
MQSeries link LotusScript Extension
User's Guide

Release 1.3

Copyright
Original: Original book produced for IBM MQSeries link LotusScript
Extension.

© Copyright International Business Machines Corporation 1996, 1997.
All rights reserved.

Note to US Government Users - Documentation related to restricted
rights - Use, duplication or disclosure is subject to restrictions set forth in
GSA ADP schedule Contract with IBM Corp.

Lotus, Domino, LotusScript, Notes, and Lotus Notes are trademarks of
Lotus Development Corporation. AIX, IBM, IMS, MQ, MQSeries, OS/2,
and Win-OS/2 are trademarks of International Business Machines
Corporation. Microsoft, Windows, and Windows NT are trademarks of
Microsoft Corporation. Sun and Solaris are trademarks of Sun
Microsystems Inc. HP-UX is a trademark of Hewlett-Packard Company.
Adobe and Acrobat are trademarks of Adobe Systems, Incorporated.
Unicode is a trademark of Unicode, Inc.

Preface

The MQSeries link LotusScript Extension User's Guide describes the IBM
MQSeries link LotusScript Extension, and shows you how you can use it in
your Lotus Notes applications.

Information in this book includes

How to install the MQLSX

Guidance on how to design and program your applications using the
MQLSX

Code samples and how you can use them in your own applications

Where to find more information about MQSeries™, Lotus Notes™
and LotusScript™

How to use trace

Hints and tips for programmers

What are some of the common pitfalls

Reason codes

A full reference guide to the MQLSX Classes and their use

This book covers the MQSeries link LotusScript Extension (MQLSX) and
complements both Lotus and MQSeries publications. An on-line version is
also available as a Notes database.

The typographical conventions used in this document are the same as those
used in the LotusScript Programmer's Guide

Who this book is for
This book is for designers and programmers wanting to develop Lotus
Notes applications that need to interoperate with other, non-Notes
applications, using LotusScript.

This book is for you if:

You are an experienced Lotus Notes developer who may or may not be
experienced in using LotusScript.

You or others within your enterprise have some experience or
knowledge of MQSeries.

Chapter 1 Introduction . 1. .
MQLSX overview . 2. . .

MQSeries environment support . 3. . .

MQSeries link LotusScript Extension or MQSeries Enterprise Integrator for Lotus Notes? 4. . .

MQSeries link LotusScript Extension (MQLSX) . 4. . .

MQSeries Enterprise Integrator for Lotus Notes (MQEI) . 5. . .

Where to find more information about MQSeries . 6. . .

Where to find more information about LotusScript . 7. . .

Chapter 2 Installation and Configuration . 9. .
Pre-installation considerations . 10. .

MQLSX MQSeries requirements . 10. .

Disk space requirements . 11. .

The MQLSX package . 12. .

Before installing the MQLSX . 16. .

Updating your MQLSX installation . 16. .

Installing MQLSX . 17. .

Installing on AIX . 17. .

Installing on HP-UX . 20. .

Installing on OS/2 . 22. .

Installing on Sun Solaris . 24. .

Installing on Windows 3.1, Windows for Workgroups, WIN OS/2 . 26. .

Installing on Windows NT and Windows 95 . 28. .

Post Installation . 31. .

Linking to shared library files on Intel platforms . 32. .

Linking to shared library files on UNIX systems . 33. .

MQLSX environment variables . 34. .

Setting up an environment to run the MQLSX . 36. .

Running an installation verification test . 36. .

Contents

About the MQLSX Starter sample . 37. .

Running the MQLSX Starter sample . 38. .

Chapter 3 Design and Programming using the MQLSX 41.
Designing applications that access non-Notes applications . 42. .

Accessing the MQLSX . 43. .

Programming hints and tips . 44. .

Using large messages . 44. .

Writing large scripts . 44. .

Embedded nulls in a string . 45. .

Message Descriptor properties . 45. .

Object out of scope . 46. .

Receiving a message from MQSeries . 46. .

Disconnecting from MQSeries . 50. .

Data conversion . 51. .

Data conversion by MQSeries . 52. .

Data conversion by the MQLSX . 52. .

Benefits of data conversion by MQSeries . 53. .

Benefits of data conversion using the MQLSX . 53. .

Using the MQLSX methods . 53. .

Establishing a characterset for an environment . 56. .

MQLSX character data conversion in detail . 58. .

When data conversion fails . 60. .

Error handling . 62. .

How it works . 62. .

Getting a property . 63. .

Using Events and Error handlers . 63. .

Chapter 4 Troubleshooting . 69.
Code level tool . 70. .

Using trace . 70. .

Trace filename and directory . 71. .

Trace level . 72. .

When your MQLSX script fails . 81. .

First Failure Symptom Report . 81. .

Other sources of information . 81. .

Common pitfalls . 81. .

Reason codes . 82. .

Chapter 5 MQLSX Reference . 87.
MQLSX objectives . 88. .

LotusScript/MQI interface . 88. .

About MQLSX classes . 89. .

Parameter passing . 89. .

Object access methods . 90. .

Errors . 90. .

MQSession Class . 91. .

CompletionCode Property . 92. .

ReasonCode Property . 92. .

AccessQueueManager Method . 93. .

ClearErrorCodes Method . 93. .

MQQueueManager Class . 94. .

AlternateUserId Property . 97. .

AuthorityEvent Property . 97. .

CharacterSet Property . 98. .

CommandInputQueueName Property . 98. .

CommandLevel Property . 98. .

CompletionCode Property . 99. .

ConnectionStatus Property . 99. .

DeadLetterQueueName Property . 100.

DefaultTransmissionQueueName Property . 100.

Description Property . 100.

InhibitEvent Property . 101.

IsConnected Property . 101.

LocalEvent Property . 102.

MaximumHandles Property . 102.

MaximumMessageLength Property . 102.

MaximumPriority Property . 103.

MaximumUncommittedMessages Property . 103.

Name Property . 103.

PerformanceEvent Property . 104.

Platform Property . 104.

ReasonCode Property . 105.

RemoteEvent Property . 105.

StartStopEvent Property . 106.

SyncPointAvailability Property . 106.

TriggerInterval Property . 107.

AccessProcess Method . 107.

AccessQueue Method . 108.

Backout Method . 109.

ClearErrorCodes Method . 109.

Commit Method . 110.

Connect Method . 110.

Disconnect Method . 110.

MQQueue Class . 111.

AlternateUserId Property . 116.

BackoutRequeueName Property . 116.

BackoutThreshold Property . 117.

BaseQueueName Property . 117.

CloseOptions Property . 118.

CompletionCode Property . 118.

CreationDateTime Property . 119.

CurrentDepth Property . 119.

DefaultInputOpenOption Property . 119.

DefaultPersistence Property . 120.

DefaultPriority Property . 120.

DefinitionType Property . 120.

DepthHighEvent Property . 121.

DepthHighLimit Property . 121.

DepthLowEvent Property . 121.

DepthLowLimit Property . 122.

DepthMaximumEvent Property . 122.

Description Property . 122.

HardenGetBackout Property . 123.

InhibitGet Property . 123.

InhibitPut Property . 124.

InitiationQueueName Property . 124.

IsOpen Property . 125.

MaximumDepth Property . 125.

MaximumMessageLength Property . 125.

MessageDeliverySequence Property . 126.

Name Property . 126.

OpenInputCount Property . 126.

OpenOptions Property . 127.

OpenOutputCount Property . 127.

OpenStatus Property . 128.

ProcessName Property . 128.

QueueType Property . 129.

ReasonCode Property . 129.

RemoteQueueManagerName Property . 130.

RemoteQueueName Property . 130.

RetentionInterval Property . 130.

Scope Property . 131.

ServiceInterval Property . 131.

ServiceIntervalEvent Property . 132.

Shareability Property . 132.

TransmissionQueueName Property . 133.

TriggerControl Property . 133.

TriggerData Property . 133.

TriggerDepth Property . 134.

TriggerMessagePriority Property . 134.

TriggerType Property . 135.

Usage Property . 135.

ClearErrorCodes Method . 136.

Put Method . 136.

Get Method . 137.

MQMessage Class . 138.

CompletionCode Property . 142.

DataLength Property . 142.

DataOffset Property . 143.

MessageLength Property . 144.

ReasonCode Property . 144.

AccountingToken Property . 145.

AccountingTokenHex Property . 145.

ApplicationIdData Property . 146.

ApplicationOriginData Property . 146.

BackoutCount Property . 146.

CharacterSet Property . 147.

CorrelationId Property . 148.

CorrelationIdHex Property . 148.

Encoding Property . 149.

Expiry Property . 149.

Feedback Property . 150.

Format Property . 150.

MessageId Property . 151.

MessageIdHex Property . 151.

MessageType Property . 152.

Persistence Property . 152.

Priority Property . 153.

PutApplicationName Property . 153.

PutApplicationType Property . 154.

PutDateTime Property . 154.

ReplyToQueueManagerName Property . 155.

ReplyToQueueName Property . 155.

Report Property . 156.

UserId Property . 156.

ClearErrorCodes Method . 156.

ClearMessage Method . 157.

ReadLong Method . 157.

ReadShort Method . 158.

ReadString Method . 158.

ReadUnsignedByte Method . 159.

ResizeBuffer Method . 160.

WriteLong Method . 161.

WriteShort Method . 162.

WriteString Method . 162.

WriteUnsignedByte Method . 163.

MQPutMessageOptions Class . 164.

CompletionCode Property . 165.

Options Property . 166.

ReasonCode Property . 167.

ResolvedQueueManagerName Property . 167.

ResolvedQueueName Property . 167.

ClearErrorCodes Method . 168.

MQGetMessageOptions Class . 169.

CompletionCode Property . 170.

Options Property . 171.

ReasonCode Property . 172.

ResolvedQueueName Property . 172.

WaitInterval Property . 173.

ClearErrorCodes Method . 173.

MQProcess Class . 174.

AlternateUserId Property . 175.

ApplicationId Property . 175.

ApplicationType Property . 175.

CompletionCode Property . 176.

Description Property . 176.

EnvironmentData Property . 176.

Name Property . 177.

OpenStatus Property . 177.

ReasonCode Property . 177.

UserData Property . 178.

ClearErrorCodes Method . 178.

Appendix A MQLSX Link sample application . 179
Before you run the MQLSX Link sample . 187.

Running the MQLSX Link sample application . 189.

What happens when you run the MQLSX Link sample . 191.

Error handling in the MQLSX Link sample application . 194.

Customizing the MQSeries Link sample application . 198.

Appendix B MQLSX link extra agent sample application 205

Introduction . 206.

Components . 206.

Lotus Notes agent database (gmqlxtra.nsf) . 206.

Lotus Notes link extra database (mqlinkx.nsf) . 207.

Lotus Notes sample applications databases (test1.nsf & test2.nsf) . 207.

MQSeries sample application (mqlxdemo files) . 207.

Comparison with the MQSeries link extra for Lotus Notes SupportPac 208.

Restrictions . 208.

Recommendations . 208.

Design of the MQLSX link extra agent sample . 209.

Error processing . 210.

Notes agent user exit . 210.

Setting up the MQLSX link extra agent sample . 212.

Prerequisites . 212.

Installing the MQLSX link extra agent sample for the first time . 213.

Upgrading from the MQSeries link extra for Lotus Notes SupportPac 213.

Setting up MQSeries to run the MQLSX link extra agent sample . 214.

Before you run the MQLSX link extra agent sample . 215.

Start the MQSeries queue manager . 215.

Verifying MQSeries link extra agent can initiate updates to Lotus Notes 218.

Running the MQLSX link extra agent sample . 221.

To run the MQLSX link extra agent sample manually . 221.

Using full text indices and views . 222.

Using a Notes view to search for a document . 222.

How the MQLSX link extra agent sample works . 223.

Link extra database contents (mqlinkx.nsf) . 224.

Error handling and status reporting in the MQLSX link extra agent sample 227.

Status messages . 227.

Error Messages . 228.

Chapter 1 Introduction

This book:

explains how to install the MQSeries link LotusScript Extension
(MQLSX)

provides you with help when using the MQLSX

describes each of the MQLSX classes with their properties and
methods.

If you are not very familiar with the Message Queue Interface (MQI), you
will find it useful to have a copy of the MQSeries Application Programming
Reference manual.

Chapter 1: Introduction 1

MQLSX overview

The MQSeries link LotusScript Extension (MQLSX) enables your Notes™
application to interact with other, non-Notes, applications throughout your
enterprise.

It gives your Notes LotusScript™ application the ability to run transactions
and access data on any of your enterprise systems that you can access
through MQSeries. It gives you integration between Lotus Notes and
MQSeries software, extending the scope of Notes to include data and
transactions that are part of other environments.

The MQLSX is an Application Programming Interface that you call from
LotusScript to access the MQI. It requires an MQSeries environment with
an MQSeries application to process the messages that your Notes
application generates.

The MQLSX code does not make any calls to Notes. Your applications
handle what is updated in Notes, splitting the messages received from
MQSeries into fields, and adding them to new or existing Notes documents.

Two samples are provided:

MQLSX Starter sample. You are recommended to use this initially to
check that your installation of the MQLSX is successful and that you
have the basic MQSeries environment in place. The sample is also
provided to demonstrate how LotusScript and the MQLSX can be used.

MQLSX Link sample application. This provides similar functionality to
the MQSeries Link, and is implemented using the MQLSX. It
demonstrates how you can use the MQLSX and the Agent function
within Notes to interact with an MQSeries application. For purposes of
this sample, the MQSeries sample program, amqslnk0, is the MQSeries
application.

Note This release of MQLSX can only be used with Notes Release 4.5.1 or
later, although no testing has been carried out with Notes 4.6.

2 MQSeries link LotusScript Extension User's Guide

MQSeries environment support
To run the MQLSX in an MQSeries server environment you need at least
one of the following installed on your system:

MQSeries for AIX Version 2.2.1 or later

MQSeries for OS/2 Version 2.0.1 or later

MQSeries for HP-UX Version 2.2.1 or later

MQSeries for Sun Solaris Version 2.2 or later

MQSeries for Windows Version 2.0 or later

MQSeries for Windows NT Version 2.0 or later

Note MQSeries for Windows Version 2.0 does not support MQSeries
clients.

To run the MQLSX in an MQSeries client environment you need at least one
of the following installed on your system:

MQSeries client on AIX™

MQSeries client on OS/2™

MQSeries client on Sun Solaris™

MQSeries client on HP-UX™

MQSeries client on Windows™ 3.1

MQSeries client on Windows NT™

Note The MQSeries client requires access to at least one supporting
MQSeries server .

Chapter 1: Introduction 3

MQSeries link LotusScript Extension or MQSeries Enterprise Integrator
for Lotus Notes?

This section describes the strengths of each product to help you decide
whether you should be using the MQLSX or the MQEI to connect to your
enterprise.

MQSeries link LotusScript Extension (MQLSX)
Incorporates the full power of the MQI.

MQSeries object model conformance.
Useful if you are already familiar with the MQSeries object model.

Better performance.
MQLSX performs slightly better because there is no database lookup at
runtime.

Note This is dependent on the speed of your network and systems
where the databases are stored.

No Notes dependency.
MQLSX has no Notes dependency, just a LotusScript dependency. This
allows you to use it from SmartSuite products in a Notes free
environment. MQEI can be used from SmartSuite but requires Notes to
be present to access the MQEI Definition and MQEI Security databases.
(This function was not implemented in the Beta.)

4 MQSeries link LotusScript Extension User's Guide

MQSeries Enterprise Integrator for Lotus Notes (MQEI)
Common API for accessing enterprise services regardless of the nature
of the enterprise system.
The API has a common set of verbs that abstract away from the details
of each enterprise system. The programmer only needs to learn this
single API.

LotusScript program independence from network configuration.
For example, names of queue managers and queues are not coded into
the LotusScript but into MQEI Service definitions within the MQEI
Definition database.

LotusScript program independence from message formats.
Similarly, the exact format of messages are not coded into the
LotusScript but into MQEI Message definitions within the MQEI
Definition database. If you want to use an MQEI Message definition in
several places, you only need a single definition that can be shared.

MQSeries or CICS can be used as network transport.

MQSeries IMS and CICS bridge headers are automatically built by the
MQEI when sending a message.

Integrated security features through the MQEI Security database allow
you to seamlessly sign on to your enterprise systems.

Chapter 1: Introduction 5

Where to find more information about MQSeries

A variety of MQSeries publications are available to help you use the
MQLSX. The following books are a selection that you may find particularly
useful:

MQSeries: An Introduction to Messaging and Queuing, GC33-0805

MQSeries Planning Guide, GC33-1349

MQSeries Command Reference, SC33-1369

MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373

MQSeries for HP-UX Version 2.2.1 System Management Guide,
SC33-1633

MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for Sun Solaris Version 2.2 System Management Guide,
SC33-1800

MQSeries for Windows NT Version 2.0 System Management Guide,
SC33-1643

MQSeries System Administration, SC33-1873

MQSeries Intercommunication, SC33-1872

MQSeries Clients, SC33-1632

MQSeries Application Programming Reference, SC33-1673

MQSeries Application Programming Reference Summary, SX33-6095

MQSeries Application Programming Guide, SC33-0807

MQSeries Distributed Queuing Guide, SC33-1139

MQSeries for Windows Version 2.0 User's Guide, GC33-1822-00

Each of these publications includes a complete list of the MQSeries
publications available.

A further source of information is the MQSeries home page on the Internet,
located at:

http://www.software.ibm.com/ts/mqseries/

6 MQSeries link LotusScript Extension User's Guide

Where to find more information about LotusScript

Lotus provide the following documentation for LotusScript:

The LotusScript Programmers Guide Part No. 312106

The LotusScript Language Reference Part No. 12382

A further source of information is the Lotus home page on the Internet,
located at:

http://www.lotus.com/

Chapter 1: Introduction 7

8 MQSeries link LotusScript Extension User's Guide

Chapter 2 Installation and Configuration

This chapter explains what software you need on your system before you
install the MQLSX package, the steps you take to install the package, and
how to check that the installation has been successful.

Chapter 2: Installation and Configuration 9

Pre-installation considerations

This release of the MQLSX runs only with Lotus Notes Release 4.5.1 or
later, (although no testing has been carried out with Notes 4.6) in either the
Notes client or Domino Server environment.

Note It is strongly recommended that you read the ReadMe file provided,
or the printed Release Notes, before commencing installation.

MQLSX MQSeries requirements
The MQLSX requires access to either an MQSeries client or an MQSeries
server (from the following list) that is installed in the same environment:

MQSeries client for AIX

MQSeries client for HP-UX

MQSeries client for OS/2

MQSeries client for Sun Solaris

MQSeries client for Windows 3.1

MQSeries client for Windows 95

MQSeries client for Windows NT

MQSeries for AIX Version 2.2.1 (for the server)

MQSeries for HP-UX Version 2.2.1 (for the server)

MQSeries for OS/2 Version 2.0.1 (for the server)

MQSeries for Sun Solaris Version 2.2 (for the server)

MQSeries for Windows NT Version 2.0 (for the server)

MQSeries for Windows Version 2.0 (for the leaf-node server)

If you choose to use one of the MQSeries client environments, connect it to
an MQSeries server that supports it. This can be any MQSeries server that
supports the MQSeries client, and does not have to be a server capable of
running Notes.

Note MQSeries for Windows is different from the other MQSeries family of
products. It is designed to run on a workstation with Microsoft Windows 3.1,
 Windows for Workgroups, Windows 95 or WIN-OS/2.
For more information see the MQSeries for Windows User Guide.

To check your installation is successful, you are recommended to run the
MQLSX Starter sample.

10 MQSeries link LotusScript Extension User's Guide

Disk space requirements
Disk space requirements for the MQLSX executable code and samples
depend on the platform you are running:

AIX 13.0 MB

HP-UX 12.5 MB

OS/2 15.0 MB

Sun Solaris 13.0 MB

Windows 3.1 10.0 MB

Windows 95 12.0 MB

Windows NT 12.0 MB

Windows for Workgroups 10.0 MB

WIN-OS/2 10.0 MB

1.6 MB is required to hold the Encapsulated PostScript file version of
the MQSeries link LotusScript Extension User's Guide

0.9 MB is required to hold the Portable Document Format (PDF) file
version of the MQSeries link LotusScript Extension User's Guide

1.6 MB is required for the on-line MQSeries link LotusScript Extension
User's Guide, the MQLSX Starter sample, Conversion Tables, and the
readme text

Chapter 2: Installation and Configuration 11

The MQLSX package
The MQLSX package is usually provided on a CD. For more information
about installing the MQLSX package on your system from CD, see
"Installing MQLSX" later in this chapter.

The installation process creates a root directory with subdirectories docs,
samples, bin, and conv, with contents as shown in the following table.

The MQLSX package may also be provided as a .tar.Z file for UNIX systems
and as a .zip file for INTEL systems.

Directory File name What it is...

root readme.txt A file containing any product and
information updates that have become
available since this documentation was
produced.

docs gmqlhelp.nsf A Notes database containing the online
version of the MQSeries link LotusScript
Extension User's Guide.

gmqlhelp.ps The MQSeries link LotusScript Extension User's
Guide as an Encapsulated PostScript file. This
will print on both A4 and letter stationery.

gmqlhelp.pdf The MQSeries link LotusScript Extension User's
Guide in Portable Document Format that can
be printed and read online using the Adobe™
Acrobat™ reader.

samples gmqlsamp.nsf A Notes database containing the MQLSX
Starter sample that demonstrates how you
can use the MQLSX. You can also use this
sample to check that the MQSeries queue
manager is installed and running properly.

gmqlclnt.nsf A Notes database containing the MQLSX
Link client sample. See MQSeries link
LotusScript Extension sample application for
details.

gmqlagnt.nsf A Notes database containing the MQLSX
Link agent sample. See MQSeries link
LotusScript Extension sample application for
details.

gmqlagnt.txt A commented version of the MQLSX Agent
program.

12 MQSeries link LotusScript Extension User's Guide

Directory File name What it is...

mqlink.nsf A Notes database containing a sample
document holding control information for
processing a message when running the
MQLSX Link sample application. This is the
same database that is provided by many
MQSeries products.

gmqlxtra.nsf A Notes database containing the MQLSX link
extra agent sample.

mqlinkx.nsf A Notes database containing a sample
document holding control information for
processing a message when running the
MQLSX link extra agent sample application.
This is a modified version of the database
with the same name that is provided by
several MQSeries SupportPacs.

mqlinkx.ntf A Notes design template for mqlinkx.nsf

test1.nsf and
test2.nsf

Notes databases containing demonstration
applications.

mqlxdemo.exe
mqlxdemo.dat
mqlxdemo.c

An MQSeries sample application and a
supporting data file.
A sample C program that performs an
MQPut to a message queue.

amqslnk0.c An MQSeries sample program needed as part
of the MQLSX sample application, also
provided by many MQSeries products.

amqslnk0.tst An MQSeries script that creates the queues
needed for the MQLSX link sample
application.

bin
(AIX)

libmqlsx.a A directory containing the AIX 4.1 version of
the MQLSX (MQSeries API Library to Lotus
Notes).
This is supported when used with the AIX
Notes client or server code in the following
environments:
 MQSeries AIX client running under AIX
4.1.4 or later
 MQSeries for AIX server running under
AIX 4.1.4 or later

mqlsxmqm Dynamic load library for MQSeries server

mqlsxmqic Dynamic load library for MQSeries client

gmqlevel Code Level Service Utility

Chapter 2: Installation and Configuration 13

Directory File name What it is...

amqslnk0 MQSeries sample program

bin
(HP-UX)

libmqlsx.sl A directory containing the HP-UX version of
the MQLSX (MQSeries API Library to Lotus
Notes). This is supported when used with the
HP-UX Notes client or server code in the
following environments:
 MQSeries HP-UX client running under
HP-UX Version 10.01 or later Version 10
 MQSeries HP-UX server running under
HP-UX Version 10.01 or later Version 10

mqlsxmqm Dynamic load library for MQSeries server

mqlsxmqic Dynamic load library for MQSeries client

gmqlevel Code Level Service Utility

amqslnk0 MQSeries sample program

bin
(OS/2)

MQLSX.DLL A directory containing the OS/2 version of
the MQLSX (MQSeries API Library to Lotus
Notes). This is supported when used with the
OS/2 Notes client or server code in the
following environments:
 MQSeries OS/2 client running under
OS/2 V2.1, OS/2 Warp, Warp Connect, or
OS/2 Warp server
 MQSeries OS/2 server running under
OS/2 V2.1, OS/2 Warp, Warp Connect, or
OS/2 Warp server

GMQLEVEL.EXE Code Level Service Utility

amqslnk0 MQSeries sample program

bin
(Sun Solaris)

libmqlsx.so A directory containing the Sun Solaris
version of the MQLSX (MQSeries API Library
to Lotus Notes). This is supported when used
with the Sun Solaris Notes client or server
code in the following environments:
 MQSeries Sun Solaris client running under
Sun Solaris 2.4 or later
 MQSeries Sun Solaris server running
under Sun Solaris 2.4 or later

mqlsxmqm Dynamic load library for MQSeries server

mqlsxmqic Dynamic load library for MQSeries client

gmqlevel Code Level Service Utility

amqslnk0 MQSeries sample program

14 MQSeries link LotusScript Extension User's Guide

Directory File name What it is...

bin
(Windows 3.1,
Windows for
Workgroups
and
WIN-OS/2)

MQLSX.DLL A directory containing the Windows 3.1, the
Windows for Workgroups and WIN-OS/2
version of the MQLSX (MQSeries API Library
to Lotus Notes). This is supported when used
with the Win16 Notes client code in the
following environments:
 MQSeries client on Windows 3.1 running
under Windows 3.1
 MQSeries client on Windows 3.1 running
under OS/2 Warp and Warp Connect
 MQSeries for Windows leaf-node server
running under Windows 3.1
 MQSeries for Windows leaf-node server
running under Windows for Workgroups
 MQSeries for Windows leaf-node server
running under WIN-OS/2

GMQLEVEL.EXE Code Level Service Utility

amqslnk0 MQSeries sample program

bin
(Windows 95
and Windows
NT)

MQLSX.DLL A directory containing the Windows NT and
the Windows 95 version of the MQLSX
(MQSeries API Library for LotusScript). This
is supported when used with the win32
Notes client or server code in the following
environments:
 MQSeries client on Windows NT running
under Windows NT server 3.51 or the
Windows NT workstation 3.51
 MQSeries for Windows NT server running
under Windows NT server 3.51 or the
Windows NT workstation 3.51
 MQSeries for Windows leaf-node server
running under Windows 95

GMQLEVEL.EXE Code Level Service Utility

amqslnk0.exe MQSeries sample program

conv A directory containing the files required to
support the LotusScript ReadString and
WriteString methods (when character
conversion is requested). The file readme.ccs,
in this directory, details the supported
conversions:

README.CCS Details the supplied conversions

GMQLCCS.TBL Used by MQLSX to establish allowed
conversions

Chapter 2: Installation and Configuration 15

Directory File name What it is...

nnnnmmmm.TBL Table for supported conversions, where nnnn
is hex value of the coded character set
identifier (CCSID) for the 'from' codepage,
mmmm is the hex value of the ccsid for the
'to' codepage

Before installing the MQLSX

IMPORTANT:
Setting of the GMQ_XLAT_PATH environment
variable is mandatory. This automatically set as part
of the installation process. Do not change it. If it is
not set correctly data conversion will not occur.

The translation tables provided are essential if you
need any data conversion to take place.

If you have an earlier release of the MQLSX, the
MQLSX shared library must not be in use at the time
of installation.

You do not need to recompile any of your scripts.

Updating your MQLSX installation
If MQLSX is re-installed over an existing installation, and any of the sample
Notes database files shipped with MQLSX are found in the SAMPLES
directory, they are automatically backed up in case you had modified them.

In all other respects follow the same steps as if installing for the first time.

16 MQSeries link LotusScript Extension User's Guide

Installing MQLSX

This section describes how to install MQLSX on your operating system.

Installing on AIX
Logged on as root:

1. Insert the MQEI / MQLSX CD-ROM into your CD-ROM drive, unless
your are installing from a server machine.

2. From the shell type:
smit

You can use the alternative fastpath command instead:

smitty install_latest

At this point, you need to follow the instructions that relate to the level of
AIX you are running.

If you are running AIX 4.1.n:
1. Select the device appropriate for your installation using this sequence of

windows:
Software Installation and Maintenance

Install and Update Software

Install/Update Selectable Software (Custom Install)

Install Software Products at Latest Level

Install New Software Products at Latest Level

2. On panel displayed, you need to enter the device name attached to your
CD-ROM reader and the directory in which the new software resides
(on the CD or on your server). Press PF4 for a list of input devices
known to your system. Enter the CD-ROM device name or the server
device name. Press enter.

3. Select 'SOFTWARE to install', press enter

4. Press List to get a list of all available software. To install all of the
MQLSX components, select the line showing '1.3.0.0 mqlsx' , and press
enter. If you want to install specific components move the cursor to the
component line select it. Only press enter after you have selected the
components you want.

5. There is no need to change any of the defaults displayed. Press enter.

6. 'Are you Sure?', press enter.

7. A summary installation panel is displayed, followed by Command OK.

Chapter 2: Installation and Configuration 17

If you are using AIX 4.2
1. Select the device appropriate for your installation using this sequence of

windows:
Software Installation and Maintenance

Install and Update Software

Install and Update from LATEST Available Software

On the 'INPUT device/directory for software panel:

2. Select the directory the software is to be installed from, on the CD or on
your server. Press OK.

3. Select 'SOFTWARE to install', press enter

4. Press List to get a list of all available software. To install all of the
MQLSX components, select the line showing '1.3.0.0 mqlsx' , and press
enter. If you want to install specific components move the cursor to the
component line select it. Only press enter after you have selected the
components you want.

5. Set the options you want on the 'Installation Options' panel. Press OK.

6. Press OK on the confirmation panel.

18 MQSeries link LotusScript Extension User's Guide

The MQLSX components are now installed on your system in:

usr/lpp/mqm/mqlsx
readme - A readme file. Text that MUST be read before using the
MQEI.
All other files are needed by the uninstall option.

usr/lpp/mqm/mqlsx/bin
A directory containing the MQLSX executables.

usr/lpp/mqm/mqlsx/conv
A directory containing the files needed to support character conversion.

usr/lpp/mqm/mqlsx/docs
A directory containing the MQLSX User Guide in PostScript format
(gmqlhelp.ps), Portable Document Format (gmqlhelp.pdf), and as a
Notes database (gmqlhelp.nsf).

usr/lpp/mqm/mqlsx/lib
A directory containing the AIX version of the MQLSX.

usr/lpp/mqm/mqlsx/samples
A directory containing components needed to run the MQLSX samples.
This directory include Notes databases.

Chapter 2: Installation and Configuration 19

Installing on HP-UX
Use the HP-UX swinstall program, to install the MQLSX :

Logged on as root:

1. If you are installing from the CD, insert the MQEI / MQLSX CD-ROM
into your CD-ROM drive.

2. Type:
swinstall -s/<cd_mount_point>/hp/mqlsx.fpkg

substituting <cd_mount_point> with the name of your CD-ROM device or
the directory on which the MQLSX package is available to you.

3. From the Software Selection panel displayed:
- press the spacebar to highlight the line for the complete package
- press enter to expand the package into its components, highlight the
ones you want to install
Type m to mark for install, or click Actions Mark for Install, from
the menu bar.
Press OK on error selection box if displayed, it's for information only.
Click Actions Install (analysis) from the menu bar.

4. When status is Ready, check there are no errors or warnings listed in
the log file.

5. Press OK to continue install.

6. Press Yes to start install.

7. Check there are no errors or warnings listed in the log file.

8. Press Done to exit install window.

9. Select File Exit from the menu bar.

The MQLSX components are now installed on your system in:

opt/mqm/mqlsx
readme - A readme file. Text that MUST be read before using the
MQEI.
All other files are needed by the uninstall option.

opt/mqm/mqlsx/bin
A directory containing the MQLSX executables.

opt/mqm/mqlsx/conv
A directory containing the files needed to support character conversion.

opt/mqm/mqlsx/docs
A directory containing the MQLSX User Guide in PostScript format
(gmqlhelp.ps), Portable Document Format (gmqlhelp.pdf), and as a
Notes database (gmqlhelp.nsf).

20 MQSeries link LotusScript Extension User's Guide

opt/mqm/mqlsx/lib
A directory containing the HP-UX version of the MQLSX.

opt/mqm/mqlsx/samples
A directory containing components needed to run the MQLSX samples.
This directory include Notes databases.

Chapter 2: Installation and Configuration 21

Installing on OS/2
If you are installing from the CD, place it in the CD-ROM drive. If you are
installing from a server, make sure you are connected to it.

1. From an OS/2 window or a full-screen session:

Exit any other OS/2 applications and processes that you may have
running.

Change to the drive from which you want to install the MQLSX

Change to the \OS2\MQLSX\EN_US directory

At the command prompt, type INSTALL and press the enter key.

2. The MQLSX Welcome logo is displayed, overlaid with the instructions
window. Select the Continue button.

3. The Install window is displayed. If you select the Update CONFIG.SYS
check box, the CONFIG.SYS file is updated automatically as part of the
installation process. Your original CONFIG.SYS file is renamed to
CONFIG.BAK and is stored in the same directory. If you do not select
this check box, a CONFIG.ADD file is generated. This file is a copy of
CONFIG.SYS file with the necessary updates to the LIBPATH and
PATH statement. You can rename the CONFIG.ADD file to
CONFIG.SYS.

4. Select the OK button to continue.

5. The Install - directories window is displayed.

The list box shows the components that you can choose to install.
When you select one or more components (the component line is
highlighted), the Bytes needed field shows the amount of disk space
required for installation.

The File directory entry field allow you to specify the drive and
directory into which the components are to be installed. The default
is C:\MQM\MQLSX.
Select the Disk space button to show how much disk space is free on
each drive, and to select another drive for installation. Select the
Install button to continue.

6. The Install - progress window is displayed. This window shows:

The file currently being installed (source) and the drive and directory
into which it is being installed (target).

A progress bar, indicating the percentage of files already unpacked
and installed.

The elapsed time.

The status, for example, unpacking, processing or transferring.

22 MQSeries link LotusScript Extension User's Guide

If you select the Stop button, you are asked whether you want to delete the
partial system you have installed. Select Yes. You are returned to the
introductory window. Select File Start Install from the menu bar to start
the installation.

7. When the installation is complete, the Installation and Maintenance
window is displayed. Select OK. The Introductory window is
displayed. Leave the installation program by selecting the Exit button.

The MQLSX components are installed on your system in the following
directories, unless you changed the default directory or chose not to install
all the components:

MQM\MQLSX
readme.txt - A readme file. Text that MUST be read before using the
MQEI.
All other files are needed by the uninstall option.

MQM\MQLSX\BIN
A directory containing the MQLSX executables and the OS/2 version of
the MQLSX.

MQM\MQLSX\CONV
A directory containing the files needed to support character conversion.

MQM\MQLSX\DOCS
A directory containing the MQLSX User Guide in PostScript format
(gmqlhelp.ps), Portable Document Format (gmqlhelp.pdf), and as a
Notes database (gmqlhelp.nsf).

MQM\MQLSX\SAMPLES
A directory containing components needed to run the MQLSX samples.
This directory include Notes databases.

8. Shut your system down and restart.

Chapter 2: Installation and Configuration 23

Installing on Sun Solaris
1. If you are installing from the CD, check to see if the Volume Manager is

running on your system by typing the following command:
/usr/bin/ps -ef ¦ /bin/grep vold

If it is running, the CD is mounted on /cdrom/domino_mq automatically.
If it is not running, mount the CD by typing the following commands:

mkdir -p /cdrom/domino_mq

mount -F hsfs -r /dev/dsk/cntndnsn
/cdrom/domino_mq

substituting cntndnsn with the name of your CD-ROM device.

2. Use the Solaris pkgadd program, to install the MQLSX type:
pkgadd -d /<cd_mount_point>/solaris/mqlsx.img

substituting <cd_mount_point> with cdrom/domino_mq or the directory
on which the MQLSX package is available to you.

3. You are prompted for a list of packages to install. Press enter to accept
the default, or select 1 or all and press enter. As there is only one
component all these actions have the same result.

4. You are prompted for installable options. Select those you wish to
install.

Note Remember, if you do not choose all the options, and you want to
install a further option later, the pkgadd program requires you to uninstall
the original options followed by a reinstall of all the options you require.

5. Press the Enter key

6. Enter Y and press the Enter key to:
This package contains scripts which will be executed with
super-user permission during the process of installing
this package.

Do you want to continue with the installation of <mqlsx>
[y,n?]

"Installation of <mqlsx> was successful is displayed on completion.

The MQLSX components are now installed on your system in:

opt/mqm/mqlsx
readme - A ReadMe file. Text that MUST be read before using the
MQLSX.
All other files are needed by the uninstall option.

opt/mqm/mqlsx/bin
A directory containing the MQLSX executables.

24 MQSeries link LotusScript Extension User's Guide

opt/mqm/mqlsx/conv
A directory containing the files needed to support character conversion.

opt/mqm/mqlsx/docs
A directory containing the MQLSX User Guide in PostScript format
(gmqlhelp.ps), Portable Document Format (gmqlhelp.pdf), and as a
Notes database (gmqlhelp.nsf).

opt/mqm/mqlsx/lib
A directory containing the Sun Solaris version of the MQLSX.

opt/mqm/mqlsx/samples
A directory containing components needed to run the MQLSX samples.
This directory include Notes databases.

Chapter 2: Installation and Configuration 25

Installing on Windows 3.1, Windows for Workgroups, WIN OS/2
If you are installing from the CD, place it in the CD-ROM drive. If you are
installing from a server, ensure you are connected to it.

1. From Program Manager:

Select File Run

Type drive:\win16\mqlsx\setup
substituting drive with the name of the drive from which you want
to install the MQLSX

Press enter

2. The MQLSX Welcome panel is displayed, introducing the installation
process. Select Next to continue.

3. Select the destination path panel, is displayed. If you want to use the
default drive and directory, select the Next button to continue.
Alternatively, change the drive and directory as required and select the
Next button to continue.

Note For the uninstall option to work, you must not move the files after
installation.

4. Select Components panel is displayed, showing a list of components
that you can install. All components are selected by default. To deselect
any component, click on the tick-mark preceding it. When you have
selected the components you want, select the Next button to continue.

5. Select Program Folder panel is displayed. The default name is MQSeries
link LSX. Choose a name and select the Next button to continue.

6. Start Copying Files panel is displayed, summarizing the selections you
have made so far. If any amendments are necessary, use the Back
button to return to the relevant window and make any changes.
Otherwise, select the Next button to continue.

7. The next panel displayed shows the progress of the installation process.

Note Select the Cancel button if you have a need to stop the install, in
which case the Exit Setup window is displayed. Select the Exit Setup
button to stop the install, otherwise select the Resume button to
continue with the install.

8. Setup Complete panel is displayed. Uncheck the box if you do not want
to view the ReadMe file at this point, it is available in the folder you
chose earlier. Select the Finish button.

9. Installation is now complete. If you have chosen to view the ReadMe
file, the Notepad application runs to display the file.

10. Reboot your system.
Your AUTOEXEC.BAT file is updated with the following statements:

26 MQSeries link LotusScript Extension User's Guide

 * SET PATH=C:\MQM\MQLSX\BIN
 * SET GMQ_XLAT_PATH=C:\MQM\MQLSX\CONV

Check your PATH statement has been updated correctly. If it has been
truncated, see your DOS documentation for more information.

The MQLSX components are now installed on your system in the following
directories, unless you changed the default directory or chose not to install
all the components:

mqm\mqlsx
readme - A ReadMe file. Text that MUST be read before using the
MQLSX.
All other files are needed by the uninstall option.

mqm\mqlsx\bin
A directory containing the MQLSX executables and the Windows 16 bit
version of the MQLSX.

mqm\mqlsx\conv
A directory containing the files needed to support character conversion.

mqm\mqlsx\docs
A directory containing the MQLSX User Guide in PostScript format
(gmqlhelp.ps), Portable Document Format (gmqlhelp.pdf) and as a
Notes database (gmqlhelp.nsf).

mqm\mqlsx\samples
A directory containing components needed to run the MQLSX samples.
This directory include Notes databases.

Chapter 2: Installation and Configuration 27

Installing on Windows NT and Windows 95
If you are installing from the CD, place it in the CD-ROM drive. If you are
installing from a server, ensure you are connected to it.

If you are installing on Windows NT, follow the instructions for the version
of Windows NT you are using.

Tip You are recommended to exit any other Windows applications that you
may have running before you start to install the MQLSX.

Note For the uninstall option to work, you must not move the files after
installation.

Windows NT version 4 and Windows 95
From your Windows desktop:

Click Start - Run...

Type
 drive:\win32\mqlsx\setup
where drive: is the drive letter you are installing from.

Click OK.

Go to step 1.

Windows NT version 3.51
From the Windows Program Manager:

Choose File - Run... from the Windows Program Manager menu bar.

Type
 drive:\win32\mqlsx\setup
where drive: is the drive letter you are installing from.

Click OK.

Go to step 1.

1. The MQLSX Welcome window is displayed, introducing the
installation process. Select Next to continue.

2. Select the destination path panel is displayed. If you want to use the
default drive and directory, select the Next button to continue.
Alternatively, change the drive and directory (using the Browse...
button) as required and select the Next button to continue.

3. Select Components panel is displayed, showing a list of components
that you can install. All components are selected by default. To deselect
any component, click on the tick-mark preceding it. When you have
selected the components you want, select the Next button to continue.

28 MQSeries link LotusScript Extension User's Guide

4. Select Program Folder panel is displayed. The default name is MQSeries
link LSX. Choose a name for the Program Group folder you want to
add the MQLSX icons to and select the Next button to continue.

5. Start Copying Files panel is displayed, summarizing the selections you
have made so far. If any amendments are necessary, use the Back
button to return to the relevant window and make any changes.
Otherwise, select the Next button to begin copying files onto your
system.

6. The next window displayed shows the progress of the installation
process.

Note Select the Cancel button if you have a need to stop the install, in
which case the Exit Setup window is displayed. Select the Exit Setup
button to stop the install, otherwise select the Resume button to
continue with the installation.

7. Setup Complete window is displayed. Uncheck the box if you do not
want to view the ReadMe file at this point. Select the Finish button.

8. Installation is now complete. If you have chosen to view the ReadMe
file, the Notepad application runs to display the file.

9. When the Restart Windows panel is displayed, select a check box.
Select:
Yes - to restart now, or
No - to restart later

10. Click OK when you have made your selection.

On Windows 95 your AUTOEXEC.BAT file is updated with the following
statements:

 * SET PATH="%PATH%;C:\MQM\MQLSX\BIN"

 * SET GMQ_XLAT_PATH=C:\MQM\MQLSX\CONV

Note During the installation process, your Microsoft Visual C++ 4.0
Runtime library file (MSVCRT40.DLL) file may be updated.

Chapter 2: Installation and Configuration 29

The MQLSX components are now installed on your system in the following
directories, unless you changed the default directory or chose not to install
all the components:

mqm\mqlsx
readme - A ReadMe file. Text that MUST be read before using the
MQLSX.
All other files are needed by the uninstall option.

mqm\mqlsx\bin
A directory containing the MQLSX executables and the Windows 32 bit
version of the MQLSX.

mqm\mqlsx\conv
A directory containing the files needed to support character conversion.

mqm\mqlsx\docs
A directory containing the MQLSX User Guide in PostScript format
(gmqlhelp.ps), Portable Document Format (gmqlhelp.pdf), and as a
Notes database (gmqlhelp.nsf).

mqm\mqlsx\samples
A directory containing components needed to run the MQLSX samples.
This directory include Notes databases.

30 MQSeries link LotusScript Extension User's Guide

Post Installation

Copying Notes databases on your Notes client
1. Copy the file gmqlhelp.nsf to the directory where your Notes database

files are kept.

2. Start Notes and select the workspace where you want to keep the
database

3. From the Notes main panel select File - Database - Open

4. Enter the File Name gmqlhelp.nsf or select it with the browse button.

5. Select Open. The database will be opened on your screen.

6. Select File - Close. The MQLSX Help database icon will now appear in
your Notes workspace.

To install gmqlsamp.nsf, gmqlclnt.nsf, gmqlagnt.nsf, gmqlxtra.nsf,
mqlink.nsf, or mqlinkx.nsf repeat the steps 1 to 6, but substitute
gmqlhelp.nsf with the appropriate filename.

Copying a database to a Domino Server
If you are installing the online help database on multiple Notes
workstations, consider storing the database on a server so that several
people can access the database from just one copy. Work with your Notes
administrator to determine on which server to place a database, since the
administrator is aware of server resources, topology, and network
protocols. The server where you store the database should be one that
database users can access and that has sufficient memory and disk space to
support the database.

Copy gmqlhelp.nsf to your server in the following way:

1. Start Notes and select the workspace where you have installed the
database (as described in Installing Notes databases on a Notes client).

2. On your workspace, select the icon for the database you want to copy.

3. Select File - Database - New Copy

4. Next to server, click the list arrow to display the list of servers. Select
the server where you want to place the copy.

5. In the Title box, enter a title for the database, if you want a different
title.

6. In the File Name box, enter the file name, if you want a different file
name. Limit the file name to eight characters plus the .nsf extension.

7. Click OK

To install any other MQLSX notes database on a Domino Server, follow the
steps 1 to 7 above, changing the file name accordingly.

Chapter 2: Installation and Configuration 31

MQLSX shared library and data conversion files
The MQLSX provides the MQSeries API to LotusScript. There are separate
installation directories for the different platforms.

The MQLSX shared library must reside on the same workstation that the
LotusScript is being executed from. You can only run the MQLSX from a
Domino Server if Notes agents are executing the LotusScript.

The MQLSX uses data conversion tables to perform Character Set
conversion.

Linking to shared library files on Intel platforms
On Intel platforms, the search uses standard system services to check for
the shared library in your current working directory before searching your
normal shared library search path.

OS/2 and Windows NT
The MQLSX dynamically detects and uses either the MQSeries server DLL
(mqm.dll) or the MQSeries client DLL (mqic.dll). The MQLSX searches for
and uses these in the order of the server shared library followed by that for
the MQSeries client.

Windows 3.1
The MQLSX dynamically detects and uses either the MQSeries server DLL
(mqm16.dll as supplied with MQSeries for Windows) or the MQSeries
client DLL (mqic.dll). The MQLSX searches for, and uses these, in the order
mqm16.dll followed by mqic.dll.

Windows for Workgroups, Windows 95, and WIN-OS/2
The MQLSX uses mqm16.dll as there is no MQSeries client support for
these platforms.

32 MQSeries link LotusScript Extension User's Guide

Linking to shared library files on UNIX systems
When the libmqmlsx shared library file is used from LotusScript, it
dynamically loads mqlsxmqm (for the MQSeries server) or, if it can't be
found, the mqlsxmqic (for the MQSeries client) in order to resolve MQI
calls.

AIX
The current directory and directories /usr/lpp/mqm/mqlsx/lib, /usr/lib,
and /lib are automatically searched for the mqlsxmqm and mqlsxmqic
objects (which can be soft links). Alternatively you can override this search
path, or point to the object in a different directory using the GMQ_MQ_LIB
environment variable.

HP-UX
Use the GMQ_MQ_LIB environment variable to enable libmqlsx.sl to find
either mqlsxmqm or mqlsxmqic.

Domino multi-threaded agents
If you are running multi-threaded agents on a Domino server that use the
MQLSX, you must have an MQSeries queue manager running on the same
machine as the Domino server.

Chapter 2: Installation and Configuration 33

MQLSX environment variables

There are five environment variables that you need to know about when
setting up the MQLSX on your local system. Since some of them are purely
for diagnostic purposes, you do not have to set them all.

GMQ_TRACE

GMQ_TRACE_LEVEL

GMQ_TRACE_PATH

GMQ_XLAT_PATH

GMQ_MQ_LIB

GMQ_TRACE
If you want to use the trace facility to help you solve any problems you may
be having, switch it on or off using the GMQ_TRACE environment variable.
Unless you are having a problem, you are recommended to run with
tracing set off to avoid any unnecessary overheads on your system
resources.

For more information, see "Using trace" in Chapter 4.

GMQ_TRACE_LEVEL
Use the GMQ_TRACE_LEVEL environment variable to set the level of
detail you want recorded in your trace file.

For more information, see "Using trace" in Chapter 4.

GMQ_TRACE_PATH
If you have switched the trace facility on (using the GMQ_TRACE
environment variable), you can specify the directory where you want the
trace files to be stored. You do not have to give a filename for the trace file -
these are created at run time. If you do not specify a directory in the
GMQ_TRACE_PATH environment variable, the trace files are written to
the current working directory.

You can identify a trace file by the gmqnnnnn.trc file name (where nnnnn is
a string of five numbers).

For more information, see "Using trace" in Chapter 4.

Note This was called GMQ_PATH in earlier releases.

34 MQSeries link LotusScript Extension User's Guide

GMQ_XLAT_PATH
You must set the GMQ_XLAT_PATH environment variable to locate the
data conversion tables that are used by the MQLSX.

For more information, see "Data Conversion" in Chapter 3.

GMQ_MQ_LIB
You only need to set the GMQ_MQ_LIB environment variable if you want
to override the inbuilt mechanism for picking up MQSeries libraries.

For example, set this to specify the MQSeries client library when both the
MQSeries client and local queue manager libraries are available locally and
you want to force your program to run as an MQSeries client application,
even though it is local to the queue manager.

Under normal circumstances, you should not need to set this value.

Caution Do not set this environment variable to point to the MQLSX. It
must be used only to point to the MQSeries libraries on INTEL platforms. On
UNIX platforms it must only be used to point to the appropriate MQLSX
"stub" objects i.e. mqlsxmqm or mqlsxmqic.

Chapter 2: Installation and Configuration 35

Setting up an environment to run the MQLSX

Hardware requirements
There are no additional hardware requirements above those listed for
MQSeries and Lotus Notes.

Software requirements
Lotus Notes Release 4.5.1 (Domino Server or Notes client) or later.

The MQLSX package

MQSeries server or MQSeries client

Setting up your MQSeries environment
Before you run a script using the MQLSX, check that you can run the queue
manager that your script will connect to, and that the necessary queues are
in place. You can do this by using the command DISPLAY QMGR; the
command fails if the queue manager is not running. How to use the
DISPLAY QMGR command is explained in the MQSeries Command
Reference.

Tip If you are in doubt about which shared library the MQLSX is using, you
can run the MQLSX with trace on and look for the entry under EstablishEPS.

For more information on how to create and start a queue manager, see the
MQSeries System Management Guide for your platform.

For more information on how to define a queue, see the MQSeries Command
Reference manual.

Running an installation verification test

To verify that you have installed the software successfully, run the MQLSX
Starter sample provided in the MQLSX package. For details of the Starter
sample, see "About the MQLSX Starter sample ", and "Running the MQLSX
Starter sample ".

36 MQSeries link LotusScript Extension User's Guide

About the MQLSX Starter sample

What is demonstrated in the sample
The sample demonstrates how to use the MQLSX in LotusScript to:

 Connect to a queue manager

 Access a queue

 Put messages on a queue

 Get messages from a queue

Preparing to run the sample
To run the sample you need to have:

Lotus Notes Release 4.5 (Domino Server or Notes Client) or later.

An MQSeries Server or an MQSeries Server and an MQSeries Client

An MQSeries queue manager running

An MQSeries queue already defined

The MQLSX installed on the machine where the sample will be run

The gmqlsamp.nsf database installed on your Notes Client or a
Domino server

Chapter 2: Installation and Configuration 37

Running the MQLSX Starter sample

Before you run the MQLSX Starter sample check that you have a queue
manager running and you have defined the queue. For details of creating
and running a queue manager and defining a queue, refer to the MQSeries
System Management Guide for your platform.

Starting the sample
1. On your Notes workspace, select the icon for the MQLSX sample

2. From the main menu, select Create - MQLSX sample. The MQLSX
sample form is displayed on the screen.

The MQLSX sample form has the following fields and buttons:

MQSeries Queue Manager name (field)

MQSeries Queue name (field)

Data to be sent (field)

Data received (field)

Put Msg on Queue (button)

Get Msg from Queue (button)

Access to the named queue is automatic within the sample.

38 MQSeries link LotusScript Extension User's Guide

Putting a message on the queue
1. In the field MQSeries Queue Manager name, enter the name of the queue

manager that you have running. If you leave this field blank, it will not
connect to the default queue manager.

2. In the field MQSeries Queue name, enter the name of a queue you have
defined.

3. In the field Data to be sent, enter the message to be put on the queue.

4. Press the button Put Msg on Queue to send the message.

Note The first time you Put a message on the queue there may be a delay
while the MQLSX connects to the queue manager.

When the message has been successfully Put on the queue, the data in the
field Data to be sent is cleared.

Getting a message from the queue
1. In the field MQSeries Queue Manager name, enter the name of the queue

manager that is running.

2. In the field MQSeries Queue name, enter the name of the queue you have
defined.

3. Press the button Get Msg from Queue to get the message.

The sample gets a message from the named queue and displays it in the
Data received field. If there is no message to Get, the Data received field
remains blank.

Exception handling
There are some common problems that you may have while running the
sample:

The queue manager name is incorrect

The queue manager is not running

The queue name is incorrect

The queue does not exist

For common problems the MQLSX Starter sample attaches a diagnostic text
to the error message Any other error messages include a Reason Code that
you can look up in the MQSeries Application Programming Reference manual.

Chapter 2: Installation and Configuration 39

The MQLSX Starter sample script
The MQLSX Starter sample database, GMQLSAMP.NSF, contains sample
code written in LotusScript and attached to a Notes form. The sample uses
the MQLSX to enable you to create and retrieve messages from an
MQSeries queue.

The sample is not intended to demonstrate general programming
techniques, so some error checking that you may want to include in a
production program has been omitted. However, this sample is suitable to
use as a base for your own message queuing programs.

Viewing the MQLSX Starter sample code
You have full access to the source code of the MQLSX sample if have a full
Notes licence, which you can look at in the following way:

1. In your Notes workspace, click on the MQLSX Starter sample icon to
select the sample database.

2. From the main menu select View - Design.

3. From the navigation pane, select Forms. The MQLSX sample form will
appear in the view pane.

4. Double click on the MQLSX Starter sample form listed in the view
pane. This opens the Form Builder window.

5. From the programming panel at the bottom of the Form Builder
window you can select Define and Event items to look at the various
elements of the sample form.

For example, if you select Define "Put Msg on Queue (Button)" and Event
"Click", you will be able to look at the script that will be run when the "Put
Msg on Queue" button is pressed.

Select Define "(Globals) MQLSX Sample" to look at Events including:

Scripts for various subs that handle the calls to the MQLSX.

Declarations of Object variables.

Declarations of MQSeries variables.

Options:

Uselsx "mqlsx"

 is used to load the MQLSX.

40 MQSeries link LotusScript Extension User's Guide

Chapter 3 Design and Programming using the MQLSX

This chapter complements the information provided by the MQSeries,
Lotus Notes, and LotusScript documentation.

It includes:

How to access the MQLSX

Programming hints and tips

Using the IMS bridge

Help when you are dealing with applications that run in
environments with different code pages (data conversion)

Error handling

Chapter 3: Design and Programming using the MQLSX 41

Designing applications that access non-Notes applications

Advantages
The MQLSX brings you the benefits from using both Notes and MQSeries.
It extends the scope of Notes to include data and transactions that are part
of other environments. Enhancing the information management capabilities
of Notes, MQSeries provides commercial messaging for many platforms
and time-independent, once-only assured delivery of messages.

Typical applications
To avoid duplicating or re-typing information; for instance names and
addresses need only be held in one place.

To provide reporting information on the total enterprise situation, from
information held on Notes and other applications.

To process financial transactions such as payment of an insurance
premium, without being dependent on someone else entering the
information into another system. This can be done from your Notes
application using MQSeries to pass on the information, ensuring it is
processed when the necessary transaction system is available.

Using the MQLSX
When designing a LotusScript application that uses the MQLSX, the most
important item of information is the actual message that will be sent or
received from the remote MQSeries system. Therefore you must know the
format of the items that will be inserted into the message.

You should also know:

The code page that the remote system runs in

The encoding that the remote system requires

To help you to keep your code portable it is good practice always to set the
code page and encoding even if these are currently the same in both the
sending and receiving systems.

42 MQSeries link LotusScript Extension User's Guide

Domino Server or Notes client
When considering how to structure the implementation of the system you
design, remember that your MQLSX scripts must run on the same machine
that you have MQSeries installed on. If you do not have MQSeries installed
locally, you can make use of Lotus Notes agents. An action initiated on a
remote Notes client can cause the triggering of an agent on the Domino
server where MQSeries is installed. This mechanism is used in the 'MQLSX
link sample application'. You will need to do this explicitly, as Notes by
default will run a script locally.

When your MQLSX script runs, it will need an MQSeries application that
picks up the message your script has sent or one that puts a message on a
queue for your script to get. For this to work, both your script and the
MQSeries application need to know the structure of the message they are
dealing with.

Accessing the MQLSX

In the LotusScript editor, under (options) event put the following:

Uselsx "mqlsx"

For information on the Uselsx statement, see the LotusScript Language
Reference.

Chapter 3: Design and Programming using the MQLSX 43

Programming hints and tips

The following hints and tips are in no significant order. They are subjects
that, if relevant to the work you are doing, will hopefully save you time.

Using large messages
The MQLSX supports messages up to 4MB long if memory is available.
However, when using large messages Notes restricts:

Plain text to 64K.

Fields added to the summary buffer to 32K.

LotusScript string length to 32000 characters.

Tip To overcome this limitation consider appending strings into a rich text
field in Notes, which has no size restrictions. The MQLSX has been
designed to take advantage of this feature. Copy the data 32000 characters
at a time from an MQLSX message into LotusScript strings. From the
LotusScript strings, append the data into a rich text field.

For example, where the message data is greater than 32K (the maximum
length of a string in LotusScript), read the data in multiple parts. This code
fragment assumes that the message, MyMsg, has already been taken from
the queue using the get method of the MQQueue class and is less than 64K
in length:

Dim MessagePartA As String

Dim MessagepartB As String

...

...

MessagePartA = MyMsg.ReadString(32000)

MessagePartB = MyMsg.ReadString(MyMsg.DataLength)

Writing large scripts
The maximum storage size of a script is 32K. If you need to write a script
larger than this, consider subdividing your script code into functions or use
the %include function within Notes.

For a full list of LotusScript limits, see the appendix in the LotusScript
Language Reference manual.

44 MQSeries link LotusScript Extension User's Guide

Embedded nulls in a string
The MQSeries constants, used for the initialization of three MQMessage
properties:

MQMI_NONE (24 NULL characters)

MQCI_NONE (24 NULL characters)

MQACT_NONE (32 NULL characters)

are not supported by the MQLSX, but the LotusScript String call allows you
to do the same thing.

To set the MessageId of an MQMessage to MQMI_NONE:

mymessage.MessageId = String(24,0)

To set the CorrelationId of an MQMessage to MQCI_NONE:

mymessage.CorrelationId = String(24,0)

To set the AccountingToken property of an MQMessage to
MQACT_NONE:

mymessage.AccountingToken = String(32,0)

Message Descriptor properties
Where an MQSeries application is the originator of a message and
MQSeries generates the

AccountingToken

CorrelationId

MessageId

you are recommended to use the AccountingTokenHex, CorrelationIdHex,
and MessageIdHex properties if you want to look at their values, or
manipulate them in any way - including passing them back in a message to
MQSeries. The reason for this is that MQSeries generated values are strings
of bytes that have any value from zero through to 255 inclusive, they are
not strings of printable characters.

Where your MQLSX script is the originator of a message and you generate
the

AccountingToken

CorrelationId

MessageId

you are recommended to use the AccountingToken, CorrelationId, and
MessageId properties.

Chapter 3: Design and Programming using the MQLSX 45

Object out of scope
It is good programming practice to delete an object when it goes out of
scope.

For example:

Dim qms As MQSession

Dim qm As MQQueueManager

...

...

Set qm As qms. AccessQueueManager(MQ_queue_manager)

qm.Connect

...

...

qm.Disconnect

Delete qm

The Delete call deletes the storage allocated during the
AccessQueueManager method.

Receiving a message from MQSeries
There are several ways of receiving a message from MQSeries:

Polling by issuing a GET followed by a wait, using the LotusScript
TIMER function

Issuing a GET with the Wait option; you specify the wait duration by
setting the WaitInterval property. This is recommended when,
even though you set your system up to run in a multithreaded
environment, the software running at the time may only run
singlethreaded. This avoids your system locking up indefinitely.

Caution Issuing a GET with the Wait option and setting the
WaitInterval to MQWI_UNLIMITED will cause your system to lockup
until the GET call completes, if the process is single threaded.

Issuing a GET without the Wait option. In this case, once your script
has issued the call, control is passed to the next script waiting to run.
This second script, and any other scripts that may run before the
original script regains control, must not affect any of the objects that
the original script will expect to be the same as at the time it lost
control.

46 MQSeries link LotusScript Extension User's Guide

Automatic buffer management
The MQLSX MQMessage object controls the size of a buffer, dynamically
changing (within the limitations of the system) the buffer size to
accomodate the data in a message.

The default size of a buffer is 2K bytes. If you want to restrict how much of
a message your application gets, and you want it to get more than 2K bytes,
you must use the ResizeBuffer method before getting the message with the
MQGMO_ACCEPT_TRUNCATED option. However, if you do not wish to
use the MQGMO_ACCEPT_TRUNCATED option, the MQLSX will handle
all automatic buffer management.

Using the IMS Bridge
For applications that put or get messages that involve access through the
MQSeries IMS bridge for MVS, there are a few points to bear in mind.

When you put a message destined for an IMS system, use the IMS
bridge header (MQIIH). Set the MQIIH_Format to "MQIMSVS" and the
MQMessage Format property to "MQIMS".

When you get a message back from the IMS bridge, either unpack the
header within your application, or offset the message by 84 bytes to
ignore the header and point to the start of the message from IMS. An
offset of 89 bytes takes you to the first data byte of the message.

Further information about the MQIIH header can be found in the MQSeries
Application Programming Reference manual.

For more information about designing and writing applications to use the
services MQSeries provides, see the MQSeries Application Programming
Guide.

You may find the following code samples useful when using the IMS
Bridge. However, these are code fragments and should not be taken as full
programming solutions.

' Declare additional IMS Items. These fields are needed
to submit an IMS transaction.

Dim II As Integer

Dim zz As String

Dim trancode As String

Dim trandata As String

' Additional MQSeries items

Chapter 3: Design and Programming using the MQLSX 47

Dim MQITII_NONE As String
' The default value for TraninstanceID, not

supplied in MQLSX

MQITII_NONE=string(16,0)
' 16 nulls

Dim MQIIH_Encoding As Long

Dim MQIIH_CodedCharSetId As Long

Dim MQIIH_Format As String

Dim MQIIH_Flags As Long

Dim MQIIH_LTermOverride As String

Dim MQIIH_MFSMapName As String

Dim MQIIH_ReplyToFormat As String

Dim MQIIH_Authenticator As String

Dim MQIIH_TranInstanceId As String

Dim MQIIH_TranState As String

Dim MQIIH_CommitMode As String

Dim MQIIH_SecurityScope As String

Dim MQIIH_Reserved As String

' Set additional MQIIH items. This is to put default
values into the MQIIH fields.

' Note that MQIIH_Format and MQIIH_ReplyToFormat must be
set to "MQIMSVS".

MQIIH_Reserved As String

MQIIH_Encoding = Mqenc_native

MQIIH_CodedCharSetId = Mqccsi_q_mgr

MQIIH_Format = "MQIMSVS "

MQIIH_Flags = MQIIH_NONE

MQIIH_LTermOverride = " "

MQIIH_MFSMapName = " "

MQIIH_ReplyToFormat = " MQIMSVS "

MQIIH_Authenticator = MQIAUT_NONE

MQIIH_TranInstanceId = MQITII_NONE

MQIIH_TranState = MQITS_NOT_IN_CONVERSATION

48 MQSeries link LotusScript Extension User's Guide

MQIIH_CommitMode = MQICM_SEND_THEN_COMMIT

MQIIH_SecurityScope = MQISS_CHECK

MQIIH_Reserved = " "

' Write IIH to MQ message MQmsg.

MQmsg.writestring(Mqiih_struc_id)

MQMsg.writelong(Mqiih_version_1)

MQMsg.writelong(Mqiih_length_1)

MQMsg.writelong(MQIIH_Encoding)

MQMsg.writelong(MQIIH_CodedCharSetId)

MQMsg.writestring(MQIIH_Format)

MQMsg.writelong(MQIIH_Flags)

MQMsg.writestring(MQIIH_LTermoverride)

MQMsg.writestring(MQIIH_MFSMapname)

MQMsg.writestring(MQIIH_ReplyToFormat)

MQMsg.writestring(MQIIH_Authenticator)

MQMsg.writestring(MQIIH_TranInstanceId)

MQMsg.writestring(MQIIH_TranState)

MQMsg.writestring(MQIIH_CommitMode)

MQMsg.writestring(MQIIH_SecurityScope)

MQMsg.writestring(MQIIH_Reserved)

' Write IMS message to MQ message MQmsg.

ll = 4 + Cint(Len(trancode)) + Cint(Len(trandata)) '
total length of message

zz = " "
' reserved for IMS

MQMsg.writeshort(ll)

MQMsg.writestring(zz)

MQMsg.writestring(trancode)

MQMsg.writestring(trandata)

MQmsg.messagetype = 8
'Set message as DATAGRAM

MQmsg.format = "MQIMS "
'Set Data Convert Format for IMS Bridge.

Chapter 3: Design and Programming using the MQLSX 49

MQmsg.ReplyToQueueManagerName = "VM03" ' MQM for reply
message

MQmsg.ReplyToQueueName = "EF.VM03.SDRC.REMOTE" ' Reply
Queue on above MQM

MQmsg.UserId = "MYUSER"
' 12 byte userid - default is blanks

' Unpack the reply message.

MQMsg.DataOffset = 89
 ' Jump past the IIH, ll, zz, & attribute byte

replymsg = MQMsg.ReadString(MQMsg.DataLength) ' get the
reply from IMS

Disconnecting from MQSeries
Within your LotusScript program you are recommended to use the
Disconnect method before the program ends.

If you don't explicitly disconnect from the MQSeries queue manager, the
results may be unpredictable. For example, any messages placed on a queue
under syncpoint may not be committed if the program does not explicity
call the Disconnect method.

50 MQSeries link LotusScript Extension User's Guide

Data conversion

Data conversion is necessary when a message is created on one system and
processed by another system where the character set and encoding are
different.

There are several occasions when and where this can take place:

By the queue manager. This can be by the queue manager receiving
the message, prior to an application issuing an MQGET call, or the
queue manager sending the message to another queue manager. A
queue manager is restricted to a set of 'built-in' formats.

By writing your own data-conversion exit. This is invoked when an
application gets a message from a queue.

By using the MQLSX read and write methods (excluding the
ReadUnsignedByte and WriteUnsignedByte methods).

When considering which of these are the most appropriate for your
application, note:

MQSeries does not support data conversion on all platforms.

Data conversion by a queue manager using the 'built-in' formats
converts the whole message.

The MQLSX read and write methods convert the individual field
within a message.

Chapter 3: Design and Programming using the MQLSX 51

Data conversion by MQSeries
If you want the whole message converted when you retrieve or put a
message on a queue, you can request that MQSeries does it rather than
doing the conversion within the MQLSX.

When you retrieve a message, use the MQGMO_CONVERT option on the
Get method.

When you put a message on a queue, if you haven't set the CharacterSet
(which corresponds to the MQSeries CodedCharSetId attribute) and
Encoding properties they are, by default, set to the values of the system
that constructed the message. Use the MQGMO_CONVERT on the Put
method within your script, or on the MQGET call within your MQSeries
application.

If you set the MQGMO_CONVERT option on the MQGET call within your
MQSeries application, MQSeries will attempt to convert the message,
unaware of any conversion that has already taken place within your
MQLSX application. If you have set the CharacterSet (CodedCharSetId)
and Encoding properties to match the contents of the message, data
conversion will only be attempted when necessary.

The MQSeries Application Programming Guide explains how data conversion
works within MQSeries. It covers the rules a queue manager follows to
determine if it is to do the conversion, as well as how to write and invoke
your own data-conversion exit.

Data conversion by the MQLSX
The Get method defined in the MQQueue class retrieves a message from an
MQSeries queue. This call copies the message from the queue into an
internal MQLSX message object.

The Put method defined in the MQQueue class takes the message from the
internal MQLSX message object and places it on an MQSeries queue.

In a message, the CharacterSet (CodedCharSetId) and Encoding properties
define the code page and the numeric encodings used within your data part
of the message.

52 MQSeries link LotusScript Extension User's Guide

Benefits of data conversion by MQSeries
You don't need to know the destination of a message.

If your application is dealing with large messages, or a large number of
small messages, the server running MQSeries may have more resources
available to handle the volume of data conversion, rather than possibly
stretching your workstation to its limits by the conversion taking place
within the MQLSX.

You can avoid the situation whereby a message has been removed from the
MQSeries queue, however data conversion within the MQLSX fails because
either there are missing entries in the gmqlccs.tbl or the conversion file is
not available.

Benefits of data conversion using the MQLSX
There are read and write methods provided for the different data types,
therefore the conversion is more specific to the contents of the individual
field.

If your application only uses a small portion of a large message, the amount
of data conversion is considerably reduced using the read methods.

You do not have to understand and write any data-conversion exit
programs.

Using the MQLSX methods

Read methods
The read methods use the values held in the CharacterSet
(CodedCharSetId) and the Encoding properties to carry out any necessary
data conversion, so that the data is correctly presented to your LotusScript
application.

Chapter 3: Design and Programming using the MQLSX 53

Write methods
When constructing a message, your application should set the CharacterSet
(CodedCharSetId) and the Encoding properties to match the requirements
of the receiving system. (If you don't specify any values, they take those for
the platform your application is running on.) These values are used by each
subsequent write method as your application builds the message, as well as
by the MQSeries application when it processes the message.

You should not modify the CharacterSet (CodedCharSetId) and Encoding
properties after you have invoked the Get method or after you have started
constructing a message, that will later be put on a queue. If you do change
these properties when you are constructing a message, such that they do
not match your message data, you must not use the MQGMO_CONVERT
on the MQGET call unless you want your message data converted.

Two forms of data conversion are supported by the MQLSX.

Numeric Encoding
If you set the Encoding Property, the following methods will convert
between different numeric encoding systems:

ReadLong Method

WriteLong Method

ReadShort Method

WriteShort Method

MQSeries provides a header file, cmqc.h, that defines the data encoding for
the platform you are running on.

Looking at the OS/2 version of this file:
#define MQENC_NATIVE 0x00000222L
// MQENC_NATIVE is further broken down into individual encodings for
binary integers.....
/* Encodings for Binary Integers */
#define MQENC_INTEGER_NORMAL 0x00000001L
#define MQENC_INTEGER_REVERSED 0x00000002L

These definitions can be used when you need to send a 'number' either from
a little (for example Intel) to a big endian system, or the other way round.

54 MQSeries link LotusScript Extension User's Guide

Example
To send an integer from an Intel system to a System 370 operating system:

Dim msg As New Mqmessage ' Define an MQSeries
message for our use...

myenc = msg.Encoding ' Currently 546 (or 222
hex.)

Print myenc
' Print the current Encoding property value for

information

msg.Encoding=273
' Set the encoding property to 273 (or 111 in hex.)

myenc = msg.Encoding ' Get a copy

Print myenc
' Print it to see the change

Dim local_num As long ' Define a long integer

local_num = 1234
' Set it

msg.WriteLong(local_num)
'Write the number into the message

The WriteLong method reads the encoding property and if it's different
from the native setting, it converts the integer accordingly.

Character Set Conversion
Character Set conversion is necessary when you send a message from one
system to another system where the code pages are different. Character Set
conversion is included in the methods:

ReadString Method

WriteString Method

Note You must set the CharacterSet property to a supported character set
value (ccsid). If the CharacterSet property is set to an invalid value, no error
is reported until a ReadString or WriteString method is called.

The MQLSX uses conversion tables, delivered in the conv directory, to
perform Character Set conversion.

Check that the GMQ_XLAT_PATH environment variable has been set to
point to the directory on your system to which you copied the contents of
the conv directory.

If you don't set the environment variable, the MQLSX will look for the
conversion files in your current working directory (for instance, the NOTES
directory when you are running NOTES).

Chapter 3: Design and Programming using the MQLSX 55

Example
To convert strings automatically to Code Page 437:

Dim msg As New Mqmessage
'Define an MQSeries message

msg.CharacterSet = 437
'Set code page required

mymsg.Writestring "A character string"
'Put the character string in the message

The WriteString method converts the Unicode passed in from LotusScript
to the characterset associated with the message. This occurs before the
string is put in the buffer that is sent to the MQSeries server when you
invoke the put method.

Similarly with the ReadString method, the incoming MQSeries message
(using the Get method) has a code page associated with it (in the MQMD).
The data is converted from this code page to Unicode before being passed
to LotusScript.

Establishing a characterset for an environment
As part of the initialization of the MQLSX, the default characterset is
established for the Notes instance under which the MQLSX initialization is
taking place as follows:

Platform How a characterset is established

AIX Using the nl_langinfo function, which returns a value in the form
"IBM-850" for example. The system function ccstoccsid converts the
majority of values returned from nl_langinfo to a characterset
(CCSID), those it cannot convert are converted using a table. The
default value 850 is used when a CCSID cannot be established.

 HP-UX First, the local language is established using the nl_function.
Typically this is value in the form "roman8". This is converted to a
CCSID value using the table:
88591= CCSID 819
88592 = CCSID 912
88595 = CCSID 915
88596 = CCSID 1089
88597 = CCSID 813
88598 = CCSID 916
88599 = CCSID 920
roman8 = CCSID 1051
If the language is not in the table (i.e. not supported), the default
value 819 is used.

OS/2 Using the DosQueryCp call. If a value is not returned, the default
value 850 is used.

56 MQSeries link LotusScript Extension User's Guide

Platform How a characterset is established

Sun Solaris First, the language that the session is running under is established
using the setlocale function. Typically this returns a value in the
form "en_US". This is converted to a CCSID value using the table:
88591= CCSID 819
88592 = CCSID 912
88595 = CCSID 915
88596 = CCSID 1089
88597 = CCSID 813
88598 = CCSID 916
88599 = CCSID 920
roman8 = CCSID 1051
If the language is not in the table (i.e. not supported), the default
value 819 is used.

Windows 3.1 By an intdos call using 0x66. If the CCSID cannot be established
using this, the default value of 850 is used.

Windows 95 As Windows 3.1 if you are using the 16 bit MQLSX.
As Windows NT if you are using the 32 bit MQLSX.

Windows NT By a call to the system routine GetConsoleCP. The value returned is
used as the CCSID, unless no value is returned, when the registry
value for OEMCP from
SYSTEM\CURRENTCONTROLSET\NLS\CODE PAGE is used. If
a value cannot be found, the default value of 850 is used.

WIN-OS/2 As Windows 3.1

Chapter 3: Design and Programming using the MQLSX 57

The role of the gmqlccs.tbl and NNNNMMMM.tbl files
The gmqlccs.tbl file holds information concerning the relationship between
charactersets and code pages. The GMQ_XLAT_PATH environment
variable enables the MQLSX to locate the gmqlccs.tbl file during the
initialization of the MQLSX. The contents of this file are loaded into
memory. When character conversion is required (when a ReadString or
WriteString method is called), the information held in memory (from the
gmqlccs.tbl file) is used to establish which conversion tables are required.

In this MQLSX release (where Unicode conversion is used), these tables are
named 34B0nnn.tbl and nnn34B0.tbl. For example, where the characterset is
set to 437, a WriteString method needs 34B001B5.tbl, where 01B5 is the
hexidecimal value of 437. The first time the MQLSX uses a table, the
contents of the table are loaded into memory ready for when it is needed
again.

Note On UNIX systems the names of the gmqlccs.tbl file and the
conversion tables, must be all upper case or all lowercase. On Intel
platforms the case of the filenames is not critical.

MQLSX character data conversion in detail
Strings created under Lotus Notes are stored in LMBCS (Lotus MultiByte
Character Set, which is closely aligned with Unicode) format. When you
issue the Uselsx "mqlsx" command within your LotusScript program, the
MQLSX classes (MQSession, MQMessage etc.) register themselves together
with their properties and methods.

In particular the MQMessage class (which contains the WriteString and
ReadString methods) registers itself as using Unicode™. This means is that
when LotusScript invokes a method or property of the MQMessage class
that involves an input or output string parameter, this is passed in or
passed back using Unicode.

58 MQSeries link LotusScript Extension User's Guide

WriteString method
The WriteString method requires a string parameter, which is passed by
Notes to the MQLSX as Unicode.

For example:

If you enter a dollar sign ($) from your keyboard into a Notes field and
subsequently pass this character in a Notes string to the MQLSX using the
WriteString method, the MQLSX sees x'0024' - this being the Unicode
assigned code-point for dollar. Similarly, if you have a keyboard that
supports the pound sign (£), and pass this character in a Notes string to the
MQLSX using the WriteString method, the MQLSX sees x'00A3'.

On receiving the method call, the MQLSX uses the gmqlccs.tbl together
with the appropriate conversion table to convert from Unicode to the local
code page or to another code page that you have specified using the
CharacterSet property of the message.

For example:

If the local code page is 437 (MS-DOS Latin US) or the CharacterSet
property is set to 437 explicitly, the Unicode value for pound sign (x'00A3')
is converted into the 437 code point for the pound sign, which is x'9C' using
the conversion table 34B001B5.tbl. This is the data passed that is in the
MQSeries message. The MQMD in the resultant MQSeries message
indicates that the code page that the message was generated under is 437.

ReadString method
The ReadString method returns a string and uses the reverse mechanism to
WriteString.

For example:

If you receive an MQSeries message (using the Get method), the MQMD
contains the code page that the message was generated under. If you get
the message that was put out in the WriteString method example, any
incoming pound signs (£) are present in the message as x'9C'. The
ReadString method on the data containing these pound signs converts
x'9C' to x'00A3' using the table 01B534B0.tbl and passes it back to Notes.

Chapter 3: Design and Programming using the MQLSX 59

Losing data when using WriteString.
If the data you enter into your string from Notes contains characters not
supported in the code page you are converting to, in the process of
converting from Unicode to that code page they are converted to the
substitute character (normally x'7F' for ASCII code pages), losing the
original data.

In most cases this is not a problem as the characters you can enter from
your keyboard into a notes field are all supported by the local code page.
However, if you use the CharacterSet property to specify a different code
page, some characters may be lost depending on the match between the
local code page and the one you are converting to. For ASCII code pages
the characters between x '20' and x'7F' should all be converted.

Another area where you risk losing information is if you attempt to coerce
Strings to contain data by using the Chr or UChr LotusScript functions.

One way of preventing this loss is to set the CharacterSet property to 1200,
which is Unicode. This prevents any conversion taking place; the Unicode
string is passed to the MQLSX unconverted.

One implication of this is that any receiving MQSeries application needs to
be able to support Unicode. Another implication is that the data takes two
bytes for every character.

When data conversion fails
Data conversion fails if you:

Specify an invalid character set or one for which you do not have the
conversion table.

Have not set the GMQ_XLAT_PATH environment variable

The gmqlccs.tbl file was not found in the directory specified in
GMQ_XLAT_PATH.

If the MQLSX WriteString method fails to convert the data in a field,
because the conversion tables are not available, you are likely to get the
MQSeries return code MQRC_NOT_CONVERTED (2119). No data is
written to the message.

60 MQSeries link LotusScript Extension User's Guide

If the MQLSX ReadString method fails to convert the data in a message, the
message will no longer be on the MQSeries queue (after the success of the
GET method). The message will be in the buffer used by your program, so
you can use the PUT method to place it on an MQSeries queue if you wish
to exit the program and resolve the problem later. Alternatively you could
consider changing your application and do the conversion within
MQSeries prior to using the get method.

If the CCSID entry is missing from the gmqlccs.tbl, you are likely to get the
MQSeries return code MQRC_TARGET_CCSID_ERROR (2115). The
supported conversions are listed in the readme.ccs file provided in the conv
directory.

Chapter 3: Design and Programming using the MQLSX 61

Error handling

Each MQLSX object includes properties to hold error information and a
method to reset / clear them. The properties are:

CompletionCode

ReasonCode

The method is:

ClearErrorCodes

Each object also raises events:

Mqwarning

Mqerror

How it works
Your MQLSX script/application invokes an MQLSX object's method, or
accesses / updates a property of the MQLSX object:

1. The ReasonCode and CompletionCode in the object concerned are
updated.

2. The ReasonCode and CompletionCode in the MQSession object are also
updated with the same information.

If the CompletionCode is not equal to MQCC_OK:

3. The MQLSX issues an Mqwarning or Mqerror event against the object
concerned.

4. The event passes to an event handler for the object, if there is one
available. If your event handler has cleared the problem, use the
ClearErrorCodes method within the error handler which resets the
ReasonCode to MQRC_NONE and the CompletionCode to MQCC_OK.

5. On return from the event handler processing, if any, the MQLSX copies
the object ReasonCode and CompletionCode once again to the
MQSession object.

If the CompletionCode is not equal to MQCC_OK:

6. The MQLSX issues an Mqwarning or Mqerror event against the
MQSession object.

7. The event passes to an event handler for the MQSession object, if there
is one available. If your event handler has cleared the problem, use the
ClearErrorCodes method within the error handler which resets the
ReasonCode to MQRC_NONE and the CompletionCode to
MQCC_OK.

If the MQSession object CompletionCode is equal to MQCC_ERROR:

62 MQSeries link LotusScript Extension User's Guide

8. The MQLSX generates a LotusScript error, number 32000. Use this
within your script using the On Error statement to process it.

9. Use the Error$ function to retrieve the associated error string. This is in
the form:

MQLSX: ReasonCode=nnnn

where nnnn is the latest MQSession object ReasonCode.

For more information on how to use the On Event and On Error statements,
see the LotusScript Language Reference manual.

Getting a property
This is a special case as the CompletionCode and ReasonCode are not
always updated:

If a property get succeeds, the object and MQSession object
ReasonCode and CompletionCode remains unchanged.

If a property get fails with a CompletionCode of warning, the
ReasonCode and CompletionCode remain unchanged and no
Mqwarning event is raised.

If a property get fails with a CompletionCode of error, the ReasonCode
and CompletionCode are updated to reflect the true values, and error
processing proceeds as described.

Using Events and Error handlers
In general, MQLSX errors (unlike other LotusScript errors) can be handled
using an Event or Error handler or a combination of these.

Chapter 3: Design and Programming using the MQLSX 63

Error handling using Event Handlers
Error and warning event handlers for a specific MQLSX object (an
MQQueue object for example) can registered by the in-line LotusScript code
as shown:

Set MQq =
MQQmgr.AccessQueue(Queue_name.Text,OpenOptions,"","","")

On Event Mqwarning From MQq Call WarningFromMQq

On Event Mqerror From MQq Call ErrorFromMQq

If the CompletionCode from an MQLSX object method (or update) is not
MQCC_OK, then the MQLSX issues an Mqwarning or Mqerror event
(depending on severity) for the object concerned, giving control to the
appropriate event handler. An event handler might typically perform all
required processing for an Mqwarning event allowing the in-line
LotusScript code to continue just as if no warning had occurred. For an
Mqerror event however, the in-line code may require access to the reason
code, or some other indication that the operation was unsuccessful.
MQRC_NO_MSG_AVAILABLE, for example, indicates that no message
was returned from a 'Get' but in many cases this will not be an error. The
following examples illustrate how this can be accomplished using event
handlers.

Examples of Mqwarning and Mqerror event handlers

'* Mqwarning event handler

Sub WarningFromMQq(MQq As MQQueue)

 Messagebox "Warning From MQq, reason code: "
&MQq.ReasonCode

 MQq.ClearErrorCodes '* clears reason code, completion
code, and event

End Sub

'* Mqerror event handler

Sub ErrorFromMQq (MQq As MQQueue)

 If MQq.ReasonCode = MQRC_UNKNOWN_OBJECT_NAME Then

 Messagebox "Error From MQq, invalid queue name"

 uidoc.FieldClear ("MQqueue_name")

 Elseif MQq.ReasonCode = MQRC_NO_MSG_AVAILABLE Then

64 MQSeries link LotusScript Extension User's Guide

 Messagebox "No message available"

 uidoc.FieldClear ("MsgRecvd")

 Else

 Messagebox "Error From MQq, reason code: "
&MQq.ReasonCode

 uidoc.FieldClear ("MQqueue_name")

 End If

 GlobalReasonCode = MQq.ReasonCode

 GlobalCompletionCode = MQq.CompletionCode

 MQq.ClearErrorCodes '* clears reason code, completion
code, and event

End Sub

Note The ClearErrorCodes method must be issued by the Mqerror event
handler in order to prevent a LotusScript error being raised when the event
completes. Thus status information can only be passed from the event
handler to the in-line LotusScript code using global variables. In this
example the reason and completion codes are preserved while other
examples might use a fatal error indication (such as the MQLSX sample
programs for example that use MQFatalError).

If Mqwarning and Mqerror event handlers are not registered for the object
concerned, or the completion code is not cleared using ClearErrorCodes,
control will be given to the appropriate MQSession event Handler.
Mqwarning and Mqerror event handlers for the MQSession object are
constructed in a similar way to those described and can be registered as
shown in the example:

Set MQqms = New MQSession

On Event Mqwarning From MQqms Call WarningFromMQqms

On Event Mqerror From MQqms Call ErrorFromMQqms

Chapter 3: Design and Programming using the MQLSX 65

Error handling using Error Handlers
If an Mqerror event handler is not registered for the MQSession object
concerned or the completion code is not cleared by the event handler
issuing ClearErrorCodes, the MQLSX generates a LotusScript error 32000.
If an Mqwarning event handler is not registered for the MQSession object
concerned or the completion code is not cleared by the event handler
issuing ClearErrorCodes, then no LotusScript error is generated. MQLSX
warnings can thus be handled using an event handler as described above,
or, if no Mqwarning event handler is registered, the completion and reason
codes associated with the warning will be preserved for handling by the
in-line LotusScript code.

To handle MQLSX errors exclusively using error handlers, no Mqerror
event handler should be registered. This approach offers the advantages
handling both MQLSX and non-MQLSX LotusScript errors in a similar way
and making completion and reason code information available to the in-line
LotusScript code without the use of global variables.

Error handlers can be registered in the top-level or lower-level procedures
as follows:

 On Error GoTo HandleError

'HandleError' processing might typically be positioned at the end of the
procedure as shown (for an objected-oriented implementation):

'***

'* Handle errors

'***

 Exit Sub

HandleError:

 Dim ErrRcd As ErrorRecord

 Set ErrRcd = New ErrorRecord

 End

End Sub

The associated class definition might appear as follows (this can clearly be
modified to log the error or perform whatever action is most appropriate).

66 MQSeries link LotusScript Extension User's Guide

Const MQLSX_ERROR = 32000

Class ErrorRecord

 MQqms As MQSession

 Sub New

 If Err = MQLSX_ERROR Then

 Set MQqms = New MQSession

 If MQqms.ReasonCode <> MQRC_NO_MSG_AVAILABLE
Then

 Print "MQLSX Error ", Error(), Err(),
Erl()

 End If

 MQqms.ClearErrorCodes

 Else

 Print "LotusScript Error ", Error(), Err(),
Erl()

 End If

 End Sub

End Class

For a procedural implementation, the body of the sub 'New' above would
replace the 'dim' and 'set' statements below the 'HandleError' label.

Note that an error in a called sub that contains no 'On Error' statement will
be caught by an 'On Error' statement in a higher or top-level procedure.

To ignore an MQSeries warning (such as MQRC_NO_MSG_AVAILABLE)
each affected procedure must issue a statement of the form:

 On Error MQLSX_ERROR resume next

The MQLSX reason code can then be examined by the in-line LotusScript
code and handled (i.e. ignored or otherwise) or returned to the caller for
processing as appropriate. The following example is an extract from a class
method that attempts to get a message using the MQQueue 'Get' method).
RCode& and CCode& are properties of the same (current) class definition
as the method containing the code fragment shows, and are used here to
preserve the completion and reason codes from the 'Get' for subsequent
access by the user of the object. A second On Error MQLSX statement is
included to reinstate error handling for subsequent MQLSX methods.

Chapter 3: Design and Programming using the MQLSX 67

On Error MQLSX_ERROR Resume Next

.

MQreplyq.Get MQMsg, MQgmo

.

CCode& = MQreplyq.CompletionCode

RCode& = MQreplyq.ReasonCode

.

On Error MQLSX_ERROR GoTo HandleError

68 MQSeries link LotusScript Extension User's Guide

Chapter 4 Troubleshooting

This chapter explains the trace facility provided and common pitfalls with
help to avoid them.

Chapter 4: Troubleshooting 69

Code level tool

You may be asked by the IBM/Lotus Service personnel what level of code
you have installed.

To do this, run the 'gmqlevel' utility program.

From the command prompt, change to the directory containing the
mqlsx.dll or add the full path name and enter:

gmqlevel yyyyy > xxxxx.xxx

where yyyyy is the name of the shared library (eg. mqlsx.dll)

and xxxxx.xxx is the name of the output file.

If you do not specify an output file, the detail is displayed on the
screen.

Using trace

The MQLSX includes a trace facility to help the service organisation identify
what is happening when you have a problem. It shows the paths taken
when you run your MQLSX script. Unless you have a problem, you are
recommended to run with tracing set off to avoid any unnecessary
overheads on your system resources.

There are three environment variables that you set to control trace:

GMQ_TRACE

GMQ_TRACE_PATH

GMQ_TRACE_LEVEL

You set these variables in one of two ways.

1. From a command prompt, from which you must subsequently start
Notes, as this is only effective locally.

2. By putting the information into your system startup file. This is
effective globally.

select Main - Control Panel on Windows NT and Windows 95

edit your autoexec.bat file on Windows 3.1, Windows for
Workgroups, and WIn-OS/2

edit your config.sys file on OS/2

edit your .profile file on UNIX systems

70 MQSeries link LotusScript Extension User's Guide

Tip When deciding where you want the trace files written, ensure that the
user has sufficient authority to write to, not just read from, the disk. (This is
particularly relevant on UNIX and Windows NT.)

If you have tracing switched on, it will slow down the running of the
MQLSX, but it will not affect the performance of your Notes or MQSeries
environments. When you no longer need a trace file, it is your
responsibility to delete it.

You must stop Notes running to change the status of the GMQ_TRACE
variable.

Note The MQLSX trace environment variable is different to the trace
environment variable used within the MQSeries range of products. Within
the MQSeries range of products, the trace environment variable is used to
specify the name of the trace file. Within the MQLSX, the trace environment
variable turns tracing on. If you set the variable to a string of characters,
any string of characters, tracing will remain switched on. It is not until you
set the variable to null that tracing is turned off.

Trace filename and directory
The trace file name takes the form GMQnnnnn.trc, where nnnnn is the id of
the Notes process running at the time.

Commands on OS/2, Win-OS/2, Windows 3.1 and Windows NT:
Command Effect

SET GMQ_TRACE_PATH=drive:\directory Sets the trace directory where the trace
file will be written

SET GMQ_TRACE_PATH= Removes the GMQ_TRACE_PATH
environment variable, the trace file is
written to the current working directory
(when Notes is started)

SET GMQ_TRACE_PATH Displays the current setting of the trace
directory path on OS/2, Windows for
WorkGroups, and Windows 3.1

ECHO %GMQ_TRACE_PATH% Displays the current setting of the trace
directory path on Windows NT

SET GMQ_TRACE=xxxxxxxx This sets tracing ON. You switch tracin
on by putting one or more characters
after the '=' sign
For example: SET GMQ_TRACE=yes
or SET GMQ_TRACE=no
In both of these examples, tracing will b
set ON

SET GMQ_TRACE= Sets tracing OFF

Chapter 4: Troubleshooting 71

Command Effect

SET GMQ_TRACE Displays the contents of the environmen
variable on OS/2, Windows 3.1 and
Windows for WorkGroups

ECHO %GMQ_TRACE% Displays the contents of the environmen
variable on Windows NT

SET Displays the contents of all the
environment variables on OS/2,
Windows 3.1,Windows for WorkGroup
and Windows NT

Commands on AIX, HP-UX and Sun Solaris
Command Effect

export GMQ_TRACE_PATH=/directory Sets the trace directory where the trace file

unset GMQ_TRACE_PATH Removes the GMQ_TRACE_PATH enviro
the trace file is written to the current work
(when Notes is started)

echo $GMQ_TRACE_PATH Displays the current setting of the trace dir

export GMQ_TRACE=xxxxxxxx This sets tracing ON. You switch tracing o
or more characters after the '=' sign
For example: export GMQ_TRACE=yes
or export GMQ_TRACE=no
In both of these examples, tracing will be s

unset GMQ_TRACE Sets tracing off

echo $GMQ_TRACE Displays the contents of the environment v

echo Displays all the settings for all the environm
for the session

Trace level
The environment variable GMQ_TRACE_LEVEL allows you to control how
much detail is recorded in the trace file. It can be set to any numeric value
greater than zero, although any value above nine does not provide any
more information.

In addition, you can suffix the value with a + (plus) or - (minus) sign. Using
the plus sign, the trace includes all control block dump information and all
informational messages. Using the minus sign includes only the entry and
exit points in the trace, i.e. no control block information or text is output to
the trace file.

The default value of GMQ_TRACE_LEVEL is 2.

72 MQSeries link LotusScript Extension User's Guide

Example trace
The example trace below shows 'typical' trace output. It has been annotated
and edited in order to illustrate the key features you might want to look for.

Trace for program d:\notes\NLNOTES.EXE(MQSeries MQLSX)

 started at Thu Jul 17 06:58:30 1997

@(!) ***** Code Level is 1.3.0 *****

 !(00144)BuildDate Jul 15 1997

 **

 The head of the trace contains details of the code level and

 when the trace was built - these can be important in problem

 resolution.

 **

(00144)@06:58:30.159

 -->xxxInitialize

 **

 The number in brackets two lines above is the thread-id, whilst

 the time is displayed following the @. These times are based on the

 system clock and cannot be relied on for performance measurements.

 Any lines starting with --> are entry into a function, and these

 will have corresponding exit points with the same number of dashes.

 The number of dashes corresponds to the depth within the code.

 The depth traced can be controlled via use of the GMQ_TRACE_LEVEL

 environment variable.

 **

 ---->ObtainSystemCP

 !(00144)Code page is 437

 **

Chapter 4: Troubleshooting 73

 One of the first things that happens is that the code page is

 determined from the operating system. In this case its 437,

 which is 01B5 in hex. The GMQLCCS.TBL file is located

 using the GMQ_XLAT_PATH environment variable. For

 this release (1.2.0) of the product which uses Unicode with

 the MqMessage class its important that this file is found.

 **

 <----ObtainSystemCP (rc= OK)

 !(00144)XLAT_PATH is e:\etm\source\samples\dc\generic

 !(00144)Successfully opened GMQLCCS.TBL under path -
e:\etm\source\samples\dc\generic\GMQLCCS.TBL -

 !(00144)Just about to close gmqlccs.tbl

 <--xxxInitialize (rc= OK)

 -->LSX: MainEntryPoint

 !(00144)LSX: Version 1.1

 <--LSX: MainEntryPoint (rc= OK)

 -->LSX: MQLSX_MessageProc

 !(00144)LSX: LSX_MSG_SETPATH received; library loaded from
d:\notes\mqlsx.DLL

 <--LSX: MQLSX_MessageProc (rc= OK)

 -->LSX: MQLSX_MessageProc

 !(00144)LSX: LSX_MSG_INITIALIZE received

 !(00144)LSX: SUCCESS on ClassRegistration of MqQueueManager

 !(00144)LSX: SUCCESS on ClassRegistration of MqGetMessageOptions

 !(00144)LSX: Class MqMessage is using Unicode

74 MQSeries link LotusScript Extension User's Guide

 !(00144)LSX: SUCCESS on ClassRegistration of MqMessage

 !(00144)LSX: SUCCESS on ClassRegistration of MqPutMessageOptions

 !(00144)LSX: SUCCESS on ClassRegistration of MqQueue

 !(00144)LSX: SUCCESS on ClassRegistration of MqSession

 !(00144)LSX: SUCCESS on ClassRegistration of MqProcess

 **

 The above entries show the registration of the varios classes

 defined in the MQ LSX. Notice that the registration (with Notes)

 of the MqMessage class uses Unicode.

 **

 ---->LSX: RegisterCMQC

 <----LSX: RegisterCMQC (rc= OK)

 ---->LSX: RegisterCMQCFC

 <----LSX: RegisterCMQCFC (rc= OK)

 ---->LSX: RegisterIMQTYPE

 <----LSX: RegisterIMQTYPE (rc= OK)

 <--LSX: MQLSX_MessageProc (rc= OK)

 -->LSX: Class entry point

 !(00144)LSX: LSI_ADTMSG_CREATE received for class:MqSession

 !(00144)LSX: Could not find MQSession for threadID = [144]

 !(00144)LSX: >>> MEM >>> new: 0x1540ad4

 !(00144)LSX: Adding MQSession for threadID = [144]

Chapter 4: Troubleshooting 75

 !(00144)LSX: LotusScript >>> Set [X] = new MqSession [0x1540ad4]

 <--LSX: Class entry point (rc= OK)

 -->LSX: ClassControl

 !(00144)LSX: LSI_ADTMSG_ADDREF received for class:MqSession
refCount = 1

 <--LSX: ClassControl (rc= OK)

 -->LSX: ClassControl

 !(00144)LSX: LSI_ADTMSG_EVENT_REG received for class:MqSession
event = MQWARNING

 !(00144)LSX: LotusScript >>> On Event MQWARNING From
MqSession Call [X]

 <--LSX: ClassControl (rc= OK)

 -->LSX: ClassControl

 !(00144)LSX: LSI_ADTMSG_EVENT_REG received for class:MqSession
event = MQERROR

 !(00144)LSX: LotusScript >>> On Event MQERROR From MqSession
Call [X]

 <--LSX: ClassControl (rc= OK)

 **

 The following entries show a typical set of trace entries for the method

 AccessQueueManager against the MqSession. This results in an

 MQCONN taking place and since this is the first MQSeries API call

 it dynamically loads the MQSeries dll (in this case mqm.dll). The

 data passing between the MQLSX and MQSeries is detailed as

 an aid to problem determination. Each LotusScript invocation of

76 MQSeries link LotusScript Extension User's Guide

 a method against a MQLSX object results in a set of trace entries

 bounded by a pair of LSX: ClassControl entries.

 **

 -->LSX: ClassControl

 !(00144)LSX: LSI_ADTMSG_METHOD received for class:MqSession;
method:AccessQueueManager[3]

 !(00144)LSX: LotusScript >>>
MQSession.accessQueueManager("freddy")

 !(00144)LSX: >>> MEM >>> new: 0x1540b04

 ---->ImqQueueManager::connect

 ------>gmqdyn0a:MQCONN

 !(00144)>>>Queue Manager Name...

 0000 66 72 65 64 64 79 00 00 00 00 00 00 00 00 00 00 : freddy..........

 0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 :

 --- 1 lines identical to above ---

 !(00144)GMQDYN0A : About to try and find a dynamic library

 -------->EstablishEPs

 !(00144)Using mqm.dll

 <--------EstablishEPs (rc= 1)

 !(00144)GMQDYN0A : About to go off to real MQCONN

 !(00144)GMQDYN0A: Back from real MQCONN

 !(00144)<<<Queue Manager Name...

 0000 66 72 65 64 64 79 00 00 00 00 00 00 00 00 00 00 : freddy..........

 0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 :

 --- 1 lines identical to above ---

 !(00144)<<<HConn...

 0000 10 2A CC 01 : .*..

Chapter 4: Troubleshooting 77

 !(00144)<<<Completion Code...

 0000 00 00 00 00 :

 !(00144)<<<Reason Code...

 0000 00 00 00 00 :

 <------gmqdyn0a:MQCONN (rc= OK)

 <----ImqQueueManager::connect (rc= OK)

 <--LSX: ClassControl (rc= OK)

 **

 : : :

 Various lines missing for clarity

 : : :

 **

 -->LSX: ClassControl

 !(00144)LSX: LSI_ADTMSG_ADDREF received for class:MqMessage
refCount = 1

 <--LSX: ClassControl (rc= OK)

 -->LSX: ClassControl

 !(00144)LSX: LSI_ADTMSG_METHOD received for class:MqMessage;
method:WriteString[9]

 !(00144)LSX: LotusScript >>> MQMessage.writeString(...)

 0000 54 00 68 00 69 00 73 00 20 00 69 00 73 00 20 00 : T.h.i.s. .i.s. .

 0010 61 00 20 00 73 00 61 00 6D 00 70 00 6C 00 65 00 : a. .s.a.m.p.l.e.

 !(00144)LSX: Notes has passed us 16 (Unicode characters)

 !(00144)LSX: WriteString instrlen = 32, outstrlen = 48

 **

 Here you can see a hex dump of the Unicode data

78 MQSeries link LotusScript Extension User's Guide

 passed by notes to the LSX via WriteString. This is converted

 from Unicode into code page 437 that involves

 the loading of the conversion table 34B001B5.tbl. The 34B0 is

 Unicode, whilst the 01B5 is the local code page (437) in hex.

 **

 ---->xcsConvertString

 !(00144)fromCCSID:1200 toCCSID:437

 !(00144)in length:32, out length:48

 ------>OpenConversion

 -------->xxxOpenConv

 ---------->xxxGetTable

 !(00144)About to open file 34B001B5

 <----------xxxGetTable (rc= OK)

 <--------xxxOpenConv (rc= OK)

 <------OpenConversion (rc= OK)

 !(00144)translated out length:16

 <----xcsConvertString (rc= OK)

 !(00144)LSX: CharacterSet conversion from 1200 to 437, rc = 0

 <--LSX: ClassControl (rc= OK)

 **

 : : :

 Various lines missing for clarity

Chapter 4: Troubleshooting 79

 : : :

 **

 **

 The final entry is the result of Notes shutting down

 **

 -->LSX: MQLSX_MessageProc

 !(00144)LSX: LSX_MSG_TERMINATE received; clearing MQSession list

 <--LSX: MQLSX_MessageProc (rc= OK)

80 MQSeries link LotusScript Extension User's Guide

When your MQLSX script fails

First Failure Symptom Report
Independently of the trace facility, for unexpected and internal errors, a
First Failure Symptom report is produced.

This report is found in a file named GMQnnnnn.fdc, where nnnnn is the id
of the Notes process that is running at the time. You find this file in the
working directory from which you started Notes or the name of the path
specified in the GMQ_TRACE_PATH environment variable.

Other sources of information
MQSeries provides various error logs and trace information, depending on
the platform involved. See either the MQSeries Problem Determination Guide
for MVS or the MQSeries System Management Guide for other platforms for
more information.

Common pitfalls
There are some features that may catch you out when you least expect it,
depending on your experience of using LotusScript and MQSeries. The
following are those identified so far.

LotusScript events
LotusScript treats events differently within the Notes Client and the Notes
Server environments.

In the Notes Client environment events are posted immediately, however
within the Notes Server environment there is a delay in an event being
posted. When you are using remote agents within Notes, this can give the
impression that events are not always posted when you would expect them.

Windows NT and Windows 95
Check you are running all 16 bit versions or all 32 bit versions of Lotus
Notes, MQSeries and the MQLSX. If not, reinstall the appropriate product.

Data conversion
Your program can fail whilst it is trying to convert data on a read or write.
See Using Data Conversion for more information.

Chapter 4: Troubleshooting 81

Reason codes

The following reason codes can occur in addition to those documented for
the MQSeries MQI. For further codes, refer to the MQSeries documentation.

Reason code Explanation

MQRC_LIBRARY_LOAD_ERROR
(6000)

One or more of the MQSeries
libraries could not be loaded.
Check that all MQSeries libraries are
in the correct search path on the
system you are using. For example,
on OS/2, make sure that the
directories containing the MQSeries
libraries are in LIBPATH.

MQRC_CLASS_LIBRARY_ERROR
(6001)

One of the MQSeries class library
calls returned an unexpected
ReasonCode / CompletionCode.
Check the First Failure Symptom
Report for details.
Take note of the last
method/property and class being
used and inform IBM Support of the
problem.

MQRC_STRING_LENGTH_TOO_BIG
(6002)

A ReadString or WriteString call
tried to read a string of more than
32000 characters (16000 characters if
you are running the Win16 version).
Find the ReadString call in your
application and correct the call.

MQRC_WRITE_VALUE_ERROR
(6003)

A write method has detected a data
overflow.
Correct the data passed to the Write
method to ensure it is within the
acceptable boundaries for the data
type in question.

82 MQSeries link LotusScript Extension User's Guide

Reason code Explanation

MQRC_REOPEN_EXCL_INPUT_ERROR
(6100)

An open object does not have the
correct OpenOptions and requires
one or more additional options. An
implicit re-open is required but
closure has been prevented.
Set the OpenOptions explicitly to
cover all eventualities so that
implicit re-opening is not required.
Closure has been prevented because
the queue is open for exclusive input
and closure would present a
window of opportunity for others to
potentially gain access to the queue.

MQRC_REOPEN_TEMPORARY_Q_ERROR
(6103)

An open object does not have the
correct OpenOptions and requires
one or more additional options. An
implicit re-open is required but
closure has been prevented.
Set the OpenOptions explicitly to
cover all eventualities so that
implicit re-opening is not required.
Closure has been prevented because
the queue is a local queue of the
definition type
MQQDT_TEMPORARY_DYNAMIC
, that would be destroyed by
closure.

MQRC_ATTRIBUTE_LOCKED
(6104)

An attempt has been made to
change the value of an attribute of
an object whilst that object is open.
Certain attributes, such as
AlternateUserId, cannot be changed
whilst an object is open.

MQRC_CURSOR_NOT_VALID
(6105)

The browse cursor for an open
queue has been invalidated since it
was last used by an implicit re-open.
Set the OpenOptions explicitly to
cover all eventualities so that
implicit re-opening is not required.

Chapter 4: Troubleshooting 83

Reason code Explanation

MQRC_NULL_POINTER
(6108)

A null pointer has been supplied
where a non-null pointer is either
required or implied. This denotes
an internal consistency that should
not occur.

MQRC_NO_CONNECTION_REFERENCE
(6109)

The MQQueue object has lost its
connection to the
MQQueueManager. This will occur
if the MQQueueManager is
disconnected. Delete the MQQueue
object.

MQRC_NO_BUFFER
(6110)

No buffer is available. For an
MQMessage object, one cannot be
allocated, denoting an internal
inconsistency in the object state that
should not occur.

MQRC_BINARY_DATA_LENGTH_ERROR
(6111)

The length of the binary data is
inconsistent with the length of the
target attribute. Zero is a correct
length for all attributes. 24 is the
correct length for a CorrelationId
and for a MessageId. 32 is the
correct length for an
AccountingToken. Some properties
must be supplied in full, such as
CorrelationId.

MQRC_INSUFFICIENT_BUFFER
(6113)

There is insufficient buffer space
available after the data pointer to
accommodate the request. This
could be because the buffer cannot
be resized.

MQRC_INSUFFICIENT_DATA
(6114)

There is insufficient data after the
data pointer to accommodate the
read request. Reduce the buffer to
the correct size and read the data
again.

84 MQSeries link LotusScript Extension User's Guide

Reason code Explanation

MQRC_DATA_TRUNCATED
(6115)

Data has been truncated when
copying from one buffer to another.
This could be because the target
buffer cannot be resized, or because
there is a problem addressing one or
other buffer, or because a buffer is
being downsized with a smaller
replacement.

MQRC_ZERO_LENGTH
(6116)

A zero length has been supplied
where a positive length is either
required or implied.

MQRC_NEGATIVE_LENGTH
(6117)

A negative length has been supplied
where a zero or positive length is
required.

MQRC_NEGATIVE_OFFSET
(6118)

A negative offset has been supplied
where a zero or positive offset is
required.

MQRC_INCONSISTENT_OBJECT_STATE
(6120)

There is an inconsistency between
this object, which is open, and the
referenced MQQueueManager
object, which is not connected.

Chapter 4: Troubleshooting 85

86 MQSeries link LotusScript Extension User's Guide

Chapter 5 MQLSX Reference

This chapter describes the classes of the MQSeries link LotusScript
Extension (MQLSX), developed for Lotus Notes Release 4. The classes
enable you to write Notes applications that can access other applications
running in your non-Notes environments, using MQSeries.

Chapter 5: Reference 87

MQLSX objectives

The MQSeries LotusScript Extension (MQLSX) is designed to:

Provide an infrastructure to enable you to develop applications that
integrate your Lotus Notes environment with your traditional
transaction system applications and their data.

Give you access to all the functions and features of the MQSeries API,
permitting full interconnectivity to other MQSeries platforms.

Conform to the normal conventions expected of a LotusScript
extension.

Enable you to take advantage of the following benefits provided by
MQSeries:

Access to enterprise application logic, not just the data

Access to a wide variety of platforms

Queued Entry into high throughput asynchronous messaging
environments

LotusScript/MQI interface

This is supplied as a LotusScript Extension Module (LSX) that provides the
following classes:

MQGetMessageOptions Class

MQMessage Class

MQProcess Class

MQPutMessageOptions Class

MQQueue Class

MQQueueManager Class

MQSession Class

In addition the MQLSX provides:

Predefined LotusScript constants (such as MQFMT_NONE) needed to
use the classes. The constants are a subset of those defined in the
MQSeries C header files (cmqc*.h) with some additional MQLSX
Reason codes.

88 MQSeries link LotusScript Extension User's Guide

About MQLSX classes

This information should be read in conjunction with the MQSeries
Application Programming Reference manual.

There are MQLSX classes called MQGetMessageOptions Class ,
MQMessage Class , MQProcess Class , MQPutMessageOptions Class ,
MQQueue Class , MQQueueManager Class , and MQSession Class .

The MQSession Class provides a root object that contains the status of the
last action performed on any of the MQLSX objects, see Error handling for
more information.

The MQQueueManager, MQQueue, and MQProcess classes provide access
to the underlying MQSeries objects. Methods or property accesses against
these classes will in general result in calls being made across the MQSeries
API.

The MQMessage, MQPutMessageOptions, and MQGetMessageOptions
classes encapsulate the MQMD, MQPMO, and MQGMO data structures
respectively, and are used to help you put messages to queues and retrieve
messages from them.

Parameter passing
Parameters on method invocations are all passed by value, except where
that parameter is an object, in which case it is a reference that is passed.

The class definitions provided list the Data Type for each parameter or
property. If the LotusScript variable used is not of the required type, then
the value will be automatically converted to/from the required type -
providing such a conversion is possible. This follows standard LotusScript
conversion rules.

Many of the methods take fixed length string parameters, or return a fixed
length character string. The conversion rules are as follows:

If the user supplies a fixed length string of the wrong length, as an
input parameter or a return value, then the value is truncated or
padded with trailing spaces as required.

If the user supplies a variable length string of the wrong length as an
input parameter, then the value is truncated or padded with trailing
spaces.

If the user supplies a variable length string of the wrong length as a
return value, then the string is adjusted to the required length (since
returning a value destroys the previous value in the string anyway).

Strings provided as input parameters may contain embedded Nulls.

Chapter 5: Reference 89

Object access methods
These methods do not relate directly to any single MQSeries call. Each of
these methods create an object in which reference information is then held,
followed by connecting or opening an MQSeries object:

when a connection is made to a queue manager or a process object, it
holds the 'object handle' generated by MQSeries.

when a queue is opened, it holds the 'connection handle' generated by
MQSeries.

These MQSeries attributes are explained in the MQSeries Application
Programming Reference manual.

Errors
Syntactic errors on parameter passing are detected by LotusScript at
compile time and runtime errors can be trapped using On Error.

The MQSeries LotusScript classes all contain two special read-only
properties - ReasonCode and CompletionCode. These can be read at any
time.

An attempt to access any other property, or to issue any method call could
potentially generate an error.

If a property set or method invocation succeeds, then the owning object's
ReasonCode and CompletionCode fields are set to MQRC_NONE and
MQCC_OK respectively.

If the property access or method invocation does not succeed then
appropriate error or warning codes are set in these fields.

90 MQSeries link LotusScript Extension User's Guide

MQSession Class

This is the root class for the MQSeries link LotusScript Extension.

There is always one and only one MQSession object per LotusScript
instance.

An attempt to create a second object will create a second reference to the
original object.

Properties:
CompletionCode Property

ReasonCode Property

Methods:
AccessQueueManager Method

ClearErrorCodes Method

LotusScript Events:
Mqerror

Mqwarning

Creation:
New - creates a new MQSession object reference.

Syntax:
Dim mqsess As New MQSession or

Set mqsess = New MQSession

Chapter 5: MQSession Class 91

CompletionCode Property
Read-only. Returns the MQSeries completion code set by the most recent
method or property access issued against any MQSeries object.

It is reset to MQCC_OK when a call, other than a property Get, is made
successfully against any MQLSX object.

An error event handler can inspect this property to diagnose the error,
without having to know which object was involved.

Defined in
MQSession Class

Data Type:
Long

Legal Values:
MQCC_OK

MQCC_WARNING

MQCC_FAILED

Syntax:
To get: completioncode& = MQSession.CompletionCode

ReasonCode Property
Read-only. Returns the reason code set by the most recent method or
property access issued against any MQSeries object.

An error event handler can inspect this property to diagnose the error,
without having to know which object was involved.

Defined in:
MQSession Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual and the
additional MQLSX values listed under Reason codes.

Syntax:
To get: reasoncode& = MQSession.ReasonCode

92 MQSeries link LotusScript Extension User's Guide

AccessQueueManager Method
Creates a new MQQueueManager object and connects it to a real Queue
Manager via the MQSeries client or server.

If successful it sets the MQQueueManager's ConnectionStatus to TRUE.

A Queue Manager can be connected to by at most one MQQueueManager
object per LotusScript instance.

If the connection to the object fails, an error event is raised, the object's
ReasonCode and CompletionCode are set, and the MQSession object's
ReasonCode and CompletionCode are set.

Defined in:
MQSession Class

Syntax:
Set qm = MQSession.AccessQueueManager(Name$)

Parameter:
Name$

String.Name of Queue Manager to be connected to.

ClearErrorCodes Method
Resets the CompletionCode to MQCC_OK and the ReasonCode to
MQRC_NONE.

Defined in:
MQSession Class

Syntax:
Call MQSession.ClearErrorCodes

Chapter 5: MQSession Class 93

MQQueueManager Class

This represents a connection to a queue manager. The queue manager may
be running locally (an MQSeries server) or remotely with access provided
by the MQSeries client. An application must create an object of this class
and connect it to a queue manager. When an object of this class is
destroyed it is automatically disconnected from its queue manager.

Containment:
MQProcess and MQQueue objects are associated with this class.

Properties:
AlternateUserId Property

AuthorityEvent Property

CharacterSet Property

CommandInputQueueName Property

CommandLevel Property

CompletionCode Property

ConnectionStatus Property

DeadLetterQueueName Property

DefaultTransmissionQueueName Property

Description Property

InhibitEvent Property

LocalEvent Property

MaximumHandles Property

MaximumMessageLength Property

MaximumPriority Property

MaximumUncommittedMessages Property

Name Property

PerformanceEvent Property

Platform Property

ReasonCode Property

RemoteEvent Property

StartStopEvent Property

SyncPointAvailability Property

TriggerInterval Property

94 MQSeries link LotusScript Extension User's Guide

Methods:
AccessProcess Method

AccessQueue Method

Backout Method

ClearErrorCodes Method

Commit Method

Connect Method

Disconnect Method

LotusScript Events:
Mqerror

Mqwarning

Creation:
New - creates a new MQQueueManager object. If you do not want to
connect to the default queue manager, you must set the name of the newly
created queue manager before accessing any of the properties, other than
those listed under Property Access. If you do not name the queue manager
and access one of the properties outside the list, for example the
Description property, the MQLSX will attempt to implicitly connect to the
default queue manager.

A new MQQueueManager object can also be created by using the
AccessQueueManager method on the MQSession object.

Syntax:
Dim qmname As New MQQueueManager or

Set qmname = New MQQueueManager

Property Access:
The following properties can be accessed at any time

AlternateUserId

CompletionCode

ConnectionStatus

ReasonCode

The remaining properties can be accessed only if the object is connected to a
queue manager, and the userid is authorised for inquire against that queue
manager. If an alternate userid is set and the current userid is authorised to
use it, then the alternate userid is checked for authorisation for inquire
instead.

Chapter 5: MQQueueManager Class 95

If these conditions do not apply, the MQLSX will attempt to connect to the
Queue Manager and open it for inquire automatically. If this is
unsuccessful the call will set a CompletionCode of MQCC_FAILED and one
of the following ReasonCodes:

MQRC_CONNECTION_BROKEN

MQRC_NOT_AUTHORIZED

MQRC_QMGR_NAME_ERROR

MQRC_QMGR_NOT_AVAILABLE

The Backout, Commit, Connect, and Disconnect methods set errors
matching those set by the MQI calls MQBACK, MQCMIT, MQCONN, and
MQDISC respectively.

96 MQSeries link LotusScript Extension User's Guide

AlternateUserId Property
Read-Write. The alternate userid to be used to validate access to the Queue
Manager attributes.

This property may not be set if ConnectionStatus is TRUE.

Defined in:
MQQueueManager Class

Data Type:
String of 12 characters

Syntax:
To get: altuser$ = MQQueueManager.AlternateUserId

To set: MQQueueManager.AlternateUserId = altuser$

AuthorityEvent Property
Read-only. The MQI AuthorityEvent attribute. Controls whether
authorization events are generated. If the value is set to
MQEVR_ENABLED, an event is generated when unauthorized access to
the queue manager is attempted.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
MQEVR_DISABLED

MQEVR_ENABLED

Syntax:
To get: authevent& = MQQueueManager.AuthorityEvent

Chapter 5: MQQueueManager Class 97

CharacterSet Property
Read-only. The MQI CodedCharSetId attribute. This identifies the
character set used by the queue manager for all character strings defined in
the MQI. This includes the names of objects, and queue creation date and
time. It does not include application data carried in the message.

Defined in:
MQQueueManager Class

Data Type:
Long

Syntax:
To get: characterset& = MQQueueManager.CharacterSet

CommandInputQueueName Property
Read-only. The MQI CommandInputQName attribute. This is the name of
the queue to which applications, if authorized, can send commands.

Defined in:
MQQueueManager Class

Data Type:
String of 48 characters

Syntax:
To get: commandinputqname$ =
MQQueueManager.CommandInputQueueName

CommandLevel Property
Read-only. Returns the version and level of the MQSeries queue manager
implementation (MQI CommandLevel attribute)

Defined in:
MQQueueManager Class

Data Type:
Long

Syntax:
To get: level& = MQQueueManager.CommandLevel

98 MQSeries link LotusScript Extension User's Guide

CompletionCode Property
Read-only. Returns the completion code set by the last method or property
access issued against the object.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
MQCC_OK

MQCC_WARNING

MQCC_FAILED

Syntax:
To get: completioncode& = MQQueueManager.CompletionCode

ConnectionStatus Property
Read-only. Indicates if the object is connected to its queue manager or not.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
TRUE (-1)

FALSE

Syntax:
To get: status& = MQQueueManager.ConnectionStatus

Chapter 5: MQQueueManager Class 99

DeadLetterQueueName Property
Read-only. The MQI DeadLetterQName attribute. This is the name of a
queue defined on the local queue manager. Messages are sent to this queue
if they cannot be routed to their correct destination.

Defined in:
MQQueueManager Class

Data Type:
String of 48 characters

Syntax:
To get: dlqname$ = MQQueueManager.DeadLetterQueueName

DefaultTransmissionQueueName Property
Read-only. The MQI DefXmitQName attribute. This is the name of the
transmission queue, that holds messages prior to them being sent to
another queue manager, if no other transmission queue is specified.

Defined in:
MQQueueManager Class

Data Type:
String of 48 characters

Syntax:
To get: defxmitqname$ =
MQQueueManager.DefaultTransmissionQueueName

Description Property
Read-only. The MQI QMgrDesc attribute. Use this property to hold a
descriptive commentary. The content of this property has no significance to
the queue manager. It must not contain any null characters - it is padded
with blanks when necessary.

Defined in:
MQQueueManager Class

Data Type:
String of 64 characters

Syntax:
To get: description$ = MQQueueManager.Description

100 MQSeries link LotusScript Extension User's Guide

InhibitEvent Property
Read-only. The MQI InhibitEvent attribute. This determines whether or
not Inhibit Get and Inhibit Put events are generated.

If it is set to MQEVR_ENABLED, an event is generated when the Get
method is used against a queue that prevents any messages being removed
from it. Similarly, an event is generated when the Put method is used
against a queue that prevents any messages being placed on it.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
MQEVR_DISABLED

MQEVR_ENABLED

Syntax:
To get: inhibevent& = MQQueueManager.InhibitEvent

IsConnected Property
Read-only. Indicates if the object is connected to its queue manager or not.
This property is exactly the same as the ConnectStatus property.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
TRUE (-1)

FALSE

Syntax:
To get: status& = MQQueueManager.IsConnected

Chapter 5: MQQueueManager Class 101

LocalEvent Property
Read-only. The MQI LocalEvent attribute. This determines whether or not
local events are generated. A local event is generated when an application
is unable to access a local queue. For more information see the MQSeries
Programmable System Management manual.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
MQEVR_DISABLED

MQEVR_ENABLED

Syntax:
To get: localevent& = MQQueueManager.LocalEvent

MaximumHandles Property
Read-only. The MQI MaxHandles attribute. This is the maximum number
of open handles that any one task can have at the same time.

Defined in:
MQQueueManager Class

Data Type:
Long

Syntax:
To get: maxhandles& = MQQueueManager.MaximumHandles

MaximumMessageLength Property
Read-only. The MQI MaxMsgLength Queue Manager attribute. This is the
maximum length of a message, in bytes, that the queue manager can
handle.

Defined in:
MQQueueManager Class

Data Type:
Long

Syntax:
To get: maxmessagelength& = MQQueueManager.MaximumMessageLength

102 MQSeries link LotusScript Extension User's Guide

MaximumPriority Property
Read-only. The MQI MaxPriority attribute. This is the maximum message
priority supported by the queue manager, zero being the lowest.

Defined in:
MQQueueManager Class

Data Type:
Long

Syntax:
To get: maxpriority& = MQQueueManager.MaximumPriority

MaximumUncommittedMessages Property
Read-only. The MQI MaxUncommittedMsgs attribute. This is the
maximum number of uncommitted messages that can exist within a unit of
work.

Defined in:
MQQueueManager Class

Data Type:
Long

Syntax:
To get: maxuncommitted& =
MQQueueManager.MaximumUncommittedMessages

Name Property
Read-write. The MQI QMgrName attribute. This is the name of the queue
manager to which an application is connected.

This property cannot be written once the MQQueueManager is Connected.

Defined in:
MQQueueManager Class

Data Type:
String of 48 characters

Syntax:
To get: name$ = MQQueueManager.Name

To set: MQQueueManager.Name = name$

Chapter 5: MQQueueManager Class 103

PerformanceEvent Property
Read-only. The MQI PerformanceEvent attribute. This determines whether
or not performance events are generated. For more information see the
MQSeries Programmable System Management manual.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
MQEVR_DISABLED

MQEVR_ENABLED

Syntax:
To get: perfevent& = MQQueueManager.PerformanceEvent

Platform Property
Read-only. The MQI Platform attribute. This is the platform that the queue
manager is running on.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
MQPL_AIX

MQPL_MVS

MQPL_OS2

MQPL_OS400

MQPL_UNIX

MQPL_WINDOWS_NT

Syntax:
To get: platform& = MQQueueManager.Platform

104 MQSeries link LotusScript Extension User's Guide

ReasonCode Property
Read-only. Returns the reason code set by the last method or property
access issued against the object.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual.

Syntax:
To get: reasoncode& = MQQueueManager.ReasonCode

RemoteEvent Property
Read-only. The MQI RemoteEvent attribute. This controls whether or not
remote events are generated. A remote event is raised when an application
cannot access a queue on another queue manager. For more information
see the MQSeries Programmable System Management manual.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
MQEVR_DISABLED

MQEVR_ENABLED

Syntax:
To get: remoteevent& = MQQueueManager.RemoteEvent

Chapter 5: MQQueueManager Class 105

StartStopEvent Property
Read-only. The MQI StartStopEvent attribute. This controls whether or not
start and stop events are raised. A start event is raised when a queue
manager is started. A stop event is raised when a request is made for a
queue manager to stop or quiesce. For more information see the MQSeries
Programmable System Management manual.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
MQEVR_DISABLED

MQEVR_ENABLED

Syntax:
To get: strstpevent& = MQQueueManager.StartStopEvent

SyncPointAvailability Property
Read-only. The MQI SyncPoint attribute. This indicates whether or not the
queue manager supports units or work and syncpointing when you use the
Put and Get methods in the MQQueue Class.

Defined in:
MQQueueManager Class

Data Type:
Long

Legal Values:
MQSP_AVAILABLE

MQSP_NOT_AVAILABLE

Syntax:
To get: syncpointavailability& = MQQueueManager.SyncPointAvailability

106 MQSeries link LotusScript Extension User's Guide

TriggerInterval Property
Read-only. The MQI TriggerInterval attribute. This is a time interval (in
milliseconds) used to restrict the number of trigger messages that are
generated. This is only relevant when the value of the MQQueue Class
property, TriggerType, is MQTT_FIRST.

Defined in:
MQQueueManager Class

Data Type:
Long

Syntax:
To get: trigint& = MQQueueManager.TriggerInterval

AccessProcess Method
Creates a new MQProcess object and associates it with this
MQQueueManager object. It sets the name property and the alternate
userid of the MQProcess object, and attempts to open it for inquire.

If you do not wish to use alternate userid validation, set this parameter to
"".

Defined in:
MQQueueManager Class

Syntax:
Set process = MQQueueManager.AccessProcess(Name$, AlternateUserId$)

Parameters:
Name$

String. Name of MQSeries Process definition.

AlternateUserId$

String. The alternate userid to validate access to the process object.

Chapter 5: MQQueueManager Class 107

AccessQueue Method
Creates a new MQQueue object and associates it with this
MQQueueManager object. It sets the Name, OpenOptions,
DynamicQueueName and AlternateUserId properties of the MQQueue
object to the values provided, and attempts to open it.

If the open is unsuccessful the call fails. An error event is raised against the
object, the object's ReasonCode and CompletionCode are set, and the
MQSession ReasonCode and CompletionCode are set.

All parameters are mandatory, but DynamicQueueName,
QueueManagerName, and AlternateUserId may be set to the default of "" if
they are not needed.

OpenOptions control the operations that can be performed on a queue. The
OpenOption MQOO_INQUIRE is optional, it is automatically added to the
options your application supplies. The options are listed in the MQSeries
Application Programming Reference manual, under the MQOPEN call. They
include:

MQOO_INPUT_SHARED - allowing more than one application to get
messages from this queue, where they also open the queue using the
MQOO_INPUT_SHARED option.

MQOO_INPUT_EXCLUSIVE - gives your application exclusive access to a
queue

MQOO_SET - enables you to change the attributes of the queue after you
have opened it.

Set the QueueManagerName to "" if the queue to be opened is local.
Otherwise it should be set to the name of the remote queue manager that
owns the queue, and an attempt is made to open a local definition of the
remote queue.

See the MQSeries Application Programming Guide for more information on
remote queue name resolution and queue manager aliasing.

If the Name property is set to a model queue name, specify the name of the
dynamic queue to be created in the DynamicQueueName$ parameter. If the
value provided in the DynamicQueueName$ parameter is "", the value set
into the queue object and used on the open call is "AMQ.*".

See the MQSeries Application Programming Guide for more information on
naming dynamic queues.

Defined in:
MQQueueManager Class

108 MQSeries link LotusScript Extension User's Guide

Syntax:
Set queue = MQQueueManager.AccessQueue(Name$, OpenOptions&,
QueueManagerName$, DynamicQueueName$, AlternateUserId$)

Parameter:
Name$

String. Name of MQSeries queue.

OpenOptions&

Long. Options to be used when queue is opened.

See the MQSeries Application Programming Reference manual for more
information.

QueueManagerName$

String. Name of the queue manager that owns the queue to be opened.
A value of "" implies the queue manager is local.

DynamicQueueName$

String. The name assigned to the dynamic queue at the time the queue
is opened when the Name$ parameter is specified as a model queue.

AlternateUserId$

String. The alternate userid used to validate access when opening the
queue.

Backout Method
Backs out any uncommitted message puts and gets that have occurred as
part of a unit of work since the last syncpoint.

Defined in:
MQQueueManager Class

Syntax:
Call MQQueueManager.Backout

ClearErrorCodes Method
Resets the CompletionCode to MQCC_OK and the ReasonCode to
MQRC_NONE for both the MQQueueManager Class and the MQSession
Class.

Defined in:
MQQueueManager Class

Syntax:
Call MQQueueManager.ClearErrorCodes

Chapter 5: MQQueueManager Class 109

Commit Method
Commits any message puts and gets that have occurred as part of a unit of
work since the last syncpoint.

Defined in:
MQQueueManager Class

Syntax:
Call MQQueueManager.Commit

Connect Method
Connects the MQQueueManager object to a real Queue Manager via the
MQSeries client or server.

Sets ConnectionStatus to TRUE.

A maximum of one MQQueueManager object per LotusScript instance is
allowed to connect to a Queue Manager.

Defined in:
MQQueueManager Class

Syntax:
Call MQQueueManager.Connect

Disconnect Method
Disconnects the MQQueueManager object from the Queue Manager.

Sets ConnectionStatus to FALSE.

All Queue objects associated withthe MQQueueManager object are made
unusable and cannot be re-opened.

Any uncommitted changes (message puts and gets) are committed.

Defined in:
MQQueueManager Class

Syntax:
Call MQQueueManager.Disconnect

110 MQSeries link LotusScript Extension User's Guide

MQQueue Class

This represents a connection to an MQSeries Queue. This connection is
provided by an associated MQQueueManager object. When an object of this
class is destroyed it is automatically closed.

Containment:
Contained by the MQQueueManager Class .

Properties:
AlternateUserId Property

BackoutRequeueName Property

BackoutThreshold Property

BaseQueueName Property

CloseOptions Property

CompletionCode Property

CreationDateTime Property

CurrentDepth Property

DefaultInputOpenOption Property

DefaultPersistence Property

DefaultPriority Property

DefinitionType Property

DepthHighEvent Property

DepthHighLimit Property

DepthLowEvent Property

DepthLowLimit Property

DepthMaximumEvent Property

Description Property

HardenGetBackout Property

InhibitGet Property

InhibitPut Property

InitiationQueueName Property

MaximumDepth Property

MaximumMessageLength Property

MessageDeliverySequence Property

Name Property

Chapter 5: MQQueue Class 111

OpenInputCount Property

OpenOptions Property

OpenOutputCount Property

OpenStatus Property

ProcessName Property

QueueType Property

ReasonCode Property

RemoteQueueManagerName Property

RemoteQueueName Property

RetentionInterval Property

Scope Property

ServiceInterval Property

ServiceIntervalEvent Property

Shareability Property

TransmissionQueueName Property

TriggerControl Property

TriggerData Property

TriggerDepth Property

TriggerMessagePriority Property

TriggerType Property

Usage Property

Methods:
ClearErrorCodes Method

Get Method

Put Method

LotusScript Events:
Mqerror

Mqwarning

Creation:
Use the AccessQueue Method from the MQQueueManager Class.

112 MQSeries link LotusScript Extension User's Guide

Property Access:
If the queue object is not connected to a queue manager, you can read the
following properties:

AlternateUserId

CompletionCode

Name

OpenOptions

OpenStatus

ReasonCode

and you can write to:

CloseOptions

 If the queue object is connected to a queue manager, you can read all the
properties.

Note Reading a property not listed above, such as TriggerControl, will
cause an implicit connection to the underlying queue manager.

Queue Attribute properties:
Properties not listed in the previous section are all attributes of the
underlying MQSeries Queue. They can be accessed only if the object is
connected to a queue manager, and the user's userid is authorised for
Inquire or Set against that queue. If an alternate userid is set and the current
userid is authorised to use it, then the alternate userid is checked for
authorisation instead.

The property must be an appropriate property for the given QueueType
(see the MQSeries Application Programming Reference manual).

If these conditions do not apply, then the property access will set a
CompletionCode of MQCC_FAILED and one of the following ReasonCodes

MQRC_CONNECTION_BROKEN

MQRC_NOT_AUTHORIZED

MQRC_QUEUE_MGR_NAME_ERROR

MQRC_QUEUE_MGR_NOT_CONNECTED

MQRC_SELECTOR_NOT_FOR_TYPE (CompletionCode is
MQCC_WARNING)

Chapter 5: MQQueue Class 113

Opening a queue:
The only way to create an MQQueue object is by using the
MQQueueManager AccessQueue method, unless an implicit connection has
taken place. The MQQueue object remains open (OpenStatus=TRUE) until
it is deleted. The value of the MQQueue CloseOptions property controls
the behaviour of the close operation that takes place when the MQQueue
object is deleted.

The MQQueueManager AccessQueue method opens the queue using the
OpenOptions parameter with the automatic addition of the
MQOO_INQUIRE value. MQSeries validates the OpenOptions against the
user authorisation as part of the open queue process.

Tip Check that the OpenOptions are appropriate for the actions to be
performed on a queue (put, get, etc.). In certain circumstances, if the
OpenOptions are insufficient, the MQLSX attempts to close and reopen the
queue with additional OpenOptions:

A property get is always allowed, as the OpenOptions always
include MQOO_INQUIRE.

If a queue property set is attempted and the OpenOptions do not
include MQOO_SET, the queue is closed and reopened with
MQOO_SET added to the OpenOptions.

If a put is attempted and the OpenOptions do not include
MQOO_OUTPUT, the queue is closed and reopened with
MQOO_OUTPUT added to the OpenOptions.

 If a put is attempted and the MQPMO options include
MQPMO_SET_IDENTITY_CONTEXT or
MQPMO_SET_ALL_CONTEXT, but the OpenOptions do not permit
this, the queue is closed and reopened with
MQOO_SET_IDENTITY_CONTEXT or
MQOO_SET_ALL_CONTEXT, as appropriate.

If a get is attempted and the OpenOptions do not include any of the
MQOO_INPUT_* options, the queue is closed and reopened with
MQOO_INPUT_AS_Q_DEF added to the OpenOptions.

If a get is attempted and the MQGetMessageOptions request
MQGMO_BROWSE_*, but the OpenOptions do not include
MQOO_BROWSE, the queue is closed and reopened with
MQOO_BROWSE added to the OpenOptions.

Note A queue will not be reopened if it is a temporary dynamic queue, or
the queue is already open for exclusive input. In these cases, the method
call to reopen the queue will fail with either
MQRC_REOPEN_TEMPORARY_Q_ERROR or
MQRC_REOPEN_EXCL_INPUT_ERROR, as appropriate.

114 MQSeries link LotusScript Extension User's Guide

If a queue is opened for Browse and a reopen occurred for one of the
reasons listed, subsequent attempts to do a get with one of the following:

MQGMO_BROWSE_NEXT

MQGMO_BROWSE_MSG_UNDER_CURSOR

MQGMO_MSG_UNDER_CURSOR

will be rejected with MQRC_CURSOR_NOT_VALID.

Chapter 5: MQQueue Class 115

AlternateUserId Property
Read-only. The alternate userid used to validate access to the Queue when
it was opened.

Defined in:
MQQueue Class

Data Type:
String of 12 characters

Syntax:
To get: altuser$ = MQQueue.AlternateUserId

BackoutRequeueName Property
Read-only. The MQI BackOutRequeueQName attribute. This is the name
of a queue that an application can use to put a message that is causing a
unit of work to fail.

The message concerned is identified by the value of its BackoutCount
property, which is incremented each time it causes a unit of work to fail.
The application can test for the value held in the BackoutCount property to
be greater than the value held in the BackoutThreshold property, and move
the message to the queue named in the BackoutRequeueName property.

Defined in:
MQQueue Class

Data Type:
String of 48 characters

Syntax:
To get: backoutrequeuename$ = MQQueue.BackoutRequeueName

116 MQSeries link LotusScript Extension User's Guide

BackoutThreshold Property
Read-only. The MQI BackoutThreshold attribute. This property is provided
for an application to use. It is used in conjunction with the
BackoutRequeueName and BackoutCount (this is a property of the
MQSeries message). The value held in this property is available for
comparison with the BackoutCount value, by an application, to enable the
application to remove a problem message that is part of a unit of work.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
See the MQSeries Programming Reference manual

Syntax:
To get: backoutthreshold& =MQQueue.BackoutThreshold

BaseQueueName Property
Read-only. The queue name to which the alias resolves.

Valid only for alias queues.

Defined in:
MQQueue Class

Data Type:
String of 48 characters

Syntax:
To get: baseqname$ = MQQueue.BaseQueueName

Chapter 5: MQQueue Class 117

CloseOptions Property
Read-Write. Options used to control what happens when the Queue is
closed.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQCO_NONE

MQCO_DELETE

MQCO_DELETE_PURGE

MQCO_DELETE and MQCO_DELETE_PURGE are valid only for dynamic
queues.

Syntax:
To get: closeopt& = MQQueue.CloseOptions

To set: MQQueue.CloseOptions = closeopt&

CompletionCode Property
Read-only. Returns the completion code set by the last method or property
access issued against the object.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQCC_OK

MQCC_WARNING

MQCC_FAILED

Syntax:
To get: completioncode& = MQQueue.CompletionCode

118 MQSeries link LotusScript Extension User's Guide

CreationDateTime Property
Read-only. Date and time this queue was created.

Defined in:
MQQueue Class

Data Type:
Variant of type 7 (date/time) or EMPTY

Syntax:
To get: datetime = MQQueue.CreationDateTime

CurrentDepth Property
Read-only. The MQI CurrentQDepth attribute. The number of messages
currently on the queue.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: currentdepth& = MQQueue.CurrentDepth

DefaultInputOpenOption Property
Read-only. The MQI DefInputOpenOption attribute. This controls the way
that the queue is opened if the OpenOption specifies
MQOO_INPUT_AS_Q_DEF.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQOO_INPUT_EXCLUSIVE

MQOO_INPUT_SHARED

Syntax:
To get: defaultinop& = MQQueue.DefaultInputOpenOption

Chapter 5: MQQueue Class 119

DefaultPersistence Property
Read-only. The MQI DefPersistence attribute. The default persistence for
messages on a queue.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: defpersistence& = MQQueue.DefaultPersistence

DefaultPriority Property
Read-only. The MQI DefPriority attribute. The default priority for
messages on a queue.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: defpriority& = MQQueue.DefaultPriority

DefinitionType Property
Read-only. The MQI DefinitionType attribute. This describes the type of
queue. A model queue is needed to create a dynamic queue. A queue of
type MQQDT_PREDEFINED is a permanent queue.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:

MQQDT_PREDEFINED

MQQDT_PERMANENT_DYNAMIC

MQQDT_TEMPORARY_DYNAMIC

Syntax:
To get: deftype& = MQQueue.DefinitionType

120 MQSeries link LotusScript Extension User's Guide

DepthHighEvent Property
Read-only. The MQI QDepthHighEvent attribute.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQEVR_DISABLED

MQEVR_ENABLED

Syntax:
To get: depthhighevent& = MQQueue.DepthHighEvent

DepthHighLimit Property
Read-only. The MQI QDepthHighLimit attribute.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: depthhighlimit& = MQQueue.DepthHighLimit

DepthLowEvent Property
Read-only. The MQI QDepthLowEvent attribute.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQEVR_DISABLED

MQEVR_ENABLED

Syntax:
To get: depthlowevent& = MQQueue.DepthLowEvent

Chapter 5: MQQueue Class 121

DepthLowLimit Property
Read-only. The MQI QDepthLowLimit attribute.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: depthlowlimit& = MQQueue.DepthLowLimit

DepthMaximumEvent Property
Read-only. The MQI QDepthMaxEvent attribute.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQEVR_DISABLED

MQEVR_ENABLED

Syntax:
To get: depthmaximumevent& = MQQueue.DepthMaximumEvent

Description Property
Read-only. A description of the queue.

Defined in:
MQQueue Class

Data Type:
String of 64 characters

Syntax:
To get: description$ = MQQueue.Description

122 MQSeries link LotusScript Extension User's Guide

HardenGetBackout Property
Read-only. Whether to maintain an accurate backout count.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQQA_BACKOUT_HARDENED

MQQA_BACKOUT_NOT HARDENED

Syntax:
To get: hardengetback& = MQQueue.HardenGetBackout

InhibitGet Property
Read-write. The MQI InhibitGet attribute.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQQA_GET_INHIBITED

MQQA_GET_ALLOWED

Syntax:
To get: getstatus& = MQQueue.InhibitGet

To set: MQQueue.InhibitGet = getstatus&

Chapter 5: MQQueue Class 123

InhibitPut Property
Read-write. The MQI InhibitPut attribute.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQQA_PUT_INHIBITED

MQQA_PUT_ALLOWED

Syntax:
To get: putstatus& = MQQueue.InhibitPut

To set: MQQueue.InhibitPut = putstatus&

InitiationQueueName Property
Read-only. Name of initiation queue.

Defined in:
MQQueue ClassMQQueue Class

Data Type:
String of 48 characters

Syntax:
To get: initqname$ = MQQueue.InitiationQueueName

124 MQSeries link LotusScript Extension User's Guide

IsOpen Property
Read-only. Indicates if the queue is Opened or not. Initial value is TRUE
after AccessQueue method. This property is exactly the same as the
OpenStatus property.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
TRUE (-1)

FALSE

Syntax:
To get: status& = MQQueue.IsOpen

MaximumDepth Property
Read-only. Maximum queue depth.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: maxdepth& = MQQueue.MaximumDepth

MaximumMessageLength Property
Read-only. The MQI MaxMsgLength attribute. This is the maximum
length message, in bytes, that this queue will accept.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: maxmlength& = MQQueue.MaximumMessageLength

Chapter 5: MQQueue Class 125

MessageDeliverySequence Property
Read-only. Message delivery sequence.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQMDS_PRIORITY

MQMDS_FIFO

Syntax:
To get: messdelseq& = MQQueue.MessageDeliverySequence

Name Property
Read-only. The MQI QName attribute. This is the name of a queue defined
on the local queue manager.

Defined in:
MQQueue Class

Data Type:
String of 48 characters

Syntax:
To get: name$ = MQQueue.Name

OpenInputCount Property
Read-only. Number of opens for input.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: openincount& = MQQueue.OpenInputCount

126 MQSeries link LotusScript Extension User's Guide

OpenOptions Property
Read-only. These are the options for which the queue is initially opened
(specified in the AccessQueue method in the MQQueueManager Class).
However, these may be extended if an implicit re-open is performed.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual, under the
MQOPEN call

Syntax:
To get: openopt& = Queue.OpenOptions

OpenOutputCount Property
Read-only. Number of opens for output.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: openoutcount& = MQQueue.OpenOutputCount

Chapter 5: MQQueue Class 127

OpenStatus Property
Read-only. Indicates if the queue is Opened or not. Initial value is TRUE
after AccessQueue method.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
TRUE (-1)

FALSE

Syntax:
To get: status& = MQQueue.OpenStatus

ProcessName Property
Read-only. The MQI ProcessName attribute.

Defined in:
MQQueue Class

Data Type:
String of 48 characters

Syntax:
To get: procname$ = MQQueue.ProcessName

128 MQSeries link LotusScript Extension User's Guide

QueueType Property
Read-only. The MQI QType attribute.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQQT_ALIAS

MQQT_LOCAL

MQQT_MODEL

MQQT_REMOTE

Syntax:
To get: queuetype& = MQQueue.QueueType

ReasonCode Property
Read-only. Returns the reason code set by the last method or property
access issued against the object.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual.

Syntax:
To get: reasoncode& = Queue.ReasonCode

Chapter 5: MQQueue Class 129

RemoteQueueManagerName Property
Read-only. Name of remote queue manager.

Valid for remote queues only.

Defined in:
MQQueue Class

Data Type:
String of 48 characters

Syntax:
To get: remqmanname$ = MQQueue.RemoteQueueManagerName

RemoteQueueName Property
Read-only. The name of the queue as it is known on the remote queue
manager.

Valid for remote queues only.

Defined in:
MQQueue Class

Data Type:
String of 48 characters

Syntax:
To get: remqname$ = MQQueue.RemoteQueueName

RetentionInterval Property
Read-only. The period of time for which the queue should be retained.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: retinterval& = MQQueue.RetentionInterval

130 MQSeries link LotusScript Extension User's Guide

Scope Property
Read-only. Controls whether an entry for this queue also exists in a cell
directory.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQSCO_Q_MGR

MQSCO_CELL

Syntax:
To get: scope& = MQQueue.Scope

ServiceInterval Property
Read-only. The MQI QServiceInterval attribute.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: serviceinterval& = MQQueue.ServiceInterval

Chapter 5: MQQueue Class 131

ServiceIntervalEvent Property
Read-only. The MQI QServiceIntervalEvent attribute.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQQSIE_HIGH

MQQSIE_OK

MQQSIE_NONE

Syntax:
To get: serviceintervalevent& = MQQueue.ServiceIntervalEvent

Shareability Property
Read-only. Queue shareability.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQQA_SHAREABLE

MQQA_NOT SHAREABLE

Syntax:
To get: shareability& = MQQueue.Shareability

132 MQSeries link LotusScript Extension User's Guide

TransmissionQueueName Property
Read-only. Transmission queue name.

Valid for remote queues only.

Defined in:
MQQueue Class

Data Type:
String of 48 characters

Syntax:
To get: transqname$ = MQQueue.TransmissionQueueName

TriggerControl Property
Read-write. Trigger control.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQTC_OFF

MQTC_ON

Syntax:
To get: trigcontrol& = MQQueue.TriggerControl

To set: MQQueue.TriggerControl = trigcontrol&

TriggerData Property
Read-write. Trigger data.

Defined in:
MQQueue Class

Data Type:
String of 64 characters

Syntax:
To get: trigdata$ = MQQueue.TriggerData

To set: MQQueue.TriggerData = trigdata$

Chapter 5: MQQueue Class 133

TriggerDepth Property
Read-write. The number of messages that have to be on the queue before a
trigger message is written.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: trigdepth& = MQQueue.TriggerDepth

To set: MQQueue.TriggerDepth = trigdepth&

TriggerMessagePriority Property
Read-write. Threshold message priority for triggers.

Defined in:
MQQueue Class

Data Type:
Long

Syntax:
To get: trigmesspriority& = MQQueue.TriggerMessagePriority

To set: MQQueue.TriggerMessagePriority = trigmesspriority&

134 MQSeries link LotusScript Extension User's Guide

TriggerType Property
Read-write. Trigger type.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQTT_NONE

MQTT_FIRST

MQTT_EVERY

MQTT_DEPTH

Syntax:
To get: trigtype& = MQQueue.TriggerType

To set: MQQueue.TriggerType = Trigtype&

Usage Property
Read-only. Indicates what the queue is used for.

Defined in:
MQQueue Class

Data Type:
Long

Legal Values:
MQUS_NORMAL

MQUS_TRANSMISSION

Syntax:
To get: usage& = MQQueue.Usage

Chapter 5: MQQueue Class 135

ClearErrorCodes Method
Resets the CompletionCode to MQCC_OK and the ReasonCode to
MQRC_NONE for both the MQQueue Class and the MQSession Class.

Defined in:
MQQueue Class

Syntax:
Call MQQueue.ClearErrorCodes

Put Method
Places a message onto the queue.

This method takes an MQMessage object as a parameter. The Message
Descriptor (MQMD) properties of this object may be altered as a result of
this method. The values they have immediately after this method has run
are the values that were put onto the MQSeries queue.

Modifications to the MQMessage object after the Put has completed do not
affect the actual message on the MQSeries queue.

Defined in:
MQQueue Class

Syntax:
Call MQQueue.Put(Message , PutMsgOptions&)

Parameters:
Message

MQMessage Object representing message to be put.

PutMsgOptions&

MQPutMessageOptions object containing options to control the put
operation.

136 MQSeries link LotusScript Extension User's Guide

Get Method
Retrieves a message from the queue.

This method takes an MQMessage object as a parameter. It uses some of
the fields in this object's MQMD as input parameters - in particular the
MessageId(MsgId) and CorrelationId(CorrelId), so it is important to ensure
that these are set as required (see the MQSeries Application Programming
Reference manual for details).

If the method succeeds then the MQMD and Message Data portions of the
MQMessage object are completely replaced with the MQMD and Message
Data from the incoming message. The MQMessage control properties are
set as follows

MessageLength is set to length of the MQSeries Message

DataLength is set to length of the MQSeries Message

DataOffset is set to zero.

Defined in:
MQQueue Class

Syntax:
Call MQQueue.Get(Message , GetMsgOptions&)

Parameters:
MQMessage

MQMessage Object representing message to be retrieved.

GetMsgOptions&

MQGetMessageOptions object to control the get operation.

Chapter 5: MQQueue Class 137

MQMessage Class

This class represents an MQSeries message. It includes properties to
encapsulate the MQSeries message descriptor (MQMD), and provides a
buffer to hold the application-defined message data.

The class includes methods (Write methods) to copy data from a
LotusScript application to an MQMessage object and similarly methods
(Read methods) to copy data from an MQMessage object to a LotusScript
application. The class manages the allocation and deallocation of memory
for the buffer automatically. The application does not have to declare the
size of the buffer when an MQMessage object is created as the buffer grows
to accommodate data written to it.

Note You will not be able to place a message onto an MQSeries queue if
the buffer size exceeds the MaximumMessageLength property of that
queue.

Once it has been constructed an MQMessage Object may be Put onto an
MQSeries queue using the MQQueue.Put method. This method takes a
copy of the MQMD and message data portions of the object and places that
copy on the queue - so the application may modify or delete an
MQMessage object after the Put, without affecting the message on the
MQSeries queue. The queue manager may adjust some of fields in the
MQMD when it copies the message on to the MQSeries queue. These
adjustments are made to the copy of the MQMD held in the MQMessage
object so that, unless subsequently modified, the MQMessage object is a
true copy of what actually went onto the MQSeries queue.

An incoming message may be read into an MQMessage Object using the
MQQueue.Get method. This replaces any MQMD or message data that
may already have been in the MQMessage object with values from the
incoming message, adjusting the size of the MQMessage object's data buffer
to match the size of the incoming message data.

Containment:
Messages are contained by the MQSession Class.

Properties:
The control properties are:

CompletionCode Property

DataLength Property

DataOffset Property

MessageLength Property

ReasonCode Property

138 MQSeries link LotusScript Extension User's Guide

The Message Descriptor Properties are:

AccountingToken Property

AccountingTokenHex Property

ApplicationIdData Property

ApplicationOriginData Property

BackoutCount Property

CharacterSet Property

CorrelationId Property

CorrelationIdHex Property

Encoding Property

Expiry Property

Feedback Property

Format Property

MessageId Property

MessageIdHex Property

MessageType Property

Persistence Property

Priority Property

PutApplicationName Property

PutApplicationType Property

PutDateTime Property

ReplyToQueueManagerName Property

ReplyToQueueName Property

Report Property

UserId Property

Chapter 5: MQMessage Class 139

Methods:
ClearErrorCodes Method

ClearMessage Method

ReadUnsignedByte Method

ReadShort Method

ReadLong Method

ReadString Method

ResizeBuffer Method

WriteUnsignedByte Method

WriteShort Method

WriteLong Method

WriteString Method

LotusScript Events:
Mqerror

Mqwarning

Creation:
New creates a new MQMessage object. Its Message Descriptor properties
are initially set to default values, and its Message Data buffer is empty

Syntax:
Dim msg As New MQMessage or

Set msg = New MQMessage

Property Access:
All properties can be read at any time.

The control properties are read-only, except for DataOffset which is
read-write. The Message Descriptor properties are all read-write, except
BackoutCount which is read-only.

Note however that some of the MQMD properties may be modified by the
Queue Manager when the message is put onto an MQSeries queue. See the
MQSeries Application Programming Reference manual for details.

You can pass binary data to an MQSeries message by setting the
CharacterSet property to the Coded Character Set Identifier of the queue
manager (MQCCSI_Q_MGR), and passing it a string. You can use the chr$
function to set non-character data into the string.

140 MQSeries link LotusScript Extension User's Guide

Data Conversion:
The ReadLong, ReadShort,WriteLong, and WriteShort methods perform
data conversion. They convert between the LotusScript internal formats,
and the MQSeries message formats as defined by the Encoding and
CharacterSet properties from the message descriptor. When writing a
message you should, if possible, set values into Encoding and CharacterSet
that match the characteristics of the recipient of the message before issuing
a WriteLong or WriteShort method. When reading a message this is not
normally required as these values will have been set from those in the
incoming MQMD.

Chapter 5: MQMessage Class 141

CompletionCode Property
Read-only. Returns the MQSeries completion code set by the most recent
method or property access issued against this object.

Defined in:
MQMessage Class

Data Type:
Long

Legal Values:
MQCC_OK

MQCC_WARNING

MQCC_FAILED

Syntax:
To get: completioncode& = MQMessage.CompletionCode

DataLength Property
Read-only. This property returns the value

Message.MessageLength - Message.DataOffset

It can be used before a Read method, to check that the expected number of
characters are actually present in the buffer.

The initial value is zero.

Defined in:
MQMessage Class

Data Type:
Long

Syntax:
To get: bytesleft& = MQMessage.DataLength

142 MQSeries link LotusScript Extension User's Guide

DataOffset Property
Read-write. The current position within the Message Data portion of the
message object.

The value is expressed as a character offset from the start of the message
data buffer; the first character in the buffer corresponds to a DataOffset
value of zero.

A read or write method commences its operation at the character
referenced by DataOffset. These methods process data in the buffer
sequentially from this position, and update DataOffset to point to the
character (if any) immediately following the last character processed.

DataOffset may only take values in the range 0..MessageLength inclusive.
When DataOffset = MessageLength it is pointing to the end (first invalid
character) of the buffer. Write methods are permitted in this situation - they
extend the data in the buffer and increase MessageLength by the number of
characters added. Reading beyond the end of the buffer is not supported.

The initial value is zero.

Defined in:
MQMessage Class

Data Type:
Long

Syntax:
To get: currpos& = MQMessage.DataOffset

To set: MQMessage.DataOffset = currpos&

Chapter 5: MQMessage Class 143

MessageLength Property
Read-only. Returns the total length of the Message Data portion of the
message object in characters, irrespective of the value of DataOffset.

The initial value is zero. It is set to the incoming Message Length after a Get
method invocation that referenced this message object. It is incremented if
the application uses a Write method to add data to the object. It is
unaffected by Read methods.

Defined in:
MQMessage Class

Data Type:
Long

Syntax:
To get: msglength& = MQMessage.MessageLength

ReasonCode Property
Read-only. Returns the reason code set by the most recent method or
property access issued against this object.

Defined in:
MQMessage Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual.

Syntax:
To get: reasoncode& = MQMessage.ReasonCode

144 MQSeries link LotusScript Extension User's Guide

AccountingToken Property
Read-write. The MQMD AccountingToken - part of the message Identity
Context.

Note When setting this property you must specify all 32 characters.

Its initial value is all NULLS.

Defined in:
MQMessage Class

Data Type:
String of 32 characters

Syntax:
To get: actoken$ = MQMessage.AccountingToken

To set: MQMessage.AccountingToken = actoken$

AccountingTokenHex Property
Read-write. The MQMD AccountingToken - part of the message Identity
Context.

Every two characters represent the hexadecimal equivalent of a single
ASCII character. For example, the pair of characters "6" and "1" represent
the single character "a", the pair of characters "6" and "2" represent the
single character "b", and so on.

You must supply 64 valid hexadecimal characters.

Its initial value is "0..0"

Defined in:
MQMessage Class

Data Type:
String of 64 hexadecimal characters representing 32 ASCII characters

Syntax:
To get: actokenh$ = MQMessage.AccountingTokenHex

To set: MQMessage.AccountingTokenHex = actokenh$

Chapter 5: MQMessage Class 145

ApplicationIdData Property
Read-write. The MQMD ApplIdentityData - part of the message Identity
Context.

Its initial value is all blanks.

Defined in:
MQMessage Class

Data Type:
String of 32 characters

Syntax:
To get: applid$ = MQMessage.ApplicationIdData

To set: MQMessage.ApplicationIdData = applid$

ApplicationOriginData Property
Read-write. The MQMD ApplOriginData - part of the message origin
context.

Its initial value is all blanks.

Defined in:
MQMessage Class

Data Type:
String of 4 characters

Syntax:
To get: applor$ = MQMessage.ApplicationOriginData

To set: MQMessage.ApplicationOriginData = applor$

BackoutCount Property
Read-only. The MQMD BackoutCount.

Its initial value is 0

Defined in:
MQMessage Class

Data Type:
Long

Syntax:
To get: backoutct& = MQMessage.BackoutCount

146 MQSeries link LotusScript Extension User's Guide

CharacterSet Property
Read-write. The MQMD CodedCharSetId. This specifies the character set
used for the application data in the message.

Its initial value is the special value MQCCSI_Q_MGR.

If CharacterSet is set to MQCCSI_Q_MGR (the CharacterSet for the data is
the same as that for the queue manager), the WriteString method will not
perform codepage conversion.

For example:

msg.CharacterSet = MQCCSI_Q_MGR

msg.WriteString(chr$(n))

where 'n' is greater than or equal to zero and less than or equal to 255,
results in a single byte of value of 'n' being written to the buffer.

Defined in:
MQMessage Class

Data Type:
Long

Syntax:
To get: ccid& = MQMessage.CharacterSet

To set: MQMessage.CharacterSet = ccid&

Example:
If you want the string written out in codepage 437, issue

Message.CharacterSet = 437

Message.WriteString ("string to be written")

Set the value you want in the CharacterSet before issuing any WriteString
calls.

Chapter 5: MQMessage Class 147

CorrelationId Property
Read-write. The CorrelId to be included in the MQMD of a message when
put on a queue, also the Id to be matched against when getting a message
from a queue.

Note When setting this property you must specify all 24 characters.

Its initial value is all Nulls.

Defined in:
MQMessage Class

Data Type:
String of 24 characters

Syntax:
To get: correlid$ = MQMessage.CorrelationId

To set: MQMessage.CorrelationId = correlid$

CorrelationIdHex Property
Read-write. The CorrelId to be included in the MQMD of a message when
put on a queue, also the CorrelId to be matched against when getting a
message from a queue.

Every two characters of the string represent the hexadecimal equivalent of a
single ASCII character. For example, the pair of characters "6" and "1"
represent the single character "a", the pair of characters "6" and "2"
represent the single character "b", and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0..0".

Defined in:
MQMessage Class

Data Type:
String of 48 hexadecimal characters representing 24 ASCII characters

Syntax:
To get: correlidh$ = MQMessage.CorrelationIdHex

To set: MQMessage.CorrelationIdHex = correlidh$

148 MQSeries link LotusScript Extension User's Guide

Encoding Property
Read-write. The MQMD field that identifies the representation used for
numeric values in the application message data.

Its initial value is the special value MQENC_NATIVE, which varies by
platform.

Note Setting this property to MQENC_INTEGER_UNDEFINED has the
same results as setting it to the default, MQENC_NATIVE.

This property is used by the following methods:

ReadLong

WriteLong

ReadShort

WriteShort

Defined in:
MQMessage Class

Data Type:
Long

Syntax:
To get: encoding& = MQMessage.Encoding

To set: MQMessage.Encoding = encoding&

If you are preparing to write data to the message buffer, you should set this
field to match the characteristics of the receiving queue manager plaform if
you know what it is.

Expiry Property
Read-write. The MQMD expiry time field, expected in tenths of a second.

Its initial value is the special value MQEI_UNLIMITED

Defined in:
MQMessage Class

Data Type:
Long

Syntax:
To get: expiry& = MQMessage.Expiry

To set: MQMessage.Expiry = expiry&

Chapter 5: MQMessage Class 149

Feedback Property
Read-write. The MQMD feedback field.

Its initial value is the special value MQFB_NONE.

Defined in:
MQMessage Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual

Syntax:
To get: feedback& = MQMessage.Feedback

To set: MQMessage.Feedback = feedback&

Format Property
Read-write. The MQMD format field. Gives the name of a built-in or
user-defined format that describes the nature of the Message Data.

Its initial value is the special value MQFMT_NONE.

Defined in:
MQMessage Class

Data Type:
String of 8 characters

Syntax:
To get: format$ = MQMessage.Format

To set: MQMessage.Format = format$

150 MQSeries link LotusScript Extension User's Guide

MessageId Property
Read-write. The MessageId to be included in the MQMD of a message
when put on a queue, also the Id to be matched against when getting a
message from a queue.

Note When setting this property you must specify all 24 characters.

Its initial value is all Nulls.

Defined in:
MQMessage Class

Data Type:
String of 24 characters

Syntax:
To get: messageid$ = MQMessage.MessageId

To set: MQMessage.MessageId = messageid$

MessageIdHex Property
Read-write. The MessageId to be included in the MQMD of a message
when put on a queue, also the MessageId to be matched against when
getting a message from a queue.

Every two characters of the string represent the hexadecimal equivalent of a
single ASCII character. For example, the pair of characters "6" and "1"
represent the single character "a", the pair of characters "6" and "2"
represent the single character "b", and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0..0".

Defined in:
MQMessage Class

Data Type:
String of 48 hexadecimal characters representing 24 ASCII characters

Syntax:
To get: messageidh$ = MQMessage.MessageIdHex

To set: MQMessage.MessageIdHex = messageidh$

Chapter 5: MQMessage Class 151

MessageType Property
Read-write. The MQMD MsgType field.

Its initial value is MQMT_DATAGRAM.

Defined in:
MQMessage Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual

Syntax:
To get: msgtype& = MQMessage.MessageType

To set: MQMessage.MessageType = msgtype&

Persistence Property
Read-write. The message's persistence setting.

Its initial value is MQPER_PERSISTENCE_AS_Q_DEF.

Defined in:
MQMessage Class

Data Type:
Long

Syntax:
To get: persist& = MQMessage.Persistence

To set: MQMessage.Persistence = persist&

152 MQSeries link LotusScript Extension User's Guide

Priority Property
Read-write. The message's priority.

Its initial value is the special value MQPRI_PRIORITY_AS_Q_DEF

Defined in:
MQMessage Class

Data Type:
Long

Syntax:
To get: priority& = MQMessage.Priority

To set: MQMessage.Priority = priority&

PutApplicationName Property
Read-write. The MQMD PutApplName - part of the Message Origin
context.

Its initial value is all blanks.

Defined in:
MQMessage Class

Data Type:
String of 28 characters

Syntax:
To get: putapplnm$ = MQMessage.PutApplicationName

To set: MQMessage.PutApplicationName = putapplnm$

Chapter 5: MQMessage Class 153

PutApplicationType Property
Read-write. The MQMD PutApplType - part of the Message Origin
context.

Its initial value is MQAT_NO_CONTEXT

Defined in:
MQMessage Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual

Syntax:
To get: putappltp& = MQMessage.PutApplicationType

To set: MQMessage.PutApplicationType = putappltp&

PutDateTime Property
Read-write. This property combines the MQMD PutDate and PutTime
fields. These are part of the Message Origin context that indicate when the
message was put.

The LotusScript Extension converts between LotusScript date/time format
and the Date and Time formats used in an MQSeries MQMD. If a message
is received which has an invalid PutDate or PutTime, then the PutDateTime
property after the get method will be set to EMPTY.

Its initial value is EMPTY

Defined in:
MQMessage Class

Data Type:
Variant of type 7 (date/time) or EMPTY.

Syntax:
To get: datetime = MQMessage.PutDateTime

To set: MQMessage.PutDateTime = datetime

154 MQSeries link LotusScript Extension User's Guide

ReplyToQueueManagerName Property
Read-write. The MQMD ReplyToQMgr field.

Its initial value is all blanks

Defined in:
MQMessage Class

Data Type:
String of 48 characters

Syntax:
To get: replytoqmgr$ = MQMessage.ReplyToQueueManagerName

To set: MQMessage.ReplyToQueueManagerName = replytoqmgr$

ReplyToQueueName Property
Read-write. The MQMD ReplyToQ field.

Its initial value is all blanks

Defined in:
MQMessage Class

Data Type:
String of 48 characters

Syntax:
To get: replytoq$ = MQMessage.ReplyToQueueName

To set: MQMessage.ReplyToQueueName = replytoq$

Chapter 5: MQMessage Class 155

Report Property
Read-write. The message's Report options.

Its initial value is MQRO_NONE.

Defined in:
MQMessage Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual.

Syntax:
To get: report& = MQMessage.Report

To set: MQMessage.Report = report&

UserId Property
Read-write. The MQMD UserIdentifier - part of the message Identity
Context.

Its initial value is all blanks.

Defined in:
MQMessage Class

Data Type:
String of 12 characters

Syntax:
To get: userid$ = MQMessage.UserId

To set: MQMessage.UserId = userid$

ClearErrorCodes Method
Resets the CompletionCode to MQCC_OK and the ReasonCode to
MQRC_NONE for both the MQMessage Class and the MQSession Class.

Defined in:
MQMessage Class

Syntax:
Call MQMessage.ClearErrorCodes

156 MQSeries link LotusScript Extension User's Guide

ClearMessage Method
This method clears the data buffer portion of the MQMessage object. Any
Message Data in the data buffer is lost, as MessageLength, DataLength,
and DataOffset are all set to zero.

The Message Descriptor (MQMD) portion is unaffected; an application may
need to modify some of the MQMD fields before reusing the MQMessage
object. If you wish to set the MQMD fields back to initial values you should
use New to replace the object with a new instance.

Defined in:
MQMessage Class

Syntax:
Message.ClearMessage

ReadLong Method
This method reads 4 characters from the Message Data buffer, starting with
the character referred to by DataOffset and returns it as a Long (signed
4-byte) integer value.

The method fails if Message.DataLength is less than 4 when it is issued.

DataOffset is incremented by 4 and DataLength is decremented by 4 if the
method succeeds.

The 4 characters of message data are assumed to be a binary integer whose
encoding is specified by the Message.Encoding property. Conversion to
LotusScript representation is performed for the application.

Defined in:
MQMessage Class

Syntax:
bigint& = Message.ReadLong

Chapter 5: MQMessage Class 157

ReadShort Method
This method reads 2 characters from the Message Data buffer, starting with
the character referred to by DataOffset and returns it as an Integer (signed
2-byte) value.

The method fails if Message.DataLength is less than 2 when it is issued.

DataOffset is incremented by 2 and DataLength is decremented by 2 if the
method succeeds.

The 2 characters of message data are assumed to be a binary integer whose
encoding is specified by the Message.Encoding property. Conversion to
LotusScript representation is performed for the application.

Defined in:
MQMessage Class

Syntax:
count% = Message.ReadShort

ReadString Method
This method reads n characters from the Message Data buffer (where n can
be any number in the range 1 to 32000 inclusive) starting with the character
referred to by DataOffset and returns it as a LotusScript string.

The method fails if Message.DataLength is less than n when it is issued.

DataOffset is incremented by n and DataLength is decremented by n if the
method succeeds.

The n characters of message data are assumed to be a string whose
codepage is specified by the Message.CharacterSet property. Conversion to
LotusScript representation is performed for the application.

Defined in:
MQMessage Class

Syntax:
firstname$ = Message.ReadString(length&)

Parameter:
Length&

Long. Length of string field in characters.

158 MQSeries link LotusScript Extension User's Guide

ReadUnsignedByte Method
This method reads a single character, referred to by the DataOffset, from
the Message Data buffer and returns it as a single unsigned integer.

The method fails if the Message.DataLength is less than 1 when it is issued.

DataOffset is incremented by 1 and DataLength is decremented by 1 if the
method succeeds.

The character of the message data is assumed to be binary. There is no
data conversion.

Defined in:
MQMessage Class

Syntax:
Message.ReadUnsignedByte(value%)

Parameter:
value%

Integer. Value to be written.

Chapter 5: MQMessage Class 159

ResizeBuffer Method
This method alters the amount of storage currently allocated internally to
hold the Message Data Buffer. It gives the application some control over the
automatic buffer management, in that if the application knows that it is
going to deal with a large message, it can ensure that a sufficiently large
buffer is allocated. The application does not need to use this call - if it does
not, then the automatic buffer management code will grow the buffer size
to fit.

Caution If you resize the buffer to be smaller that the current
MessageLength , you risk losing data. If you do lose data , the method
returns a CompletionCode of MQCC_WARNING and a ReasonCode of
MQRC_DATA_TRUNCATED.

If you resize the buffer to be smaller than the value of the DataOffset
property the:

DataOffset property is changed to point to the end of the new buffer

DataLength property is set to zero

MessageLength property is changed to the new buffer size

The default buffer size if 2K bytes.

Defined in:
MQMessage Class

Syntax:
Message.ResizeBuffer(Length&)

Parameter:
Length&

Long. Size required in characters.

160 MQSeries link LotusScript Extension User's Guide

WriteLong Method
This method takes a signed 4-byte integer value and writes it into the
Message Data buffer as a 4-character binary number starting at the
character referred to by DataOffset. It replaces any data already at these
positions in the buffer, and extends the length of the buffer
(Message.MessageLength) if necessary.

DataOffset is incremented by 4 if the method succeeds.

The method converts to the binary representation specified by the
Message.Encoding property.

Note A message with the Encoding property set to
MQENC_INTEGER_UNDEFINED is processed in the same way as a
message with the Encoding property set to MQENC_NATIVE.

Defined in:
MQMessage Class

Syntax:
Message. WriteLong(value&)

Parameter:
value&

Long. Value to be written.

Chapter 5: MQMessage Class 161

WriteShort Method
This method takes a signed 2-byte integer value and writes it into the
Message Data buffer as a 2-character binary number starting at the
character referred to by DataOffset . It replaces any data already at these
positions in the buffer, and will extend the length of the buffer
(Message.MessageLength) if necessary.

DataOffset is incremented by 2 if the method succeeds.

The method converts to the binary representation specified by the
Message.Encoding property.

Note A message with the Encoding property set to
MQENC_INTEGER_UNDEFINED is processed in the same way as a
message with the Encoding property set to MQENC_NATIVE.

Defined in:
MQMessage Class

Syntax:
Message.WriteShort(value%)

Parameter:
value%

Integer. Value to be written.

WriteString Method
This method takes a LotusScript string and writes it into the Message Data
buffer starting at the character referred to by DataOffset . It replaces any
data already at these positions in the buffer, and will extend the length of
the buffer (Message.MessageLength) if necessary.

DataOffset is incremented by the length of the string in characters if the
method succeeds.

The method converts characters into the codepage specified by the
Message.CharacterSet property.

Defined in:
MQMessage Class

Syntax:
Message. WriteString(value$)

Parameter:
value$

String. Value to be written.

162 MQSeries link LotusScript Extension User's Guide

WriteUnsignedByte Method
This method writes an unsigned byte integer into the current position
(DataOffset) of the Message Data buffer as a single character binary
number.

The method fails if the value is less than zero or greater than 255.

It replaces any data already at this position in the buffer, and will extend
the length of the buffer (Message.MessageLength) if necessary.

Defined in:
MQMessage Class

Syntax:
Message.WriteUnsignedByte(value%)

Parameter:
value%

Integer. Value to be written.

Chapter 5: MQMessage Class 163

MQPutMessageOptions Class

This class encapsulates the various options that control the action of putting
a message onto an MQSeries Queue.

Containment:
Contained by the MQSession Class .

Properties:
CompletionCode Property

Options Property

ReasonCode Property

ResolvedQueueManagerName Property

ResolvedQueueName Property

Methods:
ClearErrorCodes Method

LotusScript Events:
Mqerror

Mqwarning

Creation:
New creates a new MQPutMessageOptions object and sets all its properties
to initial values.

Syntax:
Dim pmo As New MQPutMessageOptions or

Set pmo = New MQPutMessageOptions

164 MQSeries link LotusScript Extension User's Guide

CompletionCode Property
Read-only. Returns the completion code set by the last method or property
access issued against the object.

Defined in:
MQPutMessageOptions Class

Data Type:
Long

Legal Values:
MQCC_OK

MQCC_WARNING

MQCC_FAILED

Syntax:
To get: completioncode& = PutOpts.CompletionCode

Chapter 5: MQPutMessageOptions Class 165

Options Property
Read-write. The MQPMO Options field that controls the putting a message
on a queue.

The options are listed in the MQSeries Application Programming Reference
manual, for example:

MQPMO_SYNCPOINT - the message is not visible until the unit of work is
completed

MQPMO_NO_SYNCPOINT - the message is available immediately and
cannot be deleted by backing out a unit of work

MQPMO_DEFAULT_CONTEXT - the queue manager sets the context
fields in the message.

The initial value is MQPMO_NONE.

Note The options not supported are:

MQPMO_PASS_IDENTITY_CONTEXT

MQPMO_PASS_ALL_CONTEXT

Defined in:
MQPutMessageOptions Class

Data Type:
Long

Syntax:
To get: options& = PutOpts.Options

To set: PutOpts.Options = options&

166 MQSeries link LotusScript Extension User's Guide

ReasonCode Property
Read-only. Returns the reason code set by the last method or property
access issued against the object.

Defined in:
MQPutMessageOptions Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual

Syntax:
To get: reasoncode& = PutOpts.ReasonCode

ResolvedQueueManagerName Property
Read-only. The MQPMO ResolvedQMgrName field. See the MQSeries
Application Programming Reference manual for details. The initial value is all
blanks.

Defined in:
MQPutMessageOptions Class

Data Type:
String of 48 characters

Syntax:
To get: qmgr$ = PutOpts.ResolvedQueueManagerName

ResolvedQueueName Property
Read-only. The MQPMO ResolvedQName field. See the MQSeries
Application Programming Reference manual for details. The initial value is all
blanks.

Defined in:
MQPutMessageOptions Class

Data Type:
String of 48 characters

Syntax:
To get: qname$ = PutOpts.ResolvedQueueName

Chapter 5: MQPutMessageOptions Class 167

ClearErrorCodes Method
Resets the CompletionCode to MQCC_OK and the ReasonCode to
MQRC_NONE for both the MQPutMessageOptions Class and the
MQSession Class.

Defined in:
MQPutMessageOptions Class

Syntax:
Call PutOpts.ClearErrorCodes

168 MQSeries link LotusScript Extension User's Guide

MQGetMessageOptions Class

This class encapsulates the various options that control the action of getting
a message from an MQSeries Queue.

Containment:
Contained by the MQSession Class .

Properties:
CompletionCode Property

Options Property

ReasonCode Property

ResolvedQueueName Property

WaitInterval Property

Methods:
ClearErrorCodes Method

LotusScript Events:
Mqerror

Mqwarning

Creation:
New creates a new MQGetMessageOptions object and sets all its properties
to initial values.

Syntax:
Dim gmo As New MQGetMessageOptions or

Set gmo = New MQGetMessageOptions

Chapter 5: MQGetMessageOptions Class 169

CompletionCode Property
Read-only. Returns the completion code set by the last method or property
access issued against the object.

Defined in:
MQGetMessageOptions Class

Data Type:
Long

Legal Values:
MQCC_OK

MQCC_WARNING

MQCC_FAILED

Syntax:
To get: completioncode& = GetOpts.CompletionCode

170 MQSeries link LotusScript Extension User's Guide

Options Property
Read-write. The MQGMO Options field that controls the action of getting a
message from a queue.

The options are listed in the MQSeries Application Programming Reference
manual, for example:

MQGMO_SYNCPOINT - the message is marked as being unavailable to
other applications, but only deleted from the queue when the unit of work
is committed. The message is made available again if the unit of work is
backed out.

MQGMO_NO_SYNCPOINT - the message is retrieved and deleted from
the queue immediately.

MQGMO_ACCEPT_TRUNCATED - allows you to retrieve a message when
the buffer is too small, although the complete message cannot be put in the
buffer. Unless you have resized the buffer, you will get 2K bytes of the
message.

MQGMO_CONVERT - requests that the application data in the message is
converted to conform to the values of the CharacterSet and Encoding
properties.

The initial value is MQGMO_NO_WAIT.

Defined in:
MQGetMessageOptions Class

Data Type:
Long

Syntax:
To get: options& = GetOpts.Options

To set: GetOpts.Options = options&

Chapter 5: MQGetMessageOptions Class 171

ReasonCode Property
Read-only. Returns the reason code set by the last method or property
access issued against the object.

Defined in:
MQGetMessageOptions Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual

Syntax:
To get: reasoncode& = GetOpts.ReasonCode

ResolvedQueueName Property
Read-only. The MQGMO ResolvedQName field. See the MQSeries
Application Programming Reference manual for details.

The initial value is all blanks.

Defined in:
MQGetMessageOptions Class

Data Type:
String of 48 characters

Syntax:
To get: qname$ = GetOpts.ResolvedQueueName

172 MQSeries link LotusScript Extension User's Guide

WaitInterval Property
Read-write. The MQGMO WaitInterval field. The maximum time, in
milliseconds, that the Get will wait for a suitable message to arrive - if wait
action has been requested by the Options property. See the MQSeries
Application Programming Reference manual for details. Initial value is 0.

Defined in:
MQGetMessageOptions Class

Data Type:
Long

Syntax:
To get: wait& = GetOpts.WaitInterval

To set: GetOpts.WaitInterval = wait&

ClearErrorCodes Method
Resets the CompletionCode to MQCC_OK and the ReasonCode to
MQRC_NONE for both the MQGetMessageOptions Class and the
MQSession Class.

Defined in:
MQGetMessageOptions Class

Syntax:
Call GetOpts.ClearErrorCodes

Chapter 5: MQGetMessageOptions Class 173

MQProcess Class

This represents an MQSeries process definition object (used with
triggering). Using the MQLSX, you can interrogate the properties of the
process definition object within your script.

For more information about triggering, see the MQSeries Application
Programming Guide.

Containment:
Contained by the MQQueueManager Class.

Properties:
AlternateUserId Property

ApplicationId Property

ApplicationType Property

CompletionCode Property

Description Property

EnvironmentData Property

Name Property

OpenStatus Property

ReasonCode Property

UserData Property

Methods:
ClearErrorCodes Method

LotusScript Events:
Mqerror

Mqwarning

Property Access:
All properties are read-only

174 MQSeries link LotusScript Extension User's Guide

AlternateUserId Property
Read-only. The alternate userid used to validate access to the Process
definition when it was opened.

Defined in:
MQProcess Class

Data Type:
String of 12 characters

Syntax:
To get: altuser$ = Process.AlternateUserId

ApplicationId Property
Read-only. The MQI ApplId attribute.

Defined in:
MQProcess Class

Data Type:
String of 256 characters

Syntax:
To get: identifier$ = Process.ApplicationId

ApplicationType Property
Read-only. The MQI ApplType attribute.

Defined in:
MQProcess Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual.

Syntax:
To get: appltype& = Process.ApplicationType

Chapter 5: MQProcess Class 175

CompletionCode Property
Read-only. Returns the completion code set by the last method or property
access issued against the object.

Defined in:
MQProcess Class

Data Type:
Long

Legal Values:
MQCC_OK

MQCC_WARNING

MQCC_FAILED

Syntax:
To get: completioncode& = Process.CompletionCode

Description Property
Read-only. The MQI ProcessDesc attribute.

Defined in:
MQProcess Class

Data Type:
String of 64 characters

Syntax:
To get: description$ = Process.Description

EnvironmentData Property
Read-only. The MQI EnvData attribute.

Defined in:
MQProcess Class

Data Type:
String of 128 characters

Syntax:
To get: env$ = Process.EnvironmentData

176 MQSeries link LotusScript Extension User's Guide

Name Property
Read-only. The MQI ProcessName attribute. This is the name of a process
definition object, defined on the local queue manager.

Defined in:
MQProcess Class

Data Type:
String of 48 characters

Syntax:
To get: name$ = process.Name

OpenStatus Property
Read-only. Indicates if the process is Open or not.

Defined in:
MQProcess Class

Data Type:
Long

Legal Values:
TRUE (-1)

FALSE

Syntax:
To get: status& = Process.OpenStatus

ReasonCode Property
Read-only. Returns the reason code set by the last method or property
access issued against the object.

Defined in:
MQProcess Class

Data Type:
Long

Legal Values:
See the MQSeries Application Programming Reference manual

Syntax:
To get: reasoncode& = Process.ReasonCode

Chapter 5: MQProcess Class 177

UserData Property
Read-only. The MQI UserData attribute.

Defined in:
MQProcess Class

Data Type:
String of 128 characters

Syntax:
To get: user$ = Process.UserData

ClearErrorCodes Method
Resets the CompletionCode to MQCC_OK and the ReasonCode to
MQRC_NONE for both the MQProcess Class and the MQSession Class.

Defined in:
MQProcess Class

Syntax:
Call Process.ClearErrorCodes

178 MQSeries link LotusScript Extension User's Guide

Appendix A MQLSX Link sample application

This appendix describes the MQLSX Link sample application. This
application is designed to show how, from a Notes environment, you can
run a program in a non-Notes environment and get data returned to you. It
demonstrates how you can use the MQLSX with a Notes agent and the link
database. The design of the link database is the same as the link database in
an MQSeries product.

In summary what happens is:

A Notes program takes the text you input, using the Notes form, and
creates a Notes document in the Agent database

A Notes agent creates an MQSeries message from the document and
passes it to the MQSeries environment

An MQSeries program changes the text in the message and creates an
MQSeries reply message

The Notes agent picks up the MQSeries reply message and updates the
original document with the data

This sample is a way of implementing the MQSeries link (mqlink) using
LotusScript and the MQLSX. The same link database is used in both cases.

This appendix describes:

The components of the application, what they contain and the role of
each individual part

What you must do before you run the application

How to run the application

What happens when you run the application showing the movement of
documents and messages

Customization to change the data being passed

Look at the section on What happens when you run the MQLSX Link
sample, for the diagram that shows how the components fit together and
their relationship with Notes and MQSeries.

Appendix A: MQLSX Link sample 179

MQSeries LotusScript Extension Link sample application
The MQSeries LotusScript Extension Link sample application (MQLSX Link
sample) allows you to develop a Notes application that can access an
MQSeries existing application without the need to make any changes to the
existing application.

It enables you to send data from a Notes application and get a reply,
containing data, back from an MQSeries application. It demonstrates how
you can use the MQLSX in conjunction with a Notes agent and the
mqlink.nsf database, to interact with applications outside of Notes, using
MQSeries.

Within your Notes application you write a structured message document
that the link sample reads and processes in accordance with the requested
entry in the link database.

It is designed to provide a base that you can change and extend to create
your own applications.

Design of the MQLSX Link sample
The components are:

Notes LotusScript application client database (gmqlclnt.nsf).

Agent database (gmqlagnt.nsf)

Link database (mqlink.nsf)

MQSeries application (amqslnk0 sample program)

MQSeries queue to receive messages (system.sample.notes.inqueue)

MQSeries queue to return reply messages
(system.sample.notes.outqueue)

Limitations
The limitations of this sample are:

Both the message you must send and the reply message must be a
structured message, of a predetermined length

You can send the message to only one destination

The reply message only updates the original Notes document

Limitations have been put on this sample to maintain a simple model that
shows you how Notes and MQSeries can work together, and how the
MQLSX can be used. The limitations are not related not the MQLSX.

180 MQSeries link LotusScript Extension User's Guide

Notes LotusScript application client database (gmqlclnt.nsf)
The Notes LotusScript application client database is made up of:

A form named MQLSX Client Request
This is the form you use to enter the data you want to send to your
MQSeries application. The agent database and link database document
names are automatically displayed for you, but you can override these
if you wish. You should enter the name of your agent server database.
Enter data in the 'Data to be sent' field and select OK.

Note The type of data you enter must match the entry in the link
database document you select.

You also use this form to ask for a reply to a document you sent earlier.
Display the document you sent earlier and select OK.

A form named MQREQUEST.
This is the form that the client application uses to create the document
that it sends to the agent. The document it creates is held in the agent
database and contains the data that is put into the MQSeries message.
This document is also updated with the reply data (sent in a MQSeries
message that is retrieved from the specified reply queue). The sample
detects when a reply is available by looking at the status in the
MQREQUEST document on the agent database. The values the status field
can take are:

Value Status of the request

1 Waiting

2 Available - reply message available

3 None - no reply needed

4 Error (e.g link entry error or send failure)

This form is displayed in the list when you run the sample, however it is for
the sole use of the Notes sample program and it is not used for data entry.

A form named MQCOMPLETE.
This form is used to create a document when the reply data has been
read from the MQREQUEST document on the agent database. The
MQCOMPLETE document is sent to the agent database to indicate that
the MQREQUEST document can be deleted.

This form is displayed in the list when you run the sample, however it
is for the sole use of the Notes sample program and it is not used for
data entry.

Appendix A: MQLSX Link sample 181

A form named MQSTARTAGENT.
This form is used to create a document when you select OK on a
MQREQUEST document, held on your own database, that you
completed previously. The document is sent to the agent database,
causing the agent to run and check to see if a reply has been received
for this, or any other, MQREQUEST document.

This form is displayed in the list when you run the sample, however it
is for the sole use of the Notes sample program and it is not used for
data entry.

Any documents you create and save whilst running this application

MQSeries sample program (amqslnk0)
This program is also provided by the majority of the MQSeries family of
products. It reads a message from the
SYSTEM.SAMPLE.NOTES.INQUEUE queue. If a reply is required
(signified by the presence of a reply queue name in the document on the
mqlink database), amqslnk0 changes the order of the input data and creates
a reply message that it puts on the specified reply queue, for example,
SYSTEM.SAMPLE.NOTES.OUTQUEUE.

MQLSX Agent database (gmqlagnt.nsf)
The MQLSX Agent database is made up of:

The sample Agent program.
The agent runs "If Documents Have Been Created or Modified".
The agent accesses the specified 'link database document' to obtain the:

Format of the message expect by the MQSeries application.

Names of the queues to be used.

Details of the fields in the MQREQUEST document and the
MQSeries reply message.

An agent parameters form.
This form is used to create an agent parameters document. Should you
need to recreate it, it must contain the following information (needed by
the agent):

Name of Server that the link database is on (or blank for local)

Name of the Queue Manager

Name of the link database

Whether or not character fields should be padded with spaces

182 MQSeries link LotusScript Extension User's Guide

A sample agent parameters document is provided. You should modify it
by changing the name of the server and queue manager to names that are
correct for your system. This document must be available to the agent,
otherwise an error is returned.

A form named MQREPLYCONTEXT.
This form is used to create a document that holds the control
information that the agent needs to process a reply message for a
specific request. An MQREPLYCONTEXT document is created for
every message sent that requires a reply. The information held in this
document is:

Request Document NoteID

Link Entry Document NoteID

MQSeries MsgId

This enables an MQSeries reply message to be matched up with the correct
MQREQUEST document.
This form is for the sole use of the Notes sample program and it is not used
for data entry.

An MQREQUEST document.
This document is sent by the client application and is a copy of the one
held on the application database. It holds the:

Message data

Name of the link database document

The agent adds the:

Reply data

Time the message was processed by the MQSeries application

Error messages if any errors were encountered

The agent also maintains the status of the request document:

This form is for the sole use of the Notes sample program and it is not used
for data entry.

An MQSTARTAGENT document.
This document is sent by the client application when a reply to a
previously sent message is requested. It activates the agent.
This form is displayed in the list when you run the MQLSX Link
sample, however it is for the sole use of the Notes program and it is not
used for data entry.

Appendix A: MQLSX Link sample 183

An MQCOMPLETE document.
This document is sent by the client application when the reply to an
MQREQUEST has been received. It indicates to the agent that the copy
of the MQREQUEST document it identifies can now be deleted.
This form is displayed in the list when you run the sample, however it
is for the sole use of the Notes sample program and it is not used for
data entry.

 The link database (mqlink.nsf)
The link database holds details of each 'request type' you use when you run
the sample application. The 'request type' is the 'link database document
name' you specify when you run the client application. The information in
each link database document defines the mapping between the fields of the
input form and the MQSeries message offsets. Each link database document
also holds field type and offset information that is used by the agent to
create an MQSeries message, and to process the reply message, if one has
been requested.

The link database is the same as the one supplied with the MQSeries
products. There is no need to start with an empty link database if you
already have one and can make use of it.

A sample link database entry:

Each link database document you create must follow this structure. It is
important to get the start and end positions of the fields within the
MQSeries request message and reply message correct. Remember, that the
first character is in position zero.

Entry
The link database document name, the entry identifier. The MQENTRY
name is used by the sample application.

Database Information
Information required by the existing MQSeries Lotus Notes link
application. This is not used by the MQLSX Link sample.

184 MQSeries link LotusScript Extension User's Guide

Request Offsets
This describes the layout of the message you send to the MQSeries
application. The name you give each field is of no significance to the
agent. However, the order you list the fields must match the order in
which they appear in the request document, and the format must
follow that shown.
In this example:
function 0 2 CHAR (the sample Notes program puts the
characters Msg in this field)
Msg 3 104 CHAR (this is where the data you entered is held)

Note You can have as many fields as you like to describe your
message, however you can also have as little as one field. If each field
is of the same type, there is more flexibility by having a single entry -
more messages are likely to be able to use it.

Reply Offsets
This describes the layout of the data in the reply message. In each case
you must describe how the information is held, whether it is character
or numeric. If it is numeric, you specify whether it is big-endian
(S390-Binary), or little-endian (Intel-Binary).
For example:
RData 0 101 CHAR (this is where the "Data received" information is
in the reply message)
Time 102 127 CHAR (this is where the "Time" information is in the
reply message)

Message Queuing Parameters
This is where you specify the MQSeries queues you want to use and the
format of data that the MQSeries message will contain.
Queues
If you do not want a reply from your MQSeries application, leave the
reply queue name blank. If you do want a reply, the queue you specify
must be local to your MQSeries application.
Message format
The format field is used when data conversion is necessary. The
options are:
Blank - Use this when the message contains non-character data.
MQSTR - Use this when the fields in the message are all of type CHAR.
User-defined format - Use this option when:

 the message contains a mixture of character and non-character data

a user exit program is available at the server to enable MQSeries to
provide the required conversion

Appendix A: MQLSX Link sample 185

Error handling
Here you enter the validation you want to take place before your Notes
document is updated, and specify what information you want reported
with the error . When the error conditions are met, an error message is
displayed in the originating (MQLSX Client Request) document.
For example:
Error condition: client 0 5 CHAR
Syntax for additional information: RData 0 101 CHAR
In this case, a Notes mail memo, containing the reply message data (but
not the time), is created if the reply message has the word client as the
first six characters of the reply message.
If you want to check for a 'not equal' value, prefix the character string
with an exclamation mark (!).

Note The comparison of characters is case sensitive.

186 MQSeries link LotusScript Extension User's Guide

Before you run the MQLSX Link sample
This sample will not run successfully until you have completed the
following:

Install the MQLSX Agent database (gmqlagnt.nsf) and the link database
(mqlink.nsf) on your Notes server. Select File - Database - New Copy.

Install the MQLSX Client database (gmqlclnt.nsf) on your Notes Client.

Ensure the queue manager you want to communicate with is running.

Update the MQSeries Agent Parameters document, in the MQLSX
Agent database, to reflect the name of the link database, the Notes
server (initially set to Your Server Name), and the MQSeries Queue
Manager you are using. The link database must be local and the name
blank if your agent is running on a server.
Check the box if you want the message data you send each time to be
padded out with blanks.

Change the name of the Notes server (that the MQLSX agent will run
on) in the MQLSX Agent database. Initially the name of the server is
given as Your Server Name. To change this:

Open the MQSLX Agent database (gmqlagnt.nsf)

Select Agents - MQLSX Agent - Schedule

Change the box 'Run only on'

Save

Create the queues to hold the MQSeries request and the reply
messages. The sample uses SYSTEM.SAMPLE.NOTES.INQUEUE and
SYSTEM.SAMPLE.NOTES.OUTQUEUE. To create these queues,
process amqslnk0.tst using the MQSeries runmqsc commands utility
(runmqsc QueueManagerName < amqslnk0.tst).
If you want to use different queues, you must change the Message
Queuing Parameters in the MQENTRY document or use a different link
database document.

There is only one sample document in the link database (mqlink.nsf)
called MQENTRY. If you want to add your own document to the link
database:
Open the database
Select 'Create'
Select 'External-Call Parameters'
Complete the form (there is no validation performed against the data
you enter)
Select File - Save

Appendix A: MQLSX Link sample 187

If you want to define your own MQSeries message formats, you must
write the corresponding exit routine to perform data conversion for the
destination (server) queue manager if you require it.

188 MQSeries link LotusScript Extension User's Guide

Running the MQLSX Link sample application
1. Check that all the appropriate set-up work has been completed. See

"Before you run the MQLSX Link sample" for details.

2. Start MQSeries program, amqslnk0, running in your MQSeries
environment. From a command line, enter

 amqslnk0 [-q InputQName] [QMgrName]

where the default InputQName is SYSTEM.SAMPLE.NOTES.INQUEUE on
the default queue manager

3. Single click on the MQLSX Client icon, this selects the database (or open
the database by double clicking).

4. Select Create from the tool bar.

5. Select MQLSX Client Request to run the client application.

6. Use the tab function to move from one field to another. Change the
Agent server and database names if you need to use different ones from
those displayed.

To change the default names displayed by the client application:
- Select Design - Forms
- Double click on the MQLSX Client Request form name
- Select name of the field you want to change against Define
- Select 'Default Value' against Event
- Enter new default value

7. Change the link database document name if you want to use a different
one from the default.

8. Enter the data you want to send to the MQSeries application.

9. Click OK.

If the link database document you have chosen does not include the
name of a reply queue, 'Reply Message is not expected ' is displayed in
a message box.
If the link database document does include the name of a reply queue,
the sample will display the reply data and the time. It waits
approximately 10 seconds for the MQSeries reply message to appear on
the queue. When this time is exceeded, you are given the option of
retrying (select OK) or cancelling.
If you retry, it has the same 10 second threshold, after which the
process is repeated.
If you select cancel, you must save the document before exiting the
client application if you want to get the reply at a later time.

Appendix A: MQLSX Link sample 189

To request the reply to a request document you sent earlier
1. Double click on the MQLSX Client icon to open the database.

2. A list of documents you have saved are displayed in the sample view.
Select the one you are interested in (double click).

3. Click OK.

190 MQSeries link LotusScript Extension User's Guide

What happens when you run the MQLSX Link sample
When you run this application, using the unmodified MQLSX Agent
database and link database document, it composes a document that
includes a request for reply information from the MQSeries program
(amqslnk0 or an application of your own), and concludes by updating the
original Notes document with the requested information.

Using the MQLSX Client request form in the Client database, you enter the
data you want to send and Click OK.

1. Using the sample input form on the Notes client, you enter the data you
want to send. The input form also allows you to specify the link
database document name, and the names of the agent server and
database.

2. Click OK. A LotusScript program associated with the OK button
composes a document using the MQREQUEST form. This
MQREQUEST document is created on the client database (gmqlclnt.nsf)
and copied to the Agent database (gmqlagnt.nsf).

Appendix A: MQLSX Link sample 191

3. The agent, which is 'change activated', runs when it detects the new
document and reads it. Using the information in the Agent Parameters
document, the agent:
- Extracts the name of the link database document
- Reads the link database document
- Connects to the queue manager
- Opens the input queue e.g. SYSTEM.SAMPLE.NOTES.INQUEUE
- Constructs an MQSeries message, using the information in the link
database document as well as the MQREQUEST document
- Puts the MQSeries message on the queue
- Creates an MQREPLYCONTEXT document if a reply message is
expected
- Looks for replies for any MQREPLYCONTEXT documents

4. The MQSeries sample server application, amqslnk0, gets the message
from the queue (it uses the MQGMO_WAIT option) and processes it.
If the data in the message is character, the words in the message are
reversed, for example
"Hello World!" becomes "World! Hello".

If a reply has been requested:

5. the program amqslnk0 creates the MQSeries reply message, to include
the time as well as the data, placing the message on the reply queue

6. The Agent gets the MQSeries message from the reply queue specified in
the MQREPLYCONTEXT document, e.g.
SYSTEM.SAMPLE.NOTES.OUTQUEUE

7. The Agent:
- Uses the MQREPLYCONTEXT document to match the reply up with
the MQREQUEST document it has on its database
- Updates the status of the MQREQUEST document to '2' to indicate
that the message is now available
- Deletes the MQREPLYCONTEXT document

192 MQSeries link LotusScript Extension User's Guide

8. The LotusScript client application associated with the input form:
- Polls the agent database to check for a change in status of the
MQREQUEST document to '2'. It does this by sending null StartAgent
documents to the Agent database, each time OK is clicked, to regularly
activate the Agent to perform reply message processing
- If the reply is not available and 10 seconds have passed, the sample
displays a message box giving you the option to retry, or cancel the
request
- If you chose to cancel the request, save your document if you want to
collect the reply at a later time
- If you retry, the sample continues to poll for a change in status of the
MQREQUEST document on the agent database for a further 10 second
period
- When the message is available, the sample updates the MQREQUEST
document on the MQLSX Client database (gmqlclnt.nsf) and displays
the reply data and time
- Sends an MQCOMPLETE document to the agent

9. The agent:
- Runs when the MQCOMPLETE document arrives
- Deletes the MQREQUEST document that the MQCOMPLETE
document refers to

When you request a reply to an MQREQUEST document at a later point in
time:

The sample sends a MQSTARTAGENT document to the agent

The agent runs:
- Checks to see if there are any MQREPLYCONTEXT documents
- Checks to see if there are any messages on the reply queues
identified by the MQREPLYCONTEXT documents
- Processes the messages as normal, using the MQREPLYCONTEXT
and MQREQUEST documents it has in its database

Appendix A: MQLSX Link sample 193

Error handling in the MQLSX Link sample application
Errors checking takes place throughout the MQLSX sample application
components. In addition to Notes and LotusScript errors that can occur,
there are also MQLSX error situations that can cause error messages
specific to the MQLSX to be displayed.

MQLSX Client Error messages
Errors detected by the MQLSX Client are displayed using a message box.

The following error, warning, and informational messages may be
displayed by the MQLSX client:

ERROR: Error saving document.

An attempt to save a document in the current database was unsuccessful.

ERROR: Request failed.

A detailed error message is displayed in the current document
(error_field_msg field).

ERROR: The agent document required by this request is not
available and may have been deleted.

The MQREQUEST document in the agent database could not be copied to
the client and may have been deleted.

ERROR: Open Agent database failed.

The agent database on the Notes server could not be opened.

WARNING: Request is already complete. Resend?

INFO: Reply message is not expected.

INFO: Reply message not available. Retry?

MQLSX Agent error messages
Errors detected by the MQLSX Agent are printed to the Notes server
console. An error can be detected by:

Lotus Notes

MQLSX

The Link sample

Where an error is detected by Notes or the MQLSX, the Link sample adds
further information to the error message before printing it to the console.

The format of a message therefore is different to what you would
traditionally expect:

194 MQSeries link LotusScript Extension User's Guide

Errors detected by Lotus Notes
The format of these messages output by the Link sample is:

MQLSX Link Agent Notes Error: Agent_Insert_String
Notes_Error_Message (Notes error = Notes_Error_Number Line nnnn)

where:

Agent_Insert_String
is any additional useful information about the error that the agent can
provide and may be omitted if blank.

Notes_Error_Message
is the LotusScript error message

nnnn
is the line number in the LotusScript source code where the error occurred

Errors detected by the MQLSX
The format of these messages output by the Link sample is:

MQLSX Link Agent Error: Agent_Error_Number Agent_Error_Message
Agent_Insert_String MQLSX_Error_Message (Notes error =
Notes_Error_Number Line nnnn)

where:

Agent_Error_Number
is an agent error number that may be omitted for MQLSX detected errors if
zero

Agent_Error_Message
is an agent error message

Agent_Insert_String
is any additional useful information about the error that the agent can
provide and may be omitted if blank.

MQLSX_Error_Message
is the LotusScript MQLSX error message and will typically provide the
MQSeries or MQLSX reason code

nnnn
is the line number in the LotusScript source code where the error occurred

Appendix A: MQLSX Link sample 195

Errors detected by the Link sample Agent
The format of these messages output by the Link sample is:

MQLSX Link Agent Error: Agent_Error_Number Agent_Error_Message
Agent_Insert_String

where:

Agent_Error_Number
is an agent error number that may be omitted for MQLSX detected errors if
zero

Agent_Error_Message
is an agent error message

Agent_Insert_String
is any additional useful information about the error that the agent can
provide and may be omitted if blank.

The error messages you can encounter that are detected by the Agent
component of the Link sample are:

67001 View not found.

The 'Agent Parameters' View was not found in the agent database.

67002 Parameter document not found.

The agent parameters document was not found in the agent database.

67003 Link Entry Error: start or end position value not
valid.

An error was detected in a Link database entry as indicated.

67004 Link Entry Error: one or more field items are
missing.

An error was detected in a Link database entry as indicated.

67005 Link Entry Error: data type not valid.

An error was detected in a Link database entry as indicated.

67006 Link Entry Error: data length not valid for NUM.

An error was detected in a Link database entry as indicated.

The data length specified for fields of type NUM, INTEL-BINARY or
S390-BINARY must be 2 or 4.

67007 Link Entry Error: field length value too big.

An error was detected in a Link database entry as indicated.

The field length for fields of type CHAR may not exceed 32000

196 MQSeries link LotusScript Extension User's Guide

67008 Link database could not be opened.

The specified Link database could not be opened

67009 Reply processing error.

A reply processing error occurred. More information, that may include a
reason code, is provided in the accompanying insert string

67010 Backout threshold of failing message exceeded;
message will be discarded.

A failing message that was previously backed out was discarded.
Information about the exact cause of the failure is provided in earlier error
messages.

67011 Numeric value is not valid or causes overflow.

An non-numeric or out-of-range numeric value was entered by the user or
returned in an MQSeries reply message.

Two-byte NUM, INTEL-BINARY, and S390-BINARY values numbers are
unsigned numbers in the range 0 to 65535.

Four-byte NUM, INTEL-BINARY, and S390-BINARY values are signed
numbers in the range -2147483648 to 2147483647.

The Agent_Insert_String may be blank or one of the following:

Link Entry document not found(used with Reply processing
error)

Request document not found(used with Reply processing
error)

Error accessing queue manager(used with MQLSX detected
error)

MQLSX Client Request error messages
The following messages may be displayed in the MSLSX Client Request
document (in the error_field_message field):

Reply message failed Link entry error condition checks.

The reply message failed the specified Link entry error condition checks.

Link Entry Document Error.

The specified Link entry document cannot be opened.

Numeric value is not valid or causes overflow.

An non-numeric or out-of-range numeric value was entered by the user or
returned in an MQSeries reply message.

Appendix A: MQLSX Link sample 197

Two-byte NUM, INTEL-BINARY, and S390-BINARY values numbers are
unsigned numbers in the range 0 to 65535.

Four-byte NUM, INTEL-BINARY, and S390-BINARY values are signed
numbers in the range -2147483648 to 2147483647.

Backout threshold of failing message exceeded; message
will be discarded.

A failing message that was previously backed out was discarded.
Information about the exact cause of the failure is provided in earlier error
messages.

An error was detected by the agent. Consult the agent
messages for more information.

This provides indication to the user that the agent detected an error details
of which are provided in the agent messages.

Customizing the MQSeries Link sample application
There are several ways in which you can change this sample, yet still get the
benefit of using it without having to do any further programming.

You change the MQLSX Client database (gmqlclnt.nsf):

If you want to change the length of time that the program waits before
checking to see if there is a reply message

If you want to send or receive anything other than the fields defined in
the sample

You change the MQLSX Agent database (gmqlagnt.nsf):

If you want to send or receive anything other than the fields defined in
the sample

If you want to change the name of the Notes server the link database
runs on

Note The name of the Notes server can only be different from that of the
agent if the agent is run manually.

198 MQSeries link LotusScript Extension User's Guide

Changing the wait time
Unless changed, the sample waits for 10 seconds before it checks to see if a
reply message is available. To change this:

Open the MQLSX Client database (gmqlclnt.nsf)

Select Design - Forms - MQLSX Client Request

Click on the Define OK button

Select the Event Declarations option

Change the value WAIT_TIME from 10 to the new value (in seconds)

Save the form

Changing the name of the Notes server and Queue Manager for
mqlink.nsf

To change this:

Open the MQLSX Agent database (gmqlagnt.nsf)

Under Folders & Views in the navigator, Select Agent Parameters

Double click on mqlink.nsf

Select Action - Edit Document

Change the necessary fields and save the document

Changing the send and reply fields
Unless changed, the sample sends two fields of data (known as Func and
SData) to the MQSeries application, and receives two fields of data (known
as RData and Time) back in the reply message.

The fields sent are:

1. A fixed text string of three characters 'Msg'. The field name on the form
is Function, in the code this is known as Func.

2. A field that contains the data you enter when you run the sample. This
may or may not be padded out with spaces, it depends on what you
select in the Agent Parameters document. This field is known as SData.

Changes are necessary to both the MQLSX Client database, the MQLSX
Agent database and the link database:

Appendix A: MQLSX Link sample 199

MQLSX Client database
In this database you need to make changes to the:

MQLSX Client Request form

MQREQUEST form (to be copied to the MQLSX Agent database)

Looking at the MQLSX Client Request, you will find the code for the classes
under '(Declarations)' and the code that calls the classes under the Event
'Click'.

MQLSX Agent database
In this database you need to make changes to the:

MQLSX Agent

MQREQUEST form (may be copied from the MQLSX Client database)

Agent Parameters form

Looking at the MQLSX Agent, you will find the code for the classes under
'(Declarations)' and the code that calls the classes under the Event
'Initialize'.

Link database
In this database you need to make changes to the:

External Call Parameters document (or create a new one)

Note If the agent is running on a server, the link database must reside on
the same server as the agent. The link database can only be on a different
server from the agent if the agent is run manually.

Steps to take
The following lists the areas that you need to modify if you want to send or
receive a different number of fields of data to that supplied within the
sample:

MQREQUEST form:

Open the MQLSX Client database (gmqlclnt.nsf)

Select Design - Forms - MQREQUEST (double-click)

Modify the form to include the fields you want and save it

Copy the form to the MQLSX Agent database (or make sure the form
on the MQLSX Agent database has the same changes made to it)

200 MQSeries link LotusScript Extension User's Guide

 Class/method code of the MQLSX Client Request form:

Open the MQLSX Client database (gmqlclnt.nsf)

Select Design - Forms - MQLSX Client Request (double-click)

If you want to change the form:

Modify the form to include the field you want and save it

If you want to change information relating to the field on the form, such as
the Agent server name, the default values of one or more fields, or Define
OK button.

To change the Define OK button:

Reveal the lower pane to display the definitions and script

Select Define OK(button) and Event '(Declarations)'

Add/modify the Property Set statements in the TempDocument
class to cover each piece of data you want in the send and reply
messages

Change the constant declaration MQ_MSG_FUNCTION, to alter the
field 'Function' (the sample puts a text string 'Msg' in this filed) sent,
or delete it if it is not required by your MQSeries application

Add a Property Set statement to the CurrentDocument class for each
piece of data you want in the reply message and change the
ReInitialize method to initialize these properties

Change the CopyMqMsgItems method in the CurrentDocument
class to deal with the properties you now have in the send and reply
messages

Modify the UpdateWithReply method in the RequestDocInfo class to
process the properties you now have in your reply message

Appendix A: MQLSX Link sample 201

Class/method code of the MQLSX Agent:

Open the MQSLX Agent database (gmqlagnt.nsf)

Select Agents and double click on MQLSX Agent

Reveal the lower pane to display the 'What should this agent do?'

Select Event ('Declarations)'

Change the Get Data and Set ReceiveData properties in the
RequestDocument class to include all the properties you now have in
the send and receive messages

Change the New method in the MQReplyMessage class to process all
the properties you now have in the reply message.

 Link database:

If you change an existing document, you modify the Request Offsets
and Reply Offsets

Alternatively you can create a new document from the External
Parameters Call form

202 MQSeries link LotusScript Extension User's Guide

Data Conversion
If your MQSeries application and your Notes Server are running on
platforms that have different character sets or different integer encodings,
the data from your Notes application has to be converted. This can be
performed by the MQLSX, the application, or by MQSeries on behalf of the
application.

These are the steps that take place:

1. The agent builds the MQSeries request message using the information
in Request Offsets in the link database entry. The format options are:

CHAR
The field is copied across unchanged and so appears in the codepage
used by the Notes Server

NUM
The field is encoded as a 2-byte or 4-byte, signed or unsigned, integer in
intel or S390-format according to the platform on which the agent is
running. Use this format if conversion is performed at the receiver by
MQSeries or the application.

INTEL-BINARY
The field is encoded as a 2-byte or 4-byte Intel format signed or
unsigned integer.

S390-BINARY
The field is encoded as a 2-byte or 4-byte S390-format signed or
unsigned integer. For messages received by the agent, both
INTEL_BINARY and S390_BINARY formats are treated the same as
NUM, with data conversion provided by the MQLSX.

Two-byte NUM, INTEL_BINARY, and S390-BINARY value numbers are
unsigned numbers in the range 0 to 65535

Four-byte NUM, INTEL_BINARY, and S390-BINARY value numbers are
signed numbers in the range -2147483648 to 2147483647.

Appendix A: MQLSX Link sample 203

2. When the agent puts the message on the request queue, it sets the
message descriptor format field to the value given in the message
format field of the link database entry. The possible values of the
message format are:

Blank
Use this option when your application performs any necessary data
conversion. Your application must check against the encoding and
CodedCharSet fields in the message descriptor.

MQSTR
Use this option when all the fields in the message are of type CHAR.
This indicates to MQSeries that the application data is all characters and
MQSeries does any necessary data conversion. This is not
recommended if you are converting between single-byte and
double-byte character sets, as individual fields may expand or contract.

User-defined format
Use this option when a user exit program is provided at the receiver to
enable MQSeries to perform the necessary conversion.

For more information see Using Data Conversion.

Designing your own applications using mqlink.nsf
When designing your application to incorporate Notes, there are some
configuration factors that you need to consider:

The MQLSX Client database can be installed on a Notes client or Notes
server.

The MQLSX Agent database must be run on a Notes server (unless the
agent is to be run manually), with either an MQSeries client or
MQSeries server installed.

The link database (mqlink.nsf) must be on the same Notes server as the
agent (unless the agent is to be run manually)

Your MQSeries application must run on an MQSeries platform that
supports your Agent environment.

Messages put by the Agent are persistent.

The Agent is not designed to be triggered by an MQSeries message.

204 MQSeries link LotusScript Extension User's Guide

Appendix B MQLSX link extra agent sample application

This appendix describes the MQLSX link extra agent sample application.
This application is designed to show how, from an enterprise application,
you can run a program that results in an update to a Notes database.

The Notes agent in this sample can be run manually or as a scheduled
agent, but it can also run using a trigger monitor. The MQSeries trigger
monitor for Lotus Notes agents can be used with both MQLSX and MQEI
applications.

For more information see the MQSeries Trigger Monitor for Lotus Notes agents
User Guide. The MQSeries Trigger Monitor for Lotus Notes Agents is
available as a SupportPac from the IBM MQSeries home page:

http://www.software.ibm.com/ts/mqseries/

This appendix describes:

The components of the application, what they contain and the role of
each individual part

What you must do before you run the application

How to run the application (manually, as a scheduled agent, or using
the trigger monitor)

What happens when you run the application

How you can change the application (customization)

Look at the section on 'What happens when you run the MQLSX link extra
agent sample', for the diagram that shows how the components fit together
and their relationship with Notes and MQSeries.

Appendix B: MQLSX link extra agent sample 205

Introduction

The MQLSX link extra agent sample provides enterprise applications with a
means of sending data to a Lotus Notes environment via MQSeries. This
data can be used to update or add one or more documents to a Notes
database. Such updates may span more than one database. You specify
what action to take using a combination of key fields and rules in a separate
database (link database). An exit is provided for special error handling.

The MQSeries link extra agent runs as a Notes agent on either your Domino
server or on your Notes client.

The function provided in the MQSeries Trigger Monitor for Lotus Notes
Agents allows an application on any of the MQSeries supported platforms
to initiate the sending of data to the Lotus Notes Server or workstation. The
MQLSX link extra agent sample allows data from a non-Notes environment
to be used to update Lotus Notes databases. A link database provides
mapping between the system application and fields defined in the Lotus
Notes databases.

Components

The MQLSX link extra agent sample consists of the following components:

Agent database (gmqlxtra.nsf)

The link database (mqlinkx.nsf)

Lotus Notes sample applications databases (test1.nsf & test2.nsf)

test1.nsf contains salary information

test2.nsf contains address information

Test application files (mqlxdemo.*)

Lotus Notes agent database (gmqlxtra.nsf)
As well as the agent program, this database contains a Notes document
providing the default parameters needed if the agent is not started by the
trigger monitor, or the default parameters used by the trigger monitor.

The defaults provided are:

QName:
QMgrName:
Envdata:
Envdata:

NOTE
Blank (Default queue manager)
mqlinkx.nsf

206 MQSeries link LotusScript Extension User's Guide

Lotus Notes link extra database (mqlinkx.nsf)
This is a Lotus Notes database that you need to populate with entries to
describe how your MQSeries message data maps to fields in a given Lotus
Notes document. The Lotus Notes link extra database is an extension of the
MQSeries link for Lotus Notes database and can be used to define entries
for both MQSeries link and MQSeries link extra by using different forms.

The information held in a document on the database includes:

The entry name from the link database document. This name matches
that of the MQSeries queue where messages to be processed by
MQSeries link extra agent are retrieved.

The name of an optional view to be used to search for a Notes
document (a faster alternative to searching the entire database).
If this option is used, the first column of the view must contain the data
for the first key field specified for that entry.

Logical processing rules (e.g. If found Insert, Insert always, etc.) for
each message retrieved.

Note If you are already using the MQSeries link extra SupportPac, you can
use exactly the same database with this sample.

Lotus Notes sample applications databases (test1.nsf & test2.nsf)
Two sample Lotus Notes demonstration databases are provided with
MQSeries link extra agent sample.

test1.nsf contains salary information

test2.nsf contains address information

The Link database has entries to enable documents contained in the
demonstration databases to be updated. If you create your own
applications, suitable Link database entries must be provided.

Note The demonstration example does not automatically use the document
search by view function.

MQSeries sample application (mqlxdemo files)
An MQSeries demonstration application is provided to help you get
started. This demonstration application is a C program designed to read
messages from standard input. A data file is provided for use with the
demonstration application. When the data file is piped to the demonstration
application, messages are put that the MQLSX link extra agent uses to
update the Lotus Notes demonstration databases. The demonstration
application can use triggering to start the MQLSX link extra agent.

Appendix B: MQLSX link extra agent sample 207

Comparison with the MQSeries link extra for Lotus Notes SupportPac
This sample uses exactly the same

Set of rules

mqlinkx.nsf database

The differences are:

The mqlinkx executable file is replaced by a Notes agent database
(gmqlxtra.nsf).

The MQLSX link extra agent sample can be run using a trigger monitor
(the alternative is to run it manually or as a scheduled agent).

When a message cannot be processed and the retry limit is exceeded,
the MQLSX link extra agent sample commits the message in order to
remove it from the queue. If there is a backout requeue queue or a
dead-letter queue defined, the failing message is put on it.

The 'Additional Selection Formula', an optional parameter in the
mqlinkx.nsf database, must conform to the LotusScript FTSearch rules
(whereas previously this conformed to the Notes formula rules).

The 'Additional Selection Formula' parameter may be used in addition
to the 'View to Use for Searching' (whereas previously it could not).

Caution If you specify numeric KEY fields in the link database, you
MUST create a full text index for the target database.

Restrictions
The agent cannot be used with the MQSeries Trigger Monitor for Lotus
Notes agents on UNIX platforms with versions of Notes 4.5 and earlier.

User messages are only provided in US English.

Recommendations
Triggered Notes agents should not be long-running; they should allow
themselves to be retriggered.

208 MQSeries link LotusScript Extension User's Guide

Design of the MQLSX link extra agent sample

The MQLSX link extra agent sample provides the same function as
MQSeries link extra for Lotus Notes, with the addition of application type
(APPLTYPE) 22 to support the triggering of Notes agents.

The add-in task (mqlinkx.exe) provided by MQSeries link extra for Lotus
Notes is replaced by a Notes Agent (gmqlxtra.nsf).

The trigger monitor uses the MQSeries MQTMC2 structure. The only fields
in this structure used by the Notes agent are QName, QMgrName, and
EnvData. The EnvData field is used to hold both the name of the link
database and the link database server name.

Note The name of the Notes database may not included spaces, however
the link database server may have a name that includes spaces. A space
must be added in EnvData after the name of the database, before the name
of the link database server.

The trigger message document (using the MQTMC2 structure) may
originate from:

A trigger document passed from the trigger monitor

An equivalent document in the Agent database (when you run the
Notes agent manually)

A combination, with the queue and queue name parameters supplied
within the document from the trigger monitor and the link database
and server names provided by the document in the Agent database.

If neither document is found, the default values are used. If the value of a
parameter is unspecified, the default value is used.

The QName field in the trigger message document, as with any document
using the link database, is compared to the 'Entry' field in the link database.
When a match is found, the trigger document is processed using the
conditions and rules in the corresponding document in the link database.
After successfully applying the rules of the link document, the link database
is searched to find a further matching 'Entry'. Processing of the trigger
document ends when no further matching entries are found.

Appendix B: MQLSX link extra agent sample 209

Error processing
If the agent is unable to process a message, and the retry limit is exceeded,
the Notes agent:

1. Attempts to queue the message on the backout requeue queue (the
name of which is held by the application queue) after which it commits
the message

If this fails:

2. Puts the message onto the dead-letter queue (if one is defined to the
queue manager) after which it commits the message

If this fails:

3. Commits the message, causing it to be removed from the application
queue and discarded.

For information on triggering, see the IBM MQSeries Application
Programming Guide.

Notes agent user exit
The Notes agent provides you with the option of using a LotusScript user
(error) exit. The sample user exit provided is invoked when an error is
detected. It outputs a message for information (the value of the
MSG_USEREXITINVOKED string constant), and returns "Stop and Exit",
at which it will stop the agent. An alternative return value
SCERR_OK_TO_CONTINUE can be used to indicate that the exit has
successfully handled the error and it is OK for the agent to continue.

210 MQSeries link LotusScript Extension User's Guide

'**

'* Sample LotusScript UserExit function

'*

'* UserExit input parameters:

'* Rule As String

'* Rule (one of: "0","1","2","3","4","5","6","7","8","9")

'* RuleDoc As NotesDocument rule document

'* Msg As MQMessage MQMessage

'* QMgr As MQQueueManager MQQueueManager

'* UserDb As NotesDataBase User database

'* UserExit As Long returns one of:

'* SCERR_OK_TO_CONTINUE:

'* the message was processed successfully and should

'* be committed

'* SCERR_STOP_AND_EXIT:

'* the message was not processed successfully and

'* be rolled back. The agent should terminate.

'**

Function UserExit(Rule As String, RuleDoc As NotesDocument,
Msg As MQMessage,

 QMgr As MQQueueManager, UserDb As
NotesDataBase) As Long

 Messagebox MSG_USEREXITINVOKED

 Print MSG_USEREXITINVOKED

 UserExit = SCERR_STOP_AND_EXIT

'* UserExit = SCERR_OK_TO_CONTINUE

End Function

Appendix B: MQLSX link extra agent sample 211

Setting up the MQLSX link extra agent sample

If you are installing the MQLSX link extra agent sample for the first time,
follow the instructions under "Installing the MQLSX link extra agent sample
for the first time".

If you already have the MQSeries link extra for Lotus Notes support pac
installed on your system, follow the instructions under "Upgrading from
the MQSeries link extra for Lotus Notes support pac".

212 MQSeries link LotusScript Extension User's Guide

Installing the MQLSX link extra agent sample for the first time
1. Copy the four Lotus Notes database files that are provided in the

MQSeries link extra agent sample for Lotus Notes package into a
suitable directory on your Notes workstation:

mqlinkx.nsf

gmqlxtra.nsf

test1.nsf (Salary Information database)

test2.nsf (Address Information database)

Note These databases (test1.nsf and test2.nsf) do not use the
document search by view function.

2. Add icons for these databases to your workspace.

3. Install the databases on your server if required using File - Database -
New Copy and add the icons to your workspace.

Upgrading from the MQSeries link extra for Lotus Notes SupportPac
Install only gmqlxtra.nsf, test1.nsf, and test2.nsf as described when
installing for the first time. The other databases are already available as part
of the MQSeries link extra for Lotus Notes SupportPac.

Appendix B: MQLSX link extra agent sample 213

Setting up MQSeries to run the MQLSX link extra agent sample

1. Start the MQSeries queue manager

2. Edit the MQSeries MQSC file command, gmqstrg0.tst (MQSeries
Trigger Monitor for Lotus Notes), to match your environment. Replace
the existing versions of test1.nsf and test2.nsf with the new versions, to
take advantage of the performance benefits, as these databases specify a
view name for searching.

The user exit requires a queue to put error message details. The error
queue name suffix must be the same as the name of the application
queue name you are putting messages to. If you want to run the sample
program mqlxdemo.exe, the MQSeries definition is already set up to
use "NOTE" as the application queue name and error message queue
name suffix. If you want to create other application queues, you must
modify the gmqstrg0.tst file to maintain this relationship.

3. Use runmqsc to create the MQSeries link extra agent queue manager
objects. Issue the command:
runmqsc QMgrName < gmqstrg0.tst > mqlx.out

Where:

QMgrName is the name of the queue manager; if you don't specify a
value the default queue manager is used.

gmqstrg0.tst is the name of your MQSC command file.

mqlx.out is the name of the file that contains the runmqsc output
results.

4. Check the output of runmqsc. The following queue manager objects
should now exist:

Queues:
NOTE (The MQSeries link extra agent application
queue*)

MQLX.HOLD.NOTE (The user exit error message queue)

SYSTEM.SAMPLE.NOTES.AGENT.INITQ (The initiation queue)

Process:
SYSTEM.SAMPLE.NOTES.AGENT.PROCESS (Process definition to

 start MQSeries link extra agent process
mqlinkx.exe)

Note * The value of the ENTRY field used to search the MQSeries link
database will be equal to the queue name.

214 MQSeries link LotusScript Extension User's Guide

Before you run the MQLSX link extra agent sample

There are a number of steps you must complete before you can successfully
run the MQLSX link extra agent sample.

You can either run the MQSeries link extra agent sample manually, as a
scheduled agent, or by using triggering using the MQSeries Trigger
Monitor for Lotus Notes Agents. If you choose to run the MQSeries link
extra agent sample using triggering, you should verify that MQSeries link
extra agent can initiate updates to Lotus Notes.

If you want to start it by using triggering with the MQSeries Trigger
Monitor for Lotus Notes Agents, you must:

1. Start the MQSeries queue manager

2. Create an MQSeries application program queue

3. Create an MQSeries agent initiation queue

4. Create an MQSeries agent process definition

5. Start the Trigger Monitor program

Start the MQSeries queue manager
Before you can create the queues you need to run this sample, you must
start your MQSeries queue manager. This can be the default queue
manager, or a user defined queue manager.

Create an MQSeries application program queue
You can create an MQSeries application program queue by using the
supplied MQSC sample script (gmqstrg0.tst) or by using the runmqsc
command shown below:

DEFINE QLOCAL('NOTE') REPLACE +

DESCR('Sample Notes Agent Application Program Queue') +

INITQ('SYSTEM.SAMPLE.NOTES.AGENT.INITQ') +

PROCESS('SYSTEM.SAMPLE.NOTES.AGENT.PROCESS') +

TRIGGER +

TRIGTYPE(FIRST) +

Appendix B: MQLSX link extra agent sample 215

Definitions
DESCR Specifies a descriptive plain-text

comment.

INITQ Specifies the name of the initiation
queue.

PROCESS Specifies the name of the agent process
definition.

TRIGGER Specifies that triggering is active for this
queue.

TRIGTYPE(FIRST) Specifies that a trigger message should
be written when the first message of
suitable priority arrives on this queue.

TRIGDATA Specifies information required by the
agent to process messages from this
queue.
For the IBM MQSeries link LotusScript
Extension (MQLSX), this optional.

Note For the MQSeries link LotusScript Extension, TRIGDATA is typically
not use and can be specified as blank or omitted if not required.

216 MQSeries link LotusScript Extension User's Guide

Create an MQSeries agent initiation queue
You can create an MQSeries agent initiation queue by using the supplied
MQSC sample script or by using the runmqsc command shown below:

DEFINE QLOCAL('SYSTEM.SAMPLE.NOTES.AGENT.INITQ') REPLACE +

DESCR('Sample Triggered Notes Agent Initiation Queue')

Definitions
DESCR Specifies a descriptive plain-text

comment.

Create an MQSeries agent process definition
You can create an MQSeries agent process definition by using the supplied
MQSC sample script or by using the runmqsc command shown below:

DEFINE PROCESS('SYSTEM.SAMPLE.NOTES.AGENT.PROCESS') REPLACE +

DESCR('Sample Triggered Notes Agent Process') +

APPLTYPE(22) +

APPLICID('gmqlxtra.nsf MQLSX link extra Agent') +

USERDATA('User data used by MQLSX link extra Agent')

Definitions
DESCR Specifies a descriptive plain-text

comment.

APPLTYPE APPLTYPE 22 specifies the application
type as a Notes agent.

APPLICID Specifies the name of the agent database
(*.nsf) file followed by the agent name.
Note that the agent name may contain
spaces while the agent database file
name may not. You must specify the
fully qualified path and filename of the
agent database if it is not the default
Notes directory.

USERDATA Specifies user data required by the agent.
You can specify this as a blank or just
omit it if you don't require it.

Appendix B: MQLSX link extra agent sample 217

Start the Trigger Monitor program
You may want to start the Trigger Monitor program before you can run the
MQLSX link extra agent.

On MQSeries for UNIX systems, OS/2 or Windows NT, the command is
the same:

runmqtnm [-m QManagerName] [-q InitiationQueueName]

Note runmqtna is not supported on Windows 95.

If you are using an MQSeries client, the command is:

runmqtnc [-m QManagerName] [-q InitiationQueueName]

Where QManagerName is the name of your MQSeries queue manager and
where InitiationQueueName is the name of your MQSeries initiation queue.

Note There is no trigger monitor for Windows 3.1.1 MQSeries clients.

Verifying MQSeries link extra agent can initiate updates to Lotus Notes
If you have chosen to start the MQSeries link extra agent by triggering, you
should verify that MQSeries link extra agent can initiate updates to Lotus
Notes. Two sample demonstration Lotus Notes databases are provided.
Running the sample demonstrates how separate documents in two different
Lotus Notes databases can be updated by putting messages on a single
queue.

1. Start Lotus Notes.

You should have the MQSeries link extra agent workspace icons
representing the link database and two sample application databases. If
you do not, add the icons for the three Notes databases to your
workspace.

218 MQSeries link LotusScript Extension User's Guide

2. Start the MQSeries queue manager.

Use runmqsc to check to see if the following queue manager objects are
defined. If not, go back and perform the MQSeries Setup procedure.

Queues:
NOTE (The MQSeries link extra agent application
queue*)

MQLX.HOLD.NOTE (The user exit error message queue)

SYSTEM.SAMPLE.NOTES.AGENT.INITQ (The initiation queue)

Process:
SYSTEM.SAMPLE.NOTES.AGENT.PROCESS (Process definition to

 start MQSeries link extra agent process
mqlinkx.exe)

Note
* The value of the ENTRY field used to search the MQSeries link
database will be equal to the queue name.

3. Start the trigger monitor by issuing the runmqtrm command.
C:> runmqtnm -m [QMgrName] -q
SYSTEM.SAMPLE.NOTES.AGENT.INITQ

or

 runmqtnc -m [QMgrName] -q
SYSTEM.SAMPLE.NOTES.AGENT.INITQ

 (trigger monitor for client)

Where [QMgrName] is the name of your MQSeries queue manager and
SYSTEM.SAMPLE.NOTES.AGENT.INITQ is the name of the initiation
queue the trigger monitor will monitor.

Note There is no trigger monitor for Windows 3.1.1 MQSeries clients.

4. Change to the directory where your mqlxdemo program file is stored.

5. Run the mqlxdemo program to put sample data on a queue called
NOTE.

Appendix B: MQLSX link extra agent sample 219

For example:
mqlxdemo NOTE [QMgrName] < mqlxdemo.dat

Where [QMgrName] is the name of the queue manager. If you do not
specify a value here, the system default queue manager is used.

The application mqlxdemo reads the sample data in the mqlxdemo.dat
file and writes the MQSeries messages to the NOTE queue. The NOTE
queue being a triggered queue will cause the process defined by
SYSTEM.SAMPLE.NOTES.AGENT.PROCESS to run the agent.

The agent,for each message retrieved, reads the link database to
determine the processing rule, and the Lotus Notes document and
fields to update. It uses the queue name as the name of the ENTRY
identifier in the link database.

6. Open a view in the Salary (test1.nsf) or Address (test2.nsf) database.
You should now see new document entries reflecting the data
processed.

You can also run the agent program manually or as a scheduled agent (for
example On Schedule Hourly) to perform these updates instead of using
triggers.

220 MQSeries link LotusScript Extension User's Guide

Running the MQLSX link extra agent sample

Before you run the sample, make sure that you have completed all the steps
described in "Before you run the MQLSX link extra agent sample".

The MQLSX link extra agent sample may be started via triggering, as a
scheduled agent, or run manually. The name of the queue used must match
the name of the link database entry.

It is necessary for the appropriate MQSeries subsystem to be installed
wherever the agent triggered task will execute. This could be either the
MQSeries server or MQSeries client.

To run the MQLSX link extra agent sample manually
To run the sample manually you need:

gmqlxtra.nsf

mqlinkx.nsf

test1.nsf

test2.nsf

mqlsxdemo

mqlsxdemo.dat

Having checked that these are installed on your system:

1. Start MQSeries by entering the command: strmqm QMgrName

2. Modify the MQSeries agent parameters document in the agent database
for your environment, specify:
queue name
link database name (if different from mqlinkx.nsf)
queue manager name (if you are not using the default queue manager)

3. Select Agents - MQLSX Link Extra Agent

4. Select Actions - Run

Appendix B: MQLSX link extra agent sample 221

Using full text indices and views
If a target database has a full text index, existing documents are located
more quickly but because the index is updated by the agent each time it
creates a new document, document creation takes longer.

Whether an application performs better with or without a full text index
therefore depends on the characteristics of the particular application.

Note If you are using numeric key fields to locate an existing document, the
target database MUST have a full text index.

On a server, Notes periodically updates a full text index automatically. If
the frequency of this update is adequate for your application, you can
improve the performance of document creation in a database with a full
text index, by removing the agent update statement from the LotusScript
declarations event section.

This can be accomplished by commenting out the line by inserting a single
quotation mark (') at the start of the line:

 ' Call oUserDb.UpdateFTIndex(False)

If a database is updated manually (e.g. by deleting or adding documents)
you must ensure the full text index is deleted and recreated before running
the agent.

Better performance is generally obtained if a View is specified to locate
existing documents, particularly if the database has no full text index.

Using a Notes view to search for a document
If you have a large number of documents in the database that are to be
updated with information from your host system, you are recommended to
use a view to search for documents. However, you must adhere to the
conditions attached to using views.

A view must have at least one column sorted in ascending order.

The first column of the view must contain the data for the first key field
specified for that entry.

222 MQSeries link LotusScript Extension User's Guide

How the MQLSX link extra agent sample works

The MQLSX link extra agent sample demonstrates how you can use the
MQSeries Trigger Monitor for Lotus Notes agents to trigger a Lotus Notes
Agent called "MQSeries link extra agent" that is contained in the Notes
database, gmqlxtra.nsf.

The MQSeries link extra agent makes use of the MQLSX. You should have
the appropriate MQSeries subsystem installed wherever the agent will run.

When triggering is required, an application queue with triggering turned on
is needed with an associated process definition. The triggered queue has a
defined process that starts the MQSeries link extra agent. The MQSeries
link extra agent processes messages placed on an input queue and consults
the Lotus Notes link database for the processing rule and the Notes
document and fields to update. The MQSeries link extra agent program
may call a customized LotusScript user exit.

The agent gets an MQSeries message from the specified queue and, for each
link entry rule document with an Entry field matching the queue name,
applies the update defined by the rule to the user database specified by that
rule document.

Note A single message may match more than one rule document and a
single rule document may select more than one user document for update.

Looking at the steps that take place if your MQSeries application, where the
data to be passed to Notes originates, is running on a system remote from
your Notes server:

Appendix B: MQLSX link extra agent sample 223

1. An MQSeries application running on your enterprise system generates
a message containing the data it wants to pass to the Notes
environment, and puts it on a queue, defined as a tranmission queue.

2. MQSeries, running on the Domino server extracts the message and puts
it on a local application queue. This local queue has been defined as a
triggered queue.

3. The trigger monitor program recognizes a message has arrived on the
queue, carries out the normal triggering checks, and if all the criteria
are met, issues a call to run the Notes agent.

4. The MQSeries link extra agent gets the message from the application
queue.

5. It reads the document in the link database, the queue name as the key
(to match against the Entry field), for each message and determines the
processing rules.

6. The appropriate Notes document is updated or created, as determined
by the processing rules.

7. The Lotus client application opens the database and views the data.
There is no dynamic display of any changed data, as it is the enterprise
application initiating the change.

Link extra database contents (mqlinkx.nsf)
The link extra database contains the information needed by the Notes agent
to determine what processing it needs to do for an incoming message:

Entry
The name of the MQSeries queue from which the Notes agent gets
messages

Description
Text that is useful to you. For example, you may want include the type
of information held in the messages, or the name of the transmission
queues that supply the messages

Database Information
User Database Name: The name of the Notes database to be updated
with the data in the MQSeries message
View to Use for Searching: The name of a Notes view known to your
Notes application that identifies the document to be updated. This must
be shared view.

224 MQSeries link LotusScript Extension User's Guide

Rule
There are a set of predetermined rules from which you must select one.
The rule you select (there is no default rule) determines how the Notes
agent processes the MQSeries message, based on documents that
already exist in the Notes database.
In summary:
Insert: A new document is created
Update: The located document is updated
Ignore: No action is taken
Fail: A call is made to the user exit
The rules are:

Rule
no.

Condition Action taken

0 If found insert, else fail When no documents are found, call the
user exit.

1 If found update, else fail When no documents are found, call the
user exit.

2 If found fail, else insert When one or more documents are found,
call the user exit.

3 If found update, else insert When a matching document is not found, a
new one is created, the user exit is not
called.

4 If found update, else ignore When no matching document is found, the
message is ignored or discarded and the
user exit is not called.

5 Insert always A new document is always created
regardless of whether a matching
document is found, the user exit is not
called.

6 If found ignore, else fail When no matching documents are found,
call the user exit.

7 If found insert, else ignore When no matching documents are found,
the message is ignored or discarded and
the user exit is not called.

8 If found fail, else ignore When one or more matching documents
are found, call the user exit.

9 If found ignore, else insert When a matching document is found, the
message is ignored or discarded and the
user exit is not called.

Appendix B: MQLSX link extra agent sample 225

Output Offsets
Describes the layout of the data in the MQSeries message:
Syntax:
FieldName <space> Start<space>
End<space>CHAR¦INTEL-BINARY<space>KEY<comparison>

Syntax

Fieldname Optional. The name of the field in the Notes form to be
updated with data in this part of the MQSeries message

Start The position in the MQSeries message at which the data
in this field starts

End The position in the MQSeries message at which the data
in this field ends

CHAR ¦
INTEL-BINARY

The datatype of the field. Use CHAR for character data,
and INTEL-BINARY for numeric data

KEY Optional. Use the word KEY against a field to indicate
that this field is of the selection criteria when searching
for a document in a Notes database.
Caution If you specify numeric KEY fields in the link
database, you MUST create a full text index for the target
database.

<comparison> Optional and only used with a KEY field. A token that
you set to <, >, +, =, CASE or NOCASE. When selected,
is used to compare the field in the Notes document with
the field in the MQSeries message. The default value is
NOCASE.
Note Use the word CASE to indicate that the search must
be case sensitive. Use the word NOCASE to indicate that
the search is not case sensitive.

Additional Selection Formula
Optional. Used to specify search criteria when searching for documents
in a Notes database. All conditions must conform to the LotusScript
FTSearch verb.

Note When KEY fields are not specified and the Additional Selection
Formula is blank, all documents in the database are selected.

226 MQSeries link LotusScript Extension User's Guide

Error handling and status reporting in the MQLSX link extra agent sample

Messages are output by the sample both to report errors and provide status
information. All messages are output by the trigger monitor to the Notes
status bar or server console.

Status messages
The status messages that you may see in the Notes status bar when running
the MQLSX link extra sample are:

Message What it means...

Starting MQLSX link extra agent
Version n.n

The Agent program is starting.

Using default parameters The Agent could not find an agent
parameter document is using the default
parameters.

Using default queue manager The Agent is using the default MQSeries
queue manager.

Using default queue name The Agent is using the default queue name.

Using default link database The Agent is using the default link database.

Using parameters from agent
parameter document.

The agent could not find a trigger message
document and is using the agent parameter
document.

Using parameters from trigger
message document

The Agent is using parameters from the
trigger message document.

User exit invoked The user exit was invoked.

WARNING: No messages were
found on the specified MQSeries
queue

End of messages

Agent ended abnormally

Agent ended normally

Appendix B: MQLSX link extra agent sample 227

Error Messages
Error messages output by the sample are detected by LotusScript, the
MQLSX, or the agent. The format in each case is different.

Errors detected by Lotus Notes
The format of these messages output by the link extra agent sample is:

MQLSX link extra Agent Notes Error: Agent_Insert_String
Notes_Error_Message (Notes error = Notes_Error_Number Line nnnn)

where:

Agent_Insert_String
is any additional useful information about the error that the agent can
provide and may be omitted if blank.

Notes_Error_Message
is the LotusScript error message

nnnn
is the line number in the LotusScript source code where the error occurred

Errors detected by the MQLSX
The format of these messages output by the link extra agent sample is:

MQLSX link extra agent Error: Agent_Error_Number
Agent_Error_Message Agent_Insert_String Notes_Error_Message (Notes
error = Notes_Error_Number Line nnnn)

where:

Agent_Error_Number
is an agent error number that may be omitted for MQLSX detected errors if
zero

Agent_Error_Message
is an agent error message

Agent_Insert_String
is any additional useful information about the error that the agent can
provide and may be omitted if blank.

MQLSX_Error_Message
is the LotusScript MQLSX error message and will typically provide the
MQSeries or MQLSX reason code

Notes_Error_Message
is the LotusScript error message

nnnn
is the line number in the LotusScript source code where the error occurred

228 MQSeries link LotusScript Extension User's Guide

Errors detected by the link extra agent sample
The format of these messages output by the link extra agent sample is:

MQLSX link extra agent Error: Agent_Error_Number
Agent_Error_Message Agent_Insert_String

where:

Agent_Error_Number
is an agent error number that may be omitted for MQLSX detected errors if
zero

Agent_Error_Message
is an agent error message

Agent_Insert_String
is any additional useful information about the error that the agent can
provide and may be omitted if blank.

Appendix B: MQLSX link extra agent sample 229

The error messages you can encounter that are detected by the Agent
component of the Link sample are:

Message What it means... Action

Link database could not be
opened.
(66001)

An error occurred
opening the Link
database.

Check that the Link
database is available
and its specification is
correct.

User database could not be
opened.
(66002)

An error occurred
opening the target user
database.

Check that the target
user database is
available and its
specification is correct.

Link Entry Error: start or end
position value not valid.
(66003)

The error was detected in
the Link database field
definition shown.

Correct the incorrect
value (or values) and
retry the operation. The
start offset must be
greater than zero and
the end offset must be
equal to or greater than
the start offset.

Link Entry Error: one or more
field items are missing.
(66004)

The error was detected in
the Link database field
definition shown.

Correct the missing
value (or values) and
retry the operation.

Link Entry Error: data type
not valid.
(66005)

The error was detected in
the Link database field
definition shown.

Correct the incorrect
value (or values) and
retry the operation.
Valid data types are
CHAR, NUM, (and
INTEL_BINARY).

Link Entry Error: data length
not valid for NUM.
(66006)

The error was detected in
the Link database field
definition shown.

Valid data lengths for
NUM are 2, 4 and 8.
Correct the incorrect
value and retry the
operation.

Link Entry Error: KEY
position value not valid.
(66007)

The error was detected in
the Link database field
definition shown.

Correct the incorrect
value (or values) and
retry the operation.
Values other than
"KEY" are not valid in
the 'key' position.

230 MQSeries link LotusScript Extension User's Guide

Message What it means... Action

Link Entry Error: comparison
position value not valid.
(66008)

The error was detected in
the Link database field
definition shown.

Correct the incorrect
value (or values) and
retry the operation.
Values other than
"CASE" or "NOCASE"
are not valid in the
'comparison' position.

Link Entry Error: form
specification not valid.
(66009)

The error was detected in
the Link database field
definition shown.

Correct the incorrect
value (or values) and
retry the operation.
'Key' and 'comparison'
keywords and
datatypes other than
CHAR cannot be
specified for a field
used to specify the
form name (i.e., with
field name 'FORM').

Link Entry Error: field length
value too big.
(66010)

The error was detected in
the Link database field
definition shown.

Correct the incorrect
value (or values) and
retry the operation.
Field lengths greater
than 32000 are not
supported.

Link Entry Error: key field
length value is too big.
(66011)

The error was detected in
the Link database field
definition shown.

Correct the incorrect
value (or values) and
retry the operation.
Key field lengths
greater than 64 are not
supported.

Error saving Notes document.
(66012)

An unexpected error
occurred when
attempting to save a
document in the target
Notes database.

Check that your target
Notes databases can be
successfully accessed
and check that there is
is sufficient system
resources (e.g., disk
space).

A number in an MQSeries
message had an invalid
exponent.
(66013)

The exponent value of an
8-byte NUM (double
precision) number is not
valid.

Refer the problem to
the provider of your
server application.

Appendix B: MQLSX link extra agent sample 231

Message What it means... Action

A rule document with the
specified name was not found.
(66014)

Check that a rule
document exists for
application queue
name shown.

The view specified in the Link
Entry rule document was not
found.
(66015).

Check that a view
exists in the target
database for the view
name shown.

A Invalid rule was detected.
(66016)

Replace the rule shown
in the Link entry
document with a
supported value.

Backout threshold of failing
message exceeded; message
could not be requeued and
was discarded.
(66017)

A failing message was
discarded because, after
backing out and retrying
the required number of
times, it could not be
successfully requeued on
either the backout
requeue queue or the
dead letter queue.

Refer to the previous
error messages
displayed whilst
running the link extra
agent sample to
determine the cause of
the problem. Create a
backout requeue queue
or a dead-letter queue
if required.

Backout threshold of failing
message exceeded; message
was requeued to:
(66018)

A failing message was
requeued to the queue
indicated because, after
backing out and retrying
the required number of
times, the message could
not be processed
successfully.

IRefer to the previous
error messages
displayed whilst
running the link extra
agent sample to
determine the cause of
the problem and retry
the operation if
required.
Note If the message
was requeued to the
dead letter queue the
message data will be
prefixed by a dead
letter header.

User exit returned "Stop and
exit".
(66019)

A user exit call specified
by the processing Rule
returned "Stop and Exit".
Processing is ended.

Investigate why the
user exit was invoked
and returned the
completion code
shown if this was not
the intended action.

232 MQSeries link LotusScript Extension User's Guide

Message What it means... Action

Numeric key fields are not
valid with a target database
that is not full text indexed.
(66020)

Create a full text index
in the target database
or change the key field
to use type CHAR.

The link database view shown
was not found.
(66021)

The view required to
access information in the
link database was not
found.

Create the required
view in the link
database.

Appendix B: MQLSX link extra agent sample 233

Agent_Insert_String

The Agent_Insert_String may be blank or one of the following:

MQLSX error getting message from application queue

Consult your MQSeries Application Programming Reference or MQSeries
link LotusScript Extension User Guide for the reason code shown.

MQLSX message DataOffset error.

Check that your field definition values in the link database are correct for
the incoming messages. Consult your MQSeries Application Programming
Reference or MQSeries link LotusScript Extension User Guide for the
reason code shown.

MQLSX message ReadString error.

Check that your field definition values in the link database are correct for
the incoming messages. Consult your MQSeries Application Programming
Reference or MQSeries link LotusScript Extension User Guide for the
reason code shown.

MQLSX message ReadShort error.

An MQLSX error occurred when attempting to read a short integer from an
MQMessage. Consult your MQSeries Application Programming Reference
or MQSeries link LotusScript Extension User Guide for the reason code
shown.

MQLSX message ReadLong error.

An MQLSX error occurred when attempting to read a long integer from an
MQMessage. Check that your field offset values in the link database are
correct for the incoming messages. Consult your MQSeries Application
Programming Reference or MQSeries link LotusScript Extension User
Guide for the reason code shown.

Error accessing queue manager

An MQLSX error occurred when attempting to access the queue manager.
Check your target queue name is correct and the queue manager is started.
Consult your MQSeries Application Programming Reference or MQSeries
link LotusScript Extension User Guide for the reason code shown.

234 MQSeries link LotusScript Extension User's Guide

Notices 235

236 MQSeries link LotusScript Extension User's Guide

Index

A
About MQLSX classes, 89
About the MQLSX Starter
sample, 37
Accessing the MQLSX, 43
AccessProcess Method, 107
AccessQueue Method, 108
AccessQueueManager Method,
93
AccountingToken Property, 145
AccountingTokenHex Property,
145
AIX

MQLSX installation,
17

AlternateUserId Property for
MQProcess Class, 175
AlternateUserId Property for
MQQueue Class, 116
AlternateUserId Property for
MQQueueManager Class, 97
AMQSLNK0, 182
ApplicationId Property, 175
ApplicationIdData Property, 146
ApplicationOriginData
Property, 146
ApplicationType Property, 175
AuthorityEvent Property, 97

B
Backout Method, 109
BackoutCount Property, 146
BackoutRequeueName Property,
116
BackoutThreshold Property, 117
BaseQueueName Property, 117

Before you install the MQLSX,
10
Binary data in messages, 140

C
Character Set Conversion, 55
characterset, establishing what it
is, 56
CharacterSet Property for
MQMessage Class, 147
CharacterSet Property for
MQQueueManager Class, 98
ClearErrorCodes Method for
MQGetMessageOptions Class,
173
ClearErrorCodes Method for
MQMessage Class, 156
ClearErrorCodes Method for
MQProcess Class, 178
ClearErrorCodes Method for
MQPutMessageOptions Class,
168
ClearErrorCodes Method for
MQQueue Class, 136
ClearErrorCodes Method for
MQQueueManager Class, 109
ClearErrorCodes Method for
MQSession Class, 93
ClearMessage Method, 157
CloseOptions Property, 118
Code level tool, 70
CommandInputQueueName
Property, 98
Commit Method, 110
CompletionCode Property for
MQGetMessageOptions Class,
170
CompletionCode Property for
MQMessage Class, 142
CompletionCode Property for
MQProcess Class, 176
CompletionCode Property for
MQPutMessageOptions Class,
165

CompletionCode Property for
MQQueue Class, 118
CompletionCode Property for
MQQueueManager Class
CompletionCode Property for
MQSession Class
Connect Method, 110
ConnectionStatus Property, 99
CorrelationId Property, 148
CorrelationIdHex Property, 148
Creating an MQMessage Class
object, 140
Creating the MQQueueManager
Class, 95
Creating the MQSession Class,
91
CreationDateTime Property, 119
CurrentDepth Property, 119
Customizing the MQSeries Link
sample application, 198

D
Data conversion, 51

MQLSX Link sample,
203
MQLSX methods, 52
MQMessage Class
methods, 141
MQSeries calls, 52
Read and Write
methods, 53
ReadString method, 58
Use of Encoding
Property, 54
When it fails, 60
WriteString method, 58

Data size limitations, 44
DataLength Property, 142
DataOffset Property, 143
DeadLetterQueueName
Property, 100
DefaultInputOpenOption
Property, 119
DefaultPersistence Property, 120

DefaultPriority Property, 120
DefaultTransmissionQueueNam
e Property, 100
DefinitionType Property, 120
DepthHighEvent Property, 121
DepthHighLimit Property, 121
DepthLowEvent Property, 121
DepthLowLimit Property, 122
DepthMaximumEvent Property,
122
Description Property for
MQProcess Class, 176
Description Property for
MQQueue Class, 122
Description Property for
MQQueueManagerClass, 100
Designing applications, 42

Using mqlink.nsf, 204
Differences

MQLSX and MQEI, 4,
5

Disconnect Method, 110
Disconnect method

Importance in program,
50

Disconnecting from MQSeries,
50
Disk space requirements, 11
Domino Server or Notes client,
43
Dynamic file linking on Intel
platforms, 32
Dynamic file linking on UNIX
systems, 33

E
Embedded nulls in a string, 45
Encoding, 54
Encoding Property, 149
Environment requirements, 36
Environment variables

general information, 34
using trace, 70

EnvironmentData Property, 176

Error Handlers, 66
Error handling

Error handlers, 66
Event handlers, 64
MQLSX Link sample,
194
MQLSX objects, 62
Reason codes, 82

Error logging information, 81
Event Handlers, 64
Events for MQQueue Class, 112
Events for MQQueueManager
Class, 95
Events for the MQSession Class,
91
Examples of MQWARNING
and MQERROR event handlers,
64
Expiry Property, 149

F
Feedback Property, 150
First Failure Symptom Report,
81
Format Property, 150

G
Get Method, 137
GMQ_LEVEL, 70
GMQ_MQ_LIB

introduction, 35
GMQ_MQ_LIB environment
variable, 33
GMQ_PATH, 70
GMQ_TRACE, 70

introduction, 34
GMQ_TRACE_LEVEL

introduction, 34
GMQ_TRACE_PATH

introduction, 34
GMQ_XLAT_PATH

introduction, 35
gmqlagnt.nsf, 182

gmqlclnt.nsf, 181
GMQLEVEL.EXE, 70
GMQLSAMP.NSF Starter
sample Database

Running, 38

H
HardenGetBackout Property,
123
Hardware requirements, 36
HP-UX

MQLSX installation,
20

I
IMS Bridge, 47
Information about MQSeries, 6
InhibitEvent Property, 101
InhibitGet Property, 123
InhibitPut Property, 124
InitiationQueueName Property,
124
Installation

AIX, 17
HP-UX, 20
OS/2, 22
Sun Solaris, 24
WIN OS/2, 26
Windows 3.1, 26
Windows 95, 28
Windows for
Workgroups, 26
Windows NT, 28

Installing on AIX, 17
Installing on HP-UX, 20
Installing on OS/2, 22
Installing on Sun Solaris, 24
Installing on WIN OS/2, 26
Installing on Windows 3.1, 26
Installing on Windows 95, 28
Installing on Windows for
Workgroups, 26
Installing on Windows NT, 28

IsConnected Property, 101
IsOpen Property for MQQueue
Class, 125

L
Level Property, 98
Linking to .dll files, 32
LocalEvent Property, 102
Lotus home page on the
internet, 7
LotusScript/MQI interface
(MQLSX), 88
LotusScript events, 81
LotusScript publications, 7

M
MaximumDepth Property, 125
MaximumHandles Property, 102
MaximumMessageLength
Property for MQQueueManager
Class, 102
MaximumMessageLength
Property of MQQueue Class,
125
MaximumPriority Property, 103
MaximumUncommittedMessage
s Property, 103
Message Descriptor properties,
45
MessageDeliverySequence
Property, 126
MessageId Property, 151
MessageIdHex Property, 151
MessageLength Property, 144
MessageType Property, 152
Methods for MQQueue Class,
112
Methods for MQQueueManager
Class, 95
Methods for the MQSession
Class, 91
MQGetMessageOptions Class,
169

ClearErrorCodes
Method, 173
CompletionCode
Property, 170
Options Property, 171
ReasonCode Property,
172
ResolvedQueueManage
rName Property, 167
WaitInterval Property,
173

mqic.dll, 32
mqlink.nsf, 184
MQLSX

Application design, 41
Application failure, 81
before installing it, 16
Character data
conversion in detail, 58
Contents of the
package, 12
Disk space
requirements, 11
Error handling, 62
Installation, 9
Linking to shared
libraries, 32
list of samples
provided, 2
MQSeries
requirements, 3
Overview, 2
Reference information,
87
shared libraries, 32
Starter sample, 38
Updating your
installation, 16

MQLSX environment variables,
34
MQLSX link extra agent sample
application

before you run it, 215
comparison with
MQSeries link extra for

Lotus Notes
SupportPac, 208
components, 206
design, 209
error handling, 227
Error messages, 228
how it works, 223
introduction, 206
prerequisites, 212
recommendations, 208
restrictions, 208
running it, 221
setting up, 212
setting up MQSeries,
214
Status messages, 227

MQLSX Link sample
Before you run it, 187
Changing link database
details, 199
Changing the send and
reply fields, 199
Changing the wait
time, 199
Error handling, 194
How it works, 191
How to run it, 189

MQLSX read and write
methods, 53
mqlsxmqic.a, 33
mqlsxmqic.sl, 33
mqlsxmqm.a, 33
mqlsxmqm.sl, 33
mqm.dll, 32
mqm16.dll, 32
MQMessage Class, 138

AccountingToken
Property, 145
AccountingTokenHex
Property, 145
ApplicationIdData
Property, 146
ApplicationOriginData
Property, 146

BackoutCount
Property, 146
CharacterSet Property,
147
ClearErrorCodes
Method, 156
ClearMessage Method,
157
CompletionCode
Property, 142
CorrelationId Property,
148
CorrelationIdHex
Property, 148
DataLength Property,
142
DataOffset Property,
143
Encoding Property, 149
Expiry Property, 149
Feedback Property, 150
Format Property, 150
MessageId Property,
151
MessageIdHex
Property, 151
MessageLength
Property, 144
MessageType Property,
152
Persistence Property,
152
Priority Property, 153
PutApplicationName
Property, 153
PutApplicationType
Property, 154
PutDateTime Property,
154
ReadLong Method, 157
ReadShort Method, 158
ReadString Method,
158
ReadUnsignedByte
Method, 159

ReasonCode Property,
144
ReplyToQueueManager
Property, 155
ReplyToQueueName
Property, 155
Report Property, 156
ResizeBuffer Method,
160
UserId Property, 156
WriteLong Method,
161
WriteShort Method,
162
WriteString Method,
162
WriteUnsignedByte
Method, 163

MQProcess Class, 174
AlternateUserId
Property, 175
ApplicationId Property,
175
ApplicationType
Property, 175
ClearErrorCodes
Method, 178
CompletionCode
Property, 176
Description Class, 176
EnvironmentData
Property, 176
Methods, 174
Name Property, 177
OpenStatus property,
177
Properties, 174
ReasonCode Property,
177
UserData Property, 178

MQPutMessage Options Class
ResolvedQueueName
Property, 167

MQPutMessageOptions Class,
164

ClearErrorCodes
Method, 168
Completion Code
Property, 165
Options Property, 166
ReasonCode Property,
167

MQQueue Class, 111
AlternateUserId
Property, 116
BackoutRequeueName
Property, 116
BackoutThreshold
Property, 117
BassQueueName
Property, 117
ClearErrorCodes
Method, 136
CloseOptions Property,
118
CompletionCode
Property, 118
CreationDateTime
Property, 119
CurrentDepth Property,
119
DefaultInputOpenOptio
n Property, 119
DefaultPersistence
Property, 120
DefaultPriority
Property, 120
DefinitionType
Property, 120
DepthHighEvent
Property, 121
DepthHighLimit
Property, 121
DepthLowEvent
Property, 121
DepthLowLimit
Property, 122
DepthMaximumEvent
Property, 122

Description Property,
122
Events, 112
Get Method, 137
HardenGetBackout
Property, 123
InhibitGet Property,
123
InhibitPut Property,
124
InitiationQueueName
Property, 124
IsOpen Property, 125
MaximumDepth
Property, 125
MaximumMessageLen
gth Property, 125
MessageDeliverySeque
nce Property, 126
Methods, 112
Name Property, 126
Opening a queue, 114
OpenInputCount
Property, 126
OpenOptions Property,
127
OpenOutputCount
Property, 127
OpenStatus Property,
128
ProcessName Property,
128
Properties, 111
Put Method, 136
QueueType Property,
129
ReasonCode Property,
129
RemoteQueueManager
Name Property, 130
RemoteQueueName
Property, 130
RetentionInterval
Property, 130
Scope Property, 131

ServiceInterval
Property, 131
ServiceIntervalEvent
Property, 132
Shareability Property,
132
TransmissionQueueNa
me Property, 133
TriggerControl
Property, 133
TriggerData Property,
133
TriggerDepth Property,
134
TriggerMessagePriority
Property, 134
TriggerType Property,
135
Usage Property, 135

MQQueueManager Class, 94
AccessProcess Method,
107
AccessQueue Method,
108
AlternateUserId
Property, 97
AuthorityEvent
Property, 97
Backout Method, 109
CharacterSet Property,
98
ClearErrorCodes
Method, 109
CommandInputQueueN
ame Property, 98
Commit Method, 110
CompletionCode
Property, 99
Connect Method, 110
ConnectionStatus
Property, 99
DeadLetterQueueName
Property, 100
DefaultTransmissionQu
eueName Property, 100

Description Property,
100
Disconnect Method,
110
InhibitEvent Property,
101
IsConnected Property,
101
Level Property, 98
LocalEvent Property,
102
MaximumHandles
Property, 102
MaximumMessageLen
gth Property, 102
MaximumPriority
Property, 103
MaximumUncommitte
dMessages Property,
103
Name Property, 103
PerformanceEvent
Property, 104
Platform Property, 104
RemoteEvent Property,
105
StartStopEvent
Property, 106
SyncPointAvailability
Property, 106
TriggerInterval
Property, 107

MQSeries Enterprise Integrator
for Lotus Notes (MQEI)

features, 5
MQSeries environment support,
3
MQSeries home page on the
internet, 6
MQSeries link LotusScript
Extension (MQLSX)

features, 4
MQSeries LotusScript Class
descriptions, 87
MQSeries publications, 6

MQSession Class, 91
AccessQueueManager
Method, 93
ClearErrorCodes
Method, 93
CompletionCode
Property, 92
Creating, 91
Methods, 91
Properties, 91
ReasonCode Property,
92, 105

MQSession Class Events, 91

N
Name Property for MQProcess
Class, 177
Name Property for MQQueue
Class, 126
Name Property for
MQQueueManager Class
Notes databases

copying to a Domino
server, 31
copying to a Notes
client, 31

Numeric Encoding, 54

O
Object access methods, 90
Object out of scope, 46
Objectives of the MQLSX, 88
Opening a queue, 114
OpenInputCount Property, 126
OpenOptions Property, 127
OpenOutputCount Property, 127
OpenStatus Property for
MQProcess Class, 177
OpenStatus Property for
MQQueue Class, 128
Options Property for
MQGetMessageOptions Class,
171

Options Property for
MQPutMessageOptions Class,
166
OS/2

MQLSX installation,
22

Overriding the linking of
MQLSX files, 33

P
Parameters and the MQLSX

Errors passing, 90
Passing, 89

Passing binary data, 140
PerformanceEvent Property, 104
Persistence Property, 152
Platform Property, 104
Platforms supported, 3
Post Installation, 31
Pre-installation, 10
Priority Property, 153
Problems

Running the MQLSX
Starter sample, 39

ProcessName Property, 128
Programming hints and tips, 44
Properties of MQQueue Class,
111
Properties of MQQueueManager
Class, 94
Properties of MQSession Class,
91
Put Method, 136
PutApplicationName Property,
153
PutApplicationType Property,
154
PutDateTime Property, 154

Q
Queue Attribute properties, 113
Queue Class

Methods and
Properties, 111

Queue class
Opening a queue, 114

Queue manager
implicit connection,
113

QueueType Property, 129

R
ReadLong Method, 157
ReadShort Method, 158
ReadString Method, 158
ReadString method

Data conversion, 59
ReadUnsignedByte Method, 159
Reason codes, 82
ReasonCode Property for
MQGetMessageOptions Class,
172
ReasonCode Property for
MQMessage Class, 144
ReasonCode Property for
MQProcess Class, 177
ReasonCode Property for
MQPutMessageOptions Class,
167
ReasonCode Property for
MQQueue Class, 129
ReasonCode Property for
MQQueueManager Class
ReasonCode Property for
MQSession Class, 92
Receiving a message from
MQSeries, 46
RemoteEvent Property, 105
RemoteQueueManagerName
Property, 130
RemoteQueueName Property,
130
ReplyToQueueManager
Property, 155
ReplyToQueueName Property,
155

Report Property, 156
ResizeBuffer Method, 160
ResolvedQueueManagerName
Property for
MQPutMessageOptions Class,
167
ResolvedQueueName Property
for MQGetMessageOptions
Class, 172
ResolvedQueueName Property
for MQPutMessageOptions
Class, 167
RetentionInterval Property, 130
Running an installation
verification test, 36
Running the MQLSX Link
sample, 189
Running the MQLSX Starter
sample, 38

S
Sample application

Customization, 198
How it works, 191
How to run, 189

Sample applications
MQLSX link extra
agent sample
application, 205, 206,
208, 209, 212, 214,
215, 221, 223
MQLSX Link sample
application, 179, 180,
187
Set up required, 187

ServiceInterval Property, 131
ServiceIntervalEvent Property,
132
Setting up your MQSeries
environment, 36
Shareability Property, 132
Software requirements, 36
Starter sample script for the
MQLSX, 40

StartStopEvent Property, 106
Sun Solaris

MQLSX installation,
24

SyncPointAvailability Property,
106

T
Trace file example, 73
Tracing using the MQLSX, 70
TransmissionQueueName
Property, 133
TriggerControl Property, 133
TriggerData Property, 133
TriggerDepth Property, 134
TriggerInterval Property, 107
TriggerMessagePriority
Property, 134
TriggerType Property, 135

U
Updating your MQLSX
installation, 16
Usage Property, 135
UserData Property, 178
UserId Property, 156
Using Events and Error
handlers, 63
Using the IMS Bridge, 47

V
Verification of installation, 36

W
WaitInterval Property, 173
What happens when you run the
MQLSX Link sample, 191
When your MQLSX script fails,
81
WIN OS/2

MQLSX installation,
26

Windows 3.1
MQLSX installation,
26

Windows 95
MQLSX installation,
28

Windows for Workgroups
MQLSX installation,
26

Windows NT
MQLSX installation,
28

WriteLong Method, 161
WriteShort Method, 162
WriteString Method, 162
WriteString method

Data conversion, 59
Losing data, 60

WriteUnsignedByte Method,
163
Writing large scripts, 44

Sending your comments to IBM

MQSeries link LotusScript Extension

User's Guide - Release 1.3

If you especially like or dislike anything about this book, please use one of
the methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions,
and on the accuracy, organization, subject matter, or completeness of this
book. Please limit your comments to the information in this book and the
way in which the information is presented.

To request additional publications, or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to
use or distribute your comments in any way it believes appropriate,
without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

By fax:
- From outside the U.K., after your international access code

use 44 1962 870229
- From within the UK., use 01962 870229

Electronically, use the appropriate network ID:
- IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink: WINVMD(IDRCF)
- Internet: idrcf@winvmd.vnet.ibm.com
- Lotus Notes: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

The publication title

The page number or topic to which your comment applies

Your name and address/telephone number/fax number/network ID.

