No CCSID found for codeset &3.
Explanation: Codeset &3. has no supported CCSID. Check
that the locale in use is supported. CCSIDs can be added by
updating the file /var/mqm/conv/table/ccsid.tbl.
User action: None.

AMQ6708 A disk full condition was encountered when
formatting a new log file in location &3.

Explanation: The queue manager attempted to format a
new log file in directory &3. The drive or file system
containing this directory did not have sufficient free space to
contain the new log file.
User action: Increase the amount of space available for log
files and retry the request.

316 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ6710 � AMQ6767

AMQ6710 Queue manager unable to access directory
&3.

Explanation: The queue manager was unable to access
directory &3 for the log. This could be because the directory
does not exist, or because the queue manager does not have
sufficient authority.
User action: Ensure that the directory exists and that the
queue manager has authority to read and write to it. Ensure
that the LogPath attribute in the queue manager's
configuration file matches the intended log path.

AMQ6767 Log file &3 could not be opened for use.
Explanation: Log file &3 could not be opened for use.
Possible reasons include the file being missing, the queue
manager being denied permission to open the file or the
contents of the file being incorrect.
User action: If the log file was required to start the queue
manager, ensure that the log file exists and that the queue
manager is able to read from and write to it. If the log file was
required to recreate an object from its media image and you
do not have a copy of the required log file, delete the object
instead of recreating it.

 Appendix N. Messages 317

 AMQ7001 � AMQ7024

MQSeries product messages

AMQ7001 The location specified for creation of the
queue manager is not valid.

Explanation: The directory under which queue managers
are to be created is not valid. It may not exist, or there may
be a problem with authorization.
User action: The location is specified in the machine-wide
ini file. Correct the file and submit the request again.

AMQ7002 An error occurred manipulating a file.
Explanation: An internal error occurred while trying to
create or delete a queue manager file. It is likely that the
error was caused by there being insufficient space on a disk,
or by problems with authorization to the underlying filesystem.
User action: Identify the file that caused the error, using
problem determination techniques. Correct the error in the
filesystem and submit the request again.

AMQ7005 The queue manager is running.
Explanation: You tried to perform an action that requires
the queue manager stopped, however, it is currently running.
You probably tried to delete or start a queue manager that is
currently running.
User action: If the queue manager should be stopped, stop
the queue manager and submit the failed command again.

AMQ7006 Missing attribute &5 on stanza starting on line
&1 of ini file &3.

Explanation: The &4 stanza starting on line &1 of
configuration file &3 is missing the required &5 attribute.
User action: Check the contents of the file and retry the
operation.

AMQ7008 The queue manager already exists.
Explanation: You tried to create a queue manager that
already exists.
User action: If you specified the wrong queue manager
name, correct the name and submit the request again.

AMQ7010 The queue manager does not exist.
Explanation: You tried to perform an action against a queue
manager that does not exist. You may have specified the
wrong queue manager name.
User action: If you specified the wrong name, correct it and
submit the command again. If the queue manager should
exist, create it, and then submit the command again.

AMQ7012 The specified trigger interval is not valid.
Explanation: You specified a value for the trigger interval
that is not valid. The value must be not less than zero and
not greater than 999 999 999.
User action: Correct the value and resubmit the request.

AMQ7013 There is an error in the name of the specified
dead letter queue.

Explanation: You specified a name for the dead letter
queue that is not valid.
User action: Correct the name and resubmit the request.

AMQ7014 There is an error in the name of the specified
default transmission queue.

Explanation: You specified a name for the default
transmission queue that is not valid.
User action: Correct the name and submit the command
again.

AMQ7015 There is an error in the maximum number of
open object handles specified.

Explanation: You specified a value for the maximum
number of open object handles to be allowed that is not valid.
The value must be not less than zero and not greater than
999 999 999.
User action: Correct the value and submit the command
again.

AMQ7016 There is an error in the maximum number of
uncommitted messages specified.

Explanation: You specified a value for the maximum
number of uncommitted messages to be allowed that is not
valid. The value must be not less than 1 and not greater
than 999 999 999.
User action: Correct the value and submit the command
again.

AMQ7017 Log not available.
Explanation: The queue manager was unable to use the
log. This could be due to a log file being missing or
damaged, or the log path to the queue manager being
inaccessible.
User action: Ensure that the LogPath attribute in the queue
manager configuration file is correct. If a log file is missing or
otherwise unusable, restore a backup copy of the file, or the
entire queue manager.

AMQ7018 The queue manager has stopped
AMQ7019 An error occurred while creating the directory

structure for the new queue manager.
Explanation: During creation of the queue manager an error
occurred while trying to create a file or directory.
User action: Identify why the queue manager files cannot
be created. It is probable that there is insufficient space on
the specified disk, or that there is a problem with access
control. Correct the problem and submit the command again.

AMQ7021 An error occurred while deleting the directory
structure for the queue manager.

Explanation: While deleting the queue manager, an error
occurred deleting a file or directory. The queue manager may
not have been completely deleted.
User action: Follow problem determination procedures to
identify the file or directory and to complete deletion of the
queue manager.

AMQ7024 Arguments supplied to a command are not
valid.

Explanation: You supplied arguments to a command that it
could not interpret. It is probable that you specified a flag not
accepted by the command, or that you included extra flags.
User action: Correct the command and submit it again.

318 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ7025 � AMQ7066

AMQ7025 Error in the supplied command description.
Explanation: The descriptive text you supplied on the
command was in error.
User action: Correct the descriptive text and submit the
command again.

AMQ7026 A principal or group name was invalid.
Explanation: You specified the name of a principal or group
which does not exist.
User action: Correct the name and resubmit the request.

AMQ7028 The queue manager is not available for use.
Explanation: You have requested an action that requires
the queue manager running, however, the queue manager is
not currently running.
User action: Start the required queue manager and submit
the command again.

AMQ7030 Request to quiesce the queue manager
accepted. The queue manager will stop when
there is no further work for it to perform.

Explanation: You have requested that the queue manager
end when there is no more work for it. In the meantime, it
will refuse new applications that attempt to start, although it
allows those already running to complete their work.
User action: None.

AMQ7031 The queue manager is stopping.
Explanation: You issued a command that requires the
queue manager running, however, it is currently in the
process of stopping. The command cannot be run.
User action: None

AMQ7041 Object already exists.
Explanation: A Define Object operation was performed, but
the name selected for the object is already in use by an
object that is unknown to MQSeries. The object name
selected by MQSeries was &3, in directory &4, of object type
&5.
User action: Remove the conflicting object from the
MQSeries system, then try the operation again.

AMQ7042 Media image not available for object &3 of
type &4.

Explanation: The media image for object &3, type &4, is not
available for media recovery. A log file containing part of the
media image cannot be accessed.
User action: A previous message indicates which log file
could not be accessed. Restore a copy of the log file and all
subsequent log files from backup. If this is not possible, you
must delete the object instead.

AMQ7044 Media recovery not allowed.
Explanation: Media recovery is not possible on a queue
manager using a circular log. Damaged objects must be
deleted on such a queue manager.
User action: None.

AMQ7047 An unexpected error was encountered by a
command.

Explanation: An internal error occurred during the
processing of a command.
User action: Follow problem determination procedures to
identify the cause of the error.

AMQ7048 The queue manager name is either not valid
or not known

Explanation: Either the specified queue manager name
does not conform to the rules required by MQSeries or the
queue manager does not exist. The rules for naming
MQSeries objects are detailed in the MQSeries Command
Reference.
User action: Correct the name and submit the command
again.

AMQ7053 The transaction has been committed.
Explanation: The prepared transaction has been committed.
User action: None.

AMQ7054 The transaction has been backed out.
Explanation: The prepared transaction has been backed
out.
User action: None.

AMQ7055 The transaction number is not recognized.
Explanation: The number of the transaction you supplied
was not recognized as belonging to an in-doubt transaction.
User action: Ensure that you entered a valid transaction
number. It is possible that the transaction number you
entered corresponds to a transaction which was committed or
backed out before you issued the command to resolve it.

AMQ7056 Transaction number &1,&2.
Explanation: This message is used to report the number of
an in-doubt transaction.
User action: None.

AMQ7064 Log path not valid or inaccessible.
Explanation: The supplied log path could not be used by
the queue manager. Possible reasons for this include the
path not existing, the queue manager not being able to write
to the path, or the path residing on a remote device.
User action: Ensure that the log path exists and that the
queue manager has authority to read and write to it. If the
queue manager already exists, ensure that the LogPath
attribute in the queue manager's configuration file matches
the intended log path.

AMQ7065 Insufficient space on disk.
Explanation: The operation cannot be completed due to
shortage of disk space.
User action: Either make more disk space available, or
reduce the disk requirements of the command you issued.

AMQ7066 There are no prepared transactions.
Explanation: There are no prepared transactions to be
resolved.
User action: None.

 Appendix N. Messages 319

 AMQ7068 � AMQ7089

AMQ7068 Authority file contains an authority stanza that
is not valid.

Explanation: A syntax error has been found in one of the
files containing authorization information for the queue
manager.
User action: Correct the contents of the incorrect
authorization file by editing it.

AMQ7069 The queue manager was created successfully,
but cannot be made the default.

Explanation: The queue manager was defined to be the
default queue manager for the machine when it was created.
However, although the queue manager has been created, an
error occurred trying to make it the default. There may not
be a default queue manager defined for the machine at
present.
User action: There is probably a problem with the
machine-wide ini file. Verify the existence of the file, its
access permissions, and its contents. If its backup file exists,
reconcile the contents of the two files and then delete the
backup. Finally, either update the machine-wide ini file by
hand to specify the desired default queue manager, or delete
and recreate the queue manager.

AMQ7073 Log size not valid.
Explanation: Either the number of log files or the size of the
log files was outside the accepted values.
User action: Make sure that the log parameters you enter
lie within the valid range.

AMQ7074 Unknown stanza key &4 on line &1 of ini file
&3.

Explanation: Line &1 of the configuration file &3 contained
a stanza called &3. This stanza is not recognized.
User action: Check the contents of the file and retry the
operation.

AMQ7075 Unknown attribute &4 on line &1 of ini file &3.
Explanation: Line &1 of the configuration file &3 contained
an attribute called &4 that is not valid. This attribute is not
recognized in this context.
User action: Check the contents of the file and retry the
operation.

AMQ7076 Value &5 not valid for attribute &4 on line &1
of ini file &3

Explanation: Line &1 of the configuration file &3 contained
value &5 that is not valid for the attribute &4.
User action: Check the contents of the file and retry the
operation.

AMQ7077 You are not authorized to perform the
requested operation.

Explanation: You tried to issue a command for the queue
manager. You are not authorized to perform the command.
User action: Contact your system administrator to perform
the command for you. Alternatively, request authority to
perform the command from your system administrator.

AMQ7080 No objects processed.
Explanation: No objects were processed, either because no
objects matched the criteria given, or because the objects
found did not require processing.
User action: None.

AMQ7081 Object &3, type &4 recreated.
Explanation: The object &3, type &4 was recreated from its
media image.
User action: None.

AMQ7082 Object &3, type &4 is not damaged.
Explanation: Object &3, type &4 cannot be recreated since
it is not damaged.
User action: None

AMQ7083 A resource problem was encountered by a
command.

Explanation: The command failed due to a resource
problem. Possible causes include the log being full or the
command running out of memory.
User action: Look at the previous messages to diagnose
the problem. Rectify the problem and retry the operation.

AMQ7084 Object &3, type &4 damaged.
Explanation: The object &3, type &4 was damaged. The
object must be deleted or, if the queue manager supports
media recovery, recreated from its media image.
User action: Delete the object or recreate it from its media
image.

AMQ7085 Object &3, type &4 not found.
Explanation: Object &3, type &4 cannot be found.
User action: None.

AMQ7086 Media image for object &3, type &4 recorded.
Explanation: The media image for object &3, type &4 has
been recorded.
User action: None.

AMQ7087 Object &3, type &4 is a temporary object
Explanation: Object &3, type &4 is a temporary object.
Media recovery operations are not permitted on temporary
objects.
User action: None.

AMQ7088 Object &3, type &4 in use.
Explanation: Object &3, type &4 is in use. Either an
application has it open or, if it is a local queue, there are
uncommitted messages on it.
User action: Ensure that the object is not opened by any
applications, and that there are no uncommitted messages on
the object, if it is a local queue. Then, retry the operation.

AMQ7089 Media recovery already in progress.
Explanation: Another media recovery operation is already in
progress. Only one media recovery operation is permitted at
a time.
User action: Wait for the existing media recovery operation
to complete and retry the operation.

320 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ7090 � AMQ7463

AMQ7090 The queue manager CCSID is not valid.
Explanation: The CCSID to be used by the QMGR is not
valid, probably because it is a DBCS CCSID.
User action: None.

AMQ7091 You are performing authorization for the
queue manager, but you specified an object
name.

Explanation: Modification of authorizations for a queue
manager can be performed only from that queue manager.
You must not specify an object name.
User action: Correct the command and submit it again.

AMQ7092 An object name is required but you did not
specify one.

Explanation: The command needs the name of an object,
but you did not specify one.
User action: Correct the command and submit it again.

AMQ7093 An object type is required but you did not
specify one.

Explanation: The command needs the type of the object,
but you did not specify one.
User action: Correct the command and submit it again.

AMQ7094 You specified an object type that is not valid,
or more than one object type.

Explanation: Either the type of object you specified was not
valid, or you specified multiple object types on a command
which supports only one.
User action: Correct the command and submit it again.

AMQ7095 An entity name is required but you did not
specify one.

Explanation: The command needs one or more entity
names, but you did not specify any. Entities can be
principals or groups.
User action: Correct the command and submit it again.

AMQ7096 An authorization specification is required but
you did not provide one.

Explanation: The command sets the authorizations on
MQSeries objects. However you did not specify which
authorizations are to be set.
User action: Correct the command and submit it again.

AMQ7097 You gave an authorization specification that is
not valid.

Explanation: The authorization specification you provided to
the command contained one or more items that could not be
interpreted.
User action: Correct the command and submit it again.

AMQ7098 The command accepts only one entity name.
You specified more than one.

Explanation: The command can accept only one principal
or group name. You specified more than one.
User action: Correct the command and submit it again.

AMQ7099 Entity &3 has the following authorizations for
object &4:

Explanation: Informational message. The list of
authorizations follows.
User action: None.

AMQ7305 Trigger message could not be put on an
initiation queue.

Explanation: The attempt to put a trigger message on
queue &4 on queue manager &5 failed with reason code &1.
The message will be put on the dead-letter queue.
User action: Ensure that the initiation queue is available,
and operational.

AMQ7306 The dead-letter queue must be a local queue.
Explanation: An undelivered message has not been put on
the dead-letter queue &4 on queue manager &5, because the
queue is not a local queue. The message will be discarded.
User action: Inform your system administrator.

AMQ7307 A message could not be put on the dead-letter
queue.

Explanation: The attempt to put a message on the
undelivered-message queue &4 on queue manager &5 failed
with reason code &1. The message will be discarded.
User action: Ensure that the undelivered-message queue is
available, and operational.

AMQ7308 Trigger condition &1 was not satisfied.
Explanation: At least one of the conditions required for
generating a trigger message was not satisfied, so a trigger
message was not generated. If you were expecting a trigger
message, consult the MQSeries Application Programming
Guide for a list of the conditions required. (Note that
arranging for condition &1 to be satisfied might not be
sufficient because the conditions are checked in an arbitrary
order, and checking stops when the first unsatisfied condition
is discovered.)
User action: If a trigger message is required, ensure that all
the conditions for generating one are satisfied.

AMQ7310 Report message could not be put on a
reply-to queue.

Explanation: The attempt to put a report message on
queue &4 on queue manager &5 failed with reason code &1.
The message will be put on the undelivered-message queue.
User action: Ensure that the reply-to queue is available,
and operational.

AMQ7463 The log for queue manager &3 is full.
Explanation: This message is issued when an attempt to
write a log record is rejected because the log is full. The
queue manager will attempt to resolve the problem.
User action: This situation may be encountered during a
period of unusually high message traffic. However, if you
persistently fill the log, you may have to consider enlarging
the size of the log. You can either increase the number of log
files by changing the values in the queue manager
configuration file. You will then have to stop and restart the
queue manager. Alternatively, if you need to make the log
files themselves bigger, you will have to delete and recreate
the queue manager.

 Appendix N. Messages 321

 AMQ7464 � AMQ7907

AMQ7464 The log for queue manager &3 is no longer
full.

Explanation: This message is issued when a log was
previously full, but an attempt to write a log record has now
been accepted. The log full situation has been resolved.
User action: None

AMQ7465 The log for queue manager &3 is full. This is
due to the presence of a long-running
transaction.

Explanation: This message is issued when an attempt
made to resolve a log full situation fails, because the space is
occupied by a long-running transaction.
User action: Try to ensure that the duration of your
transactions is not excessive. Commit or roll back any old
transactions to release log space for further log records.

AMQ7466 The log for queue manager &3 is too small to
support the current data rate.

Explanation: This message is issued when the monitoring
tasks maintaining the log cannot keep up with the current rate
of data being written.
User action: The number of primary log files configured
should be increased to prevent possible log full situations.

AMQ7467 The oldest log file required to start queue
manager &3 is &4.

Explanation: The log file &4 contains the oldest log record
required to restart the queue manager. Log records older
than this may be required for media recovery.
User action: You can move log files older than &4 to an
archive medium to release space in the log directory. If you
move any of the log files required to recreate objects from
their media images, you will have to restore them to recreate
the objects.

AMQ7468 The oldest log file required to perform media
recovery of queue manager &3 is &4.

Explanation: The log file &4 contains the oldest log record
required to recreate any of the objects from their media
images. Any log files prior to this will not be accessed by
media recovery operations.
User action: You can move log files older than &4 to an
archive medium to release space in the log directory.

AMQ7469 Transactions rolled back to release log space.
Explanation: The log space for the queue manager is
becoming full. One or more long-running transactions have
been rolled back to release log space so that the queue
manager can continue to process requests.
User action: Try to ensure that the duration of your
transactions is not excessive. You may consider increasing
the size of the log to allow transactions to last longer before
the log starts to become full.

AMQ7472 Object &3, type &4 damaged.
Explanation: Object &3, type &4 has been marked as
damaged. This indicates that the queue manager was either
unable to access the object in the file system, or that some
kind of inconsistency with the data in the object was detected.
User action: If a damaged object is detected, the action
performed depends on whether the queue manager supports
media recovery and when the damage was detected. If the
queue manager does not support media recovery, you must

delete the object as no recovery is possible. If the queue
manager does support media recovery and the damage is
detected during the processing performed when the queue
manager is being started, the queue manager will
automatically initiate media recovery of the object. If the
queue manager supports media recovery and the damage is
detected once the queue manager has started, it may be
recovered from a media image using the rcrmqobj command
or it may be deleted.

AMQ7901 The data-conversion exit &3 has not loaded.
Explanation: The data-conversion exit program, &3, failed
to load. The internal function gave exception &4.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ7902 The data conversion exit &3 was not loaded.
The operating system call &4 returned &1.

Explanation:
User action: Specify REPLACE to over-write the existing
file, or choose a different output file name.

AMQ7903 The data-conversion exit &3 cannot be found.
Explanation: Message data conversion has been requested
for an MQSeries message with a user-defined format, but the
necessary data-conversion exit program, &3, cannot be
found. The internal function gave exception &4.
User action: Check that the necessary data-conversion exit
&3 exists.

AMQ7904 The data conversion exit &3 cannot be found,
or loaded.

Explanation: Message data conversion was requested for
an MQSeries message with a user-defined format, but the
necessary data conversion exit program, &3, was not found,
or loaded. The &4 function call gave a return code of &1.
User action: Check that the necessary data conversion exit
routine exists one of the standard directories for dynamically
loaded modules. If necessary, inspect the generated output
to examine the message descriptor (MQMD structure) of the
MQSeries message for which conversion was requested.
This may help you to determine where the message
originated.

AMQ7905 Unexpected exception &4 in data-conversion
exit.

Explanation: The data-conversion exit program, &3, ended
with an unexpected exception &4. The message has not
been converted.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ7907 Unexpected exception in data-conversion exit.
Explanation: The data-conversion exit routine, &3, ended
with an unexpected exception. The message has not been
converted.
User action: Correct the error in the data-conversion exit
routine.

322 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ7921 � AMQ7930

AMQ7921 An internal MQSeries error occurred.
Explanation: The MQDXP structure passed to the Internal
Formats Conversion routine contains an incorrect eyecatcher
field.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ7922 A PCF message is incomplete.
Explanation: Message data conversion cannot convert a
message in Programmable Command Format (PCF) because
the message is only &1 bytes long and does not contain a
PCF header. The message has either been truncated, or it
contains data that is not valid.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7923 A message had an unrecognized integer
encoding.

Explanation: Message data conversion cannot convert a
message because the integer encoding value of the
message, &1, was not recognized.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7924 Bad length in the PCF header (length = &1).
Explanation: Message data conversion cannot convert a
message in Programmable Command Format (PCF) because
the PCF header structure contains an incorrect length field.
Either the message has been truncated, or it contains data
that is not valid.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7925 Message version &1 is not supported.
Explanation: Message data conversion cannot convert a
message because the Version field of the message contains
an incorrect value.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7926 A PCF message has an incorrect parameter
count value &1.

Explanation: Message data conversion cannot convert a
message in Programmable Command Format (PCF) because
the parameter count field of the PCF header is incorrect.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7927 Bad type in PCF structure number &1 (type =
&2).

Explanation: A Programmable Command Format (PCF)
structure passed to the Internal Formats Converter contained
an incorrect type field.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7928 Bad length in PCF structure number &1
(length = &2).

Explanation: A Programmable Command Format (PCF)
structure passed to the Internal Formats Converter contained
an incorrect length field.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7929 A PCF structure is incomplete.
Explanation: Message data conversion cannot convert a
message in Programmable Command Format (PCF) because
structure number &1, of Type value &2, within the message is
incomplete. The message has either been truncated, or it
contains data that is not valid.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7930 Bad CCSID in PCF structure number &1
(CCSID = &2).

Explanation: A Programmable Command Format (PCF)
structure passed to the Internal Formats Converter contains
an incorrect CCSID.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

 Appendix N. Messages 323

 AMQ7931 � AMQ7959

AMQ7931 Bad length in PCF structure number &1
(length = &2).

Explanation: Message data conversion cannot convert a
message in Programmable Command Format (PCF) because
one of the structures of the message contains an incorrect
length field.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7932 Bad count in PCF structure number &1 (count
= &2).

Explanation: Message data conversion cannot convert a
message in Programmable Command Format (PCF) because
a StringList structure of the message contains an incorrect
count field.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor, the headers of the message, and the
incorrect structure to determine the source of the message,
and to see how data that is not valid became included in the
message.

AMQ7933 Bad string length in PCF structure.
Explanation: Message data conversion cannot convert a
message in Programmable Command Format (PCF) because
structure number &1 of the message contains an incorrect
string length value &2.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor, the headers of the message, and the
incorrect structure to determine the source of the message
and to see how data that is not valid became included in the
message.

AMQ7934 Wrong combination of MQCCSI_DEFAULT
with MQCCSI_EMBEDDED.

Explanation: Message data conversion could not convert a
message in Programmable Command Format (PCF) because
structure &1 of the message contained a CodedCharSetId
field of MQCCSI_DEFAULT while the message itself had a
CodedCharSetId of MQCCSI_EMBEDDED. This is an
incorrect combination.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor, the headers of the message and the
incorrect structure to determine the source of the message
and to see how data that is not valid became included in the
message.

AMQ7935 Bad CCSID in message header (CCSID = &1).
Explanation: Message data conversion could not convert a
message because the Message Descriptor of the message
contained an incorrect CodedCharSetId field.
User action: Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Do not discard these files until the
problem has been resolved. Use the file containing the
Message Descriptor of the message to determine the source
of the message and to see how data that is not valid became
included in the message.

AMQ7936 The file &3 already exists.
Explanation: The output file already exists, but REPLACE
has not been specified.
User action: Specify REPLACE to over-write the existing
file, or select a different output file name.

AMQ7943 Usage: crtmqcvx SourceFile TargetFile
AMQ7953 One structure has been parsed.

Explanation: The crtmqcvx command has parsed one
structure.
User action: None.

AMQ7954 &1 structures have been parsed.
Explanation: The crtmqcvx command has parsed %1
structures.
User action: None.

AMQ7955 Unexpected field: &1.
Explanation: The field within the structure is of a type that
is not recognized.
User action: Correct the field and retry the command.

AMQ7956 Bad array dimension.
Explanation: An array field of the structure has an incorrect
dimension value.
User action: Correct the field and retry the command.

AMQ7957 Warning at line &1.
Explanation: The structure contains another field after a
variable length field.
User action: Correct the structure and retry the command.

AMQ7958 Error at line &1 in field &3.
Explanation: Field name '&3' is a field of type 'float'. Fields
of type float are not supported by this command.
User action: Either correct the structure to eliminate fields
of type float, or write your own routine to support conversion
of these fields.

AMQ7959 Error at line &1 in field &3.
Explanation: Field name '&3' is a field of type 'double'.
Fields of type double are not supported by this command.
User action: Either correct the structure to eliminate fields
of type double, or write your own routine to support
conversion of these fields.

324 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ7960 � AMQ7970

AMQ7960 Error at line &1 in field &3.
Explanation: Field name '&3' is a 'pointer' field. Fields of
type pointer are not supported by this command.
User action: Either correct the structure to eliminate fields
of type pointer, or write your own routine to support
conversion of these fields.

AMQ7961 Error at line &1 in field &3.
Explanation: Field name '&3' is a 'bit' field. Bit fields are
not supported by this command.
User action: Either correct the structure to eliminate bit
fields, or write your own routine to support conversion of
these fields.

AMQ7962 No input file specified.
Explanation: This command requires that an input file is
specified.
User action: Specify the name of the input file and retry the
command.

AMQ7963 No output file specified.
Explanation: This command requires that an output file
name is specified.
User action: Specify the name of the output file and retry
the command.

AMQ7964 Unexpected option &3.
Explanation: The option specified is not valid for this
command.
User action: Retry the command with a valid option.

AMQ7965 Incorrect number of arguments.
Explanation: The command was passed an incorrect
number of arguments.
User action: Retry the command, passing it the correct
number of arguments.

AMQ7968 Cannot open file '&3'.
Explanation: You cannot open the file &3.
User action: Check that you have the correct authorization
to the file and retry the command.

AMQ7969 Syntax error.
Explanation: This line of the input file contains a language
syntax error.
User action: Correct the syntax error and retry the
command.

AMQ7970 Syntax error on line &1.
Explanation: This message identifies where, in the input
file, a previously reported error was detected.
User action: Correct the error and retry the command.

 Appendix N. Messages 325

 AMQ8001 � AMQ8028

 Administration messages

AMQ8001 MQSeries queue manager created.
Explanation: MQSeries queue manager &5 created.
User action: None.

AMQ8002 MQSeries queue manager deleted.
Explanation: MQSeries queue manager &5 deleted.
User action: None.

AMQ8003 MQSeries queue manager started.
Explanation: MQSeries queue manager &5 started.
User action: None.

AMQ8004 MQSeries queue manager ended.
Explanation: MQSeries queue manager &5 ended.
User action: None.

AMQ8005 MQSeries queue manager changed.
Explanation: MQSeries queue manager &5 changed.
User action: None.

AMQ8006 MQSeries queue created.
Explanation: MQSeries queue &5 created.
User action: None.

AMQ8007 MQSeries queue deleted.
Explanation: MQSeries queue &5 deleted.
User action: None.

AMQ8008 MQSeries queue changed.
Explanation: MQSeries queue &5 changed.
User action: None.

AMQ8010 MQSeries process created.
Explanation: MQSeries process &5 created.
User action: None.

AMQ8011 MQSeries process deleted.
Explanation: MQSeries process &5 deleted.
User action: None.

AMQ8012 MQSeries process changed.
Explanation: MQSeries process &5 changed.
User action: None.

AMQ8013 MQM process copied.
Explanation: MQM process &5 created in library &3 by
copying.
User action: None.

AMQ8014 MQSeries channel created.
Explanation: MQSeries channel &5 created.
User action: None.

AMQ8015 MQSeries channel deleted.
Explanation: MQSeries channel &5 deleted.
User action: None.

AMQ8016 MQSeries channel changed.
Explanation: MQSeries channel &5 changed.
User action: None.

AMQ8018 Start MQSeries channel accepted.
Explanation: MQSeries channel &5 is being started. The
start channel function has been initiated. This involves a
series of operations across the network before the channel is
actually started. The channel status displays "BINDING" for a
short period while communication protocols are negotiated
with the channel with whom communication is being initiated.
User action: None.

AMQ8019 Stop MQSeries channel accepted.
Explanation: MQSeries channel &5 has been requested to
stop.
User action: None.

AMQ8020 Ping MQSeries channel complete.
Explanation: Ping MQSeries channel &5 complete.
User action: None.

AMQ8021 MQSeries Listener program started.
Explanation: The MQSeries channel listener program has
been started.
User action: None.

AMQ8022 MQSeries queue cleared.
Explanation: All messages on MQSeries queue &5 have
been deleted.
User action: None.

AMQ8023 MQSeries channel reset.
Explanation: MQSeries channel &5 has been reset.
User action: None.

AMQ8024 MQSeries channel initiator started.
Explanation: The channel initiator for MQSeries queue &5
has been started.
User action: None.

AMQ8025 MQSeries channel resolved.
Explanation: In doubt messages for MQSeries channel &5
have been resolved.
User action: None.

AMQ8026 End MQSeries queue manager accepted.
Explanation: A controlled stop request has been initiated for
MQSeries queue manager &5.
User action: None.

AMQ8027 MQSeries command server started.
Explanation: The MQSeries command server has been
started.
User action: None.

AMQ8028 MQSeries command server ended.
Explanation: The MQSeries command server has been
stopped.
User action: None.

326 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ8029 � AMQ8110

AMQ8029 MQSeries authority granted.
Explanation: Authority for MQSeries object &5 granted.
User action: None.

AMQ8030 MQSeries authority revoked.
Explanation: Authority for MQSeries object &5 revoked.
User action: None.

AMQ8033 MQSeries object recreated.
Explanation: MQSeries object &5 has been recreated from
image.
User action: None.

AMQ8034 MQSeries object image recorded.
Explanation: Image of MQSeries object &5 has been
recorded.
User action: None.

AMQ8035 MQSeries Command Server Status . . :
Running

AMQ8036 MQSeries command server status . . :
Stopping

AMQ8037 MQSeries command server status . . :
Starting

AMQ8038 MQSeries command server status . . :
Running with queue disabled

AMQ8039 MQSeries command server status . . :
Stopped

AMQ8040 MQSeries command server ending.
AMQ8041 The queue manager cannot be restarted

because processes, that were previously
connected, are still running.

Explanation: Processes, that were connected to the queue
manager the last time it was running, are still active. The
queue manager cannot be restarted.
User action: Stop the processes and try to start the queue
manager.

AMQ8042 Process &1 is still running.
AMQ8043 Non runtime application attempted to connect

to runtime only queue manager.
Explanation: A non runtime application attempted to
connect to a queue manager on a node where support for
non runtime applications has not been installed. The connect
attempt will be rejected with a reason of
MQRC_ENVIRONMENT_ERROR.
User action: If the node is intended to support only runtime
applications then investigate why a non runtime application
has attempted to connect to the queue manager. If the node
is intended to support non runtime only applications then
investigate if the base option has been installed. The base
option must be installed if non runtime applications are to run
on this node.

AMQ8101 Unexpected error (&1).
Explanation: An unexpected reason code with hexadecimal
value &4 was received from the MQSeries queue manager
during command processing. (Note that hexadecimal values
in the range X'07D1'-X'0BB7' correspond to MQI reason
codes 2001-2999.) More information might be available in
the log. If the reason code value indicates that the error was
associated with a particular parameter, the parameter
concerned is &2.

User action: Correct the error and then try the command
again.

AMQ8102 MQSeries object name specified in &2 not
valid.

Explanation: MQSeries object name &5 specified in &2 is
not valid. The length of the name must not exceed 48
characters, or 20 characters if it is a channel name. The
name should contain the following characters only: lowercase
a-z, uppercase A-Z, numeric 0-9, period (.), forward slash (/),
underscore (_) and percent sign (%).
User action: Change the length of the parameter value or
change the parameter value to contain a valid combination of
characters, then try the command again.

AMQ8103 Insufficient storage available.
Explanation: There was insufficient storage available to
perform the requested operation.
User action: Free some storage and then try the command
again.

AMQ8104 MQSeries directory &3 not found.
Explanation: Directory &3 was not found. This directory is
created when MQSeries is installed successfully. Refer to
the log for more information.
User action: Verify that installation of MQSeries was
successful. Correct the error and then try the command
again.

AMQ8105 Object error.
Explanation: An object error occurred. Refer to the log for
more information.
User action: Correct the error and then try the command
again.

AMQ8106 MQSeries queue manager being created.
Explanation: The MQSeries queue manager is being
created.
User action: Wait for the creation process to complete and
then try the command again.

AMQ8107 MQSeries queue manager running.
Explanation: The MQSeries queue manager is running.
User action: None.

AMQ8108 MQSeries queue manager ending.
Explanation: The MQSeries queue manager is ending.
User action: Wait for the MQSeries queue manager to end
and then try the command again.

AMQ8109 MQSeries queue manager being deleted.
Explanation: The MQSeries queue manager is being
deleted.
User action: Wait for the deletion process to complete.

AMQ8110 MQSeries queue manager already exists.
Explanation: MQSeries queue manager &5 already exists.
User action: None.

 Appendix N. Messages 327

 AMQ8117 � AMQ8148

AMQ8117 MQSeries queue manager deletion incomplete.
Explanation: Deletion of MQSeries queue manager &5 was
only partially successful. An object was not found, or could
not be deleted. Refer to the log for more information.
User action: Delete any remaining MQSeries queue
manager objects.

AMQ8118 MQSeries queue manager does not exist.
Explanation: MQSeries queue manager &5 does not exist.
User action: Create the message queue manager (crtmqm
command) and then try the command again.

AMQ8135 Not authorized.
Explanation: You are not authorized to perform the
requested operation for the MQSeries object &5 specified in
&2. Either you are not authorized to perform the requested
operation, or you are not authorized to the specified
MQSeries object. For a copy command, you may not be
authorized to the specified source MQSeries object, or, for a
create command, you may not be authorized to the system
default MQSeries object of the specified type.
User action: Obtain the necessary authority from your
security officer or MQSeries administrator. Then try the
command again.

AMQ8137 MQSeries queue manager already starting.
Explanation: The strmqm command was unsuccessful
because MQSeries queue manager &5 is already starting.
User action: Wait for the strmqm command to complete.

AMQ8138 The MQSeries queue has an incorrect type.
Explanation: The operation is not valid with MQSeries
queue &5 because it is not a local queue.
User action: Change the QNAME parameter to specify an
MQSeries queue of the correct type.

AMQ8139 Already connected.
Explanation: A connection to the MQSeries queue manager
already exists.
User action: None.

AMQ8140 Resource timeout error.
Explanation: A timeout occurred in the communication
between internal MQSeries queue manager components.
This is most likely to occur when the system is heavily
loaded.
User action: Wait until the system is less heavily loaded,
then try the command again.

AMQ8141 MQSeries queue manager starting.
Explanation: MQSeries queue manager &5 is starting.
User action: Wait for the MQSeries queue manager startup
process to complete and then try the command again.

AMQ8142 MQSeries queue manager stopped.
Explanation: MQSeries queue manager &5 is stopped.
User action: Use the strmqm command to start the
MQSeries queue manager, and then try the command again.

AMQ8143 MQSeries queue not empty.
Explanation: MQSeries queue &5 specified in &2 is not
empty or contains uncommitted updates.
User action: Commit or rollback any uncommitted updates.
If the command is DELETE QLOCAL, use the CLEAR
QLOCAL command to clear the messages from the
MQSeries queue. Then try the command again.

AMQ8144 Log not available.
Explanation: The MQSeries logging resource is not
available.
User action: Use the dltmqm command to delete the
MQSeries queue manager and then the crtmqm command to
create the MQSeries queue manager. Then try the command
again.

AMQ8145 Connection broken.
Explanation: The connection to the MQSeries queue
manager failed during command processing. This may be
caused by an endmqm -i command being issued by another
user, or by an MQSeries queue manager error.
User action: Use the strmqm command to start the
message queue manager, wait until the message queue
manager has started, and try the command again.

AMQ8146 MQSeries queue manager not available.
Explanation: The MQSeries queue manager is not available
because it has been stopped or has not been created.
User action: Use the crtmqm command to create the
message queue manager, or the strmqm command to start
the message queue manager as necessary. Then try the
command again.

AMQ8147 MQSeries object not found.
Explanation: If the command entered was Change, the
MQSeries object &5 specified in &2 does not exist. If the
command entered was Copy, the source MQSeries object
does not exist. If the command entered was Create, the
system default MQSeries object of the specified type does
not exist.
User action: Correct the MQSeries object name and then
try the command again or, if you are creating a new
MQSeries queue or process object, either specify all
parameters explicitly or ensure that the system default object
of the required type exists. The system default queue names
are SYSTEM.DEFAULT.LOCAL.QUEUE,
SYSTEM.DEFAULT.ALIAS.QUEUE and
SYSTEM.DEFAULT.REMOTE.QUEUE. The system default
process name is SYSTEM.DEFAULT.PROCESS.

AMQ8148 MQSeries object in use.
Explanation: MQSeries object &5 specified in &2 is in use
by an MQSeries application program.
User action: Wait until the MQSeries object is no longer in
use and then try the command again, or specify FORCE to
force the processing of the MQSeries ALTER command
regardless of any application program affected by the change.
If the object is the dead-letter queue and the open input count
is nonzero, it may be in use by an MQSeries channel. If the
object is another MQSeries queue object with a nonzero open
output count, it may be in use by an MQSeries channel (of
type RCVR or RQSTR). In either case, use the STOP
CHANNEL and START CHANNEL commands to stop and
restart the channel in order to solve the problem.

328 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ8149 � AMQ8187

AMQ8149 MQSeries object damaged.
Explanation: The MQSeries object &5 specified in &2 is
damaged.
User action: The MQSeries object contents are not valid.
Issue the DISPLAY CHANNEL, DISPLAY QUEUE, or
DISPLAY PROCESS command, as required, to determine the
name of the damaged object. Issue the DEFINE command,
for the appropriate object type, to replace the damaged
object, then try the command again.

AMQ8150 MQSeries object already exists.
Explanation: MQSeries object &5 specified for &2 could not
be created because it already exists.
User action: Check that the name is correct and try the
command again specifying REPLACE, or delete the
MQSeries object. Then try the command again.

AMQ8151 MQSeries object has different type.
Explanation: The type specified for MQSeries object &5 is
different from the type of the object being altered or defined.
User action: Use the correct MQSeries command for the
object type, and then try the command again.

AMQ8152 Source MQSeries object has different type.
Explanation: The type of the source MQSeries object is
different from that specified.
User action: Correct the name of the command, or source
MQSeries object name, and then try the command again, or
try the command using the REPLACE option.

AMQ8153 Insufficient disk space for the specified
queue.

Explanation: The command failed because there was
insufficient disk space available for the specified queue.
User action: Release some disk space and then try the
command again.

AMQ8155 Connection limit exceeded.
Explanation: The queue manager connection limit has been
exceeded.
User action: The maximum limit on the number of
MQSeries application programs that may be connected to the
MQSeries queue manager has been exceeded. Try the
command later.

AMQ8156 MQSeries queue manager quiescing.
Explanation: The MQSeries queue manager is quiescing.
User action: The queue manager was stopping with -c
specified for endmqm. Wait until the queue manager has
been restarted and then try the command again.

AMQ8157 Security error.
Explanation: An error was reported by the security manager
program.
User action: Inform your systems administrator, wait until
the problem has been corrected, and then try the command
again.

AMQ8159 MAXDEPTH not allowed with queue type *ALS
or *RMT.

Explanation: The MAXDEPTH parameter may not be
specified for an MQM queue of type *ALS or *RMT.
User action: Remove the MAXDEPTH parameter from the
command or, if the command is CRTMQMQ, specify a
different value for QTYPE. Then try the command again.

AMQ8160 DFTSHARE not allowed with queue type *ALS
or *RMT.

Explanation: The DFTSHARE parameter may not be
specified for an MQM queue of type *ALS or *RMT.
User action: Remove the DFTSHARE parameter from the
command or, if the command is CRTMQMQ, specify a
different value for QTYPE. Then try the command again.

AMQ8172 Already disconnected.
Explanation: The MQI reason code of 2018 was returned
from the MQSeries queue manager in response to an
MQDISC request issued during command processing.
User action: None.

AMQ8173 No processes to display.
Explanation: There are no matching processes defined on
this system.
User action: Using the DEFINE PROCESS command to
create a process.

AMQ8174 No queues to display.
Explanation: There are no matching queues defined on this
system.
User action: Using the appropriate command to define a
queue of the type that you require, that is, DEFINE QALIAS,
DEFINE QLOCAL, DEFINE QMODEL, or DEFINE
QREMOTE.

AMQ8185 Operating system object already exists.
Explanation: The MQSeries object cannot be created
because an object that is not known to MQSeries already
exists in the MQSeries directory with the name that should be
used for the new object. Refer to the log for previous
messages.
User action: Remove the non-MQSeries object from the
MQSeries library, and try the command again.

AMQ8186 Image not available for MQSeries object &5.
Explanation: MQSeries object &5 type &3 cannot be
recreated because the image is not fully available in the logs
that are currently online. Refer to earlier messages in the
error log for information about the error logs that need to be
brought online for this object to be recreated.
User action: Bring the relevant error logs online, and try the
command again.

AMQ8187 MQSeries object &5 is currently open.
Explanation: MQSeries object &5, type &3, is currently in
use, so the &1 command cannot be issued against it. If a
generic list was presented to the command, the command is
still issued against the other objects in the list.
User action: Wait until the object is no longer in use, and
try the command again.

 Appendix N. Messages 329

 AMQ8188 � AMQ8402

AMQ8188 Insufficient authorization to MQSeries object
&5.

Explanation: You are not authorized to issue the &1
command against MQSeries object &5 type &3. If a generic
list was presented to the command, the command is still
issued against the other objects in the list.
User action: Obtain sufficient authorization for the object,
and retry the command.

AMQ8189 MQSeries object &5 is damaged.
Explanation: MQSeries object &5 type &3 is damaged and
the &1 command cannot be issued against it. If a generic list
was presented to the command then the command is still
issued against the other objects in the list.
User action: Issue the appropriate DEFINE command for
the object, specifying REPLACE, and then try the command
again.

AMQ8190 &1 succeeded on &2 objects and failed on &3
objects.

Explanation: An operation performed on a generic list of
objects was not completely successful.
User action: Examine the log for details of the errors
encountered, and take appropriate action.

AMQ8191 MQSeries command server is starting.
Explanation: The MQSeries command server is starting.
User action: Wait for the strmqcsv command to complete
and then try the operation again.

AMQ8192 MQSeries command server already starting.
Explanation: The request to start the MQSeries command
server was unsuccessful because the MQSeries command
server is already starting.
User action: Wait for the strmqcsv command to complete.

AMQ8193 MQSeries command server is ending.
Explanation: The MQSeries command server is ending.
User action: Wait for the endmqcsv command to complete
and then try the command again.

AMQ8194 MQSeries command server already ending.
Explanation: The end MQSeries command server request
was unsuccessful because the MQSeries command server is
already ending.
User action: Wait for the endmqcsv command to complete.

AMQ8195 MQSeries command server already running.
Explanation: The strmqcsv command was unsuccessful
because the MQSeries command server is already running.
User action: None.

AMQ8196 MQSeries command server already stopped.
Explanation: The request to end the MQSeries command
server was unsuccessful because the MQSeries command
server is already stopped.
User action: None.

AMQ8197 Deleted MQSeries queue damaged.
Explanation: The deleted MQSeries queue &5 was
damaged, and any messages it contained have been lost.
User action: None.

AMQ8226 MQSeries channel already exists.
Explanation: MQSeries channel &3 cannot be created
because it already exists.
User action: Check that the name is correct and try the
command again specifying REPLACE, or delete the
MQSeries channel and then try the command again.

AMQ8227 Channel &3 not found.
Explanation: ALTER CHANNEL has been issued for a
non-existent channel.
User action: Correct the MQSeries channel name and then
try the command again.

AMQ8296 &4 MQSC commands completed successfully.
Explanation: The &1 command has completed successfully.
The &4 MQSeries commands from &5 have been processed
without error and a report written to the printer spool file.
User action: None.

AMQ8297 &4 MQSC commands verified successfully.
Explanation: The &1 command completed successfully.
The &4 MQSeries commands from &5 have been verified and
a report written to the printer spool file.
User action: None.

AMQ8298 Error report generated for MQSC command
process.

Explanation: The &1 command attempted to process the
sequence of MQSeries commands from &5 and encountered
some errors, however, the operation may have partially
completed. A report has been written to the printer spool file.
User action: Examine the spooled printer file for details of
the errors encountered, correct the MQSC source file, and
retry the operation.

AMQ8299 Cannot open &5 for MQSC process.
Explanation: The &1 command failed to open &5 for
MQSeries command processing.
User action: Check that the intended file exists, and has
been specified correctly. Correct the specification or create
the object, and try the operation again.

AMQ8302 Internal failure initializing MQSeries services.
Explanation: An error occurred while attempting to initialize
MQSeries services.

AMQ8303 Insufficient storage available to process
request.

AMQ8304 Tracing cannot be started. Too many traces
are already running.

Explanation:
User action: Stop one or more of the other traces and try
the command again.

AMQ8401 &1 MQSC commands read.
Explanation: The MQSC script contains &1 commands.
User action: None.

AMQ8402 &1 commands have a syntax error.
Explanation: The MQSC script contains &1 commands
having a syntax error.
User action: None.

330 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ8403 � AMQ8500

AMQ8403 &1 commands cannot be processed.
Explanation: The MQSC script contains &1 commands that
failed to process.
User action: None.

AMQ8404 Command failed.
Explanation: An MQSC command has been recognized, but
cannot be processed.
User action: None.

AMQ8405 Syntax error detected at or near end of
command segment below:-

Explanation: The MQSC script contains &1 commands
having a syntax error.
User action: None.

AMQ8406 Unexpected 'end of input' in MQSC.
Explanation: An MQSC command contains a continuation
character, but the 'end of input' has been reached without
completing the command.
User action: None.

AMQ8407 Display Process details.
Explanation: The MQSC DISPLAY PROCESS command
completed successfully, and details follow this message.
User action: None.

AMQ8408 Display Queue Manager details.
Explanation: The MQSC DISPLAY QMGR command
completed successfully, and details follow this message.
User action: None.

AMQ8409 Display Queue details.
Explanation: The MQSC DISPLAY QUEUE command
completed successfully, and details follow this message.
User action: None.

AMQ8410 Parser error.
Explanation: The MQSC Parser has an internal error.
User action: None.

AMQ8411 Duplicate Keyword error.
Explanation: A command in the MQSC script contains
duplicate keywords.
User action: None.

AMQ8412 Numeric Range error.
Explanation: The value assigned to an MQSC command
keyword is out of the permitted range.
User action: None.

AMQ8413 String Length Error.
Explanation: A string assigned to an MQSC keyword is
either NULL, or longer than the maximum permitted for that
keyword.
User action: None.

AMQ8414 Display Channel details.
Explanation: The MQSC DISPLAY CHL command
completed successfully, and details follow this message.
User action: None.

AMQ8415 MQSeries commands are active.
Explanation: The MQSC DISPLAY QMGR command
completed successfully, and details follow this message.
User action: None.

AMQ8416 MQSC timed out waiting for a response from
the command server.

Explanation: MQSC did not receive a response message
from the remote command server in the time specified.
User action: None.

AMQ8417 Display Channel Status details.
Explanation: The MQSC DISPLAY CHANNEL STATUS
command completed successfully, and details follow this
message.
User action: None.

AMQ8418 &1 command responses received.
Explanation: Running in queued mode, &1 command
responses were received from the remote command server.
User action: None.

AMQ8419 The Queue is already in the DCE cell.
Explanation: The Queue is already in the cell, that is, its
SCOPE attribute is already CELL.
User action: None.

AMQ8420 Channel Status not found.
Explanation: No status was found for the specified
channel(s).
User action: None.

AMQ8421 A required keyword was not specified.
Explanation: A keyword required in this command was not
specified.
User action: None.

AMQ8424 Error detected in a name keyword.
Explanation: A keyword in an MQSC command contained a
name string which was not valid. This may be because it
contained characters which are not accepted in MQ names.
Typical keywords which can produce this error are QLOCAL
(and the other q types), CHANNEL, XMITQ, INITQ,
MCANAME etc.
User action: None.

AMQ8498 Starting MQSeries Commands.
Explanation: The MQSC script contains &1 commands.
User action: None.

AMQ8499 Usage: runmqsc -e“ -v“ -w WaitTime“ -x“
QMgrName

Explanation: None.
User action: None.

AMQ8500 MQSeries Display MQ Files
Explanation: Title for the dspmqfls command.
User action: None.

 Appendix N. Messages 331

 AMQ8501 � AMQ8608

AMQ8501 Common services initialization failed with
return code &1.

Explanation: A request by the command server to initialize
common services failed with return code &1.
User action: None.

AMQ8502 Connect shared memory failed with return
code &1.

Explanation: A request by the command server to connect
shared memory failed with return code &1.
User action: None.

AMQ8503 Post event semaphore failed with return code
&1.

Explanation: A request by the command server to post an
event semaphore failed with return code &1.
User action: None.

AMQ8504 Command server MQINQ failed with reason
code &1.

Explanation: An MQINQ request by the command server,
for the MQSeries queue &3, failed with reason code &1.
User action: None.

AMQ8505 Reallocate memory failed with return code &1.
Explanation: A request by the command server to
reallocate memory failed with return code &1.
User action: None.

AMQ8506 Command server MQGET failed with reason
code &1.

Explanation: An MQGET request by the command server,
for the MQSeries queue &3, failed with reason code &1.
User action: None.

AMQ8507 Command server MQPUT1 request for an
undelivered message failed with reason code
&1.

Explanation: An attempt by the command server to put a
message to the dead-letter queue, using MQPUT1, failed with
reason code &1. The MQDLH reason code was &2.
User action: None.

AMQ8508 Queue Manager Delete Object List failed with
return code &1.

Explanation: A request by the command server to delete a
queue manager object list failed with return code &1.
User action: None.

AMQ8509 Command server MQCLOSE reply-to queue
failed with reason code &1.

Explanation: An MQCLOSE request by the command
server for the reply-to queue failed with reason code &1.
User action: None.

AMQ8511 Usage: strmqcsv QMgrName
AMQ8512 Usage: endmqcsv [-c | -i] QMgrName
AMQ8513 Usage: dspmqcsv QMgrName
AMQ8514 No response received after &1 seconds.

Explanation: The command server has not reported the
status of running, to the start request, before the timeout of
&1 seconds was reached.
User action: None.

AMQ8601 MQSeries trigger monitor started.
Explanation: The MQSeries trigger monitor has been
started.
User action: None.

AMQ8602 MQSeries trigger monitor ended.
Explanation: The MQSeries trigger monitor has ended.
User action: None.

AMQ8603 Usage: runmqtrm [-m QMgrName] [-q InitQ]
AMQ8604 Use of MQSeries trigger monitor not

authorized.
Explanation: The MQSeries trigger monitor cannot be run
due to lack of authority to the requested queue manager or
initiation queue.
User action: Obtain the necessary authority from your
security officer or MQSeries administrator. Then try the
command again.

AMQ8605 Queue manager not available to the MQSeries
trigger monitor

Explanation: The queue manager specified for the trigger
monitor does not exist, or is not active.
User action: Check that you named the correct queue
manager. Ask your systems administrator to start it, if it is
not active. Then try the command again.

AMQ8606 Insufficient storage available for the MQSeries
trigger monitor.

Explanation: There was insufficient storage available for the
MQSeries trigger monitor to run.
User action: Free some storage and then try the command
again.

AMQ8607 MQSeries trigger monitor connection failed.
Explanation: The trigger monitor's connection to the
requested queue manager failed because of MQI reason
code &1 from MQCONN.
User action: Consult your systems administrator about the
state of the queue manager.

AMQ8608 MQSeries trigger monitor connection broken.
Explanation: The connection to the queue manager failed
while the trigger monitor was running. This may be caused
by an endmqm command being issued by another user, or by
an MQSeries queue manager error.
User action: Consult your systems administrator about the
state of the queue manager.

332 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ8609 � AMQ8721

AMQ8609 Initiation queue missing or wrong type
Explanation: The named initiation queue could not be
found; or the queue type is not correct for an initiation queue.
User action: Check that the named queue exists, and is a
local queue, or that the named queue is an alias for a local
queue which exists.

AMQ8610 Initiation queue in use
Explanation: The MQSeries trigger monitor could not open
the initiation queue because the queue is open for exclusive
use by another application.
User action: Wait until the queue is no longer in use, and
try the command again.

AMQ8611 Initiation queue could not be opened.
Explanation: The MQSeries trigger monitor could not open
the initiation queue; reason code &1 was returned from
MQOPEN.
User action: Consult your systems administrator.

AMQ8612 Waiting for a trigger message
Explanation: The MQSeries trigger monitor is waiting for a
message to arrive on the initiation queue.
User action: None.

AMQ8613 Initiation queue changed or deleted
Explanation: The MQSeries trigger monitor is unable to
continue because the initiation queue has been deleted or
changed since it was opened.
User action: Retry the command.

AMQ8614 Initiation queue not enabled for input.
Explanation: The MQSeries trigger monitor cannot read
from the initiation queue because input is not enabled.
User action: Ask your systems administrator to enable the
queue for input.

AMQ8615 MQSeries trigger monitor failed to get
message.

Explanation: The MQSeries trigger monitor failed because
of MQI reason code &1 from MQGET.
User action: Consult your systems administrator.

AMQ8616 End of application trigger.
Explanation: The action to trigger an application has been
completed.
User action: None.

AMQ8617 Not a valid trigger message.
Explanation: The MQSeries trigger monitor received a
message that is not recognized.
User action: Consult your systems administrator.

AMQ8618 Error starting triggered application.
Explanation: An error was detected when trying to start the
application identified in a trigger message.
User action: Check that the application the trigger monitor
was trying to start is available.

AMQ8619 Application type &1 not supported.
Explanation: A trigger message was received which
specifies application type &1; the trigger monitor does not
support this type.
User action: Use an alternative trigger monitor for this
initiation queue.

AMQ8620 Trigger message with warning &1
Explanation: The trigger monitor received a message with a
warning. For example, it may have been truncated or it could
not be converted to the trigger monitor's data representation.
The reason code for the warning is &1.
User action: None.

AMQ8621 Usage: runmqtmc [-m QMgrName] [-q InitQ]
AMQ8701 Usage: rcdmqimg [-z] [-m QMgrName] -t

ObjType [GenericObjName]
AMQ8702 Usage: rcrmqobj [-z] [-m QMgrName] -t

ObjType [GenericObjName]
AMQ8703 Usage: dspmqfls [-m QMgrName] [-t ObjType]

GenericObjName
AMQ8708 Dead letter queue handler started to process

INPUTQ(&3).
Explanation: The dead letter queue handler (runmqdlq) has
been started and has parsed the input file without detecting
any errors and is about to start processing the queue
identified in the message.
User action: None.

AMQ8709 Dead letter queue handler ending.
Explanation: The dead letter queue handler (runmqdlq) is
ending because the WAIT interval has expired and there are
no messages on the dead letter queue, or because the queue
manager is shutting down, or because the dead letter queue
handler has detected an error. If the dead letter queue
handler has detected an error, an earlier message will have
identified the error.
User action: None.

AMQ8721 Dead letter queue message not prefixed by a
valid MQDLH.

Explanation: The dead letter queue handler (runmqdlq)
retrieved a message from the nominated dead letter queue,
but the message was not prefixed by a recognizeable
MQDLH. This typically occurs because an application is
writing directly to the dead letter queue but is not prefixing
messages with a valid MQDLH. The message is left on the
dead letter queue and the dead letter queue handler
continues to process the dead letter queue. Each time the
dead letter queue handler repositions itself to a position
before this message to process messages that could not be
processed on a previous scan it will reprocess the failing
message and will consequently reissue this message.
User action: Remove the invalid message from the dead
letter queue. Do not write messages to the dead letter queue
unless they have been prefixed by a valid MQDLH. If you
require a dead letter queue handler that can process
messages not prefixed by a valid MQDLH, you must change
the sample program called amqsdlq to cater for your needs.

 Appendix N. Messages 333

 AMQ8722 � AMQ8749

AMQ8722 Dead letter queue handler unable to put
message: Rule &1 Reason &2.

Explanation: This message is produced by the dead letter
queue handler when it is requested to redirect a message to
another queue but is unable to do so. If the reason that the
redirect fails is the same as the reason the message was put
to the dead letter queue then it is assumed that no new error
has occurred and no message is produced. The retry count
for the message will be incremented and the dead letter
queue handler will continue.
User action: Investigate why the dead letter queue handler
was unable to put the message to the dead letter queue.
The line number of the rule used to determine the action for
the message should be used to help identify to which queue
the dead letter queue handler attempted to PUT the
message.

AMQ8741 Unable to connect to queue manager(&3) :
CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq)
could not connect to the requested queue manager. This
message is typically issued when the requested queue
manager has not been started or is quiescing, or if the
process does not have sufficient authority. The completion
code and the reason can be used to identify the error. The
dead letter queue handler ends.
User action: Take appropriate action based upon the
completion code and reason.

AMQ8742 Unable to open queue manager: CompCode =
&1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq)
could not open the queue manager object. This message is
typically issued because of a resource shortage or because
the process does not have sufficient authority. The
completion code and the reason can be used to identify the
error. The dead letter queue handler ends.
User action: Take appropriate action based upon the
completion code and reason.

AMQ8743 Unable to inquire on queue manager:
CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq)
could not inquire on the queue manager. This message is
typically issued because of a resource shortage or because
the queue manager is ending. The completion code and the
reason can be used to identify the error. The dead letter
queue handler ends.
User action: Take appropriate action based upon the
completion code and reason.

AMQ8744 Unable to close queue manager: CompCode =
&1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq)
could not close the queue manager. This message is
typically issued because of a resource shortage or because
the queue manager is ending. The completion code and the
reason can be used to identify the error. The dead letter
queue handler ends.
User action: Take appropriate action based upon the
completion code and reason.

AMQ8745 Unable to open dead letter queue(&3) for
browse: CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq)
could not open the dead letter queue for browsing. This
message is typically issued because another process has
opened the dead letter queue for exclusive access, or
because an invalid dead letter queue name was specified.
Other possible reasons include resource shortages or
insufficient authority. The completion code and the reason
can be used to identify the error. The dead letter queue
handler ends.
User action: Take appropriate action based upon the
completion code and reason.

AMQ8746 Unable to close dead letter queue: CompCode
= &1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq)
could not close the dead letter queue. This message is
typically issued because of a resource shortage or because
the queue manager is ending. The completion code and the
reason can be used to identify the error. The dead letter
queue handler ends.
User action: Take appropriate action based upon the
completion code and reason.

AMQ8747 Integer parameter(&2) outside permissible
range for &3 on line &1.

Explanation: An integer supplied as input to the dead letter
handler was outside of the valid range of values for a
particular keyword.
User action: Correct the input data and restart the dead
letter queue handler.

AMQ8748 Unable to get message from dead letter
queue: CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq)
could not get the next message from the dead letter queue.
This message is typically issued because of the queue
manager ending, a resource problem, or another process
having deleted the dead letter queue. The completion code
and the reason can be used to identify the error. The dead
letter queue handler ends.
User action: Take appropriate action based upon the
completion code and reason.

AMQ8749 Unable to commit/backout action on dead
letter queue: CompCode = &1 Reason

Explanation: The dead letter queue handler (runmqdlq) was
unable to commit or backout an update to the dead letter
queue. This message is typically issued because of the
queue manager ending, or because of a resource shortage.
If the queue manager has ended, the update to the dead
letter queue (and any associated updates) will be backed out
when the queue manager restarts. If the problem was due to
a resource problem then the updates will be backed out when
the dead letter queue handler terminates. The completion
code and the reason can be used to identify the error. The
dead letter queue handler ends.
User action: Take appropriate action based upon the
completion code and reason.

334 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ8750 � AMQ8763

AMQ8750 No valid input provided to runmqdlq.
Explanation: Either no input was provided to runmqdlq, or
the input to runmqdlq contained no valid message templates.
If input was provided to runmqdlq but was found to be invalid,
earlier messages will have been produced explaining the
cause of the error. The dead letter queue handler will ends.
User action: Correct the input data and restart the dead
letter queue handler.

AMQ8751 Unable to obtain private storage.
Explanation: The dead letter queue handler (runmqdlq) was
unable to obtain private storage. This problem would typically
arise as a result of some more global problem. For example
if there is a persistent problem that is causing messages to
be written to the DLQ and the same problem (for example
queue full) is preventing the dead letter queue handler from
taking the requested action with the message, it is necessary
for the dead letter queue handler to maintain a large amount
of state data to remember the retry counts associated with
each message, or if the dead letter queue contains a large
number of messages and the rules table has directed the
dead letter queue handler to ignore the messages.
User action: Investigate if some more global problem exists,
and if the dead letter queue contains a large number of
messages. If the problem persists contact your support
center.

AMQ8752 Parameter(&3) exceeds maximum length on
line &1.

Explanation: A parameter supplied as input to the dead
letter handler exceeded the maximum length for parameters
of that type.
User action: Correct the input data and restart the dead
letter queue handler.

AMQ8753 Duplicate parameter(&3) found on line &1.
Explanation: Two or more parameters of the same type
were supplied on a single input line to the dead letter queue
handler.
User action: Correct the input and restart the dead letter
queue handler.

AMQ8756 Error detected releasing private storage.
Explanation: The dead letter queue handler (runmqdlq) was
informed of an error while attempting to release an area of
private storage. The dead letter queue handler ends.
User action: This message should be preceded by a
message or FFST information from the internal routine that
detected the error. Take the action associated with the
earlier error information.

AMQ8757 Integer parameter(&3) outside permissible
range on line &1.

Explanation: An integer supplied as input to the dead letter
handler was outside of the valid range of integers supported
by the dead letter queue handler.
User action: Correct the input data and restart the dead
letter queue handler.

AMQ8758 &1 errors detected in input to runmqdlq.
Explanation: One or more errors have been detected in the
input to the dead letter queue handler(runmqdlq). Error
messages will have been generated for each of these errors.
The dead letter queue handler ends.
User action: Correct the input data and restart the dead
letter queue handler.

AMQ8759 Invalid combination of parameters to dead
letter queue handler on line &1.

Explanation: An invalid combination of input parameters
has been supplied to the dead letter queue handler. Possible
causes are:
 no ACTION specified,
 ACTION(FWD) but no FWDQ specified,
 HEADER(YES|NO) specified without ACTION(FWD).
User action: Correct the input data and restart the dead
letter queue handler.

AMQ8760 Unexpected failure while initializing process:
Reason = &1.

Explanation: The dead letter queue handler (runmqdlq)
could not perform basic initialization required to use MQ
services because of an unforeseen error. The dead letter
queue handler ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

AMQ8761 Unexpected failure while connecting to queue
manager: CompCode = &1 Reason

Explanation: The dead letter queue handler (runmqdlq)
could not connect to the requested queue manager because
of an unforeseen error. The dead letter queue handler ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

AMQ8762 Unexpected error while attempting to open
queue manager: CompCode = &1 Reason =
&2.

Explanation: The dead letter queue handler (runmqdlq)
could not open the queue manager because of an unforeseen
error. The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

AMQ8763 Unexpected error while inquiring on queue
manager: CompCode = &1 Reason = &

Explanation: The dead letter queue handler (runmqdlq)
could not inquire on the queue manager because of an
unforeseen error. The completion code and the reason can
be used to identify the error. The dead letter queue handler
ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

 Appendix N. Messages 335

 AMQ8764 � AMQ8769

AMQ8764 Unexpected error while attempting to close
queue manager: CompCode = &1 Reason =
&2.

Explanation: The dead letter queue handler (runmqdlq)
could not close the queue manager because of an
unforeseen error. The completion code and the reason can
be used to identify the error. The dead letter queue handler
ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

AMQ8765 Unexpected failure while opening dead letter
queue for browse: CompCode = &1 Reason =
&2.

Explanation: The dead letter queue handler (runmqdlq)
could not open the dead letter queue for browsing because of
an unforeseen error. The completion code and the reason
can be used to identify the error. The dead letter queue
handler ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

AMQ8766 Unexpected error while closing dead letter
queue: CompCode = &1 Reason = &2

Explanation: The dead letter queue handler (runmqdlq)
could not close the dead letter queue because of an
unforeseen error. The completion code and the reason can
be used to identify the error. The dead letter queue handler
ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

AMQ8767 Unexpected error while getting message from
dead letter queue: CompCode = &1 Reason =
&2.

Explanation: The dead letter queue handler (runmqdlq)
could not get the next message from the dead letter queue
because of an unforeseen error. The completion code and
the reason can be used to identify the error. The dead letter
queue handler ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

AMQ8768 Unexpected error committing/backing out
action on dead letter queue: CompCode = &1
Reason = &2.

Explanation: The dead letter queue handler (runmqdlq) was
unable to either commit or backout an update to the dead
letter queue because of an unforeseen error. The completion
code and the reason can be used to identify the error. The
dead letter queue handler ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

AMQ8769 Unable to disconnect from queue manager:
CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq) was
unable to disconnect from the queue manager because of an
unexpected error. The completion code and the reason can
be used to identify the error. The dead letter queue handler
ends.
User action: Use the standard facilities supplied with your
system to record the problem identifier and to save the
generated output files. Contact your support center. Do not
discard these files until the problem has been resolved.

336 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ9001 � AMQ9203

 Remote messages

AMQ9001 Channel program ended normally.
Explanation: Channel program '&3' ended normally.
User action: None.

AMQ9002 Channel program started.
Explanation: Channel program '&3' started.
User action: None.

AMQ9181 The response set by the exit is not valid.
Explanation: The user exit '&3' returned a response code
'&1' that is not valid in the ExitResponse field of the channel
exit parameters (MQCXP). Message AMQ9190 is issued
giving more details, and the channel stops.
User action: Investigate why the user exit program set a
response code that is not valid.

AMQ9182 The secondary response set by the exit is not
valid.

Explanation: The user exit '&3' returned a secondary
response code '&1' in the ExitResponse2 field of the channel
exit parameters (MQCXP) that is not valid. Message
AMQ9190 is issued giving more details, and the channel
stops.
User action: Investigate why the user exit program set a
secondary response code that is not valid.

AMQ9184 The exit buffer address set by the exit is not
valid.

Explanation: The user exit '&3' returned an address '&1' for
the exit buffer that is not valid, when the secondary response
code in the ExitResponse2 field of the channel exit
parameters (MQCXP) is set to MQXR2_USE_EXIT_BUFFER.
Message AMQ9190 is issued giving more details, and the
channel stops.
User action: Investigate why the user exit program set an
exit buffer address that is not valid. The most likely cause is
the failure to set a value, so that the value is 0.

AMQ9189 The data length set by the exit is not valid.
Explanation: The user exit '&3' returned a data length value
'&1' that was not greater than zero. Message AMQ9190 is
issued giving more details, and the channel stops.
User action: Investigate why the user exit program set a
data length that is not valid.

AMQ9190 Channel stopping because of an error in the
exit.

Explanation: The user exit '&3', invoked for channel '&4'
with id '&1' and reason '&2', returned values that are not
valid, as reported in the preceding messages. The channel
stops.
User action: Investigate why the user exit program set
values that are not valid.

AMQ9196 Data length is larger than the agent buffer
length.

Explanation: The data length '&1' set by exit '&3' is larger
than the agent buffer length. The user exit returned data in
the supplied agent buffer, but the length specified is greater
than the length of the buffer. Message AMQ9190 is issued
giving more details, and the channel stops.
User action: Investigate why the user exit program set a
data length that is not valid..

AMQ9197 Data length is larger than the exit buffer
length.

Explanation: The data length '&1' set by exit '&3' is larger
than the exit buffer length. The user exit returned data in the
supplied exit buffer, but the length specified is greater than
the length of the buffer. Message AMQ9190 is issued giving
more details, and the channel stops.
User action: Investigate why the user exit program set a
data length that is not valid.

AMQ9201 Allocate failed to host '&3'.
Explanation: The attempt to allocate a conversation using
&4 to host '&3' was not successful.
User action: The error may be due to an incorrect entry in
the &4 parameters contained in the channel definition to host
'&3'. Correct the error and try again. If the error persists,
record the error values and contact your systems
administrator. The return code from &4 was &1 (X'&2'). It
may be possible that the listening program at host '&3' is not
running. If this is the case, perform the relevant operations to
start the listening program for protocol &4 and try again.

AMQ9202 Remote host '&3' not available, retry later.
Explanation: The attempt to allocate a conversation using
&4 to host '&3' was not successful. However the error may
be a transitory one and it may be possible to successfully
allocate a &4 conversation later.
User action: Try the connection again later. If the failure
persists, record the error values and contact your systems
administrator. The return code from &4 is &1 (X'&2'). The
reason for the failure may be that this host cannot reach the
destination host. It may also be possible that the listening
program at host '&3' was not running. If this is the case,
perform the relevant operations to start the &4 listening
program, and try again.

AMQ9203 A configuration error for &4 occurred.
Explanation: Allocation of a &4 conversation to host '&3'
was not possible.
User action: The configuration error may be one of the
following: 1. If the communications protocol is LU6.2, it may
be that one of the transmission parameters (Mode, or TP
Name) is incorrect. Correct the error and try again. The
mode name should be the same as the mode defined on host
&3. The TP name on &3 should be defined. 2. If the
communications protocol is LU6.2, it may be that an LU6.2
session has not been established. Contact your systems
administrator. 3. If the communications protocol is TCP/IP, it
may be that the host name specified is incorrect. Correct the
error and try again. 4. If the communications protocol is
TCP/IP, it may be that the host name specified cannot be
resolved to a network address. The host name may not be in
the nameserver. The return code from &4 is &1 (X'&2').
Record the error values and tell the system administrator.

 Appendix N. Messages 337

 AMQ9204 � AMQ9219

AMQ9204 Connection to host '&3' rejected.
Explanation: Connection to host '&3' over &4 was rejected.
User action: The remote system might not be configured to
allow connections from this host. Check the &4 listener
program has been started on host '&3'. If the conversation
uses LU6.2, it is possible that either the userid or password
supplied to the remote host is incorrect. If the conversation
uses TCP/IP, it is possible that the remote host does not
recognize the local host as a valid host. The return code
from &4 is &1 X('&2'). Record the values and tell the
systems administrator.

AMQ9205 The host name supplied is not valid.
Explanation: The supplied &4 host name '&3' could not be
resolved into a network address. Either the name server
does not contain the host, or the name server was not
available.
User action: Check the &4 configuration on your host.

AMQ9206 Error on send to host '&3'.
Explanation: An error occurred sending data over &4 to
'&3'. This may be due to a communications failure.
User action: Record the value &1 and the return code &4
and tell your systems administrator.

AMQ9207 The data received from host '&3' is not valid.
Explanation: Incorrect data format received from host '&3'
over &4. It may be that an unknown host is attempting to
send data. An FFST file has been generated containing the
invalid data received.
User action: Tell the systems administrator.

AMQ9208 Error on receive from host '&3'.
Explanation: An error occurred receiving data from '&3'
over &4. This may be due to a communications failure.
User action: Record the &4 return code &1 (X'&2') and tell
the systems administrator.

AMQ9209 Connection to host '&3' closed.
Explanation: An error occurred receiving data from '&3'
over &4. The connection to the remote host has
unexpectedly terminated.
User action: Tell the systems administrator.

AMQ9210 Remote attach failed.
Explanation: There was an incoming attach from a remote
host but the local host could not complete the bind.
User action: Record the &4 return code &1 (X'&2') and tell
the systems administrator who should check the &4
configuration.

AMQ9211 Error allocating storage.
Explanation: The program was unable to obtain enough
storage.
User action: Stop some programs which are using storage
and retry the operation. If the problem persists contact your
Systems Administrator.

AMQ9212 A TCP/IP socket could not be allocated.
Explanation: A TCP/IP socket could not be created,
possibly because of a storage problem.
User action: Try the program again. If the failure persists
record the value &1 and tell the systems administrator.

AMQ9213 A communications error for &4 occurred.
Explanation: An unexpected error occurred in
communications.
User action: The return code from the &4&3 call was &1
(X'&2'). Record these values and tell the systems
administrator.

AMQ9214 Attempt to use an unsupported
communications protocol.

Explanation: An attempt was made to use an unsupported
communications protocol type &2.
User action: Check the channel definition file. It may be that
the communications protocol entered is not a currently
supported one.

AMQ9215 Communications subsystem unavailable.
Explanation: An attempt was made to use the
communications subsystem, but it has not been started.
User action: Start the communications subsystem, and
rerun the program.

AMQ9216 Usage: &3 [-m QMgrName] [-n TPName]
Explanation: Values passed to the responder channel
program are not valid. The parameter string passed to this
program is as follows :- [-m QMgrName] [-n TPName] Default
values will be used for parameters not supplied.
User action: Correct the parameters passed to the Channel
program and retry the operation.

AMQ9217 The TCP/IP listener program could not be
started.

Explanation: An attempt was made to start a new instance
of the listener program, but the program was rejected.
User action: The failure could be because either the
subsystem has not been started (in this case you should start
the subsystem), or there are too many programs waiting (in
this case you should try to start the listener program later).

AMQ9218 The TCP/IP listener program could not bind to
port number &1.

Explanation: An attempt to bind the TCP/IP socket to the
listener port was unsuccessful.
User action: The failure could be due to another program
using the same port number. Record the return code &2
from the bind and tell the systems administrator.

AMQ9219 The TCP/IP listener program could not create
a new connection for the incoming
conversation.

Explanation: An attempt was made to create a new socket
because an attach request was received, but an error
occurred.
User action: The failure may be transitory, try again later. If
the problem persists, record the return code &1 and tell the
systems administrator. It may be necessary to free some
jobs, or restart the communications system.

338 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ9220 � AMQ9501

AMQ9220 The &4 communications program could not be
loaded.

Explanation: The attempt to load the &4 library or
procedure '&3' failed with error code &1.
User action: Either the library must be installed on the
system or the environment changed to allow the program to
locate it.

AMQ9221 Unrecognized protocol was specified.
Explanation: The specified value of '&3' was not recognized
as one of the protocols supported.
User action: Correct the parameter and retry the operation.

AMQ9222 Cannot find the configuration file.
Explanation: The configuration file '&3' cannot be found.
This file contains default definitions for communication
parameters. Default values will be used.
User action: None.

AMQ9223 Enter a protocol type.
Explanation: The operation you are performing requires that
you enter the type of protocol.
User action: Add the protocol parameter and retry the
operation.

AMQ9224 Unexpected token detected.
Explanation: On line &1 of the INI file keyword '&3' was
read when a keyword was expected.
User action: Correct the file and retry the operation.

AMQ9225 File syntax error.
Explanation: A syntax error was detected on line &1 while
processing the INI file.
User action: Correct the problem and retry the operation.

AMQ9226 Usage: &3 [-m QMgrName] -t (TCP | LU62 |
NETBIOS) [ProtocolOptions]

Explanation: Values passed to the listener program were
invalid. The parameter string passed to this program is as
follows :- [-m QMgrName] (-t TCP [-p Port] | -t LU62 [-n
TPName] | -t NETBIOS [-l LocalName] [-e Names] [-s
Sessions] [-o Commands] [-a Adaptor]) Default values will be
used for parameters not supplied.
User action: Correct the parameters passed to the listener
program and retry the operation.

AMQ9227 &3 local host name not provided.
Explanation:
User action: Add a local name to the configuration file and
retry the operation.

AMQ9228 The &4 responder program could not be
started.

Explanation: An attempt was made to start an instance of
the responder program, but the program was rejected.
User action: The failure could be because either the
subsystem has not been started (in this case you should start
the subsystem), or there are too many programs waiting (in
this case you should try to start the responder program later).

AMQ9229 The application has been ended.
Explanation: You have issued a request to end the
application.
User action: None.

AMQ9230 An unexpected &4 event occurred.
Explanation: During the processing of network events, an
unexpected event &1 occurred.
User action: None.

AMQ9231 The supplied parameter is not valid.
Explanation: The value of the &4 &5 parameter has the
value '&3'. This value has either not been specified or has
been specified incorrectly.
User action: Check value of the &5 parameter and correct it
if necessary. If the fault persists, record the return code
(&1,&2) and &4 and tell the systems administrator.

AMQ9232 No &3 specified
Explanation: The operation requires the specification of the
&3 field.
User action: Specify the &3 and retry the operation.

AMQ9233 Error creating Listener thread for &3.
Explanation: The process attempted to create a new thread
for an incoming connection.
User action: Contact the systems administrator.

AMQ9235 The supplied Local LU was invalid.
Explanation: The &4 Local LU name '&3' was invalid.
User action: Either the Local LU name was entered
incorrectly or it was not in the &4 communications
configuration. Correct the error and try again.

AMQ9236 The supplied Partner LU was invalid.
Explanation: The &4 Partner LU name '&3' was invalid.
User action: Either the Partner LU name was entered
incorrectly or it was not in the &4 communications
configuration. Correct the error and try again.

AMQ9238 A communications error for &4 occurred.
Explanation: An unexpected error occurred in
communications.
User action: The return code from the &4&3 call was &1
with associated &5 &2.
Programmer response: Record the error values and tell the
systems administrator.

AMQ9501 Usage: &3 [-m QMgrName] -c ChlName.
Explanation: Values passed to the channel program are not
valid. The parameter string passed to this program is as
follows :- [-m QMgrName] -c ChlName Default values will be
used for parameters not supplied.
User action: Correct the parameters passed to the Channel
program and retry the operation.

 Appendix N. Messages 339

 AMQ9502 � AMQ9518

AMQ9502 Type of channel not suitable for action
requested.

Explanation: The operation requested cannot be performed
on channel '&3'. Some operations are only valid for certain
channel types. For example, you can only ping a channel
from the end sending the message.
User action: Check whether the channel name is specified
correctly. If it is check that the channel has been defined
correctly.

AMQ9503 Channel negotiation failed.
Explanation: Channel '&3' between this machine and the
remote machine could not be established due to a negotiation
failure.
User action: Tell the systems administrator who should look
at the log on the remote system for messages explaining the
cause of the negotiation failure.

AMQ9504 A protocol error was detected for channel
'&3'.

Explanation: During communications with the remote queue
manager, the channel program detected a protocol error.
The failure type was &1 with associated data of &2.
User action: Contact the systems administrator who should
examine the error logs to determine the cause of the failure.

AMQ9505 Channel sequence number wrap values are
different.

Explanation: The sequence number for channel '&3' is &1,
but the value specified at the remote location is &2. The two
values must be the same before the channel can be started.
User action: Change either the local or remote channel
definitions so that the values specified for the message
sequence number wrap values are the same.

AMQ9506 Message receipt confirmation failed.
Explanation: Channel '&3' has ended because the remote
queue manager did not accept the last batch of messages.
User action: The error log for the channel at the remote site
will contain an explanation of the failure. Contact the remote
Systems Administrator to resolve the problem.

AMQ9507 Channel '&3' is currently in-doubt.
Explanation: The requested operation cannot complete
because the channel is in-doubt with host '&4'.
User action: Examine the status of the channel, and either
restart a channel to resolve the in-doubt state, or use the
RESOLVE CHANNEL command to correct the problem
manually.

AMQ9508 Program cannot connect to the queue
manager.

Explanation: The connection attempt to queue manager
'&4' failed with reason code &1.
User action: Ensure that the queue manager is available
and operational.

AMQ9509 Program cannot open queue manager object.
Explanation: The attempt to open either the queue or
queue manager object '&4' on queue manager '&5' failed with
reason code &1.
User action: Ensure that the queue is available and retry
the operation.

AMQ9510 Messages cannot be retrieved from a queue.
Explanation: The attempt to get messages from queue '&4'
on queue manager '&5' failed with reason code &1.
User action: Ensure that the required queue is available
and operational.

AMQ9511 Messages cannot be put to a queue.
Explanation: The attempt to put messages to queue '&4' on
queue manager '&5' failed with reason code &1.
User action: Ensure that the required queue is available
and operational.

AMQ9512 Ping operation is not valid for channel '&3'.
Explanation: Ping may only be issued for SENDER or
SERVER channel types.
User action: If the local channel is a receiver channel, you
must issue the ping from the remote queue manager.

AMQ9513 Maximum number of channels reached.
Explanation: The maximum number of channels that can be
in use simultaneously has been reached.
User action: Either wait for some of the operating channels
to close or use the stop channel command to close some
channels. Retry the operation when some channels are
available. The number of permitted channels is a
configurable parameter in the queue manager configuration
file.

AMQ9514 Channel '&3' is in use.
Explanation: The requested operation failed because
channel '&3' is currently active.
User action: Either end the channel manually, or wait for it
to close, and retry the operation.

AMQ9515 Channel '&3' changed.
Explanation: The statistics shown are for the channel
requested, but it is a new instance of the channel. The
previous channel instance has ended.
User action: None.

AMQ9516 File error occurred.
Explanation: The filesystem returned error code &1 for file
'&3'.
User action: Record the name of the file '&3' and tell the
systems administrator, who should ensure that file '&3' is
correct and available.

AMQ9517 File damaged.
Explanation: The program has detected damage to the
contents of file '&3'.
User action: Record the values and tell the systems
administrator who must restore a saved version of file '&3'.
The return code was '&1' and the record length returned was
'&2'.

AMQ9518 File '&3' not found.
Explanation: The program requires that the file '&3' is
present and available.
User action: Record the name of the file and tell the
systems administrator who must ensure that file '&3' is
available to the program.

340 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ9519 � AMQ9537

AMQ9519 Channel '&3' not found.
Explanation: The requested operation failed because the
program could not find a definition of channel '&3'.
User action: Check that the name is specified correctly and
the channel definition is available.

AMQ9520 Channel not defined remotely.
Explanation: There is no definition of channel '&3' at the
remote location.
User action: Add an appropriate definition to the remote
hosts list of defined channels and retry the operation.

AMQ9521 Host is not supported by this channel.
Explanation: The connection across channel '&5' was
refused because the remote host '&4' did not match the host
'&3' specified in the channel definition.
User action: Update the channel definition, or remove the
explicit mention of the remote machine connection name.

AMQ9522 Error accessing the status table.
Explanation: The program could not access the channel
status table.

AMQ9523 Remote host detected a protocol error.
Explanation: During communications through channel '&3',
the remote queue manager channel program detected a
protocol error. The failure type was &1 with associated data
of &2.
User action: Tell the systems administrator, who should
examine the error files to determine the cause of the failure.

AMQ9524 Remote queue manager unavailable.
Explanation: Channel '&3' cannot start because the remote
queue manager is not currently available.
User action: Either start the remote queue manager, or
retry the operation later.

AMQ9525 Remote queue manager is ending.
Explanation: Channel '&3' is closing because the remote
queue manager is ending.
User action: None.

AMQ9526 Message sequence number error for channel
'&3'.

Explanation: The local and remote queue managers do not
agree on the next message sequence number. A message
with sequence number &1 has been sent when sequence
number &2 was expected.
User action: Determine the cause of the inconsistency. It
could be that the synchronization information has become
damaged, or has been backed out to a previous version. If
the situation cannot be resolved, the sequence number can
be manually reset at the sending end of the channel using
the RESET CHANNEL command.

AMQ9527 Cannot send message through channel '&3'.
Explanation: The channel has closed because the remote
queue manager cannot receive a message.
User action: Contact the systems administrator who should
examine the error files of the remote queue manager, to
determine why the message cannot be received, and then
restart the channel.

AMQ9528 User requested closure of channel '&3'.
Explanation: The channel is closing because of a request
by the user.
User action: None.

AMQ9529 Target queue unknown on remote host.
Explanation: Communication using channel '&3' has ended
because the target queue for a message is unknown at the
remote host.
User action: Ensure that the remote host contains a
correctly defined target queue, and restart the channel.

AMQ9530 Program could not inquire queue attributes.
Explanation: The attempt to inquire the attributes of queue
'&4' on queue manager '&5' failed with reason code &1.
User action: Ensure that the queue is available and retry
the operation.

AMQ9531 Transmission queue specification error.
Explanation: Queue '&4' identified as a transmission queue
in the channel definition '&3' is not a transmission queue.
User action: Ensure that the queue name is specified
correctly. If so, alter the queue usage parameter of the
queue to that of a transmission queue.

AMQ9532 Program cannot set queue attributes.
Explanation: The attempt to set the attributes of queue '&4'
on queue manager '&5' failed with reason code &1.
User action: Ensure that the queue is available and retry
the operation.

AMQ9533 Channel '&3' is not currently active.
Explanation: The channel was not stopped because it was
not currently active.
User action: None.

AMQ9534 Channel '&3' is currently not enabled.
Explanation: The channel program ended because the
channel is currently not enabled.
User action: Issue the START CHANNEL command to
re-enable the channel.

AMQ9535 User exit not valid.
Explanation: Channel program '&3' ended because user
exit '&4' is not valid.
User action: Ensure that the user exit is specified correctly
in the channel definition, and that the user exit program is
correct and available.

AMQ9536 Channel ended by an exit.
Explanation: Channel program '&3' was ended by exit '&4'.
User action: None.

AMQ9537 Usage: &3 [-m QMgrName] [-q InitQ]
Explanation: Values passed to the Channel initiator
program are not valid. The parameter string passed to this
program is as follows :- [-m QMgrName] [-q InitQ] Default
values will be used for parameters not supplied.
User action: Correct the parameters passed to the program
and retry the operation.

 Appendix N. Messages 341

 AMQ9538 � AMQ9553

AMQ9538 Commit control error.
Explanation: An error occurred when attempting to start
commitment control. Either exception '&3' was received when
querying commitment status, or commitment control could not
be started.
User action: Refer to the error log for other messages
pertaining to this problem.

AMQ9539 No channels available.
Explanation: The channel initiator program received a
trigger message to start an MCA program to process queue
'&3'. The program could not find a defined, available channel
to start.
User action: Ensure that there is a defined channel, which
is enabled, to process the transmission queue.

AMQ9540 Commit failed.
Explanation: The program ended because return code &1
was received when an attempt was made to commit change
to the resource managers. The commit ID was '&3'.
User action: Tell the systems administrator.

AMQ9541 CCSID supplied for data conversion not
supported.

Explanation: The program ended because, either the
source CCSID '&1' or the target CCSID '&2' is not valid, or is
not currently supported.
User action: Correct the CCSID that is not valid, or ensure
that the requested CCSID can be supported.

AMQ9542 Queue manager is ending.
Explanation: The program will end because the queue
manager is quiescing.
User action: None.

AMQ9543 Status table damaged.
Explanation: The channel status table has been damaged.
User action: End all running channels and issue a
DISPLAY CHSTATUS command to see the status of the
channels. Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ9544 Messages written to the 'dead-letter queue'.
Explanation: During the processing of channel '&3' one or
more messages have been put to a dead-letter queue. The
location of the messages is &1, where 1 is the local
dead-letter queue and 2 is the remote dead-letter queue.
User action: Examine the contents of the dead-letter queue.
Each message is contained in a structure that describes why
the message was put to the queue, and to where it was
originally addressed. The program identifier (PID) of the
processing program was '&4'.

AMQ9545 Disconnect interval expired.
Explanation: Channel '&3' closed because no messages
arrived on the transmission queue within the disconnect
interval period.
User action: None.

AMQ9546 Error return code received.
Explanation: The program has ended because return code
&1 was returned from an internal function.
User action: Correct the reason for the failure and retry the
operation.

AMQ9547 Type of remote channel not suitable for action
requested.

Explanation: The operation requested cannot be performed
because channel '&3' on the remote machine is not of a
suitable type. For example, if the local channel is defined as
a sender the remote machine must define its channel as
either a receiver or requester.
User action: Check that the channel name is specified
correctly. If it is, check that the remote channel has been
defined correctly.

AMQ9548 Message put to the 'dead-letter queue'.
Explanation: During processing a message has been put to
the dead-letter queue.
User action: Examine the contents of the dead-letter queue.
Each message is contained in a structure that describes why
the message was put to the queue, and to where it was
originally addressed.

AMQ9549 Transmission Queue '&3' inhibited for MQGET.
Explanation: An MQGET failed because the transmission
queue had been previously inhibited for MQGET.
User action: None.

AMQ9550 Channel program &3 cannot be stopped at
this time.

Explanation: The channel program is currently busy and
cannot be stopped at the moment.
User action: Issue the STOP CHANNEL command again at
a later time.

AMQ9551 Protocol not supported by remote host
Explanation: The operation you are performing over
Channel '&3' to the host at '&4' is not supported by the target
host.
User action: Check that the connection name parameter is
specified correctly and that the levels of the products in use
are compatible.

AMQ9552 Security flow not received.
Explanation: During communications through channel '&3'
the local security exit requested security data from the remote
machine. The security data has not been received so the
channel has been closed.
User action: Tell the systems administrator who should
ensure that the security exit on the remote machine is defined
correctly.

AMQ9553 Not supported.
Explanation: The command or function attempted is not
currently supported on this platform.
User action: None.

342 MQSeries for Digital OpenVMS V2R2 System Management Guide

 AMQ9554 � AMQ9999

AMQ9554 User not authorized.
Explanation: You are not authorized to perform the Channel
operation.
User action: Tell the systems administrator who should
ensure that the correct access permissions are available to
you, and then retry the operation.

AMQ9555 File format error.
Explanation: The file '&3' does not have the expected
format.
User action: Ensure that the file name is specified correctly.

AMQ9556 Channel synchronization file missing or
damaged.

Explanation: The channel synchronization file '&3' is
missing or does not correspond to the stored channel
information for queue manager '&4'.
User action: Rebuild the synchronization file using the
rcrmqobj command rcrmqobj -t syncfile (-m q-mgr-name)

AMQ9557 Queue Manager UserID initialization failed.
Explanation: The call to initialize the user ID failed with
CompCode &1 and Reason &2.
User action: Correct the error and try again.

AMQ9558 Remote Channel is not currently available.
Explanation: The channel program ended because the
channel '&3' is not currently available on the remote system.
This could be because the channel is disabled or that the
remote system does not have sufficient resources to run a
further channel.
User action: Check the remote system to ensure that the
channel is available to run and retry the operation.

AMQ9560 Rebuild Synchronization File - program
started

Explanation: Rebuilding the Synchronization file for Queue
Manager '&3' .
User action: None.

AMQ9561 Rebuild Synchronization File - program
completed normally

Explanation: Rebuild Synchronization File program
completed normally.
User action: None.

AMQ9562 Synchronization file in use.
Explanation: The Synchronization file '&3' is in use and
cannot be recreated.
User action: Stop any channel activity and retry the
rcrmqobj command.

AMQ9563 Synchronization file cannot be deleted
Explanation: The filesystem returned error code &1 for file
'&3'.
User action: Tell the systems administrator who should
ensure that file '&3' is available and not in use.

AMQ9564 Synchronization File cannot be created
Explanation: The filesystem returned error code &1 for file
'&3'.
User action: Tell the systems administrator.

AMQ9565 No dead-letter queue defined.
Explanation: The queue manager '&4' does not have a
defined dead-letter queue.
User action: Either correct the problem that caused the
program to try and write a message to the dead-letter queue
or create a dead-letter queue for the queue manager.

AMQ9566 Invalid MQSERVER value
Explanation: The value of the MQSERVER environment
variable was '&3'. The variable should be in the format
'ChannelName/Protocol/ConnectionName'.
User action: Correct the MQSERVER value and retry the
operation.

AMQ9572 Message header is not valid.
Explanation: Channel '&3' is stopping because a message
header is not valid. During the processing of the channel, a
message was found that has a header that is not valid. The
dead-letter queue has been defined as a transmission queue,
so a loop would be created if the message had been put
there.
User action: Correct the problem that caused the message
to have a header that is not valid.

AMQ9573 Maximum number of active channels reached.
Explanation: There are too many channels active to start
another. The current defined maximum number of active
channels is &1.
User action: Either wait for some of the operating channels
to close or use the stop channel command to close some
channels. Retry the operation when some channels are
available. The maximum number of active channels is a
configurable parameter in the queue manager configuration
file.

AMQ9574 Channel &3 can now be started.
Explanation: Channel &3 has been waiting to start, but
there were no channels available because the maximum
number of active channels was running. One, or more, of the
active channels has now closed so this channel can start.
User action:

AMQ9999 Channel program ended abnormally.
Explanation: Channel program '&3' ended abnormally.
User action: Look at previous error messages for channel
program '&3' in the error files to determine the cause of the
failure.

 Appendix N. Messages 343

344 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Notices

 Appendix O. Notices

The following paragraph does not apply to any country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independent created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, Mail Point 151,
IBM United Kingdom Laboratories, Hursley Park, Winchester, Hampshire SO21
2JN, England. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

 Copyright IBM Corp. 1995, 1997 345

 Notices

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States, or
other countries, or both:

400 IBM
AIX AIX/6000
MQSeries AS/400
MVS/ESA NetView
CICS OS/2
CICS/6000 Operating System/2
PS/2 RISC System/6000
SAA

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, and the Windows 95 Logo are trademarks of Microsoft
Corporation.

Digital, OpenVMS, VAX, and AXP are trademarks of the Digital Equipment
Corporation

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

346 MQSeries for Digital OpenVMS V2R2 System Management Guide

Part 4. Glossary and index

 Copyright IBM Corp. 1995, 1997 347

348 MQSeries for Digital OpenVMS V2R2 System Management Guide

 administrator commands � channel control function (CCF)

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
administrator commands . MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

alert . A message sent to a management services focal
point in a network to identify a problem or an impending
problem.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

alternate user security . A security feature in which
the authority of one user ID can be used by another
user ID; for example, to open an MQSeries object.

APAR . Authorized program analysis report.

application queue . A queue used by an application.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks . Security checks that are
performed when a user tries to open an MQSeries
object.

authorization file . In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, a
service that provides authority checking of commands
and MQI calls for the user identifier associated with the
command or call.

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

B
backout . An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with commit.

basic mapping support (BMS) . An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

browse . In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor . In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel . See message channel.

channel control function (CCF) . In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication link
to a local queue, together with an operator panel
interface to allow the setup and control of channels.

 Copyright IBM Corp. 1995, 1997 349

 channel definition file (CDF) � dead-letter queue handler

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event . An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint . (1) A time when significant information is
written on the log. Contrast with syncpoint. (2) In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

circular logging . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, the
process of keeping all restart data in a ring of log files.
Logging fills the first file in the ring and then moves on
to the next, until all the files are full. At this point,
logging goes back to the first file in the ring and starts
again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application . An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type . The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

coded character set identifier (CCSID) . The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an instruction that can be
carried out by the queue manager.

command processor . The MQSeries component that
processes commands.

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes valid commands to
the command processor.

commit . An operation that applies all the changes
made during the current unit of recovery or unit of work.

After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with backout.

completion code . A return code indicating how an
MQI call has ended.

configuration file . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, a
file that contains configuration information related to, for
example, logs, communications, or installable services.
Synonymous with .ini file. See also stanza.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier or token by which a
program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, a
command that can be entered interactively from the
operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

controlled shutdown . See quiesced shutdown.

D
data conversion interface (DCI) . The MQSeries
interface to which customer- or vendor-written programs
that convert application data between different machine
encodings and CCSIDs must conform. A part of the
MQSeries Framework.

datagram . The simplest message that MQSeries
supports. This type of message does not require a
reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler . An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and

350 MQSeries for Digital OpenVMS V2R2 System Management Guide

 default object � input parameter

processes messages on the queue in accordance with
a user-written rules table.

default object . A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

distributed application . In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE) .
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management . In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

dynamic queue . A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic
queue.

E
event . See channel event, instrumentation event,
performance event, and queue manager event.

event data . In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

F
FFST. First Failure Support Technology.

FIFO. First-in-first-out.

First Failure Support Technology (FFST) . Used by
MQSeries on UNIX systems, MQSeries for OS/2,
MQSeries for Windows NT, and MQSeries for OS/400
to detect and report software problems.

first-in-first-out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

Framework . In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

� MQSeries data conversion interface (DCI)
� MQSeries message channel interface (MCI)
� MQSeries name service interface (NSI)
� MQSeries security enabling interface (SEI)
� MQSeries trigger monitor interface (TMI)

G
get . In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

H
handle . See connection handle and object handle.

I
immediate shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown has
been requested. Contrast with quiesced shutdown and
preemptive shutdown.

.ini file . See configuration file.

initiation queue . A local queue on which the queue
manager puts trigger messages.

input/output parameter . A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

 Glossary of terms and abbreviations 351

 installable services � message format service (MFS)

installable services . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT,
additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name
service, and user identifier service.

instrumentation event . A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

L
linear logging . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, the
process of keeping restart data in a sequence of files.
New files are added to the sequence as necessary.
The space in which the data is written is not reused
until the queue manager is restarted. Contrast with
circular logging.

listener . In MQSeries distributed queuing, a program
that monitors information about incoming network
connections.

local definition . An MQSeries object belonging to a
local queue manager.

local definition of a remote queue . An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale . On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages.

log control file . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, the
file containing information needed to monitor the use of
log files (for example, their size and location, and the
name of the next available file).

log file . In MQSeries on UNIX systems, MQSeries for
OS/2, and MQSeries for Windows NT, a file in which all
significant changes to the data controlled by a queue
manager are recorded. If the primary log files become
full, MQSeries allocates secondary log files.

logical unit of work (LUW) . See unit of work.

M
MCA. Message channel agent.

MCI. Message channel interface.

media image . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, the
sequence of log records that contain an image of an
object. The object can be recreated from this image.

message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises
two message channel agents (a sender and a receiver)
and a communication link. Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue.

message channel interface (MCI) . The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor . Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message format service (MFS) . In IMS, and editing
facility that allows application programs to deal with

352 MQSeries for Digital OpenVMS V2R2 System Management Guide

 message input descriptor (MID) � object handle

simple logical messages, instead of device-dependent
data, thus simplifying the application development
process. See message input descriptor and message
output descriptor.

message input descriptor (MID) . In IMS, the MFS
control block that describes the format of the data
presented to the application program. Contrast with
message output descriptor.

message output descriptor (MID) . In IMS, the MFS
control block that describes the format of the output
data produced by the application program. Contrast
with message input descriptor.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
on a queue are retrieved, and whether a trigger event is
generated.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging . See synchronous messaging and
asynchronous messaging.

model queue object . A set of queue attributes that
act as a template when a program creates a dynamic
queue.

MQI. Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC. MQSeries commands.

MQSeries . A family of IBM licensed programs that
provides message queuing services.

MQSeries client . Part of an MQSeries product that
can be installed on a system without installing the full

queue manager. The MQSeries client accepts MQI
calls from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
name service . In MQSeries for AIX, MQSeries for
OS/2, and MQSeries for Windows NT, the facility that
determines which queue manager owns a specified
queue.

name service interface (NSI) . The MQSeries
interface to which customer- or vendor-written programs
that resolve queue-name ownership must conform. A
part of the MQSeries Framework.

name transformation . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, an
internal process that changes a queue manager name
so that it is unique and valid for the system being used.
Externally, the queue manager name remains
unchanged.

nonpersistent message . A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

null character . The character that is represented by
X'00'.

O
OAM. Object authority manager.

object . In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist
(MVS/ESA only), or a storage class (MVS/ESA only).

object authority manager (OAM) . In MQSeries on
UNIX systems and MQSeries for Windows NT, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor . A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle . The identifier or token by which a
program accesses the MQSeries object with which it is
working.

 Glossary of terms and abbreviations 353

 output parameter � quiescing

output parameter . A parameter of an MQI call in
which the queue manager returns information when the
call completes or fails.

P
PCF. Programmable command format.

PCF command . See programmable command format.

pending event . An unscheduled event that occurs as
a result of a connect request from a CICS adapter.

percolation . In error recovery, the passing along a
preestablished path of control from a recovery routine to
a higher-level recovery routine.

performance event . A category of event indicating
that a limit condition has occurred.

performance trace . An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue . A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered
if the queue manager fails, so they can contain
persistent messages. Contrast with temporary dynamic
queue.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

preemptive shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal . In MQSeries on UNIX systems, MQSeries
for OS/2, and MQSeries for Windows NT, a term used
for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object . An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF) . A type of
MQSeries message used by:

� User administration applications, to put PCF
commands onto the system command input queue
of a specified queue manager

� User administration applications, to get the results
of a PCF command from a specified queue
manager

� A queue manager, as a notification that an event
has occurred

Contrast with MQSC.

program temporary fix (PTF) . A solution or by-pass
of a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by a queue manager. For example,
a queue is unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

quiesced shutdown . (1) In MQSeries, a shutdown of
a queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. (2) A type of shutdown of the
CICS adapter where the adapter disconnects from
MQSeries, but only after all the currently active tasks
have been completed. Contrast with forced shutdown.

quiescing . In MQSeries, the state of a queue
manager prior to it being stopped. In this state,

354 MQSeries for Digital OpenVMS V2R2 System Management Guide

 RBA � service interval

programs are allowed to finish processing, but no new
programs are allowed to start.

R
RBA . Relative byte address.

reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

remote queue . A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

request message . A type of message used to request
a reply from another program.

resolution path . The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource manager . An application, program, or
transaction that manages resources such as memory
buffers and data sets. MQSeries, CICS, and IMS are
resource managers.

responder . In distributed queuing, a program that
replies to network connection requests from another
system.

resynch . In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

rules table . A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
security enabling interface (SEI) . The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI. Security enabling interface.

sender channel . In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a
sequence number ensures that the receiving channel
can reestablish the message sequence when storing
the messages.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

service interval . A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

 Glossary of terms and abbreviations 355

 service interval event � two-phase commit

service interval event . An event related to the service
interval.

shutdown . See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

single-phase backout . A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza . A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries
on UNIX systems, MQSeries for OS/2, and MQSeries
for Windows NT, a configuration (.ini) file may contain a
number of stanzas.

store and forward . The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

symptom string . Diagnostic information displayed in a
structured format designed for searching the IBM
software support database.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

system.command.input queue . A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands . Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system initialization table (SIT) . A table containing
parameters used by CICS on start up.

T
temporary dynamic queue . A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast
with permanent dynamic queue.

thread . In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging . See asynchronous
messaging.

TMI. Trigger monitor interface.

tranid . See transaction identifier.

transaction identifier . In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program . See message channel agent.

transmission queue . A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering . In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message containing information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI) . The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

356 MQSeries for Digital OpenVMS V2R2 System Management Guide

 undelivered-message queue � utility

U
undelivered-message queue . See dead-letter queue.

undo/redo record . A log record used in recovery.
The redo part of the record describes a change to be
made to an MQSeries object. The undo part describes
how to back out the change if the work is not
committed.

unit of recovery . A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of

consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS) . In MQSeries for OS/2
and MQSeries for Windows NT, the facility that allows
MQI applications to associate a user ID, other than the
default user ID, with MQSeries messages.

utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

 Glossary of terms and abbreviations 357

358 MQSeries for Digital OpenVMS V2R2 System Management Guide

 Index

A
ACTION keyword, rules table 112
action keywords, rules table 112
administration

authorizations 96
command sets 33

control commands 33
MQSeries commands (MQSC) 34
programmable command format commands

(PCF) 35
local 49
remote 72

channels 73
objects 71
transmission queues 73

security, user groups for 31
alias queues 65

authorizations to 90
description 7

aliases
queue manager 81
reply-to queues 81

alter queue manager attributes 53
alternate user authority 90
amqscoma.tst

creating default and system objects 44
location 233

amqsdlq, the sample DLQ handler 108
amqsvfcx sample program

using with MQSeries for Digital OpenVMS 284
ancilliary information 307
application

data 4
design considerations 156
MQI administration support 49
programming errors, examples of 152
time-independent 3

APPLIDAT keyword, rules table 110
APPLNAME keyword, rules table 111
APPLTYPE keyword, rules table 111
Attachmate PathWay 299
attributes

ALL attribute 59
altering 53
changing 61
default 59
displaying queue manager 51
MQSC and PCFs compared 35
queue manager

altering 53
displaying 51

attributes (continued)
queues 7

authority
alternate user 90
commands 88
context 91
installable services 88
set/reset command 211

authorization
administration 96
dspmqaut command 89
lists 87
MQI 93
rights identifiers 86
setmqaut command 89

authorization files
all class 101
authorization to 101
class 100
contents 99
directories 99
managing 101
paths 98
understanding 98

B
back out in-doubt messages

OS/2 295
UNIX systems 295
Windows NT 295

batch-job log files 161
bibliography xii
browsing queues 62
building an exit with MQSeries for Digital

OpenVMS 284
building your application

on Digital OpenVMS 279

C
C language

include files for MQSeries for Digital OpenVMS 279
case-sensitive control commands 33
CCSID 28, 235
CCSID language support tables 241
ccsid.tbl 28
cell, DCE and queues 103
changing queue attributes 61
channel

change definition 292
channel control function

Digital OpenVMS systems 285

 Copyright IBM Corp. 1995, 1997 359

channel (continued)
channel control function (continued)

OS/2 285
UNIX systems 285
Windows NT 285

command security requirements 92
commands 92
configuration 141
create definition 292
creating 288
defining 74
delete channel 292
description 10, 71
display

Digital OpenVMS systems 292
OS/2 292
UNIX systems 292
Windows NT 292

display status
Digital OpenVMS systems 292
OS/2 292
UNIX systems 292
Windows NT 292

displaying 289
displaying settings 292
displaying status 292
escape command authorizations 96
events 121
OS/2

resolve 295
ping

Digital OpenVMS systems 293
OS/2 293
UNIX systems 293
Windows NT 293

remote administration 73
renaming 290
Reset

OS/2 295
UNIX systems 295
Windows NT 295

resolve 295
run command 202
run initiator command 201
security 92
start 290

OS/2 293
UNIX systems 293
Windows NT 293

starting 75
stopping

OS/2 294
UNIX systems 294
Windows NT 294

UNIX systems
resolve 295

channel (continued)
Windows NT

resolve 295
channel control function

Digital OpenVMS systems 285
OS/2 285
UNIX systems 285
Windows NT 285

channel definition file
Digital OpenVMS 285
OS/2 285
UNIX systems 285
Windows NT 285

channel functions
OS/2 292
UNIX systems 292
Windows NT 292

character set, specifying 28
Chinese language support 265, 266
CICS

user ID 89
circular logging 126
Cisco MultiNet for OpenVMS 298
clearing a local queue 61
clients 11

error messages on DOS and Windows 167
installation 26
problem determination 166
trigger monitor start command 209

COBOL
copy files for MQSeries for Digital OpenVMS 281
using named constants with MQSeries for Digital

OpenVMS 282
code-page conversions 241
coded character set

identifier 235
on OpenVMS 28
specifying 28
table 29

codeset 235
command files 54
command queue 9
command server

display command 186
displaying status 47
end command 190
remote administration 47
start command 217
starting 47
stopping 48

command set
administration 33
comparison 36

commands
case sensitivity 23
comparison of sets 36

360 MQSeries for Digital OpenVMS V2R2 System Management Guide

commands (continued)
control 33
create queue manager (crtmqm) 176
data conversion (crtmqcvx) 174
delete queue manager (dltmqm) 180
display authority (dspmqaut) 182
display command server (dspmqcsv) 186
display MQSeries files (dspmqfls) 187
display MQSeries formatted trace (dspmqtrc) 189
end command server (endmqcsv) 190
end MQSeries trace (endmqtrc) 194
end queue manager (endmqm) 192
help with syntax 172
MQSC

ALTER QLOCAL 61
ALTER QREMOTE 80
DEFINE CHANNEL 74
DEFINE QALIAS 65
DEFINE QLOCAL 60
DEFINE QLOCAL LIKE 60
DEFINE QLOCAL REPLACE 61
DEFINE QMODEL 67
DEFINE QREMOTE 78
DELETE QLOCAL 61
DELETE QREMOTE 80
DISPLAY QREMOTE 80

MQSC command files 54
input 54
output reports 54

MQSeries (MQSC)
using 34
verifying 56

MQSeries commands (MQSC) 34
programmable command format (PCF) 35
record media image (rcdmqimg) 195
recreate object (rcrmqobj) 197
resolve MQSeries transactions (rsvmqtrn) 199
run channel (runmqchl) 202
run channel initiator (runmqchi) 201
run dead-letter queue handler 203
run DLQ handler (runmqdlq) 107
run listener (runmqlsr) 205
run MQSeries commands (runmqsc) 206
runmqsc 51
security commands

dspmqaut 89
setmqaut 87

set/reset authority (setmqaut) 87, 211
start client trigger monitor (runmqtmc) 209
start command server (strmqcsv) 217
start MQSeries trace (strmqtrc) 219
start queue manager (strmqm) 218
start trigger monitor (runmqtrm) 210

commands for MQSeries 33
commit in-doubt messages

OS/2 295

commit in-doubt messages (continued)
UNIX systems 295
Windows NT 295

committed messages
OS/2 295
UNIX systems 295
Windows NT 295

compiling
for MQSeries for Digital OpenVMS 283

configuration
size and location of log 143
system 21

configuration files
LogPrimaryFile value 145
MQSeries (mqs.ini)

contents 139
LogBufferPages 145
LogDefaultPath 146
LogDefaults 144
LogFilePages 145
logging parameters 146
LogPath 146
LogSecondaryFiles 145
overview 139
path 56

overview 139
queue manager (qm.ini)

contents 141
disabling the object authority manager 86
Log stanza 144
LogBufferPages 145
LogDefaultPath 146
LogFilePages 145
logging parameters 146
LogPath 146
LogSecondaryFiles 145
stanzas 141

connection
DECnet Phase IV 305
DECnet Phase V 305
defining LU 6.2

Digital OpenVMS systems 300
LU 6.2

Digital OpenVMS systems 297
TCP/IP

Digital OpenVMS systems 297
constants in COBOL for MQSeries for Digital

OpenVMS 282
contents of

mqs.ini 139
qm.ini 141

contents of COBOL copy files
with MQSeries for Digital OpenVMS 280

context authority 91
control commands 33

case-sensitive 33

 Index 361

control commands (continued)
runmqsc 51

controlled shutdown 45
conversions, code-page 241
copy files

for MQSeries for Digital OpenVMS 280
CorrelId, performance considerations when using 157
creating

a queue manager 22
crtmqm command 176
default objects 44
process definitions 70
queue manager 39, 44
system objects 44

Creating a channel 288
Digital OpenVMS 288
OS/2 288
UNIX systems 288
Windows NT 288

creating objects 288
Digital OpenVMS 288
OS/2 288
UNIX systems 288
Windows NT 288

crtmqcvx command
examples 174
parameters 174
return codes 174

crtmqm command 176
examples 179
parameters 176
related commands 179
return codes 178

current queue depth 60
customizing

options available 28
overview

data conversion 28
defining objects 29

D
Danish language support 245
data conversion

crtmqcvx command 174
customizing 28

data types
for MQSeries for Digital OpenVMS 280

DCE
cell 103
configuration 104
sharing queues 103

dead-letter header, MQDLH 107
dead-letter queue

description 8
handler 203

dead-letter queue (continued)
specifying 41

debugging
common programming errors 152
preliminary checks 149
secondary checks 153—156

DECnet Phase IV 297
DECnet Phase IV connection 305
DECnet phase V connection 306
default

attributes of objects 59
objects 10

creating 44
defining 29

overriding the configuration file 143
prefix 30
queue manager 40

accidental change 46
accidental deletion 176
changing 46, 52
commands processed 51

rights identifier for authority 85
system objects 227
transmission queue 41

default transmission queue 80
DEFINE QUEUE command, REPLACE attribute
defining

an LU 6.2 connection
Digital OpenVMS systems 300

defining queues 7
deleting 61

dltmqm command 180
local queue 61
queue manager 46

desktop clients 13
DESTQ keyword, rules table 111
DESTQM keyword, rules table 111
Digital TCP/IP services for OpenVMS 298
directories 90

authorization 99
queue manager 90

directory structure 229
disabled receiver channels 293
disabling events 122
disabling the object authority manager 86
disk quotas 15
disk requirements for installation 14
display 292

authority command 182
command server command 186
MQSeries files command 187
MQSeries formatted trace output command 189
process definitions 70
queue manager attributes 51
status of command server 47

362 MQSeries for Digital OpenVMS V2R2 System Management Guide

display authority command
See dspmqaut command

display channel
OS/2 289
UNIX systems 289
Windows NT 289

Display channel status 290
Digital OpenVMS 290
OS/2 290
UNIX systems 290
Windows NT 290

distributed queuing
dead-letter queue 9
incorrect output 160
undelivered-message queue 9

DLQ handler
invoking 107
rules table 108
sample, amqsdlq 108

dltmqm command 180
examples 180
parameters 180
related commands 181
return codes 180

DOS clients error messages 167
dspmqaut command 182

examples 185
parameters 182
related commands 185
return codes 184
using 87, 88

dspmqcsv command 186
examples 186
parameters 186
related commands 186
return codes 186

dspmqfls command 187
examples 188
parameters 187
return codes 188

dspmqtrc command 189
parameters 189
related commands 189

dynamic queues 5
authorizations to 90

E
edit

change
Digital OpenVMS systems 292
OS/2 292
UNIX systems 292
Windows NT 292

create
OS/2 292
UNIX systems 292

edit (continued)
create (continued)

Windows NT 292
delete

Digital OpenVMS systems 292
OS/2 292
UNIX systems 292
Windows NT 292

enabling
events 122
security 86

end MQSeries trace 194
ending a channel 294
ending a queue manager 45
ending interactive MQSC commands 51
ending SNA Listener process 303
endmqcsv command 190

examples 190
parameters 190
related commands 191
return codes 190

endmqm command 45, 192
examples 193
parameters 192
related commands 193
return codes 193

endmqtrc command 194
examples 194
parameters 194
related commands 194
return codes 194

error log 160
error occurring before established 162
example 163

error logs 294
error messages 51
escape PCFs 35
event queue 9
event-driven processing 3
events

channel 121
instrumentation

description 119
enabling and disabling 122
message 123
types of 121
what they are 119
why use them 120

queues 122
trigger 122
types of 121

examples
crtmqcvx command 174
crtmqm command 179
dltmqm command 180
dspmqaut command 185

 Index 363

examples (continued)
dspmqcsv command 186
dspmqfls command 188
endmqcsv command 190
endmqm command 193
endmqtrc command 194
error log 163
programming errors 152
rcdmqimg command 196
rcrmqobj command 198
runmqsc command 207
setmqaut command 216
strmqcsv command 217
strmqm command 218
strmqtrc command 220

exits
user with MQSeries for Digital OpenVMS 284

F
fast messages 237
feedback from MQSC commands 51
FEEDBACK keyword, rules table 111
FFST, examining 165
file paths to objects 30
file sizes, for logs 147
files

authorization
all class 101
authorizations to 101
class 100
contents 99
managing 101
paths 98
understanding 98

configuration
in problem determination 164
overview 139

log control 126
MQSeries configuration 139
queue manager configuration 141
understanding names 42

Finnish language support 246
FORMAT keyword, rules table 111
format of logs 126
French language support 250
functions available

Digital OpenVMS 286
OS/2 286
UNIX systems 286
Windows NT 286

FWDQ keyword, rules table 112
FWDQM keyword, rules table 112

G
Gaelic language support 249
German language support 244
glossary 349

H
hard disk requirements 14
HEADER keyword, rules table 113
help for syntax 172

I
Icelandic language support 253
in-doubt messages, commit or backout

OS/2 295
UNIX systems 295
Windows NT 295

include files
for MQSeries for Digital OpenVMS 279
macro variables for MQSeries for Digital

OpenVMS 280
incorrect output 157
initiation queue

defining 69
description 8

input, redirecting 51
INPUTQ keyword, rules table 109
INPUTQM keyword, rules table 109
installable component

authority manager (OAM) 84
name service 103

installable services
disabling object authority manager 86

disabling 86
name service 103
object authority manager 84

installation
clients 26
components 13
directory structure 21
procedure for Digital OpenVMS V6.2 15
requirements 14
supported code sets 28
unsuccessful 25
verifying 22

instrumentation event
description 119
enabling 122
messages 123
types of 121
why use them 120

interactive MQSC
ending 51
feedback from 51
using 51

364 MQSeries for Digital OpenVMS V2R2 System Management Guide

issuing MQSeries commands 50
Italian language support 247

J
Japanese language support 263

K
Kanji language support 263
Katakana language support 263
Korean language support 264

L
libraries to use

with MQSeries for Digital OpenVMS 283
LIKE attribute 60
linear logging 127
linking

for MQSeries for Digital OpenVMS 283
listening on TCP/IP

Digital OpenVMS systems 298
local administration 49
local queues

clearing 61
command 9
copying definitions 60
dead-letter 8
defining one 58
deleting 61
description 7
initiation 8
transmission 8
undelivered-message 8

locale 235
locations of objects 30
log

configuration 143
error 160
error, example of 163
file

control 126
path 146
reuse 128
size 145

file size 147
format 126
managing 130
number of buffers 145
overheads 147
parameters 30, 42
primary files 145
queue manager 125
secondary files 145
type of 145

log (continued)
using for recovery 132

logging
checkpoints 128
circular 126
linear 127
media recovery 133
types of 126

logical name, disabling security 86
logs for errors 294
LU 6.2 connection

MQSeries for Digital OpenVMS systems 297

M
macro variables

for MQSeries for Digital OpenVMS 280
managing access 85
managing log files 131
managing objects for triggering 68
maximum line length for MQSC commands 54
media images

description 132
record 133
record command 195
recovering 133

memory requirements 14
memory requirements for installation 14
message

administration 326—336
common service 315—317
containing unexpected information 159
description 4
descriptor 4
errors on DOS and Windows clients 167
for instrumentation events 123
format 309
groups 310
information 309
installable services 311—314
lengths of 4
MQSeries product 318—325
not appearing on queues 158
operator 162
performance considerations

lengths of 156
persistent 156

queuing 3
remote 337—343
retrieval algorithms 5
searching for particular 157
structure 309
translated 22
undelivered 163
variable length 157
variables 309

 Index 365

message length, decreasing 61
message queue interface (MQI) 3
message queuing 3
message-driven processing 3
Messages

backout in-doubt messages 295
commit in-doubt messages 295
resolve in-doubt messages 295

model queues
defining 67
description 8
working with 67

monitoring
queue managers 120

Monitoring and controlling DQM
Digital OpenVMS systems 285
OS/2 285
UNIX systems 285
Windows NT 285

MQñ_DEFAULT values
with MQSeries for Digital OpenVMS 280

MQDATA 167
MQDLH, dead-letter header 107
MQI

authorizations 93
description 3
local administration support 49
queue manager calls 7

mqm
rights identifier 83
user ID 89

MQOPEN authorizations 93
MQPUT and MQPUT1, performance

considerations 157
MQPUT authorizations 93
mqs.ini

See configuration files
mqs.ini, path to 56
MQSC 51

attributes 35
command files

input 54
output reports 54
running 55

commands 34
ending interactive input 51
escape PCFs 35
how to issue commands 50
issuing commands interactively 51
issuing remotely 76
maximum line length 54
problems

local 56
remote 77

redirecting input and output 53
sample files 233

MQSC (continued)
security requirements on channels 92
timed out command responses 76
using commands 53
verifying commands 56

MQSC commands 51
ALTER QLOCAL 61
ALTER QREMOTE 80
DEFINE CHANNEL 74
DEFINE QALIAS 65
DEFINE QLOCAL 60
DEFINE QLOCAL LIKE 60
DEFINE QLOCAL REPLACE 61
DEFINE QMODEL 67
DEFINE QREMOTE 78
DELETE QLOCAL 61
DELETE QREMOTE 80
DISPLAY QREMOTE 80
issuing interactively 51
maximum line length 54
using 34

MQSeries
overview for OpenVMS 225
rights identifier, MQM 83

MQSeries configuration file
See configuration files

MQSeries for Digital OpenVMS
<cmqc.h> 279
<cmqcfc.h> 279
<cmqxc.h> 279
<cmqzc.h> 279
building user exit 284
building your application 279
C compiler 283
CMQDLHL 281
CMQDLHV 281
CMQGMOL 281
CMQGMOV 281
CMQMDL 281
CMQMDV 281
CMQODL 281
CMQODV 281
CMQPMOL 281
CMQPMOV 281
CMQTMC2L 281
CMQTMC2V 281
CMQTML 281
CMQTMV 281
CMQV 281
CMQXQHL 281
CMQXQHV 281
flags when compiling 283
header files 279
include files 279
link libraries 283

366 MQSeries for Digital OpenVMS V2R2 System Management Guide

MQSeries for Digital OpenVMS systems
problem solving 304
setting up communication 297
SNA onfiguration 300

MQSeries publications xii
MQSNOAUT logical name 86
MQZAO constants and authority 94
MsgId, performance considerations when using 157
MSGTYPE keyword, rules table 111
Multilingual language support 251
MVS/ESA queue manager 76

N
name service 103
names

allowed for objects 171
objects 5

naming conventions, national language support 171
national language support

naming conventions 171
NLSPATH environment variable 22

nobody, default rights identifier 85
Norwegian language support 245
notification of events 122

O
OAM 84
object authority manager 84

default rights identifier 85
disabling 86
dspmqaut command 89
how it works 85
principals 85
sensitive operations 89
setmqaut command 87

objects
access to 83
creating 288
customizing 29
default

attributes 59
creating 44

for triggering 68
media image 132
names 5
naming conventions 171
process definition 9
queue 7
queue manager

location 30
MQI calls 7
prefixes 30

recovery 133
recreate command 197

objects (continued)
remote administration 71
system

creating 44
system default 10, 227
types 5

OpenVMS
hardware required 225
overview of 225
software required 225

OpenVMS logged-in user ID 89
OpenVMS rights identifier

default, nobody 85
MQM 83

operating system logical name, disabling security 86
operator commands, no response from 153
operator messages 162
options

resolve 295
output, redirecting 51
overheads, for logs 147
overrides

in configuration files 143
overview of MQSeries for Digital OpenVMS 225

P
parameters

runmqlsr command 205
pattern-matching keywords, rules table 110
PCF

See programmable command format (PCF)
performance considerations when using trace 164
performance events 121
permanent queues 5
PERSIST keyword, rules table 111
ping

OS/2 293
UNIX systems 293
Windows NT 293

ping with LU 6.2 293
Portuguese language support 252
post-installation
predefined queues 5
preemptive queue manager shutdown 45
prefix, default 30
preparation

getting started
Digital OpenVMS 288
OS/2 288
UNIX systems 288
Windows NT 288

primary group authorizations
primary log files 145
primary rights identifer, for authority 85

 Index 367

principals
holding more than one rights identifier 85
managing access to 85

problem determination 149
clients 166
configuration files 164
further checks 153—156
incorrect output

messages containing unexpected
information 159

messages not appearing on queues 158
with distributed queuing 160

no response from commands 153
programming errors 152
things to check first 149—152
trace 164

problems
recovering from 132
running MQSC commands 56
using MQSC locally 56
using MQSC remotely 77

process definitions
creating 70
description 9
displaying 70

process rights authorizations
processing, event-driven 3
programmable command format

See programmable command format (PCF)
programmable command format (PCF)

administration with 35
attributes 35
authorizations 93
commands 35

description 35
escape PCFs 35
security requirements 92

programming errors, examples of 152
programs, samples supplied 233
protected resources 86
publications

MQSeries xii
PUTAUT keyword, rules table 113

Q
qm.ini

See configuration files
queue depth

current 60
determining 60

queue manager
alias

remote queue 81
authorization directories 99
authorizations 90

queue manager (continued)
circular logging

restart recovery 127
command server 47
configuration file 141
configuration files

LogPath 146
specifying 42

configuration overview 31
creating 22, 39, 44

crtmqm command 176
default 40

accidental change 46
accidental deletion 176
changing 46

deleting 46
dltmqm command 180

description 6
directories 90
endmqm command 192
events 121
immediate shutdown 45
linear logging 127
local administration 49
logs 125
monitoring 120
name transformation 43
numbers of 40
object authority manager

description 84
disabling 86

objects
location 30
MQI calls 7
prefixes 30

on MVS/ESA 76
preemptive shutdown 45
recording media images 133
remote administration 71
removing

manually 276
restart 46
shutdown 45

controlled 45
quiesce 45

specifying on runmqsc 52
starting 44
stopping 45

manually 275
unique name 40

queue manager configuration file
See configuration files

queued mode, of runmqsc 76
queues

alias 7
aliases, working with 65

368 MQSeries for Digital OpenVMS V2R2 System Management Guide

queues (continued)
application

defining for triggering 68
attributes 7

changing 61
authorizations to 90
browsing 62
command 9
dead-letter 8

specifying 41
defining 7
description 4
distributed, incorrect output from 160
dynamic 5
event 9

event notification 122
for MQSeries applications 49
initiation

defining 69
trigger messages 8

local 7
clearing 61
copying 60
defining 58
deleting 61

model 8
defining 67
working with 67

objects
alias 7
local 7
model 8
remote 7

predefined 5
remote 7

creating 78
queue manager alias 81
working with 81

reply-to 9, 81
shared

configuration tasks 103
shared on different queue managers 103
temporary 5
transmission 8

creating 80
default 41, 80
defining 74
remote administration 73

undelivered-message 8
specifying 41

working with 58
quiesce shutdown 45

queue manager 45

R
railroad diagrams, how to read 171
rcdmqimg command 195

examples 196
parameters 195
related commands 196
return codes 196

rcrmqobj command 197, 198
examples 198
parameters 197
related commands 198
return codes 198

REASON keyword, rules table 111
receiving on DECnet Phase IV 305
receiving on TCP/IP

Digital OpenVMS systems 298
recovering

media images 133
recovery

scenarios 136
damaged queue manager object 137
damaged single object 137
disk drive failures 136

redirecting input and output, on MQSC commands 53
remote

administration 72
of objects 71

issuing of MQSC commands 76
queue definition

creating 78
queue object

working with 81
queues

as queue manager aliases 81
as reply-to queue aliases 81

queuing
description 71
recommendations 77

security considerations 91
remote administration

command server 47
initial problems 77

remote queues
authorizations to 90
description 7

removing
queue manager

manually 276
renaming a channel 290
REPLACE attribute, DEFINE commands 54
reply-to queue 9
reply-to queue aliases 81
REPLYQ keyword, rules table 111
REPLYQM keyword, rules table 111

 Index 369

requirements
disk storage 14
hardware 225
installation 14
memory 14
software 225

reset 295
resolve in-doubt messages 295
resolve option 295
resources

protected 86
why protect 84

restart queue manager 46
restart recovery

with circular logging 127
restrictions 83

access to MQM objects 83
object names 171

retrieval algorithms for messages 5
RETRY keyword, rules table 113
RETRYINT keyword, rules table 109
return codes 150

crtmqcvx command 174
crtmqm command 178
dltmqm command 180
dspmqaut command 184
dspmqcsv command 186
dspmqfls command 188
endmqcsv command 190
endmqm command 193
endmqtrc command 194
interpreting values of 173
rcdmqimg command 196
rcrmqobj command 198
rsvmqtrn command 200
runmqchi command 201
runmqchl command 202
runmqlsr command 205
runmqsc command 207
runmqtmc command 209
runmqtrm command 210
setmqaut command 215
strmqcsv command 217
strmqm command 218
strmqtrc command 220

rights identifier
default for authority 85
default, nobody 85
MQM 83

rights identifiers, for authority 85
rsvmqtrn command 199

parameters 199
related commands 200
return codes 200

rules table, DLQ handler 108
See also DLQ handler

rules table, DLQ handler (continued)
control data entry 109

INPUTQ keyword 109
INPUTQM keyword 109
RETRYINT keyword 109
WAIT keyword 109

example 117
patterns and actions (rules) 110

ACTION keyword 112
APPLIDAT keyword 110
APPLNAME keyword 111
APPLTYPE keyword 111
DESTQ keyword 111
DESTQM keyword 111
FEEDBACK keyword 111
FORMAT keyword 111
FWDQ keyword 112
FWDQM keyword 112
HEADER keyword 113
MSGTYPE keyword 111
PERSIST keyword 111
PUTAUT keyword 113
REASON keyword 111
REPLYQ keyword 111
REPLYQM keyword 111
RETRY keyword 113
USERID keyword 112

processing of 115
syntax 113

run channel 290
run listener (runmqlsr command) 205
runmqchi command 201

parameters 201
return codes 201

runmqchl command 202
parameters 202
return codes 202

runmqdlq command 107
runmqlsr command 205

parameters 205
return codes 205

runmqsc
ending 51
feedback 51
issuing MQSC commands 50
problems 56
queued mode 76
specifying a queue manager 52
using 53
using interactively 51
verifying 56

runmqsc command 206
examples 207
parameters 206
redirecting input and output 53
return codes 207

370 MQSeries for Digital OpenVMS V2R2 System Management Guide

runmqtmc command 209
parameters 209
return codes 209

runmqtrm command 210
parameters 210
return codes 210

S
sample

MQSC files 233
programs, using 233

samples
trace data 165

secondary log files 145
security 83

enabling 86
remote 91
using the commands 87, 89

sending on DECnet Phase IV 305
sending on TCP/IP

Digital OpenVMS systems 297
set/reset authority command

See setmqaut command
setmqaut command 211

examples 216
installable services 88
parameters 213
related commands 216
return codes 215
using 87

setting up communication
Digital OpenVMS systems 297

shared queues
configuration tasks 103

sharing queues 103
shutdown

queue manager 45
controlled 45
immediate 45
preemptive 45
quiesce 45

SNA configuration
Digital OpenVMS systems 300

SNA Listener process, ending 303
SO_KEEPALIVE

Digital OpenVMS systems 298
UNIX systems 298

Spanish language support 248
specified operating environment 225
specifying coded character set 28
stanzas

mqs.ini 139
qm.ini 141

start channel
OS/2 290

start channel (continued)
UNIX systems 290
Windows NT 290

start MQSeries trace command 219
start queue manager command 218
starting

a queue manager 44
channels 75
command server 47

status
display channel 290

stop force 295
stop quiesce 294
stopping

command server 48
queue manager

manually 275
stopping a channel 294
strmqcsv command 217

examples 217
parameters 217
related commands 217
return codes 217

strmqm command 218
examples 218
parameters 218
related commands 218
return codes 218

strmqtrc command 219
examples 220
parameters 219
related commands 221
return codes 220

structures
initial values for MQSeries for Digital

OpenVMS 280
supported code sets 28
Swedish language support 246
syncpoint, performance considerations 157
syntax

help 172
syntax diagrams, how to read 171
syntax error, in MQSC commands 51
SYS$INPUT, on runmqsc 53
SYS$OUTPUT, on runmqsc 53
system

objects
defining 29

system configuration 21
system default objects 10
system defaults 227
system limitations 21
system objects

creating 44

 Index 371

T
TCP/IP connection

MQSeries for Digital OpenVMS systems 297
TCP/IP KEEPALIVE

Digital OpenVMS systems 298
UNIX systems 298

temporary queues 5
terminology used in this book 349
time-independent applications 3
timed out responses from MQSC commands 76
trace

data sample 165
performance considerations 164

transactions
resolve MQSeries command 199

translated messages 22
transmission queue 80

creating 80
default 41, 80
defining 74
description 8
remote administration 73

trigger
event queues 122
events

compared with instrumentation events 122
messages on initiation queue 8
monitor

description 8
start command 210

triggering
application queue

defining 68
managing objects for 68

trusted applications 237
channel programs 238
restrictions 239

typedef
for MQSeries for Digital OpenVMS 280

types of event 121
types of objects 5

U
UK English language support 249
unauthorized access, protecting from 84
undelivered message queue

See dead-letter queue
updating coded character sets 28
US English language support 243
user ID

authority 83
authorization 89
belonging to group nobody 85
for authorization 89

user ID (continued)
OpenVMS logged-in user 89

USERID keyword, rules table 112
users

identifiers
principals 85

using copy files
on MQSeries for Digital OpenVMS 280

V
verifying MQSC commands 56

W
WAIT keyword, rules table 109
Windows clients error messages 167

372 MQSeries for Digital OpenVMS V2R2 System Management Guide

Sending your comments to IBM
MQSeries for Digital OpenVMS

System Management Guide

GC33-1791-00

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries for Digital OpenVMS

System Management Guide

GC33-1791-00
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS V2R2 System Management Guide GC33-1791-00

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in U.S.A.

GC33-1791-ðð

