
IBM Migration Utility for z/OS and OS/390

User’s Guide and Reference
Release 1

SC27-1685-03

���

IBM Migration Utility for z/OS and OS/390

User’s Guide and Reference
Release 1

SC27-1685-03

���

Fourth Edition (April 2003)

This edition applies to IBM Migration Utility for z/OS and OS/390, Release 1, Program Number 5655-I18 and to
any subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for
the level of the product.

The information in this manual was furnished by Foundation Software, Inc.

This publication is available on the Web at:

http:/www.ibm.com/software/awdtools/migration

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for reader’s comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation
H150/090
555 Bailey Avenue
San Jose, CA
95141-1003
U.S.A.

or fax your comments from within the U.S.A., to 800-426-7773, or, from outside the U.S.A., to 408-463-2629.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

©Copyright Foundation Software, Inc. 1989-2002. All rights reserved. Unauthorized use or disclosure of any part of
the system is prohibited. Foundation Software, Inc. has granted IBM a non-exclusive license to market PEngiEZT as
Migration Utility.

© Copyright International Business Machines Corporation 2002, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 241.

Contents

About this manual v
Who should use this manual v
Structure of this manual v
Syntax notation v
Summary of changes vii

PTF UQ75386 vii

Chapter 1. Introducing Migration Utility 1
What is supported 1
Translating concepts 2
Translating guidelines 2
Structure of Easytrieve programs 5

Order of statements in an Easytrieve program . . 5
Review of the Easytrieve punctuation rules 6

Chapter 2. Compatibility check 9
File organization support 9
SBCS and DBCS character support 9
Fixed-length records 9
NON-VSAM variable-length records 10
VSAM variable-length records 10
VSAM key usage 11
VIRTUAL files 11
Extended printer support 11
Index usage 11
Field naming conventions 12
Ambiguous field position; fields with Index and
OCCURS 12
Binary field handling 14
Assigning hex values 14
Field headings 14
Paragraph-naming conventions 14
COBOLII/S390 and COBOL-VS compatibility . . . 15
Calling subprograms 15
Undetected errors 15
Sign of numeric fields 15
Varying-length fields 16
Uninitialized Working Storage fields 16
The MOVE statement 16
FILE-STATUS (STATUS) codes 17
Labels inside a DO and IF pair of statements . . . 17
External table record length 18
JCL for converted program 18
Overlapping fields on report lines 19
Group fields for SQL/DB2 usage 19
OCCURS fields for SQL/DB2 usage 20
Packed unsigned fields 21
Mask of numeric fields 21
Solution for OCCURS 1 problem 21
Duplicate fields usage and reference 22

Duplicate fields usage 22
Unavailable Field reference 22

File DDname considerations 22

Chapter 3. Defining entities 25

Defining files 25
Supported file organizations 25
Supported sequential file record formats. . . . 25
Non-supported file organizations 25
Non-supported file attributes (these attributes are
bypassed) 25
Supported file attributes 25

Defining VSAM files 26
Defining tables 27
Defining unit record devices and sequential files . . 30
Defining Records and Working Storage 32

Chapter 4. Program instruction
reference. 35
COPY statement 35
SORT Activity Section 36
JOB Activity Section 37
Synchronized file processing. 38
Record availability 39
Special IF statements in synchronized process . . . 41

MATCHED 41
File existence 41
DUPLICATE, FIRST-DUP, LAST-DUP. 41

Assignment statement 42
MOVE statement 44
MOVE LIKE statement 46
PUT statement 46
WRITE statement 47
GET statement 47
READ statement. 48
POINT statement 49
SEARCH statement 50
PERFORM statement 50
DISPLAY statement. 51
CALL statement 53
GOTO statement 54
STOP statement 55
CASE, WHEN, OTHERWISE and END-CASE
statements 56
DO and END-DO statements 56
IF, ELSE, and END-IF statements 57
Conditional expressions 58
PRINT statement 62
PROC and END-PROC statements. 62
RETRIEVE statement 63
SELECT statement (SORT and REPORT selection) 63
System-defined fields 64
Easytrieve reserved keywords 67
REPORT statement 67

SEQUENCE statement 71
CONTROL statement 72
SUM statement 73
HEADING statement 73
TITLE statement 74
LINE statement 75

© Copyright IBM Corp. 2002, 2003 iii

||
||

||

Report exits 76
Native COBOL support 77

Support for COBOL and PEngi Functions in
ASSIGN statement 79
Generating rules 80

Chapter 5. SQL/DB2 support 81
Translating concepts 81
Native SQL statements 82
Automatic cursor management 83

Easytrieve file defined as an SQL file 83
Automatic retrieval without a file 83

SQL statements syntax rules 83
PARM statement parameters. 83
Library section for SQL processing 84
SQL catalog INCLUDE facility 84

When to use SQL INCLUDE. 85
Processing nullable fields 85
SQL data types 85
SQL syntax checking 85
System-defined fields 85
EOF processing 86
Communication Area fields 86
Easytrieve Plus SQL files 86
Using DEFER with SELECT 87
Multiple tables 87
Controlled processing 87
Automatic retrieval without a file 89
Native SQL processing 89

Chapter 6. SQL File I/O statement
reference. 91
CLOSE statement 91
DELETE statement 91
FETCH statement 92
SQL INCLUDE statement. 92
INSERT statement 94
UPDATE statement 94
SELECT statement 94
Easytrieve macros 96

Invoking macros. 97

Chapter 7. User exits. 99
CBLCNVRT macro 99

Running a standalone job to do the conversion. 99
Coding CBLCNVRT in Easytrieve Plus
programs. 100

EZTCNVRT macro 101
Generating COBOL COPY statements 102
System information 104

Migration Utility files 104
Runtime requirements 105
Summary of DDnames 105
Translator CCL1 preprocessor options 106

Chapter 8. Installation and Migration
Utility options 109
Installation 109
Activating Call Attachment Facility (CAF) for DB2
users 109

Using EZTPA00 program loader 110
REPORT default options 111

Mask identifier table to facilitate Easytrieve
USERMASK 112

Migration Utility translator options 112
Embedding options in the program source . . . 119

Chapter 9. Dynamic I/O mode and
PDS/PDSE support 121
Dynamic I/O mode 121

How does it work? 121
Dynamic I/O considerations 121
Benefits of Dynamic I/O 122

Support for PDS/PDSE libraries 122
Guidelines for accessing PDS/PDSE libraries 122

Chapter 10. Toolkit replacement
macros 127
Toolkit and date-handling replacement macros . . 127

Macros search sequence 128
Enhanced date threshold handling 128

Available date masks 129
ALPHACON macro: coding rules 130
CONVAE macro: coding rules 130
CONVEA macro: coding rules 131
DATECALC macro: coding rules 131
DATECONV macro: coding rules 132
DATEVAL macro: coding rules 132
DAYSAGO macro: coding rules 133
DAYSCALC macro: coding rules 134
DIVIDE macro: coding rules 134
EXPO macro: coding rules 135
GETDATE macro: coding rules 135
GETDATEL macro: coding rules 135
GETDSN macro: coding rules 135
GETJOB macro: coding rules 136
GETPARM macro: coding rules 136
NUMTEST macro: coding rules 137
PARSE macro: coding rules 137
RANDOM macro: coding rules 138
SQRT macro: coding rules 138
UNBYTE macro: coding rules 138
WEEKDAY macro: coding rules 139

Chapter 11. Messages. 141
Migration Utility (macro) generated error messages 143
Migration Utility macro generated messages . . . 157
Migration Utility function generated messages . . 180
PEngiCCL generated messages 191
Runtime I/O error messages 240
VSAM I/O error supplemental RPL information 240

Notices 241
Trademarks 242

Index 243

iv Migration Utility V1R1 User’s Guide and Reference

||
||

|
||

||

||
||
||

||

About this manual

This manual describes how to use the IBM Migration Utility for z/OS and OS/390
licensed program, hereafter referred to as Migration Utility.

Who should use this manual
This manual is for anyone who currently has Easytrieve Plus programs, and
wishes to convert them to COBOL programs.

To use Migration Utility properly, you will need need:
v Some knowledge of job control
v Some knowledge of Easytrieve Plus. (Migration Utility does all the hard work,

so you may be able to get away with minimal knowledge of Easytrieve Plus).

Structure of this manual
Chapter 1, “Introducing Migration Utility”, on page 1 explains what Migration
Utility is, and how it works. It also proves information you only need once.

Chapter 2, “Compatibility check”, on page 9 points out the features of Easytrieve
that Migration Utility is able to handle, and those few features that it can’t.

Chapter 3, “Defining entities”, on page 25 tells you how to define entities such as
file and working storage.

Chapter 4, “Program instruction reference”, on page 35 describes in detail each
Easytrieve instruction that Migration Utility supports.

Chapter 5, “SQL/DB2 support”, on page 81 and Chapter 6, “SQL File I/O
statement reference”, on page 91 describe SQL matters.

Chapter 7, “User exits”, on page 99 tells you how to use and write user exit. User
exits

Chapter 8, “Installation and Migration Utility options”, on page 109 describes the
last few steps of installing Migration Utility, and tells you about the options you
can set when you install or when you are running Migration Utility

Chapter 11, “Messages”, on page 141 lists all the messages that Migration Utility
provides through all the steps of creating COBOL programs from Easytrieve
programs.

Syntax notation
Throughout this book, syntax descriptions use the structure defined below.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.

© Copyright IBM Corp. 2002, 2003 v

The �─── symbol indicates that a statement is continued from the previous line.
The ──�� indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

v Keywords appear in uppercase letters (for example, ASPACE) or upper and
lower case (for example, PATHFile). They must be spelled exactly as shown.
Lower case letters are optional (for example, you could enter the PATHFile
keyword as PATHF, PATHFI, PATHFIL or PATHFILE).
Variables appear in all lowercase letters in a special typeface (for example,
integer). They represent user-supplied names or values.

v If punctuation marks, parentheses, or such symbols are shown, they must be
entered as part of the syntax.

v Required items appear on the horizontal line (the main path).

�� INSTRUCTION required item ��

v Optional items appear below the main path. If the item is optional and is the
default, the item appears above the main path.

�� INSTRUCTION
default item

optional item
��

v When you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� INSTRUCTION required choice1
required choice2

��

If choosing one of the items is optional, the whole stack appears below the main
path.

�� INSTRUCTION
optional choice1
optional choice2

��

v An arrow returning to the left above the main line indicates an item that can be
repeated. When the repeat arrow contains a separator character, such as a
comma, you must separate items with the separator character.

�� INSTRUCTION �

,

repeatable item ��

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

The following example shows how the syntax is used.

Syntax notation

vi Migration Utility V1R1 User’s Guide and Reference

�A� The item is optional, and can be coded or not.

�B� The INSTRUCTION key word must be specified and coded as shown.

�C� The item referred to by “Fragment” is a required operand. Allowable
choices for this operand are given in the fragment of the syntax diagram
shown below “Fragment” at the bottom of the diagram. The operand can
also be repeated. That is, more than one choice can be specified, with each
choice separated by a comma. The note at the bottom of the syntax
diagram indicates a restriction on the choice.

Summary of changes
This section lists the major changes that have been made to this document since
the previous edition (Third Edition, December 2002). Technical changes are marked
in the text by a change bar in the left margin.

PTF UQ75386
v New features:

– DB2 column definitions are retrieved from the SYSIBM.SYSCOLUMNS table if
a DCLINCL for any given DB2 table is not coded in the Easytrieve Plus
program. This option eliminates the need for SQL DCLGENs.

– A Call Attachment Facility (CAF) sample module for DB2 is distributed in the
samples library along with the supporting load modules.

– Logic for finding DB2 Column References in Easytrieve Plus source changed
to use Column Names as found in the DB2.SYSCOLUMNS or DCLGENs.
This is compatible with Easytrieve Plus. Note that the previous versions of
Migration Utility used COBOL field names as found in the DCLGENs, often
resulting in undefined columns or names.

– Duplicate Reference Labels allowed at JOB Level.
– A new option, DOWHILE=PERFORM, handles Reference Labels inside DO/IF

when labels are at the DO WHILE level.

Syntax diagram
�A� �B� �C�

��
optional item

INSTRUCTION �

,

Fragment ��

Fragment:

operand choice1
(1)

operand choice2
operand choice3

Notes:

1 operand choice2 and operand choice3 must not be specified together

Syntax notation

About this manual vii

|

|
|
|

|

|

|
|
|

|
|

|
|
|
|
|

|

|
|

– Partial support for floating-point fields added (COMP-1 and COMP-2 field
types).

– SQLCA is included whenever PARM SQLID (’&owner’) is present in
Easytrieve Plus source.

– A separate FJSYSER file for displaying translator detected errors added to the
translator job steps.

– Improved COBOL run time print I/O statistics.
– Support for COBOL copybooks with DYNAMIC I/O added.
– EZTABLE0 upgraded to handle more complex COBOL copybook parameters,

including support for macros that contain W and S fields only.
– All COPY statements for macros found in EZTABLE0 generated with a prefix.
– VALUES (NO/YES) option added to PUNCH macro used by EASYCNV1.
– EZTPA00 program loader available for general use.

v New EZPARAMS/EASYTRAN translator options:

CAFPLAN=BATCH/&PLAN
Default Call Attachment Facility plan name

CAFOWNR=&USER/&OWNER
Default SYSIBM.SYSCOLUMNS table qualifier

COPYVERB=(COPY)
Option for COBOL COPY verb

COPYWRAP=(’==’)
Option for COBOL COPY replacing option wrap characters

DOWHILE=INLINE/PERFORM
Option for DO WHILE generating logic

v New Toolkit replacement macros:

ALPHACON Unstring an edited number into an internal numeric format

CONVAE Convert ASCII to EBCDIC

CONVEA Convert EBCDIC to ASCII
v New utility macros:

GETJOB Obtains JOB number and TSO user from the Job Scheduler
Information Block.

v Converted COBOL runtime errors corrected:
– Wrong LRECL on Dynamic I/O re-use.
– I/O Buffers released after the file CLOSE call.

v COBOL runtime improvements corrected:
– I/O buffers forced to be above the line (16MG) memory.
– I/O statistics printed for all (except temporary) files.

v Syntax compatibility improvements:
– Incomplete TITLE/LINE definitions accepted.
– BL1, BL3 and Packed unsigned fields can be used in the CALL and COBOL

function statements.
– Old logic for handling one-byte indexed fields removed and logic added to

handle out-of-range conditions automatically by generating a group field.
– Support added to support numeric groups with OCCURS.
– Support added to allow numeric and alphanumeric fields out of group range.
– -NN/+NN on report lines refined to allow negative overlap.

Summary of changes

viii Migration Utility V1R1 User’s Guide and Reference

|
|

|
|

|
|

|

|

|
|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

|

||

||

||

|

||
|

|
|
|

|
|
|

|

|

|
|

|
|

|

|

|

– Edit mask of all 9’s repaired to use the actual mask length.
– OR/AND/XOR bit instructions allowed for any field type.
– In assignment formulae, the constant “0” is changed to WS-PENGI-ZERO to

prevent COBOL Compiler errors.
– MASK insert characters logic improved to properly handle Z’s, float and sign

characters, following the decimal place.
– “DR” recognized as a special insert string in the mask definition.
– Invalid characters in Report Name are tolerated.
– Logic added to allow qualified DB2 column names in subscripts.
– Test for numeric on an alpha field forces the field to be generated as an

elementary item to prevent COBOL compiler errors.
– Forced F sign on numeric fields in Report Exits inhibited.
– Alpha field value can be of any size.
– Inhibit Error 18 when a file name conflicts with a field name by assigning a

new field name.
– Hexadecimal literal accepted on display and report lines.
– POS NN accepted back-to-back on report lines.
– COL NN accepted back-to-back on report lines.
– +NN and -NN accepted back-to-back on report lines.
– Use of LRECL=132 forced for REPORT files when record length is not

specified.
– Field headings for subscripted fields compatible with Easytrieve Plus.
– Support for arithmetic expressions without parenthesis added.
– Selective hexadecimal values allowed for binary and packed unsigned fields.
– Long literal allowed on display and report lines.
– Enhanced layouts so that items belonging to a group are generated at end of

the group, not at the end of the layout.
– Field title for RECORD-COUNT fixed.
– Working storage host VARCHAR variables generated as level-49 fields for

proper DB2 use.
– Use of fields with OCCURS in subscripts flagged as an error.
– RECORD-COUNT, PAGE-COUNT, and LINE-COUNT can be used as

subscripts.
– First I/O for a DISPLAY in the activity section to a PRINTER file no longer

skips to channel 1.
– Parsing of Easytrieve comments enhanced to allow unpaired quotes or

parenthesis.
– Edit mask of relative VSAM files key changed to 10 characters.
– Duplicate file key on synchronized job file is bypassed.
– COMP-3 and COMP fields used as host variables are generated with a sign

picture.
– When punching COBOL copybooks, &field-9U is generated if FSIGN=ALL or

FSIGN=YES is specified in EZPARAMS/EASYTRAN.
– Literal imbedded in SQL statements as host variable generated with a colon.
– Improved handling of VARYING fields. The mask corrected to reflect the

length of the data area only.
– Other less significant syntax adjustments for better compatibility.

Summary of changes

About this manual ix

|

|

|
|

|
|

|

|

|

|
|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|
|

|

|
|

|
|

|
|

|

|

|
|

|
|

|

|
|

|

Summary of changes

x Migration Utility V1R1 User’s Guide and Reference

Chapter 1. Introducing Migration Utility

Migration Utility is IBM’s licensed version of the Foundation Software Program
Engineering (FS/PEngi) family of COBOL development tools.

The components of the original set of tools are:

PEngiEZT
Easytrieve Translator.

PEngiCCL
Common Conditional (Macro) Language, sometimes referred to as CCL1.

PEngiBAT
Batch Programs Generator Subsystem for generating Batch COBOL
Programs.

Throughout this manual there are references to PEngiCCL and PEngiBAT.
However, when you use Migration Utility you are not able to use PEngiCCL or
PEngiBAT in stand-alone mode. They are used internally by Migration Utility as a
part of the over-all process.

Migration Utility converts Easytrieve programs to IBM mainframe COBOL or
PEngiBAT. Its primary objective is to provide the ability to run Easytrieve
programs in COBOL mode, eliminating Easytrieve inefficiencies. The benefits are:
v COBOL I/O handling is more efficient
v COBOL sorting and searching is more efficient
v COBOL better coexists with other languages and environments
v All COBOL debugging tools can be used for debugging
v More people are available for program support
v COBOL is portable to other platforms
v You can save money by eliminating Easytrieve costs

Migration Utility gives you a choice:
v You can continue developing programs using the Easytrieve format. The only

thing that changes is JCL. That is, you use the Migration Utility translator and
COBOL compiler in the place of Easytrieve. You can maintain the program
source in Easytrieve format.

v You can convert the Easytrieve programs to PEngiBAT or COBOL. You can
convert existing and newly developed programs. After converting, you maintain
COBOL code or enjoy the power of PEngiBAT.

If you do not own Easytrieve you can use Migration Utility and enjoy the benefits
without ever purchasing Easytrieve.

What is supported
Migration Utility converts standard Easytrieve batch programs. It supports VSAM,
QSAM, SAM, SQL/DB2, tape files and unit record devices. It also supports the
Easytrieve Macro Language and COPY directive. In most instances there will be no
changes required to your existing Easytrieve programs.

© Copyright IBM Corp. 2002, 2003 1

Translating concepts
Migration Utility translator reads in programs modeled (written) in Easytrieve Plus
format and converts them to COBOLII/COBOL/S390 (COBOL). The COBOL
programs are then compiled and linked as regular COBOL programs.

The translator is written in PEngiCCL macro language.

The translating process involves converting the Easytrieve source to PEngiBAT
format. The generated PEngiBAT program is then converted to COBOL.

┌────────────┐ ┌────────────┐ ┌──────────┐
Easytrieve │ │ PEngiBAT │ │ COBOL │ │
Source │ PEngiEZT │ Source │ PEngiBAT │ Source │ COBOL │

───────�┤ Translator ├─────────�┤ Translator ├───────�┤ Compiler │
│ │ │ │ │ │
└────────────┘ └────────────┘ └──────────┘

This process is transparent to the user. It is handled by the supplied procedures.

Translating guidelines
These guidelines are valid for translating existing or newly developed Easytrieve
programs to COBOLII or COBOL/390.

Migration Utility JCL library (distributed with the product) contains standard
procedures for running the translator. See “System information” on page 104 for
PDS names. You need to run only one of the following procedures, depending on
the level of completeness you want to obtain. The procedures are:

JCEZCOB1
Translates programs to PEngiBAT format and places them into a PDS.

JCEZCOB2
Translates programs to COBOL, and places them into a PDS. It does not
compile.

JCEZCOB3
Translates programs to COBOL, compiles and links the load module.

JCEZCOB4
Translates programs to COBOL, compiles, links and executes (link and go).

JCEZC390
Translates programs to COBOL/390, compiles and links the load module.

JCEZDB2A
Translates programs to COBOL, translates SQL, compiles and links.

JCEZDB2B
Translates programs to COBOL, translates SQL, compiles, links and binds.

JCEZDB2R
Sample Run JCL for generated COBOL with DB2®.

JCBIND00
Sample BIND JCL for DB2.

JCEZE390
Translator JCL with external PROC for translate, compile and link.

Translating concepts

2 Migration Utility V1R1 User’s Guide and Reference

JCEZL390
Translator JCL with external PROC for translate, compile, link and execute
(link and go).

JCEZG390
Translator JCL with external PROC for translate, compile and run (link and
go with program LOADER).

EZTCOB
External PROC used by JCEZE390 and JCEZL390 JCL.

EZTLKG
External PROC used by JCEZG390 JCL.

To install, follow these steps:
1. If your installation did not create standard procedures for running Migration

Utility, copy the above procedures into a PDS and tailor them to run with your
user ID. (Consult with System Administrator for JCL library.)
DB2 users, refer to “Activating Call Attachment Facility (CAF) for DB2 users”
on page 109.

2. The Easytrieve program source code must be placed into a PDS/PDSE or
equivalent library that can be accessed as a PDS.
Change ISOURCE= symbolic in the procedure to point to the PDS where the
Easytrieve program is located. The program source is read from the SYSIN, in
FSCCL1 step, if SYSIN DDname is provided. If SYSIN is not coded, the
program source is read from the FJCPYLB DDname.
There must be only one program per PDS member. Migration Utility does not
translate multiple programs from a single PDS member.

Note: When translating existing programs, verify if any tailoring is needed. See
Chapter 2, “Compatibility check”, on page 9 for more information.

3. When your program is read as a PDS member, you can leave JCL at the front of
the program. You must remove any JCL at the end of the program (for
example, /* or //). For instream SYSIN, you must remove the JCL and add /*
and // to the bottom of the program source.
Change FJSYSJC= symbolic, in the Proc, to an output data set name where
program JCL will be created (JCEZCOB2 and JCEZCOB3 procedures only).

4. The Easytrieve Macros used by the program must be placed into a PDS or
equivalent library that can be accessed as a PDS. One or more libraries can be
concatenated in the JCL.
Change USERCPY= symbolic, in the Proc, to point to the PDS where Easytrieve
macros are located.
If there is more than one macro library, concatenate additional libraries to the
FJCPYLB DDname in the first (FSCCL1) step.

5. Member EZPARAMS in the Migration Utility library (SYS1.SFSYEZTS) contains
Migration Utility default options. Make a copy of the EZPARAMS member and
tailor it to your needs. It is essential to set the correct IOMODE= option in the
EZPARAMS member as this parameter affects the amount of tailoring required
to be made to Easytrieve Plus programs.
Macro EASYDTAB in the Migration Utility library (SYS1.SFSYCCLM) contains the
REPORT statement defaults. Make sure that EASYDTAB contains defaults
compatible with your existing Easytrieve defaults, including edit masks for
SYSDATE and SYSDATELONG. Refer to Chapter 8, “Installation and Migration
Utility options”, on page 109 for details.

Translating guidelines

Chapter 1. Introducing Migration Utility 3

|
|

Change EZPARMS= symbolic, in the Proc, to point to the PDS where EZPARAMS
member resides.

6. Change Proc EXEC (located at the bottom of the Migration Utility Proc), to
reflect the input program name, the output program name (if any), and the JCL
option, for example:
//STEP001 EXEC PROC=FSPENGI,IMEMBER=PROGXYZ,OMEMBER=PROGXYZ,JCL=YES

The JCL=YES option punches a procedure for running the translated program.
You can omit this option until the program translates clean. After a successful
run, JCL can be found on the FJSYSJC file. This generated procedure contains
JCL statements located in front of your program, and sample symbolic for any
internally generated files. You can retrieve the sample procedure from the flat
file into your PDS and massage it.

Migration Utility tries to identify the file usage based on the top to bottom
sequence of events in the program. The first OPEN determines the file type as
an output or an input file. The assumption might be wrong for files that are
opened more than one time in a single program.

The DEBUG= switch located in the JCL can be used to generate a display
statement of paragraph name in each generated COBOL paragraph.
DEBUG=Y Generates active displays.
DEBUG=I Generates inactive displays.
DEBUG=N Does not generate any display statements.

When DEBUG=I is specified, the statement SOURCE COMPUTER.....WITH
DEBUGGING OPTION is generated with a “*” in C C 7. Subsequently, you can
remove the * to activate the imbedded displays. When you specify DEBUG=Y,
the statement is generated without a “*”.

7. Submit the JOB. The Migration Utility translator prints the program and the
diagnostics on the SYSLIST device.
Depending on the procedure you are using, there can be up to six job steps
involved:
The first (FSCCL1) step ,common to all three procedures, is always the step that
translates the Easytrieve program to the PEngiBAT format. Errors in the
Easytrieve program are detected in this step. Errors and the input program
source are printed on the SYSLIST device and FJSYSER file.
The second (FSCCL2) step, common to JCEZCOB2 and JCEZCOB3, is always
the step that translates the PEngiBAT program generated in the first step, to
COBOL. Errors in this step indicate a flaw in the PEngiBAT translator. Some
problems could probably be eliminated by rationalizing the origin of the
problem back to the Easytrieve program, however. Errors and the generated
PEngiBAT program source are printed on the SYSLIST device and FJSYSER file.
The third (COB2) step , and the fourth (LKED) step, in JCEZCOB3, compile and
link the generated COBOL program. Errors in COB2 step indicate a flaw in the
PEngiBAT translator. These errors could be eliminated by rationalizing the
origin of the problem back to the Easytrieve program. Some common errors
that can be encountered are:
v Field names that conflict with COBOL verbs
v Undefined fields
v Non-numeric fields used in arithmetic
v Improper IF statement

Translating guidelines

4 Migration Utility V1R1 User’s Guide and Reference

|

|

Programs that contain SQL statements must be translated with JCEZDB2A or
JCEZDB2B jobs. The SQL translator and BIND steps are standard DB2/SQL
facilities. All messages should be handled as per DB2/SQL conventions.

8. When COB2 and LKED step run clean, test the program as per JCL as
described in step number 6.
Any file I/O errors that are detected by the program are printed on the
FJSYABE and SYSOUT listings. The error report shows the file name that
caused the error, status information and some suggestions as to the cause of the
problem. Similar descriptions can be found in the COBOL Programmers
Reference Manual.

Structure of Easytrieve programs
An Easytrieve Program has three sections. These are described below.

Environment Section
This section lets you alter Easytrieve Compiler options through the PARM
statement. This section is ignored by Migration Utility.

Library Section
This section contains the FILE, RECORD and Work Field definitions. This
section is fully supported by Migration Utility as described. All exceptions
are clearly noted.

Activity Section
This section contains program procedures and statements that compose
program processing logic and file I/O events. This section is fully
supported by Migration Utility as described. All exceptions are clearly
noted.

The Activity Section contains JOB and SORT subsections. There can be
multiple JOB and SORT subsections within a single program. Each JOB or
SORT subsection may contain one or more REPORT definitions.

Order of statements in an Easytrieve program
───────────────────────────────────────

Environment Section PARM . . .

───────────────────────────────────────

Library Section FILE . . .
DEFINE . .

. . .
───────────────────────────────────────

JOB . .
Activity Section (statements)

(job procedures)
REPORT . .

(report procedures)
SORT . .
(sort procedures)
. . .

───────────────────────────────────────

This sample program illustrates the order.

FILE FILEIN1 DISK (80) |
CUST-NAME 01 15 A HEADING (’NAME’) |

Translating guidelines

Chapter 1. Introducing Migration Utility 5

CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section
CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |
CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

JOB INPUT FILEIN1
PRINT REPORT1 |

|
REPORT REPORT1 LINESIZE 080 |
TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ | Activity Section
LINE 01 CUST-NAME + |

CUST-ADDRESS1 + |
CUST-ADDRESS2 + |
CUST-ADDRESS3 |

The program produces the following report (Xs represent real data):

05/30/95 NAME-ADDRESS REPORT EXAMPLE PAGE 1

NAME ADDRESS1 ADDRESS2 ADDRESS3

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

Of course, most real programs are a lot more complex.

Review of the Easytrieve punctuation rules
Easytrieve statements can be placed anywhere between columns 1 and 72. Each
statement is separated by one or more spaces, or a comma followed by at least one
space.

Each Easytrieve statement is followed by its relevant arguments. The arguments
can be placed on the same line or on subsequent lines, but, each continued line
must be terminated by a ″+″ or ″-″ symbol.

When a line is continued with a ″-″ symbol, the continuation is assumed to start at
the beginning of the next line (Usually used for continuing literal).

When a line is continued with a ″+″ symbol, the continuation is assumed to start at
the beginning of the text on the next line (first non-space).

The statement can be terminated with a ″.″ or by omitting the continuation symbol.

Examples

Here are some Easytrieve statements:

REPORT REPORT1 + | single
LINESIZE 80 + | statement
SUMMARY + | with + for continuation
DTLCOPY

SEQUENCE ACCOUNT DATE

Structure of Easytrieve programs

6 Migration Utility V1R1 User’s Guide and Reference

CONTROL ACCOUNT | statements
LINE 01 ACCOUNT DATE LAST-NAME | with

no continuation

Review of the Easytrieve punctuation rules

Chapter 1. Introducing Migration Utility 7

Review of the Easytrieve punctuation rules

8 Migration Utility V1R1 User’s Guide and Reference

Chapter 2. Compatibility check

There are a number of items that you need to check to ensure a smooth translation.
These are listed below.

File organization support
Migration Utility does not support DL1 and IDMS files. Programs accessing such
files can be translated by tailoring your Easytrieve source to call a subprogram for
I/O services, or the %COBOL statement can be used to add COBOL code to
handle such situations.

DB2/SQL column definitions can be automatically accessed from the
SYSIBM.SYSCOLUMNS catalog. Refer to “Activating Call Attachment Facility
(CAF) for DB2 users” on page 109. If CAF is not available, then an SQL DCLINCL
&NAME must be added to the programs that use SQL/DB2 tables. One statement is
required for each SQL/DB2 table in use. These statements must be placed before
the SQL file definitions (preferably before the first valid Easytrieve Definition).

SBCS and DBCS character support
Migration Utility supports single byte character set (SBCS) and K (DBCS) type of
fields.
v DBCS Page number and the DBCS Date on REPORT statement are not

supported.
v Conversion of DBCS to SBCS and SBCS to DBCS is not supported.
v Easytrieve K fields are converted to COBOL as G type of fields.
v Migration Utility automatically adds the shift-in (x’0e’) and shift-out (x’0f’)

characters to K fields found on the DISPLAY and REPORT lines.
v When a constant (literal) is being assigned to a K field, Migration Utility

automatically adds the shift-in (x’0e’) and shift-out (x’0f’) characters to the literal
(constant).

Fixed-length records
When running in dynamic mode (IOMODE=DYNAM), record length is not a
concern. However, when running in static mode (IOMODE=NODYNAM), you may
need to make adjustments as described in this section.

Make sure that the record size of each file is fully defined. This can be done by
coding the record length in the file statement, or by defining the record layout in
full. This is because Easytrieve retrieves record size dynamically during the run
time. COBOL does not. It is essential to have the correct file record length in the
converted COBOL program.

© Copyright IBM Corp. 2002, 2003 9

|
|
|

NON-VSAM variable-length records
When running in dynamic mode (IOMODE=DYNAM), record length is not a
concern. However, when running in static mode (IOMODE=NODYNAM), you may
need to make adjustments as described in this section.

NON-VSAM variable-length record files can be:
v Variable
v Unblocked
v Variable blocked
v Spanned organization

Make sure that the record size of variable-length files includes 4 extra bytes for
standard length as per IBM standards. This is a standard Easytrieve rule too, thus,
you need to worry about only those files that do not have record size included in
the File definition.

Record length can be coded in the FILE statement.

Migration Utility computes the usable record area by subtracting 4 from the
declared length.

Easytrieve retrieves record size dynamically during the run time. COBOL does not.
It is essential to have the correct file record length in the converted COBOL
program.

VSAM variable-length records
When running in dynamic mode (IOMODE=DYNAM), record length is not a
concern. However, when running in static mode (IOMODE=NODYNAM), you may
need to make adjustments as described in this section.

A VSAM file is considered a variable-length file when the minimum record length,
specified in the VSAM catalog, is not equal to the maximum record length. If the
minimum and maximum lengths are equal, then the file is of fixed-length format.

For VSAM files, Easytrieve obtains record and file characteristics from the VSAM
Catalog, and it does not allow record size in the FILE definition.

COBOL does not dynamically allocate VSAM file characteristics. Therefore, an
option was added to Migration Utility to allow a record size on the FILE
statement. If the size is not specified on the file statement, Migration Utility
defaults to the size of the defined record.

If the minimum record size is equal to the maximum record size in the VSAM
catalog, the specified size must be equal to the maximum value specified in the
VSAM catalog.

If the minimum record size is not equal to the maximum record size in the VSAM
catalog, the specified size must be equal to the maximum value minus 4.

All output and UPDATE VSAM variable-length files must be specified with FILE .
. . V (NNN) where NNN is the LRECL (Maximum LRECL in the catalog - 4).
variable-length Read Only VSAM files do not need to be coded with a V. Refer to
“Defining VSAM files” on page 26 for full syntax.

NON-VSAM variable-length records

10 Migration Utility V1R1 User’s Guide and Reference

VSAM key usage
When running in dynamic mode (IOMODE=DYNAM), the VSAM key is
dynamically allocated at run time. However, when running in static mode
(IOMODE=NODYNAM), you may need to make adjustments as described in this
section.

COBOL requires that an alphanumeric VSAM file key for KSDS files is named in
the FD statement.

Easytrieve retrieves the key characteristics from the catalog.

To overcome the problem, the Migration Utility convention is to use one of:
1. The first defined field in the record as the file key. This is the default.
2. The key field named on the file statement. The key must be defined in the file

record.
Example: FILE FILEIN VS (KEY CUST-ACCOUNT)

In the first case, the key must be defined as an alphanumeric key for the full key
length. This method is also Easytrieve Plus compatible.

For relative (RRN) files, Migration Utility assigns an internal key in working
storage. The key of RRN files can also be named on the file statement as shown in
the second case. The named field must be previously defined as a four byte binary
field, however.

VIRTUAL files
Easytrieve VIRTUAL files are handled as regular sequential files in the translated
COBOL. No special handling is needed.

Extended printer support
Migration Utility does not support extended printing of Easytrieve. One way
around it is to change the Easytrieve program to the standard printing.

Index usage
Easytrieve allows index usage for fields defined without the OCCURS. COBOL
does not. Therefore, all such statements are flagged by Migration Utility.

Easytrieve allows the same index name to be used for more than one field. COBOL
does not. To resolve the problem, Migration Utility assigns a unique internal index
name to each indexed field.

These internal indexes are updated every time an index assigned by the Easytrieve
is changed. Therefore, there could be a substantial overhead maintaining an index
that is used for more than one field.

Resolve the problem by changing the program to use a unique index for each field.

Example:

VSAM key usage

Chapter 2. Compatibility check 11

FILE FILEIN
NAME 27 40 A
SCAN1 27 10 A INDEX (SUB1) OCCURS 4
SCAN2 27 3 A INDEX (SUB1) OCCURS 13
SCAN3 27 9 A INDEX (SUB1) OCCURS 5

In this example, three internal indexes are updated every time ″SUB1″ index is
changed in the program, even if it accesses only one field. To correct the problem,
assign a unique index to each of the fields:
FILE FILEIN
NAME 27 40 A
SCAN1 27 10 A INDEX (SUB1) OCCURS 4
SCAN2 27 3 A INDEX (SUB2) OCCURS 13
SCAN3 27 9 A INDEX (SUB3) OCCURS 5

Restrictions

Packed Unsigned (U) fields, one (1) byte binary fields and three (3) byte binary
fields are flagged as errors by the translator when used as index fields. This is
because such fields must be set-up into a valid numeric field understood by
COBOL before they can be used, adding substantial CPU overhead. To resolve the
problem, move such fields into a 4 byte binary field and use the new field for
indexing.

Note: SSOMDE=GEN of EZPARAMS/EASYTRAN allows the use of PU, BL1, and
BL3 in subscripts.

Field naming conventions
Easytrieve allows up to 40 character field name length. Migration Utility reduces
all field names that are longer than 16 characters to 16 characters, automatically.
The field names are reduced by taking the first three characters of the words
separated by a dash (-), until the name goes below 17 characters in length. Note
that the INDEX names are not reduced. Long INDEX names should be manually
reduced to the acceptable size.

The process above might yield undesired or ambiguous field names. To avoid the
problem, a translate table can be provided in Migration Utility EZPARAMS options
to translate specific words to a desired acronym, or ambiguous field names to
acceptable names.

Use NAMETAB parameter of EZPARAMS to change any special characters found in
Easytrieve field names to make field names COBOL compliant.

Use COBVERBS=YES option of EZPARAMS to alter names of Easytrieve fields that
conflict with COBOL Reserved Words.

Migration Utility Options are described in Chapter 8, “Installation and Migration
Utility options”, on page 109.

Ambiguous field position; fields with Index and OCCURS
The biggest challenge writing Migration Utility was to translate the Easytrieve
defined record and working storage layouts to COBOL. The problem is that
Easytrieve allows fields to be defined out of sequence. As a result, many layouts in
Easytrieve programs are badly fragmented and out of order.

Index usage

12 Migration Utility V1R1 User’s Guide and Reference

To overcome the problem, Migration Utility inserts fields or group of fields
sequentially by group reference and position within the group they belong to.

If you do get errors during Migration Utility translation, re-arrange field
definitions such that they are in the correct sequence and do not destructively
overlap.
v Programs with orderly record definitions generate fewer and simpler COBOL

layouts.
v Fields are grouped together and any fields out of group range are flagged by

PEngiEZT.
v All numeric fields that destructively overlap another field within a group item

are flagged.
v All alpha fields that destructively overlap another field within a group are

generated with a REDEFINE.
v Fields coded with INDEX &INDEX usage without OCCURS, are automatically

generated with OCCURS 1 TIME.
Example
WORKF1 W 10 A INDEX AINDEX

is converted to
02 FILLER OCCURS 1 TIMES INDEXED BY AINDEX-001.

03 WORKF1 PIC X(10) VALUE SPACES.

v Alpha fields of length 1 defined with OCCURS NN INDEX &INDEX that have
subordinate fields are generated with a group size of NN. OCCURS is altered to
OCCURS 1 INDEX &INDEX.
Example
WFIELD1 W 1 A OCCURS 50 INDEX INDEXY
WFIELD2 WFIELD1 1 A
WFIELD3 WFIELD1 +1 9 A

is converted to
02 FILLER OCCURS 1 TIMES INDEXED BY INDEXY-002.

03 WFIELD1.
04 WFIELD2 PIC X(1).
04 WFIELD3 PIC X(9).
04 FILLER PIC X(40) VALUE SPACES.

In this example, WFIELD1 is generated with the length of 50, not with the length
of 1 as initially defined by the Easytrieve statement. The assumption is that
WFIELD1 was coded to serve as a reference for indexing, rather than for the use
in data manipulation. Thus, any access from or to WFIELD1 result in an erroneous
outcome. To correct the problem, WFIELD2 can be used in the place of WFIELD1 in
the Activity Section.

v Fields coded with OCCURS and without INDEX &INDEX usage that have
subordinate fields out of group range are flagged as errors.
Example
FIELDA 1 5 A OCCURS 6
FIELDB FIELDA 6 A

In this example, FIELDB is 6 bytes long and FIELDA is 5 bytes, thus FIELDB cannot
exist in FIELDA. Assuming that FIELDB is a standalone field, the definition can be
written as
FIELDA 1 5 A OCCURS 6
FIELDB 1 6 A

Ambiguous field position; fields with Index and OCCURS

Chapter 2. Compatibility check 13

v Fields coded with OCCURS and with INDEX &INDEX usage that have
subordinate fields out of group range are flagged as errors.
Example
WFIELDA W 5 A OCCURS 10 INDEX INDEXY
WFIELDB WFIELDA 5 A
WFIELDC WFIELDA +5 9 A

Assuming that all fields are to be accessed via the INDEX INDEXY, the
definition can be written as
WFIELDG W 1 A OCCURS 50 INDEX INDEXY
WFIELDA WFIELDG 5 A
WFIELDB WFIELDG 5 A
WFIELDC WFIELDG +5 9 A

Binary field handling
Two byte and four byte binary fields are passed on to COBOL in Native mode.

The maximum value that can be accommodated by such fields in COBOL is
different from the maximum value accommodated by Easytrieve. (For limits, see
binary field description in “Defining Records and Working Storage” on page 32.)
COBOL Compiler option TRUNC(BIN) is recommended.

One and three byte binary fields are not supported by COBOL. Migration Utility
expands special logic for handling such fields.

(For limits, see binary field description in “Defining Records and Working Storage”
on page 32.)

Assigning hex values
Migration Utility automatically resolves hex values usage whenever possible.
However, there are situations when an automatic solution cannot be implemented.

Illegal hex values are flagged by Migration Utility. Resolve the problem by
changing the hex value to a decimal equivalent, or converting the field to an
alphanumeric field.

Common hex usage involves assigning low-value or high-value to the fields, such
as binary zeros or all X″FF″. For such cases, replace the hex value by the
″LOW-VALUE″ or ″HIGH-VALUE″ statements respectively.

Field headings
The maximum string length of a heading in Migration Utility is 58 characters.
Easytrieve allows field headings longer than 58 characters. Reduce headings longer
than 58 characters to 58 characters or less.

Paragraph-naming conventions
Easytrieve allows paragraph and procedure names to be over 30 characters.
COBOL does not. Migration Utility alters paragraph names to conform to COBOL
rules.

Ambiguous field position; fields with Index and OCCURS

14 Migration Utility V1R1 User’s Guide and Reference

COBOLII/S390 and COBOL-VS compatibility
The Easytrieve programs are translated to COBOLII/COBOL/390 compatible.
Called subprograms that are written in other COBOL dialects such as COBOL-VS,
and contain VSAM file I/O routines, may experience a problem. This is strictly a
COBOL compatibility problem. Such subroutines must be compiled with COBOLII
or COBOL/390 compiler to make them compatible.

Calling subprograms
Migration Utility converts calls to subprograms as follows:
1. It generates a static call for program names that are enclosed in quotes.
2. It generates a dynamic call for program names that are not enclosed in quotes

Easytrieve does not accept quotes around the program name. By default, all called
programs would be interpreted as dynamic calls by Migration Utility. To force a
static call, enclose the program name in quotes.

Undetected errors
Easytrieve is a very forgiving language. It often ignores extraneous statements or it
does not impose strict rules. This is especially visible with REPORT related
statements like NOPRINT, NEWPAGE, and RENUM.

Migration Utility may flag such extraneous statements. If it does, remove them or
resort to a simpler form of expression.

Sign of numeric fields
Easytrieve forces an “F” sign in positive zoned decimal numeric fields. This is true
for signed (fields defined with decimal places, such as quantity), and for unsigned
fields (fields defined without decimal places).

COBOL forces a “C” sign in positive zoned decimal numeric fields that are defined
with a sign. Refer to the FSIGN= option in “Migration Utility translator options” on
page 112 for overriding options.

For example, if O-BALANCE field is defined as per below and it contains value
22222 then:

Definition Hex Value
Easytrieve O-BALANCE 1 5 N 0 F2F2F2F2F2
COBOL O-BALANCE PIC S9(05) F2F2F2F2C2

The last byte is different, F2 instead of C2, This is numerically equal, but it is not
equal if compared as an alphanumeric value. Altering the Easytrieve definition to a
numeric unsigned field yields the same in COBOL:

Definition Hex Value
Easytrieve O-BALANCE 1 5 N F2F2F2F2F2
COBOL O-BALANCE PIC 9(05) F2F2F2F2F2

Make sure that your Easytrieve fields are properly defined. All quantitative fields
should be defined with decimal places (even if zero) and all non-quantitative
values should be defined without decimal places.

COBOLII/S390 and COBOL-VS compatibility

Chapter 2. Compatibility check 15

In general, the intermediate calculations are not a problem. The problem is visible
on the output display numeric fields that are defined as quantity (with a sign) but
they are truly not a quantity, such as account numbers, serial numbers, and item
numbers.

Varying-length fields
In Easytrieve, fields defined as “varying” fields are composed of two byte binary
length followed by the text area. The length is maintained by Easytrieve as the
content of the field changes.

Migration Utility generates COBOL code that artificially maintains such fields, that
is, the field is defined as a group item with two byte binary length followed by the
text. The length value is automatically changed as the content of the field changes.
Note that this is exactly what the Easytrieve does.

The difference exist in the maximum value that can be represented by the length.
In COBOL, a two byte binary field can accommodate up to 9,999 in value (unless
TRUNC(BIN) is specified), while Easytrieve can accommodate up to 32,767.

The difference also exists in the compare instructions. While the generated COBOL
uses the length of the first argument and the second argument for comparison,
Easytrieve compares the values for the length of the first argument only. The
problem exists only if the fields being compared are not of the same length. The
remedy to this is to make sure that the fields being compared are of the same
length.

Also note that when a value is moved into the field length, the Easytrieve moves
the value as is, while COBOL converts it to the binary equivalent. For example,
moving 32 into the field length results in X’F3F2’ when performed by Easytrieve,
and x’0020’ when performed by COBOL.

Uninitialized Working Storage fields
Be careful with Working Storage fields. Uninitialized fields may contain a different
initial value in the translated program as it is not possible to predict what is in
Working Storage at linking time. Using an uninitialized field without placing a
value in it may result in erroneous outcome.

Migration Utility generates the initial values for Working Storage fields
automatically, providing that the field is not an object of redefine. If there may be
uncertainty, move a value into questionable fields in the START procedure of the
first JOB.

When a VALUE is specified, and the field redefines another field, Migration Utility
generates a MOVE of specified value, into the target field, at the beginning of the
program. Value of an indexed field, or fields with occurs is moved into the first
slot.

For initializing file records, refer to MEMINIT= parameter of EZPARAMS.

The MOVE statement
In Easytrieve, the MOVE statement moves data from left to right as if both areas
were alphanumeric. The data moved is not converted, instead, it is moved as is,
even if the from or to fields are packed or binary fields.

Sign of numeric fields

16 Migration Utility V1R1 User’s Guide and Reference

Migration Utility generates a standard COBOL MOVE from Easytrieve MOVE. The
data is moved according to the standard COBOL conversion rules. So a move from
a binary field into a display numeric field results in data conversion from binary to
Display numeric format, yielding a result that is different to the Easytrieve Move.
You can achieve compatible results by redefining the numeric field as an alpha
field and using the alpha field name as the source or target in the move statement.

Migration Utility issues a Warning (MNOTE) message for questionable moves. The
messages should be reviewed and problems should be corrected if deemed as
problematic.

FILE-STATUS (STATUS) codes
When the IOCODE=EASYT option is used, Migration Utility generates logic that
converts the COBOL status code to the Easytrieve Plus equivalent. No tailoring is
needed.

> When IOCODE=NATIVE option is used, status code references must be tailored
as described below.

Easytrieve I/O status codes are different from those in COBOL. In general, changes
are not needed if your program is not checking for a specific non-zero value. If
your program is testing for a specific non-zero value, you must adjust the value in
your Easytrieve source to comply with the COBOL status codes. For more
information, refer to “System-defined fields” on page 64.
v FILE-STATUS code in the generated COBOL program is a two byte

alphanumeric field while in Easytrieve it is a full word numeric field.
Instructions in an Easytrieve program that assign FILE-STATUS to a numeric
field are flagged as errors.
Example:
RETURN-CODE = FILEIIN:FILE-STATUS

This is flagged as an error. The statement can be written as
WRETURN-CODE W 2 N

MOVE FILEIN:FILE-STATUS TO WRETURN-CODE
RETURN-CODE = WRETURN-CODE

v When testing for a value other than zero, Migration Utility expects the value to
be a two digit constant (literal) enclosed in quotes.

Labels inside a DO and IF pair of statements
Easytrieve allows labels (paragraph names) between a pair of DO and IF
statements. Programmers use labels to loop within the DO IF, or to jump around
the code. COBOL cannot handle such syntax.

Migration Utility automatically generates a separate COBOL paragraph if the label
is coded inside a DO IF pair before the first GO TO &LABEL statement that refers to
it. The generated paragraph is PERFORMED from within the original DO IF pair.

Migration Utility flags all labels that are coded after the first GO TO &LABEL, and the
label is inside a DO IF pair. Such conditions must be massaged by the
programmer.

The MOVE statement

Chapter 2. Compatibility check 17

Consider using the DOWHILE=PERFORM option. It will resolve the DO level
labels. However, the generated logic will be more fragmented.

Example

This example shows the initial Easytrieve code, and the code after conversion:
FIELDB = ’N’
IF FIELDA = ’Y’

DO WHILE FIELDB EQ ’N’
FIELDC = FIELDC + 1
IF FIELDC GT 100

FIELDB = ’Y’
GOTO LABEL1

ELSE
FIELDB = ’N’

END-IF
LABEL1

END-DO
END-IF

Before translating, the routine should be converted to something like this:
FIELDB = ’N’
IF FIELDA = ’Y’

DO WHILE FIELDB EQ ’N’
PERFORM LABEL1-CODE

END-DO
END-IF
.
.
* THIS PROC MUST BE INSERTED OUTSIDE OF THE CURRENT JOB MAIN BODY.
* END OF CURRENT JOB STATEMENT BUT BEFORE FIRST REPORT WOULD DO.

LABEL1-CODE. PROC.
FIELDC = FIELDC + 1
IF FIELDC GT 100

FIELDB = ’Y’
GOTO LABEL1

ELSE
FIELDB = ’N’

END-IF
LABEL1.
END-PROC.

In general, Migration Utility flags improperly coded labels inside a DO IF pair. A
good practice is to run the translator to get errors first and then fix them.

The generated logic of complex DO/IF/CASE with reference labels in more than
one nest level should be checked for accuracy, and logic in the Easytrieve source
should be simplified if necessary.

External table record length
When running in static mode (IOMODE=NODYNAM), it is essential to have the
correct file record length in the converted COBOL program.

Refer to “Defining tables” on page 27 for syntax rules.

JCL for converted program
Migration Utility can generate sample JCL for running the program.

Labels inside a DO and IF pair of statements

18 Migration Utility V1R1 User’s Guide and Reference

|
|

To generate JCL, existing JCL can be optionally included in front of the program
and JCL=YES can be specified on the Proc EXEC statement. For more information,
see “Translating guidelines” on page 2.

Migration Utility generates an Instream sample Proc by merging the existing JCL
to any new JCL needed by the generated COBOL program. The unneeded
statements are bypassed.

The following rules are observed:
v An Instream Proc is generated. A JOB statement and additional libraries must be

added to the Proc.
v All JCL for input and output files are included from the included JCL, if present,

else a symbolic is generated with a dummy file name for each file. For
concatenated input files, symbolic is used only for the first file. Other files are
concatenated in the JCL.

v Statements for Temporary and Sort Work files are also generated, however, the
Proc must be changed to include proper allocation.
Temporary and Sort Work files are not transferred from the included JCL.

v System related files such as SYSPRINT, SYSDUMP, SYSOUT, etc. are also
generated.
The Proc is created on the FJSYSJC file as defined in the translator JCL.

Overlapping fields on report lines
Easytrieve allows field overlaps on the report headers, print lines and field titles.

Migration Utility allows limited overlapping. A warning message is issued for each
encountered overlap.

When field titles overlap, Migration Utility strips the leading and trailing spaces
from all field titles to make things fit better. However if the overlapping still
cannot be resolved after all spaces are stripped, Migration Utility reduces the size
of the previous title and issues a warning message (generally in the PEngiBAT
step). The adjustment might not result in titles identical to those printed by
Easytrieve.

When fields or literals on print lines overlap, Migration Utility generates a layout
with REDEFINEs for proper placement of each field, starting with the intended
column.

If the fields or titles on your report do not match exactly to those printed by
Easytrieve, make manual adjustment to Easytrieve program Source to avoid
overlaps. You can reduce the field size or title or shift its location to the right, or if
possible reduce the mask size.

Caution: Any reduced field mask can cause a loss of leading data digits. Use
extreme care.

Group fields for SQL/DB2 usage
Easytrieve allows group fields to be used as host variables for SQL operations.
However, SQL/DB2 translator enforces strict rules on field types.

JCL for converted program

Chapter 2. Compatibility check 19

To overcome the problem, Migration Utility generates elementary field definitions
for all host variables, except for 01-level (the record level) host variables. Migration
Utility issues a warning message when a group field is changed to an elementary
item. The change has no impact on processing logic not related to SQL operations.

If the outcome of the automated change does not solve the problem, make manual
changes as shown in the following example.

Example

This example shows a group item and how it should be adjusted to make it an
elementary item.
WS-DATE W 8 A
WS-MM WS-DATE 2 N
WS-DD WS-DATE +2 2 N
WS-YYCC WS-DATE +4 4 N

can be coded as:
WS-DATE-X W 8 A
WS-MM WS-DATE-X 2 N
WS-DD WS-DATE-X +2 2 N
WS-YYCC WS-DATE-X +4 4 N
WS-DATE WS-DATE-X 8 A

In this example, WS-DATE-X is generated as a group item and redefined by WS-DATE,
thus making WS-date an elementary item.

OCCURS fields for SQL/DB2 usage
Easytrieve allows fields defined with OCCURS to be used as host variables for
SQL operations. SQL/DB2 enforces strict rules on field types. The subscripts
cannot be passed on to the SQL/DB2 preprocessor.

When possible, Migration Utility generates logic that offloads or loads the
subscripted host variables into elementary fields before and after the “EXEC SQL”
operation. Working storage is generated from the host variable field attributes.

When the subscripted host variables are located in the “WHERE...” statement, the
offloading or loading logic is invoked before and after the “EXEC SQL OPEN
&CURSOR” operation.

When the subscripted host variables are located in the “INTO...” or the “FROM...”
statement, the offloading or loading logic is invoked before and after the “EXEC
SQL FETCH/INSERT/...” operations.

If the SQL/DB2 translator issues errors due to falsely generated statements for
subscripted host variables, you must modify the statements by re-coding such
fields without OCCURS. You can code n number of fields, each ending with a
sequence number representing the field slot for clarity.

Example

This example shows an OCCURS item and how it can be adjusted to make it
SQL-friendly.
WS-ITEMS W 15 A
WS-ITEM WS-ITEMS 3 N OCCURS 5

Group fields for SQL/DB2 usage

20 Migration Utility V1R1 User’s Guide and Reference

|

can be coded as:
WS-ITEMS W 15 A
WS-ITEM-01 WS-ITEMS 3 N
WS-ITEM-02 WS-ITEMS +3 3 N
WS-ITEM-03 WS-ITEMS +6 3 N
WS-ITEM-02 WS-ITEMS +9 3 N
WS-ITEM-03 WS-ITEMS +12 3 N

The SQL FETCH/SELECT INTO host variables reference must be changed to
reference non-subscripted fields.

Packed unsigned fields
Migration Utility generates statements that artificially control access to or from
packed unsigned (PU) fields for all operations except when used as a subscript.

The maximum allowed length of a PU field is 8 bytes due to COBOL restrictions
on numeric fields.

Easytrieve allows PU fields to be used as subscripts. COBOL does not support PU
fields.

Migration Utility flags PU fields when used as subscript. To use a PU field as a
subscript, define a packed sign field or a binary integer in your Easytrieve source
for subscript use. Add a move where appropriate from the PU field into the newly
defined field.

The reason for not supporting subscript usage of PU fields is because it would add
to the complexity of the generated code and performance overhead.

Mask of numeric fields
In Easytrieve, numeric fields are printed with decimal places when the mask
contains decimal places, even if the field is coded without the decimal places. In
COBOL, the decimal places are padded with zeros.

Example
FIELDA W 7 N MASK(’ZZZZ9.99’) VALUE 12345

Easytrieve prints 123.45 and COBOL prints 12345.00 which is obviously shifted left
by two digits.

A clue to this type of problem is values that differ in multiples of 10 between the
Easytrieve and COBOL outcomes.

Solution for OCCURS 1 problem
In Easytrieve Plus, OCCURS 1 is a valid statement. Programmers normally use the
OCCURS 1 technique to establish a reference for subscripting. COBOL does not
support such syntax.

To avoid manual adjustments to every statement in an Easytrieve Plus program,
one of the following options via EZPARAMS/EASYTRAN can be supplied:

OCCURS1=0 Flags OCCURS as an error

OCCURS1=1 Generates the field without occurs

OCCURS fields for SQL/DB2 usage

Chapter 2. Compatibility check 21

OCCURS1=2 Generates OCCURS 2 in the place of OCCURS 1

The default in EASYTRAN is OCCURS1=0.

Note: Changing OCCURS 1 to OCCURS 2 doubles the field length. This solution
may not be valid for all programs, especially if the field defined with
OCCURS 1 changes the length of its group item.

OCCURS1=1 is recommended if the field with OCCURS 1 is not referenced in your
program.

Duplicate fields usage and reference

Duplicate fields usage
Migration Utility V1R1.0 did not handle the duplicate field names in compliance
with Easytrieve Plus. Sometimes this resulted in a cleanly generated program, but
false runtime outcome. The manual solution was to add an object qualifier to the
field name when referenced in the program.

Migration Utility V1R1.1 uses the duplicate field names in compliance with
Easytrieve Plus, using the following rules:

JOB INPUT &FILE
If a referenced field is a duplicate name, and it is defined in the JOB file,
Migration Utility uses the JOB file field; otherwise, it issues an EZT000-25
error.

JOB SORT& FILEIN TO &FILEOUT...
If a referenced field is a duplicate name, and it is defined in the SORT
&FILEIN, Migration Utility uses the &FILEIN file field.

JOB INPUT (&FILE KEY (&KEY1...) &FILE2 KEY (&KEY1...))
If a referenced field is a duplicate name, and it is defined only in one JOB
file, Migration Utility uses the JOB file field, otherwise it issues an
EZT000-25 error.

JOB INPUT NULL
If a referenced field is a duplicate name, Migration Utility issues an
EZT000-25 error.

Unavailable Field reference
In Migration Utility V1R1.0, referenced fields within files that are not used in the
job were accepted. Easytrieve Plus flags such conditions as errors.

Migration Utility V1R1.1 flags referenced file fields of unused files within the same
job.

File DDname considerations
Migration Utility generates sort work and temporary files for internal use
whenever a SORT or a report with SEQUENCE statement is encountered. These
generated file names may interfere with the file names defined in the Easytrieve
program. If you encounter a problem, make a global change to the file name in
your program. The standard internal names are: SORTWKn, SORTFLn and
TEMPWKn, where n is the sequence number assigned to each file.

Mask of numeric fields

22 Migration Utility V1R1 User’s Guide and Reference

|

|
|
|
|
|
|

When running in static mode, Migration Utility interprets all files that begin with
SORTWK and SORTFL as sort work files. The select statement for these files is
generated without a FILESTATUS flag. Files that begin with SORTWK or SORTFL
in your program should be changed to a different name to avoid complications.

Mask of numeric fields

Chapter 2. Compatibility check 23

|
|
|
|

24 Migration Utility V1R1 User’s Guide and Reference

Chapter 3. Defining entities

This chapter tells you how to define files, tables, records and working storage in
Migration Utility.

Defining files
The FILE statement describes the files that are referenced in the program.

Various ways of defining files are described on the pages that follow.

Supported file organizations
INDEXED VSAM KSDS File
RELATIVE VSAM Relative File
VSAM-SEQ VSAM Sequential File
TABLE Instream or External Table
CARD Card Reader
PRINTER Printer
PUNCH Card Punch
SQL SQL/DB2
TAPE Tape File
DISK Sequential Disk File
SEQUENTIAL

Any Sequential File
VIRTUAL Easytrieve Virtual File (treated as sequential file)
PDS PDS and PDSE files

Supported sequential file record formats
F Fixed Unblocked
V Variable Unblocked
U Undefined
FB Fixed Blocked
VBS Variable Blocked Spanned
VB Variable Blocked

Non-supported file organizations
DLI DLI Files are not flagged
IS ISAM Files are flagged
IDMS IDMS Files are flagged

Non-supported file attributes (these attributes are bypassed)
ASA Option is ignored
WORKAREA Option is ignored
EXTENDED Option is not supported
DBSCODE Option is not supported
RETAIN Option is ignored; you can control it via JCL.

Supported file attributes
BUFNO Number of buffers used when IOMODE=DYNAM is specified

© Copyright IBM Corp. 2002, 2003 25

Defining VSAM files

�� FILE &DDNAME
VS

INDEXED
RELATIVE
RRDS

VSAM-SEQ

�

� PASSWORD ’&PASSWORD’
CREATE
RESET
UPDATE
NOVERIFY

F

V (&LRECL)
KEY &KEY

��

Parameters

VS Indicates a VSAM File.

INDEXED
Defines KSDS VSAM File

RELATIVE
Defines Relative VSAM File

RRDS The same as RELATIVE

VSAM-SEQ
Defines ESDS VSAM File

CREATE
Defines an output file

PASSWORD ’&PASSWORD’
&PASSWORD is a one to eight character VSAM file password.

RESET
Resets file to starting point (ignored by Migration Utility)

UPDATE
Defines file for update mode Valid for INDEXED and RELATIVE files only.

NOVERIFY
Ignore File Verify (ignored by Migration Utility)

Record format.
Possible values are:
F Fixed
V Variable

This is a Migration Utility convention only. Easytrieve does not support it.

&LRECL
Record length. The default is the size of the defined record. Easytrieve
does not support record length for VSAM Files. The length is obtained
from the VSAM Catalog.

Defining VSAM files

26 Migration Utility V1R1 User’s Guide and Reference

KEY &KEY is valid for VSAM KSDS (Indexed) files only. &KEY identifies
the field name coded in the record layout to be used as the VSAM key.
This option is not supported by Easytrieve. Use this syntax when defining
file layout using the %CBLCNVRT macro from COBOL copybooks.

When running in IOMODE=DYNAM, record length and key locations are resolved
at run time dynamically. The following customization applies only when running
in static mode (IOMODE=NODYNAM).

If KEY &KEY is not coded, the File KEY for INDEXED files must be the first
defined field in the record. The field must be an alphanumeric field or a group
item. Numeric fields are flagged as errors. The File KEY for RELATIVE files is
automatically generated by Migration Utility based on the key usage in the I/O
statements.

Record format and record length are not allowed by Easytrieve for VSAM files. It
is a Migration Utility option only. To retain Easytrieve compatibility, make sure
that the length of the record you define is equal to the real file record length. The
&LRECL option is provided as a safety feature if you want to prevent the program
from ever being run using native Easytrieve.

Migration Utility depends on the value of the record format to recognize VSAM
variable record format for OUTPUT and UPDATE Files. This is not an Easytrieve
convention. You must code a “V” for VSAM variable-length records.

Examples

This example defines FILEIN1 VSAM INDEXED File with key length of 16 bytes
and fixed record size of 500 bytes.

FILE FILEIN1 INDEXED UPDATE (500)

IN1-KEY 1 16 A | <= key is the first defined field
IN1-RECORD 1 500 A | <= ensures full size

. |

. | <= other layout can be coded

This example defines FILEIN1 VSAM INDEXED File with key length of 16 bytes
and variable record size of 500 bytes.

FILE FILEIN1 INDEXED UPDATE V(500)

IN1-KEY 1 16 A | <= key is the first defined field
IN1-RECORD 1 500 A | <= ensures full size

. |

. | <= other layout can be coded

Defining tables
Migration Utility supports instream and external tables. The instream tables have
data imbedded in the program following the table definition. For external tables,
data is read from an external file. In either case, the data must consist of two
fields, Argument and Description. Argument is the Table Key. Description is
associated with the Key.

Defining VSAM files

Chapter 3. Defining entities 27

�� FILE &DDNAME TABLE INSTREAM
External table parameters

&ARG &POS �

� &LENGTH &TYPE &DESC &POS &LENGTH &TYPE �

�
Instream table values

��

Instream table values:

� &ARGn &DESCn ENDTABLE

External table coding:

(&ROWS)
F
V
U
FB
VBS
VB

(&LRECL &BLKSIZE)

Parameters

&DDNAME
1 to 8 character file name

&ARG Field name for table key

&DESC
Description for field name

&ARGn
Table data for Argument field

&DESCN
Table data for Description field

&POS Start Position in the record

&LENGTH
Field Length

&TYPE
Field Type, A, N, P

ENDTABLE
Required end of data marker

&ROWS
Maximum number of Table Rows

Record format
Can be:
F Fixed Unblocked
V Variable Unblocked
U Undefined

Defining tables

28 Migration Utility V1R1 User’s Guide and Reference

FB Fixed Blocked
VBS Variable Blocked Spanned
VB Variable Blocked

This is a Migration Utility optional parameter.

&LRECL
Record length

When running in IOMODE=DYNAM, record length is resolved at run time
dynamically. The following customization applies only when running in
static mode (IOMODE=NODYNAM).

Record length is required for &RECFM V, U, VB. The length must include
4 extra bytes over the actual record size for all variable-length files (V or
VB).

Record length is required when the actual record length of your file is not
equal to the size of the defined layout. The default is the size of the
defined record.

This is a Migration Utility optional parameter.

&ARG Field name for table key

&DESC
Description field name

&POS Start Position in the record

&LENGTH
Field Length

&TYPE
Field Type: A or N. Other formats are not supported by Easytrieve.

Note: &RECFM and &LRECL are Migration Utility parameters only. This
convention provides the ability to define a table file that has different record
length from the size defined by the layout.

Examples

This example defines WEEKDAY Instream Table for translating a day of the week:

FILE WEEKDAY TABLE INSTREAM
ARG1 1 1 A
DESC1 3 9 A

1 SUNDAY
2 MONDAY
3 TUESDAY
4 WEDNESDAY
5 THURSDAY
6 FRIDAY
7 SATURDAY
ENDTABLE

This example define an external Branch Table of 150 rows with a 2 digit Branch
Number and a 15 digit Branch Name:

FILE BRTABLE TABLE (150)
BRANCH 1 2 A
DESCRIPTION 4 15 A

Defining tables

Chapter 3. Defining entities 29

This example defines the same table as in Example 1 that resides on a variable
length file of LRECL=60:

FILE BRTABLE TABLE (150) V(64)
BRANCH 1 2 A
DESCRIPTION 4 15 A

Defining unit record devices and sequential files

�� FILE &DDNAME
SEQUENTIAL F

TAPE V
U
FB
VBS
VB

CARD
PRINTER
PUNCH
DISK
VIRTUAL

�

�
(&LRECL)

&BLKSIZE

��

Parameters

&DDNAME
One to eight character file name

Device:
CARD Card reader
PRINTER Printer
PUNCH Punch device
TAPE Tape file
DISK Sequential disk file
SEQUENTIAL

Any sequential file
VIRTUAL Easytrieve virtual file

VIRTUAL files are handled as sequential disk files.

Record format:
F Fixed Unblocked
V Variable Unblocked
U Undefined
FB Fixed Blocked
VBS Variable Blocked Spanned
VB Variable Blocked

&LRECL
Record length

Defining tables

30 Migration Utility V1R1 User’s Guide and Reference

When running in IOMODE=DYNAM, record length is resolved at run time
dynamically. The following customization applies only when running in
static mode (IOMODE=NODYNAM).

Record length is required for records of format V, U, and VB. The length
must include four extra bytes over the actual record size for all
variable-length files (V or VB). The record length is required when the
record layout is not coded. The default record length is the size of the
defined record.

&BLKSIZE
Block size. Ignored by Migration Utility. The block size can be controlled
via DCB in JCL.

Note: Each file definition can be optionally followed by the record layout. For
additional information refer to “Defining Records and Working Storage” on
page 32.

Examples

Here are some variations of possible file definitions:

FILE INPUT1 CARD (80)
FILE INPUT2 VB (260)
FILE OUTFIL FB (512)
FILE MASTER TAPE F (2500)
FILE TRANFL DISK F (3000)
FILE OUTFIL VIRTUAL

Defining unit record devices and sequential files

Chapter 3. Defining entities 31

Defining Records and Working Storage

��
DEFINE &FILE:

&FIELD &POS
*

(+ &OFFSET1)

W
S

�

� &OVERLAY
&FILE : + &OFFSET2

�

� &LENGTH A &NDEC
COMP-1 EVEN
COMP-2
N
B
P
K
U

�

�
Heading information INDEX (&INDEX)

�

�
MASK (’&MASK’)

&MASKID BWZ HEX

�

�
OCCURS &OCCUR VALUE &VALUE

ALL
RESET VARYING

��

Heading information:

HEADING (’&HEAD1’
’&HEAD2’

’&HEAD3’

) �

�
(FONT# ’&HEAD1’)

’&HEAD2’
’&HEAD3’

Parameters

DEFINE
This keyword denotes the beginning of a field. It is usually omitted.

&FILE File name. It is supported by Migration Utility but not recommended.

&FIELD
1 to 30 character field name

&POS Starting field position in the record

* + &OFFSET1
Relative offset to the last defined field (* for current location)

W Establishes a working storage field that can be changed

Defining Records and Working Storage

32 Migration Utility V1R1 User’s Guide and Reference

||

S Establishes a static working storage field (equivalent to a literal)

&OVERLAY
The group field name that this field belongs to

&OFFSET2
Displacement relative to the &OVERLAY. The displacement plus the field
size must fit within the boundary of the &OVERLAY field.

&LENGTH
Field length

Field type:
A Alphanumeric
COMP-1 Single-precision floating point number
COMP-2 Double-precision floating point number
N Numeric
B Binary (see comments below)
P Packed decimal
K Double character set
U Packed unsigned

Note: Floating-point types, COMP-1 and COMP-2 fields cannot be printed
or displayed. To print or display a COMP-1 or COMP-2 field, you
must first move the contents into a valid numeric field. However,
you can display the value using native COBOL.

&NDEC
Number of decimal places (numeric fields only)

EVEN
Valid for U fields only. Forces the number of characters represented by the
field to be even.

&HEAD1, &HEAD2, &HEAD3
Field headings for report headers. The maximum length is 30 characters.

FONT#
Font Number (not supported by Migration Utility)

&INDEX
A unique index name used for accessing fields with OCCURS

&MASKID
Letters A through Z identify a previously defined mask.

BWZ Print option. Blank is printed when contents of the field is zero.

&MASK
Print mask

HEX Print option for printing in HEX

&OCCUR
Number of field occurrences

&VALUE
Initial field value. For alphanumeric fields, the value must be enclosed in
quotes. ALL is a Migration Utility option only. It is not supported by
Easytrieve.

RESET
Field is to be initialized at the beginning of each JOB.

Defining Records and Working Storage

Chapter 3. Defining entities 33

||
||

|
|
|
|

VARYING
Field is a variable-length field (alphanumeric fields only).

The maximum value that can be contained in the binary fields when running with
Easytrieve differs from the value that can be accommodated by COBOL as follows:

Note: Compiling COBOL with TRUNC(BIN) option will increase the maximum
value of 2 byte and 4 byte fields to their maximum capacity. Refer to
COBOL Compiler IBM manual for exact values.

Memory Easytrieve COBOL
Size Max-Value Max-Value

4 bytes 2,147,483,647+ 999,999,999+
2,147,483,647- 999,999,999-

3 bytes 8,388,607+ 9,999,999+
8,388,607- n/a

2 bytes 32,767+ 9,999+
32,767- 9,999-

1 byte 127+ 99+
127- n/a

COBOL does not support one byte and three byte binary fields. For such fields,
Migration Utility expands special code that prepares fields in working storage
before they are accessed.

Example

These examples show some variations of possible field definitions.

FILE FILEIN1 DISK (107)
IN-ACCOUNT 01 10 N MASK ’99-99999999’ + |

HEADING (’ACCOUNT’ ’NUMBER’) | sample
IN-NAME 11 15 A HEADING (’SHORT’ ’NAME’) |
IN-CUR-BAL 27 07 P 2 HEADING (’CURRENT’ ’BALANCE’) |
IN-INT-DATA 35 11 A | file
IN-INT-DATE IN-INT-DATA 6 N HEADING (’INTEREST’ ’DATA’) |
IN-INTEREST IN-INT-DATA +6 5 N 2 HEADING (’INTEREST’ ’AMOUNT’) |
IN-AMOUNTS 47 05 N 2 OCCURS 12 INDEX AMOUNT-INDEX | record

HEADING (’MONTHLY’ ’AMOUNTS’) |

WS-DATE W 6 N MASK (’99/99/99’) |
WS-DATE-MM WS-DATE 2 N | sample
WS-DATE-DD WS-DATE +2 2 N | working
WS-DATE-YY WS-DATE +6 2 N | storage

|
WS-REPORT-TITLE S 40 A VALUE ’REPORT1 TITLE’ | <= literal
WS-REPORT-TITLE2 W 40 A <= static

Defining Records and Working Storage

34 Migration Utility V1R1 User’s Guide and Reference

Chapter 4. Program instruction reference

This portion of the manual lists program instructions, with the syntax, further
explanation, and sometimes examples, for each instruction.

COPY statement
The COPY statement duplicates the field definitions of a named file.

�� COPY &FILE ��

Parameter

&FILE The name of the previously defined file whose fields you want to
duplicate.

Easytrieve allows an unlimited number of COPY statements for any one file.

Migration Utility allows a maximum of 27 copy statements per program. Migration
Utility alters the field naming conventions of the newly created file, by prefixing
each field by a letter assigned to the file being defined.

Easytrieve requires the file qualifier to be placed before the field name when
referenced.

Migration Utility requires the file qualifier to be placed before the field names
expanded due to the COPY statement only. The original file fields are accessed
without placing the file name before the fields.

The defined file must be of the same organization as the file being copied.

Examples

The examples show some variations of possible field definitions.

FILE FILEIN1 DISK (107)
IN-ACCOUNT 01 10 N MASK ’99-99999999’ + |

HEADING (’ACCOUNT’ ’NUMBER’) | sample
IN-NAME 11 15 A HEADING (’SHORT’ ’NAME’) |
IN-CUR-BAL 27 07 P 2 HEADING (’CURRENT’ ’BALANCE’) |
IN-INT-DATA 35 11 A | file
IN-INT-DATE IN-INT-DATA 6 N HEADING (’INTEREST’ ’DATA’) |
IN-INTEREST IN-INT-DATA +6 5 N 2 HEADING (’INTEREST’ ’AMOUNT’) |
IN-AMOUNTS 47 05 N 2 OCCURS 12 INDEX AMOUNT-INDEX | record

HEADING (’MONTHLY’ ’AMOUNTS’) |

FILE FILEIN2 DISK (107) FILEIN2
COPY FILEIN1 COPY

FILEIN1
JOB INPUT FILEIN1

|
GET FILEIN2 STATUS |
IF EOF FILEIN2 | Some

© Copyright IBM Corp. 2002, 2003 35

STOP |
END-IF | References

|
IF FILEIN1:IN-ACCOUNT NE FILEIN2:IN-ACCOUNT | with file

DISPLAY FILEIN1:IN-ACCOUNT ’ ACCOUNTS DO NOT MATCH’ |
| names

END-IF

SORT Activity Section
You can code one or more Sort Activity Sections following the FILE and Working
Storage definitions.

�� SORT &FILEIN TO &FILEOUT USING �(&KEYn)
SIZE &SIZE

�

�
WORK &WORK BEFORE &PROC NAME &NAME

��

Parameters

&FILEIN
1 to 8 character input file name

&FILEOUT
1 to 8 character output file name

&KEYn
Fields to be sorted on (up to eight fields).

&SIZE Sort core size (ignored by Migration Utility)

&WORK
Work area name (ignored by Migration Utility)

&PROC
Input exit (taken after the Read of input record)

&NAME
Sort name (ignored by Migration Utility)

Example

This example shows sorting input file FILEIN to output file FILOUT. Clip
non-numeric accounts with all nines.

FILE FILEIN (80) |
ICUS-ACCT 01 15 N |
ICUS-NAME 16 15 A |
ICUS-ADDRESS1 32 15 A | Input file

|
FILE FILOUT (80) |

OCUS-ACCT 01 15 N |
OCUS-NAME 16 15 A |
OCUS-ADDRESS1 32 15 A | Output file

COPY statement

36 Migration Utility V1R1 User’s Guide and Reference

SORT FILEIN TO FILOUT +
USING (ICUS-ACCT ICUS-NAME) + | Sort statements
BEFORE SELECT-FILEIN |

|
SELECT-FILEIN. PROC.
IF ICUS-ACCT NOT NUMERIC |

ICUST-ACCT = 999999999999999 | Before Sort Exit
END-IF | move all 9’s into bad accounts
SELECT | SELECT is needed to accept the
END-PROC. | record.

JOB Activity Section
The JOB statement defines and initiates processing activities.

�� JOB

�

INPUT &FILE

(&FILE KEY (&KEYn))
NULL

�

� START &START
FINISH &FINISH
NAME &NAME

��

Parameters

INPUT
Identifies the automatic input to the activity. If omitted, the input file is
assumed to be the output file from the SORT activity, if any, which
immediately preceded the current JOB. Otherwise, the default input file is
the first file named in the library section.

&FILE Identifies the automatic input file for sequential processing

&KEYn
Identifies one or more file keys for synchronized file processing (file
match). This format requires that at least two input files are defined to the
JOB activity. File keys must be of compatible format, for example, numeric
or alphanumeric. For further information see “Synchronized file
processing” on page 38.

NULL Inhibits the automatic input process. This option is used when input to the
program is handled in the activity via READ or GET statements. When
“NULL” is coded, a “STOP” must be provided in the activity processing
section or the JOB will loop.

&START
The start procedure name. Identifies a procedure to be invoked during the
initiation of the JOB. It is invoked before any automatic input file records
are read, therefore, automatic input file data fields cannot be accessed. The
START is usually handy for initializing fields or positioning files before
input.

SORT Activity Section

Chapter 4. Program instruction reference 37

&FINISH
The finish procedure name. Identifies a procedure to be invoked before
normal termination of the JOB. It is usually used to display information
accumulated during the processing.

&NAME
Assigns a name to the current JOB. This statement is ignored by Migration
Utility.

Example

FILE FILEIN1 DISK (80) |
ICUS-ACCT 01 15 N |
ICUS-NAME 16 15 A |
ICUS-ADDRESS1 32 15 A | Input file 1
ICUS-ADDRESS2 48 15 A |
ICUS-ADDRESS3 62 15 A |

|
FILE FILEIN2 DISK (80) |

JCUS-ACCT 01 15 N |
JCUS-NAME 16 15 A |
JCUS-ADDRESS1 32 15 A | Input file 2
JCUS-ADDRESS2 48 15 A |
JCUS-ADDRESS3 62 15 A |

JOB INPUT NULL
. | JOB with no automatic input
.

JOB INPUT FILEIN1
. | JOB WITH FILEIN1 as input
.

JOB INPUT +
(FILEIN1 KEY(ICUS-ACCT) + | JOB with synchronized files
FILEIN2 KEY(JCUS-ACCT)) | process (file match)
. |
.

JOB INPUT FILEIN1 +
START A001-FILEIN1-START + | JOB with START and FINISH Procs
FINISH Z999-JOB1-FINISH |
. |
.

A001-FILEIN1-START. PROC.
. | JOB Start Proc
. |

END-PROC.

Z999-JOB1-FINISH. PROC.
. | JOB finish Proc
. |

END-PROC.

Synchronized file processing
Synchronized file processing lets you:
v Match or merge multiple input files
v Serially process a single keyed file

In either case, special conditional expressions help determine relationships among
files, and file records on individual files. The special conditions are MATCHED,

JOB Activity Section

38 Migration Utility V1R1 User’s Guide and Reference

DUPLICATE, FIRST-DUP, LAST-DUP, and file existence tests as described later in
this section (see “Special IF statements in synchronized process” on page 41).

The synchronized file process is initiated via the JOB activity FILE statements.

Each file named in the JOB activity must be followed by one or more keys (field
names) to be used in the comparison.

Corresponding keys of all files must be of the same type. Numeric keys must
correspond to numeric keys and alphanumeric keys must correspond to
alphanumeric keys.

Numeric keys can have different lengths.

Alphanumeric keys are expected to have the same length.

The files cannot be updated during the synchronized file processing because the
algorithm reads records ahead.

Indexed and relative files can be positioned, before synchronization starts, using a
POINT statement in the START procedure.

Example

This example shows JOB statements with Synchronized File Process:

FILE FILE1 DISK (80) |
I1-ACCT 01 15 N |
I1-NAME 16 15 A |
I1-ADDRESS 32 15 A | Input FILE1

|
FILE FILE2 DISK (80) |

I2-ACCT 01 15 N |
I2-NAME 16 15 A |
I2-ADDRESS 15 A | Input FILE2

|
FILE FILE3 DISK (80) |

I3-ACCT 01 15 N |
I3-NAME 16 15 A |
I3-ADDRESS 15 A | Input FILE3

JOB INPUT (FILE1 KEY(I1-ACCT) + | Match all three files
FILE2 KEY(I2-ACCT) + |
FILE3 KEY(I3-ACCT)) |

. |
JOB INPUT (FILE1 KEY(I1-ACCT) + |

FILE3 KEY(I2-ACCT)) | Match FILE1 to FILE2
. |

JOB INPUT (FILE1 KEY(I1-ACCT) + |
FILE3 KEY(I3-ACCT)) | Match FILE1 to FILE3

Record availability
During synchronization, file records are made available for input based on the
relationships of the files’ key. Records with the lowest key are made available first,
and so on, following the hierarchy order of the files specified on the JOB
statement.

Synchronized file processing

Chapter 4. Program instruction reference 39

Duplicate key values affect record availability differently based on which file
contains the duplicates. The matching algorithm is hierarchical. The lower level file
key is exhausted before another record is processed from the next higher level file.
The figure below depicts the concept:

Input Files Data

FILE1 RECORD FILE2 RECORD FILE3 RECORD
KEY # KEY # KEY #

AAAA 1 BBBB 1 AAAA 1
BBBB 2 CCCC 2 CCCC 2
CCCC 3 CCCC 3 DDDD 3
CCCC 4 DDDD 4 EEEE 4
HHHH 5 DDDD 5 GGGG 5
HHHH 6 FFFF 6 HHHH 6
IIII 7 GGGG 7 HHHH 7

------------- Record Availability during the JOB ------------

JOB FILE1 RECORD FILE2 RECORD FILE3 RECORD
CYCLE KEY # KEY # KEY #

1 AAAA 1 N/A AAAA 1
2 BBBB 2 BBBB 1 N/A
3 CCCC 3 CCCC 2 CCCC 2
4 CCCC 3 CCCC 3 N/A
5 CCCC 4 N/A N/A
6 N/A DDDD 4 DDDD 3
7 N/A DDDD 5 N/A
8 N/A N/A EEEE 4
9 N/A FFFF 6 N/A
10 N/A GGGG 7 GGGG 5
11 HHHH 5 N/A HHHH 6
12 HHHH 5 N/A HHHH 7
13 HHHH 6 N/A N/A
14 IIII 7 N/A N/A

As per above, there are two CCCC keys on FILE1 and FILE2 and one CCCC key
on FILE3.

In JOB Cycle #3, the first CCCC record of FILE1, FILE2 and FILE3 are available.

In JOB Cycle #4, the first CCCC record of FILE1, the second CCCC record of FILE2
are available only. A record from FILE3 is not available at all.

In JOB Cycle #5, the second CCCC record of FILE1 is available only. A FILE2 and
FILE3 records are not available at all.

Record availability

40 Migration Utility V1R1 User’s Guide and Reference

Special IF statements in synchronized process
The following special IF statements allow you to process records based on the
match criteria.

MATCHED
Use the MATCHED test to determine the relationship between the current record
of one file with the current record of one or more other files.

�� IF
NOT

MATCHED

� &FILEn

��

Parameter

&FILEn
The names of the file names being matched

If “MATCHED” is not followed by at least one file name, then all files are
included in the test.

File existence
To determine presence of data from a specific file, use this special test.

�� IF
NOT

&FILE ��

Parameter

&FILE The name of the file whose existence is being tested

If the IF &FILE test is true, then file record is available and can be processed.
Otherwise, the &FILE record is not available for process.

DUPLICATE, FIRST-DUP, LAST-DUP
DUPLICATE, FIRST-DUP and LAST-DUP determine the relationship of the current
record of a file to the preceding and following records in the same file.

�� IF
NOT

DUPLICATE
FIRST-DUP
LAST-DUP

&FILE ��

Parameter

&FILE The name of the file being tested.

Special IF statements in synchronized process

Chapter 4. Program instruction reference 41

IF DUPLICATE &FILE is true when duplicate key exists (JOB Cycle 3, 4 and 5 for
FILE1 on the previous page).

IF FIRST-DUP &FILE is true when the first record containing duplicate key is
processed (JOB Cycle 3 for FILE1 on the previous page)

IF LAST-DUP &FILE is true when the first record containing duplicate key is
processed (JOB Cycle 5 for FILE1 on the previous page)

Example

FILE FILE1 DISK (80) |
ICUS-ACCT 01 15 N |
ICUS-NAME 16 15 A |
ICUS-ADDRESS1 32 15 A | Input file 1
ICUS-ADDRESS2 48 15 A |
ICUS-ADDRESS3 62 15 A |

|
FILE FILE2 DISK (80) |

JCUS-ACCT 01 15 N |
JCUS-NAME 16 15 A |
JCUS-ADDRESS1 32 15 A | Input file 2
JCUS-ADDRESS2 48 15 A |
JCUS-ADDRESS3 62 15 A |

JOB INPUT +
(FILE1 KEY(ICUS-ACCT) + | JOB with Synchronized Files
FILE2 KEY(JCUS-ACCT)) | Process (file match)

|

IF MATCHED
PRINT REPORT1 | Report all MATCHED Records

END-IF |
|

IF DUPLICATE FILE1 |
PRINT REPORT2 | Report Duplicates on FILE1

END-IF |
|

IF DUPLICATE FILE2 |
PRINT REPORT3 | Report Duplicates on FILE2

END-IF. |
|

REPORT REPORT1 |
TITLE 01 ’REPORT OF MATCHED RECORDS’ |
LINE 01 ICUS-ACCT JCUS-ACCT |

|
REPORT REPORT2 |
TITLE 01 ’DUPLICATE RECORDS ON FILE1’ |
LINE 01 ICUS-ACCT ICUS-NAME |

|
REPORT REPORT3 |
TITLE 01 ’DUPLICATE RECORDS ON FILE2’ |
LINE 01 JCUS-ACCT JCUS-NAME |

|

Assignment statement
The Assignment statement assigns a value to a field. The value can be another
field, a literal or an arithmetic expression.

There are two types of assignment statements:

Special IF statements in synchronized process

42 Migration Utility V1R1 User’s Guide and Reference

1. Normal assignment (assigns field values and arithmetic outcomes to a field).
This type of assignment is supported by Migration Utility as described in this
section.

2. Bit field assignments (used with XOR, AND, OR Logical operators). This type
of assignment is supported by Migration Utility via a CALL to special
subprogram. Because of its infrequent use, this type of assignment is not
described in this manual. However, functionally the generated COBOL logic
yields the same results as Easytrieve.

�� &RECFIELD
INTEGER

TRUNCATED

ROUNDED
=

EQ
&SENDFIELD
&SENDLITERAL
&FORMULA

��

Parameters

&RECFIELD
The field name to which the value is assigned

INTEGER
Coding INTEGER drops the decimal digits from the assigned value

ROUNDED | TRUNCATED
Specify ROUNDED or TRUNCATED when the receiving field is too small
to handle the fractional result of the assignment.

= | EQ
Use = or EQ to indicate assignment.

&SENDFIELD
Sending field (field to be copied)

&SENDLITERAL
Sending value can be a literal. Alphanumeric literals must be enclosed in
quotes.

&FORMULA
Arithmetic expression. It can contain arithmetic operators (+, -, *, /). The
outcome of the calculation is placed in the &RECFIELD.

Migration Utility supports exponentiation (**). Thus, you can exponentiate values
before moving them into a field. Exponentiation is native to COBOL.

The data type being assigned to a field must be compatible with the fields’ data
type. That is, numeric fields require a numeric source and alphanumeric fields
require an alphanumeric source. Alphanumeric literal must be enclosed in quotes.
Numeric literal can be preceded by “+” or “-”.

Example

FILE FILEIN1
I-BALANCE 1 5 N 2
I-STATE 6 2 A

WS-AMOUNT W 5 N 2
WS-STATE W 15 A

Assignment statement

Chapter 4. Program instruction reference 43

JOB INPUT FILEIN1 |
WS-AMOUNT = 0 | some
IF I-STATE = ’NJ’ | assignment

WS-AMOUNT = I-BALANCE * 1.09 | statements
WS-STATE = ’NEW JERSEY’

END-IF

IF I-BALANCE NOT NUMERIC
I-BALANCE = ZERO |

END-IF |
| more

IF I-STATE = ’NY’ | assignment
WS-AMOUNT = ((I-BALANCE + 10000) * 1.01)) | statements
WS-STATE = ’NEW YORK’ |

END-IF |
|

MOVE statement
The MOVE statement transfers data strings from one storage location to another.
The MOVE statement is specially useful for moving data without conversion and
for moving variable-length fields. There are two MOVE statement formats.

Format 1

�� MOVE &SENDFILE
&SENDRECORD
&SENDFIELD
&SENDLITERAL

&SEND-LENGTH
TO &RECEIVEFILE

&RECEIVERECORD
&RECEIVEFIELD

�

�
&RECEIVE-LENGTH FILL ’&FILLCHR’

��

Parameters

Source data identifier
You can use one of the following:
&SENDFILE

A file name defined in the Library Section. Referencing a file name
results in a move of the current file record.

&SENDRECORD
A record name or working storage area

&SENDFIELD
A currently available field name

&SENDLITERAL
A literal. Alphanumeric literal must be enclosed in quotes.

&SEND-LENGTH
Length of the sending field. It can be a numeric literal or a field name.

Target location identifier
You can use one of the following:
&RECEIVEFILE

A file name defined in the Library Section. Referencing a file name
results in a move into the current file record.

&RECEIVERECORD
A record name or working storage area

Assignment statement

44 Migration Utility V1R1 User’s Guide and Reference

&RECEIVEFIELD
A currently available field name

&RECEIVE-LENGTH
Length of the receiving field. It can be a numeric literal or a field name.

&FILLCHR
A pad character. This character is used to pad the target object if the
sending object is shorter than the receiving object. The default is spaces.

Format 2

�� MOVE NULL
SPACE
SPACES
ZERO
ZEROS
ZEROES

TO � &RECEIVEFIELD ��

Parameters

The first parameter identifies the sending data area.
The default length is the length of the receiving field. Moving SPACE or
SPACES fills the field with all spaces. Moving NULL fills the field with
low values, and moving ZERO, ZEROES or ZEROS moves all zeros to the
field.

&RECEIVEFIELD
One or more receiving fields. The receiving field is set to the proper data
format. However, you cannot move spaces into a packed field or a binary
field.

Easytrieve Format 1 data is moved from left to right as if both areas were
alphanumeric. The data moved is not converted. It is moved as is, even if the from
and to fields are packed or binary fields.

Migration Utility Format 1 generates standard COBOL MOVEs. The data is moved
according to the standard COBOL Conversion rules so a move from a binary field
into a display numeric field results in data conversion from binary to Display
Numeric format, yielding a result that differs from the Easytrieve Move.
Compatible results can be achieved by redefining the numeric field as an alpha
field and using the alpha field name as the source or target in the move statement.

MOVE statement

Chapter 4. Program instruction reference 45

MOVE LIKE statement
The MOVE LIKE statement moves the contents of fields with identical names from
one file, record or working storage to another. Data movement and conversion
follow the rules of the Assignment statement.

�� MOVE LIKE &SENDFILE
&SENDRECORD

TO &RECEIVEFILE
&RECEIVERECORD

��

Parameters

Source file identifier
You can use one of:
&SENDFILE

A file name defined in the Library Section. Referencing a file name
results in the move of the current file record.

&SENDRECORD
A record name or working storage area.

Target location identifier
You can use one of :
&RECEIVEFILE

A file name defined in the Library Section. Referencing a file name
results in the move into the current file record.

&RECEIVERECORD
A record name or working storage area

The moves are generated starting with the last target field backward. Thus, the
order in which overlapping fields are defined is important.

PUT statement
The PUT statement writes a record to an output sequential file. It also adds
consecutive records to a VSAM Indexed or Relative file.

�� PUT &OUTFILE FROM &FILE
FROM &AREA STATUS

��

Parameters

&OUTFILE
Output file name

Input source
You can use one of:

FROM &FILE
FROM &AREA

For variable-length records, the length of the output record is equal to the
length of the input record. For fixed-length records, the output file record
is a fixed-length as defined in the library section. If the FROM object

MOVE LIKE statement

46 Migration Utility V1R1 User’s Guide and Reference

length is shorter than the output record, only the length of the input object
is moved. The remaining length remains uninitialized.

STATUS
Specify if you want to test for a successful I/O. Normally, zero in the file
status indicates a successful I/O and a non-zero indicates an I/O error.

WRITE statement
The WRITE statement writes a record to an output INDEXED or RELATIVE file in
random mode.

�� WRITE &OUTFILE UPDATE FROM &FILE
ADD FROM &AREA

DELETE
STATUS

��

Parameters

&OUTFILE
The output file name must be a VSAM Indexed or Relative file. The
UPDATE option must be coded on the FILE statement in the Library
Section.

I/O operation
This can be UPDATE, ADD or DELETE.

The name of the input source
&FILE is the file name, &AREA is the area name. For variable-length
records, the length of the output record is equal to the length of the input
record. For fixed-length records, the output file record is of a fixed-length
as defined in the library section. If the FROM object length is shorter than
the output record, only the length of the input object is moved, and the
remaining length remains uninitialized.

STATUS
Specify if you want to test for a successful I/O. Normally a zero in the file
status indicates a successful I/O and a non-zero indicates an I/O error.

GET statement
The GET statement reads the next sequential record from the specified file.

�� GET &FILE :
PRIOR

HOLD
NOHOLD STATUS

��

Parameters

&FILE The name of the input file to be read.

PRIOR
Reads the previous record from the named file. If the position in the file is
not established, the last record on the file is read.

PUT statement

Chapter 4. Program instruction reference 47

PRIOR is not supported by Migration Utility.

HOLD
Protects the record from a concurrent update

NOHOLD
Does not protect the record from a concurrent update.

STATUS
Specify if you want to test for a successful I/O. Normally, zero in the file
status indicates a successful I/O and a non-zero indicates an I/O error.

HOLD and NOHOLD are not supported by Migration Utility. Such amenities can
be accomplished via JCL DISP= parameter and VSAM SHARE Options.

You must test for End OF File (EOF) or file presence (IF &FILE) to ensure record
availability.

READ statement
The READ statement performs RANDOM access to INDEXED and RELATIVE
VSAM files.

�� READ &FILE KEY &FIELD
’&LITERAL’

HOLD
NOHOLD STATUS

��

Parameters

&FILE The name of the input file to be read

&FIELD
A field name that contains the file key to be read

&LITERAL
A literal that identifies a record on the file

HOLD
Protects the record from a concurrent update

NOHOLD
Does not protect the record from a concurrent update.

STATUS
Specify if you want to test for a successful I/O. Normally, zero in the file
status indicates a successful I/O and a non-zero indicates an I/O error.

HOLD and NOHOLD are not supported by Migration Utility. Such amenities can
be accomplished via JCL DISP= parameter and VSAM SHARE options.

The &FIELD is normally a working storage field or a field in another file. The
contents of the &FIELD must be established before READ is issued.

You can use file presence (IF &FILE) to ensure a successful read.

GET statement

48 Migration Utility V1R1 User’s Guide and Reference

POINT statement
The POINT statement establishes the position in an INDEXED or RELATIVE file
for subsequent sequential retrieval. The data is available only after the next
sequential retrieval.

�� POINT &FILE
PRIOR

EQ
=
GE
GQ
>=

&FIELD
’&LITERAL’ STATUS

��

Parameters

&FILE Name of input file. It must be an INDEXED or RELATIVE VSAM file.

PRIOR
Specify PRIOR if you want to use PRIOR on the GET statement. See “GET
statement” on page 47for more information.

Note: PRIOR is not supported by Migration Utility.

Relational operator for search condition
= and EQ search for the exact key value, GE, GQ and >= search for the
first key that is greater than or equal to the key value.

&FIELD
A field name that contains the file key to be searched.

&LITERAL
A literal that identifies a record on the file

STATUS
Specify if you want to test for a successful I/O. Normally, zero in the file
status indicates a successful I/O and a non-zero indicates an I/O error.

&FIELD is normally a working storage field or a field in another file. The contents
of &FIELD must be established before POINT is issued.

For the KSDS file, the field length or literal value must have the same length as the
file key. For the RELATIVE files, the key must be a 4 byte binary integer field.

You cannot use file presence (IF &FILE) to ensure a successful point.

PRIOR is not supported by Migration Utility.

POINT statement

Chapter 4. Program instruction reference 49

SEARCH statement
The SEARCH statement accesses external or instream table information. Special
tests of the IF statement can be used to validate the results of SEARCH.

�� SEARCH &TBNAME WITH &SEARCHARG GIVING &RESULT ��

Parameters

&TBNAME
Name of the TABLE (FILE) that describes table resources

&SEARCHARG
Identifies the field containing the search argument

&RESULT
Identifies the receiving field into which data is retrieved

&SEARCHARG is normally a working storage field or a field in another file. The
contents of &SEARCHARG must be established before SEARCH is issued.

You can use file presence (IF &FILE) to ensure a successful read.

PERFORM statement
The PERFORM statement executes a procedure, and, after execution, returns to the
next statement after PERFORM.

�� PERFORM &PROCNAME ��

Parameters

&PROCNAME
The name of the Procedure to be executed

PERFORM statements in a procedure can invoke other procedures; however,
recursion is not permitted. Recursion can cause unpredictable results.

SEARCH statement

50 Migration Utility V1R1 User’s Guide and Reference

DISPLAY statement
The DISPLAY statement formats and transfers data to a system output device or to
a file.

�� DISPLAY &FILE
SYSPRINT

TITLE
NOTITLE

SKIP &SKIP
CONTROL &POSITION

�

� Position information
HEX &SRCFILE

&FIELD
&RECORD

��

Position information:

&FIELD
&LITERAL + OFFSET

- OFFSET
COL &COLUMN POS &POSITION

Parameters

&FILE A sequential file name. Use a file name if you wish to write data to a file.

SYSPRINT
Directs output to the system output device. Migration Utility normally
displays to the SYSLIST system file.

Report title control:
TITLE Specify TITLE if you wish to print a report title for the

display coded in a report exit. TITLE will skip to a new
page on page overflow and print report titles if any.

NOTITLE Specify NOTITLE if you wish to skip to a new page but
inhibit printing of the report title.

&SKIP An integer from 0 to ″N″. The number of lines to be skipped before
printing. Zero overlays the existing display line.

Migration Utility &skip integer range is 0 to 3.

&CC The print carriage control for controlling spacing. Valid characters are 0
through 9, +, -, A, B, or C depending on the make and model of the
printer.

&SRCFILE
The name of a file whose record is to be displayed. Specifying the name
results in displaying the most current record contained in the file.

&RECORD
Specifies a record or working storage area to be displayed

&FIELD
Specifies a field name to be displayed

DISPLAY statement

Chapter 4. Program instruction reference 51

&LITERAL
A character string (literal) to be displayed. Alphanumeric literal must be
enclosed in quotes.

OFFSET
The space adjustment parameters modify the normal spacing between
display items. + or − indicate the direction in which the spacing is
adjusted.

&COLUMN
Specifies the print column number where the next display item is to be
placed. The number can be from 1 to nn, but it cannot force the next line
item beyond the end of the line.

&POSITION
Specifies the position of display line items in respect to the items on line 1
within report procedures. The position corresponds to the line item
number of line 1 under which the line item is placed.

Unless positioning is specified, the first data entry of each display line begins in
column 1. Each data item that follows is printed following the previous one with
no spaces between data items.

HEX produces five formatted 100 byte lines per record/field.

When DISPLAY is used in the REPORT procedure, the output line is always in the
appropriate place in that report, unless you specify a print file that is not the
report file to which the procedure applies.

The displayed data is in an edited format. Thus, displaying to an edited file will
result in a file that contains edited fields.

Easytrieve Plus does not allow DISPLAY HEX in Report Exits. Migration Utility
does but if ″SEQUENCE″ is coded on the report statement, Migration Utility issues
a Warning Message about potential ″Undesired″ Sort File record length.

Warning: Doing DISPLAY HEX for SEQUENCE-d reports in report exits can result
in large Sort File record length and processing overhead. Use it with
caution.

Examples

DISPLAY ’CURRENT BALANCE ’ WS-CURRENT-BALENCE

DISPLAY HEX FILEIN-RECORD

DISPLAY PRINTER1 CONTROL 1 HEX FILEIN-RECORD

DISPLAY statement

52 Migration Utility V1R1 User’s Guide and Reference

CALL statement
The CALL statement allows you to invoke subprograms written in a language
other than Easytrieve.

�� CALL &PROGRAM �

�

�USING (&FIELD)
’ &LITERAL ’ RETURNS &RCODE

��

Parameters

&PROGRAM
Name of program to be invoked. From one to 8 characters.

Parameters for passing to the subprogram:
&FIELD
&LITERAL

&RCODE
The field name for the Return Code returned by the called program. It
must be a valid numeric field. The COBOL Return Code can be always
found in the COBOL RETURN-CODE field. RETURNS is supported by
Migration Utility but is not needed.

Easytrieve calls programs dynamically.

Migration Utility generates program calls as follows:
v Generates a static call when the program name is enclosed in quotes.
v Generates a dynamic call when the program name is not enclosed in quotes.

Examples

CALL FSABE01

CALL FSABE01 USING (’1000’ PROGRAM-NAME)

CALL statement

Chapter 4. Program instruction reference 53

GOTO statement
The GOTO statement alters the flow of processing.

�� GOTO
GO TO

&LABEL
JOB

��

Parameters

&LABEL
Specify a label in the current JOB activity section to which control is to be
transferred. Processing continues with the first statement following the
named label.

JOB Transfer control back to the first statement of the current JOB activity.
When processing the automatic file input, GOTO JOB results in a read of
the next sequential record on the input file.

Example

FILE FILEIN1 (80) |
CUST-NAME 01 15 A HEADING (’NAME’) |
CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section
CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |
CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

JOB INPUT FILEIN1
IF CUST-NAME = ’JOHN DOE’

GOTO PRINT-DATA | Activity section
ELSE |

GOTO JOB |
END-IF | with

|
PRINT-DATA. | GOTO statements

PRINT REPORT1
GOTO JOB

REPORT REPORT1 LINESIZE 080
TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ |
LINE 01 CUST-NAME | REPORT definitions

CUST-ADDRESS1 |
CUST-ADDRESS2 |
CUST-ADDRESS3 |

GOTO statement

54 Migration Utility V1R1 User’s Guide and Reference

STOP statement
The STOP statement terminates current job activity or program execution.

�� STOP
EXECUTE

��

Parameter

EXECUTE
Immediately terminates all processing. This is equivalent to a
Forced-End-of-Job.

STOP without EXECUTE terminates only current job activity. Any other jobs
subsequent to the current one continue processing.

Example

FILE FILEIN1 (80) |
CUST-NAME 01 15 A HEADING (’NAME’) |
CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library section
CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |
CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

JOB INPUT FILEIN1
IF FILEIN1:RECORD-COUNT GT 100

STOP | Activity section
END-IF |
IF CUST-NAME GT ’F’ |

STOP EXECUTE | with
END-IF |

| STOP statements
PRINT REPORT1
GOTO JOB |

REPORT REPORT1 LINESIZE 080
TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ |
LINE 01 CUST-NAME | REPORT definitions

CUST-ADDRESS1 |
CUST-ADDRESS2 |
CUST-ADDRESS3 |

STOP statement

Chapter 4. Program instruction reference 55

CASE, WHEN, OTHERWISE and END-CASE statements
The CASE statement provide an elegant way to test values.

�� CASE &FIELD � �WHEN &CONDITION Easytrieve Statement �

� OTHERWISE � Easytrieve Statement END-CASE ��

Parameters

&FIELD
The field name to be evaluated.

&CONDITION
Value (&LIT) to be tested for. It must be a literal or &LIT1 THRU &LIT2.

OTHERWISE
Must be the last statement after a series of tests. The statements following
OTHERWISE are executed only when all previous tests fail.

END-CASE
Terminates the CASE

The CASE statement is translated by Migration Utility to COBOL EVALUATE
statement. The OTHERWISE statement is translated to WHEN OTHER of
EVALUATE statement.

DO and END-DO statements
The DO and END-DO statements define the scope of repetitive program logic.

�� DO WHILE
UNTIL

&CONDITION Easytrieve statements END-DO ��

Parameters

WHILE
Evaluates the condition at the top of a group of statements

UNTIL
Evaluates the condition at the bottom of a group of statements

&CONDITION
Specifies the condition for the continuous execution of the loop. Refer to
“Conditional expressions” on page 58 for conditional expression syntax.

END-DO
Terminates the DO statement

CASE, WHEN, OTHERWISE and END-CASE statements

56 Migration Utility V1R1 User’s Guide and Reference

For DO WHILE, the truth value of the conditional expression determines whether
statements bound by the DO END-DO pair are to be executed. When the
conditional expression is true, the statements are executed. When the conditional
expression is false, the processing continues with the next statement following the
END-DO.

For DO UNTIL, the statements bound by the DO..END-DO are executed. The truth
value of the conditional expression (evaluated at end of the statements) determines
whether statements bound by the DO..END-DO are to be re-executed. When the
conditional expression is true, the statements are re-executed. When the conditional
expression is false, the processing continues with the next statement following the
END-DO.

Example

FILE FILEIN1
FIELD-A 1 10 A OCCURS 10

WS-COUNT W 2 N

JOB INPUT FILEIN1
WS-COUNT = 1
DO UNTIL WS-COUNT GT 10

DISPLAY FIELD-A (WS-COUNT)
WS-COUNT = WS-COUNT + 1

END-DO

IF, ELSE, and END-IF statements
The IF statement conditionally controls execution of the statements bound by the
IF..END-IF.

�� IF &EXPRESSION � STATEMENTS-1

�ELSE STATEMENTS-2

�

� END-IF ��

Parameters

&EXPRESSION
Conditional expression (see “Conditional expressions” on page 58)

STATEMENTS-1
The statements executed if &EXPRESSION is evaluated to be true.

STATEMENTS-2
The statements executed if &EXPRESSION is evaluated to be false. If ELSE
is not specified, then no statements are executed.

END-IF
Terminates the logic associated with the previous IF statement.

DO and END-DO statements

Chapter 4. Program instruction reference 57

Conditional expressions
Conditional expressions are used in combination with the IF and DO statements to
manipulate and select data in the Job Activity section.

When an IF statement is present, the statements following the IF statement are
processed based on the truth of the conditional expression. Statements are
processed until an END-IF or an ELSE statement is encountered.

When a DO statement is present, all statements following the DO statement are
processed, based on the truth of the conditional expression, until and END-DO
statement is encountered.

The IF statement syntax

�� IF &FIELD1 EQ =
NE (not)=
GT >
GE >=
LT <
LE <=

&FIELD2
LITERAL
Arithmetic Expression

�

� � Statements to be processed for true outcome �

�

�ELSE Statements to be processed for false outcome

END-IF ��

The DO statement syntax

�� DO WHILE
UNTIL

&FIELD1 EQ =
NE (not)=
GT >
GE >=
LT <
LE <=

&FIELD2
LITERAL
Arithmetic Expression

�

� � Statements to be processed for true outcome END-DO ��

Conditional expressions

58 Migration Utility V1R1 User’s Guide and Reference

Parameters

&FIELD1
A field name used as argument 1 in comparison

&FIELD2
A field name used as argument 2 in comparison. The field must be of the
same type as &FIELD1. So if &FIELD1 is numeric then &FIELD2 must be
numeric.

LITERAL
A numeric or an alphanumeric literal, depending on the type of &FIELD1.
Numeric literals can have a leading “+” or “-”. Multiple literals can be
listed. Also, the THRU statement can be used to denote a range of low to
high values.

Arithmetic Expression
Can be any arithmetic expression. Valid only when &FIELD1 is numeric.

The IF statement bit testing

�� IF &FIELD1 ON &FIELD2
HEX LITERAL

�

� � Statements to be processed for true outcome �

�

�ELSE Statements to be processed for false outcome

END-IF ��

The IF statements can be nested. Migration Utility supports up to NESTS=NN of IF
nests (refer to EXPARAMS NESTS=parameter). Any expressions that contain
unreasonable levels of IF nests have to be split into multiple expressions to satisfy
the limit.

Migration Utility does limited checking for compatible Fields Class of IF
arguments. Any missed non-compatible arguments are flagged by the COBOL
compiler.

Conditional expressions should be kept as simple as possible. More complex
expressions are harder to understand and, sometimes, can lead to absurd
outcomes.

Easytrieve allows comparison on a range of values via a THRU statement. The
THRU range is translated by Migration Utility to a COBOL equivalent expression,
depending on the last interpreted relational/logical operator.

Conditional expressions

Chapter 4. Program instruction reference 59

For example, Easytrieve statement
IF FIELDA EQ 10 THRU 55

is converted to COBOL as
IF (FIELDA NOT > 55 AND NOT < 10)

whereas
IF FIELDA NE 10 THRU 55

is converted to COBOL as
IF (FIELDA < 10 AND > 55)

Easytrieve allows comparison on a list of values. The list is translated by Migration
Utility to a COBOL equivalent expression, depending on the last interpreted
relational/logical operator.

For example, Easytrieve statement
IF FIELDA EQ 10, 15, 20, 25

is converted to COBOL as
IF FIELDA = (10 OR 15 OR 20 OR 25)

whereas
IF FIELDA NE 10, 15, 20, 25

is converted to COBOL as
IF FIELDA NOT = (10 AND 15 AND 20 AND 25)

It is impossible to list all possible Conditional Expression combinations allowed by
Easytrieve and their COBOL equivalent. Converted COBOL programs should be
checked for possible absurd interpretations. In many instances, the COBOL
compiler will detect illegal Conditional Expressions. Any non-detected
inconsistencies will most probably result in wrong outcomes during execution of
the program. Thus, converted programs must be thoroughly tested before putting
them into production.

Refer to the table on the following page for Relational and Logical Operators

The table below lists allowed Relational and Logical Operators, allowed in
Easytrieve, and their equivalent in COBOL as translated by Migration Utility.

Easytrieve COBOL Explanation

EQ = Test for Equal condition
= =

NE NOT = Test for Not Equal condition
NQ NOT =
*= NOT =

LT < Test for Less Than condition
LS <
< <

*< NOT < Test for Not Less Than condition

LE NOT > Test for Not Greater condition
LQ NOT >

Conditional expressions

60 Migration Utility V1R1 User’s Guide and Reference

<= NOT >

GT > Test for Greater Than condition
GR >
> >
*> NOT >

GE NOT < Test for Greater or Equal condition
GQ NOT <
>= NOT <

OR OR Logical Operator OR

AND AND Logical Operator AND

NOT NOT Logical Operator NOT

AND NOT AND NOT Logical Operator AND NOT

OR NOT OR NOT Logical Operator OR NOT

Examples

Here are some examples of IF and END-IF statements:

FILE FILEIN1
I-BALANCE 1 5 N 2

WS-AMOUNT W 5 N 2

JOB INPUT FILEIN1
WS-AMOUNT = 0
IF I-BALANCE > 5000 | Non-nested

WS-AMOUNT = I-BALANCE * 1.10 |
ELSE |

WS-AMOUNT = I-BALANCE * 1.09 | IF statement
END-IF

IF I-BALANCE > (WS-AMOUNT + 55)
WS-AMOUNT = I-BALANCE | Arithmetic in

ELSE |
WS-AMOUNT = I-BALANCE * 1.55 | IF statement

END-IF

IF I-BALANCE NOT NUMERIC
DISPLAY ’BALANCE NOT NUMERIC’ |
DISPLAY HEX I-BALANCE |

ELSE | Nested
IF I-BALANCE EQ 5000, 5500, 5200 |

WS-AMOUNT = I-BALANCE * 1.10 |
ELSE | IF statements

WS-AMOUNT = I-BALANCE * 1.09 |
END-IF |

END-IF

Conditional expressions

Chapter 4. Program instruction reference 61

PRINT statement
The PRINT statement produces report output.

�� PRINT
&REPORT

��

Parameter

&REPORT
REPORT name specified on a report statement. If not supplied, it is
assumed to be the first report defined in the JOB activity.

In general, report output is not written directly to a report’s printer file. Formatting
and printing is usually deferred until end of JOB activity and perhaps after sorting.

When a work file is specified for a report, executing PRINT causes fixed format
records to be spooled to the work file. The format of the fields is determined by
Easytrieve.

Migration Utility generated COBOL program uses similar concepts when the
SEQUENCE statement is included in the REPORT group. However, if the
SEQUENCE is not specified, the report is produced directly to the printer. Sort is
not invoked.

Example

FILE FILEIN1 (80) |
CUST-NAME 01 15 A HEADING (’NAME’) |
CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section
CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |
CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

JOB INPUT FILEIN1
PRINT REPORT1 |

|
REPORT REPORT1 LINESIZE 080 |
TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ | Activity Section
LINE 01 CUST-NAME + |

CUST-ADDRESS1 + |
CUST-ADDRESS2 + |
CUST-ADDRESS3 |

PROC and END-PROC statements
The PROC statement defines the beginning of a procedure in a JOB or SORT
activity section. The END-PROC terminates the scope of the PROC.

A procedure can be perceived as a group of statements that perform a specific
processing function.

PRINT statement

62 Migration Utility V1R1 User’s Guide and Reference

�� &PROCNAME. PROC � STATEMENTS END-PROC ��

Parameters

&PROCNAME
A label that identifies the procedure. It can:

Be 128 characters in length
Contain any character other than a delimiter
Begin with A-Z, 0-9, or a national character (#, @, $)
Not consist of all numeric characters

STATEMENTS
Any Easytrieve statements that are valid in the JOB or SORT activity
section

END-PROC
Indicates the end of the defined procedure. END-PROC is required for
each declared procedure name.

File I/O statements such as PUT or GET cannot be coded in procedures coded
during SORT or REPORT processing.

Perform statement can be used to invoke other procedures from any given proc.
Recursion is not permitted.

COBOL paragraph names can be 1 to 30 characters in length. All paragraph names
longer than 30 characters are truncated by Migration Utility to conform to COBOL
Standards.

RETRIEVE statement
The RETRIEVE statement identifies the IDMS database records that are input to
the JOB activity.

Retrieve is not supported by Migration Utility, and thus is not described in this
manual.

SELECT statement (SORT and REPORT selection)
The SELECT statement can be coded in REPORT-INPUT procedure or BEFORE
procedure of a SORT statement.

�� SELECT ��

When coded in REPORT-INPUT procedure, it must be used to select records of
interest. Only those records marked SELECT are passed on for printing. If
REPORT-INPUT procedure is not coded, then SELECT cannot be used for selecting
report records, however, all records are selected in such cases.

PROC and END-PROC statements

Chapter 4. Program instruction reference 63

When coded in BEFORE procedure of a SORT statement, it must be used to select
records of interest from the input file (file being sorted). Only those records
marked SELECT are returned to the sort for further processing.

Example
FILE FILEIN1 (80) |

INPT-NAME 01 15 A HEADING (’NAME’) |
INPT-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section
INPT-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |
INPT-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

FILE SORTED1 (80) |
SORT-NAME 01 15 A HEADING (’NAME’) |
SORT-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section
SORT-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |
SORT-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

SORT FILEIN1 TO SORTED1 USING (INPT-NAME) +
BEFORE INPUT-SORT-EXIT | SORT statements

INPUT-SORT-EXIT. PROC
IF INPT-NAME = ’JOHN DOE’ |

SELECT | BEFORE sort procedure
END-IF |
END-PROC. |

|
JOB INPUT SORTED1

PRINT REPORT1 |
|

REPORT REPORT1 LINESIZE 080 |
TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ | Report statements
LINE 01 SORT-NAME + |

SORT-ADDRESS1 + |
SORT-ADDRESS2 + |
SORT-ADDRESS3 |

REPORT-INPUT. PROC
IF SORT-NAME = ’JOHN DOE’ |

SELECT | REPORT-INPUT procedure
END-IF |
END-PROC. |

System-defined fields
Easytrieve provides three categories of system-defined fields:
v General fields
v File related fields
v Report related fields

The fields for each category are described in the sections that follow. Fields not
described are not supported by Migration Utility.

General fields (available globally)

SYSDATE
An 8 byte date field in MM/DD/YY format. The date is obtained at the
start of program execution.

Easytrieve replaces the leading zero by a space when printing on Report
Headings or Detail Lines.

SELECT statement (SORT and REPORT selection)

64 Migration Utility V1R1 User’s Guide and Reference

Migration Utility replaces the leading zero by a space when printing on
Report Headings only. The leading zero is printed on Detail Lines,
however.

SYSDATE-LONG
A 10 byte date field in MM/DD/CCYY format. The date is obtained at the
start of program execution.

See SYSDATE above for printing rules.

SYSTIME
An 8 byte time field in HH:MM:SS format. The time is obtained at the start
of program execution.

See SYSDATE above for printing rules.

RETURN-CODE
A 4 byte binary field which is returned to the MVS™ operating system at
end of job (program termination).

File fields (available globally in each activity section)

RECORD-LENGTH
A 4 byte binary field available for all file types. It contains the length of the
last accessed or written file record. For variable-length records, the field
contains only the length of the data (the 4 length related bytes are
excluded). For variable-length records, the length must be assigned before
the WRITE or PUT operations.

RECORD-COUNT
A read-only 4 byte binary field that contains the number of logical input
operations performed.

FILE-STATUS
This is a read only field that contains the status of the most recent I/O
operation. FILE-STATUS is available when STATUS is coded on the I/O
statement.

Note: FILE-STATUS is always available in the generated COBOL program.

The Easytrieve status codes are:
0000 Operation is successful
0004 End Of File Reached (EOF)
0008 Record with a duplicate alternate key exists
0012 Duplicate key
0016 Record not found
0020 File is Locked (work stations only)
0024 Logical or physical I/O error

For information about converting COBOL status codes to Easytrieve
equivalent codes, refer to the IOCODE=EASYT option on page 116.
FILE-STATUS customization applies only when running with
IOCODE=NATIVE.

In general, testing for ZERO, NOT ZERO or EOF is sufficient. Testing for
any other specific values must be adjusted manually in Easytrieve Source
or the translated COBOL programs. The COBOL values can be found in
the COBOL Programmer Reference Manual (FILE-STATUS information).

System-defined fields

Chapter 4. Program instruction reference 65

FILE-STATUS code in the generated COBOL program is a two byte alphanumeric
field while in Easytrieve it is a full word numeric field. Instructions in Easytrieve
Program that assign FILE-STATUS to a numeric field are flagged as errors.

When testing for a value other than zero, the value must be a two digit constant
(literal) enclosed in quotes. For convenience, here are some more frequently
checked COBOL status codes:
00 Operation is successful
02 Record with a duplicate alternate key exists (Read)
04 Wrong Length Record
10 End Of File Reached (EOF)
22 Duplicate Key (Write)
23 Record not found
30 Permanent I/O Error
34 Permanent I/O error, file is full (out of space)
39 Incompatible File DCB / Organization
96 DD Statement is missing in JCL (VSAM only)

Report fields (available only in report exits)

LINE-COUNT
A two byte binary field that contains the number of lines printed on the
current page.

LINE-NUMBER
A two byte field that contains the number of the line being printed within
the line group.

Note: This counter is not supported by Migration Utility.

PAGE-COUNT
A two byte binary field that contains the number of the page being printed

TALLY
A ten byte packed decimal field that contains the number of detail records
in a control break

LEVEL
Indicates the control break level. This field is available on the
“BEFORE-BREAK” and “AFTER-BREAK” report exits only.

BREAK-LEVEL
Indicates the break level number

&field BREAK
Tests control break on &field field, where &field is ″FINAL″ or a
CONTROL field name.

WS-PENGI-DATE-9
A 6-digit date (SYSDATE) as obtained by a COBOL ACCEPT statement
without insert characters. This is a numeric field and can be used in
computations. The format is YYMMDD.

WS-PENGI-DATE-LONG-9
An 8-digit date (SYSDATE-LONG) as obtained by a COBOL ACCEPT
statement without insert characters. This is a numeric field and can be
used in computations. The format is CCYYMMDD.

&FILE:KEY
The file key of RRN and PDS/PDSE files can be accessed by coding the file
name as a qualifier to the KEY field. For example: FILEIN:KEY.

System-defined fields

66 Migration Utility V1R1 User’s Guide and Reference

Easytrieve reserved keywords
Keyword Description

EOF Used to test end of file mark. It can optionally be followed by the
file name the test applies to (preferred way of coding). If file is not
supplied, the outcome of the last file accessed in sequential mode
is used.

NUMERIC Used to test data fields for numeric contents

MATCHED Used to test the outcome of synchronized file process. Refer to
“Synchronized file processing” on page 38 for more information.

DUPLICATE Used to test the outcome of synchronized file process. Refer to
“Synchronized file processing” on page 38 for more information.

FIRST-DUP Used to test the outcome of synchronized file process. Refer to
“Synchronized file processing” on page 38 for more information.

LAST-DUP Used to test the outcome of synchronized file process. Refer to
“Synchronized file processing” on page 38 for more information.

SPACE, SPACES
Used to test a field for all spaces or assign a field to all spaces

ZERO, ZEROS, ZEROES
Used to test a field for all zeros or move all zeros to a field

LOW-VALUES
Used to test a field for all binary zeros or move all binary zeros to
a field

HIGH-VALUES
Used to test a field for all hex ″FF″ or move all hex ″FF″ to a field

REPORT statement
The REPORT statement defines the type and characteristics of a report. Multiple
reports can be specified per single JOB activity section. REPORT statement with its
parameters is placed at the end of each JOB activity section. It also must be
followed by the SEQUENCE, CONTROL, TITLE, HEADING and LINE statements
as described on the pages that follow.

Easytrieve reserved keywords

Chapter 4. Program instruction reference 67

�� REPORT
&REPORT SUMMARY SUMFILE &SUMFILE

�

�
SUMSPACE 3

SUMSPACE &SUMSPACE

TALLYSIZE 5

TALLYSIZE &TALLYSIZE DTLCTL EVERY
FIRST
NONE

�

�
SUMCTL ALL DTLCOPY

HIAR DTLCOPYALL
NONE
TAG

FILE &WFILE
�

�
PRINTER &PRINTER LABELS (ACROSS &ACROSS)

DOWN &DOWN
SIZE &SIZE
NEWPAGE

�

�
PAGESIZE 56 LINESIZE 132

PAGESIZE &PAGESIZE LINESIZE &LINESIZE
�

�
SKIP &SKIP
SPACE &SPACE

TITLESKIP 2

TITLESKIP &TITLESKIP
CONTROLSKIP 1

CONTROLSKIP &CONTROLSKIP

SPREAD

NOSPREAD NOADJUST
NODATE
NOPATE
NOHEADING

�

�
LIMIT &LIMIT EVERY &EVERY SHORTDATE

LONGDATE

��

Parameters

&REPORT
Report name. Easytrieve allows an up to 128 character report name.
Because of COBOL restrictions, Migration Utility assigns its own internal
name for each declared report. However, you reference the name as
declared. The internal naming conventions are REPORTNN, where NN is
report sequence number relative to zero.

Note: Easytrieve allows the first report of each JOB activity to be without a
report name. However, Migration Utility requires a report name for
all reports.

REPORT statement

68 Migration Utility V1R1 User’s Guide and Reference

SUMMARY
Prints a summary report by minor control break. The detail report is not
printed.

&SUMFILE
A one to eight character Optional Summary File name for recording
Control Break field values and summary totals. All data is as of minor
control break.

&SUMSPACE
The number of digits to be added to the size of the summary field buckets.
This is necessary to prevent overflow on accumulated values.

&TALLYSIZE
The size of the TALLY field. Valid values are 1 to 18 (digits).

DTLCTL
Indicates the printing method of control fields on detail line. Possible
values are:
EVERY

Prints value of all control fields on every detail line.
FIRST Prints value of all control fields on the first detail line of each page,

and on the first detail line after each control break. Printing of
control field values is inhibited on all other detail lines.

NONE
Inhibits printing of control fields on every detail line

SUMCLT
Indicates printing method of control fields on total lines. Possible values
are:
ALL Prints control field values on every total line
HIAR

Prints control field values in the hierarchical fashion on the total
lines. Only values of control fields on the same hierarchical level,
or higher than the breaking control field, are printed on the related
total line.

NONE
Inhibits printing of control fields on total lines.

TAG Prints &FIELD TOTAL annotation to the left of the totals. Keep in mind
that there must be enough space, on the left, for the totals literal. &FIELD
is the field name that caused the break.

DTLCOPY
Prints detail information on minor level total lines.

DTLCOPYALL
Prints detail information on all control breaks. (This option is not
supported by Migration Utility)

&WFILE
Work file DDname. This statement is ignored by Migration Utility.

&PRINTER
Printer file DDname. Normally Easytrieve directs all reports to the
SYSPRINT. This statement lets you redirect output to a designated file.
Make sure you define the file in the Library Section.

LABELS
Identifies mailing label printing. Possible values are:

REPORT statement

Chapter 4. Program instruction reference 69

&ACROSS
A number indicating the number of labels printed across the page

&DOWN
Specifies the number of print lines for each label

&LSIZE
Specifies the horizontal length of each label

NEWPAGE
Forces top of page (channel 1) for first label line

The NOHEADING and NOADJUST options are automatically activated for
LABELS type of reports. You cannot use TITLE, HEADING and
SUMMARY when you print labels.

&PAGESIZE
The number of lines per logical printed page. It can be 1 to 32767 and it
must be at least as large as the sum of:

Number of the TITLE Lines
Number of TITLESKIP
Number of HEADING lines plus 1
Number of LINE statements
Number of lines of SKIP

&LINESIZE
The length of the printed line from 1 to 32767. One extra character is
added, by the compiler, for print carriage control.

&SKIP The number of blank lines to insert between line groups, that is, before the
last printed LINE NN and the first LINE 01. This statement is ignored by
Migration Utility.

&SPACE
The default number of spaces (blank characters) between print fields. Note
that the amount of space that each field occupies is the field (edited) length
or the field Title, whichever is longer. The SPREAD parameter overrides
this option.

&TITLESKIP
The number of blank lines between the last TITLE line and the first
HEADING line. The default is 2 lines.

&CTLSKIP
The number of blank lines between the last total line and the first detail
line (detail line post totals).

SPREAD
Insert maximum number of spaces between fields (columns).

NOSPREAD
Deactivates the SPREAD option.

NOADJUST
Deactivates automatic centering of report TITLES and LINES. When
specified, all printed lines are left justified on the page. NOADJUST and
SPREAD are mutually exclusive.

NODATE
Inhibits printing of System Date (CPU date) on the first title line.

NOPAGE
Inhibits printing of the Page Number (PAGE nnnnn) on the first title line.

REPORT statement

70 Migration Utility V1R1 User’s Guide and Reference

NOHEADING
Inhibits printing of the column (field) headings. If this option is not
specified, column headings are automatically printed.

&LIMIT
The maximum number of lines to print. This is a development option. It is
ignored by Migration Utility.

&EVERY
Every &EVERYth line is to be printed. This is a development option. It is
ignored by Migration Utility.

SHORTDATE
The SYSDATE date format is to be used.

LONGDATE
The SYSDATE-LONG date format is to be used.

SEQUENCE statement
The SEQUENCE statement optionally defines the order of a report. The
SEQUENCE must be coded Immediately following the REPORT statement. When
SEQUENCE is coded, REPORT data is sorted in the specified order before printing.

�� SEQUENCE � &FIELD
D

��

Parameters

&FIELD
One or more field names to sort by. A maximum of 16 fields can be sorted.
The fields are sorted in major to minor order as listed.

D The field is sorted in descending order. If not specified, the field is sorted
in ascending order.

The SEQUENCE statement causes sorting of the report items before printing. The
sort adds a substantial amount of processing overhead, therefore the SEQUENCE
should be used with care. SEQUENCE is not needed if your input file is in the
same order as your reports.

SEQUENCE fields do not have to be a part of the printed report.

REPORT statement

Chapter 4. Program instruction reference 71

CONTROL statement
The CONTROL statement identifies the fields used for control breaks. That is, a
total line is printed for each field identified by the CONTROL statement.

The fields are listed in major to minor sequence. The first listed field is the major
control break and the last one the most minor control break. The final total can be
printed by specifying the ″FINAL″ keyword as the first entry in the CONTROL list.

�� CONTROL

�

FINAL

&FIELD
NEWPAGE NOPRINT
RENUM

��

Parameters

FINAL
The Final totals are to be printed at End-of-Report. If omitted, Final totals
are implied.

&FIELD
Control break fields in major to minor order. You can specify up to 16
fields.

NEWPAGE
Forces new page post control break totals for the specified field.

RENUM
The same as NEWPAGE except it resets page counter to 1 following the
control break.

NOPRINT
Suppresses printing of the total line for the specified field. Note that all
processing to accommodate the total line is performed, but the line is not
printed.

A maximum of 16 control breaks can be specified. The FINAL break is implied
when no control fields are supplied.

A break level number is assigned to each control break field, with most minor
break assigned to level 1, the one before it to 2, and so on. Final control break has
the highest level number of N+1, where N is the number of fields specified.

A Level can be tested via the LEVEL keyword in the BEFORE-BREAK and
AFTER-BREAK report exits. (See “Report exits” on page 76 for details).

All fields are compared according to the field type. For example, packed numeric
fields are compared as packed decimals with sign.

REPORT statement

72 Migration Utility V1R1 User’s Guide and Reference

SUM statement
The SUM statement explicitly names the fields to be totaled for a report with
control breaks.

�� SUM � &FIELD ��

Parameter

&FIELD
A list of one or more fields to be summed. The fields must be quantitative
contained in an active file or working storage.

Normally, all quantitative fields specified on LINE statements are totaled. The SUM
overrides the automatic summing by forcing fields specified on a SUM statement
to be totaled only.

Note: The quantitative fields are all numeric fields defined with decimal places.
One can force fields that do not have any decimal places to be treated as
quantitative fields by coding zero for the number of decimals in the field
definition.

HEADING statement
The HEADING statement optionally defines an alternate heading for a print field.
The HEADING statement must be coded following the REPORT statement but
before the LINE statements of a report definition. Thus, the HEADING overrides
the original heading coded for field definition.

�� HEADING &FIELD �(’ &LIT ’) ��

Parameter

FIELD Field name for which the heading is to be used

&LIT A heading literal. Can be up to 128 characters long. Migration Utility
allows literals up to 58 characters long. Literals are stacked vertically over
the print field or column.

Example

Here are various report headings:

FILE FILEIN1 (80) |
CUST-NAME 01 15 A HEADING (’NAME’) |
CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section
CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |
CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

REPORT statement

Chapter 4. Program instruction reference 73

JOB INPUT FILEIN1
PRINT REPORT1 |

|
REPORT REPORT1 LINESIZE 080 |
HEADING CUST-NAME (’CUSTOMER’ ’NAME’) |
HEADING CUST-ADDRESS2 (’CUST’ ’ADDRESS’ ’TWO’) |
TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ | Activity Section
LINE 01 CUST-NAME + |

CUST-ADDRESS1 + |
CUST-ADDRESS2 + |
CUST-ADDRESS3 |

The program produces the following report (where Xs represent real data):

05/30/95 NAME-ADDRESS REPORT EXAMPLE PAGE 1

CUSTOMER CUST
NAME ADDRESS1 ADDRESS ADDRESS3

TWO

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

TITLE statement
The TITLE statement defines report titles (lines printed on the top of each page).
One or more TITLE statements can be specified. Each TITLE statement defines a
single title line. The TITLE statements must be placed following the REPORT and
CONTROL statement and before the first LINE statement.

�� TITLE
&NUMBER

&FIELD
&LITERAL + OFFSET

-
COL &COLUMN

��

Parameters

&NUMBER
Title sequence number. Specifies the position of the title in the title area.
Valid numbers are 1 to 99. The numbers must be in ascending sequence.
The first title number must be 1 or unspecified.

Note: Migration Utility ignores the sequence numbers.

&FIELD
A field name to be printed on the title

&LITERAL
A character string (literal). An alphanumeric literal must be enclosed in
quotes.

OFFSET
The space adjustment parameters modify the normal spacing between title
items. + or - indicates the direction in which the SPACE statement is
applied.

&COLUMN
The print column number where the next title item is to be placed. The
number can be 1 to nn, but it cannot force the next title beyond the end of
the title LINESIZE.

REPORT statement

74 Migration Utility V1R1 User’s Guide and Reference

The system date and the current page number are automatically inserted on the
first TITLE line. You can inhibit the date and page printing by coding NODATE
and NOPAGE options on the REPORT statement.

Each TITLE line is centered within the title area of the report by default. You can
inhibit centering by specifying NOADJUST on the REPORT statement.

LINE statement
The LINE statement defines report detail lines. One or more LINE statements can
be specified. Each LINE statement defines a single report line. The LINE
statements must be placed following the TITLE statements.

�� LINE
&NUMBER

&FIELD
&LITERAL + OFFSET

-
COL &COLUMN

�

�
POS &POSITION

��

Parameters

&NUMBER
Line sequence number. Specifies the position of the line in the line group.
Valid numbers are 1 to 99. The numbers must be in ascending sequence.
The first line number must be 1 or unspecified.

Note: Migration Utility ignores the sequence numbers.

&FIELD
A field name to be printed on the line

&LITERAL
A character string (literal). An alphanumeric literal must be enclosed in
quotes.

OFFSET
The space adjustment parameters modify the normal spacing between line
items. + or - indicates the direction in which the SPACE statement is
applied.

&COLUMN
The print column number where the next line item is to be placed. The
number can be 1 to nn, but it cannot force the next line beyond the end of
the line LINESIZE.

&POSITION
The position of line items on line 2 through 99 in respect to the items on
line 1. The position corresponds to the line item number of line 1 under
which the line item is placed. In simple terms, this parameter allows one to
align items of line 2 through line 99 with items on line 1.

Any quantitative fields listed on the LINE statements are automatically totaled on
each summary line for reports that contain CONTROL statements (control breaks).
The automatic totaling can be overridden by coding the SUM statement of the
REPORT definition.

REPORT statement

Chapter 4. Program instruction reference 75

Report exits
Migration Utility supports Easytrieve report exits as described in this section.
Report exits are always placed after the REPORT statement (the last LINE
statement). Each exit is declared in a form of a PROC and terminated by a
PROC-END scope terminator.

Exits are recognized by their standard PROC name as follows:

REPORT-INPUT. PROC
Report input exit. This procedure is entered before entering report logic. It
can be used to massage the input data before it is acquired by the print
logic.

BEFORE-LINE. PROC
Before LINE printing exit. This exit is entered before each line is printed. It
enables the user to print a literal string before the detail line. The content
of the print fields cannot be changed.

AFTER-LINE. PROC
After line exit. This exit is entered after printing of each LINE. It is usually
used to print a literal string after a detail line on a report.

BEFORE-BREAK. PROC
Before Break exit. This exit is entered before control break occurs. It can be
used to calculate percentages and average totals that must be calculated
immediately before printing. The exit is entered for each control break
specified by the CONTROL statement.

The value of LEVEL system variable can be used to determine which
control break is being processed. The value of 1 indicates the most minor
break, 2 the one before it, etc. The FINAL break contains the value of N+1,
where N is the number of fields specified on the CONTROL statement.

TALLY system variable contains the number of records in a particular
control group.

BREAK-LEVEL system variable contains the field name that caused the
break.

Note: If NOPRINT is specified on a CONTROL statement, the
BEFORE-BREAK exit is still invoked.

AFTER-BREAK. PROC
After break exit. This exit is entered after printing of the last total line of
each control break. It can be used to produce special annotations on control
breaks. The exit is entered for each control break specified by the
CONTROL statement.

The value of LEVEL system variable can be used to determine which
control break is being processed. The value of 1 indicates the most minor
break, 2 the one before it, etc. The FINAL break contains the value of N+1,
where N is the number of fields specified on the CONTROL statement.

TALLY system variable contains the number of records in a particular
control group.

BREAK-LEVEL system variable contains the field name that caused the
break.

Note: If NOPRINT is specified on a CONTROL statement, the
BEFORE-BREAK exit is still invoked.

REPORT statement

76 Migration Utility V1R1 User’s Guide and Reference

ENDPAGE. PROC
End of Page exit. This exit is entered when end of page is reached. It can
be used to print page foot information such as special annotations or totals.

TERMINATION. PROC
Termination exit. This exit is entered at the end of the report. This exit can
be used to print report footing, including control totals and distribution
information.

Each exit must be terminated by an END-PROC scope terminator. The exits are
optional, thus, only those exits that are needed are coded.

Any quantitative fields referenced in the BEFORE-BREAK and AFTER-BREAK
exits contain the total value accumulated for the specific break level. These values
can be used in calculations but cannot be altered. The rules vary with each
Easytrieve version, therefore pay extra attention to the final outcome. Migration
Utility lets you use total values but it does not alter their contents.

Native COBOL support
Migration Utility (Translator) allows the programmer to embed COBOL code in the
Easytrieve Plus program between %COBOL and %END macros (statements).

All code is punched out unchanged. Procedure statements are placed in
PROCEDURE DIVISION and Working Storage fields in WORKING-STORAGE
SECTION.

Benefits

COBOL provides for programming instructions not supported by Easytrieve Plus,
such as STRING and UNSTRING. In addition, PEngiBAT Functions and Macros
can be used where appropriate for optimum productivity.

%COBOL facility should be used by those users who use Migration Utility as a
Reports Generator, or to combat unsupported Easytrieve statements when
translating Easytrieve Plus programs (such as IMS and IDMS).

Restrictions

COBOL support should be used with caution when referencing Easytrieve Plus
field names (those fields defined using the Easytrieve Plus syntax). This is because
Migration Utility sometimes changes the field names to comply with COBOL rules,
but COBOL code is passed on unchanged, thus causing or creating undefined field
names.

The best way to combat this situation is to define working storage fields needed
for COBOL logic using COBOL syntax. Information can be moved into COBOL
defined fields from Easytrieve Defined fields at the beginning of the routine, and
from COBOL defined fields into Easytrieve Defined fields before exiting.

Coding conventions
%COBOL &syntax

.

.

.
%END

REPORT statement

Chapter 4. Program instruction reference 77

Where:
v &syntax FULL = COBOL code is according to Standard COBOL rules:

– Area A starts in position 8
– Area B starts in position 12
– Comments are all lines that contain a ″*″ in position 7

v NONE = COBOL Code is according the following rules:
– Area A starts in position 2
– Area B starts in position 6
– Comments are all lines that contain a “#” in position 1

v All statements are transformed by Migration Utility to comply with Standard
COBOL rules. Data on each line must be limited to 64 characters to prevent
spanning beyond CC 72.

v The default is NONE

Example

This example shows the use of %COBOL without COBOL syntax rules.
FILE FILEIN1
INPUT-TEXT 1 80 A

%COBOL
WORKING-STORAGE SECTION.
#**
THIS IS %COBOL WORK AREA IMBEDDED IN Easytrieve.
*
#**
01 WORK-AREA.

02 FIELD-A PIC 9(05).
02 FILLER PIC X(05).
02 FIELD-B PIC 9(02).

01 WORK-AREA2.
02 RESULT-1 PIC ZZ,ZZZ,ZZZ.99-.
02 RESULT-2 PIC ZZ,ZZZ,ZZZ.99-.

%END

JOB INPUT FILEIN1

DISPLAY INPUT-TEXT

%COBOL
#**
THIS IS %COBOL CODE IMBEDDED IN Easytrieve
*
#**
PROCEDURE DIVISION.

MOVE INPUT-TEXT TO WORK-AREA
COMPUTE RESULT-1 = (FIELD-A ** FIELD-B)
COMPUTE RESULT-2 = (FIELD-A ** FIELD-B) / 12

DISPLAY ’RESULT-1: ’ RESULT-1
DISPLAY ’RESULT-2: ’ RESULT-2

THE END OF %COBOL TEST CODE THAT IS IMBEDDED IN Easytrieve
*
%END

DISPLAY ’END-OF-JOB’
STOP

This example show the use of %COBOL with FULL COBOL syntax rules.

Native COBOL support

78 Migration Utility V1R1 User’s Guide and Reference

FILE FILEIN1
INPUT-TEXT 1 80 A

%COBOL FULL
WORKING-STORAGE SECTION.

* THIS IS %COBOL WORK AREA IMBEDDED IN Easytrieve.
*

01 WORK-AREA.

02 FIELD-A PIC 9(05).
02 FILLER PIC X(05).
02 FIELD-B PIC 9(02).

01 WORK-AREA2.
02 RESULT-1 PIC ZZ,ZZZ,ZZZ.99-.
02 RESULT-2 PIC ZZ,ZZZ,ZZZ.99-.

%END
JOB INPUT FILEIN1
DISPLAY INPUT-TEXT
%COBOL FULL

* THIS IS %COBOL CODE IMBEDDED IN Easytrieve
*

PROCEDURE DIVISION.

MOVE INPUT-TEXT TO WORK-AREA
COMPUTE RESULT-1 = (FIELD-A ** FIELD-B)
COMPUTE RESULT-2 = (FIELD-A ** FIELD-B) / 12

DISPLAY ’RESULT-1: ’ RESULT-1
DISPLAY ’RESULT-2: ’ RESULT-2

* THE END OF %COBOL TEST CODE THAT IS IMBEDDED IN Easytrieve *
%END

DISPLAY ’END-OF-JOB’
STOP

Support for COBOL and PEngi Functions in ASSIGN
statement

Migration Utility allows for COBOL and PEngi (CCL1) functions in Easytrieve Plus
ASSIGN statements.

To do so, code FUNCTION &FUNAME(&ARG1 &ARG2...) for the second
argument.

COBOL supports numerous functions. For information about COBOL functions,
refer to the COBOL reference manual.

The use of PEngi (CCL1) functions is beyond the scope of this document.

Native COBOL support

Chapter 4. Program instruction reference 79

Generating rules
When the target field in the assign is a numeric field, Migration Utility generates a
COBOL COMPUTE statement.

When the target field in the assign is an alphanumeric field, Migration Utility
generates a COBOL MOVE statement.

Example:
WS-RANDOM-NUMBER = FUNCTION RANDOM (SEED)

Generating rules

80 Migration Utility V1R1 User’s Guide and Reference

Chapter 5. SQL/DB2 support

Easytrieve Plus supports two methods for accessing database:
v Using native SQL statements to manage cursors
v Using Easytrieve method to automatically manage cursors

Migration Utility supports both methods as described in this section.

Translating concepts
DB2/SQL column definitions can be automatically accessed from the
SYSIBM.SYSCOLUMNS catalog. Refer to “Activating Call Attachment Facility
(CAF) for DB2 users” on page 109.

If CAF is not available, then a DCLINCL must be supplied for each accessed table.

The DECLGENs are included via the ″SQL DCLINCL &NAME″ Migration Utility
statement. One statement is required for each SQL/DB2 table in use. These
statements must be placed before SQL file definitions (preferably before the first
valid Easytrieve Definition in the program but after the leading comments).

Note: The DECLGENs can also be included via the ″EASYTRAN:″ comment in
your program to preserve Easytrieve Syntax compatibility. In this way, the
same Easytrieve Source can be used as input to Easytrieve Plus and
Migration Utility. Refer to the ″EASYTRAN:″ coding rules in this document.

Migration Utility generates an SQL INCLUDE or partial Column Definitions in the
generated COBOL for each included DECLGEN in Easytrieve Plus Source. For
details refer to the DECLGEN=FULL/PART and SQLPFIX=EZPARAMS option.

Example

This example shows a real DECLGEN of a DB2 table. COBOL users usually have
similar DECLGENs available for use by COBOL programmers. Oracle or other
Database Users should create a similar DECLGEN for each table to make
translating possible.

**
* DCLGEN TABLE(CUST_TB)
*
* LIBARARY(&SYS1.SFSYEZTS(DECLADDR)
*
* ACTION(REPLACE)
*
**

EXEC SQL DECLARE CUST_TB TABLE
(CUST_CO_NBR DECIMAL(5, 0) NOT
NULL,

CUST_ID CHAR(9) NOT NULL,
CUST_NUMBER SMALLINT NOT NULL,
CUST_ACCOUNT DECIMAL(5, 0) NOT
NULL,
CUST_PRODUCT CHAR(3) NOT NULL,
CUST_METHOD CHAR(23) NOT NULL,
CUST-RELATION CHAR(3) NOT NULL,

© Copyright IBM Corp. 2002, 2003 81

|
|
|

|

CUST_PRRIM_IND CHAR(1) NOT NULL,
) END-EXEC.

**
* COBOL DECLARATION FOR CUST_TB.
*
**
01 CUST-TB.

10 CUST-CO-NBR PIC S9(5)V COMP-3.
10 CUST-ID PIC X(09).
10 CUST-NUMBER PIC S9(04) COMP.
10 CUST-ACCOUNT PIC S9(5)V COMP-3.
10 CUST-PRODUCT PIC X(03).
10 CUST-METHOD PIC X(23).
10 CUST-RELATION PIC X(03).
10 CUST-PRIM-IND PIC X(01).

**
* THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 8. *
**

Note 1: COBOL 01 level field name must match the table name it represents. Since
the table names are usually coded with an underscore, the underscores
should be changed to dashes to preserve COBOL field naming
conventions.

Note 2: Migration Utility generates the COBOL field names with the prefix
specified by the SQLPFIX= option. A different sequence number is
attached to each new table to preserve uniqueness. Thus if SQLPFIX=(Q-)
is specified, the prefix attached to the field names would be Q1-, Q2-, etc.
It is important to recognize that the field names for holding table column
information are hard generated in the COBOL code. The field names
located in the original DECLGENs are not referenced in the generated
code.

Note 3: Table names in Easytrieve programs can be coded as &owner.&table.
Migration Utility searches DECLGENs for a table name coded in the
Easytrieve program with the qualified &owner.&table first. If not found,
then the search is conducted without the &owner qualifier. Your
DECLGEN table name can be qualified or unqualified. To ensure a smooth
translation, code table name in the DECLGEN without a qualifier, unless
you need a specific owner in which case the &owner must also be coded
in your Easytrieve program.

Native SQL statements
With minor adjustments to the Host Variables names, Migration Utility interprets
native SQL statements exactly as written in the Easytrieve Program. The Host
Variable names are adjusted to reflect the changes that take place during the
translating process.

As per Easytrieve Plus rules, Migration Utility treats all Easytrieve statements that
start with SQL keyword as the Native SQL statements. Using these Native SQL
statements, the programmer can code fully SQL-compliant programs and have
complete SQL cursor control.

Translating concepts

82 Migration Utility V1R1 User’s Guide and Reference

Automatic cursor management
Easytrieve Plus can manage the SQL cursor in two ways:
v Easytrieve files defined as SQL files
v Automatic retrieval without a file

Migration Utility supports both methods as per Easytrieve Plus rules described in
the paragraphs that follow.

Easytrieve file defined as an SQL file
SQL Files can be accessed:
v Via JOB INPUT &FILE for Automatic Input. In this case, a new row is

automatically fetched or retrieved from the table into the file’s data area. The
method is ideal for users that do not have advanced knowledge of SQL, that is,
users do not have any Cursor control.

v Via SQL-like I/O statements. The following I/O statements are available:
– CLOSE
– DELETE
– FETCH
– INSERT
– SELECT
– UPDATE

Automatic retrieval without a file
In this case, SQL must be coded on the JOB statement in place of a file name. A
SELECT statement must be coded immediately after the JOB statement to specify
the columns to be retrieved and the Host Variables to receive the data. Each time
the JOB Activity is iterated, another row of data is fetched or retrieved.

Automatic retrieval functions in read-only mode.

SQL statements syntax rules
The following syntax must be observed when coding SQL statements in Easytrieve
Programs:
v Operators must be separated by blanks.
v Standard Easytrieve Plus continuation conventions must be followed.
v Commas are considered when parsing and are not ignored.
v The period is used for qualifiers not to signify end-of-statement.
v The colon (:) identifies host variables, and is not a qualification separator
v SQL statement cannot be followed by another statement on the same line.

PARM statement parameters
The following Easytrieve Plus PARM statements set the SQL environment for the
program:

For DB2:
SQLID
SSID
PLAN
LINK

Automatic cursor management

Chapter 5. SQL/DB2 support 83

For SQL/DS™:
USERID
PREPNAME

The QUAL Migration Utility PARM statement supplements the generation of the
BIND parameters. It provides a way of supplying a value for the DB2 BIND
QUALIFIER. The QUAL parameter can be coded with the existing PARM
parameters. For example:
PARM QUAL(’SYS2’) SSID (’TESTDB2’) PLAN(’TESTDB2P’) LINK(’TESTPROG’

The PARM statements information is extracted by Migration Utility and BIND
parameters are generated for potential BIND. The BIND file is used as an input to
the BIND step in JCEZDB2B JCL, or you can tailor it for custom use, for example,
as an input to a separate BIND Job. Parameters are interpreted as follows (You can
view SQLBIND macro source):
DSN SYSTEM(&SSID)

BIND PLAN (&PLAN) PLAN from PARM statement
OWNER (&SQLID) SQLID from PARM statement
QUALIFIER (&QUAL) QUAL from PARM statement
MEMBER (&MEMBER) LINK from PARM statement

Library section for SQL processing
Before the SQL data can be accessed, you must define the fields to hold the
columns to be retrieved from the database. These fields are referred to as the Host
Variables.

For native SQL statements and Automatic Retrieval without a file, these fields are
usually defined as Working Storage fields.

For SQL Files, fields are defined within the file (as if it were a regular file). The
fields defined within the file correspond to the selected columns of the SQL table.
The table columns are retrieved into the file fields.

SQL catalog INCLUDE facility
The SQL INCLUDE FROM &owner.&table statement names the SQL table or view
from which column names and data types are to be included, and it defines the
location at which the fields are to be generated.

The SQL INCLUDE statement must be coded in the library section of your
Easytrieve Plus program and precede any other statements that access the included
table, but must be coded after the SQL DCLINCL &NAME statement, if DCLINCL
is provided.

Migration Utility utilizes SYSIBM.SYSCOLUMNS catalog whenever it encounters
an “SQL INCLUDE FROM &owner.&table” in the Easytrieve Plus program, and a
DCLINCL was not previously supplied. Refer to “Activating Call Attachment
Facility (CAF) for DB2 users” on page 109.

If the &owner.&table exists in the catalog, column definitions are obtained from the
catalog, and the field names are generated from the column names.

PARM statement parameters

84 Migration Utility V1R1 User’s Guide and Reference

|

|
|
|

|
|
|
|

|
|
|
|

|
|

If the &owner.&table does not exist in the catalog, a DCLINCL must be supplied
for the table. The field names are obtained from the COBOL definitions in the
DECLGENs.

When to use SQL INCLUDE
SQL include is used to automatically define the necessary host variables into which
DB2/SQL table information is fetched. SQL INCLUDE is not needed in every
Easytrieve program that uses DB2. An alternative is to select/fetch column
information into manually-defined working storage fields.

Processing nullable fields
Easytrieve supports the SQL nullable columns. Easytrieve determines if a column
or field is nullable from the information extracted from the SQL catalog.

Migration Utility determines if a field is a nullable field from the DECLGEN.

When a column is declared as nullable, and NULLABLE is specified in SQL
INCLUDE definition of an SQL File, a two byte null indicator (2 B 0) is
automatically generated by Easytrieve and placed before the field name. Each
retrieval places a negative value into the null flag for empty fields (fields that have
no value assigned).

After the retrieval, you can use special processing statements:

IF NULL to determine if column/field contains a null value. MOVE NULL to set a
column/field to a null value.

When using Native SQL or automatic input without a file, null indicator can be
defined as two byte signed binary field in working storage (2 B 0). This indicator is
then used in the INTO clause in the native or automatic SELECT statement.

SQL data types
Migration Utility accepts SQL data types as defined by the COBOL definitions in
the included DECLGEN. Data Types are not checked for proper SQL syntax.
However, SQL pre-processor does so.

SQL syntax checking
For Native SQL statements, Migration Utility does minimal syntax checking. With
the exception of host variables, statements are passed to SQL pre-processor as
coded. Host variables are potentially re-named and adjusted to avoid unresolved
references.

For Easytrieve SQL look alike I/O statements, Migration Utility generates standard
SQL for DB2.

System-defined fields
RECORD-COUNT

Reflects the number of rows returned (fetched or by automatic means)

RECORD-LENGTH
The sum of lengths of all fields within a file.

SQL catalog INCLUDE facility

Chapter 5. SQL/DB2 support 85

|
|
|

|

|
|
|
|

EOF processing
When the end of table is reached, either with automatic (JOB) or Fetch processing,
the file is marked EOF (end of file). In automatic processing, execution stops and
FINISH procedure (if present) is executed. In controlled processing you can test for
file EOF (IF EOF &FILE) to determine an end of file condition.

Communication Area fields
Easytrieve automatically generates SQL Communication Area (SQLCA) fields if at
least one SQL or SQL table statement is encountered in your program.

Migration Utility automatically generates an SQL INCLUDE for SQLCA in the
generated COBOL source. An Easytrieve copybook of SQLCA is included in the
distributed library. The SQLCA copybook is located in the SYS1.SFSYEZTC PDS.

Easytrieve Plus SQL files
To process data from an SQL table via Easytrieve SQL file method, you must code
the following:
1. A file statement specifying one or more table names. If all columns defined in

the file are subject to update, specify the UPDATE keyword on the FILE
statement.
Define one of more fields for the columns within the table(s) that you want to
retrieve. The definitions can be defined using the DEFINE statement or by
using the SQL INCLUDE statement. When SQL INCLUDE is used, field
definitions are automatically generated from the SQL Catalog. Selective
columns can be updated by coding UPDATE on the SQL INCLUDE and
omitting the UPDATE on the file statement.

2. Code a SELECT statement that defines the result set for the cursor. If the
SELECT statement is omitted, a default SELECT is generated automatically for
all table columns. The SELECT statement, if coded, must be the first statement
following the JOB statement. Coding your own SELECT gives you the choice of
customizing the result set for the cursor.

Note: A SELECT statement for an SQL file is similar to opening the file. SELECT
coded for a file that is already open first closes the file and the re-opens it
based on the new SELECT.

Examples

This example shows automatic processing with SELECT:

SQL DCLINCL DCLCTXAB

FILE FILEIN1 SQL

SQL INCLUDE +
(CUST_CO_NBR, +
CUST_ID, +
ACCT_CO_NBR, +
ACCT_PRDCT_CD) +

LOCATION * +
HEADING +
UPDATE +
NULLABLE +
FROM CUST_B_ACCT_TB

EOF processing

86 Migration Utility V1R1 User’s Guide and Reference

JOB INPUT FILEIN1
SELECT FROM FILEIN1 +

WHERE (CUST_ID = 315)
.

Note: SQL DCLINCL is a required Migration Utility statement.

This example shows automatic processing without SELECT:
SQL DCLINCL DCLCTXAB

FILE FILEIN1 SQL
SQL INCLUDE +

(CUST_CO_NBR, +
CUST_ID, +
ACCT_CO_NBR, +
ACCT_PRDCT_CD) +

LOCATION * +
HEADING +
UPDATE +
NULLABLE +
FROM CUST_B_ACCT_TB

JOB INPUT FILEIN1
.
.

Note: SQL DCLINCL is a required Migration Utility statement.

Using DEFER with SELECT
Coding DEFER on the SQL FILE statement gives you an opportunity to code
SELECT anywhere in the logic. SELECT does not have to be coded immediately
after the JOB statement. For example, SELECT can be coded in the START
procedure after the host variable values used in selection have been set.

Be careful. If the DEFER is not specified, and the SELECT is coded elsewhere (not
immediately after the JOB statement), a default SELECT is generated in addition to
the coded SELECT, thus causing duplication and performance problems.

Multiple tables
Easytrieve SQL files can be defined with multiple tables, that is, tables can be
joined. Referencing a file that was defined with multiple tables results in a JOIN
for all defined tables.

Example

FILE FILEIN (TABLE1, TABLE2)

Controlled processing
You can use the FETCH statement (with the SELECT and CLOSE) to retrieve the
records from an SQL file. These statements can be coded within JOB activity with
or without automatic input.

Controlled statements cannot be used in SORT or REPORT procedures.

Easytrieve Plus SQL files

Chapter 5. SQL/DB2 support 87

Fetch cannot be used on automatic input file within the same JOB activity.
However, you can FETCH from a file other than the file subject to automatic input.

Controlled processing

88 Migration Utility V1R1 User’s Guide and Reference

Automatic retrieval without a file
In this method, a special JOB and SELECT statements are coded to retrieve the
data.

The retrieval without a file is a read-only method that usually retrieves data into
working storage fields.

The method allows some selection techniques not available for cursors associated
with SQL Files.

The following is required when processing an SQL table using this method:
1. One or more field definitions for the columns within the tables that you want

to retrieve. The definitions can be coded using the DEFINE statement or SQL
INCLUDE statement in working storage. Fields can be also defined within a
file.

2. A JOB statement with the JOB INPUT SQL parameter. SQL denotes that the
input does not involve an SQL File.

3. A non-file based SELECT that defines result set for the cursor. Only one
non-file SELECT statement is allowed within a single JOB activity.
This SELECT statement is different from the FILE based SELECT used with
SQL files. It is more similar to the true SQL SELECT. For example, the tables to
be accessed are named and more advanced functions can be performed such as
UNIONs.

The SQLCODE is tested following each execution of the SELECT statement. The
end of data condition results in the end-of-input processing with all amenities
associated with it.

Example

This example shows selecting all rows from the USERTAB table (assume that
DECLGEN name is USERTAB).
SQL DCLINCL USERTAB

DEFINE USER-NAME W 20 A
DEFINE USER-DEPT W 2 P 0
DEFINE USER-PHONE W 3 P 0
DEFINE NULL-PHONE W 2 B 0

JOB INPUT SQL
SELECT * FROM USERTAB +

INTO :USER-NAME, :USER-DEPT, :USER-PHONE :NULL-PHONE
.
.

Note: SQL DCLINCL is a required Migration Utility statement.

Native SQL processing
Native SQL statements equivalent to those used in COBOL can be imbedded in the
Easytrieve programs. Using these native SQL statements, the programmer can code
fully compliant SQL program.

Migration Utility fully supports all SQL statements. With the exception of the host
variables, the coded statements are punched out unchanged. Thus the user can

Automatic retrieval without a file

Chapter 5. SQL/DB2 support 89

code a variety of SQL dialects. The host variable names are adjusted to prevent
potential problems and conflicts with the naming conventions in COBOL.

The following processing requirements must be adhered to:
1. The SQL DECLARE &CURSOR CURSOR and SQL INCLUDE must be coded in

the Library Definition. All other statements must be coded in the Activity
Section.

2. The SQLCODE must be tested after each operation for successful completion.
SQLWARN0 field should be tested whenever SQLCODE of zero is returned.

Coding native SQL requires an advanced knowledge of SQL statements and
database.

Native SQL statements cannot be coded in the SORT and REPORT procedures.

The following native SQL statements are supported:
CLOSE
COMMIT
CONNECT
DECLARE
DELETE
FETCH
INSERT
OPEN
PUT
ROLLBACK
SET CURRENT SQLID
UPDATE

For further information and syntax rules of native SQL statements refer to the
appropriate SQL reference manual.

Native SQL processing

90 Migration Utility V1R1 User’s Guide and Reference

Chapter 6. SQL File I/O statement reference

CLOSE statement
The CLOSE statement closes an SQL File.

�� CLOSE &FILE ��

Parameter

&FILE The file to be closed.

At the termination of each activity, all files opened during the activity are
automatically closed. The CLOSE statement can be used to close the file before the
activity terminates. The next I/O statement using the file re-opens it.

A file can also be closed and re-opened to create a new cursor.

The CLOSE statement cannot be used to close a printer file or to close an
automatic input/output file.

Example
CLOSE FILEIN

DELETE statement
The DELETE statement deletes a row from an SQL File.

�� DELETE
FROM

&FILE ��

Parameters

&FILE The file from which to delete

FROM
Is available for readability.

DELETE perform a DELETE WHERE OF cursor. The file must be defined with the
UPDATE parameter.

Example
DELETE FILEIN

© Copyright IBM Corp. 2002, 2003 91

FETCH statement
The FETCH statement retrieves a row from an SQL File.

�� FETCH
FROM

&FILE ��

Parameters

&FILE The name of the SQL file.

FROM
Is available for readability.

The FETCH statement retrieves rows from the open cursor and places the data into
the file’s data area. If there is no cursor associated with the file, the cursor
previously selected is re-opened. If no cursor was previously selected, then a
default cursor for all fields FROM &table is opened.

FETCH cannot be used in a SORT or REPORT procedure. The FETCH cannot
reference an automatic input file in the same JOB activity.

Example
FETCH FILEIN

SQL INCLUDE statement
The SQL INCLUDE specifies the SQL table information to be used to generate field
definitions. It names the table and gives the location where the field definitions are
to be generated.

�� SQL INCLUDE

�(column)

LOCATION starting-position
*

+ offset
W
S

�

�
HEADING UPDATE NULLABLE

FROM
owner .

&TABLE ��

Parameters

column A list of columns to be included. The Easytrieve field names are generated
for these columns. If no columns are specified, all columns from the table
are included.

LOCATION
The location at which the field definitions are generated.
starting-position

The starting position relative to position one of the record or file.

FETCH statement

92 Migration Utility V1R1 User’s Guide and Reference

* Indicates that the field begins in the next available starting
position.

offset The offset you want to add to the * position. There must be at least
one blank between the * and the “+”.

W, S Establishes working storage fields.

HEADING
This statement is not supported by Migration Utility. In Easytrieve Plus, it
causes remarks in the DBMS system catalog to be used as HEADINGS.

UPDATE
The generated columns are updated. If UPDATE is coded on the FILE
statement, all columns in the file are modifiable.

NULLABLE
Causes default indicator fields to be generated for columns that contain
NULL. The indicator field is defined as a 2 B 0 field preceding the field
being defined. If the column being defined is used as a host variable, then
the default indicator is used as the null indicator unless overwritten by
coding an indicator variable.

The indicator variable preceded the data portion of the field in storage.
This field cannot be directly referenced. The IF NULL statement must be
used.

owner 1 to 18-character alphanumeric qualifier

&TABLE
1 to 18-character alphanumeric name.

SQL INCLUDE must precede any other SQL statements and must be coded in the
Library Section of the program.

Example
SQL DCLINCL DCLCTXAB

FILE FILEIN1 SQL
SQL INCLUDE +

(CUST_CO_NBR, +
CUST_ID, +
ACCT_CO_NBR, +
ACCT_PRDCT_CD) +

LOCATION * +
HEADING +
UPDATE +
NULLABLE +
FROM CUST_B_ACCT_TB

JOB INPUT FILEIN1
SELECT FROM FILEIN1 +

WHERE (CUST_ID = 315)
.
.

Note: SQL DCLINCL is a required Migration Utility statement.

SQL INCLUDE statement

Chapter 6. SQL File I/O statement reference 93

INSERT statement
The INSERT statement inserts a row into an SQL file.

�� INSERT
INTO

&FILE ��

Parameters

&FILE The name of the SQL file.

INTO Included for readability.

INSERT does not require an open cursor. If the cursor for the file is not open, one
is not opened automatically. If a cursor is open, the inserted row does not appear
in the cursor’s result set until the cursor is closed and re-opened with a new
SELECT statement.

The file must be specified with the UPDATE parameter.

Example
INSERT FILEIN

UPDATE statement
The UPDATE statement updates a row from an SQL file.

�� UPDATE &FILE ��

Parameter

&FILE The name of the SQL file.

UPDATE issues an UPDATE WHERE CURRENT OF cursor.

When the file is defined with the UPDATE, all defined columns are updated,
otherwise only columns defined with the UPDATE are updated. Refer to the
description of the SQL INCLUDE statement.

Example
UPDATE FILEIN

SELECT statement
A SELECT statement issued for an SQL file causes a cursor to be automatically
declared and opened as a file. The resulting cursor can then be fetched and
updated by subsequent commands for the file. The cursor can also be used for
automatic input using the JOB statement.

INSERT statement

94 Migration Utility V1R1 User’s Guide and Reference

�� SELECT
DISTINCT FROM

&FILE
WHERE search-condition-1

�

�
GROUP BY column name HAVING search-condition-2

�

�

�

�

ORDER BY COLUMN-NAME ASC
DES

INTEGER

FOR UPDATE
��

Parameters

DISTINCT
Eliminates duplicate rows. If omitted, all rows are supplied.

FROM
Code for readability.

&FILE An SQL file.

search-condition-1
Conditions for the retrieval of data.

column name
Columns for group fetches of data into the file.

search-condition-2
Condition specifying the data to be returned to the user, for example, a
range of values.

ORDER BY
Returns the rows in the sequence of specified columns. ASC is ascending
order, DESC is descending order.

FOR UPDATE
Allow updates of the updateable fields in the &FILE.

If no SELECT is issued for the &FILE, the default SELECT is used (all rows are
selected).

If SELECT is the first statement in a JOB activity that matches an SQL file in
automatic input, it overrides the default SELECT.

SELECT can be coded in a JOB’s START procedure. If so, DEFER should be coded
on the FILE statement to avoid duplication and performance problems.

If a SELECT is specified for a file that already has an open cursor, the cursor is
closed and a new one is opened.

Example
SQL DCLINCL USERTAB

DEFINE USER-NAME W 20 A
DEFINE USER-DEPT W 2 P 0
DEFINE USER-PHONE W 3 P 0

SELECT statement

Chapter 6. SQL File I/O statement reference 95

DEFINE NULL-PHONE W 2 B 0

JOB INPUT SQL
SELECT FROM USERTAB WHERE USER-NAME = ’JOHN’

.

.

Note: SQL DCLINCL is a required Migration Utility statement.

Easytrieve macros
The Easytrieve macros allow the user to have record definitions and more
frequently used Easytrieve routines defined externally of the program.

Macros are traditionally kept in a separate PDS or Librarian library.

Migration Utility fully supports all Easytrieve Macro Language conventions.

Macros allow symbolic replacement of the symbols imbedded in the macro source.
Thus, macros can be created for frequently used program routines with the ability
to mold the code by the external parameters coded in the program. This saves you
creating new routines, and provides you with reliable, already tested, routines.

All Easytrieve macros must start with a MACRO statement and terminate with an
MEND statement. User coded statements are placed between the MACRO and the
MEND statement.

The macro name is the name of the Partitioned Data Set (PDS) member you create.

�� MACRO &POSCOUNT

� &POSPARM

� &KEYWORD &VALUE MEND ��

Parameters

&POSCOUNT
The number of positional parameters on the prototype statement. If the
macro contains only keyword parameters, you must code ZERO.

&POSPARM
Positional parameter identifier. The number of parameter identifiers must
match the number specified by the &POSCOUNT.

&KEYWORD
A keyword name to be used as a symbol in the replacement scheme.

&VALUE
Default value associated with the keyword.

MEND
The terminating keyword of the macro.

SELECT statement

96 Migration Utility V1R1 User’s Guide and Reference

One or more keywords with associated values can be specified. Values with
imbedded blanks must be enclosed in quotes.

User supplied statements are coded between the MACRO prototype and the
MEND statements. The imbedded statements can include symbolic parameters
(positional or keyword) as declared on the prototype. Each keyword is preceded by
& (see the example).

Example

This example macro is the “MSTFILE” macro for defining Master File layout:
MACRO 2 FILE SIZE ORG KSDS PREFIX I

FILE &FILE &ORG (&SIZE)
&PREFIX-ACCOUNT 1 10 A
&PREFIX-NAME 11 15 A
&PREFIX-ADDRESS1 27 30 A
&PREFIX-ADDRESS2 58 30 A

MEND

In the example, there are two positional parameters, FILE and SIZE, and two
keyword parameters ORG and PREFIX. The keyword parameter ORG defaults to
the value KSDS and the keyword parameter PREFIX defaults to the value I.

Notice the symbolic parameters imbedded in the FILE and the record definitions.
Each positional and keyword identifier is preceded by a “&”.

Invoking macros
Macros are imbedded in the Easytrieve source by prefixing the macro name by a
“%”.

Macro parameters are coded following the macro name.

Positional parameters are coded first (if any). The number of positional parameters
must always match the number of positional parameters declared in the macro
prototype.

Keyword parameters are optional, but if coded, they must be coded following the
positional parameters. A value must be coded for each keyword parameter.

Any keyword parameters not supplied, when invoking macros, assume their
default values as declared in the macro prototype.

When macro parameters span over multiple lines, each line must end with a ″+″ or
a ″-″ as per Easytrieve punctuation rules.

Example

This example uses the MSTFILE macro above to define two master files:
%MSTFILE FILEIN 130 ORG KSDS PREFIX I1 |

| Valid
|

%MSTFILE FILEIN2 130 ORG KSDS PREFIX I2 |
| MSTFILE
|

%MSTFILE FILEIN3 130 PREFIX I3 | Macro Invocations

Easytrieve macros

Chapter 6. SQL File I/O statement reference 97

Easytrieve macros

98 Migration Utility V1R1 User’s Guide and Reference

Chapter 7. User exits

Optionally, user who are familiar with PEngiCCL macro language can write their
own PEngiCCL macro to extract information collected by the translator. The macro
is invoked by the translator at End of Job before exiting the main logic when no
errors exist.

The Implementing process is as follows:
1. Make a copy of EASYUXIT macro located in SYS1.SFSYCCLM library.
2. Change the macro prototype name ″EASYUXIT″ in your new macro to reflect

the new name.
3. Make the desired changes. Note that the EASYUXIT macro inherits relevant

variable queues from the main translator macro, therefore, all variables with an
″I:″ in the definition located in EASYUXIT macro can be accessed.

4. Add USERXIT=&MACNAME parameter to your EZPARAMS (EASYTRAN)
options, where &MACNAME is the name of your new macro.

5. Make sure that you have FJSYSP0 DDname defined in your JCL (first step). You
can direct the output to SYSOUT or to a real file. LRECL is FB 80 characters
long.

Alternatively, you can use EASYUXIT macro without changes. This macro
produces a list of files with related information and a list of Easytrieve macros
detected in the program. FJSYSP0 is required in the first step of the translator JCL.

Note: Writing PEngiCCL macros is not suitable for all users. In depth knowledge
of PEngiCCL macro language is required.

CBLCNVRT macro
Use this macro to convert COBOL copybooks to Easytrieve Plus macros in two
ways:
v A standalone job
v Coding CBLCNVRT

Running a standalone job to do the conversion.
1. Tailor and use JCEZCNV0 JCL located in SYS1.SFSYJCLS to do so.

JCEZCNV0 uses sample EASYCNV0 file located in SYS1.SFSYEZTS.
2. Follow directions in the EASYCNV0 for updating rules.
3. Note that the %PUNCH is always needed as coded in the EASYCNV0 file.
4. Use standard Easytrieve Syntax to add entries to the EASYTCNV0 file.

The Easytrieve Plus macros are punched to FJSYSP2 file in IEBUPDAT format.
5. Last, run a standard IBM IEBUPDAT job to add macros to a PDS.

Your generated Easytrieve Plus macros are now ready for use.

© Copyright IBM Corp. 2002, 2003 99

Example

This is an example of EASYCNV0 entries:
%PUNCH EASYT (FJSYSP2). * PUNCH OPTION AND DDNAME (DO NOT CHANGE)
%CBLCNVRT COBCOPYA. * PUNCH COPY BOOK 1

Coding CBLCNVRT in Easytrieve Plus programs.
You can code CBLCNVRT to pull in COBOL copybooks to be used in the program.
To do so, follow the standard Easytrieve Plus syntax for coding macros. Code
%CBLCNVRT macro followed by the copybook name and CBLCNVRT macro
options.

This format of CBLCNVRT is unique to Migration Utility. It is not supported by
Easytrieve Plus.

�� %CBLCNVRT &NAME LOC(&LOC) PFX(&PFX) SFX(&SFX) HEADING(&H) ��

Parameters

&NAME
The name of the COBOL copybook to be used.

&PFX Optional Fields Prefix, the default is ().

&SFX Optional Fields Suffix , the default is ().

&LOC Location: (*) or (W) or (S)

&H Field Title Option:
() Produces field titles found in the copybook.
(*) Produces commented out field titles found in the copybook.

Refer to “Generating COBOL COPY statements” on page 102 for the copybook
format requirements.

Field titles are extracted from the copybook " *: HDR (’&TITLE’,...) record.

The use of the %CBLCNVRT macro for VSAM Indexed file requires the use of the
KEY &KEY option on the FILE statement.

Example
FILE FILEIN F (80)
%CBLCNVRT COBCOPYA LOC(*) PFX().
%CBLCNVRT COBCOPYA LOC(W) PFX(W-).

FILE FILEIN2 VS (KEY VCOMPANY)
%CBLCNVRT COBCOPYA LOC(*) PFX(V).

CBLCNVRT macro

100 Migration Utility V1R1 User’s Guide and Reference

EZTCNVRT macro
The EZTCNVRT macro can be used to convert Easytrieve Plus macros to COBOL
copy books.

EZTCNVRT is unique to Migration Utility. It is not supported by Easytrieve Plus.

A standalone job must be run to do the conversion:
1. Tailor and use JCEZCNV1 JCL located in SYS1.SFSYJCLS.
2. Make sure that COBOLCOPY=NO is coded in the EZPARAMS option.
3. Provide COPYCHAR=’$S..’ in EZPARAMS for translating special characters.
4. JCEZCNV1 uses sample EASYCNV1 file located in SYS1.SFSYEZTS.
5. Follow directions in the EASYCNV1 for updating rules.

Note that the %PUNCH is always needed as coded in the EASYCNV1 file.
6. Use standard Easytrieve Syntax to add entries to the EASYTCNV1 file.
7. The COBOL copybooks are punched to FJSYSP2 file in IEBUPDAT format.
8. Last, run a standard IBM IEBUPDAT job to add copybooks to a PDS.

Your generated COBOL copybooks are now ready for use.

�� %EZTCNVRT &NAME

� &PARM(&V)

. ��

Parameters

&NAME
The Easytrieve Plus macro name.

&PARM
Macro parameter (maximum of 8).

&V Value for each keyword/parameter.

Example

This is an example of EASYCNV1 Entries:
%PUNCH COBOL (FJSYSP2). * PUNCH OPTION AND DDNAME (DO NOT CHANGE)
%EZTCNVRT EZTCOPYA LOC(*). * PUNCH COPY BOOK 1
%EZTCNVRT $ZTCOPYB LOC(*). * PUNCH COPY BOOK 2

Special considerations

Punch one copybook at a time to avoid complications with duplicate field names.

If the generated copybook is used as working storage, use the punch option
%PUNCH COBOL (FJSYSP2) VALUES(YES) to force default field values to be
generated in the copybook.

When the EZTCNVRT macro is used, all imbedded (nested) macros are ignored.
The copybook is punched for the specified level-01 macro only.

EZTCNVRT macro

Chapter 7. User exits 101

|

|
|
|

|
|

All field names in the generated copybook are prefixed by the ″:AA:″ special
characters. In this way, the REPLACING option of COBOL COPY statement can be
used to assign unique field names when a copybook is used multiple times in the
same program.

While the generated copybooks can be used in Native COBOL, the primary
purpose of EZTCNVRT is to create COBOL copybooks that can be used in the
translated programs. Thus, after generating all copybooks, you can translate
Easytrieve Plus programs with COPYBOOK=YES option for a cleaner and leaner
outcome.

Be aware, all field names are reduced to 16 characters or less to accommodate
prefixing. You can enhance field names by providing the TRANSLATE WORDS
and TRANSLATE FIELDS tables (see EZPARAMS Options). However, if you do so,
the translate tables must be subsequently used for every program being translated
to preserve naming conventions. The file with FJNAMES DDname in your
JCEZCNV1 JCL will contain a table of reduced field names after the first pass. You
can tailor this table and use it for translating field names (as TRANSLATE FIELDS
table).

The generated copybook name is the macro name from which it was created.
COBOL does not allow special characters in the copybook name and Easytrieve
Plus does. Use COPYCHAR=’....’ of EZPARAMS to replace the bad characters.

Generating COBOL COPY statements
By default, Migration Utility generates hard-coded file and working storage
layouts in the generated programs. With minor effort, it is possible to generate
COBOL COPY statements for your Easytrieve Plus macros and then direct
Migration Utility to punch out COBOL COPY statements instead of the hard-coded
layouts.

To do this:
1. Make an inventory of all Easytrieve Plus macros that qualify to be a copybook.

In general, these would be those macros that fully define a record or working
storage area. Macros that contain FILE statement along with record layout also
qualify. Note that COBOL copybooks pulled in using CBLCNVRT are
automatically considered.

2. Make a table of macro names similar to the EZTABLE0 table located in
SYS1.SFSYEZTS pds.

3. Generate COBOL copybooks out of Easytrieve Plus macros using the
EZTCNVRT macro (refer to “EZTCNVRT macro” on page 101).

4. Prepare EASYTRAN/EZPARAMS options:
COPYBOOK=YES YES for generating copybooks
COPYNTAB=&NAME The table that contains the list of Easytrieve macros
COPYCHAR=’$S’ Character replacement for fixing bad copybook names
NCOPIES=nnn nnn is the maximum number of copybooks in a single program

5. Concatenate the PDS that contains your version of EZTABLE0 to FJCPYLB
DDname (the first step of the translator JCL).

6. Concatenate the PDS where your COBOL copybooks are located to FJCPYLB in
the second step (PEngiBAT step) of the translator JCL, and to SYSLIB of the
COBOL Compiler step.

Example

EZTCNVRT macro

102 Migration Utility V1R1 User’s Guide and Reference

This is an example of EZTABLE0 table:

* EASYTRIEVE PLUS MACROS THAT QUALIFY FOR COBOL COPY BOOKS. *
* *
* THIS TABLE IS USED BY THE EASYTRIEVE PLUS TRANSLATOR WHEN *
* OPTION COPYNTAB=EZTABLE0 IS CODED IN EZPARAMS. *
* *
* FILE LAYOUT: *
* *
* CODE EZT MACRO NAMES FOLLOWED BY: *
* --------------------------------- *
* A. PREFIX KEYWORD *
* B. SUFFIX KEYWORD *
* C. SUB LIST OF ALLOWED ADDITIONAL KEYWORDS ON MACRO STATEMENT *
* D. ’*’ MUST BE PLACED BEFORE COMMENTS *
* *
* RULES: *
* 1. PREFIX IS OPTIONAL *
* PREFIX CAN BE CODED ALONE *
* *
* 2. SUFFIX IS OPTIONAL *
* IF SUFFIX IS NEEDED, AND THERE IS NO PREFIX, A FAKE PREFIX *
* KEYWORD MUST BE SUPPLIED. YOU CAN USE ANY FAKE KEYWORD. *
* *
* 3. SUB LIST OF ALLOWED KEYWORDS IS OPTIONAL *
* +IF SUB LIST IS CODED, THE TRANSLATOR WILL GENERATE A COPY *
* STATEMENT ONLY WHEN MACRO IS CODED WITH THE KEYWORDS IN THE *
* SUB LIST. THE PREFIX AND SUFFIX ARE AUTOMATICALLY INCLUDED. *
* +IF SUB LIST IS NOT CODED, THE TRANSLATOR WILL GENERATE A COPY *
* STATEMENT UNCONDITIONALLY. *
* *
* NOTES: *
* EASYTRIEVE PLUS MACROS THAT QUALIFY FOR COPY BOOKS CAN CONTAIN *
* RECORD OR WORK AREA DEFINITIONS. MACROS WITH RECORD DEFINITIONS *
* CAN CONTAIN FILE STATEMENTS TOO. *
* *
* THE PREFIX AND SUFFIX PARAMETERS ARE USUALLY USED TO MODIFY *
* NAMES SO THAT MULTIPLE LAYOUTS CAN BE GENERATED FROM A SINGLE *
* MACRO. LOOK AT YOUR MACRO PROTOTYPE STATEMENTS TO SEE IF THE *
* PREFIX AND SUFFIX PARAMETERS ARE USED. *
* *
* MACROS CAN BE CODED TO USE OTHER KEYWORD PARAMETERS BUT SUCH *
* PARAMETERS SHOULD NOT BE MODIFYING FIELD NAMES. CODE SUCH EXTRA *
* PARAMETERS AS A SUB LIST OF ALLOWED KEYWORDS. THE SUB LIST CAN BE *
* CONTINUED ON MULTIPLE LINES. USE STANDARD EASYTRIEVE PLUS RULES. *

COBCOPYA PFX * DEMO FILE COBOL COPYA BOOK USED BY %CBLCNVRT
COBCOPYB PFX * DEMO FILE COBOL COPYB BOOK USED BY %CBLCNVRT
EZTCOPYA PFX SFX (LOC) * DEMO FILE EZT COPYA FORMAT MACRO
EZTCOPYB PFX SFX (LOC) * DEMO FILE EZT COPYB FORMAT MACRO

----------- ADD ADDITIONAL MACROS AFTER THE LAST LINE ---------------

Note: It is critical to code the correct prefix, suffix and the allowed keywords for
each macro you specify. In this example, the prefix keyword is PFX, the
suffix keyword is SFX and the additional parameter allowed on EZTCOPYA
and EZTCOPYB macros is LOC.

Multiple COPY statements are generated when the layout consists of more
than one macro.

Migration Utility has a complex algorithm for determining if a macro
qualifies for a COPY statement. A hard-coded layout is forced whenever a
listed macro in EZTABLE0 is used in a manner that would cause errors. For

Generating COBOL COPY statements

Chapter 7. User exits 103

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

example: a layout is composed of hard-coded fields and a macro that
qualifies for a copybook, or a redefine of a field defined in a macro that
qualifies for a copybook, is coded outside of the macro scope (that is,
activity section).

Special considerations

If you run with COPYBOOK=NO and COPYNTAB= is supplied, the generator will
take advantage of the table information and generate a prefix for copy books that
are used multiple times in the same program, if such copybook is not coded with a
different prefix. Thus the duplicate field names would be prefixed rather than
made unique via a sequence number. Therefore, it is a good practice to build a
table of all macros that qualify to be copybooks, even if COPYBOOK=NO is in
effect.

System information

Migration Utility files
The following files are Migration Utility product PDS files:

Data set name Description
SYS1.SFSYJCLS Sample JCL distributed with the product
SYS1.SFSYCCLC Translator COPY commands
SYS1.SFSYCCLM Translator macros
SYS1.SFSYEZTC Sample Easytrieve Plus macros and COBOL copybooks
SYS1.SFSYEZTS Sample programs and translator parameter files
SYS1.SFSYFJCC Translator pre-processed (byte code) macros
SYS1.SFSYLOAD Translator load modules

Called by the translated COBOL programs
The following COBOL modules are located in SYS1.SFSYLOAD Library:

Name Description
FSABECOB Batch programs ABEND message handler
FSDATEZ0 Date services main interface program
FSDATSRV Date services program for base 365
FSDATSR2 Date services program for base 360
FSDIMAGE Unstring an edited number
FSMOVE00 Move Long Common module
FSPLOT00 Plot program (called by some batch programs)
FSSPACE0 Common modules used by Easytrieve Plus translated programs
FSYDB200 Call Attachment Interface (CAF) sample program

The following BAL modules are located in SYS1.SFSYLOAD Library:

Name Description
FSYDB202 Load DSNHFECP CAF Module
FSYGJOB0 Get Job Information from JOB Scheduler
FSDYNCNV Convert ASCII to EBCDIC and EBCDIC to ASCII
FSYVLN90 Get file information block (FIB) at open time. This module replaces

FSVLNT90.
FSVLNT90 Get File Information Block (FIB) at Open time
FSVLNT03 Get File Record Length after and I/O
FSFILL00 Pad a field with a pad characters
FSLOPER0 Perform Logical Operation, AND, OR, XOR
FSLOPER1 Perform Bit Testing for ON condition
FSSHIFTL Shift a field 4 bits left

Generating COBOL COPY statements

104 Migration Utility V1R1 User’s Guide and Reference

|
|
|
|

||

||

||
||
||

FSSHIFTR Shift field 4 bits right

A number of other modules that may be needed at run time are included in the
SYS1.SFSYLOAD library.

Runtime requirements
If Migration Utility is run with IOMODE=DYNAM, SYS1.SFSYLOAD library is
required at run time.

If the translated COBOL program is compiled with the ″DYNAM″ option, then
SYS1.SFSYLOAD must be concatenated to your JOBLIB or STEPLIB DDnames.

If the translated COBOL program is compiled with the ″NODYNAM″ option, then
SYS1.SFSYLOAD is not needed at run time.

The FSABECOB program is invoked by the generated batch programs whenever
there is a file I/O error. It can be also invoked for other reasons that require an
abnormal program termination.

The FSABECOB prints a description of the detected error on the FJSYABE file if
supplied in the JCL. The error description is usually based on the file status
returned by the COBOL I/O routines. The description printed is as per
FILE-STATUS code.

Summary of DDnames
To run Migration Utility, the following files must be defined in the JCL:

DDname Description

FJSYSIN Input file which contains the EZPARAMS File, normally
SYS1.SFSYEZTS

FJSYSPW PASSWORD file SYS1.SFSYCCLM(PASSWORD)

FJSYSJC Optional Output Sequential JCL file. This file is generated by the
translator when JCL=YES is specified. The record length of this file
is 80 bytes. The block size can be coded in the JCL via the DCB
statement.

FJBIND0 This file contains DB2/SQL Bind parameters skeleton. The record
length of this file is 80 bytes. Refer to SQLMODE= parameter in
EZPARAMS.

FJCCLLB Pre-Compiled Translator CCL1 Macros SYS1.SFSYFJCC

FJCPYLB PDS which contains copybooks. The user can also concatenate the
PDS which contains the user written COBOL copybooks or other
(copy) members (including Easytrieve Plus macros).

FJMACLB PDS which contains Translator CCL1 standard macros. You can
also concatenate the PDS which contains the user written CCL1
macros (including CCL1 macros for Easytrieve Plus).

FJSYSPH The output generated program source code. This can be a
sequential data set or a PDS library. The record length of this file is
80 bytes long. The block size can be coded in the JCL via the DCB
statement. The created program can be passed on to the COBOL
compiler in the same job stream or permanently saved.

System information

Chapter 7. User exits 105

FJSYSP0 The output statistics record normally contains a list of files and
macros found in Easytrieve Plus program.

FJSYS01 This is a temporary sequential work file. The record length of this
file is 94 bytes long. The block size can be coded in the JCL via the
DCB statement.

FJNAMES Refer to DDFNAME= option in EZPARAMS. This file contains a
table of reduced field names. The record length of this file is 80
bytes.

SYSIN File which contains an Easytrieve program. This can be a PDS or a
sequential file. The record length of this file must be 80 bytes long.
The block size cannot exceed 32,767 bytes.

SYSLIST Translator diagnostics and generated program listing. This is a
standard print file. For more information on this file, see the
″LIST=″ parameter in the Translator Options described in this
section.

FJSYSER Translator error file. This file contains a summary of errors and
MNOTEs issued by the translator during the translating process.
The LRECL of this file is 89, DSORG=PS.

Translator CCL1 preprocessor options

COPTION parameters
Migration Utility CCL1 preprocessor options can be overridden using the
COPTION statement in two ways:
1. COPTION statement can be placed at the beginning of the EZPARAMS file.

One or more COPTION statements can be supplied with multiple keywords on
each statement depending on the requirements.
Example:

COPTION LIST=CND,LINES=60

2. COPTION statement can be coded in the PARM= parameter of an exec
statement for MVS/ESA™ operating systems. Note that the maximum number
of characters that can be used in a PARM= statement on an MVS/ESA
operating system is 54.
Example:
//PENGI EXEC PGM=FSCCOBOL,
// PARM=’(COPTION(LIST=CND,LINES=60)’

The parameters are coded with “=” (keyword parameters) followed by the value.

The following options can be used in the COPTION statement:

Keyword Description

BUFSIZE=2048 The size of the internal CCL1 work buffers. The maximum is
32,767.

The work buffers are used by CCL1 to collect and decode all macro
parameters. PEngiCCL allocates seven internal work buffers for the
size specified in BUFSIZE. Note that the size should not be
overestimated to avoid excessive use of storage.

ERRLIMT=32 Error limit count as NNN. Controls the maximum number of CCL1

System information

106 Migration Utility V1R1 User’s Guide and Reference

||
|
|

detected printable errors. This parameter is designed to simplify
error debugging by limiting the number of errors printed in a
single preprocessing.

When the number of errors exceeds the ERRLIMT, all subsequent
errors are suppressed.

LINES=56 Number of lines per page for preprocessed program

The LINES parameter value should not exceed the physical page
capacity of 66 lines.

LIST=NO The preprocessor list option. Can have these values:
YES A listing of the pre-processed program and all generated

code is produced, including internally generated functions.
This type of listing is also referred to as the expanded
listing.

NO A listing of the pre-processed program is not produced.
CND Only a listing of the input program source is produced.

This type of listing is also referred to as a condensed
listing.

FUN A listing of the input program and the internally generated
functions is produced. This type of listing is also referred
to as a condensed/function listing.

System information

Chapter 7. User exits 107

System information

108 Migration Utility V1R1 User’s Guide and Reference

Chapter 8. Installation and Migration Utility options

For step by step Easytrieve source conversion refer to the “Translating guidelines”
on page 2.

Installation
Migration Utility is installed using SMP/E. Please refer to the Program Directory
(GI10-8469) for installation instructions.

Migration Utility works on the OS/390® and z/OS™ operating systems.

Activating Call Attachment Facility (CAF) for DB2 users
DB2/SQL users must choose:
v The method for retrieving DB2/SQL column definitions.
v The method for running a converted DB2 program.

Note: COBOL programs are located in SYS1.SFSYEZTS pds. JOBS are located in
SYS1.SFSYJCLS pds.

1. DB2/SQL column definitions can be retrieved by Migration Utility:
v Automatically from SYSIBM.SYSCOLUMNS catalog via CAF.
v By coding EASYTRAN: DCLINCL &DCLGEN in Easytrieve.

To access SYSIBM.SYSCOLUMNS table automatically, CAF interface must be
activated using the steps below.

To use DCLINCL, refer to the description of DCLINCL in this manual.

Tailor the JCCOBSQL job and compile the FSYDB2D1 COBOL program.
JCCOBSQL is an instream procedure. The EXEC is at the bottom of the
procedure.

Bind FSYDB2D1 to your system (or systems) using the JCCOBBND job. The
BIND parameters are at the bottom of the procedure. You must change the
BIND parameters to your system requirements. Choose a plan that can be
accessed by all users who will be using Migration Utility. BIND to as many
systems as you need. For example, Test, Production, and so on.

Change the CAFPLAN= EZPARAMS/EASYTRAN option to the bound plan
name.

Make sure the JCEZDB2A procedure has the proper DSNLOAD and DSNEXIT
load libraries concatenated in the FSCCL1 and DB2 translator steps.

The translator utilizes the SYSIBM.SYSCOLUMNS table whenever it encounters
an “SQL INCLUDE FROM &owner.&table” in the Easytrieve Plus program,
and a DCLINCL was not previously supplied.

Try translating a DB2 program using the JCEZDB2A job. Find a program that
contains “SQL INCLUDE FROM &owner.&table” statements to test CAF
functionality. Look at the SYSOUT file of the FSCCL1 step for CAF messages.

© Copyright IBM Corp. 2002, 2003 109

|

|
|
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

2. Converted DB2/SQL programs can be run in two ways:
v By using the standard DB2 IJKEFT1B program (see JCEZDB2R job).
v By attaching to DB2 using CAF from the generated COBOL programs.

If you want to use the DB2 Call Attachment Facility (CAF) to run your
generated DB2 programs, and you do not have your own CAF module, you
can change the plan name in the FSYDB200 COBOL program to your
installation standard plan name and compile it using JCBATCOB supplied JCL.

Change SQLMODE=BIND EZPARAMS option to SQLMODE=FSYDB200 or to
your own CAF module name. A call is generated to CAF module at the
beginning of the generated COBOL program.

3. How does CAF for DB2 work?
The IBM DSNALI program connects to the DB2 system identified in the
DSNHDECP load module located in a load library (usually
&HQUAL.DSNLOAD or &HQUAL.DSNEXIT libraries). Consult with your DB2
administrator for the exact location. These modules must be concatenated to
your JOBLIB or STEPLIB, in the proper sequence.

Using EZTPA00 program loader
The Easytrieve Plus compiler program name is EZTPA00. It normally resides in the
Easytrieve Plus load library.

Migration Utility’s EZTPA00 is a general purpose program loader that extracts and
executes (fetches) the program name found in the SYSIN statement. It resides in
the SYS1.SFSYLOAD library.

Note: EZTPA00 is a program loader not a compiler as the Easytrieve’s module.

Some Easytrieve Plus users run in “compile and go” mode by pointing to
programs, located in a pds, using a SYSIN.

For example,
//JNAME JOB ...
//STEP01 EXEC PGM=EZTPA00,
//SYSIN DD DSN=&DSNAME(TESTPGM1),DISP=SHR

Suppose that TESTPGM1 in the SYSIN above was converted to COBOL and linked
into a load library and you want to make minimal changes to your JCL. You can
invoke Migration Utility’s EZTAP00 by pointing to &HQUAL.PENGI401.LOADLIB
at run time. The TESTPGM1 program name is extracted and fetched by EZTPA00.

The benefits from using this technique may be limited. It is beneficial only to
installations that run a large number of programs in “link and go” mode as
described above, during the testing phase.

This technique is not recommended for use in a production environment as it adds
another layer of complexity.

Activating Call Attachment Facility (CAF) for DB2 users

110 Migration Utility V1R1 User’s Guide and Reference

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|

|
|

|
|
|

|

|
|

|

|
||||
|

|
|
|
|

|
|
|

|
|

REPORT default options
EASYDTAB macro located in SYS1.SFSYCCLM pds contains default options that
are similar to those of EZTOPT table of Easytrieve Plus. Update this macro to
match the defaults of your EZTOPT table. The updating instructions can be found
at the beginning of the macro.

The following options are available:

&GDTLCTL,FIRST;
DTLCTL

FIRST
EVERY
NONE

&GLINESIZE,132;
Length of Standard Print Line

&GPAGESIZE,58;
Number of report lines per page

&GDSPLSIZE,66;
Number of DISPLAY lines per page

&GCNTRLSKP,1;
Number of lines after Control Breaks

&GSKIP,0;
Number of blank lines between Detail Lines

&GSPACE,3;
Number of spaces between fields

&GSPREAD,0;
SPREAD Option:

0=NOSPREAD
1=SPREAD

&GSUMCTL,HIAR;
Control Break Line options:

HIAR
ALL
NONE
TAG
DTLCOPY

&GSUMSPACE,3;
Size expansion for SUM fields: 0 TO 9

>ALLYSIZE,2;
TALLY Counter Size. SUMSPACE is added to this value.

>ITLESKIP,3;
Number of lines between Headings and Titles

&GNOADJUST,0;
NOADJUST Option:

0=ADJUST
1=NOADJUST

&GDATESIZE,SHORT;
Reports Date usage:

SHORT=SYSDATE

REPORT default options

Chapter 8. Installation and Migration Utility options 111

LONG=SYSDATE-LONG

&GDATSFORM,MMDDYY;
Reports SHORT Date format:

MMDDYY
YYMMDD
DDMMYY

&GDATSMASK,Z9/99/99;
SHORT Date edit mask:

Z9/99/99
99/99/99

&GDATLFORM,MMDDCCYY;
Reports Long Date format:

MMDDCCYY
CCYYMMDD
DDMMCCYY

&GDATLMASK,Z9/99/9999;
SYSDATE-LONG edit mask:

ZZ/99/9999
99/99/9999
9999/99/99

Mask identifier table to facilitate Easytrieve USERMASK
Easytrieve Plus provides for establishing default Mask Identifiers via the EZTOPT
table. A new option has been added to Migration Utility EASTDTAB to provide
compatibility.

To create default mask identifiers, masks can be added to the EASYDTAB defaults
table located in SYS1.SFSYCCLM PDS. The system is shipped with a commented
example at the bottom of EASYDTAB. The SETVT instruction can be
un-commented and masks added as per instructions in the EASYDTAB.

Example:
ACCL SETVT &GUSERMASK

A,’99/99/99’
B,’99:99:99’
C,’ZZZZZZZ9’; ";" MUST BE AFTER THE LAST ENTRY

Migration Utility translator options
The member EZPARAMS in the Migration Utility library (SYS1.SFSYEZTS) can be
tailored to provide a global override for Migration Utility default options. A good
way of doing this is to copy the distributed parameters into your own PDS. Do not
forget to change the EZPARMS= symbolic in the JCL to point to the PDS that
contains the new member.

Also, options can be imbedded in each Easytrieve Plus program source. This
method lets you have specific options for each Easytrieve Plus program. The
parameters are supplied at the beginning of the program as comment statements.
The method is fully described in “Embedding options in the program source” on
page 119

The first line in the EZPARAMS member is the COPTION statement. The
COPTION statement describes PEngiCCL options such as the output listing,
paragraph re-sequencing options, etc. The COPTION parameters are fully

REPORT default options

112 Migration Utility V1R1 User’s Guide and Reference

described in the FS/PEngi Installation. The defaults as set in the distributed
EZPARAMS member are sufficient, thus there is no need for change.

Options are processed by the EASYTRAN macro. All options are keyword
parameters, except the ″TRANSLATE″ option.

Options must be coded using the standard PEngiCCL conventions for coding
macro instructions. That is, the word EXCCL can start in position 8 followed by the
macro name. Any keyword and positional parameters must be coded starting in
position 12 or after, on subsequent lines as illustrated in this example.

1...!....10...!....20...!....30...!....40....!....50...!....60...!..
COPTION LIST=CND,ERRLIMT=015,PARASEQ=(NON,1,10)
EXCCL EASYTRAN

FILES=64
FIELDS=2000
INDENT=4
TRANSLATE WORDS

(BALANCE BAL)
(AMOUNT AMT)

TRANSLATE FIELDS
(INTEREST-AMOUNT INT-AMT)

(CURRENT-BALANCE CUR-BAL)
END-TRANS ; <= END SEMICOLON IS REQUIRED

Here is a list of keywords (the value indicated is the default):

CAFPLAN=BATCH
Default Call Attachment Facility plan name for retrieving
SQL/DB2 column definitions. The specified plan must match the
BIND plan name of FSYDB2D1 program. For details, refer to
“Activating Call Attachment Facility (CAF) for DB2 users” on
page 109. Coding CAFPLAN=(<NO>) disables automatic retrieval
of column information from the DB2 catalog. In such a case, the
translator expects to find a DCLINCL statement for each DB2 table
in use.

CAFOWNR=(&USER)
Default DB2 table creator/owner to be used when the &owner is
not provided in the “SQL INCLUDE FROM &owner.&TBname”
statement. This parameter is the default for PARM SQLID
(’&owner’) Easytrieve Plus parameter.

When CAFOWNR=(’&USER’) is coded (with ampersand exactly as
shown), the TSO User ID submitting the job is used. Any other
value is used explicitly as coded. For example, CAFOWNR=OD
uses “OD” as the &owner for retrieving column definitions if the
&owner is not coded.

COBVERBS=YES YES causes Migration Utility to scan Easytrieve field names for
Reserved COBOL Words and append -Y1 to reserved words to
prevent COBOL compiler errors. Code “COBVERBS=NO” to inhibit
this process.

COBOL=COBOL390
Type of COBOL. COBOLII for COBOL-II, COBOL390 for
COBOL/390

COPYBOOK=NO The COBOL copybook option. Values are YES and NO.

Migration Utility translator options

Chapter 8. Installation and Migration Utility options 113

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

When COPY=YES is coded, Migration Utility generates a copy
statement for all files that are defined using %COPYNAME in
Easytrieve source.

To use this option, a COBOL copybook must be defined with the
identical field names defined in the Easytrieve copy book. In
addition, each field must be defined with special replacement
characters :AA:. For example:

01 FILEIN-RECORD.
02 :AA:FIELDA PIC X(03).
02 :AA:FIELDB PIC S9(9) COMP.

The COBOL copybook must be placed in a PDS accessible by
Migration Utility step2 and COBOL.

Using the copybook option may not be suitable for all programs
since Migration Utility alters the generated names when duplicate
fields names are detected. Use it with caution.

COPYCHAR=’$S’
COBOL copybooks bad characters replacement string written as XY
pairs.

When COPYBOOK=YES is specified, the translator generates a
COBOL COPY statement using the actual Easytrieve Macro name.
Such a name could contain characters not allowed by COBOL. Use
this string to replace character “X” by character “Y”. Multiple pairs
can be coded. All pairs must be enclosed in the single quotes.

COPYNTAB= Table name that contains the list of Easytrieve macros that qualify
for File Record or Working Storage copybook (layout). The table
must be a PDS member of LRECL 80. The PDS must be
concatenated to FJCPYLB in the first step of your translator JCL.
This table determines which macros are to be generated as COBOL
copybooks.

When coded, this table is searched whenever an Easytrieve macro
is encountered and the macro contains FILE or Working Storage
field definitions. If located and:
COPYBOOK=YES

A COBOL COPY is generated in the place of hard-coded
layout.

COPYBOOK=NO
The translator uses this fact and generates a meaningful
fields prefix when the same macro is used in the program
more than one time.

To optimize translating, it is recommended that you create this
table even if COBOL COPY statements are not being generated.

The default is no table name. Refer to “Generating COBOL COPY
statements” on page 102.

COPYVERB=(COPY)
COBOL copy to be used as COPY statement when
COPYBOOK=YES is specified.

Change this default if you have a special copybook pre-processor
that recognizes a different verb as a COPY statement. For example,
SQL host variables are flagged by the DB2 pre-processor when

Migration Utility translator options

114 Migration Utility V1R1 User’s Guide and Reference

|
|
|

|
|
|

located in a copybook. To allow copybooks, you can create your
own pre-processor that recognizes some other verb as a COPY
statement to expand copybooks before the DB2 translator step.

COPYWRAP=(’==’)
COBOL copy verb REPLACING string wrap characters. These
characters are wrapped around the replacing strings of the COPY
statement when COPYBOOK=YES is specified.

For example:
COPY &NAME

REPLACING ==:AA:== BY ==K=== .

CURRENCY=($) Currency sign

DATEABE=NO Date routines abend option:
NO Do not abend on invalid date
YES Abend on invalid date
RC Use RETURN-CODE for invalid dates

DDFNAME= DDname of file for reduced field names. This must be a valid 1-8
characters DDname. If coded, all field names that are reduced in
length by the translator are punched out to this file. While this is
an informational file, the punched information can be massaged for
more meaningful names and used for creating a translate table for
translating Field Names in the subsequent translating attempts.
(Refer to the ″TRANSLATE FIELDS″ option below).

The file is not created unless this DDname is specified.

The file is not created if there are no reduced fields even if
DDname is specified.

DECLGEN=FULL SQL INCLUDE generation.
FULL Generates an SQL INCLUDE &NAME for each referenced

table in the program.
PART Generates hard-coded SQL INCLUDE for the column

definitions only.

DECIMAL=PERIOD
Decimal point: PERIOD or COMMA

DOWHILE=INLINE/PERFORM
The DO WHILE code generating method. INLINE generates an
inline PERFORM for the DO WHILE. PERFORM generates a
separate paragraph for each DO WHILE nest. In general, the
INLINE option generates logic that is less fragmented and easy to
follow, but the reference labels inside the DO WHILE nests are not
allowed. Manual adjustments may be required. The PERFORM
option resolves reference labels at the DO WHILE level by creating
a separate paragraph for each DO WHILE nest.

ENDCOL=72 End column on input source: 72 or 80

ETBROWS=512 Default number of rows for external tables. This value is used
when the table rows is not coded on an external table file
definition.

FIELDS=1500 Maximum number of field definitions

FILES=128 Maximum number of supported files

FSIGN=YES FSIGN handling method for numeric display format fields:

Migration Utility translator options

Chapter 8. Installation and Migration Utility options 115

|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

YES Force F sign on fields located in file records
NO Do not force F sign at all
ALL Force F sign on all display numeric fields (records and

working storage)

HEADERS=128 Maximum number of fields for Report Heading statement

HFIELDS=256 Maximum number of Title fields in a single report

INARGS=128 Number of input arguments from a single parsed string.

Note: The number of INARGS should not be overestimated due to
the impact on the memory utilization. Only use a value
greater than 128 if absolutely necessary.

INDENT=3 Standard indentation (3 means three spaces)

INDEXS=256 Maximum number of index entries due to OCCURS

IOCODE=NATIVE
Option for FILE-STATUS translation:
NATIVE

Migration Utility creates COBOL Status Codes in the
generated program when referencing FILE-STATUS. When
this option is in use, you must ensure that any hard-coded
values that are checked against FILE-STATUS fields are
properly adjusted before translating an existing Easytrieve
Plus program. For restrictions, refer to “FILE-STATUS
(STATUS) codes” on page 17.

EASYT
Migration Utility translates COBOL Status Code to
Easytrieve Plus equivalent after each I/O. This option
generates extra code, but the status codes checking remains
compatible with those of Easytrieve Plus. No tailoring is
required.

IOERC=1000 Return Code when file I/O error is detected. Code
“IOERC=(NNNN,AUTO)” to generate unique abend code for each
I/O routine. NNNN is used as the base. One is added to return
coded in each I/O abend routine. If AUTO is not specified, the
same code is used for all I/O errors.

IOMODE=NODYNAM
I/O mode:
DYNAM Use dynamic I/O
NODYNAM Use static I/O

LINES=256 Maximum number of report lines for a single report

MAXARG=256 Maximum number of arguments in a single IF statement

MAXINDENT=27 Maximum indentation (applies when nested IFs are processed)

MAXPROC=256 Maximum PROC paragraphs

MAXSTR=1024 Maximum string size for a single bracketed expression

MNESTS=16 Maximum number of macro nests

MEMINIT=SPACES
Initialization for File Records:
SPACES Clears file records to spaces

Migration Utility translator options

116 Migration Utility V1R1 User’s Guide and Reference

VALUES Clears file records to spaces and then with COBOL
INITIALIZE.

MPARMS=064 Maximum number of supported macro parameters

NAMETAB=’$S/-+A#N@V*-_-%P’
Translate table for special characters found in the field names.
These are coded in pairs, so “$” is translated to “S”, “/” is
translated to “-”, and so on.

NCOPIES=256 Maximum number of copybook names (macros) that qualify as
record or working storage definition that can be used in a single
program. This is the limit of the queue that keeps track of macros
and copybooks used in the program that are also listed in the table
identified in the COPYNTAB= statement.

NESTS=16 Maximum number of nested IFs

OBJECTS=1024 Maximum number of Objects for COBOLBAS (passed on to
PEngiBAT step)

OCCURS1=0 &field OCCURS 1 handling:
0 Flags OCCURS as an error
1 Generates the field without OCCURS
2 Generates OCCURS 2 in the place of OCCURS 1

OVERFLOW=NOTAG
Fields overflow tag option for Report Totals:
NOTAG

Do not place an asterisk (*) on overflow condition
TAG Place an asterisk (*) in the last position of overflowed field

RFIELDS=768 Maximum number of fields on a single report

SQLFLDS=768 Maximum number of SQL fields

SQLMODE=BIND SQL/DB2 Bind Option:
BIND Generate BIND parameters
PGMNAME Generate a call at the beginning of the Procedure

Division for attaching to DB2/SQL at run time
(that is, CAFATTCH generates CALL
’CAFATTCH’.)

SQLPFIX=(Q-) Prefix for SQL file fields (host variables derived from DECLGENs).
A sequence number is inserted into the prefix to yield unique field
names, that is, Q1-&FIELD, for the first table, Q2-&FIELD for the
second table, and so on. The COBOL fields defined in the
DECLGENs are not used in the generated code in order to
preserve the original location of the host variables.

SSMODE=FLAG Subscript Usage option for BL1, BL3, and PU fields:
FLAG Flag as an error BL1, BL3, and PU if used in subscripts
GEN Allow the use of BL1, BL3, and PU fields in subscripts

Note: Migration Utility generates special logic when accessing BL1,
BL3 and PU fields. There is a substantial overhead when
these fields are used as subscripts. The recommended option
is FLAG.

THRESMOD=FIX Date threshold option:

FIX Fixed threshold (hard-coded at 40). This is the default. If
the input date 2-digit year is less or equal to 40, the

Migration Utility translator options

Chapter 8. Installation and Migration Utility options 117

century is set to 2000. If the input date 2-digit year is
greater than 40, the century is set to 1900.

Note: This option obviously has limitations and programs
may have to be changed at one point to keep the
proper threshold tolerance.

ROLL Rolling threshold whereby the CPU 2-digit year is added
to 40. The formula is as follows:

&THRESHOLD = (40 + CPU Year)

If &THRESHOLD is less than 100:
v &ADJ1=1900
v &ADJ2=2000

If &THRESHOLD is greater than 99:
v &ADJ1=3000
v &ADJ2=2000
v &THRESHOLD = (&THRESHOLD - 100)

If the date 2-digit year is greater than &THRESHOLD, the
century is set to &ADJ1.

If the date 2-digit year is less or equal &THRESHOLD, the
century is set to &ADJ2.

Note: The ROLL option is valid for the entire century.

USERXIT= The name of the user written PEngiCCL macro to be invoked at
end of job. Refer to the ″User Exits″ section in this document.

WARNDUP=GROUP
Warning message option for duplicate field definitions:

GROUP A warning message is issued for W and S fields
when the duplicate field is not within the same
group

ALL A warning message is issued for W and S fields
when a duplicate field exists, and the re-definition
of the field is not of the same attributes (for
example, length, type)

NONE No warning message for duplicate fields is issued

TRANSLATE WORDS
The section starting with this line is the words translate table. The
full section is:
TRANSLATE WORDS

(&FROMWORD-1 &TOWORD-1)
.
.

(&FROMWORD-N &TOWORD-N)
END-TRANS

This table is used to reduce the field names to 16 characters or less.
Up to 256 pairs of words can be coded. Notice that the
“TRANSLATE” is not coded with an “=” like other keywords and
that the list of keywords must be enclosed in parentheses (see
example on the previous page).

Migration Utility translator options

118 Migration Utility V1R1 User’s Guide and Reference

TRANSLATE FIELDS
The section starting with this line is the fields translate table. The
full section is:
TRANSLATE FIELDS

(&FROMFIELD-1 &TOFIELD-1)
.
.

(&FROMFIELD-N &TOFIELD-N)
END-TRANS

This table is used to replace ambiguous field names. The new
names must be 16 characters or less. Up to 256 pairs of fields can
be coded. Notice that the “TRANSLATE” is not coded with an “=”
like other keywords and that the list of fields names must be
enclosed in parentheses (see example on the previous page).

Embedding options in the program source
All EASYTRAN parameters described on the previous pages can be coded at the
beginning of each Easytrieve Plus program as comments.

In addition, SQL DECLGEns can be included via the ″EASYTRAN: DCLINCL″ in a
comment form to preserve the Easytrieve syntax compatibility. This is an
alternative to ″SQL DCLINCL &NAME″ form of DECLGEN inclusion. One or more
″EASYTRAN: DCLINCL &NAME’ statements can be included and multiple
DECLGEN copybook names can be specified on a single line, each separated by at
least one space. (See example below).

This method lets you mold the translating process according to program
requirements. Example below demonstrates the method.

The member ″EZTEMPLE″ located in the SYS1.SFSYEZTS can be used as a
template.

The keyword parameters need not be coded with an ″=″ sign; FILES=64 is the
same as FILES 64.

COBOL compiler options can be supplied via the ″PROCESS″ option as shown.
Multiple PROCESS options can be coded if needed.

EASYTRAN keyword parameters follow, followed by the ″TRANSLATE WORDS″
and ″TRANSLATE FIELDS″ lists. Comments can be placed along the side of each
parameter (comments start with a ″*″).

The ″END-EASYTRAN″ statements must be the last statement as shown.

Since statements are commented out, they do not interfere with the Easytrieve Plus
syntax.

Note: There must be at least one space between the first ″*″ and the EASYTRAN
statement, otherwise the statement is treated as a comment.
**
* EASYTRAN PROCESS LIST,ADV,OPTIMIZE * COBOL COMPILER OPTION *
* EASYTRAN DCLINCL DCLTAB2 DCLTAB3 * SQL DECLGEN (OPTIONAL) *
* EASYTRAN DCLINCL DCLTAB4 * SQL DECLGEN (OPTIONAL) *
* EASYTRAN FILES 64 * MAX NUMBER OF FILES *
* FSIGN YES * F SIGN YES/ALL/NO *

Migration Utility translator options

Chapter 8. Installation and Migration Utility options 119

* FIELDS 2000 * MAX NUMBER OF FIELDS *
* COBVERBS YES * COBOL VERBS TABLE YES/NO *
* TRANSLATE WORDS * WORDS ALTERING OPTIONS *
* (BALANCE BAL) *
* (INTEREST INT) *
* TRANSLATE FIELDS * NAME ALTERING OPTIONS *
* (COMPANY CO) *
* (OFFICER OFF) *
* (BR~NCH BR) *
* END-TRANS *
* END-EASYTRAN *
**

Easytrieve statements follow here

Embedding options in the program source

120 Migration Utility V1R1 User’s Guide and Reference

Chapter 9. Dynamic I/O mode and PDS/PDSE support

This chapter describes Dynamic I/O mode and support for PDS and PDSE
libraries.

Dynamic I/O mode
The Dynamic I/O mode resolves the input/output file record length and VSAM
files key at program run time. This option is ideal for users who wish to continue
using the Easytrieve Plus source for ongoing development.

How does it work?
COBOL file SELECT and FD statements are not generated in the COBOL code.
Instead, a File Information Block (FIB) is generated in working storage. Record
layouts are generated in the LINKAGE section with a variable tail end to provide
access to defined area plus the tail (up to 32,760 maximum on MVS). A CALL to a
supplied I/O module (FSDYNIO0) is generated in the place of standard COBOL
I/O instructions. FSDYNIO0 determines the file organization and dynamically
loads the appropriate I/O module.

Messages and returned File Status codes are COBOL-compliant. Any unrecoverable
I/O errors are trapped by MVS and a standard IBM message is issued. In some
instances, the Migration Utility I/O error handler for VSAM files displays VSAM
feedback codes found in the RPL.

Access to SYS1.SFSYLOAD load library is needed at run time.

You can activate dynamic I/O by:
v Coding IOMODE=DYNAM in the EZPARAMS table to establish the default for your

installation.
v Using EASYTRAN conventions to override the IOMODE set in EZPARAMS to

activate Dynamic I/O for a specific program.
Example:
* EASYTRAN: IOMODE DYNAM

v Coding IO FDYNIOR on the file statement to designate a specific file for Dynamic
I/O.
Example:
FILE FILEIN F (80) IO FDYNIOR

Dynamic I/O considerations
v Print files do not run in dynamic I/O mode.
v When sorting using the SORT statement, the input file record length must be

greater than, or equal to, the record length of the output file. If this is not the
case, any portion of the output file record that spans beyond the input file
record length becomes inaccessible.

v COBOL must be compiled and linked as RMODE(24). AMODE can be
AMODE(ANY) or AMODE(24).

© Copyright IBM Corp. 2002, 2003 121

Benefits of Dynamic I/O
v The VSAM file key is accessed from the catalog at run time.
v You do not need to be concerned with record length, except as noted for the

SORT statement. This lets you point to different file lengths at run time,
providing the data being accessed is defined in the layout.

v Migration Utility recognizes input files with record formats F, FB, V, VB, and
VBS at file open time. It recognizes VSAM and undefined length files from the
file definition, VS, RELATIVE, ESDS or U respectfully.

v The output file record format (RECFM) is determined by the definition in the
program. However, if provided, Migration Utility extracts the record length from
the JCL.

Support for PDS/PDSE libraries
Migration Utility supports access to PDS and PDSE libraries whereby selected, or
all, library members can be accessed from Migration Utility programs. Many
system tasks that are too complex for panel-driven utilities can be easily
accomplished with a simple Migration Utility program.

Guidelines for accessing PDS/PDSE libraries
v Files are defined as PDS/PDSE files by specifying PDS file organization on the

FILE statement. The I/O module determines which file it is working with.

Note: PDS files always work in dynamic I/O mode. Migration Utility forces
dynamic I/O on PDS files.

v Migration Utility assigns a field for member name (key) in working storage. The
key can be accessed using the &FILE:KEY field. The key is returned for every
record read.

v The record format of an input PDS can be F, FB, V, VB, VBS, or U.
v The record format of an output PDS can be F, FB, V, VB, or VBS. Migration

Utility does not support output PDS or PDSE files with an undefined length.
v PDS files can be used on JOB, SORT or standard I/O (GET/ PUT and POINT)

statements.
v When accessing a PDS using a JOB or SORT statement, the system positions the

file using the value found in the &FILE:KEY field.
v When accessing a PDS using a GET or PUT statement, a POINT statement must

be issued first to position the file to the desired member.
Example:
POINT FILEIN KEY EQ WS-MEMBER-NAME

v When you specify the name of a PDS or PDSE member in the &FILE:KEY, you
can use an asterisk (*) as a wildcard to:
– Specify a pattern

or
– Represent a string of zero or more characters

When you specify the name of a PDS or PDSE member using one or more
asterisks (*), Migration Utility selects members as follows:
– If you specify an 8-character member name containing more than one

asterisk, all members that match the pattern are selected,

otherwise

Dynamic I/O mode and PDS/PDSE support

122 Migration Utility V1R1 User’s Guide and Reference

– Members are selected using a generic compare.

For example:

If you specify... Migration Utility selects...

* All members

FS* All members whose name starts with “FS”

DYN All members whose name contains “DYN”

***A**D* All members whose name contains an “A” in
position 4 and a “D” in position 7

v The PDS directory is read by specifying the DIRECTORY option on the GET
statement.
Example:
GET FILEIN DIRECTORY STATUS

v To create a PDS member, a POINT statement must be issued to establish
reference to the output member. Thereafter, the PUT statement is used to add
records to the member.
The demonstration program TESTPDS0 shown in Figure 1 on page 124 (a copy of
TESTPDS0 can be found in SYS1.SFSYEZTS) demonstrates the use of PDS files.
The JCRUNPD0 job to run this program is located in SYS1.SFSYJCLS.

v Use the %COBOL technique to take advantage of STRING, UNSTRING,
INSPECT, and other COBOL instructions to perform the parsing.

Dynamic I/O mode and PDS/PDSE support

Chapter 9. Dynamic I/O mode and PDS/PDSE support 123

**
* EASYTRAN: PROCESS LIST,ADV,OPTIMIZE * COMPILER OPTIONS *
* EASYTRAN: IOMODE DYNAM * I/O MODE *
* END-EASYTRAN *
**
* TESTPDS0: EASYTRIEVE PROGRAM ACCESSING PDS/PDSE LIBRARIES. *
* *
* THIS PROGRAM DEMONSTRATES: *
* *
* 1. HOW TO USE POINT TO ESTABLISH WILD CARD SELECTION *
* 2. HOW TO READ PDS/PDSE DIRECTORY WITH WILD CARD *
* 3. HOW TO COPY PDS MEMBERS FROM INPUT FILE TO OUTPUT FILE *
* 4. HOW TO OBTAIN DATASET NAME VIA A CALL TO FSDYNDSN PROGRAM *
* *
* INPUT: FILEIN - PDS/PDSE LIBRARIE(S) *
* PARM - WILD CARD FOR MEMBER SELECTION *
* *
* OUTPUT: PDSOUT - PDS/PDSE LIBRARY OF COPIED MEMBERS *
* REPORT1 - STATISTICAL DATA AND LIST OF SELECTED PROGRAMS *
* *
* NOTES: THIS IS A DEMO PROGRAM. USE YOUR OWN IMAGINATION TO DESIGN *
* PROGRAMS THAT ACCOMMODATE YOUR NEEDS. *
**

FILE REPORT1 PRINTER
FILE FILEIN PDS F (80)
ITEXT 1 5 A

FILE PDSOUT PDS F (80)
OTEXT 1 5 A

WS-PDS-MEMBER W 8 A VALUE ’ ’
WS-SAV-MEMBER W 8 A VALUE ’ ’
WS-COUNT W 8 N VALUE 0
WS-RCOUNT W 8 N VALUE 0
WS-DSNAME W 44 A

JOB INPUT NULL
--
* OBTAIN PARM VALUE FROM THE EXEC STATEMENT FOR GENERIC PROCESS. *
--
%GETPARM WS-PDS-MEMBER 8
DISPLAY REPORT1 ’PARM VALUE: ’ WS-PDS-MEMBER

** OBTAIN INPUT FILE DATASET NAME
%GETDSN ’FILEIN’ WS-DSNAME
DISPLAY REPORT1 NEWPAGE ’GETDSN: ’ WS-DSNAME
DISPLAY REPORT1 ’ ’

--
* READ PDS/PDSE DIRECTORY AND CREATE ADD STATEMENTS TO REPORT1. *
--
POINT FILEIN EQ WS-PDS-MEMBER STATUS
DO WHILE FILEIN:FILE-STATUS EQ 0

GET FILEIN DIRECTORY STATUS
IF NOT EOF FILEIN

WS-COUNT = WS-COUNT + 1
DISPLAY REPORT1 ’FILEIN MEMBER=’ FILEIN:KEY

END-IF
END-DO
DISPLAY REPORT1 ’ ’
DISPLAY REPORT1 ’TOTAL PDS MEMBERS LOCATED: ’ WS-COUNT
DISPLAY REPORT1 SKIP 2

Figure 1. PDS/PDSE program example (Part 1 of 2)

Dynamic I/O mode and PDS/PDSE support

124 Migration Utility V1R1 User’s Guide and Reference

--
* LIST ALL MEMBERS IN INPUT PDS/PDSE SELECTED BY THE PARM AND COPY *
* ALL SELECTED MEMBERS TO PDSOUT PDS FILE. *
--
** OBTAIN OUTPUT PDSOUT DATASET NAME
%GETDSN ’PDSOUT’ WS-DSNAME
DISPLAY REPORT1 NEWPAGE ’PDSOUT: ’ WS-DSNAME

WS-COUNT = 0
POINT FILEIN EQ WS-PDS-MEMBER STATUS
DO WHILE FILEIN:FILE-STATUS EQ 0

GET FILEIN STATUS
IF NOT EOF FILEIN

IF WS-SAV-MEMBER NE FILEIN:KEY
WS-COUNT = WS-COUNT + 1
DISPLAY REPORT1 ’PDSOUT MEMBER=’ FILEIN:KEY
WS-SAV-MEMBER = FILEIN:KEY
POINT PDSOUT EQ FILEIN:KEY

END-IF
PUT PDSOUT FROM FILEIN

END-IF
END-DO
DISPLAY REPORT1 ’ ’
DISPLAY REPORT1 ’TOTAL PDS MEMBERS CREATED: ’ WS-COUNT
DISPLAY REPORT1 ’ ’
STOP
---------------------- END OF PROGRAM ------------------------------

Figure 1. PDS/PDSE program example (Part 2 of 2)

Dynamic I/O mode and PDS/PDSE support

Chapter 9. Dynamic I/O mode and PDS/PDSE support 125

126 Migration Utility V1R1 User’s Guide and Reference

Chapter 10. Toolkit replacement macros

This chapter describes Toolkit and date-handling replacement macros, and
enhanced date threshold handling.

Toolkit and date-handling replacement macros
Easytrieve Plus provides some special macros for date calculation and some more
commonly-used functions. These macros are known as “Toolkit” macros.

Migration Utility provides the Toolkit replacement macros listed below. The macros
are written in CCL1 language (PEngiCCL). Macros are DISTRIBUTED in byte code
and macro source in the SYS1.SFSYFJCC and SYS1.SFSYCCLM libraries
respectfully.

All date routines use the Gregorian Leap Year formula as follows:

The year is a leap year if:
v It is divisible by 4 and not divisible by 100,

or
v It is divisible by 400

The following Toolkit date-replacement macros are provided:

ALPHACON Unstring a edited number into an internal numeric format

CONVAE Convert ASCII to EBCDIC

CONVEA Convert EBCDIC to ASCII

DATECALC Add or subtract a number of days to a date

DATECONV Convert a date of any format to any format

DATEVAL Date validation

DATEVALE A Migration Utility special macro called by DATEVAL (internal use
only)

DATEMASK A Migration Utility special macro called by all date macros
(internal use only)

DAYSAGO Calculate days elapsed from User date to today

DAYSCALC Calculate the number of days between two dates

GETDATE Get the 6-digit system date

GETDATEL Get the 8-digit system date

WEEKDAY Obtain the name of the day of the week (for example, MONDAY)

The following Toolkit special purpose replacement macros are provided:

DIVIDE Module N division

EXPO Exponentiate a number

NUMTEST Test field for numeric, and count bad fields

© Copyright IBM Corp. 2002, 2003 127

||

||

||

RANDOM Random number generator

SQRT Square root calculation

UNBYTE Decode a byte into 8 bytes of 0 and 1 flags

The following special purpose Migration Utility macros are provided:

GETDSN Get data set name from the JCL

GETJOB Obtains JOB number and TSO User from the Job Scheduler

GETPARM Get PARAMETERS from the PARM= statement in the JCL

PARSE Special parsing macro (uses the COBOL UNSTRING statement)

The coding conventions for the above macros are described later in this chapter.

The date macros generate code that call FSDATEZ0 and FSDATSRV modules at run
time. Access to SYS1.SFSYLOAD is needed at run time.

Macros search sequence
Migration Utility normally obtains Easytrieve Macros from libraries defined for the
FJCPYLB DDname in the FSCCL1 step of your JCL.

Make sure that the SYS1.SFSYCCLM PDS is concatenated in FJCPYLB and
FJMACLB before any other Easytrieve Plus macro libraries. It is used as a finder
PDS for replacement macros.

When Migration Utility locates a macro in FJCPYLB, it determines the macro
format (Easytrieve or CCL1) and invokes the appropriate interpreter.

CCL1 macros are executed from the byte code library (FJCCLLB) if found there.
Otherwise, the copy found in FJMACLB SYS1.SFSYCCLM source is used.

Enhanced date threshold handling
Migration Utility provides enhanced handling of the date threshold for deriving
the century from a 2-digit year. It provides for a fixed threshold or a rolling
threshold.

Note: All Migration Utility date calculation macros default to THRESHOLD 0.

The program default date threshold options are generated in the COBOL program
at translation time as follows:
v If the THRESHOLD value coded in the date macros (default or user-supplied) is

not zero, the macro threshold value is used.
v If the THRESHOLD value coded in the date macros (default or user-supplied) is

equal to zero, the EZPARAMS/EASYTRAN coded threshold value is used as
follows:
THRESMOD=FIX/ROLL

– FIX for fixed threshold (hard-coded at 40). This is the default.
If the input date 2-digit year is less or equal to 40, the century is set to 2000.
If the input date 2- digit year is greater than 40, the century is set to 1900.

Note: This option obviously has limitations and programs may have to be
changed to maintain the correct threshold tolerance.

Toolkit and date-handling replacement macros

128 Migration Utility V1R1 User’s Guide and Reference

||

– ROLL for the rolling threshold whereby the CPU 2-digit year is added to 40.
&THRESHOLD = (40 + CPU year)
If &THRESHOLD is less than 100:
- &ADJ1=1900
- &ADJ2=2000

If &THRESHOLD is greater than 99:
- &ADJ1=3000
- &ADJ2=2000
- &THRESHOLD = (&THRESHOLD - 100)

If the input date 2-digit year is greater than &THRESHOLD, the century is set
to &ADJ1.

If the input date 2-digit year is less or equal &THRESHOLD, the century is
set to &ADJ2.

Note: The ROLL option accommodates this century without having to change
programs.

v Runtime options allow you to override the hard-coded threshold generated in
the program by coding DD statements in the application run JCL:

//FJTHRES0 DD DUMMY Forces a fixed threshold of 40

//FJTHRES1 DD DUMMY Forces a rolling threshold of (40 + CPU two digit
year)

The search priority is FJTHRES0 but, if not present, FJTHRES1 is used.

Available date masks
The special macro, DATEMASK, changes the user-supplied mask to a “proper”
mask that is understood by FSDATEZ0 and FSDATSRV (Migration Utility)
programs.

The DATEMASK macro is invoked internally by all DATE macros. Do not use it in
stand-alone mode.

The available masks are shown below. COL1 shows the user masks; COL2 shows the
equivalent masks understood by the FSDATEZ0 program. Any “YYYY” found in
the macros is changed to “CCYY”.

COL1 COL2

MMDDYY MMDDYY, .STANDARD FORMATS FOR FSDATEZ0
MMDDCCYY MMDDCCYY
MDY MMDDYY
MDCY MMDDCCYY

MMYYDD MMYYDD, .SPECIAL FORMATS FSDATEZ0
MMCCYYDD MMCCYYDD
MYD MMYYDD
MCYD MMCCYYDD

DDMMYY DDMMYY, .SPECIAL FORMATS FOR FSDATEZ0
DDMMCCYY DDMMCCYY
DMY DDMMYY
DMCY DDMMCCYY

DDYYMM DDYYMM, .SPECIAL FORMATS FOR FSDATEZ0
DDCCYYMM DDCCYYMM

Enhanced date threshold handling

Chapter 10. Toolkit replacement macros 129

DYM DDYYMM
DCYM DDCCYYMM

YYMMDD YYMMDD, .STANDARD FORMAT FOR FSDATEZ0
CCYYMMDD CCYYMMDD
YMD YYMMDD
CYMD CCYYMMDD

YYDDMM YYDDMM, .SPECIAL FORMAT FOR FSDATEZ0
CCYYDDMM CCYYDDMM
YDM YYDDMM
CYDM CCYYDDMM

YYDDD YYDDD, .JULIAN STANDARD FORMAT
CCYYDDD CCYYDDD
YD YYDDD
CYDDD CCYYDDD

ALPHACON macro: coding rules
Purpose: Unstrings an edited number into a numeric field suitable for

arithmetic.

Usage: %ALPHACON &alphafield &numfield DECIMAL (’&dec’)
CALLCOUNTER (&count)

where:
&alphafield An alpha field that contains an

edited number.
&numfield A receiving numeric field.
&dec Decimal point (character). The

default is “.” (period).
&count Call counter (not used by

Migration Utility). The default is 1.

Notes: The ALPHACON macro invokes the FSDIMAGE program at run
time dynamically. Access to the SYS1.SFSYLOAD library is
required at run time. On completion, the ALPHACON-FLAG field
contains:

YES Successful conversion

LEFT Integer portion cannot fit into the &numfield

RIGHT Decimal portion cannot fit into the &numfield
decimals

BOTH Neither the integer or the decimals can fit into the
&numfield

Examples:
DEFINE WS-EDITED-FIELD W 15 A VALUE ’123.55’
DEFINE WS-NUMERIC-FIELD W 9 N 2...
%ALPHACON WS-EDITED-FIELD W S-NUMERIC-FIELD DECIMAL (’.’)

CONVAE macro: coding rules
Purpose: Converts ASCII characters to EBCDIC.

Usage: %CONVAE &file STARTPOS &field LENGTH &length

where:

Enhanced date threshold handling

130 Migration Utility V1R1 User’s Guide and Reference

|

||
|

||
|

|
||
|
||
||
|
||
|

||
|
|
|

||

||

||
|

||
|

|

|
||||
|

|
|

||

||

|

&file A file name. If coded, file record is
used.

&field Field to be converted.
&length Field length.

Notes: The CONVAE macro invokes the FSDYNCNV program at run time
dynamically. Access to the SYS1.SFSYLOAD library is required at
run time.

Examples:
DEFINE FILEIN F (500)...
%CONVAE FILEIN LENGTH (500)

DEFINE WS-ALPHA-FIELD W 15 A VALUE ’ABCDE’...
%CONVAE STARTPOS WS-ALPHA-FIELD LENGTH (15)

CONVEA macro: coding rules
Purpose: Convert EBCDIC characters to ASCII.

Usage: %CONVEA &file STARTPOS &field LENGTH &length

where:
&file A file name. If coded, file record is

used.
&field Field to be converted.
&length Field length.

Notes: The CONVAE macro invokes the FSDYNCNV program at run time
dynamically. Access to the SYS1.SFSYLOAD library is required at
run time.

Examples:
DEFINE FILEIN F (500)...
%CONVEA FILEIN LENGTH (500)

DEFINE WS-ALPHA-FIELD W 15 A VALUE ’ABCDE’...
%CONVEA STARTPOS WS-ALPHA-FIELD LENGTH (15)

DATECALC macro: coding rules
Purpose: Adds or subtracts a number of days to any date and places the

result into the target user date of any format.

Usage: %DATECALC &fdate &fmask &sign &days &tdate &tmask
THRESHOLD YY

where:
&fdate The input date.
&fmask Input date format. For example,

MMDDYY.
&sign PLUS when adding days, MINUS

when subtracting days.
&days Number of days to add or subtract.
&tdate Output date.

CONVAE

Chapter 10. Toolkit replacement macros 131

||
|
||
||

||
|
|

|

||||
|
|
|
||||
|

|
|

||

||

|
||
|
||
||

||
|
|

|

||||
|
|
||||
|

|

&tmask Output date format. For example,
YYMMDD.

THRESHOLD YY Threshold year. This is an optional
parameter. The default is 00.

Notes: Coding 0 for the threshold value for this macro results in the usage
of the default threshold value in the FSDATSRV module. Currently,
the default threshold in FSDATSRV program is 40. The threshold of
zero is recommended. Refer to the THRESMOD= option of
EZPARAMS/EASYTRAN for additional ROLLING or FIXED
threshold flexibility.

Examples:
%DATECALC F-DATE YYMMDD PLUS 15 T-DATE MMDDYY

%DATECALC F-DATE YYMMDD PLUS 15 T-DATE MMDDYY THRESHOLD 40

DATECONV macro: coding rules
Purpose: Converts dates from any format to any other format.

Usage: %DATECONV &fdate &fmask &tdate &tmask THRESHOLD YY

where:
&fdate The input date.
&fmask Input date format. For example,

MMDDYY.
&tdate Output date.
&tmask Output date format. For example,

YYMMDD.
THRESHOLD YY Threshold year. This is an optional

parameter. The default is 00.

Notes: Coding 0 for the threshold value for this macro results in the usage
of the default threshold value in the FSDATSRV module. Currently,
the default threshold in FSDATSRV program is 40. The threshold of
zero is recommended. Refer to the THRESMOD= option of
EZPARAMS/EASYTRAN for additional ROLLING or FIXED
threshold flexibility.

Examples:
%DATECONV F-DATE YYMMDD T-DATE MMDDYY

%DATECONV F-DATE YYMMDD T-DATE MMDDYY THRESHOLD 40

DATEVAL macro: coding rules
Purpose: Validates input date for the given mask.

Usage: %DATEVAL &fdate &fmask THRESHOLD YY

where:
&fdate The input date.
&fmask Input date format. For example,

MMDDYY.
THRESHOLD YY Threshold year. This is an optional

parameter. The default is 00.

Notes: Coding 0 for the threshold value for this macro results in the usage
of the default threshold value in the FSDATSRV module. Currently,

DATECALC

132 Migration Utility V1R1 User’s Guide and Reference

the default threshold in FSDATSRV program is 40. The threshold of
zero is recommended. Refer to the THRESMOD= option of
EZPARAMS/EASYTRAN for additional ROLLING or FIXED
threshold flexibility.

On completion, the DATEVAL-FLAG contains ’YES’ for valid date,
and ’NO’ for invalid date. The flag can be tested and programming
decisions can be made based on the outcome.

Examples:
%DATEVAL I-DATE YYMMDD

IF DATEVAL-FLAG EQ ’YES’
.
.
END-IF

%DATEVAL I-DATE CCYYMM THRESHOLD 50

IF DATEVAL-FLAG EQ ’YES’
.
.
END-IF

DAYSAGO macro: coding rules
Purpose: Calculates the number of days elapsed between two dates.

Usage: %DAYSAGO &date &format &operator &operand THRESHOLD
YY

where:
&date The input date.
&format Input date format. For example,

MMDDYY.
&operator Code relational operator: EQ, =,

NE, GT, ,LT, GE, LE
&operand A numeric field name or constant

to compare with. This value is the
number days that you wish to
verify.

THRESHOLD YY Threshold year. This is an optional
parameter. The default is 00.

Notes: Coding 0 for the threshold value for this macro results in the usage
of the default threshold value in the FSDATSRV module. Currently,
the default threshold in FSDATSRV program is 40. The threshold of
zero is recommended. Refer to the THRESMOD= option of
EZPARAMS/EASYTRAN for additional ROLLING or FIXED
threshold flexibility.

On completion, the DAYSAGO-FLAG contains “YES” if the criteria
is met, otherwise it contains “NO”. The flag can be tested and
programming decisions can be made based on the outcome.

The DAYSAGO-DIFF field contains the number of days between
today’s CPU date and the input date. If the input date is higher
than the CPU date the value returned in the DAYSAGO-DIFF will
be negative.

Examples:

DATEVAL

Chapter 10. Toolkit replacement macros 133

%DAYSAGO I-DATE MMDDYY EQ 15

IF DAYSAGO-FLAG EQ ’YES’
.
.
END-IF

%DAYSAGO I-DATE CCYYMMDD EQ 30 THRESHOLD 45

DAYSCALC macro: coding rules
Purpose: Calculates the number of elapsed days between two dates.

Usage: %DAYSCALC &fdate &fmask &tdate &tmask &result
THRESHOLD NN

where:
&fdate The input date.
&fmask Input date format. For example,

MMDDYY.
&tdate Output date.
&tmask Output date format. For example,

YYMMDD.
&result A numeric field for returned

number of days.
THRESHOLD YY Threshold year. This is an optional

parameter. The default is 00.

Notes: Coding 0 for the threshold value for this macro results in the usage
of the default threshold value in the FSDATSRV module. Currently,
the default threshold in FSDATSRV program is 40. The threshold of
zero is recommended. Refer to the THRESMOD= option of
EZPARAMS/EASYTRAN for additional ROLLING or FIXED
threshold flexibility.

The &result field contains the number of days between &fdate and
&tdate dates. If the &tdate is higher than the &fdate, the value
returned in the &result is negative.

Examples:
%DAYSCALC F-DATE MMDDYY T-DATE YYMMDD WS-DAYS

%DAYSCALC F-DATE MMDDYY T-DATE YYMMDD WS-DAYS THRESHOLD 45

DIVIDE macro: coding rules
Purpose: Divides an input number, giving a quotient and a remainder.

Usage: %DIVIDE &number &divisor "ient &remainder

where:
&number A numeric field to be divided.
&divisor The divisor.
"ient Output quotient numeric field.
&remainder Output remainder numeric field.

Example:
%DIVIDE I-NUMBER 15 O-QUOTIENT O-REMAINDER

DAYSAGO

134 Migration Utility V1R1 User’s Guide and Reference

EXPO macro: coding rules
Purpose: Exponentiates a number.

Usage: %EXPO &value &exponent &result

where:
&value The numeric field to be

exponentiated.
&exponent The exponent.
&result The outcome of the exponentiation.

Notes: This macro uses the COBOL COMPUTE statement to perform the
exponentiation.

Migration Utility provides an alternative way to code an assign
statement using ** for exponentiation.

Example:
%EXPO I-NUMBER 3.5 O-RESULT

GETDATE macro: coding rules
Purpose: Gets a 6-digit current date in numeric format (without insert

characters).

Usage: %GETDATE &date

where:
&date A numeric field for the retrieved

date.

Notes: The returned date is the date retrieved at the program start-up
time in YYMMDD format.

Example:
%GETDATE WS-DATE

GETDATEL macro: coding rules
Purpose: Gets an 8-digit current date in numeric format (without insert

characters).

Usage: %GETDATEL &date

where:
&date A numeric field for the retrieved

date.

Notes: The returned date is the date retrieved at the program start-up
time in CCYYMMDD format.

Example:
%GETDATEL WS-DATE-LONG

GETDSN macro: coding rules
Purpose: Obtains the data set name for a specified DDname (MVS only).

Usage: %GETDSN &DDname &dsname

where:

EXPO

Chapter 10. Toolkit replacement macros 135

&DDname File DDname (1 to 8 characters).
&dsname A 44-byte field for the retrieved

data set name.

Notes: GETDSN macro invokes FSDYNDSN program at run time
dynamically. Access to SYS1.SFSYLOAD library is required at run
time.

On completion, RETURN-CODE can be tested for a successful call:
v When RETURN-CODE equals zero, the &DDname was located

in the JCL and was placed into the &dsname field.
v When RETURN-CODE is not equal to zero, &DDname is not in

the JCL. The &dsname is cleared to spaces.

Example:
DEFINE WS-DSNAME W 44 A

%GETDSN ’FILEIN’ WS-DSNAME

GETJOB macro: coding rules
Purpose: Obtains Job Number and TSO User from the JOB Scheduler

Information Block.

Usage: %GETJOB

Notes: The GETJOB macro invokes the FSYGJOB0 program at run time
dynamically. Access to the SYS1.SFSYLOAD library is required at
run time.

On completion, the following information is available:
DEFINE GETJOB-DATA W 80 A
DEFINE GETJOB-WORKID GETJOB-DATA +00 8 A
DEFINE GETJOB-JOBID GETJOB-DATA +08 8 A
DEFINE GETJOB-JOBNAME GETJOB-DATA +16 8 A
DEFINE GETJOB-JOBSTEP GETJOB-DATA +24 8 A
DEFINE GETJOB-PREFIX GETJOB-DATA +32 8 A
DEFINE GETJOB-UERID GETJOB-DATA +40 8 A

Example:
%GETJOB

GETPARM macro: coding rules
Purpose: Gets parameter information from the EXEC PARM= statement in

the JCL.

Usage: %GETDATEL &field &length

where:
&field A field to hold parameter

information.
&length The length of the field.

Notes: The PARM information is moved from the system area passed to
the COBOL program via the LINKAGE SECTION into the
designated field.

Example:
DEFINE WS-PARAMETER W 8 A

%GETPARM WS-PARAMETER 8

GETDSN

136 Migration Utility V1R1 User’s Guide and Reference

|

||
|

||

||
|
|

|

|
|
|
|
|
|
|

|

|

|

NUMTEST macro: coding rules
Purpose: Tests a field for numeric content, and counts the number of

non-numeric occurrences.

Usage: %NUMTEST &field &description &field-id

where:
&field Input field to be tested.
&description Description for the DISPLAY

message when not numeric.
&field-id Identifier for the DISPLAY message

when not numeric.

Notes: On completion, the NUMTEST-FLAG contains “YES” when the
field is numeric, otherwise it contains “NO”. The flag can be tested
and programming decisions can be made based on the outcome.

Examples:
%NUMTEST I-FIELD ’NUMERIC FIELD TEST’ ’I-FIELD’

IF NUMTEST-FLAG NE ’YES’
.
.

END-IF

PARSE macro: coding rules
Purpose: Parses a string and places the contents into an array of strings with

the corresponding lengths.

Usage: %PARSE &string &into &occurs DELIM(&delim) PFX(&pfx)
SIZE(&size)

where:
&string A quoted string or a field to parse.

This is a required parameter.
&into Name of the array (tokens) to parse

into. This is a required parameter.
&occurs Maximum number of words

(tokens). This is a required
parameter

&delim Delimiter character(s). The default
is spaces

&pfx Prefix for &into for unique array
names. The default is no prefix.

&size Maximum size of each word
(token). The default is 80.

Notes: Parsing is done using the UNSTRING COBOL statement. Each
parsed word is placed into the &pfx&into array and the length into
the corresponding &pfx&into-LEN field. Working storage is
generated for each unique &pfx&into array as follows:

DEFINE &PFX&INTO W &SIZE A OCCURS &OCCURS
DEFINE &PFX&INTO.-LEN W 2 B 0 OCCURS &OCCURS
DEFINE &PFX&INTO.-COUNT W 4 B 0
DEFINE &PFX&INTO.-ERRCD W 4 B 0

On completion:

NUMTEST

Chapter 10. Toolkit replacement macros 137

v &PFX&INTO array contains the extracted words.
v &PFX&INTO-LEN contains the length of each word respectfully.
v &PFX&INTO-COUNT field contains the number of extracted

words.
v &PFX&INTO-ERRCD contains the error code (currently always

set to zero).

Examples:
%PARSE I-STRING TOKEN 50 DELIM (PARSE-CHAR)

%PARSE I-STRING TOKEN 80 PFX(’A’) SIZE(30)

If the input string is a subscripted field, enclose the &string in
quotes with the necessary subscript:
%PARSE ’I-STRING (SUB1)’ TOKEN 80 DELIM (’,’ ’$’ ’!’) PFX(’B’) SIZE(45)

RANDOM macro: coding rules
Purpose: Generates a random number (of 1 to 18 digits) based on an initial

random SEED.

Usage: %RANDOM &rand &seed &digits

where:
&rand A numeric field in which the

random number is returned.
&seed Random function seed (must be a

number or a numeric field).
&digits The length of the returned &rand

number.

Notes: This macro uses the COBOL RANDOM function number generator.

SQRT macro: coding rules
Purpose: Calculates the square root of a number.

Usage: %SQRT &number &result

where:
&number The input numeric field.
&result A numeric field for output.

Notes: This macro uses the COBOL COMPUTE statement to perform the
exponentiation.

Migration Utility provides an alternative way to code an assign
statement using ** for exponentiation.

Example:
%SQRT I-NUMBER .5 O-RESULT

UNBYTE macro: coding rules
Purpose: Generates 8 digits of “0” or “1” representing each bit in the input

byte (using left-to-right decoding).

Usage: %UNBYTE &ibyte

where:
&ibyte One-byte input field to be decoded.

PARSE

138 Migration Utility V1R1 User’s Guide and Reference

Notes: On completion, the field names BIT0, BIT1, BIT2, BIT3, BIT4, BIT5,
BIT6 and BIT7 correspond to the byte bits of the input field.
ALLBITS is the 8-byte group field name for these elementary
fields.

Example:
%UNBYTE I-BYTE

IF BIT0 EQ 1 OR BIT7 EQ 0
.
.
.
END-IF

WEEKDAY macro: coding rules
Purpose: Validates the given date and returns the name of the day of the

week.

Usage: %WEEKDAY &fdate &fmask &day THRESHOLD NN

where:
&fdate The input date.
&fmask Input date format. For example,

MMDDYY.
&day An alphanumeric field for the

returned name of the day of the
week.

THRESHOLD YY Threshold year. This is an optional
parameter. The default is 00.

Notes: Coding 0 for the threshold value for this macro results in the usage
of the default threshold value in the FSDATSRV module. Currently,
the default threshold in FSDATSRV program is 40. The threshold of
zero is recommended. Refer to the THRESMOD= option of
EZPARAMS/EASYTRAN for additional ROLLING or FIXED
threshold flexibility.

On completion, the &day field contains the day of the week (such
as MONDAY, TUESDAY, and so on).

Examples:
%WEEKDAY I-DATE MMDDYY WS-WEEK-DAY

%WEEKDAY I-DATE MMDDYY WS-WEEK-DAY THRESHOLD 40

UNBYTE

Chapter 10. Toolkit replacement macros 139

WEEKDAY

140 Migration Utility V1R1 User’s Guide and Reference

Chapter 11. Messages

Migration Utility works in two steps:
1. The PEngiEZT translator converts Easytrieve source files to PEngiBAT source

files.
2. The PEngiBAT translator translates the PEngiBAT files to COBOL source files.

┌────────────┐ ┌────────────┐ ┌──────────┐
Easytrieve │ │ PEngiBAT │ │ COBOL │ │
Source │ PEngiEZT │ Source │ PEngiBAT │ Source │ COBOL │

───────�┤ Translator ├─────────�┤ Translator ├───────�┤ Compiler │
│ │ │ │ │ │
└────────────┘ └────────────┘ └──────────┘

These two steps relate to the error messages that Migration Utility produces, and
the action that you take in response to the messages.

Some of the messages produced by the first step are described in “Migration
Utility (macro) generated error messages” on page 143. These messages relate to
user/syntax problems. The description of the message also gives pointers as to
how you fix the problem.

The rest of the messages produced by the first step are described in “PEngiCCL
generated messages” on page 191. From the description of the message, you will
have to determine whether you caused the message with a bad syntax (in which
case you can fix the problem), or whether the problem is an error in macro
definition. If the latter, then you need to report the problem to IBM.

Messages produced by the second step are described in “Migration Utility macro
generated messages” on page 157 and “Migration Utility function generated
messages” on page 180. In Migration Utility, you cannot intervene in Step 2 to
produce errors, so any messages that are reported must relate to an error produced
by Step 1. This should not happen. If you have a message reported by Step 2, then
you need to report the problem to IBM.

The PEngiEZT error messages are preceded by the word *ERROR*. The messages
are described in the error number sequence. The word ″*ERROR*″ and the
condition code are not shown as part of the message since they do not change.

ERROR EZT000-01,012 MAXIMUM OF NN OBJECTS EXCEEDED
| | |
| | |

Error Condition Message
Number Code Text

Messages are included in the SYSOUT file produced by the PEngiCCL
preprocessor. Every message is written in two places:
v Immediately following the statement or macro that caused the error.
v At end of the listing, showing the page and the line number of the statement in

error

The first page of the PEngiCCL preprocessor program listing contains the
preprocessor options in effect and the errors summary, that is, the highest severity
code and the number of errors detected during preprocessing.

© Copyright IBM Corp. 2002, 2003 141

To check for errors, look at the error summary on the first page of the preprocessor
program listing. If the highest error severity code and the number of errors
detected are not zero, then you had errors.

To locate errors, you can either scroll to the last page of the listing where the errors
are shown and use the statement and/or page number to locate the actual error
message and the statement in error, or you can browse through the listing.

Error messages are displayed following the statement or macro in error.

It is possible to get PEngiCCL preprocessor messages due to the previously
detected errors. You should resolve all obvious errors by elimination process first.
PEngiCCL preprocessor errors are usually caused by problems such as long data
strings, missing parameters, null data strings, and so on.

MNOTEs (Warnings) are of informational nature. They do not inhibit code
generation.

PEngiCCL error messages are composed of the error number, error severity code
and a descriptive message. These messages are described in “PEngiCCL generated
messages” on page 191, in error number sequence. Typically, each PEngiCCL
message text includes a supplement text, up to 12 characters long, of the data
string in error. The supplement text is separated from the message by a “:”.

DEFCOM-01,012 -TEXT-:INPUT DATA LENGTH IS ZERO
| | |
| | |
Error Severity Supplement and Message
Number Code Text

PEngiCCL (macro) and Function error messages are in the form of PEngiCCL
Mnote (Macro Note). That is, the messages are preceded by the word **MNOTE**.
These messages are described in “Migration Utility macro generated messages” on
page 157 and “Migration Utility function generated messages” on page 180, in error
number sequence. The word ″**MNOTE**″ and the condition code are not shown
as part of the message since they do not change.

MNOTE 012 DCCL-01 MAXIMUM OF NN OBJECTS EXCEEDED
| | |
| | |
Condition Error Message

Code Number Text

Error messages are displayed following the statement or macro in error. Use the
index (in the back of this book) to locate the message.

Macro instructions and functions are imbedded in the program source with
respective parameters. Errors can be detected during parameter collection or
during the execution of the macro(s).

When collecting macro parameters, the PEngiCCL macro processor collects all
macro parameters, bound by the Macro Start (_ or EXCCL) and the Macro End (;)
delimiter, before it gives control to each macro for processing. The syntax errors are
detected and displayed during the parameter collection process.

When collecting Function parameters, the PEngiCCL function processor collects all
function parameters, bound by the paired parentheses following the function
name, before it gives control to each function for processing. The syntax errors are
detected and displayed during the parameter collection process.

Messages

142 Migration Utility V1R1 User’s Guide and Reference

All other errors are detected during the macro execution. Thus, errors are
displayed following the last macro parameter of each macro invocation.

Note 1: All PEngiCCL preprocessor messages are included in “PEngiCCL
generated messages” on page 191 for convenience. Since the PEngiCCL
preprocessor is a macro interpreter, most messages are related to the
interpretation of the macro directives imbedded in the PEngiCCL macros.
Such messages are encountered during the development of the new
PEngiCCL macros.

Note 2: It is possible to get PEngiCCL preprocessor messages due to the
previously detected errors or MNOTES. You should resolve all obvious
errors by elimination process first. PEngiCCL preprocessor errors are
usually caused by fairly obvious mistakes such as long data strings,
missing parameters, or null data strings. If you still cannot resolve a
PEngiCCL preprocessor error after eliminating all MNOTES and obvious
errors, please contact the IBM service center.

Note 3: The most frequent errors are caused by the misplaced macro-end-delimiter
(:), or by data placed in column 72, or before column 12. Some errors can
be caused by unpaired quotes or parentheses. To solve the problem please
check:
1. Every macro instruction must be terminated by a “:”.
2. Macro parameters can be coded following the macro instruction name

on the same line, or starting in column 12 on subsequent lines. Column
72 is used as continuation byte. Do not code any data in CC 72 unless
you are intending to continue a quoted string.

3. Quoted strings must contain paired quotes. If you need a quote as a
data item, code double quotes.

4. Bracketed parameters must contain paired brackets. The translator
searches all parameters until a paired bracket is found, which may
cause parsing of unintended strings that follow macro parameters.

Migration Utility (macro) generated error messages

EZT000-00 &text

Explanation: This message is a generic message for
errors detected while interpreting the
EASYTRAN/EZPARAMS parameters.

User Response: The &text is self-explanatory. Make
necessary changes as needed.

EZT000-00 MAXIMUM OF 256 TRANSLATE
WORDS EXCEEDED

Explanation: The number of translate words exceeds
maximum of 256.

User Response: Limit the number of translate words
in EZPARAMS member to maximum of 256.

EZT000-01 NN :ILLEGAL NUMBER OF DECIMAL
PLACES

Explanation: The specified number of decimal places
is illegal as written.

User Response: Make sure that the number of decimal
places is numeric and less than 18.

EZT000-02 &WORD :NOT SUPPORTED BY THE
TRANSLATOR

Explanation: The displayed statement is not
supported by PEngiEZT.

User Response: Correct or remove the erroneous
statement.

EZT000-00 • EZT000-02

Chapter 11. Messages 143

EZT000-03 &WORD :STATEMENT ILLEGAL OR
OUT OF SEQUENCE

Explanation: The displayed statement is illegal or out
of sequence. Possible causes are:
v Missing PROC before Report Exits
v Illegal Report Exit Name
v ENDPROC not preceded by a PROC
v HEX display specified in Report Exits
v HEX mask followed by extraneous parameters
v DEFINE used inside a JOB (Define is not supported

inside a job)
v Misplaced Field Qualifier in field definition
v Table entry contains too many arguments
v RESET specified for non-work field

User Response: Correct or remove the erroneous
statement.

EZT000-04 &FIELD :UNSUPPORTED FIELD
CLASS

Explanation: Field class is not A, N, P, B, K or U.

User Response: Enter the correct field class.

EZT000-05 &WORD :UNKNOWN OR
INCOMPLETE STATEMENT

Explanation: Statement preceding the message is
incomplete or not an Easytrieve statement.

User Response: Correct the erroneous statement.

EZT000-06 &WORD :ILLEGAL FIELD POSITION

Explanation: Field position is not numeric or name
referenced is undefined.

User Response: Correct the erroneous statement.

EZT000-07 &WORD :ILLEGAL OCCURS OR
INDEX STATEMENT

Explanation: Missing or non-numeric duplication
factor, or missing index name.

User Response: Correct the erroneous statement.

EZT000-08 &WORD :ILLEGAL BINARY FIELD
MEMORY SIZE

Explanation: Binary field size is not 1, 2, 3, or 4.

User Response: Correct the erroneous statement.

EZT000-09 &WORD :FILE WAS NOT DEFINED

Explanation: File to COPY was not defined.

User Response: Correct the erroneous statement.

EZT000-10 &WORD :MISPLACED OR
UNSUPPORTED MASK

Explanation: Field MASK is not supplied or it is
illegal.

User Response: Code the correct field mask.

EZT000-11 &WORD :MASK ID WAS
PREVIOUSLY DEFINED

Explanation: Mask-id was previously defined.

User Response: Remove duplicate definition or assign
a new Mask-ID.

EZT000-12 MAXIMUM OF NN MASK IDS
EXCEEDED

Explanation: Translator supports maximum of NN
Mask-IDS.

User Response: Resort to MASK usage to reduce the
number of Mask-IDS.

EZT000-13 BWZ OPTION SPECIFIED FOR NON
NUMERIC FIELD

Explanation: None (unused message).

User Response: None.

EZT000-14 &FIELD :FIELD IS OUTSIDE OF
GROUP RANGE

Explanation: The field is a member of a group
definition but its starting position plus the length
would exceed the Group length.

User Response: Adjust the Group Field size to
accommodate your field size.

EZT000-15 &GFIELDS FIELD NAMES EXCEEDED

Explanation: The number of program fields exceeds
the number of fields specified by the FIELDS=NN of
the EASYTRAN macro (see Chapter 8, “Installation and
Migration Utility options”, on page 109).

User Response: Increase FIELDS=NN parameter on
EASYTRAN macro to accommodate your needs.

EZT000-16 COPY IS NOT SUPPORTED FOR
TABLE FILES

Explanation: A COPY was specified for an external
table file.

User Response: Migration Utility does not support
COPY for external tables. Replace COPY by an ARG
and DESC fields.

EZT000-03 • EZT000-16

144 Migration Utility V1R1 User’s Guide and Reference

EZT000-16 INDIRECT COPY OR INCONSISTENT
FILE ATTRIBUTES

Explanation: The file referenced by the COPY was a
copy file, or its attributes are not consistent with the
attributes of the current file.

User Response: Correct the erroneous statement.

EZT000-17 MAXIMUM OF N’&PREFIX COPIES
EXCEEDED

Explanation: Number of COPY files exceeded nn.

User Response: Resort to other methods of defining
your files.

EZT000-18 &WORD FILE WAS PREVIOUSLY
DEFINED

Explanation: Duplicate file name.

User Response: Choose a unique file name.

EZT000-18 &FILE :FILE CONFLICTS WITH FIELD
NAME

Explanation: A field exists that conflicts with &FILE
name (duplicate name).

User Response: File and field names must be unique
in COBOL. Assign a unique file name and change all
references in the program to the new name.

EZT000-19 &WORD :ILLEGAL OR NON
NUMERIC STRING

Explanation: The displayed field is not numeric or the
value is not allowed by the preceding statement.

User Response: Correct the erroneous statement.

EZT000-20 &WORD :ILLEGAL OR UNDEFINED
NAME

Explanation: The displayed name is illegal or not
defined.

User Response: Correct the erroneous statement.

EZT000-21 &WORD :INVALID NUMBER OF
TABLE ROWS

Explanation: Number of external table rows is not
numeric or not supplied.

User Response: Code the proper number of table
rows.

EZT000-22 &WORD JOB STATEMENT IS NOT
SUPPORTED

Explanation: Possible causes:
v SQL was coded on the job statement
v Incomplete ″START″ or ″FINISH″ or ″NAME″ or

″ENVIRONMENT″ statements
v Unknown or illegal statement

User Response: Correct the erroneous statement.

EZT000-23 &WORD :UNDEFINED FIELD/KEY
NAME

Explanation: The specified key is undefined.

User Response: Correct the erroneous name.

EZT000-24 &WORD :ILLEGAL SORT STATEMENT

Explanation: The statement is not a legal SORT
statement.

User Response: Correct the erroneous statement.

EZT000-25 &FILE :UNDEFINED OR ILLEGAL
FILE NAME

Explanation: The displayed file is not defined or it is
illegal as coded.

User Response: Correct the erroneous statement.

EZT000-25 FILE QUALIFIER FOR
″RECORD-LENGTH″ FIELD IS
REQUIRED. EXAMPLE:
FILEIN1:RECORD-LENGTH.

Explanation: RECORD-LENGTH was coded without a
file qualifier.

User Response: Migration Utility requires a file
qualifier for the RECORD-LENGTH reserved field. Add
a file qualifier to the statement.

EZT000-25 FILE OR TABLE QUALIFIER FOR
″&FIELD″ FIELD IS REQUIRED

Explanation: The &FIELD is defined more than once
in the program. The reference to &FIELD could not be
resolved based on files found in the JOB statement.

User Response: Add a file or SQL table qualifier to
the statement.

EZT000-25 FILE OR TABLE QUALIFIER FOR
″&FIELD″ HOST VARIABLE IS
REQUIRED. EXAMPLE:
FILEIN1.&FIELD

Explanation: The &FIELD used as a host variable is
defined more than once in the program. The reference

EZT000-16 • EZT000-25

Chapter 11. Messages 145

to &FIELD could not be resolved based on files found
in the JOB statement.

User Response: Add a file or SQL table qualifier to
the statement. For example, SQLTAB.&FIELD or
FILEIN:&FIELD.

EZT000-26 &WORD :NOT ALLOWED

Explanation: The displayed option is not a valid
option for the preceding statement.

User Response: Code the correct option.

EZT000-26 &WORD :NOT ALLOWED. NUMERIC
TYPE IS REQUIRED. COBOL STATUS
IS ALPHA TYPE. CHANGE TARGET
TO ALPHA OR USE MOVE INSTEAD
OF ASSIGN.

Explanation: The &WORD is a FILE -STATUS field
being assigned to a numeric field.

User Response: In the generated COBOL, status codes
are alphanumeric 2 byte fields, while Easytrieve status
code is numeric. You can change your target field to an
alphanumeric field, or use the MOVE statement instead
of the assign.

This message can be avoided by running Migration
Utility with the IOCODE=EASYT option.

EZT000-27 &ZF2 :ILLEGAL ASSIGNMENT OR
INSTRUCTION

Explanation: Assignment is not allowed as written.

User Response: Correct the erroneous statement.

EZT000-28 &WORD :IF STATEMENT IS
INCOMPLETE

Explanation: More operands are expected in the IF
statement.

User Response: Make sure that the IF statement is
complete.

EZT000-29 &WORD :ILLEGAL
RELATIONAL/LOGICAL OPERATOR

Explanation: The Relational/Logical Operator is not a
valid Easytrieve Operator.

User Response: Code the correct Operator.

EZT000-30 &WORD :ILLEGAL COL/POS VALUE

Explanation: The coded value is not allowed.

User Response: Code the correct value.

EZT000-31 &WORD :EXPECTED ″KEY″ NOT
LOCATED

Explanation: The file KEY is not provided following
the DDNAME of synchronized processing definition

User Response: Code the required parameters.

EZT000-32 CANNOT RESOLVE REPORT NAME

Explanation: A PRINT statement was issued without a
report name in a JOB that has multiple REPORT
statements without a report name.

User Response: Correct the REPORT statements by
adding a valid report name. Correct the PRINT
statement to reference a valid report.

EZT000-33 UNPAIRED END-IF OR END-DO
STATEMENT

Explanation: Too many or too few END-IF or
END-DO terminators found.

User Response: Make sure that the terminators pair
with the IF or DO statements.

EZT000-34 &WORD :ILLEGAL PUT OR GET
FORMAT

Explanation: PUT or GET is incomplete or followed
by illegal parameters.

User Response: Correct the erroneous statement.

EZT000-35 PERFORM PROCEDURE IS MISSING

Explanation: A procedure name was not found
following PERFORM statement.

User Response: Code the required procedure name.

EZT000-36 ILLEGAL GO TO STATEMENT

Explanation: The statement is incomplete or improper.

User Response: Code the required parameters.

EZT000-37 &WORD :ILLEGAL POINT FORMAT

Explanation: The POINT is incomplete or followed by
illegal parameters.

User Response: Correct the erroneous statement.

EZT000-38 &WORD :ILLEGAL READ FORMAT

Explanation: The READ is incomplete or followed by
illegal parameters.

User Response: Correct the erroneous statement.

EZT000-26 • EZT000-38

146 Migration Utility V1R1 User’s Guide and Reference

EZT000-39 &WORD :ILLEGAL WRITE FORMAT

Explanation: The WRITE is incomplete or followed by
illegal parameters.

User Response: Correct the erroneous statement.

EZT000-40 &WORD :ILLEGAL DO WHILE
FORMAT

Explanation: The DO is not followed by
WHILE/UNTIL statement.

User Response: Code WHILE or UNTIL following the
DO statement.

EZT000-41 &WORD :ILLEGAL ASSIGNMENT

Explanation: Improper assignment format.

User Response: Correct the erroneous parameter.

EZT000-42 &WORD :ILLEGAL MOVE
EXPRESSION

Explanation: The MOVE is not followed by TO, or
FILL not followed by the fill character in quotes.

User Response: Correct the erroneous statement.

EZT000-43 &WLABNAME :ILLEGAL OR
DUPLICATE PARAGRAPH

Explanation: The paragraph or procedure name is not
a valid name or it was previously defined.

User Response: Correct the erroneous statement.

EZT000-44 &LIT... :LITERAL IS ILLEGAL OR TOO
LONG (OVER 58 BYTES EXCLUDING
QUOTES)

Explanation: The HEADING literal is over 58
characters or not enclosed in quotes. &LIST is the first
20 characters of the literal.

User Response: Correct the erroneous statement.

EZT000-45 &WORD EXCEEDS nn CHARACTERS

Explanation: The field name exceeds 18 characters.
This error occurs when translator is running in
NATIVE mode.

User Response: Reduce the field name to maximum
of 16 characters.

EZT000-46 INVALID LABELS PARAMETER
COMBINATION

Explanation: Parameters combination for LABELS is
improper.

User Response: Correct the erroneous parameters

EZT000-47 &WORD :UNSUPPORTED
EASYTRIEVE STATEMENT

Explanation: Illegal FILE parameters or RETRIEVE
WHILE was specified.

User Response: Remove RETRIEVE, it is not
supported by the translator. Correct the erroneous
parameters.

EZT000-48 CONFLICTING FILE I/O USAGE

Explanation: The file does not qualify for the specified
I/O. Possible causes:
v PUT or WRITE issued to a file open for input only
v GET or READ or POINT issued to a file defined with

CREATE option
v FILE parameters specify UPDATE and VSAM-SEQ

User Response: Correct the erroneous
parameters/statements.

EZT000-49 TITLE LENGTH EXCEEDS MAXIMUM
OF NN

Explanation: The combined length of all fields and
literals on the TITLE line exceeds the total Print Line
size.

User Response: Reduce literal and fields or increase
the SIZE parameter.

EZT000-50 LITERAL IS TOO LONG

Explanation: Literal exceeds 130 characters.

User Response: Translator supports literal up to 130
characters long. Reduce the literal.

EZT000-51 ILLEGAL SEARCH FORMAT

Explanation: SEARCH is incomplete or contains
extraneous parameters.

User Response: Correct the erroneous statement.

EZT000-52 SUMFILE &WORD IS NOT DEFINED

Explanation: The File Name specified following the
SUMFILE is not defined.

User Response: Code the correct file name.

EZT000-53 &WORD IS ILLEGAL SUM FIELD

Explanation: Undefined or non-numeric field used in
SUM.

User Response: Correct the erroneous statement.

EZT000-39 • EZT000-53

Chapter 11. Messages 147

EZT000-54 SUMFILE BUT NO CONTROL
BREAKS

Explanation: SUMFILE specified for Report that has
no Control Breaks.

User Response: Remove the SUMFILE or code at least
one Control Break.

EZT000-55 RECURSIVE USE OF ″FINAL″

Explanation: ″FINAL″ is out of sequence or previously
coded.

User Response: Correct the erroneous statement.

EZT000-56 MAXIMUM OF NN PARAGRAPHS
EXCEEDED

Explanation: The number of program paragraphs
exceeds the specified number by the MAXPROC=NN.

User Response: The number of paragraphs is
controlled via the MAXPROC=NN translator option.
See Chapter 8, “Installation and Migration Utility
options”, on page 109.

EZT000-57 &NESTCTR OF NN BRACKET LEVELS
EXCEEDED

Explanation: The translator supports maximum of 8
nested IF/DO statements.

User Response: Reduce the nest to 8 or less.

EZT000-58 ILLEGAL ARITHMETIC EXPRESSION

Explanation: The expression is incomplete.

User Response: Correct the erroneous expression.

EZT000-59 IMPROPER ″MOVE LIKE″
EXPRESSION

Explanation: Incomplete or improper MOVE LIKE
statement.

User Response: Correct the erroneous statement.

EZT000-60 &WORD IS UNDEFINED

Explanation: The &WORD field is not defined, or a
working storage (W) group field was referenced in a
MOVE LIKE statement.

User Response: Correct the erroneous statement.

EZT000-60 ″&KEY″ :KEY FOR &FILE IS
UNDEFINED

Explanation: The specified &KEY is undefined.

User Response: Correct the erroneous name.

EZT000-60 ″&KEY″ :KEY FOR &FILE1 AND
&FILE2 IS IN CONFLICT. ASSIGN
UNIQUE KEY NAMES.

Explanation: The specified &KEY is defined for two
different files.

User Response: Correct the erroneous name.

EZT000-61 &WORD :ILLEGAL CALL
EXPRESSION

Explanation: The CALL is incomplete or followed by
unknown parameters.

User Response: Correct the erroneous statement.

EZT000-62 &FIELD :AMBIGUOUS VALUE

Explanation: A value is coded for a filed that contains
REDEFINE statement, directly or indirectly.

User Response: Remove the erroneous value.

EZT000-63 PROC INSIDE IF/DO NEST OR
UNPAIRED END-IF/END-DO

Explanation: Unpaired END-IF or END-DO, or
procedure was coded inside an IF/DO logic.

User Response: See “Labels inside a DO and IF pair
of statements” on page 17.

EZT000-64 &SORTEXIT PROC IS UNDEFINED OR
MISPLACED

Explanation: Expecting procedure name for SORT
Exit. None found.

User Response: Correct the extraneous statement.

EZT000-65 &WORD :″&SORTEXIT.. PROC″ NOT
FOUND

Explanation: procedure name does not match the Proc
Name specified by the SORT INPUT EXIT.

User Response: Correct the procedure name.

EZT000-66 SELECT IS NOT IN ″&SORTEXIT..
PROC″ RANGE

Explanation: SELECT statement was located outside
of SORT EXIT Proc.

User Response: Remove or correct the statement.

EZT000-67 &WORD IS ILLEGAL ″STOP″ OPTION

Explanation: Unknown STOP option.

User Response: Remove the extraneous parameter.

EZT000-54 • EZT000-67

148 Migration Utility V1R1 User’s Guide and Reference

EZT000-68 RECURSIVE USE OF REPORT EXIT

Explanation: The exit was previously specified for this
Report.

User Response: Remove the extraneous exit.

EZT000-69 &WORD OVERLAPS PREVIOUS
FIELD BY XX. MAX AVAILABLE
OVERLAP IS YY POSITIONS.

Explanation: Absolute position for the field would
cause it to overlap the previous field. This is allowed
by Easytrieve, however PEngiEZT sometimes cannot
allow the overlap due to COBOL restrictions.

User Response: XX is the number of positions that are
overlapping. YY is the maximum number of positions
that PEngiEZT was able to compensate. You can reduce
the field size or shift its location to the right, or if
possible change the mask.

The overlap can also be caused by a long field title. The
starting position should be tuned as conditions permit.

Caution: Any reduced field mask can cause a loss of
leading data digits. Use extreme care.

EZT000-70 &WORD ILLEGAL ADJUSTMENT

Explanation: A relative position was placed at the
beginning of print line before any fields or literals.

User Response: Remove the incorrect statement.

EZT000-71 ″SUM″ DOES NOT FOLLOW
″CONTROL″ STATEMENT

Explanation: The SUM statement is out of sequence.

User Response: The SUM must be coded following
the CONTROL statement.

EZT000-72 COBOL=&GCOBOL NOT ″COBOL390″
OR ″COBOLII″

Explanation: COBOL option is invalid.

User Response: PEngiEZT supports COBOL-II and
COBOL S/390® only. Code COBOL=COBOLII or
COBOL=COBOL390.

EZT000-73 ELSE IS OUT OF SEQUENCE

Explanation: ELSE was found without a previous IF
statement.

User Response: Correct erroneous statement.

EZT000-74 ″&WORD″ IS ILLEGAL OR
CONFLICTING ASSIGNMENT

Explanation: One of the following problems was
detected:
v SPREAD and NOADJUST were detected in the same

REPORT.
v Too many, or too few, arguments were coded for a

logical operation.

User Response: Correct the problem.

EZT000-75 NUMBER PRINT/DISPLAY LINES
EXCEEDS NN

Explanation: The number of PRINT/DISPLAY lines
exceeds the number of lines specified by the
LINES=NN of the EASYTRAN macro (see Chapter 8,
“Installation and Migration Utility options”, on
page 109).

User Response: Increase LINES=NN parameter on
EASYTRAN macro to accommodate your needs.

EZT000-76 NUMBER PRINT/DISPLAY FIELDS
EXCEEDS NN

Explanation: The number of PRINT/DISPLAY fields
exceeds the number of fields specified by the
RFIELDS=NN of the EASYTRAN macro (see Chapter 8,
“Installation and Migration Utility options”, on
page 109).

User Response: Increase RFIELDS=NN parameter on
the EASYTRAN macro to accommodate your needs.

EZT000-77 &SYSPARM BAD EASYTRIEVE
PROGRAM NAME

Explanation: The PARM=(EASYTRAN:XXXXXXXX) on
the translator EXEC is improper, or your MEMBER=
member name coded in the PROC is too long (over 8
digits).

User Response: Make sure that your member name is
1-8 characters long. The
PARM=(EASYTRAN:&MEMBER) is located in the
PROC (JCL). MAKE sure that the format of the PARM=
is correct.

EZT000-78 EASYT000 DEMO MODE. LIMIT
RECORD SIZE TO 80

Explanation: PEngiEZT is in DEMO mode.

User Response: No solution. DEMO mode allows you
to experiment with files of record length of 80 and less.

EZT000-68 • EZT000-78

Chapter 11. Messages 149

EZT000-79 EXPRESSION IS TOO LONG

Explanation: The bracketed expression exceeds the
total length allowed by the MAXSTR=NN of the
EASYTRAN macro (see Chapter 8, “Installation and
Migration Utility options”, on page 109).

User Response: Increase MAXSTR=NN parameter on
the EASYTRAN macro to accommodate your needs or
reduce the length of your expression.

EZT000-80 NUMBER OF TITLES EXCEEDS NN

Explanation: The number of TITLE lines exceeds the
number of lines allowed by the HEADERS=NN of the
EASYTRAN macro.

User Response: Increase HEADERS=NN parameter on
the EASYTRAN macro to accommodate your needs.

EZT000-81 NUMBER OF FILES EXCEEDS NN

Explanation: The number of defined files exceeds the
number allowed by the FILES=NN of the EASYTRAN
macro (see Chapter 8, “Installation and Migration
Utility options”, on page 109).

User Response: Increase FILES=NN parameter on the
EASYTRAN macro to accommodate your needs.

EZT000-82 NUMBER OF ″IF″ NESTS EXCEEDS NN

Explanation: The number of nested IF statements
exceeds the number allowed by the NESTS=NN of the
EASYTRAN macro (see Chapter 8, “Installation and
Migration Utility options”, on page 109).

User Response: Increase NESTS=NN parameter on the
EASYTRAN macro to accommodate your needs, or
reduce the number of nested IF statements by making
separate expressions.

EZT000-83 NUMBER OF MACRO PARAMETERS
EXCEEDS NN

Explanation: The number of Easytrieve macro
parameters supplied following the %NAME exceeds
the number of parameters allowed by the
MPARMS=NN of the EASYTRAN macro. This error can
occur by improper continuation or termination of the
string (a misplaced + or -). See Chapter 8, “Installation
and Migration Utility options”, on page 109.

User Response: Increase MPARMS=NN to
accommodate your needs or remove unneeded
parameters.

EZT000-84 NUMBER OF NESTED MACROS
EXCEEDS NN

Explanation: The number of nested macros triggered
by the current macro exceeds the maximum allowed by
the MNESTS=NN of the EASYTRAN macro (see

Chapter 8, “Installation and Migration Utility options”,
on page 109).

User Response: Increase MNESTS=NN to
accommodate your needs or reduce the number of
macro nests.

EZT000-85 NUMBER OF INDEX ENTRIES
EXCEEDS NN

Explanation: The number of fields using OCCURS
with INDEX exceeds the number allowed by the
INDEXS=NN of the EASYTRAN macro (see Chapter 8,
“Installation and Migration Utility options”, on
page 109).

User Response: Increase INDEXS=NN to
accommodate your needs.

EZT000-86 NUMBER OF TITLE FIELDS EXCEEDS
NN

Explanation: The number of TITLE fields exceeds the
number allowed by the HFIELDS=NN of the
EASYTRAN macro (see Chapter 8, “Installation and
Migration Utility options”, on page 109).

User Response: Increase HFIELDS=NN to
accommodate your needs.

EZT000-87 NUMBER OF ″IF″ ARGUMENTS
EXCEEDS NN

Explanation: The number of arguments in the IF
statement exceeds the number of arguments allowed by
the MAXARG=NN of the EASYTRAN macro (see
Chapter 8, “Installation and Migration Utility options”,
on page 109).

User Response: Increase MAXARG=NN to
accommodate your needs

EZT000-88 NUMBER OF PROCS EXCEEDS NN

Explanation: The number of PROC declarations
exceeds the number allowed by the MAXPROC=NN of
the EASYTRAN macro (see Chapter 8, “Installation and
Migration Utility options”, on page 109).

User Response: Increase MAXPROC=NN to
accommodate your needs.

EZT000-89 NUMBER OF REPORTS EXCEEDS 99

Explanation: You have more than 99 reports in your
program.

User Response: PEngiEZT supports maximum of 99
reports in a single program. Split your program into
multiple smaller programs.

EZT000-79 • EZT000-89

150 Migration Utility V1R1 User’s Guide and Reference

EZT000-90 &REPORT IS NOT DEFINED IN JOB
NN

Explanation: The Report Name referenced within the
previous JOB scope was not defined.

User Response: Correct the erroneous statement.

EZT000-90 &REPORT: CANNOT RESOLVE
DEFAULT PRINT.

Explanation: A PRINT without a report name was
processed but there were no reports coded without a
PRINTER file. &REPORT is the default name assigned
to that print statement.

User Response: Make sure that all PRINT and
REPORT statements are properly coded.

EZT000-91 &FIELD, ILLEGAL FIELD VALUE

Explanation: The declared field value is not a proper
literal, or it is inconsistent with the field type.

User Response: Correct the erroneous literal or value.

EZT000-92 &FILE :FILE KEY IS REQUIRED

Explanation: The KEY cannot be identified for an
INDEXED file

User Response: You must provide the KEY-NAME as
part of the file definition.

Note: The translator defaults to the first field name in
the record definition. The field must be an
alphanumeric field.

EZT000-93 &FILE:&KEY :KEY CANNOT BE
NUMERIC

Explanation: The file key is not an alphanumeric item
for an indexed file.

User Response: This is COBOL restriction. Define the
key as an alphanumeric field.

EZT000-94 &WORD :ILLEGAL RECORD/BLOCK
SIZE ASSIGNMENT

Explanation: The record size or the block size is not
numeric.

User Response: Code correct numeric value.

EZT000-95 COMPUTED RECORD LENGTH NN
EXCEEDS NN

Explanation: The sum of all field lengths exceeds the
declared record length.

User Response: Verify field definitions and adjust
appropriately. See “Translating guidelines” on page 2
for variable-length files.

EZT000-96 FILE &FILE HAS NO ALLOCATED
STORAGE

Explanation: The computed record size for the
specified file is zero.

User Response: You must specify record length on the
FILE statement or provide a valid record layout.

EZT000-97 &FIELD :AMBIGUOUS FIELD
POSITION OR INDEX USAGE

Explanation: The field position as specified cannot be
translated, or the INDEX usage is improper.

User Response: This message can be eliminated by
re-arranging field definitions. If the field in error is a
numeric field that redefines an alphanumeric field,
switch them around.

EZT000-97 &FIELD :DESTRUCTIVE OVERLAP
FOR FIELD WITH OCCURS. ADD A
GROUP FIELD DEFINITION FOR NN
CHARACTERS AFTER &GROUP
FIELD.

Explanation: The &FIELD is a part of complex group
definition with OCCURS and INDEX that overlaps
other fields in the manner that cannot be handled by
COBOL.

User Response: Re-arrange or simplify the layout. For
example, FIELDA below was changed to FIELDX, and
FIELD was changed to be a 200 bytes alpha field.

FIELDA 1 200 A OCCURS 100 INDEX (INDEX1)
FIELDB FIELDA 10 A
FIELDC FIELDA +10 20 A
FIELDD FIELDA +05 10 A

When changed to format below, the problem is
corrected.

FIELDX 1 200 A OCCURS 100 INDEX (INDEX1)
FIELDA FIELDX 200 A
FIELDB FIELDA 10 A
FIELDC FIELDA +10 20 A
FIELDD FIELDA +05 10 A

EZT000-98 &FIELD :DUPLICATE WORKING
STORAGE FIELD

Explanation: Field was previously defined.

User Response: Re-name the field in question.

EZT000-99 NN :ADJUSTMENT EXCEEDS
MAXIMUM SPACE OF &SPACE

Explanation: The specified adjustment exceeds the
specified maximum allowed by the SPACE NN report
parameter.

User Response: Code the adjustment.

EZT000-90 • EZT000-99

Chapter 11. Messages 151

EZT000-9A &FIELD IN TITLE NN OVERLAPS
PREVIOUS FIELD

Explanation: The field or literal shown cannot fit in
the available space.

User Response: Code the field position or column.

EZT000-9B NN: TITLE/LINE NN IS OUT OF
SEQUENCE OR ILLEGAL AS
SPECIFIED

Explanation: The TITLE or LINE is out of position or
the number is out of sequence.

User Response: Correct the problem.

EZT000-9C ″VARYING″ USED FOR NUMERIC
FIELD OR A TABLE ITEM

Explanation: VARYING fields can be only
alphanumeric fields and non-table item.

User Response: Correct the problem.

EZT000-9D ″VARYING″ FIELD LENGTH MUST BE
GREATER THAN 2

Explanation: The length specified for a VARYING
field is less than 3.

User Response: Correct the problem.

EZT000-9E FIELD LENGTHS ARE NOT EQUAL IN
LOGICAL EXPRESSION

Explanation: A logical ″AND″, ″OR″, ″XOR″ operate
on fields of equal length but the specified field
arguments are of unequal length.

User Response: Correct the problem.

EZT000-9F COMPLEX ″ON″ EXPRESSION IS NOT
SUPPORTED

Explanation: An IF Bit Test for ″ON″ was coded with
multiple arguments/expressions.

User Response: The ″ON″ condition in IF must be
coded as a single argument in expression.

EZT000-9G &FIELD: LENGTH OF PACKED
UNSIGNED FIELD EXCEEDS 15

Explanation: The length of a PU field exceeds 15
bytes. COBOL cannot handle it.

User Response: Limit PU fields to maximum of 15
bytes.

EZT000-9H ″&WORD″ HEX NUMBERS FOUND IN
ARITHMETIC

Explanation: A hex number was found in an
arithmetic expression.

User Response: Correct the problem.

EZT000-9I &OBJECT: TABLE REQUIRES AT
LEAST TWO FIELDS

Explanation: The number of fields defined for the
table is less than two.

User Response: Easytrieve Plus tables must have two
fields, ARG and DESC.

EZT000-9J &OBJECT: ″ENDTABLE″ IS MISSING

Explanation: The ″ENDTABLE″ could not be located
following table data items. This can also be caused by
unpaired quotes in a data string.

User Response: Check for ENDTABLE, make sure that
quoted strings start and end with a quote.

EZT000-9K &OBJECT: ILLEGAL INPUT FILE
(TABLES CANNOT BE SORTED)

Explanation: SORT was specified for a table file.

User Response: Easytrieve Plus tables cannot be
sorted. Resort to external file techniques.

EZT000-9L &OBJECT: REPORT WAS PREVIOUSLY
DEFINED

Explanation: Duplicate report name.

User Response: Make report names unique.

EZT000-9M TABLE DATA ITEM(S) ARE NOT A
VALID COBOL LITERAL

Explanation: The value in the table is not a valid
COBOL Literal.

User Response: Change the value to be a valid
COBOL Literal.

EZT000-9N &FIELD: DUPLICATE FIELD NAME

Explanation: Duplicate field name in the SUM list.

User Response: Remove the duplicate field.

EZT000-9O &WORD: TABLE ARG IS OUT OF
SEQUENCE

Explanation: Table data element is out of sequence.

User Response: Make sure that the data elements are
in sequence.

EZT000-9A • EZT000-9O

152 Migration Utility V1R1 User’s Guide and Reference

EZT000-9P &JOBFILE: NOT A VALID FILE

Explanation: The file in error is a table.

User Response: Tables cannot be used in
Synchronized File processing. Correct the statement.

EZT000-9Q COBOL LEVEL &FLEVL FOR &FIELD
EXCEEDS NNN

Explanation: Number of nested groups (field levels)
exceeds maximum allowed.

User Response: Simplify the record layout.

EZT000-9R UNPAIRED END-CASE STATEMENT

Explanation: Extraneous END-CASE was detected.

User Response: Make sure that CASE - END-CASE
are properly paired.

EZT000-9S ″CASE″ NOT IMMEDIATELY
FOLLOWED BY ″WHEN″

Explanation: CASE statement syntax error.

User Response: Code WHEN statement immediately
after the CASE.

EZT000-9T ″&WORD″ CANNOT BE USED IN
THIS CONTEXT

Explanation: Syntax error was detected in CASE or
WHEN statement.

User Response: CASE must be followed by a data
field name. WHEN cannot be followed by a data field
name or an arithmetic expression. See “CASE, WHEN,
OTHERWISE and END-CASE statements” on page 56
or the Easytrieve Plus reference manual for more rules.

EZT000-9U ″&WORD″ TYPE IS INCOMPATIBLE
WITH COMPARE ARG

Explanation: Syntax error was detected in WHEN
statement or statement is not supported as written.

User Response: See “CASE, WHEN, OTHERWISE and
END-CASE statements” on page 56 or the Easytrieve
Plus reference manual for proper rules.

EZT000-9V &FIELD: NUMERIC GROUP WITH
OCCURS IS NOT SUPPORTED

Explanation: A numeric field with OCCURS was
coded as a group item.

User Response: Simplify the definition. For example,
you can define an alpha field with occurs and make the
numeric field subordinate to the alpha field.

EZT000-9X &WORD: NUMBER OF REPORT
LITERALS EXCEEDS NNN

Explanation: Number of report constants (literals)
exceeds maximum allowed.

User Response: Increase FIELDS=NNN value in the
EZPARAMS.

EZT000-9Y :&FIELD SQL HOST VARIABLE IS
UNDEFINED

Explanation: The &FIELD is undefined.

User Response: Code the correct field name.

EZT000-9Y :&WORD SQL HOST VARIABLE IS
NOT IN &FILE RECORD

Explanation: The host variable is undefined.

User Response: Use a valid, defined field.

EZT000-9Z ″WHEN″ IS OUTSIDE OF ″CASE″
SCOPE

Explanation: ″WHEN″ statement was detected outside
of CASE - END-CASE scope.

User Response: Correct the problem.

EZT000-A1 &FIELD: CANNOT SORT ON FIELD
WITH OCCURS

Explanation: &FIELD was defined with OCCURS.

User Response: Fields defined with OCCURS cannot
be sorted on. Correct the statement. If you must sort on
a field with OCCURS, adjust the layout such that the
same record segment can be accessed via a field
without OCCURS.

EZT000-A2 &JOBID ″JOB INPUT SQL″ BUT NO
VALID SELECT FOUND

Explanation: SELECT was not located for this JOB.

User Response: Code a SELECT as required by
Easytrieve Plus.

EZT000-A3 IMPROPER NUMBER OF DCLINCL
PARAMETERS

Explanation: Too few or extraneous parameters were
detected in ″SQL DCLINCL″.

User Response: See Chapter 5, “SQL/DB2 support”,
on page 81 for proper syntax.

EZT000-9P • EZT000-A3

Chapter 11. Messages 153

EZT000-A4 TABLE NAME FOR SQL FILE IS
MISSING

Explanation: The file was declared as an SQL file but
there were not SQL Tables associated with it.

User Response: See Chapter 5, “SQL/DB2 support”,
on page 81 for proper FILE syntax.

EZT000-A6 &WORD: TABLE NAME FOR SQL
INCLUDE IS NOT CODED

Explanation: Easytrieve Plus ″SQL INCLUDE″ was
coded without the proper ″FROM &TABLE″ statement.

User Response: Correct the problem.

EZT000-A7 &SQLTABL: UNDEFINED TABLE OR
NOT IN DCLINCL

Explanation: &SQLTABLE column or field definitions
cannot be resolved.

User Response: Make sure that the table is defined in
one of the ″SQL DCLINCL &NAME″ declares and that
there is an ″SQL INCLUDE″ coded in working
storage or an SQL File. Note that &SQLTABLE field
name must be 01 level COBOL definition coded in the
DCLGEN copybook which is included via ″SQL
DCLINCL″.

EZT000-A8 &FILE: SQL FILE IN SYNCHRONIZED
PROCESS

Explanation: &FILE is an SQL file.

User Response: Files declared as SQL files cannot be
used in synchronized file processing.

EZT000-A9 &FILE: EXCEEDS 26 TABLES OR
STATEMENT DOES NOT SUPPORT
MULTIPLE TABLES

Explanation: Maximum number of SQL tables in a
single SQL statement has been exceeded, or multiple
tables have been coded for SQL statement that does not
operate on multiple tables.

User Response: Correct the problem.

EZT000-AA &SQLTABL: DUPLICATE SQL TABLE
IN FILE DEFINITION

Explanation: Duplicate SQL Table name.

User Response: Remove the duplicate table.

EZT000-AB %COBOL CANNOT BE INSIDE DO/IF
STATEMENT.

Explanation: Illegally placed %COBOL Statement.

User Response: Place %COBOL outside of IF/DO
nest.

EZT000-AC &WORD :UNDEFINED FILE / NOT AN
SQL FILE

Explanation: An SQL request was coded for a file that
was not defined as an SQL file.

User Response: Correct the problem.

EZT000-AD &WORD :CONFLICT IN SQL FILE
USAGE JOB/&EASYFUN

Explanation: A FETCH was coded for SQL file that
has been used on the JOB statement.

User Response: Refer to Easytrieve Plus reference
manual for proper SQL file usage.

EZT000-AE &WORD :FILE NOT CODED FOR
UPDATE/NO UPDATE COLUMNS

Explanation: Update was specified for SQL File that
has not been coded for UPDATE, or no update columns
exist.

User Response: Correct the problem. Refer to
Easytrieve Plus reference manual for SQL File Update
rules.

EZT000-AF SELECT FOR ″JOB INPUT SQL″
WITHOUT ″INTO″

Explanation: No INTO specified for SELECT or INTO
is out of place.

User Response: Select coded for ″JOB INPUT SQL″
requires ″INTO″ statement. Refer to Easytrieve Plus
reference manual.

EZT000-AG ″UPDATE″ SYNTAX ERROR OR
CONFLICTING WITH ″ORDER″

Explanation: UPDATE and ORDER specified on the
same SQL Statement.

User Response: DB2 does not support ORDER and
UPDATE concurrently. Refer to SQL reference for
proper rules.

EZT000-AH ″&WORD″ CANNOT RESOLVE TABLE
NAME

Explanation: ″FROM″ was coded without a table.

User Response: Provide a table name following the
FROM statement.

EZT000-AI &WORD ″NULL″ USED FOR
NON-NULLABLE FIELD

Explanation: IF NULL was specified for a
non-nullable column or field.

User Response: Correct the problem.

EZT000-A4 • EZT000-AI

154 Migration Utility V1R1 User’s Guide and Reference

EZT000-AJ MULTIPLE EZT STATEMENTS FOUND
ON JOB LINE. CORRECT IT BY
CODING ONE STATEMENT PER LINE.

Explanation: JOB statement was terminated with a
period and followed by another Easytrieve statement
on the same line.

User Response: Correct the problem.

EZT000-AK UNSUPPORTED ″SELECT″
EXPRESSION SYNTAX. FILE
PARAMETERS CANNOT BE CODED
ON THE SAME LINE.

Explanation: SELECT statement follows SQL file
definition, but the SELECT line, or the last line
belonging to the SELECT contains other file options.

User Response: Code other parameters on separate
line(s).

EZT000-AL SUBSCRIPT/INDEX ″&WSUBWRD″
DISALLOWED BECAUSE OF
PERFORMANCE REASONS.

Explanation: U, BL1 and BL3 fields are disallowed in
INDEX for performance reasons.

User Response: Create a BL4 field, move the
disallowed index into it and use it as subscript.

EZT000-AM &ESIZE: DBCS FIELD SIZE IS NOT
MULTIPLES OF TWO.

Explanation: K type field length is not multiple of
two.

User Response: Correct the problem.

EZT000-AN &MACELIA: MULTI COPYBOOK FOR
OBJECT NOT UNIQUE.

Explanation: A macro was coded with the same prefix
more than one time for the same object/file.

User Response: Correct the problem.

EZT000-AO &OBJECT: LAYOUT IS TOO COMPLEX
FOR COPYBOOK=YES

Explanation: The layout is composed of one or more
macros and hard-coded field definitions.

User Response: When COPYBOOK=YES is coded, the
layouts must be fully defined within one or more
macros, or hard-coded field definitions only. You
cannot have a mixture of hard-coded fields and macros
because the hard-coded definitions will not be found in
the copybook. Either hard code all fields or defined all
fields in the macros. Another way of solving this
problem is to remove the macro from the EZTABLE0
list.

EZT000-AP &MACELIA: NUMBER OF
COPYBOOKS EXCEEDS &GNCOPIES

Explanation: Number of allowed Easytrieve Plus
macros has been exceeded.

User Response: Increase the number of allowed
macros via NCOPIES= in EZPARAMS.

EZT000-AQ &FORIG: CANNOT REDUCE THE
FIELD NAME TO 18 CHARS.
SIMPLIFY ″&PFXELIA″ PREFIX.

Explanation: The field in question is located in a
macro that was coded with a long prefix, or the macro
was used multiple times, and the additional prefix
assigned to it resulted in a long field name.

User Response: Code macro with a shorter prefix or a
unique prefix. The prefix should be one character
followed by a dash.

If you must, drop the dash. Remember to change all
field names in your program to reflect the new prefix.

EZT000-AR &WPROCNAM PROC: NO
MATCHING ″END-PROC″ FOUND

Explanation: Missing END-PROC.

User Response: Correct the problem.

EZT000-AS &arg1 .. &ARGN :INCOMPATIBLE
CLASS.

Explanation: Compare arguments are not compatible,
that is, you are comparing a numeric field with an
alphanumeric field. Solution: Correct the problem.

EZT000-AT &FMASK: MASK DOES NOT MATCH
FIELD SIZE OF &FSIZE

Explanation: The number of digits represented by
&FMASK does not match the number of digits
represented by the field.

User Response: Correct the problem.

EZT000-AU &SUBSCRIPT :SUBSCRIPT IS NOT
ALLOWED

Explanation: A subscript was coded for a field
without OCCURS.

User Response: Correct the problem.

EZT000-AV &FIELD :FIELD W/OCCURS -
SUBSCRIPT IS REQUIRED

Explanation: &FIELD requires a subscript.

User Response: Correct the problem.

EZT000-AJ • EZT000-AV

Chapter 11. Messages 155

EZT000-AW &WORD :ILLEGAL SUBSCRIPT
ARGUMENT

Explanation: &WORD is not a valid subscript.

User Response: Correct the problem. Subscript must
be a numeric field or literal.

EZT000-AX &FIELD :FIELD REQUIRES N
LEVEL(S) OF SUBSCRIPTS

Explanation: The number of coded subscripts does not
match the number of required subscripts for this field.

User Response: Provide the correct number of
subscripts. The number of required subscripts is the
number of OCCURS statements for all groups that the
field belongs to, including the OCCURS for the field in
question, if coded.

EZT000-AY &FIELD :VALUE STRING LENGTH
EXCEEDS 160 BYTES

Explanation: The VALUE string exceeds 160 bytes in
length.

User Response: If your string contains repeating
characters, consider defining the field using VALUE
ALL │&VAL└. Otherwise, initialize the field in the
Activity Section.

EZT000-AZ ″&WORD″ IS A COBOL RESERVED
VERB. RENAME IT AND CHANGE
ALL REFERENCES TO NEW NAME.

Explanation: The &WORD conflicts with COBOL
Reserved Verbs.

User Response: The &WORD must be renamed in
your Easytrieve Program to a non-conflicting name. All
references in your program to &WORD must be
changed too.

EZT000-B1 LENGTH OF ASSUMED KEY ″&KEY″
EXCEEDS COBOL LIMIT OF 255
BYTES.

Explanation: Wrong VSAM file key definition.

User Response: The key of VSAM files is assumed to
be the first defined filed in record definition if not
supplied in the FILE statement via the (KEY &KEY)
definition. Make sure that you specify the correct key.

EZT000-B2 DECLARED KEY &KEY″ FOR
RELATIVE &FILE FILE IS NOT
DEFINED A ″W 4 B″ FIELD.

Explanation: Wrong RELATIVE VSAM file key
definition or the declared key is not defined.

User Response: The key for relative VSAM files must
be a 4 byte binary field defined in working storage. The

key must be defined before the FILE statements and it
must be a 4 byte binary field.

EZT000-B3 DBD-NAME/SUBSCHEMA-NAME IS
MISSING.

Explanation: DLI DBD-NAME is not supplied.

User Response: Code DBD-NAME/SUBSCH
EMA-NAME as required for DLI files.

EZT000-B4 &MACRO IS NOT ALLOWED FOR
DLI/IDMS.

Explanation: The default I/O macro &MACRO does
not support DLI/IDMS files.

User Response: Currently, Migration Utility does not
support DLI and IDMS. The only way around it is to
create a custom I/O macro.

EZT000-B5 DECLARED KEY ″&KEY″ FOR PDS
&FILE FILE IS NOT AN ALPHA FIELD,
OR ITS DECLARED SIZE IS LESS
THAN 8 BYTES.

Explanation: Bad &KEY field name or definition.

User Response: PDS file key must be an alphanumeric
field and at least 8 bytes long.

EZT000-B6 INCONSISTENT NUMBER OF
MACRO PARAMETERS

Explanation: The number of supplied macro
parameters is wrong.

User Response: Refer to specific macro coding
conventions in this manual.

EZT000-B7 DATE MASK ″&MASK″ IS NOT
SUPPORTED

Explanation: The supplied date mask is not supported
by Migration Utility.

User Response: For supported masks, see “Available
date masks” on page 129.

EZT000-B8 REFERENCE TO &FILE &FIELD
UNAVAILABLE

Explanation: The &FIELD reference was found within
the JOB Activity that belongs to &FILE file, but the
&FILE file was not present within the same JOB
activity.

User Response: Correct the erroneous statement.

EZT000-AW • EZT000-B8

156 Migration Utility V1R1 User’s Guide and Reference

EZT000-B9 NNN LRECL VALUE NOT 0 OR > 4

Explanation: The declared record length for a variable
file is invalid.

User Response: A variable-length file record length
must include 4 extra bytes. If you are running with
IOMODE=DYNAM, set the record length to 0;
otherwise, code the correct record length that includes
4 extra bytes.

EZT000-BA BIT OPERATION IN REPORT EXITS
NOT SUPPORTED

Explanation: One of the following problems was
detected:
v Logical ON/OFF was detected in report exit.
v Logical operation XOR, AND, OR was detected in

report exit.

v HEX number was used in report exit on numeric
field.

User Response: Correct the problem. For logical
operation in report exit, use other means of conducting
the same test.

EZT000-BC SQL/SELECT STATEMENT MUST
BEGIN ON A SEPARATE LINE

Explanation: SQL or SELECT is preceded by another
statement on the same line.

User Response: SQL and SELECT statements must
begin on a separate line due to syntax differences.
Make sure that SQL/SELECT is not preceded by any
other statements on the same line.

Migration Utility macro generated messages

BCPY-01 XXXXX IS AN INVALID AREA GROUP
NAME

Explanation: The AREA= object name is not a valid
COBOL field name.

User Response: Object names can be 1-16 characters
long and must follow COBOL Field naming
conventions.

BCPY-02 XXXXX IS ILLEGAL LEVEL NUMBER

Explanation: An invalid COBOL field level number
has been detected.

User Response: Valid level numbers are 01-99.

BCPY-03 XXXXX IS AN ILLEGAL FIELD NAME

Explanation: An invalid COBOL field name has been
detected.

User Response: Field names can be 1-30 characters
long and must follow COBOL Field naming
conventions.

BCPY-04 ILLEGAL COBOL PICTURE

Explanation: An invalid COBOL field picture has been
detected.

User Response: Code a valid COBOL field picture.
Note that edit COBOL pictures are not allowed in the
record definitions.

BCPY-05 COPY IS IMPROPER AS WRITTEN

Explanation: An improperly coded COPY was
detected in the DEFINE macro.

User Response: Refer to Appendix A of

PEngiBAT/PEngiONL manual for allowed COPY
statement formats.

BCPY-06 TOO MANY REPLACING
IDENTIFIERS

Explanation: The maximum number of 256 ordered
REPLACING statements was detected.

User Response: Reduce the number of REPLACING
pairs to less than 256.

BCPY-07 FIELD DEFINITION IS INCOMPLETE

Explanation: The definition of the last field on the
copybook is not complete.

User Response: Correct the problem.

BCPY-08 XXXXX FIELD IS UNDEFINED OR
LEVELS ARE INCONSISTENT IN
REDEFINES EXPRESSION

Explanation: The redefined field is undefined or the
level number of the redefined and redefining fields are
inconsistent.

User Response: Correct the problem.

BCPY-09 Text1 Text2 Text3; INVALID
REPLACING OPTION

Explanation: An improperly coded COPY
REPLACING was detected in the DEFINE macro.

User Response: Refer to Appendix A of
PEngiBAT/PEngiONL manual for allowed COPY
statement formats.

EZT000-B9 • BCPY-09

Chapter 11. Messages 157

||
|

|
|

|
|
|
|

BCPY-10 Text1 Text2 Text3 Text4; RECURSIVE
USE OF PSEUDO TEXT

Explanation: Multiple pairs of pseudo text has been
detected.

User Response: Migration Utility allows only one
ordered pair of pseudo text replacement. Delete extra
statements.

BCPY-11 INCONSISTENT LEVEL FOLLOWING
A GROUP ITEM

Explanation: A group field was not followed by a
field of higher level number.

User Response: Correct the problem.

BCPY-12 SIZE= VALUE IS ILLEGAL OR NOT
SUPPLIED

Explanation: The SIZE= was not provided for the
COPY Member NOQUEUE option.

User Response: The NOQUEUE option requires the
SIZE= parameter.

BCPY-13 RECURSIVE 01 LEVEL INSIDE COPY

Explanation: Multiple 01 levels were detected in the
copybook.

User Response: Remove extraneous 01 levels.

BCPY-14 LENGTH OF REDEFINED FIELD
XXXXX IS INCONSISTENT

Explanation: The length of Redefined field is not
equal to the length of the Redefining field.

User Response: Correct the problem.

BCPY-15 XXXXX: IS AN ILLEGAL COBOL FIELD
NAME

Explanation: An invalid COBOL field name has been
detected.

User Response: Field names can be 1-30 characters
long and must follow COBOL Field naming
conventions.

BCPY-16 ″RENAMES″ IS NOT SUPPORTED,
USE REDEFINES

Explanation: RENAMES was detected in the
copybook.

User Response: Migration Utility does not support
RENAMES. The alternative is to use REDEFINES.

BCPY-17 PARAMETER CONFLICT, NOQUEUE
AND PREFIX

Explanation: NOQUEUE and PREFIX= options were
coded.

User Response: NOQUEUE and PREFIX options are
mutually exclusive. Refer to the reference manual.

CBAS-01 THE ’COBOLBAS’ MACRO HAS BEEN
IMPROPERLY PLACED WITHIN
&SYSECT DIVISION/SECTION,
MACRO IGNORED

Explanation: The COBOLBAS macro is misplaced in
the PEngiBAT source.

User Response: The COBOLBAS macro must be
placed before any divisions or sections.

CBAS-02 COPY=© IS UNKNOWN COPY
DIRECTIVE

Explanation: The COPY= option is not COPY,
++INCLUDE or -INC.

User Response: Correct the problem.

CICSBASE-01 THE ’CICSBASE’’ MACRO HAS
BEEN IMPROPERLY PLACED WITHIN
&SYSECT DIVISION/SECTION,
MACRO IGNORED

Explanation: The CICSBASE macro is misplaced in the
PEngiONL source.

User Response: The CICSBASE macro must be placed
before any divisions or sections.

CICSBASE-02 COPY=© IS UNKNOWN COPY
DIRECTIVE

Explanation: The COPY= option is not COPY,
++INCLUDE or -INC.

User Response: Correct the problem.

CICSBASE-03 MAPSET=XXXX IS AN INVALID
MAPSET NAME

Explanation: XXXX is longer than 7 characters or it is
not a valid program name.

User Response: Mapset names can be 1 to 7 characters
long and start with an alpha character.

DCCL-01 MAXIMUM OF NN OBJECTS
EXCEEDED

Explanation: The maximum number of supported
Migration Utility objects have been exceeded.

User Response: Refer to “OBJECTS” on page 117. If
you must, consolidate your Object Definitions or

BCPY-10 • DCCL-01

158 Migration Utility V1R1 User’s Guide and Reference

arrange them such that you issue fewer Define macros.
If it is not possible to consolidate any Objects, reduce
the number of Objects by coding them using native
COBOL.

DCCL-02 XXXXX HAS BEEN PREVIOUSLY
DEFINED

Explanation: The xxxxx Object has been previously
defined via the DEFINE macro.

User Response: Change the Object name to a unique
name.

DCCL-03 POS NN IS AN INVALID OR ILLEGAL
POSITION VALUE, FIELD-NAME
FIELD

Explanation: The coded position NN for the
FIELD-NAME field in item NN is not numeric or it is
preceded by a “-”.

User Response: Code NN according to the Migration
Utility standards.

DCCL-04 XXXXX: DUPLICATE OR ILLEGAL
FIELD PICTURE, FIELD-NAME

Explanation: The field picture XXXXX coded for the
FIELD-NAME is not a valid COBOL field picture, or
the PIC was specified more than one time, or the PIC
was not coded but the FIELD-NAME has never been
previously defined with a valid picture.

User Response: Correct the invalid picture if it is
invalid, remove the duplicate PIC if it is a duplicate, or
code the picture if it has never been defined before.

DCCL-05 XXXXX HAS NO ALLOCATED
STORAGE

Explanation: All fields coded for the Object XXXXX
have been found in error, or no fields have been coded,
or the Macro End Delimiter (;) has been misplaced.

User Response: Correct all fields that are in error and
make sure that the Macro End Delimiter is placed
properly.

DCCL-06 VALUE: ILLEGAL USE OF VAL
KEYWORD IN FIELD-NAME

Explanation: The value specified for the
FIELD-NAME field is either illegal or in the wrong
format.

User Response: The Value can be specified only for
the fields defined in the AREA Objects. The Value can
be coded following the VAL or the EQ Positional
Parameter Identifiers only. The Value cannot be coded
for literal or group fields.

DCCL-07 XXXXX: ILLEGAL KEYWORD IN
FIELD DEFINITION, FIELD-NAME

Explanation: None (This is an unused message)

DCCL-08 INCONSISTENT MACRO KEYWORDS
USAGE OR NO KEYWORDS
SPECIFIED

Explanation: The supplied DEFINE macro keywords
are in conflict, that is, two or more mutually exclusive
keywords have been coded in the same macro, or no
valid keywords have been coded.

User Response: Remove the unneeded keywords. The
keywords that may be in conflict are: AREA=,
HEADER=, LINE=, FRAME=, FILE=, PAGEFOOT= and
CTLFOOT=. For example, the FILE= and the AREA=
keywords can coexist, however, the LINE= and the
HEADER= keywords are mutually exclusive and
cannot be specified in the same macro definition.

DCCL-09 EXCESSIVE PARAMETERS IN
DEFINITION

Explanation: A null Positional Parameter has been
detected. A null parameter can be caused by placing
two commas in succession in the macro parameter
string.

User Response: Remove/correct the null string.

DCCL-10 ILLEGAL/CONFLICTING USE OF PIC,
FIELD-NAME

Explanation: The PIC has been coded for a literal, or
PIC was specified more than one time for a field.

User Response: The PIC Positional Identifier is not
allowed for literal, therefore it must be removed.

DCCL-11 VAL KEYWORD IS ILLEGAL FOR
LITERAL, XXXXX

Explanation: The VAL has been coded for a literal.

User Response: The VAL Positional Identifier is not
allowed for literals, therefore it must be removed.

DCCL-12 XXXXX IS AN INVALID LITERAL

Explanation: The XXXXX is not a valid COBOL literal.

User Response: Code a valid COBOL literal.

DCCL-13 VALUE IS INCONSISTENT WITH PIC
TYPE, FIELD-NAME

Explanation: For alphanumeric fields, the coded value
is not enclosed in quotes or equal to ’SPACE’ or
’SPACES’. For numeric fields, the coded value is
enclosed in quotes when it should not be.

DCCL-02 • DCCL-13

Chapter 11. Messages 159

User Response: Correct the value to be consistent
with the field type.

DCCL-14 POS NN WOULD CAUSE AN
OVERLAP ON PREVIOUS FIELD. THE
NEXT AVAILABLE POSITION IS POS
NN.

Explanation: The computed start position of the
FIELD-NAME field would overlap the end position of
the field before it. This can occur only for the Header,
Line, Ctlfoot and Pagefoot Objects.

User Response: Adjust the POS value of the field such
that the position less the field length is equal to or
greater than the calculated next available position
displayed in the message.

DCCL-15 THE ABOVE OBJECT MUST BE
DEFINED IN WORKING STORAGE
AREA

Explanation: The DEFINE macro for the Object is not
within the Working Storage Section, or the
″Working-Storage Section″ declarative has been
misplaced or misspelled.

User Response: Move the DEFINE macro and
Parameters to reside within Working-Storage Section.

DCCL-16 THE CALCULATED STORAGE OF
NNN EXCEEDS THE SPECIFIED SIZE
OF NNN

Explanation: The storage needed to house all defined
fields is greater than the specified Object Size. This
error can be caused in two ways:

v The SIZE=NNN parameter does not properly reflect
the object length.

v The length of one or more fields within the object is
inaccurate.

User Response: Increase the SIZE=NNN value to
reflect the calculated size, or adjust the field lengths to
give the correct size.

DCCL-17 SIZE=NNN IS AN ILLEGAL OR
INSUFFICIENT SIZE

Explanation: For the AREA Objects, the SIZE=NNN is
either not numeric or it exceeds 32767. For the FRAME
Objects, the SIZE=NNN is either not numeric or greater
than 32767, or the computed frame size is less than
one. Note that the frame size is computed by dividing
the SIZE=nnn by the NUP value if the SIZE= was
specified, or by dividing 132 by the NUP value if the
size was not specified.

User Response: Correct the size to comply with
Migration Utility SIZE= requirements.

DCCL-18 XXXXX USAGE IS ILLEGAL FOR
LINES

Explanation: The XXXXX usage has been specified for
a field within a Header, Line, Ctlfoot or Pagefoot
Object.

User Response: The field usage is allowed within the
AREA objects only. Remove the usage clause.

DCCL-19 XXXXX USAGE IS ILLEGAL

Explanation: The XXXXX usage has been coded for an
alphanumeric field, or the picture for the FIELD-NAME
field has been improperly coded as an alphanumeric
picture.

User Response: The COMP, COMP-2, COMP-3 and
COMP-4 usage can be coded for numeric fields only. If
the FIELD-NAME field is a numeric field then change
the field picture to reflect a numeric field, otherwise
remove the XXXXX usage clause.

DCCL-20 MAX OF NN FIELD DEFINITIONS
EXCEEDED, FIELD-NAME FIELD

Explanation: The number of items that can be held in
the internal Migration Utility fields queue has been
exceeded.

User Response: Refer to FIELDS= keyword of
COBOLBAS/CICSBASE macro.

DCCL-21 THE SUM/FORMULA/ACCUM IS
ILLEGAL IN THE
AREA/HEADER/PAGEFOOT
DEFINITION, FIELD-NAME.

Explanation: A SUM, FORMULA or ACCUM field
qualifier has been improperly coded within an AREA,
HEADER or PAGEFOOT object.

User Response: For proper usage refer to the
description of the field qualifier in error, in the ″Define
Macro″ section of this document.

DCCL-22 DUPLICATE OR ILLEGAL USE OF
SUM/ACCUM OR EXIT/LIT KEYWORD
IN FIELD-NAME FIELD

Explanation: A SUM, ACCUM or EXIT field qualifier
has been specified more than one time for the
FIELD-NAME field, or the SUM, ACCUM or EXIT field
qualifiers have been inconsistently used for the same
field, or a SUM, ACCUM or EXIT field qualifier has
been coded for a field within an AREA object.

User Response: For proper usage refer to the
description of the field qualifier in error, in the ″Define
Macro″ section of this document.

DCCL-14 • DCCL-22

160 Migration Utility V1R1 User’s Guide and Reference

DCCL-23 ALPHANUMERIC PICTURE/FIELD
USED ILLEGALLY IN ARITHMETIC
EXPRESSION IN FIELD-NAME FIELD

Explanation: A SUM or an ACCUM field qualifier has
been coded for an alphanumeric field, that is-the field
to be summed/accumulated has an alphanumeric
picture.

User Response: If the field picture has been
improperly coded as an alphanumeric picture, correct
it, or else remove the field qualifier.

DCCL-24 RIGHT PAREN IS MISSING IN
ARITHMETIC EXPRESSION,
FIELD-NAME FIELD

Explanation: The arithmetic expression following the
FIELD-NAME field is not properly enclosed in
parentheses.

User Response: Every arithmetic expression must be
enclosed in parentheses, with an equal number of left
and right parentheses.

DCCL-25 MAX OF NN FORMULA
DEFINITIONS EXCEEDED,
FIELD-NAME FIELD

Explanation: The maximum number of arithmetic
expressions (formulas) that Migration Utility can
accommodate has been exceeded.

User Response: Refer to FORMULAS= keyword of
COBOLBAS/CICSBASE macro.

DCCL-26 THE AREA=XXXXX IS IMPROPERLY
CODED FOR FILE OPTION, ONE
AREA IS REQUIRED IN FILE
DEFINITION

Explanation: Multiple Object names have been coded
in the AREA keyword in attempt to define file(s).

User Response: When defining files, only one object
name can be supplied in the AREA= parameter.
Remove extraneous object names from the AREA=
sublist.

DCCL-27 FILE=XXXXX HAS BEEN PREVIOUSLY
DEFINED

Explanation: A file of the same name has been
previously defined.

User Response: Alter the file name to a unique name.

DCCL-28 MAX OF NN FILE DEFINITIONS
EXCEEDED

Explanation: The maximum number of file definitions
that can be generated by Migration Utility has been
exceeded.

User Response: Refer to FILES= keyword of
COBOLBAS/CICSBASE macro.

DCCL-29 XXXXX IS AN INVALID AREA GROUP
NAME

Explanation: The XXXXX object name exceeds 16
characters or it contains no characters.

User Response: Code the object name within the
limits of Migration Utility AREA object naming
conventions.

DCCL-30 SIZE=XXX IS ILLEGAL AS WRITTEN

Explanation: The SIZE= parameter has been
improperly coded or the size value is not numeric.

User Response: Code the size parameter according to
Migration Utility keyword parameter conventions.

DCCL-31 LABEL=XXXXX NOT STANDARD OR
OMITTED

Explanation: The specified label is not supported by
Migration Utility or it is improperly coded.

User Response: Refer to the LABEL= keyword
description in the ″Define Macro″.

DCCL-32 RECFM=X NOT F,V,S, OR U

Explanation: The specified record format is not
supported by Migration Utility or it is improperly
coded.

User Response: Refer to the RECFM= keyword
description in the ″Define Macro″.

DCCL-33 BLKSIZE=NNN IS ILLEGAL AS
WRITTEN

Explanation: The BLKSIZE= parameter has been
improperly coded or it is not numeric.

User Response: Refer to the BLKSIZE= keyword
description in the ″Define Macro″.

DCCL-34 XXXXX, GROUP ITEM IS ILLEGALLY
WRITTEN AS THE LAST ENTRY IN
DEFINITION

Explanation: A Group item has been declared but it
was not terminated with an ENDG directive.

User Response: Insert an ENDG directive after the last
field definition which is a part of the declared Group.

DCCL-23 • DCCL-34

Chapter 11. Messages 161

DCCL-35 UNBALANCED ENDG NEAR XXXXX

Explanation: An extraneous ENDG directive has been
detected. There are more ENDG directives coded than
declared GROUP items. The extraneous ENDG is
located near item XXXXX as displayed before the
message.

User Response: Remove the extraneous ENDG
directive.

DCCL-36 XXXXX, GROUP DEFINITION IS
ILLEGAL

Explanation: A duplicate Group field qualifier or a
duplicate Redefines directive for a Group field has been
detected, or a Group or Redefines has been coded
within Line, Header, Ctlfoot or Pagefoot object.

User Response: Remove the unneeded Group qualifier
or Redefines directive. Note that the Group and
Redefines can be used within AREA objects only.

DCCL-37 XXXXX IS AN INVALID OCCURS
CLAUSE

Explanation: The OCCURS directive has been
improperly coded.

User Response: Refer to the OCCURS directive
description in the ″Define Macro″ section of this
document for proper format.

DCCL-38 ALIGN=XX, IS AN INVALID/ILLEGAL
ALIGN

Explanation: The ALIGN= keyword parameter has
been improperly coded.

User Response: Refer to the ALIGN= keyword
description in the ″Define Macro″ section of this
document for the proper format.

DCCL-39 XXXXX IS ILLEGAL AS WRITTEN

Explanation: The object shadowed is either not coded
or it equals the current object name, or the SHADOW
directive was previously processed.

User Response: Refer to the SHADOW directive
description in the ″Define Macro″ section of this
document for the proper format.

DCCL-40 XXXXX IN SHADOW DEFINITION
HAS NOT BEEN PREVIOUSLY
DEFINED OR IT IS NOT A
LINE/CTLFOOT OBJECT

Explanation: The object shadowed has not been
previously defined or it is not a Line or Ctlfoot type of
object.

User Response: The SHADOW directive requires that

the object shadowed is previously defined as a Line or
Ctlfoot object. Rearrange DEFINE macro definitions
such that the object to be shadowed is defined.

DCCL-41 XXXXX IS AN ILLEGAL FIELD NAME,
ASSIGNING BAD-NAME-NN

Explanation: The displayed field is an illegal COBOL
field name. This error can be caused by other errors
that might have been detected, thus causing Migration
Utility to expect a field name prematurely.

User Response: If you truly coded a bad field name,
correct it. If the error was caused due to other errors
then correct other errors.

DCCL-42 XXXXX STATEMENT IS OUT OF
SEQUENCE, FIELD-NAME FIELD

Explanation: Two field qualifiers, directives or
positional identifiers were coded in succession. This
problem can be created when the PIC or POS positional
identifiers or the EQ or REDEFINES directives are not
followed by the respective picture/values/fields.

User Response: Add the necessary
picture/values/fields.

DCCL-43 XXXXX: FORMULA FIELD NAME IS
NOT UNIQUE

Explanation: The XXXXX formula field name has been
previously defined.

User Response: Choose a unique formula field name
not previously defined.

DCCL-44 XXXXX: IS AN ILLEGAL COBOL FIELD
NAME

Explanation: The XXXXX field name is an illegal
COBOL field name. It contains illegal characters or it is
too long.

User Response: Correct the field name in error.

DCCL-45 XXXXX, YYYYY HAS NOT BEEN
PREVIOUSLY DEFINED IN THE
ZZZZZ DEFINITION

Explanation: The YYYYY field to shadow from has
not been defined in the ZZZZZ object definition.

User Response: Change shadow expression to use the
correct field name.

DCCL-46 XXXXX OBJECT NAME IS TOO LONG.
TRUNCATING TO MAXIMUM OF 08
CHARACTERS

Explanation: The object name is too long.

User Response: Assign a new name, up to a

DCCL-35 • DCCL-46

162 Migration Utility V1R1 User’s Guide and Reference

maximum of 08 characters. Note that the object names
for Line, Header, Ctlfoot and Pagefoot objects are
limited to 08 maximum characters in length.

DCCL-47 NUMBER OF NN FRAMES EXCEEDED

Explanation: The maximum number of Frames that
can be handled by Migration Utility has been exceeded.

User Response: Refer to FRAMES= keyword of
COBOLBAS macro.

DCCL-48 FRAME=XXXXX CONTAINS ILLEGAL
DIMENSION

Explanation: The NUP (dimension) parameter has
been improperly coded.

User Response: Refer to the FRAME= keyword
description in the ″Define Macro″ section of this
document for proper frame coding conventions.

DCCL-49 EXPECTING A KEYWORD, FOUND
XXXXX IN THE FRAME. DEFAULTING
TO ″LINE″

Explanation: A Line, Header, Ctlfoot or Pagefoot
keyword is expected.

User Response: Code the proper keyword.

DCCL-50 XX PRINT CONTROL IS OUT OF
SEQUENCE

Explanation: The XX print carriage control characters
have been detected inside a frame object definition
where it does not belong.

User Response: Refer to the FRAME= keyword
description in the ″Define Macro″.

DCCL-51 XXX KEY FOR &FILE IS ILLEGAL OR
NOT DEFINED IN &FILE-&AREA
RECORD

Explanation: XXX VSAM file key field is not defined
in the file record layout.

DCCL-52 VCHAN OPTION IS IMPROPERLY
USED WITH FRAME BOX FORMAT

Explanation: The VCHAN was coded for a frame
which does not contain any Headers, Ctlfoots or
Pagefoots.

User Response: Remove the VCHAN parameters.
Note the VCHAN option can be coded only for frames
which contain nothing but detail lines.

DCCL-53 MAXIMUM OF NN FIELD GROUP
LEVELS EXCEEDED

Explanation: The maximum number of field levels
supported by Migration Utility has been exceeded.

User Response: Limit the field levels to the maximum
that can be supported by Migration Utility.

DCCL-54 XXXXX FIELD IN YYYYY IS NOT
UNIQUE

Explanation: The XXXXX field name in the YYYYY
object has been previously defined.

User Response: Assign a unique field name. Note that
all fields defined within the AREA objects must be
unique.

DCCL-55 XX AND YY FIELD LEVELS ARE
INCONSISTENT IN REDEFINE
EXPRESSION

Explanation: The field level of the redefining field is
not equal to the field level of the redefined field.

User Response: COBOL requires that the redefined
and the redefining fields are at the same level. Correct
your definitions.

DCCL-56 XXXXX FIELD EXCEEDS 30
POSITIONS

Explanation: The field name exceeds 30 positions.

User Response: Migration Utility allows field names
up to 30 characters in length. Assign a proper name.

DCCL-57 OCCURS CLAUSE IS ILLEGAL FOR
XXXXX. THE CLAUSE IS VALID ONLY
FOR GROUP FIELD DEFINITIONS

Explanation: The OCCURS directive has been coded
for an elementary item (field).

User Response: The OCCURS directive can be coded
only for Group items, therefore you must change your
field to a Group field in order to use the OCCURS.

DCCL-58 XXXXX IS ILLEGAL OR DUPLICATE
FIELD HEADER FOR YYYYY FIELD

Explanation: The XXXXX header exceeds 30
characters, or the HDR has been previously coded, or
the HDR has been coded for a field defined in a
HEADER or PAGEFOOT object.

User Response: Limit the header string to maximum
of 30 characters if it is too long, or delete the unneeded
entry.

DCCL-47 • DCCL-58

Chapter 11. Messages 163

DCCL-59 XXXXX: ILLEGAL YYYY OPTION.

Explanation: The YYYYY parameter is unknown to
define macro.

User Response: Remove bad parameter.

DCCL-60 XXXXX FILE DEFINITION IS OUTSIDE
OF FILE SECTION

Explanation: An attempt was made to define a file
outside of FILE SECTION.

User Response: Make sure that the ″FILE SECTION″
was declared before attempting to define any files.

DCCL-61 XXXXX INVALID FUNCTION OPTION

Explanation: XXXX option is unknown to Define
Macro.

User Response: Correct it.

DCCL-62 XXXXX UNDEFINED OBJECT

Explanation: XXXX Object/Field is not defined.

User Response: Correct it.

DCCL-63 MAXIMUM OF NN FUNCTIONS
EXCEEDED.

Explanation: Number of Migration Utility functions
has been exceeded.

User Response: Refer to FUNCTIONS= keyword of
DEFINE macro.

DCCL-64 XXXXX: ILLEGAL FUNCTION
PARAMETER LIST

Explanation: Invalid or null function parameters.

User Response: Correct it.

DCCL-65 XXXXX: ILLEGAL USE OF FUNCTION

Explanation: Function format is not supported as
coded.

User Response: Correct it.

DCCL-66 XXXXX: INVALID USE OF OBJECT
IDENTIFIER

Explanation: XXXX is not a valid parameter for the
Object in question.

User Response: Correct it.

DCCL-67 NUMBER OF HDR COLUMNS
EXCEEDS 3

Explanation: More than 3 strings have been coded for
the HDR.

User Response: Correct it. Note that strings composed
of multiple words must be enclosed in quotes.

DCCL-68 XXXXX DEMO MODE. YOU MUST
USE TEST FILES.

Explanation: You are licensed for the Migration Utility
Product DEMO only.

User Response: Demo accepts 80 byte records for
PEngiBAT/PEngiEZT products, and Migration
UtilityADR file for PEngiONL.

DCCL-69 ″VARCHAR″ CAN BE USED WITH
GROUP FIELDS ONLY

Explanation: The VARCHAR qualifier was coded for
an elementary item.

User Response: This option is valid for group fields
only.

DCCL-70 RECURSIVE USE OF ″VARCHAR″
WITHIN THE GROUP

Explanation: The VARCHAR qualifier was coded for
group field and for one of its subordinate fields.

User Response: This option is valid for group fields
only. It can be specified once for each group.

DCPY-01 AREA=XXXXX NAME IS ILLEGAL

Explanation: The AREA= object name is not a valid
COBOL field name.

User Response: Object names can be 1-16 characters
long and must follow COBOL Field naming
conventions.

DCPY-02 PARM1 PARM2 (ILLEGAL LEVEL
NUMBER)

Explanation: Expecting a level number in the
copybook near items PARM1 PARM2.

User Response: Correct it.

DCPY-03 XXXXXX IS AN ILLEGAL FIELD NAME

Explanation: Expecting a field name, found XXXXXX.

User Response: Correct it.

DCCL-59 • DCPY-03

164 Migration Utility V1R1 User’s Guide and Reference

DCPY-04 AREA= PARAMETER IS MISSING

Explanation: The AREA= parameter is not supplied.

User Response: Correct it.

DPNL-01 MAXIMUM OF NN OBJECTS
EXCEEDED

Explanation: The maximum number of supported
Migration Utility objects have been exceeded.

User Response: Refer to OBJECTS= keyword of
COBOLBAS/CICSBASE macro. If must, consolidate
your Object Definitions or arrange them such that you
issue fewer Define macros. If it is not possible to
consolidate any Objects, reduce the number of Objects
by coding them using native COBOL.

DPNL-02 XXXXX WAS PREVIOUSLY DEFINED

Explanation: The xxxxx Object has been previously
defined.

User Response: Change the Object name to a unique
name.

DPNL-03 POS NN: INVALID/ILLEGAL
POSITION

Explanation: The coded position NN is not numeric or
it is preceded by a “-”.

User Response: Code NN according to the Migration
Utility standards.

DPNL-04 XXXXX: ILLEGAL FIELD PICTURE

Explanation: The field picture XXXXX coded a valid
COBOL field picture, or the PIC was specified more
than one time, or the PIC was not coded but the
FIELD-NAME has never been previously defined with
a valid picture.

User Response: Correct the invalid picture if it is
invalid, remove the duplicate PIC if it is a duplicate, or
code the picture if it has never been defined before.

DPNL-05 XXXXX HAS NO ALLOCATED
STORAGE

Explanation: All fields coded for the Object XXXXX
have been found in error, or no fields have been coded,
or the Macro End Delimiter (;) has been misplaced.

User Response: Correct all fields that are in error and
make sure that the Macro End Delimiter is placed
properly.

DPNL-06 VAL XXXX: RECURSIVE USE OF
VALUE

Explanation: The value specified is either illegal or in
the wrong format.

User Response: The Value can be coded following the
VAL Positional Parameter Identifier. The Value cannot
be coded for literal.

DPNL-10 PICTURE IS ILLEGAL FOR LITERALS

Explanation: The PIC has been coded for literal.

User Response: The PIC Positional Identifier is not
allowed for literal, therefore it must be removed.

DPNL-11 VAL IS ILLEGAL FOR LITERALS

Explanation: The VAL has been coded for literal.

User Response: The VAL Positional Identifier is not
allowed for literals, therefore it must be removed.

DPNL-12 XXXXX: END QUOTE IS MISSING

Explanation: The XXXXX literal for alphanumeric field
is not enclosed in quotes.

User Response: Code a valid COBOL literal enclosed
in quotes.

DPNL-14 POS NN OVERLAPS PREVIOUS FIELD

Explanation: The start position of the field would
overlap the end position of the previous field.

User Response: Adjust the POS value of the field such
that the position less the field length is equal to or
greater than the calculated next available position
displayed in the message.

DPNL-15 DEFPANEL IS OUTSIDE OF
WORKING STORAGE

Explanation: The DEFPANEL macro for the Object is
not within the Working Storage Section, or the
″Working-Storage Section″ declarative has been
misplaced or misspelled.

User Response: Move the macro and parameters to
reside within Working-Storage Section.

DPNL-16 THE CALCULATED STORAGE OF
NNN EXCEEDS THE SPECIFIED SIZE
OF NNN

Explanation: The storage needed to house all defined
fields is greater than the specified Object Size. This
error can be caused in two ways:

1. The SIZE= parameter does not properly reflect the
object length.

DCPY-04 • DPNL-16

Chapter 11. Messages 165

2. The length of one or more fields within the object is
inaccurate.

User Response: Increase the SIZE= value to reflect the
calculated size, or adjust the field lengths to give the
correct size.

DPNL-17 SIZE=NNN: ILLEGAL OR
INSUFFICIENT SIZE

Explanation: Size is illegal as written.

User Response: Refer to SIZE= of DEFPANEL macro
for conventions.

DPNL-20 MAX OF NN FIELDS EXCEEDED

Explanation: The number of items that can be held in
the internal Migration Utility fields queue has been
exceeded.

User Response: Refer to FIELDS= keyword of
COBOLBAS/CICSBASE macro.

DPNL-30 SIZE=XXX IS ILLEGAL AS WRITTEN

Explanation: The SIZE= parameter has been
improperly coded or the size value is not numeric.

User Response: Code the size according to SIZE=
keyword of the ″ DEFPANEL″ macro.

DPNL-37 XXXXX: NO VALID PICTURE FOUND

Explanation: The XXXX field is coded without a valid
picture.

User Response: Refer to the PIC directive rules of the
″DEFPANEL″ macro. Note that a valid field picture
must be supplied, or the field must have been
previously defined with a valid picture.

DPNL-38 ALIGN=XX: INVALID/ILLEGAL ALIGN

Explanation: The ALIGN= keyword parameter has
been improperly coded.

User Response: Refer to the ALIGN= keyword
description of the DEFPANEL macro.

DPNL-39 XXXXX IS ILLEGAL AS WRITTEN

Explanation: The object shadowed is either not coded
or it equals the current object name.

User Response: Refer to the SHADOW directive
description in the DEFPANEL macro.

DPNL-40 XXXXX IN SHADOW DEFINITION
NOT DEFINED

Explanation: The object shadowed has not been
previously defined.

User Response: The SHADOW directive requires that
the object shadowed is previously defined.

DPNL-41 XXXXX ILLEGAL VALUE OR NOT IN
QUOTES

Explanation: The specified value is invalid.

User Response: The value must be a valid numeric
literal for numeric fields, alphanumeric literal for
alphanumeric fields, or a field name.

DPNL-42 XXXXX STATEMENT IS OUT OF
SEQUENCE

Explanation: Two field qualifiers, directives or
positional identifiers were coded in succession. This
problem can be created when the PIC or POS positional
identifiers or the EQ or REDEFINES directives are not
followed by the respective picture/values/fields.

User Response: Add the necessary
picture/values/fields.

DPNL-43 XXXXX: EXTENDED ATTRIBUTE
SUPPORT IS REQUIRED

Explanation: An extended attribute such as COLOR,
BLINK. . . was detected, but the map was not defined
with the extended attribute support.

User Response: Refer to: EXTATT=, DSATTS= AND
MAPATTS= keyword of the ″DEFPANEL″ macro.

DPNL-44 XXXXX: ILLEGAL COBOL FIELD
NAME

Explanation: The XXXXX field name is an illegal
COBOL field name. It contains illegal characters or it is
too long.

User Response: Correct the field name in error.

DPNL-45 XXXXX, YYYYY HAS NOT BEEN
PREVIOUSLY DEFINED IN THE
ZZZZZ DEFINITION

Explanation: The YYYYY field to shadow from has
not been defined in the ZZZZZ object definition.

User Response: Change shadow expression to use the
correct field name.

DPNL-50 XX ROW IS OUT OF SEQUENCE

Explanation: The ROW XX value is not numeric or it
is out of sequence.

User Response: Row number must be numeric and
defined in sequence in respect to the previous row.

DPNL-17 • DPNL-50

166 Migration Utility V1R1 User’s Guide and Reference

DPNL-51 SCROLL XXXX IS ILLEGAL

Explanation: XXX is not numeric or it exceeds the
maximum number of rows supported by the map.

User Response: Number of scroll rows must be
numeric. It also cannot exceed the maximum number of
rows declared by the SIZE=(rows,cols) keyword of the
″DEFPANEL″ macro.

DPNL-52 XXXX: UNPAIRED SCROLL/END-
SCROLL

Explanation: SCROLL / END-SCROLL statements are
not paired

User Response: For each SCROLL NN there must be
one END-SCROLL statement in the map definition.
Code statements respectively.

DPNL-53 XXXX: MAPFRM/MAP NAME IS OVER
7 CHARACTERS IN LENGTH

Explanation: The XXXX name is too long.

User Response: Limit the name to maximum of 7
characters.

DPNL-54 XXXXX ILLEGAL PARAMETER IN
&KEYWORD=

Explanation: The XXXXX parameter is illegal for the
displayed keyword.

User Response: Refer to the ″DEFPANEL″ macro for
specific keyword parameters.

DPNL-55 XXXX: ILLEGAL USE OF FUNCTION

Explanation: A function was specified for a filler or in
the MAPFRM object.

User Response: Remove the function statement.

DPNL-56 XXXXX FIELD EXCEEDS 20
POSITIONS

Explanation: The field name exceeds 20 positions.

User Response: DEFPANEL allows field names up to
20 characters in length. Assign a name of no more than
20 characters.

DPNL-57 XXXX: INCONSISTENT MAPFRM
USAGE

Explanation: XXXX is not a valid MAPFRM
(TYPE=MAPFRM), or MAPFRM= was coded for
TYPE=MAPFRM.

User Response: Refer to the ″DEFPANEL″ macro for
map format usage.

DPNL-58 XXXXX IS ILLEGAL OR RECURSIVE
ATTR

Explanation: Illegal or recursive use of attribute was
detected.

User Response: Refer to the ″DEFPANEL″ macro for
valid attribute combinations.

DPNL-59 XXXXX: VALUE/LITERAL EXCEEDS 120
CHARACTERS

Explanation: The XXXXX value is too long.

User Response: Reduce the value to maximum of 120
characters.

DPNL-60 NN: ROW NOT LOCATED OR
INVALID

Explanation: ROW NN is not numeric, or ROW NN
was expected but not found.

User Response: Code proper row number.

DPNL-61 @PFAID NOT FOLLOWED BY
BRACKETED AID LIST

Explanation: @PFAID parameters are not enclosed in
parentheses.

User Response: Put parentheses around parameters.

DPNL-62 XXXXX: UNDEFINED OBJECT

Explanation: XXXX Object/Field specified in the
function is not defined or it is not a valid CON or SEL
function.

User Response: Correct it.

DPNL-63 MAXIMUM OF NN FUNCTIONS
EXCEEDED.

Explanation: Number of Migration Utility functions
has been exceeded.

User Response: Refer to FUNCTIONS= keyword of
the DEFPANEL/DEFINE macro.

DPNL-64 XXXXX: ILLEGAL FUNCTION
PARAMETER LIST

Explanation: Function parameters are not enclosed in
parentheses.

User Response: Every function must be followed by a
parameter list enclosed in parentheses. If there are no
parameters then an empty () list must be specified.

DPNL-51 • DPNL-64

Chapter 11. Messages 167

DPNL-65 &NAME: CURSOR LOCATION NOT
SPECIFIED

Explanation: Insert Cursor (IC) was not located
during the decoding of the map fields.

User Response: IC must be specified for a field within
the map.

DPNL-66 XXXXX: RECURSIVE USE OF LIT

Explanation: LIT was coded more then one time for
the same field.

User Response: Remove the duplicate LIT.

ECCL-01 MAXIMUM OF NN ELEMENTS
EXCEEDED IN THE XXXXX/CONTROL
DEFINITION

Explanation: The PPL of the XXXXX PPLI contains too
many objects.

User Response: Reduce the number of objects to an
acceptable level.

ECCL-02 ILLEGAL USE OF CH1 OR NEWPAGE
ON DETAIL LINE DEFINITION

Explanation: CH1 or NEWPAGE print carriage control
has been coded for a detail object (line).

User Response: Migration Utility restricts the CH1
and NEWPAGE usage to the CTLFOOT, PAGEFOOT
and HEADER type of objects. Remove the illegal print
carriage control.

ECCL-03 XXXXX IS AN UNDECLARED OR
NULL ENTRY IN THE
YYYYY/FRAME/CONTROL
DEFINITION

Explanation: The XXXXX object has not been defined
via the Define macro, or two commas have been coded
in succession, or no entries have been supplied for the
YYYYY PPLI.

User Response: Determine the cause and correct it.

ECCL-04 XXX YYYYY IS AN ILLEGAL PRINT
CONTROL FOR DETAIL LINE
OBJECTS OF VERTICAL REPORTS
(REFER TO FRAME LINE OBJECTS)

Explanation: The XXX print carriage control specified
for the YYYYY LINE object is not allowed by Migration
Utility. The YYYYY LINE is the internal Frame name
assigned by Migration Utility to the detail line.

User Response: Migration Utility allows only SP1
print carriage control for the detail lines of Vertical
Reports. If you need double or triple space, you can
use ″SP1 NEXT″ technique to insert blank lines where

needed. Note that the overstrike (SP0) is not allowed
for vertical reports either.

EXTF-01 FILE KEYWORD IS MISSING NEAR,
PARM1, PARM2

Explanation: The FILE keyword is expected.

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-02 DDNAME,
UNDEFINED/CONFLICTING OUTPUT
FILE

Explanation: The DDNAME for the output file is
undefined or it was used as input file.

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-03 XXXXXX, IS AN UNKNOWN
PARAMETER

Explanation: The XXXXXX parameter is not a valid
EXTRACT macro parameter/keyword.

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-04 DDNAME, INPUT FILE IS NOT
DEFINED

Explanation: The DDNAME for input file is not
defined via the DEFINE macro.

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-05 FIELD IS RECURSIVELY USED IN
MATCH LIST

Explanation: The FIELD name was specified twice for
the same file.

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-06 FIELD IS ILLEGAL OR UNDEFINED

Explanation: The FIELD name specified is not
defined.

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-07 FIELD CONTAINS ILLEGAL
SEQUENCE ATTRIBUTE

Explanation: The sequence attribute is not (A) or (D).

User Response: Verify and correct.

DPNL-65 • EXTF-07

168 Migration Utility V1R1 User’s Guide and Reference

EXTF-08 XXXXXX IS AN ILLEGAL
RELATIONAL OPERATOR

Explanation: The XXXXXX is not a valid KEEP
operator in EXTRACT macro.

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-09 FIELD, EXCEEDS MAXIMUM OF NN
FIELDS

Explanation: The FIELD would exceed the fields
queue capacity of NN.

User Response: Decrease the number of fields in
output record.

EXTF-10 MATCH KEYS ARE MISSING FOR
DDNAME

Explanation: No valid ″BY″ fields were detected for
DDNAME

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-11 DDNAME EXCEEDS MAXIMUM OF
NN FILES

Explanation: Maximum number of input files that can
be handled by the EXTRACT macro was exceeded.

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-12 DDNAME IS MISSING RECORD
DEFINITION

Explanation: File DDNAME was defined in error by
the DEFINE macro, or the work area specified via the
USING statement was not defined.

User Response: This can be caused by other improper
parameters. Verify and correct.

EXTF-13 OBJECT RECORD IS NOT DEFINED
WITH A PREFIX

Explanation: The output file record or specified work
area is not defined with a prefix.

User Response: Verify and correct.

EXTF-14 FIELD IS NOT COMPONENT OF
INPUT FILES

Explanation: The ″BY″ field (key) is not defined in the
input file record.

User Response: Verify and correct.

EXTF-15 FIELD1 AND FIELD2 ARE
INCOMPATIBLE

Explanation: The FIELD1 and FIELD2 are not of the
same format. One is numeric, the other is
alphanumeric.

User Response: Verify and correct.

EXTF-16 FILE DDNAME, INCORRECT
NUMBER OF MATCH KEYS

Explanation: The number of ″BY″ fields (keys) is not
equal to the number of keys for the first file.

User Response: Verify and correct.

EXTF-17 FIELD IS NOT COMPONENT OF
DDNAME FILE

Explanation: The ″BY″ field (key) is not defined in the
input file record.

User Response: Verify and correct.

EXTF-18 XXXXXX DUPLICATE OR ILLEGAL
PARAGRAPH NAME

Explanation: The XXXXXX paragraph name is invalid
or it was used for some other file.

User Response: Verify and correct.

EXTF-19 DDNAME, DUPLICATE OR
CONFLICTING INPUT FILE

Explanation: The DDNAME was previously processed
in the same EXTRACT/MATCH, or a user I/O macro
fake DDNAME coincides with one of the files defined
via the DEFINE macro or other facilities.

User Response: Verify and correct.

EXTF-20 USING XXXXXX WORK AREA IS NOT
DEFINED OR IT IS ILLEGAL AS USED

Explanation: The XXXXXX work area was not defined
via the DEFINE macro.

User Response: Verify and correct.

EXTF-21 DDNAME, XXXXXX WORK AREA IS
NOT DEFINED

Explanation: See EXTF-20 message.

EXTF-22 DDNAME, XXXXXX WORK AREA IS
NOT DEFINED

Explanation: See EXTF-20 message.

EXTF-08 • EXTF-22

Chapter 11. Messages 169

EXTF-23 DDNAME BLKSIZE NNN IS INVALID

Explanation: The NNN value is not numeric or it
exceeds maximum

User Response: Verify and correct.

EXTF-24 FILE-SCAN DOES NOT SUPPORT
″SORT″ ON INPUT

Explanation: Files cannot be sorted with FILE-SCAN.

User Response: Remove SORT option. If file(s) must
be sorted, sort them before invoking EXTRACT.

FCCL-01 XXXXX IS AN ILLEGAL FILE/ASSIGN
NAME

Explanation: The XXXXX is an invalid file ddname or
longer than 8 characters.

User Response: Change the file name or the assign
name to comply with the system file naming standards.

FCCL-02 (This message is unused at this time)

FCCL-03 ORG=XXXXX IS AN UNKNOWN FILE
ORGANIZATION

Explanation: The XXXXX is an unknown Migration
Utility file organization.

User Response: Code one of Migration Utility
supported file organizations. Refer to the ORG=
keyword description in the ″Define Macro″ section of
this document for valid parameters.

FCCL-04 BUFFERS=XXXXX IS ILLEGAL AS
WRITTEN

Explanation: The Buffers= value is either not numeric
or it exceeds 256.

User Response: Code the proper Buffers= value.

FCCL-05 CONFLICTING OR ILLEGAL FILE
ACCESS ORG=XXXXX AND
ACCESS=YYYYY

Explanation: For ORG=SEQ, ORG=SEQUENTIAL,
ORG=PUNCH, ORG=READER, ORG=PRINTER,
ORG=VSAM-SEQ, or ORG=VSAM-SEQUENTIAL, the
ACCESS=YYYYY is not ACCESS=SEQUENTIAL. For
ORG=INDEXED or ORG=RELATIVE the
ACCESS=YYYYY is not ACCESS=DYNAMIC or
ACCESS=SEQUENTIAL or ACCESS=RANDOM.

User Response: Correct the ORG= and ACCESS= to
be consistent according to the Migration Utility
conventions.

FCCL-06 KEY=XXXXX NULL OR ILLEGAL FILE
KEY

Explanation: The VSAM file key field name is either
not supplied or it is longer than 16 characters.

User Response: The KEY= is a required parameter for
VSAM files. Correct it as needed.

FCCL-07 ALTKEY=XXXXX IS ILLEGAL AS
WRITTEN

Explanation: The VSAM Alternate key field name is
longer than 16 characters.

User Response: Migration Utility supports field names
up to 16 character long. Correct it as needed.

FCCL-08 FILEIO OPTION HAS BEEN
PREVIOUSLY ISSUED, PEngiCCL
PROVIDES FOR ONE FILE I/O ONLY

Explanation: FILEIO=YES has been previously
processed for another file.

User Response: Migration Utility can generate file
read procedure logic for ONLY one file. If you need to
read more than one file, you can code the read/write
logic using native COBOL, in the Procedure Division.
However, FILEIO=YES must be removed for this file.

GCCL-01 MAX OF NN OBJECTS EXCEEDED

Explanation: The maximum number of generated
reports that can be handled by Migration Utility has
been exceeded.

User Response: You are limited to the number of
reports that can be generated by Migration Utility in a
single program. If you need more reports, create a
subprogram with additional reports in it.

GCCL-02 REPORT=XXXXXXX HAS BEEN
PREVIOUSLY DEFINED

Explanation: The XXXXXXX report has been
previously defined.

User Response: Change the report name to a unique
name.

GCCL-03 GENERATE MACRO IMPROPERLY
USED OUTSIDE OF PROCEDURE
DIVISION

Explanation: The GENERATE macro has been issued
outside of Procedure Division.

User Response: Code the macro within the Procedure
Division boundaries.

EXTF-23 • GCCL-03

170 Migration Utility V1R1 User’s Guide and Reference

GCCL-04 XXXXX: UNDECLARED OR NULL
ENTRY IN THE LINE DEFINITION

Explanation: An undefined or null object has been
detected in the Line Positional Parameter List.

User Response: All objects in the Line PPL must have
been previously defined via the Define macro. A null
entry can be caused by two commas in succession or
the absence of PPL parameters.

GCCL-05 ILLEGAL PRINT CONTROL ON THE
1ST HEADER LINE

Explanation: A print carriage control other than CH1
or NEWPAGE has been coded before the first Header
line.

User Response: CH1 and NEWPAGE print carriage
control are the only ones allowed on the first Header
line.

GCCL-06 XXXXX: UNDECLARED OR NULL
ENTRY IN THE CTLFOOT
DEFINITION

Explanation: An undefined or null object has been
detected in the Ctlfoot Positional Parameter List.

User Response: All objects in the Ctlfoot PPL must
have been previously defined via the Define macro. A
null entry can be caused by two commas in succession
or the absence of PPL parameters.

GCCL-07 REPORT OBJECTS HAVE NOT BEEN
DEFINED VIA THE DEFINE MACRO

Explanation: A GENERATE macro has been coded but
no valid objects have been defined via the Define
macro. This also could be caused if all Defined Objects
have been found in error.

User Response: Define your report objects (Lines,
Headers, Pagefoots and Ctlfoots) before you issue the
Generate macro.

GCCL-08 FIELD OBJECTS HAVE NOT BEEN
DEFINED VIA THE DEFINE MACRO

Explanation: A GENERATE macro has been coded,
but no valid fields have been defined via the Define
macro. Also caused when all Defined Objects have been
found in error.

User Response: Define your report objects (Lines,
Headers, Pagefoots and Ctlfoots) before you issue the
Generate macro.

GCCL-09 XXXXX HAS NOT BEEN PREVIOUSLY
DEFINED

Explanation: The displayed field name has not been
previously defined in any Defined Objects or it was
misspelled.

User Response: The fields used in the Control Break
(Control PPLI) must be defined within an object via the
Define macro. If it was misspelled then correct the field
name. If the field is not within a defined object, but is
needed, define it in a work AREA object in working
storage.

GCCL-10 UNPAIRED PARENS IN XXXXX LINE
DEFINITION

Explanation: The Line PPL is coded in sublisted form,
but the expression contains an uneven number of left
and right parentheses.

User Response: Make sure that the expression
contains an even number of left and right parentheses.
Also make sure that the expression begins with a left
parenthesis “(” and ends with a right parenthesis “)”.

GCCL-11 THE WORD ’FINAL’ IS IMPROPERLY
PLACED IN THE CONTROL
DEFINITION (IT MUST FOLLOW THE
’CONTROL’ WORD IF SPECIFIED)

Explanation: The word ″FINAL″ has been misplaced
in the CONTROL PPL.

User Response: The word ″FINAL″ in the Control
PPL represents the Final Control Break. When coded, it
is treated as any other control break fields. However,
since the control breaks follow a hierarchy, the final
control break must be first in the list, if specified.

GCCL-12 MAX OF NN OBJECTS EXCEEDED,
ITEM XXXXX

Explanation: The maximum number of supported
Migration Utility objects have been exceeded. This error
is caused in the Generate macro while trying to add
internally generated objects to the objects queue. The
NN is the maximum number of objects that can be
handled by Migration Utility.

User Response: Refer to the OBJECTS= of the
COBOLBAS/CICSBASE macro. If you still have
problems consolidate your Object Definitions or
arrange them such that you issue fewer Define macros.
If it is not possible to consolidate any Objects, reduce
the number of Objects by coding them using native
COBOL.

GCCL-04 • GCCL-12

Chapter 11. Messages 171

GCCL-13 XX IS AN ILLEGAL CONTROL
SEQUENCE OPTION

Explanation: The XX field sequence attribute coded
for one of the control fields in the Control PPL is not
(A) or (D).

User Response: A field can be in ascending (A)
sequence or descending (D) sequence. Correct the
attribute in error.

GCCL-14 XXXXX IN YYYYY FORMULA IS
ILLEGAL AS WRITTEN WITH
SUM/ACCUM/EXIT OPTION

Explanation: The XXXXX field qualifier was used for a
reserved field (such as @COUNT) in the formula
YYYYY, or the SUM field qualifier was used in the
formula YYYYY which resides in a non-Ctlfoot object.

User Response: Remove the field qualifier in error.

GCCL-15 XXXXX IN YYYYY FORMULA IS NOT
A NUMERIC FIELD

Explanation: The field XXXXX has not been defined as
a numeric field.

User Response: Only numeric fields can be used in
arithmetic formulas. Either change the field definition
to a numeric usage or correct the formula expression to
include the correct fields.

GCCL-16 XXXXX IN YYYYY FORMULA IS
UNDEFINED OR ILLEGAL AS
WRITTEN

Explanation: The field XXXXX in the YYYYY formula
is either an invalid COBOL field name or it has not
been defined via the Define macro.

User Response: All fields which are coded in a
formula expression must be defined within an object
via the Define macro. Fields which are not defined
must be moved into a field which has been defined in
order to be used in the formula.

GCCL-17 NUMBER OF NN SUMS EXCEEDED

Explanation: The maximum number of SUM fields
that can be handled by Migration Utility in a single
report has been exceeded. The fields included in this
count are the SUM fields within the CTLFOOT objects
and CTLFOOT formulas.

User Response: Reduce the number of SUM fields.

GCCL-18 XXXXX IN YYYYY FORMULA IS
UNDEFINED OR ILLEGAL AS
WRITTEN

Explanation: The field XXXXX in the YYYYY formula
is either an invalid COBOL field name or it has not

been defined via the Define macro.

User Response: All fields which are coded in a
formula expression must be defined within an object
via the Define macro. Fields which are not defined
must be moved into a field which has been defined to
be used in the formula.

GCCL-19 NUMBER OF NN SAVE FIELDS
EXCEEDED

Explanation: The maximum number of Saved fields
that can be handled by Migration Utility in a single
report has been exceeded. The fields included in this
count are the fields which are printed on the report
headers, control break totals and pagefoots. Note that
the literal and formulas are not included in this count.

User Response: Reduce the number of fields that
must be saved. Such fields are defined within the
Header, Pagefoot and Ctlfoot objects, and included on
the report.

GCCL-20 XXXXX: UNDECLARED OR NULL
ENTRY IN THE CONTROL/CTLFOOT
DEFINITION

Explanation: The displayed Object has not been
defined via the Define macro or it was misspelled.

User Response: The objects used in the Control Break
(Control PPL or CTLFOOT PPL) must be defined as
CTLFOOT objects via the Define macro. If it was
misspelled correct the object name, else remove it.

GCCL-21 SEQUENCE=XXXXX IS INVALID,
VALID OPTIONS ARE
SEQUENCE=YES OR SEQUENCE=NO

Explanation: An invalid option has been coded for the
report sequence check.

User Response: Use the correct sequence option,
Sequence=Yes or Sequence=No.

GCCL-22 XXXXX IS AN INVALID REPORT FILE
DDNAME

Explanation: The REPORT= report DDNAME is not a
valid system ddname or it exceeds 8 characters in
length or it is less than 6 characters in length or it is
equal ″REPORTS″ literal.

User Response: Correct the report name to comply
with Migration Utility coding conventions.

GCCL-23 XXXXX IS AN UNKNOWN GENERATE
MACRO KEYWORD

Explanation: The XXXXX is an unknown GENERATE
macro positional parameter list identifier (PPLI).

User Response: Correct or remove the PPLI in error.

GCCL-13 • GCCL-23

172 Migration Utility V1R1 User’s Guide and Reference

GCCL-24 DUPLICATE CTLFOOT PPL
DEFINITION

Explanation: The CTLFOOT PPLI has been coded
more than one time within a single Generate macro.

User Response: The CTLFOOT PPLI can appear only
once for each Generate macro invocation. Correct the
extraneous CTLFOOT PPLI.

GCCL-25 DUPLICATE PAGEFOOT PPL
DEFINITION

Explanation: The PAGEFOOT PPLI has been coded
more than one time within a single Generate macro.

User Response: The PAGEFOOT PPLI can appear
only once for each Generate macro invocation. Correct
the extraneous PAGEFOOT PPLI.

GCCL-26 DUPLICATE HEADER PPL
DEFINITION

Explanation: The HEADER PPLI has been coded more
than one time within a single Generate macro.

User Response: The HEADER PPLI can appear only
once for each Generate macro invocation. Correct the
extraneous HEADER PPLI.

GCCL-27 DUPLICATE CONTROL PPL
DEFINITION

Explanation: The CONTROL PPLI has been coded
more than one time within a single Generate macro.

User Response: The CONTROL PPLI can appear only
once for each Generate macro invocation. Correct the
extraneous CONTROL PPLI.

GCCL-28 DUPLICATE LINE PPL DEFINITION

Explanation: The LINE PPLI has been coded more
than one time within a single Generate macro.

User Response: The LINE PPLI can appear only once
for each Generate macro invocation. Correct the
extraneous LINE PPLI.

GCCL-29 MAXIMUM ALLOWED CONTROL
BREAKS EXCEEDED

Explanation: Maximum of 16 Control Breaks has been
exceeded. The count also includes the ″Final″ control
break.

User Response: None. You have reached the
maximum number of control breaks that can be
supported by Migration Utility.

GCCL-30 XXXXX LITERAL IN YYYYY
OVERLAPS THE PREVIOUS LITERAL
BY NN POSITIONS

Explanation: A LINE or A CTLFOOT object has been
coded in the Header PPL. The Generate macro
attempted to construct a Header line from the field
names defined in such object. The Generate macro tries
to align the field name literal with the actual position
of the edited field contents as defined in the object.
This error is caused when the field name is longer than
the field and there are not enough fillers between the
fields to compensate for the difference in length, thus
causing an overlap on the previous field’s name literal.

User Response: Allow more spaces between the
current field and the previous field in the object in
error. The NN displayed in the message indicates the
number of needed positions. Also, if appropriate,
consider using the Define macro option
ALIGN=(YES,NN). The Align option will automatically
allocate enough fillers between the fields to
accommodate a header constructed of field names.

GCCL-31 RECURSIVE USE OF THE XXXXX
FIELD IN THE CONTROL
DEFINITION

Explanation: The XXXXX field has been used more
than once in the Control PPL.

User Response: Remove the extraneous field.

GCCL-32 XXXXX FRAME HAS NOT BEEN
PREVIOUSLY DEFINED

Explanation: The frame XXXXX has not been defined
via the Define macro or the frame name was
misspelled.

User Response: Correct the frame name if it has been
misspelled, or else define it via the Define macro.

GCCL-33 XXXXX FRAME CAUSED AN
OVERFLOW ON THE FRAME DATA
QUEUE OF 512 CHARACTERS

Explanation: When generating code for one or more
frames, the Generate macro collects all internally
assigned object names and print carriage control in a
buffer of 512 characters. This error is caused when the
length of all collected object names and print carriage
control characters exceeds 512.

User Response: The number of objects that can be
included in a single report with one or more frames is
limited to the number of object names that can fit into
a 512 characters buffer. Therefore, there is no solution
to this problem unless you can reduce the number of
objects within frames.

GCCL-24 • GCCL-33

Chapter 11. Messages 173

GCCL-34 FRAMES XXXXX AND YYYYY
CONTAIN UNEQUAL SIZE OR
DIMENSION

Explanation: Frame XXXXX and frame YYYYY are
inconsistent, that is, the frame size (SIZE=) and
dimension (NUP) are not equal.

User Response: Migration Utility handles multiple
frames in a single report only of equal size and
dimension. Change the frame parameters for frame
XXXXX and frame YYYYY so that they are equal in size
and dimension.

GCCL-35 RECURSIVE OR ILLEGAL USE OF
FRAME XXXXX

Explanation: The frame XXXXX has been specified
more than one time in the Frame PPL.

User Response: Remove the extraneous parameter.

GCCL-36 XXXXX IS AN UNKNOWN HANDLE
OPTION

Explanation: The XXXXX Handle Option is an
unrecognized option.

User Response: Refer to the HANDLE description in
the ″Generate Macro″ description of this document.

GCCL-37 XXXXX: UNDECLARED/NULL OR
ILLEGAL OBJECT IN THE GENERATE
OBJECT LIST

Explanation: An undefined, null or illegal object has
been detected in the OBJECT= Parameter List of
Generate macro.

User Response: All objects in the OBJECT= list must
have been previously defined via the AREA= and
PREFIX= option of Define macro. A null entry can be
caused by two commas in succession.

GCCL-38 XXXXX: ILLEGAL USE OF OBJECT.
XXXXX IS NOT DEFINED WITH A
PREFIX

Explanation: An illegal object has been detected in the
OBJECT= Parameter List of Generate macro.

User Response: All objects in the OBJECT= list must
be defined with the PREFIX= option of Define macro.

GCCL-39 XXXXX: NNN OPTIONAL LINES
EXCEEDED

Explanation: The maximum number of optional lines
that can be handled by Migration Utility in a single
report has been exceeded.

User Response: Reduce the number of optional lines.

GCCL-40 PAGE OR SIZE OR ORPHAN VALUE
IS NOT NUMERIC

Explanation: The value specified for PAGE= or SIZE=
or ORPHAN= keyword parameters of
Generate/Generatm macro is not numeric.

User Response: Correct the erroneous value.

GCCL-41 INCONSISTENT USE OF CTLFOOT
AND PAGEFOOT OPTIONS

Explanation: The CTLFOOT and PAGEFOOT objects
listed in the Generate macro are not of the same origin.
This is caused when the FRAME PPL is coded in the
Generate macro in combination with free objects.

User Response: The objects listed in the CTLFOOT
and PAGEFOOT positional parameter list must all be
defined either in the frame or as free objects. That is, if
the CTLFOOT objects are defined in the frame then the
PAGEFOOT objects must also be defined in the frame
and vice versa.

GCCL-42 DUPLICATE SORT OR READ PPL
DEFINITION

Explanation: The SORT or READ PPLI has been
issued more than one time for the same GENERATE
macro.

User Response: Remove the duplicate PPLI.

GCCL-43 XXXXXXXX PPL PARAMETERS
EXCEED 512 CHARACTERS

Explanation: The total length of the SORT or READ
PPL strings exceeds 512 characters.

User Response: Reduce the length of the field or
paragraph names to bring the total length below 512
characters. XXXXXXXX is the string which caused the
overflow.

GCCL-44 ″HANDLE″ IS ILLEGAL WITH
READ/SORT OPTION

Explanation: The HANDLE PPLI has been coded in
the GENERATE macro that uses SORT or READ
option.

User Response: The ″HANDLE″ cannot be used with
SORT or READ option of the GENERATE macro. If you
must handle a Header record, do so via a SORT or
READ Input Exit. The header record information can be
saved in working storage and accessed as such.

GCCL-45 &REPORT XXX PREFIX IS NOT
AVAILABLE

Explanation: There is a conflict in prefix usage for
GENERATE/GENERATM macros.

GCCL-34 • GCCL-45

174 Migration Utility V1R1 User’s Guide and Reference

User Response: Choose a different prefix. Refer to the
GENERATE macro PREFIX= keyword description.

GCCL-46 &REPORT READ/SORT USING IS
NOT ALLOWED OR PREVIOUSLY
DEFINED NAME

Explanation: READ or SORT with USING &REPORT
was specified with a shared printer DDname
(DDNAME=).

User Response: Sharing of I/O such as READ or
SORT results in concurrent printing of the subject
Reports. Refer to the GENERATE macro for
DDNAME= keyword description.

GCCL-47 &TBname TABLE LEVELS IS LESS
THAN #CTL BREAKS

Explanation: HANDLE TABLE was specified for a
table containing fewer table levels than the number of
report control breaks.

User Response: Synchronize table levels with the
control breaks. Refer to the GENERATE macro
HANDLE TABLE rules.

GCCL-48 PLOT (X Y) CODED FOR NON-FRAME
&REPORT, OR IT WAS PLACED
AFTER THE ″FRAME″ PPL

Explanation: PLOT (X,Y) option was specified for
report/section that does not use FRAMEs, or the PLOT
(X Y) was placed after the FRAME PPL in the
&REPORT section.

User Response: PLOT can be specified in the
GENERATM/GENERATE macro only for sections that
use FRAMEs. The statement PLOT (X Y) must be
placed before the FRAME PPL (it is the rule).

GCCL-49 CHANNEL STOPS EXCEED NN LINES
PER PAGE

Explanation: A VCHAN stop for one of the channels
exceeds the number of lines per page specified by the
PAGE=nn.

User Response: If the PAGE=nn is correct refer to the
default VCHAN values listed in Appendix A. You can
override the defaults by providing a VCHAN list as
part of the Frame definition.

GCLR-01 XXXXXX IS NOT DEFINED.

Explanation: The CCGCLEAR Macro object was not
defined by the DEFINE macro.

User Response: Only objects defined via the DEFINE
macros can be used with CCGCLEAR.

GENM-01 REPORT SECTIONS ARE OUT OF
ORDER

Explanation: In GENERATM macro, SECTION and
END-SECTION are not specified in the correct
sequence, that is, the first section does not begin with a
SECTION identifier, or an END-SECTION is not
followed by a SECTION identifier.

User Response: Refer to the GENERATM macro
sections coding standards.

GENM-02 SECTION &SECTION EXCEEDS
PARAMETER CAPACITY

Explanation: The length of all macro parameters (data
strings) for the named section exceeds 6,144 characters.

User Response: Refer to the GENERATM macro
sections coding standards.

GSNP-01 OBJECT=XXXXXX IS NOT DEFINED

Explanation: The CCGSNAP macro object was not
defined by the DEFINE macro.

User Response: Only objects defined via the DEFINE
macros can be used with CCGSNAP.

SCCL-01 XXXXXXXX REPORT IN THE
SORT/READ IS UNDEFINED OR
FOLLOWED BY EXTRANEOUS FIELDS

Explanation: The Report in the SORT USING
&REPORT or READ USING &REPORT was not
previously defined, or extraneous parameters have
been detected in the definition.

User Response: Remove extraneous parameters, or
refer to the correct &REPORT name.

SCCL-02 SORT REQUESTED BUT NO SORT
FIELDS SPECIFIED

Explanation: The SORT or READ option used in the
GENERATE macro definition is incomplete.

User Response: Correct the erroneous value.

SCCL-03 FILE &SORTDDN ALREADY EXISTS
OR BAD DDNAME

Explanation: The internally generated sort DDNAME
overlaps a previously defined file DDNAME.

User Response: Alter the externally defined
DDNAME so that it does not interfere with the
internally Migration Utility generated names.

GCCL-46 • SCCL-03

Chapter 11. Messages 175

SCCL-04 UNKNOWN SORT TYPE IN &FIELD
DEFINITION

Explanation: The sort type attribute is not ″(A)″ or
″(D)″.

User Response: Correct the erroneous type.

SCCL-05 SORT FIELD &FIELD IS UNDEFINED
OR ILLEGAL

Explanation: The &FIELD field in the SORT PPL is
either undefined or illegal as written.

User Response: Correct the erroneous field.

SCCL-06 SORT/READ FILE(S) NAME IS
MISSING OR UNDEFINED

Explanation: The &FILE in the SORT FILE &FILE or
READ FILE &FILE is undefined or not coded.

User Response: Code the correct file name for as per
SORT/READ requirements.

SCCL-07 &AREA IN THE SORT/READ PPL IS
NOT DEFINED IN WORKING
STORAGE OR LINKAGE SECTION

Explanation: The &AREA work area in the
SORT/READ PPL was not defined via the Define
macro in working storage or linkage section.

User Response: Make sure that the &AREA definition
resides in working storage or linkage section.

SCCL-08 XXXXXXXX IS AN ILLEGAL EXIT
PARAGRAPH NAME

Explanation: The XXXXXXXX is an illegal
COBOL/Migration Utility paragraph name.

User Response: Correct the paragraph name. Note
that Migration Utility paragraph names must start with
an alphabetic character an can contain only hyphens an
alphanumeric characters.

SCCL-09 &EXIT OUTPUT EXIT IS ILLEGAL IN
READ PPL

Explanation: An output exit was coded as part of the
READ PPL.

User Response: The READ PPL does not support an
output exit. Remove extraneous exit.

SCCL-10 RECURSIVE USE OF &FIELD IN
SORT/READ OPTION

Explanation: The &FIELD field was specified more
than one time in the SORT PPL.

User Response: Remove extraneous field definition.

SCCL-11 XXXXXX IS ILLEGAL AS WRITTEN

Explanation: The user I/O macro exceeds 9 characters
or is less than 2 characters long.

User Response: Correct it.

SCCL-12 MAXIMUM OF NN INPUT FILES
EXCEEDED

Explanation: The maximum number OF READ/SORT
files has been exceeded.

User Response: Decrease the number of files.

SCCL-13 XXXXXX WORK AREA IS NOT
DEFINED

Explanation: The XXXXXX work area was not defined
by the DEFINE macro.

User Response: Define it or use the correct work area.

TBDF-01 DATA STRING EXCEEDS 16384
CHARACTERS

Explanation: The length of table CREATE definitions
(data strings between CREATE and DATA parameters)
is over 512 characters or the length of all field
definitions (data strings) for a table in a nested macro
is over 16384 characters.

User Response: Parameters such as the field names
and the pictures are counted in the size. You can shrink
the field names to fit more fields in the buffer.

TBDF-02 &AREA TABLE DEFINITION IS
INCOMPLETE

Explanation: The DEFTABLE macro was coded
without CREATE and/or DATA options.

User Response: Add the required options/parameters.

TBDF-03 UNEVEN NUMBER OF FIELDS OR NO
DATA FOUND

Explanation: The number of data strings following the
DATA is not an integral number of expected data
COLUMNS. Either COLUMNS NN is improper or the
supplied data fields are out of synchronization.

User Response: Add the required data fields, correct
COLUMNS parameter.

TBDF-04 XXXX IS NOT NUMERIC

Explanation: The XXXX data is not numeric but it is
being assigned to a numeric field.

User Response: Correct the data.

SCCL-04 • TBDF-04

176 Migration Utility V1R1 User’s Guide and Reference

TBDF-05 &AREA HAS BEEN PREVIOUSLY
DEFINED

Explanation: A duplicate OBJECT name has been
detected.

User Response: Assign an new Name.

TBDF-06 &AREA, EXCEEDS MAX OF NN
AREAS

Explanation: You have reached the maximum number
of objects that can be defined by the DEFTABLE macro.

User Response: Consider combining two or more
tables into a single table.

TBDF-08 COLUMNS/LEVELS NN IS ILLEGAL
AS SPECIFIED

Explanation: LEVELS NN or COLUMNS NN is not
numeric, or COLUMNS NN is greater than the number
of fields contained in the table record.

User Response: Correct the problem.

TBDF-09 CREATE/DATA PRECEDED BY OTHER
INFORMATION

Explanation: Extraneous parameters have been
detected before CREATE or DATA statements.

User Response: Remove extraneous parameters.

TBDF-10 XXXXX: DATA STRING IS TOO LONG

Explanation: The string of alphanumeric field exceeds
the length allowed by the field definition.

User Response: Correct the problem.

TBDF-11 CONFLICT: MEMORY DYNAMIC AND
HARD CODED DATA

Explanation: An attempt to define a table with
″MEMORY DYNAMIC″ and Hard Coded Data.

User Response: Tables with ″MEMORY DYNAMIC″
option are allocated at program run time. Hard coded
data cannot be defined for such tables. Refer to
DEFTABLE macro for proper usage of ″MEMORY
DYNAMIC″ option.

TSRV-01 TBSERV USED OUTSIDE OF
PROCEDURE DIVISION

Explanation: The TBSERV macro was issued outside
of Procedure Division.

User Response: Correct the problem. If Procedure
Division line was specified, make sure that there were
no errors on the macro before Procedure Division
statement.

TSRV-02 &TBname, USING &OBJECT IS
INVALID OR MISSING

Explanation: The TBSERV OPEN or TBSERV CREATE
function was coded for a table without the USING
option.

User Response: You must provide a USING &OBJECT
parameters to identify an area for the table.

TSRV-03 &TBname, &TBKEY IS NOT DEFINED

Explanation: The specified table key is not a part of
the table record definition.

User Response: All table keys must be an integral
part of the table record.

TSRV-05 &FUN FOR &TBname IS AN
UNKNOWN FUNCTION

Explanation: The specified function is not supported.

User Response: Refer to the TBSERV macro reference
for valid functions.

TSRV-06 &TBname WAS NOT PREVIOUSLY
DEFINED

Explanation: A TBSERV function was requested for a
table which was not previously opened or created.

User Response: Refer to the TBSERV macro reference
for valid function sequences.

TSRV-07 &TBname WAS PREVIOUSLY OPENED

Explanation: A TBSERV CREATE function was
requested for a table that was previously
created/opened.

User Response: Use a different TBname.

TSRV-08 &TBname IS DEFINED AS A FILE
DDNAME

Explanation: A TBSERV CREATE/OPEN function was
requested for a table, but the TBname used is already
assigned to a file.

User Response: Use a different TBname.

TSRV-09 &TBname, ROWS NN IS INVALID

Explanation: The ROWS value is not numeric.

User Response: Specify a numeric value.

TSRV-10 &TBname, KEY IS NOT DEFINED IN
&OBJECT

Explanation: The specified table key is not a part of
the table record definition.

TBDF-05 • TSRV-10

Chapter 11. Messages 177

User Response: All table keys must be an integral
part of the table record.

TSRV-11 &TBname, -TEXT- IS AN UNKNOWN
PARAMETER

Explanation: The displayed text is not a valid TBSERV
option.

User Response: Correct the problem.

TSRV-12 &TBname, COLUMNS/LEVELS NN IS
INVALID

Explanation: LEVELS NN or COLUMNS NN is not
numeric, or COLUMNS NN is greater than the number
of fields contained in the table record.

User Response: Correct the problem.

TSRV-13 &TBname ROWS IS INVALID OR NOT
SPECIFIED

Explanation: ROWS value is not numeric or ROWS 0
was specified.

User Response: Correct the problem.

TSRV-14 &TBname -PARAGRAPH- IS AN
INVALID EXIT NAME

Explanation: The paragraph name for error handling
is not a valid COBOL paragraph name.

User Response: Correct the problem. Note that the
paragraph name must begin with a letter.

TSRV-15 &TBname &TBKEY EXCEEDS KEY
QUEUE CAPACITY

Explanation: There are too many table keys.
Maximum of 256 table keys can be specified in a single
Migration Utility program which is an average of 8
keys per table.

User Response: Decrease the number of table keys.
Consider combining two or more tables into a single
table if possible.

TSRV-16 &TBname, ″NOT″ IS NOT FOLLOWED
BY AN OPERATOR

Explanation: An improper logical term was specified.

User Response: Refer to the TBSERV ″KEY″ coding
standards.

TSRV-17 COLUMNS NN EXCEEDS THE
NUMBER OF TABLE FIELDS

Explanation: The number of specified columns
exceeds the number of fields contained in the table
record.

User Response: Correct the problem.

TSRV-18 &TBname ″DIRECT″ OPTION
REQUIRES A NUMERIC KEY AND A
SINGLE EQUAL RELATION.

Explanation: The DIRECT access was specified but the
table key is not a numeric field with EQUAL relation.

User Response: Refer to the TBSERV ″KEY″ coding
standards.

TSRV-19 &TBname, &TBbind IS AN INVALID
TABLE FOR BIND

Explanation: The BIND was coded with a table name
greater than 8 characters long.

User Response: Correct the problem.

TSRV-20 &TBname, BINARY SEARCH
REQUIRES ″EQUAL″ IN KEY
RELATION

Explanation: The BINARY search option was coded
without the EQUAL in key relational operator.

User Response: Correct the problem.

TSRV-21 &TBname, ″-TEXT-″ NOT ALLOWED
IN BINARY SEARCH

Explanation: The BINARY search option was coded
with the -text- in key relational operator.

User Response: Refer to TBSERV macro reference for
proper syntax.

TSRV-22 &TBname, MULTI-LEVEL TABLE
SPECIFIED FOR BINARY SEARCH

Explanation: The BINARY search option was coded
for a multi-level table.

User Response: Refer to TBSERV macro reference for
proper syntax.

TSR1-01 &TBname, B&FUN UNSUPPORTED
TBSERV1 FUNCTION

Explanation: A non-supported function was requested
for one level table.

User Response: Correct the problem.

TSR1-02 &TBname, &FIELD FORMULA FOUND
IN DEFINITION

Explanation: A formula was coded in the table record
definition.

User Response: Formulas are not valid in table
records. Remove the formula.

TSRV-11 • TSR1-02

178 Migration Utility V1R1 User’s Guide and Reference

TSR1-03 &TBname, &TBbind IS UNDEFINED
FOR BIND

Explanation: The &TBname was coded with a BIND
for &TBbind, but &TBbind table was not defined.

User Response: Provide the proper table name in the
BIND list.

TSR1-04 &TBname, ROWS/COLUMNS OF
&TBbind ARE INCONSISTENT

Explanation: The &TBname is a single-level table and
&TBbind is a multi-level table.

User Response: None. A multi-level table cannot be
bound to a single-level table.

TSR1-05 &TBname, NULLSON/NULLSOFF
REQUIRES QMFLAG

Explanation: Handling of null rows was requested but
the table was not created/opened with the QMFLAG
option.

User Response: Refer to the TBSERV
NULLSON/NULLSOFF coding standards.

TSR1-07 &TBname &Fun, CONFLICTS WITH
MEMORY STATIC

Explanation: The ALLOC/DEALLOC was specified
for a static table.

User Response: Refer to TBSERV macro reference for
proper syntax.

TSRM-01 &TBname, &FUN UNSUPPORTED
TBSERVM FUNCTION

Explanation: A non-supported function was requested
for multi-level table.

User Response: Correct the problem.

TSRM-02 &TBname, &FIELD FORMULA FOUND
IN DEFINITION

Explanation: A formula was coded in the table record
definition.

User Response: Formulas are not valid in table
records. Remove the formula.

TSRM-03 &TBname, &TBbind IS UNDEFINED
FOR BIND

Explanation: The &TBname was coded with a BIND
for &TBbind, but &TBbind table was not defined.

User Response: Provide the proper table name in the
BIND list.

TSRM-04 &TBname, ROWS/COLUMNS OF
&TBbind ARE INCONSISTENT

Explanation: The &TBname is a multi-level table and
&TBbind is a multi-level table but the number of table
levels are not equal.

User Response: None. A multi-level table can be
bound to a multi-level table only if the table levels are
equal. A single-level table can be bound to a multi-level
table, however.

TSRM-05 &TBname, NULLSON/NULLSOFF
REQUIRES QMFLAG

Explanation: Handling of null rows was requested but
the table was not created/opened with the QMFLAG
option.

User Response: Refer to the TBSERV
NULLSON/NULLSOFF coding standards.

VCCL-01 XXX IS AN UNKNOWN CHANNEL

Explanation: XXX is an unsupported/unknown
Migration Utility print carriage control.

User Response: Refer to APPENDIX A in the
Migration Utility manual for valid print carriage
control characters.

VCCL-02 XXX IS AN ILLEGAL CHANNEL STOP

Explanation: The line number which represents the
channel is not numeric or it exceeds 66.

User Response: All Virtual Channels must be assigned
a line number from 1 to 66, because the line number
represents that line on the page. For example, if CH2 is
assigned to line 20, then every time when CH2 is used
before a print object Migration Utility will skip to line
20. Correct the line number to comply with Migration
Utility standards.

VCCL-03 NNN EXCEEDS PAGE OF 66 LINES

Explanation: See ″VCCL-02″ message above.

VCCL-04 XXXXX EXTRANEOUS POSITIONAL
PARAMETERS, IGNORED

Explanation: An odd number of parameters has been
supplied in the VCHAN sublist.

User Response: The VCHAN sublist parameters must
be coded in pairs. For each Virtual Channel there must
follow a line number for that channel. Correct the
VCHAN sublist such that it has an even number of
parameters.

TSR1-03 • VCCL-04

Chapter 11. Messages 179

VCCL-05 INCONSISTENT CH1 STOP, LINE 1 IS
FORCED

Explanation: A line number other than line 1 has been
coded for CH1 or NEWPAGE.

User Response: Migration Utility always forces line 1
for CH1 or NEWPAGE print controls. Code 1 for the
line number to avoid error.

VCCL-06 CHANNEL XXXXX STOP IS OUT OF
SEQUENCE

Explanation: The line number for the channel XXXXX
is lower than the line number of the previous channel.

User Response: The line numbers represent the stops
on the page. All stops must be in sequence by channel
number. That is, stops for higher channels must be
higher than the stops for the lower channels. Put your
VCHAN sublist into proper sequence.

XCNV-01 BOOK &NAME NAME IS ILLEGAL

Explanation: The copybook name is invalid.

XCNV-02 &WORD IS ILLEGAL LEVEL NUMBER

Explanation: Expecting a level number. This problem
can be caused by missing periods in the COBOL
copybook.

XCNV-03 &WORD IS AN ILLEGAL FIELD
NAME

Explanation: The name is not a legal COBOL field
name allowed by Migration Utility.

XCNV-04 NAME= PARAMETER IS MISSING

Explanation: Copybook name was not supplied
(NAME= is missing).

XCNV-06 TOO MANY TRANSLATE WORDS OR
END-TRANS MISSING

Explanation: 256 translate pairs of words exceeded.

XCNV-08 ″RENAMES″ IS NOT SUPPORTED,
USE REDEFINES

Explanation: RENAMES cannot be interpreted by this
facility. Resort to REDEFINES statement.

Migration Utility function generated messages

ABEND00-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

ABEND00-02 &PROGRAM: PROGRAM NAME IS
TOO LONG

User Response: Code 1 - 8 characters valid program
name.

ABEND00-03 &PROGRAM: NNN PROGRAMS
EXCEEDED

User Response: Use fewer number of ABEND
programs if possible, otherwise resort to your own
ABEND handling in Native COBOL.

ABEND00-04 UNKNOWN FUNCTION
PARAMETERS

Explanation: Parameter is not supported by the
function.

ADDSIGN-01 OBJECT LENGTH IS INVALID

Explanation: The specified object length is not
numeric or it is greater than 9 or it is less than 1.

ADDSIGN-02 TARGET IS INVALID OR NOT
SUPPLIED

Explanation: The target object name is either invalid
or not coded.

ADDSIGN-03 OBJECT IS INVALID OR NOT
SUPPLIED

Explanation: The source object name is either invalid
or not coded.

AUTOHELP-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

AUTOHELP-02 &MAPNAM: INVALID MAP NAME

Explanation: &MAPNAM is invalid or not defined.

VCCL-05 • AUTOHELP-02

180 Migration Utility V1R1 User’s Guide and Reference

AUTOHELP-03 &WORD: UNDEFINED
PARAMETER

Explanation: Parameter is not supported by the
function.

BROWSE0-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

BROWSE0-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

BROWSE0-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

BROWSE0-04 &FILKEY: INVALID OR UNDEFINED
FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

BROWSE0-05 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-File ()).

BROWSE1-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

BROWSE1-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

BROWSE1-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

BROWSE1-04 &FILKEY: INVALID OR UNDEFINED
FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

BROWSE1-05 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

BROWSE2-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

BROWSE2-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

BROWSE2-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

BROWSE2-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

BROWSE2-05 LINKMOD IS NOT PROVIDED

User Response: A default program name (Link to
Module) must be coded as per BROWSE2 function
standards.

BROWSE2-06 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

BROWSE3-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

BROWSE3-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

BROWSE3-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

BROWSE3-04 &FILKEY: INVALID OR UNDEFINED
FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

BROWSE3-05 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

AUTOHELP-03 • BROWSE3-05

Chapter 11. Messages 181

BUILDJCL-01 MAXIMUM JCL ENTRIES EXCEEDS
NNN

User Response: Increase QSIZE=NNN in the
BUILDJCL Macro Prototype.

CNVBIN0-01 OBJECT LENGTH OF &WFLENT
EXCEEDS 3 CHRS

Explanation: The length of conversion object is
invalid.

CNVBIN0-02 OBJECT &OBJECT IS INVALID OR
NOT SUPPLIED

Explanation: &OBJECT is not a valid COBOL field
name.

CNVBIN0-03 TARGET &TARGET IS INVALID OR
NOT SUPPLIED

Explanation: &TARGET is not a valid COBOL field
name.

CNVBIN1-01 OBJECT LENGTH OF &WFLENT
EXCEEDS 3 CHRS

Explanation: The length of conversion object is
invalid.

CNVBIN1-02 OBJECT &OBJECT IS INVALID OR
NOT SUPPLIED

Explanation: &OBJECT is not a valid COBOL field
name.

CNVBIN1-03 TARGET &TARGET IS INVALID OR
NOT SUPPLIED

Explanation: &OBJECT is not a valid COBOL field
name.

COMMAND-01 &WORD IS OUT OF SEQUENCE

Explanation: The &WORD is unknown to
COMMAND function or it is logically placed out of
sequence.

COMMKEY-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

COMMKEY-02 &WORD IS ILLEGAL OR TOO
LONG Cause; The buffer name (first
parameter) or the index name specified
by the CINDEX= is too long or not a
valid COBOL field name. Note also that
the buffer name can be up to 7
characters long. The index name can be
up to 8 characters long.

CONSTRUC-01 &OBJECT IS UNDEFINED

Explanation: The specified object &OBJECT is not
defined via Migration Utility facilities.

CONSTRUC-02 &OBJECT DOES NOT CONFORM
TO FUNCTION RULES

Explanation: The type of object is not supported for
the requested option. Refer to the ″CONSTRUC″
function in the reference manual for valid choices.

CONSTRUC-03 &RCODE: INVALID RETURN
CODE NAME

Explanation: Return code field name is less than 4
characters or it does not start with ″RC-″.

CONSTRUC-04 &OBJECT: TABLE AREA WAS NOT
DEFINED

Explanation: A table service was requested but the
table was not created.

CONSTRUC-05 &OBJECT: SEED FUNCTION WAS
NOT DEFINED

Explanation: SEED option was requested for an object
that does not have any defined seed functions.

CONSTRUC-06 &OBJECT: ″&WOPTION″
UNSUPPORTED OPTION

Explanation: The specified option is not supported for
the requested object.

CONSTRUC-07 &OBJECT: CICS MODE
UNSUPPORTED OPTION

Explanation: The specified option is not supported for
CICS® programs.

CONTROL-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

BUILDJCL-01 • CONTROL-01

182 Migration Utility V1R1 User’s Guide and Reference

CONTROL-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

CONTROL-03 &WORD: UNKNOWN SENDMAP
PARAMETER

Explanation: Parameter is not supported by the
function.

CVBOOL0-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

CVBOOL0-02 OBJECT &OBJECT IS ILLEGAL OR
NOT DEFINED

Explanation: The specified object name is illegal or
not defined via Migration Utility facilities.

CVBOOL1-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

CVBOOL1-02 OBJECT &OBJECT IS ILLEGAL OR
NOT DEFINED

Explanation: The specified object name is illegal or
not defined via Migration Utility facilities.

DATEADJ-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field
name.

DATEADJ-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the
function.

DATEADJ-03 BASE &BASE: NOT ALLOWED WITH
&MASK

Explanation: The specified base cannot be used with
the supplied mask.

DATEADJ-04 (nnn) IS NOT A VALID NUMERIC
LITERAL

Explanation: Numeric literal is expected, none found.

DATEADJ-05 &MASK DOES NOT QUALIFY FOR
MONTHS ADJUSTMENT

Explanation: The date format specified by the mask
does not qualify for the month adjustment.

DATEADJ-06 OPTIONS CONFLICT:
DAYS/MONTHS/YEARS, USE ONE
ONLY

Explanation: Options are in conflict.

DATEDAY-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field
name.

DATEDAY-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the
function.

DATEDAY-03 &BASE: BASE IS NOT 360 OR 365

Explanation: The specified base is not supported.

DATEDIF-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field
name.

DATEDIF-02, XXXXX ILLEGAL PARAMETER(S)

Explanation: The parameter is not supported by the
function.

DATEMAX-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field
name.

DATEMAX-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the
function.

DATEMAX-03 BASE &BASE: NOT SUPPORTED BY
DATEMAX

Explanation: The specified base cannot be used with
DATEMASK function.

DATEREG-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field
name.

CONTROL-02 • DATEREG-01

Chapter 11. Messages 183

DATEREG-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the
function.

DATEREG-03 &BASE: BASE IS NOT 360 OR 365

Explanation: The specified base is not supported.

DATESRV-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field
name.

DATESRV-04 &FRMASK: MASK NOT SUPPORTED
BY DATEMAX

Explanation: The specified mask is not supported by
the DATEMAX function.

DATESRV-03 &FUNCT: ILLEGAL DATE FUNCTION

Explanation: The function is not a valid date function.

DATESRV-04, XXXXX ILLEGAL PARAMETER(S)

Explanation: Parameter is not supported by the
function.

DATESRV-05 DATEDIF MASKS ARE NOT EQUAL

Explanation: The ″FROMmask″ and the ″TOmask″ are
not compatible.

DATESRV-06 OPTIONS CONFLICT:
DAYS/MONTHS/YEARS, USE ONE
ONLY

Explanation: Options are in conflict.

DATESWP-01 &DATE IS AN ILLEGAL FIELD
NAME

Explanation: The name is not a valid COBOL field
name.

DATESWP-02 &MASK IS AN UNKNOWN DATE
FORMAT

Explanation: Mask &MASK is not supported by the
function.

DATEVAL-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field
name.

DATEVAL-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the
function.

DATEVAL-03 BASE &BASE: NOT ALLOWED WITH
&MASK

Explanation: The specified base cannot be used with
the supplied mask.

DEFERTAB-01 RECURSIVE USE OF DEFERTAB

Explanation: DEFERTAB was coded more than one
time in the program.

DEFERTAB-02 &NAME MULTIPLE NAMES NOT
SUPPORTED

Explanation: The NAME= is improperly coded.

DEFERTAB-03 &NAME: NO MESSAGES SUPPLIED

Explanation: DEFERTAB definition was not followed
by valid messages.

DEFERTAB-04 &VAL IS NOT NUMERIC

Explanation: The specified value is expected to be
numeric.

DEFERTAB-05 &QAREA HAS BEEN PREVIOUSLY
DEFINED

Explanation: Conflict in naming conventions. Other
objects have the same name.

DEFERTAB-06 &QAREA EXCEEDS MAX OF
N’>ABLQNAM AREAS

Explanation: Too many table entries. Reduce the
number of tables if possible.

DEFERTAB-07 UNEVEN NUMBER OF DATA
FIELDS SUPPLIED

Explanation: The data strings for generating errors are
not paired.

DEFERTAB-10 XXXXX: DATA STRING IS TOO
LONG

Explanation: The literal is too long (exceeds 40 bytes).

DELSIGN-01 OBJECT LENGTH IS INVALID

Explanation: The specified object length is not
numeric or it is greater than 9 or it is less than 1.

DATEREG-02 • DELSIGN-01

184 Migration Utility V1R1 User’s Guide and Reference

DELSIGN-02 TARGET IS INVALID OR NOT
SUPPLIED

Explanation: The target object name is either invalid
or not coded.

DELSIGN-03 OBJECT IS INVALID OR NOT
SUPPLIED

Explanation: The source object name is either invalid
or not coded.

DIMAGE-01 &OPTION: ILLEGAL OPTION

Explanation: The specified option is not supported by
the function.

DIMAGE-02 &FIELD: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field
name.

DIMAGE-03 &RCODE: INVALID RETURN CODE
NAME

Explanation: Return code field name is less than 4
characters or it does not start with ″RC-″.

DSTRING-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

DSTRING-02 &WORD IS ILLEGAL OR TOO
LONG

Explanation: Illegal parameter.

DSTRING-03 &BUFNAME IS INCONSISTENTLY
USED

Explanation: The specified buffer name was
previously used in DSTRING function with different
options. DSTRING buffer and options must be
consistent to its first declaration.

FILESRV-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

FILESRV-02 &DDNAME: UNDEFINED FILE NAME

Explanation: &DDNAME is invalid or not defined.

FILESRV-03 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

FILESRV-04 &IOFUN: UNKNOWN I/O REQUEST

Explanation: I/O &IOFUN is not supported by the
function.

FILESRV-05 &WORD: UNKNOWN FILESRV
PARAMETER

Explanation: Parameter is not supported by the
function.

FILESRV-06 EXIT FUNCTION NOT ENCLOSED IN
PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

FUNCTION-001 XXXXX: UNKNOWN PARAMETER

Explanation: Parameter is not supported by the
function.

FUNCTION-002 &NAME :IMPROPER FUNCTION
NAME

Explanation: For local functions, the function name
exceeds 23 characters. For all other functions, the
function name exceeds 8 characters.

FUNCTION-003 &NAME: DUPLICATE OR
ILLEGAL FUNCTION

Explanation: Duplicate function name or function was
found in error.

FUNCTION-004 &ELIAS : IMPROPER ELIAS
NAME

Explanation: Elias name is more than 23 characters
long or it is not a valid COBOL paragraph name.

FUNCTION-005 PARM= EXCEEDS 40
CHARACTERS

Explanation: PARM=&PARM exceeds 40 characters.
Reduce PARM+ string.

FUNCTION-006 PARM= :NOT CON OR SEL
OPTION

Explanation: The function type described by the
PARM= is not CON or SEL. Note that the type must be
the first argument in the PARM= list, that is, PARM=(CON
. .).

DELSIGN-02 • FUNCTION-006

Chapter 11. Messages 185

FUNCTION-007 &MEMBER: IMPROPER USING
&MEMBER NAME

Explanation: Function USING &MEMBER. The
supplied function library name (&MEMBER) is more
than 8 characters in length.

FUNCTION-009 TOO MANY PARAMETERS IN
USING LIST

Explanation: The USING option was coded with too
many parameters.

FUNCTION-010 &ELIAS IS NOT DEFINED IN
&MEMBER

Explanation: Improper use of Elias name.

GRETURN-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

GRETURN-02 &WORD: UNKNOWN GRETURN
PARAMETER

Explanation: Parameter is not supported by the
function.

GVALUES-01 &WORD IS NOT A VALID FIELD
NAME

Explanation: The name is not a valid COBOL field
name.

GVALUES-02 ″&WORD″ IS OUT OF SEQUENCE

Explanation: Parameter is not supported by the
function as written.

HEXSTR0-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

HEXSTR0-02 OBJECT &OBJECT IS ILLEGAL OR
NOT DEFINED

Explanation: The specified object name is illegal or
not defined via Migration Utility facilities.

HEXSTR0-03 DDNAME IS INVALID OR NOT
SUPPLIED

Explanation: The specified DDname is invalid, or it
has not been coded.

HEXSTR0-04 &WLENGTH IS INVALID LENGTH
VALUE

Explanation: The length is not numeric or it exceeds
the maximum allowed size. Note that in CICS
environment the length cannot exceed 100.

HEXSTR0-05 &DDNAME NOT ALLOWED IN CICS
MODE

User Response: In CICS mode, HEXSTR0 function can
be used to format data into a buffer only.

HEXSTR1-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

HEXSTR1-02 OBJECT &OBJECT IS NOT DEFINED

Explanation: The specified object name is illegal or
not defined via Migration Utility facilities.

HEXSTR1-03 DDNAME IS INVALID OR NOT
SUPPLIED

Explanation: The specified DDname is invalid, or it
has not been coded.

HEXSTR1-04 &OBJECT LENGTH EXCEEDS
&BUFSIZE

Explanation: The length is too long or not numeric. If
too long and you truly must convert it to hex, use
HEXSTR1 multiple times, each time doing a section of
the object.

HEXSTR1-05 &OBJECT NOT ALLOWED IN CICS
MODE

User Response: In CICS mode, HEXSTR1 function can
be used to format data into a buffer only.

INITKEY-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

LINKMOD-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

FUNCTION-007 • LINKMOD-01

186 Migration Utility V1R1 User’s Guide and Reference

LINKMOD-02 &PROGRAM: INVALID PROGRAM
NAME

User Response: Code 1 - 8 characters valid program
name.

LINKMOD-03 &WORD: UNDEFINED PARAMETER

Explanation: Parameter is not supported by the
function.

LINKMOD-04 EXIT FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

MANGMAP-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

MANGMAP-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

MANGMAP-03 &WORD: UNKNOWN MANGMAP
PARAMETER

Explanation: Parameter is not supported by the
function.

MAPTKEY-01 &OPTION: ILLEGAL FUNCTION
OPTIONS

Explanation: Parameter is not supported by the
function.

MAPTKEY-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

MAPTKEY-03 &WORD: GROUP FIELD IS NOT
DECLARED

Explanation: MAPTKEY function was coded to handle
a non-group key. Refer to the MAPTKEY description in
the reference manual.

MAPTKEY-04 &WORD: KEY IS NOT DEFINED IN
&MAPNAM

Explanation: The specified field is not defined in the
map &MAPNAME.

MSGTXT0-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

MSGTXT1-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

RECVMAP-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

RECVMAP-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

RECVMAP-03 &WORD: UNKNOWN RECVMAP
PARAMETER

Explanation: Parameter is not supported by the
function.

RECVMAP-04 EXIT FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

REPCHR0-01 &WORD: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

REPCHR0-02 &WORD: INVALID NUMBER OF
MASK DIGITS

Explanation: The number of significant mask
characters is not numeric.

SENDMAP-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

SENDMAP-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

LINKMOD-02 • SENDMAP-02

Chapter 11. Messages 187

SENDMAP-03 &WORD: UNKNOWN SENDMAP
PARAMETER

Explanation: Parameter is not supported by the
function.

SENDMAP-04 EXIT FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

SENDMAP-05 CURSOR AND CURSORLOC
USAGE CONFLICT

Explanation: CURSOR and CURSORLOC have been
both coded. These options are mutually exclusive.

SENDMSG-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

SENDMSG-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

SENDMSG-03 &WORD: UNKNOWN SENDMSG
PARAMETER

Explanation: Parameter is not supported by the
function.

SENDMSG-04 CODE &CODE: ILLEGAL
COMBINATION

Explanation: CODE (&MSGID &MSGCODE) is
improperly coded.

SENDMSG-05 EXIT FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

SETATTR-01 &WORD IS OUT OF SEQUENCE

Explanation: The &WORD cannot be understood by
the function.

SETATTR-02 &MAPNAM: UNDEFINED MAP NAME

Explanation: &MAPNAM is invalid or not defined.

SETATTR-03 &WORD: UNKNOWN ATTRIBUTE

Explanation: Parameter is not supported by the
function.

SETATTR-04 &FIELD NOT IN SCROLL AREA,
ATTR IGNORED.

Explanation: The &FIELD is not in the map scroll
area.

SETATTR-04 &FIELD: NOT IN &MAPNAM

Explanation: The &FIELD is not defined the
referenced map.

SETATTR-06 &WORD: EXCEEDS MAXIMUM
ATTRIBUTE ELEMENTS

Explanation: Too many attributes are coded. If you
need to code all attributes use multiple SETATTR
functions, each one with fewer attributes.

TSQSRV-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

TSQSRV-02 &WORD: UNDEFINED FILE NAME

Explanation: &DDNAME is invalid or not defined.

TSQSRV-03 &WORD: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

TSQSRV-04 &IOFUN: UNKNOWN I/O REQUEST

Explanation: I/O request is not supported by the
function.

TSQSRV-05 &WORD: UNKNOWN TSQSRV
PARAMETER

Explanation: Parameter is not supported by the
function.

TSQSRV-06 EXIT FUNCTION NOT ENCLOSED IN
PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

TSQSRV-07 &QNAME: INVALID QUEUE NAME

Explanation: The TSQ name is invalid as written.

SENDMAP-03 • TSQSRV-07

188 Migration Utility V1R1 User’s Guide and Reference

TSQSRV-08 TSQSRV &FILKEY NOT IN WORKING
STORAGE

Explanation: The file key for TSQ must be defined in
working storage. It does not seem to be so.

TSQSRV-09 SYNTAX ERROR. THE ″FROM″
INFORMATION IS INCOMPLETE

Explanation: Improper ″FROM″ parameters.

TSQSRV-10 FILE KEY OF &FLNAME2 IS NOT
UNIQUE

Explanation: The FROM &FILE key is equal to the
key assigned to the TSQ file key. Note that the keys
used by the TSQSRV function must be unique.

TSQSRV-11 SYNTAX ERROR. THE ″FROM″ IS
ILLEGAL FOR ″&IOFUN″

Explanation: The ″FROM″ was coded but it is not
supported by the I/O function.

UPDATE0-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

UPDATE0-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE0-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE0-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE0-05 A VALID ADD/DEL/UPD MUST BE
PROVIDED

Explanation: No valid action was selected. At least
one must be specified.

UPDATE0-06 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

UPDATE0-07 INITIALIZE PARAMETERS ARE
IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer
to the reference manual.

UPDATE1-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

UPDATE1-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE1-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE1-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE1-05 A VALID ADD/DEL/UPD MUST BE
PROVIDED

Explanation: No valid action was selected. At least
one must be specified.

UPDATE1-06 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

UPDATE1-07 INITIALIZE PARAMETERS ARE
IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer
to the reference manual.

UPDATE2-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

UPDATE2-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

TSQSRV-08 • UPDATE2-02

Chapter 11. Messages 189

UPDATE2-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE2-04 &FILKEY: INVALID OR UNDEFINED
FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE2-05 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

UPDATE2-06 INITIALIZE PARAMETERS ARE
IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer
to the reference manual.

UPDATE3-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

UPDATE3-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE3-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE3-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE3-05 A VALID ADD/DEL/UPD MUST BE
PROVIDED

Explanation: No valid action was selected. At least
one must be specified.

UPDATE3-06 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

UPDATE3-07 INITIALIZE PARAMETERS ARE
IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer
to the reference manual.

UPDATE4-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

UPDATE4-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE4-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE4-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE4-05 A VALID ADD/DEL/UPD MUST BE
PROVIDED

Explanation: No valid action was selected. At least
one must be specified.

UPDATE4-06 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

UPDATE4-07 INITIALIZE PARAMETERS ARE
IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer
to the reference manual.

UPDATE5-01 &PARM: NOT CONSTRUCTOR
OPTION

Explanation: Function is a Constructor but it was used
as Selector.

UPDATE5-02 &MAPNAM: UNDEFINED MAP
NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE2-03 • UPDATE5-02

190 Migration Utility V1R1 User’s Guide and Reference

UPDATE5-03 &DDNAME: UNDEFINED FILE
NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE5-04 &FILKEY: INVALID OR UNDEFINED
FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE5-05 XXXXX FUNCTION NOT ENCLOSED
IN PARENTHESES

User Response: All file I/O and exit functions must
be coded enclosed in parentheses. Example: READEXIT
(SEL_READ-FILE ()).

XCTLMOD-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as
Constructor.

XCTLMOD-02 &PROGRAM: INVALID PROGRAM
NAME

User Response: Code 1 - 8 characters valid program
name.

XCTLMOD-03 &WORD: UNDEFINED PARAMETER

Explanation: Parameter is not supported by the
function.

PEngiCCL generated messages

ACCL00-001 12 MACNAME :<FUNCTION>
EXPECTED VARIABLE NOT
PROVIDED

Explanation: The format of the ACCL function is
wrong.

User Response: Refer to the coding standards of the
ACCL Directive for the function in error. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

ACCL00-002 12 MACNAME :<FUNCTION>
UNKNOWN ACCL FUNCTION

Explanation: The displayed function is not an ACCL
Directive Function.

User Response: Correct the function.

ACCL00-003 12 MACNAME :<FUNCTION>
EXPECTED TEXT NOT PROVIDED

Explanation: The format of the ACCL function is
wrong.

User Response: Refer to the coding standards of the
ACCL Directive for the function in error. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

ACCL00-004 12 VARNAME :<FUNCTION>
INVALID SUBSCRIPT

Explanation: The value contained in the subscript
variable is not a valid subscript.

User Response: Variables used as subscripts must
numeric and one dimensional. If the error occurred on
a Migration Utility macro, see “Note 2” on page 143.

ACCL00-005 12 VARNAME :<FUNCTION>
IMPROPER DATA OR EXCEEDS MAX
LENGTH

Explanation: The input data string is longer than the
allocated memory for the target Variable.

User Response: Limit input data string to the
maximum allowed by the target variable. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

ACCL00-006 12 VARNAME :<FUNCTION>
INCONSISTENT DATA FOR
VARIABLE TYPE

Explanation: The input data format is not compatible
with the target Variable data type.

User Response: This can happen if an attempt is
made to set a non numeric value into a SETA or SETB
Variable. Correct the ACCL Directive to use consistent
data. If the error occurred on a Migration Utility macro,
see “Note 2” on page 143.

ACCL00-007 12 -TEXT- :<FUNCTION> UNDEFINED
INTERNAL REFERENCE LABEL

Explanation: The macro reference label in the ACCL
SETVB function is undefined.

User Response: Either provided the required label or
remove the statement from the SETVB list. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

ACCL00-008 12 VARNAME :<FUNCTION> VECTOR
DIRECTIVE DOES NOT FOLLOW

Explanation: An ACCL SELECT or an ACCL INDEX
directive is not properly followed by a Vector format
directive.

User Response: Refer to the ACCL SELECT and

UPDATE5-03 • ACCL00-008 12

Chapter 11. Messages 191

ACCL INDEX coding standards. If the error occurred
on a Migration Utility macro, see “Note 2” on page 143.

ACCL00-009 12 PGMNAME :<FUNCTION>
PROGRAM CANNOT BE LOADED

Explanation: The program cannot be loaded or it was
not located in the load/core library.

User Response: Make sure that you are pointing to
the correct load/core library and that the program
exists. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

ACCL00-010 12 VARNAME :<FUNCTION> VECTOR
VARIABLE SLOTS ARE < 24 BYTES

Explanation: The declared variable-length used in
ACCL SETVB is less than 24 bytes.

User Response: Refer to the coding standards of the
ACCL SETVB directive. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

ACCL00-011 12 VARNAME :<FUNCTION> NOT
ENOUGH SLOTS IN VECTOR
VARIABLE

Explanation: The number of reference labels provided
in the ACCL SETVB list exceeds the dimension of the
specified vector variable.

User Response: Increase the dimension of the vector
variable. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

ACCL00-012 12 MACNAME :<FUNCTION> ONE OF
VECTOR ARGUMENT EXCEEDS 16
CHR

Explanation: An argument/word in the ACCL SETVB
list exceeds 16 characters.

User Response: The ACCL SETVB arguments/words
can be maximum of 16 characters. Reduce the size of
the argument in error. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

ACCL00-013 12 VARNAME :<FUNCTION>
VARIABLE IS NOT A SETC SYMBOL

Explanation: The specified variable is not a SETC
symbol.

User Response: Refer to the coding standards of the
ACCL Function in error. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

ACCL00-014 12 VARNAME :<FUNCTION>
variable-length IS < 256 BYTES

Explanation: The specified variable allocated memory
is less than 256.

User Response: Refer to the coding standards of the
ACCL Function in error. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

ACCL00-015 12 MACNAME :<FUNCTION>
INVALID PUNCH FILE NAME

Explanation: The punch file name specified is not a
valid DDname.

User Response: Punch file name must start with an
alpha character, it cannot contain special characters,
and it cannot exceed 7 positions. If the error occurred
on a Migration Utility macro, see “Note 2” on page 143.

ACCL00-016 12 PGMNAME :<FUNCTION>
INVALID USER PROGRAM NAME

Explanation: The program name specified in the
ACCL CALL directive is invalid.

User Response: A program name must start with an
alpha character, it cannot contain special characters,
and it cannot exceed 8 positions. If the error occurred
on a Migration Utility macro, see “Note 2” on page 143.

ACCL00-017 12 PGMNAME :<FUNCTION>
MAXIMUM USER PROGRAMS
EXCEEDED

Explanation: The maximum number of user loaded
programs was exceeded.

User Response: PEngiCCL will handle maximum of
16 user loaded programs. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

ACCL00-018 12 -TEXT- :<FUNCTION> ILLEGAL OR
NULL VARIABLE IN CALL LIST

Explanation: The ACCL CALL directive requires
exactly one parameter in the call list.

User Response: Correct the problem. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

ACCL00-019 12 -TEXT- :<FUNCTION> VARIABLE IS
NOT &SYSLIST

Explanation: The variable coded with ACCL BOX
directive is not the &SYSLIST variable.

User Response: The ACCL BOX directive requires the
&SYSLIST variable. Refer to the ACCL BOX directive
coding standards. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

ACCL00-009 12 • ACCL00-019 12

192 Migration Utility V1R1 User’s Guide and Reference

ACCL00-020 12 -TEXT- :<FUNCTION>
FILE/MEMBER NAME IS INVALID

Explanation: The file/member name specified in the
ACCL OPEN directive is invalid.

User Response: The member name must start with an
alpha character, it cannot contain special characters,
and it cannot exceed 8 positions. If the error occurred
on a Migration Utility macro, see “Note 2” on page 143.

ACCL00-021 12 -TEXT- :<FUNCTION> MAXIMUM
USER FILES EXCEEDED

Explanation: The maximum number of punch files has
been exceeded.

User Response: PEngiCCL can handle maximum of 8
punch files. Reduce the number of punch files. If the
error occurred on a Migration Utility macro, see “Note
2” on page 143.

ACCL00-022 12 -TEXT- :<FUNCTION> START - END
COLUMNS ARE INVALID

Explanation: The values specified in the ACCL OPEN
directive for Start-End columns and/or start of
continuation and the comment column are inconsistent.

User Response: Refer to the coding standards of the
ACCL OPEN directive. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

ACCL00-023 12 -TEXT- :<FUNCTION> OPTION IS
NOT TOKEN/NOTOKEN

Explanation: The supplied option in the ACCL OPEN
or ACCL READ directive is invalid.

User Response: An option can be TOKEN,
NOTOKEN, or left out. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

ACCL00-024 12 -TEXT- :<FUNCTION>
FILE/MEMBER ALREADY EXISTS

Explanation: The new member name in the ACCL
RENAME already exists.

User Response: Choose a unique name. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

ACCL00-025 12 -TEXT- :<FUNCTION>
FILE/MEMBER DOES NOT EXIST

Explanation: The member name to be renamed by
ACCL RENAME does not exist.

User Response: Provide the correct name. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

ACCL00-026 12 -TEXT- :<FUNCTION>
FILE/MEMBER NOT CLOSED

Explanation: ACCL OPEN was attempted without
closing the previous OPEN.

User Response: Issue ACCL CLOSE before attempting
this open. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

ACCL00-001 12 MACNAME :<FUNCTION>
ARGUMENTS ARE IMPROPER AS
WRITTEN

Explanation: The format of the ACCL function is
wrong.

User Response: Refer to the coding standards of the
ACCL Directive for the function in error. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

ACTR01-001 12 MACNAME :ACTR COUNTER
EXCEEDED

Explanation: The number of PEngiCCL internal macro
branch instructions has been exceeded. The
MACNAME is the macro in error. This was probably
caused by an infinite loop, or the ACTR counter is not
sufficient enough to accommodate macro needs.

User Response: Check for possible loops or increase
the ACTR counter. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

ADOIF0-001 12 LABEL :UNDEFINED INTERNAL
REFERENCE LABEL

Explanation: The internal macro reference label is
undefined.

User Response: Add the necessary internal reference
label. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

ADOIF0-002 12 LABEL :CANNOT BRANCH TO
ITSELF, WOULD CAUSE LOOP

Explanation: An ADOIF directive target reference
label refers to the directive itself.

User Response: Correct the erroneous branch. If the
error occurred on a Migration Utility macro, see “Note
2” on page 143.

ADOIF0-003 12 LABEL :INTERNAL REFERENCE
LABEL LENGTH ERROR

Explanation: The internal macro reference label
exceeds 12 characters or it is less than 2 characters.

User Response: Correct the erroneous reference label.

ACCL00-020 12 • ADOIF0-003 12

Chapter 11. Messages 193

If the error occurred on a Migration Utility macro, see
“Note 2” on page 143.

ADOIF0-004 12 LABEL :THE SUBROUTINE WAS
ALREADY USED IN NEST

Explanation: A recursive use of the ADOIF directive
for the same macro subroutine has been detected. That
is, the routine labeled with the LABEL internal macro
reference name was invoked for second time from the
ADO nest.

User Response: Correct the erroneous reference label.
If the error occurred on a Migration Utility macro, see
“Note 2” on page 143.

ADOIF0-005 12 LABEL :EXCEEDS MAXIMUM
NUMBER OF ALLOWED NESTS

Explanation: Maximum number of PEngiCCL
subroutine nests has been exceeded.

User Response: Reduce the number of subroutine
nests by reorganizing macro code. If the error occurred
on a Migration Utility macro, see “Note 2” on page 143.

ADOIF0-006 12 :LOOP COUNTER OF ZERO IS
ILLEGAL

Explanation: The ADOIF directive loop counter
expression resulted in zero or a negative number after
it had been evaluated.

User Response: Make sure that the loop counter
expression results in a positive number. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

ADO000-001 12 LABEL :UNDEFINED INTERNAL
REFERENCE LABEL

Explanation: The internal macro reference label is
undefined.

User Response: Add the necessary internal reference
label. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

ADO000-002 12 LABEL :CANNOT BRANCH TO
ITSELF, WOULD CAUSE LOOP

Explanation: An ADO directive target reference label
refers to the directive itself.

User Response: Correct the erroneous branch. If the
error occurred on a Migration Utility macro, see “Note
2” on page 143.

ADO000-003 12 LABEL :INTERNAL REFERENCE
LABEL LENGTH ERROR

Explanation: The internal macro reference label
exceeds 12 characters or it is less than 2 characters.

User Response: Correct the erroneous reference label.
If the error occurred on a Migration Utility macro, see
“Note 2” on page 143.

ADO000-004 12 LABEL :THE SUBROUTINE WAS
ALREADY USED IN NEST

Explanation: A recursive use of the ADO directive for
the same macro subroutine has been detected. That is,
the routine labeled with the LABEL internal macro
reference name was invoked for second time from the
ADO nest.

User Response: Correct the erroneous reference label.
If the error occurred on a Migration Utility macro, see
“Note 2” on page 143.

ADO000-005 12 LABEL :EXCEEDS MAXIMUM
NUMBER OF ALLOWED NESTS

Explanation: Maximum number of PEngiCCL
subroutine nests has been exceeded.

User Response: Reduce the number of subroutine
nests by reorganizing macro code. If the error occurred
on a Migration Utility macro, see “Note 2” on page 143.

ADO000-006 12 :LOOP COUNTER OF ZERO IS
ILLEGAL

Explanation: The ADOIF directive loop counter
expression resulted in zero or a negative number after
it had been evaluated.

User Response: Make sure that the loop counter
expression results in a positive number. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

AGO000-001 12 LABEL :UNDEFINED INTERNAL
REFERENCE LABEL

Explanation: The internal macro reference label is
undefined.

User Response: Add the necessary internal reference
label. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

AGO000-002 12 LABEL :ILLEGAL TARGET
REFERENCE LABEL, WOULD CAUSE
LOOP

Explanation: An Ago directive target reference label
refers to the directive itself.

User Response: Correct the erroneous branch. If the

ADOIF0-004 12 • AGO000-002 12

194 Migration Utility V1R1 User’s Guide and Reference

error occurred on a Migration Utility macro, see “Note
2” on page 143.

AGO000-003 12 LABEL :INTERNAL REFERENCE
LABEL LENGTH ERROR

Explanation: The internal macro reference label
exceeds 12 characters or it is less than 2 characters.

User Response: Correct the erroneous reference label.
If the error occurred on a Migration Utility macro, see
“Note 2” on page 143.

AGO000-004 12 MACNAME :ACTR COUNTER
EXCEEDED

Explanation: The number of PEngiCCL internal macro
branch instructions has been exceeded. The
MACNAME is the macro in error. This was probably
caused by an infinite loop, or the ACTR counter is not
sufficient enough to accommodate macro needs.

User Response: Check for possible loops or increase
the ACTR counter. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

AGO001-001 12 LABEL :UNDEFINED INTERNAL
REFERENCE SYMBOL

Explanation: The internal macro reference label is
undefined.

User Response: Add the necessary internal reference
label. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

AGO001-002 12 LABEL :CANNOT BRANCH TO
ITSELF, WOULD CAUSE LOOP

Explanation: An Ago directive target reference label
refers to the directive itself.

User Response: Correct the erroneous branch. If the
error occurred on a Migration Utility macro, see “Note
2” on page 143.

AGO001-003 12 LABEL :INTERNAL REFERENCE
SYMBOL LENGTH ERROR

Explanation: The internal macro reference label
exceeds 12 characters or it is less than 2 characters.

User Response: Correct the erroneous reference label.
If the error occurred on a Migration Utility macro, see
“Note 2” on page 143.

AGO001-004 12 LABEL :INTERNAL REFERENCE
SYMBOL IS MISSING

Explanation: The internal macro reference label is
undefined.

User Response: Add the necessary internal reference

label. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

AGO001-005 12 MACNAME :ACTR COUNTER
EXCEEDED

Explanation: The number of PEngiCCL internal macro
branch instructions has been exceeded. The
MACNAME is the macro in error. This was probably
caused by an infinite loop, or the ACTR counter is not
sufficient enough to accommodate macro needs.

User Response: Check for possible loops or increase
the ACTR counter. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

AIF000-001 12 :LOGICAL/RELATIONAL TERM IS
EXPECTED

Explanation: An SLE is expected in the PEngiCCL
internal protocol but it cannot be found. This indicates
a problem with PEngiCCL Macro Preprocessor.

User Response: Contact PEngiCCL software support
center.

AIF000-001 12 :PEngiCCL LOGIC ERROR, SLE IS
MISSING

Explanation: An SLE is expected in the PEngiCCL
internal protocol but it cannot be found. This indicates
a problem with PEngiCCL Macro Preprocessor.

User Response: Contact PEngiCCL software support
center.

AIF000-002 12 :INCONSISTENT DATA TYPE IN
RELATION

Explanation: An SLC, SAE or ELE is expected in the
PEngiCCL internal protocol but it cannot be found.
This indicates a problem with PEngiCCL Macro
Preprocessor.

User Response: Contact PEngiCCL software support
center.

AIF000-002 12 :PEngiCCL LOGIC ERROR, SLC, SAE
OR ELE IS MISSING

Explanation: An SLC, SAE or ELE is expected in the
PEngiCCL internal protocol but it cannot be found.
This indicates a problem with PEngiCCL Macro
Preprocessor.

User Response: Contact PEngiCCL software support
center.

AGO000-003 12 • AIF000-002 12

Chapter 11. Messages 195

AIF000-003 12 :INCONSISTENT DATA TYPE IN
RELATION

Explanation: The work buffer cannot accommodate
the requirements of the conditional expression.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

AIF000-003 12 :INTERMEDIATE WORK BUFFER IS
TOO SMALL

Explanation: The work buffer cannot accommodate
the requirements of the conditional expression.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

AIF000-004 12 :UNKNOWN RELATIONAL
OPERATOR

Explanation: The maximum number of bracketed
expressions that can be supported by PEngiCCL has
been exceeded.

User Response: Your are limited to the maximum of
64 bracketed expressions in a single conditional request.
Limit the number of bracketed expressions to the
maximum of 64. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

AIF000-004 12 :THE NUMBER OF 64 BRACKETED
EXPRESSIONS EXCEEDED

Explanation: The maximum number of bracketed
expressions that can be supported by PEngiCCL has
been exceeded.

User Response: Your are limited to the maximum of
64 bracketed expressions in a single conditional request.
Limit the number of bracketed expressions to the
maximum of 64. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

AIF000-005 12 :UNKNOWN RELATIONAL
OPERATOR AIF000-005 12
:EXPRESSION PROTOCOL CHAIN IS
BROKEN

Explanation: The logical expression protocol chain is
broken. This indicates a problem with PEngiCCL Macro
Preprocessor.

User Response: Contact PEngiCCL software support
center.

AIF000-006 12 :MISSING OPERAND IN
EXPRESSION

Explanation: The PEngiCCL NUL protocol is outside
of the answer slot range. The logical expression
protocol chain is broken. This indicates a problem with
PEngiCCL Macro Preprocessor.

User Response: Contact PEngiCCL software support
center.

AIF000-006 12 :NUL PROTOCOL IS OUT OF
RANGE

Explanation: The PEngiCCL NUL protocol is outside
of the answer slot range. The logical expression
protocol chain is broken. This indicates a problem with
PEngiCCL Macro Preprocessor.

User Response: Contact PEngiCCL software support
center.

AIF000-007 12 :LOGICAL/RELATIONAL TERM IS
EXPECTED

Explanation: The work buffer cannot accommodate
the requirements of the conditional expression.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

AIF000-007 12 :INTERMEDIATE WORK BUFFER IS
TOO SMALL

Explanation: The work buffer cannot accommodate
the requirements of the conditional expression.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

AIF000-008 12 :DATA VALUE IS EXPECTED IN
RELATION

Explanation: The work buffer cannot accommodate
the requirements of the conditional expression.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

AIF000-003 12 • AIF000-008 12

196 Migration Utility V1R1 User’s Guide and Reference

AIF000-008 12 :INTERMEDIATE WORK BUFFER IS
TOO SMALL

Explanation: The work buffer cannot accommodate
the requirements of the conditional expression.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

AIF000-009 12 :INCONSISTENT DATA TYPE IN
RELATION

Explanation: The maximum number of bracketed
expressions that can be supported by PEngiCCL has
been exceeded.

User Response: Your are limited to the maximum of
64 bracketed expressions in a single conditional request.
Limit the number of bracketed expressions to the
maximum of 64. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

AIF000-009 12 :THE NUMBER OF 64 BRACKETED
EXPRESSIONS EXCEEDED

Explanation: The maximum number of bracketed
expressions that can be supported by PEngiCCL has
been exceeded.

User Response: Your are limited to the maximum of
64 bracketed expressions in a single conditional request.
Limit the number of bracketed expressions to the
maximum of 64. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

AIF000-014 12 -TEXT- :LOGICAL/RELATIONAL
TERM IS EXPECTED

Explanation: A data item or a bracketed expression is
not followed by a logical or relational operator.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

AIF000-015 12 -TEXT- :DATA VALUE IS EXPECTED
IN RELATION

Explanation: Two or more logical or relational
operators have been coded in succession.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

AIF000-016 12 -TEXT- :INCONSISTENT DATA TYPE
IN RELATION

Explanation: A logical or relational operation has been
coded for data items of different format, that is,
numeric data and alphanumeric data.

User Response: Make sure that the data items in
relation are of the same type. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

AIF000-018 12 -TEXT- :LOGICAL OPERATOR IS
EXPECTED

Explanation: A logical operator or a Boolean is
expected in the conditional expression but none found.
This error is caused while evaluating the logical ″NOT″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

AIF000-019 12 -TEXT- :BOOLEAN IS EXPECTED IN
EXPRESSION

Explanation: A Boolean is expected in the conditional
expression but none found. This error is caused while
evaluating the logical ″NOT″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

AIF000-020 12 -TEXT- :BOOLEAN IS EXPECTED IN
EXPRESSION

Explanation: A Boolean is expected in conditional
expression but none found. This error is caused while
evaluating the logical ″OR″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

AIF000-021 12 -TEXT- :EXPECTING A LOGICAL
OPERATOR

Explanation: A logical operator is expected in
conditional expression but none found. This error is
caused while evaluating the logical ″OR″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

AIF000-008 12 • AIF000-021 12

Chapter 11. Messages 197

AIF000-022 12 -TEXT- :EXPECTING A BOOLEAN IN
2ND OPERAND

Explanation: A Boolean is expected in second operand
of conditional expression but none found. This error is
caused while evaluating the logical ″OR″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

AIF000-023 12 -TEXT- :EXPECTING LOGICAL OR
IN EXPRESSION

Explanation: A logical operator is expected in
conditional expression but none found. This error is
caused while evaluating the logical ″OR″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

AIF000-024 12 -TEXT- :ILLEGAL LOGICAL
EXPRESSION

Explanation: The outcome of the conditional
expression did not result in a valid Boolean. This is
probably a PEngiCCL preprocessor error.

User Response: Contact PEngiCCL software support
center.

AIF000-025 12 -TEXT- :EXPECTING BOOLEAN IN
1ST OPERAND

Explanation: A Boolean is expected in first operand of
conditional expression but none found. This error is
caused while evaluating the logical ″AND″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

AIF000-026 12 -TEXT- :EXPECTING UPCODE OR
BOOLEAN

Explanation: A logical operator is expected in
conditional expression but none found. This error is
caused while evaluating the logical ″AND″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

AIF000-027 12 -TEXT- :BOOLEAN IS EXPECTED IN
EXPRESSION

Explanation: A Boolean is expected in second operand
of conditional expression but none found. This error is
caused while evaluating the logical ″AND″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

AIF000-028 12 -TEXT- :EXPECTING LOGICAL AND

Explanation: A logical ″AND″ operator is expected in
conditional expression but none found. This error is
caused while evaluating the logical ″AND″.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

ALOC00-001 12 :PREPROCESSOR PROGRAM
LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

ANAC00-001 12 MACNAME :PREPROCESSOR
PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

ANAC00-002 12 VARNAME :SUBSCRIPT EXCEEDS
DECLARED VARIABLE DIMENSION

Explanation: The computed subscript value exceeds
the declared variable dimension.

User Response: If you are trying to write your own
PEngiCCL macro, you must make sure that the
subscript does not exceed the declared variable
dimension. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

ANUC00-001 12 MACNAME :PREPROCESSOR
PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

AIF000-022 12 • ANUC00-001 12

198 Migration Utility V1R1 User’s Guide and Reference

ANUC00-002 12 VARNAME :SUBSCRIPT EXCEEDS
DECLARED VARIABLE DIMENSION

Explanation: The computed subscript value exceeds
the declared variable dimension.

User Response: You must make sure that the
subscript does not exceed the declared variable
dimension. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

APIC00-001 12 MACNAME :PREPROCESSOR
PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

APIC00-002 12 VARNAME :SUBSCRIPT EXCEEDS
DECLARED VARIABLE DIMENSION

Explanation: The computed subscript value exceeds
the declared variable dimension.

User Response: You must make sure that the
subscript does not exceed the declared variable
dimension. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

APIC00-003 12 VARNAME :DATA STRING
EXCEEDS MAXIMUM VARIABLE SIZE

Explanation: The data string (COBOL field picture) is
longer than the target variable VARNAME can
accommodate.

User Response: You must make sure that the target
variable can accommodate your data strings. If the
error occurred on a Migration Utility macro, see “Note
2” on page 143.

APIC00-004 12 PICTURE :PICTURE IS TOO LONG
OR BAD DUPLICATION FACTOR

Explanation: The COBOL field picture exceeds 30
characters or it is improperly coded.

User Response: Correct the picture.

APIC00-005 12 PICTURE :ILLEGAL PICTURE
FORMAT OR NO DATA INCLUDED

Explanation: The displayed picture contains illegal
COBOL picture characters.

User Response: Correct the picture.

APIC00-006 12 PICTURE :RECURSIVE USE OF
DECIMAL POINT

Explanation: Two or more decimal points have been
detected in the COBOL picture.

User Response: Remove the extraneous decimal
points.

APIC00-008 12 PICTURE :PICTURE CONTAINS
ILLEGAL CHARACTERS

Explanation: The displayed picture contains illegal
COBOL picture characters.

User Response: Correct the picture.

APIC00-009 12 PICTURE :PICTURE CONTAINS
NUMERIC AND ALPHANUM
SYMBOLS

Explanation: The displayed picture contains a mixture
of numeric and alphanumeric picture characters.

User Response: Correct the picture.

APIC00-010 12 PICTURE :PICTURE EXCEEDS
NUMERIC LIMIT OF 31 CHARACTERS

Explanation: The picture represents a number of more
than 31 digits long.

User Response: Correct the picture.

APUNCH-001 12 :DATA MUST BE IN QUOTES FOR
PUNCH DIRECTIVE

Explanation: A PUNCH directive has been attempted
to punch non-quoted data.

User Response: The punch directive accepts only
quoted data strings. Enclose data in quotes. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

APUNCH-002 12 :UNPAIRED/ILLEGAL QUOTES IN
QUOTED STRING

Explanation: An unpaired number of quotes has been
detected in a quoted data string.

User Response: Correct the data string to contain an
even number of quotes. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

AREPRO-001 12 :REPRO IS ILLEGALLY
FOLLOWED BY A DIRECTIVE

Explanation: A REPRO directive was followed by
another directive.

User Response: The Repro directive can be used to
reproduce text cards only.

ANUC00-002 12 • AREPRO-001 12

Chapter 11. Messages 199

ASMPUN-001 12 -TEXT- :EXPANDED
PARAMETERS EXCEED 1 LINE

Explanation: A text line inside ASM macro type
exceeds 1 line.

User Response: Adjust the text so that it is less than
72 bytes long.

ASOC00-001 12 MACNAME :PREPROCESSOR
PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

ASORT0-001 12 :PREPROCESSOR ERROR, ASORT
EXPRESSION IS MISSING

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

ASORT0-002 12 VARNAME :FSASORT1 - SORT
ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

ATRC00-001 12 MACNAME :PREPROCESSOR
PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

ATRC00-002 12 VARNAME :SUBSCRIPT EXCEEDS
DECLARED VARIABLE DIMENSION

Explanation: The computed subscript value exceeds
the declared variable dimension.

User Response: You must make sure that the
subscript does not exceed the declared variable
dimension. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

COBMNL-001 12 MACNAME :NUMBER OF
NESTED MACROS EXCEEDS
MAXIMUM

Explanation: The number of supported nested macros
has been exceeded.

User Response: Check to make sure that you are not

invoking macros recursively from a nested macro. If
you absolutely need additional macro nesting capacity,
contact your PEngiCCL software administrator. The
support for nested macros is generated at PEngiCCL
installation time. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

COBMNL-002 12 MACNAME :FSCOBMNL LOGIC
ERROR, CANNOT LOCATE MACRO
NAME

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

COBMNL-003 12 MACNAME :MACRO NAME IS
TOO LONG

Explanation: The macro name exceeds 12 characters.

User Response: Code the correct macro name. Note
that the macro name can be up to 8 characters long on
MVS/XA™ and VM/CMS operating systems, because
of the PDS and CMS member naming conventions.
However, temporary macro names can be up to 12
characters long. If the error occurred inside a Migration
Utility macro, contact Migration Utility software
support center.

COBMNL-004 12 MACNAME :ILLEGAL
DECLARATION OF MACRO NAME

Explanation: The _ macro delimiter was specified
without a macro name following it.

User Response: Supply the macro name.

COBRUN-001 12 VARNAME :COMPUTED
SUBSCRIPT IS ZERO, IT IS ILLEGAL

Explanation: The computed subscript value is zero.

User Response: You must make sure that the
subscript is not zero. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

COBRUN-002 12 DIRECTIVE :UNDEFINED
PROGRAM IN FSDIRTAB

Explanation: PEngiCCL was improperly installed. A
program used by the displayed DIRECTIVE was not
properly resolved by the link edit program.

User Response: Contact your PEngiCCL software
administrator.

ASMPUN-001 12 • COBRUN-002 12

200 Migration Utility V1R1 User’s Guide and Reference

CPYRUN-001 12 :COPY DIRECTIVE BUT NO
MEMBER SPECIFIED

Explanation: An FSCOPY directive was coded without
a copy member name.

User Response: Specify the member name to be
copied following the FSCOPY directive.

CPYRUN-002 12 :IMPROPER SPECIFICATION OF
MEMBER NAME

Explanation: An FSCOPY directive was coded without
a copy member name.

User Response: Specify the member name to be
copied following the FSCOPY directive.

CPYRUN-003 12 COPYNAME :COPY MEMBER
NAME IS TOO LONG

Explanation: The FSCOPY member name exceeds 12
characters.

User Response: Code the correct FSCOPY member
name. Note that the copy name can be up to 8
characters long on MVS/XA and VM/CMS operating
systems, because of PDS and CMS member naming
conventions.

CPYRUN-004 12 COPYNAME :NUMBER OF
NESTED COPY EXCEEDS MAXIMUM

Explanation: The number of supported nested
FSCOPY directives has been exceeded.

User Response: If you absolutely need additional
FSCOPY nesting capacity, contact your PEngiCCL
software administrator. The support for nested FSCOPY
directives is generated at PEngiCCL installation time.

CPYRUN-005 12 COPYNAME :COPY ALREADY
USED IN NEST (THIS NEST IS
ILLEGAL)

Explanation: The COPYNAME copy member has been
previously copied in this FSCOPY nest.

User Response: Only unique member names can be
included in a FSCOPY directive nest, since duplicate
names could cause an infinite FSCOPY loop. If you are
in a need of multiple copies of the same member,
consider issuing separate FSCOPY directives for each
one, or write a PEngiCCL macro instead.

CPYUSR-001 12 COPYNAME :NUMBER OF
NESTED COPY EXCEEDS MAXIMUM

Explanation: The number of supported nested
FSCOPY/COPY directives has been exceeded.

User Response: If you absolutely need additional
FSCOPY/COPY nesting capacity, contact your

PEngiCCL software administrator. The support for
nested FSCOPY/COPY directives is generated at
PEngiCCL installation time.

CPYUSR-002 12 COPYNAME :COPY ALREADY
USED IN NEST (THIS NEST IS
ILLEGAL)

Explanation: The COPYNAME copy member has been
previously copied in this FSCOPY nest.

User Response: Only unique member names can be
included in a FSCOPY directive nest, since duplicate
names could cause an infinite FSCOPY loop. If you are
in a need of multiple copies of the same member,
consider issuing a separate FSCOPY directives for each
one, or write a PEngiCCL macro instead.

DEFADO-001 12 -TEXT- :INTERMEDIATE OUTPUT
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the ADO expression in the preprocessed format. The
-TEXT- is the data string which caused the overflow.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. However, the
preferred way would be to shrink the ADO expression.
If the error occurred on a Migration Utility macro,
contact Migration Utility software support center.

DEFADO-002 12 -TEXT- :UNPAIRED LEFT PAREN
IN EXPRESSION

Explanation: The internal target reference label
expression in the ADO directive exceeds 256 characters.

User Response: Reduce the expression to below 256
characters in length. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFADO-003 12 :ILLEGAL INTERNAL REFERENCE
LABEL

Explanation: The internal target reference label is not
supplied.

User Response: The internal target reference labels
must start with a “.” (period) and contain at least one
character. Correct the label. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFADO-004 12 -TEXT- :UNPAIRED RIGHT PAREN
IN EXPRESSION

Explanation: There are more right parentheses than
left parentheses in the internal target reference label or
loop counter expression.

CPYRUN-001 12 • DEFADO-004 12

Chapter 11. Messages 201

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFADO-005 12 :INTERMEDIATE INPUT
EXPRESSION IS TOO LONG

Explanation: Refer to the DEFADO-002 message.

DEFADO-006 12 -TEXT- :INTERNAL REFERENCE
LABEL IS MISSING

Explanation: The internal target reference label is not
supplied.

User Response: The internal target reference labels
must start with a “.” (period) and contain at least one
character. Correct the label. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFADO-007 12 -TEXT- :PERIOD IS MISSING IN
REFERENCE LABEL EXPRESSION

Explanation: The internal target reference label is not
supplied.

User Response: The internal target reference labels
must start with a “.” (period) and contain at least one
character. Correct the label. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFADO-008 12 LABEL :INTERNAL REFERENCE
LABEL IS TOO LONG

Explanation: The internal target reference label
exceeds 12 characters.

User Response: Limit your label to maximum of 12
characters. Note that this does not include the loop
counter expression, if supplied. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

DEFADO-009 12 -TEXT- :ILLEGAL ADO/ADOIF
LOOP COUNTER EXPRESSION

Explanation: The tail-end of the internal target
reference label expression is illegal as written.

User Response: Correct or truncate the unneeded data
string. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

DEFCCL-001 12 MACNAME :INTERMEDIATE
EXPRESSION IS TOO LONG

Explanation: The ACCL directive parameters are too
long.

User Response: Reduce the size of ACCL directive
list/parameters.

DEFCCL-002 12 -TEXT- :STRING EXCEEDS 256
CHARACTERS

Explanation: A single data string exceeds 256
characters.

User Response: Reduce the string in error to less than
256 characters.

DEFCCL-003 12 -TEXT- :INVALID ACCL SERVICE
CODE

Explanation: An invalid/unknown ACCL function has
been detected.

User Response: Refer to the PEngiCCL Manual for
supported ACCL functions.

DEFCCL-004 12 -TEXT- :EXPECTING ACCL
DIRECTIVE

Explanation: The directive is not an ACCL directive.

User Response: None. The FSDEFCCL program
supports only ACCL directive.

DEFCOM-001 12 MACNAME :INPUT DATA
LENGTH IS ZERO

Explanation: The internal macro parameters work
buffer has been corrupted.

User Response: Contact PEngiCCL software support
center.

DEFCOM-002 12 -TEXT- :MACRO LABEL IS TOO
LONG

Explanation: The macro label (paragraph name)
exceeds 12 characters.

User Response: Reduce the label size to maximum of
12 characters. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

DEFCOM-003 12 MACNAME :MACRO NAME IS
MISSING

Explanation: The internal macro parameters work
buffer has been corrupted.

User Response: Contact PEngiCCL software support
center.

DEFADO-005 12 • DEFCOM-003 12

202 Migration Utility V1R1 User’s Guide and Reference

DEFCOM-005 12 MACNAME :MACRO NAME IS
TOO LONG

Explanation: The macro name exceeds 12 characters

User Response: Code the correct macro name. Note
that the macro name can be up to 8 characters long on
MVS/XA and VM/CMS operating systems, because of
the PDS and CMS member naming conventions.
However, the temporary macro names can be up to 12
characters long.

DEFCOM-006 12 VARNAME :MAXIMUM NUMBER
OF POSITIONAL VARIABLES
EXCEEDED

Explanation: The maximum number of positional
parameters that can be supported by PEngiCCL has
been exceeded.

User Response: The maximum number of positional
parameters supported by PEngiCCL is 32,767. It is
unlikely that anyone would intentionally code more
than 32,767 positional parameters for a single macro
invocation. The number of parameters is further limited
by the work buffer size. Check to make sure that the
macro end delimiter (;) is properly placed at the end of
macro parameters, as this could cause extraneous data
to be included as part of the macro parameters.

DEFCOM-008 12 VARNAME :UNDEFINED
KEYWORD PARAMETER FOR THIS
MACRO

Explanation: The VARNAME is an undefined or
undeclared keyword parameter, so the keyword is not
supported by the macro.

User Response: You are allowed to use only those
keyword parameters which have been declared in the
macro model. If this is a Migration Utility macro, refer
to the appropriate section in this document for valid
keywords.

DEFCOM-009 12 -TEXT- :END QUOTE IS MISSING
IN QUOTED STRING

Explanation: An uneven number of quotes has been
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

DEFCOM-010 12 -TEXT- :UNPAIRED QUOTES IN
QUOTED STRING

Explanation: An uneven number of quotes has been
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

DEFCOM-011 12 -TEXT- :RIGHT PAREN IS
MISSING IN SUBLISTED STRING

Explanation: There are more left than right
parentheses in the sublist, which are not a part of a
quoted string. The -TEXT- is the tail-end of the last data
examined.

User Response: Make sure that you have an even
number of left and right parentheses.

DEFCOM-012 12 -TEXT- :RIGHT PAREN IS
MISSING IN SUBLISTED STRING

Explanation: There are more left than right
parentheses in the sublist, which are not a part of a
quoted string. The -TEXT- is the tail-end of the last data
examined.

User Response: Make sure that you have an even
number of left and right parentheses.

DEFCOM-013 12 -TEXT- :IMPROPER
TERMINATION OF SUBLISTED
STRING

Explanation: There are more left than right
parentheses in the sublist, which are not a part of a
quoted string, or the last character of the sublist is not
a right parenthesis. The -TEXT- is the tail-end of the
last data examined.

User Response: Make sure that you have an even
number of left and right parentheses and that the
sublist ends with a right parenthesis.

DEFCOM-014 12 -TEXT- :UNPAIRED LEFT PAREN
IN SUBLISTED STRING

Explanation: There are more left than right
parentheses in the sublist, which are not a part of a
quoted string. The -TEXT- is the tail-end of the last data
examined.

User Response: Make sure that you have an even
number of left and right parentheses.

DEFCOM-015 12 -TEXT- :UNPAIRED RIGHT
PAREN IN SUBLISTED STRING

Explanation: There are more right than left
parentheses in the sublist, which are not a part of a
quoted string. The -TEXT- is the tail-end of the last data
examined.

User Response: Make sure that you have the same
number of left parentheses and right parentheses.

DEFCOM-005 12 • DEFCOM-015 12

Chapter 11. Messages 203

DEFCOM-016 12 -TEXT- :UNPAIRED PARENS IN
SUBLISTED STRING

Explanation: The number of left parentheses is not
equal to the number of right parentheses in the sublist,
which are not a part of a quoted string. The -TEXT- is
the tail-end of the last data examined.

User Response: Make sure that you have an even
number of left and right parentheses.

DEFCOM-017 12 -TEXT- :UNPAIRED QUOTES IN
QUOTED STRING

Explanation: An uneven number of quotes has been
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

DEFCOM-019 12 -TEXT- :SUBLISTED STRING IS
TOO LONG

Explanation: The data string exceeds maximum
allowable string size.

User Response: Limit your sublisted string to the
allowable size. The maximum string size is set at
PEngiCCL installation time. The default size is 256
characters.

DEFCOM-020 12 -TEXT- :ILLEGAL CHARACTERS
IN MACRO LABEL

Explanation: The macro label (paragraph name)
contains illegal characters.

User Response: The macro label (paragraph name)
can contain alphanumeric characters A-I, J-R, S-Z, 0-9,
“#”, “.”, and “-”. You may be further limited to the
characters allowed for the language in use. Delete
illegal characters.

DEFCOM-021 12 MACNAME :INSUFFICIENT
VIRTUAL STORAGE, CANNOT
CONTINUE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA system increase the
REGION size on the EXEC statement, on VM/CMS
system increase the virtual storage of your CMS
machine.

DEFCOM-022 12 VARNAME :RECURSIVE USE OF
KEYWORD PARAMETER

Explanation: The VARNAME keyword has been
coded more than one time for a single macro
invocation.

User Response: Remove the duplicate.

DEFCOM-023 12 VARNAME :UNDEFINED
KEYWORD PARAMETER FOR THIS
MACRO

Explanation: The VARNAME is an undefined or
undeclared keyword parameter, so the keyword is not
supported by the macro.

User Response: You are allowed to use only those
keyword parameters which have been declared in the
macro model. If this is a Migration Utility macro, refer
to the appropriate section in this document for valid
keywords.

DEFCOM-024 12 MACNAME :INSUFFICIENT
VIRTUAL STORAGE, CANNOT
CONTINUE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA system increase the
REGION size on the EXEC statement, on VM/CMS
system increase the virtual storage of your CMS
machine.

DEFCOM-025 12 MACNAME :INPUT MACRO
PARAMETERS STRING IS TOO LONG

Explanation: The macro parameters exceed the work
buffer capacity or the macro end delimiter is missing.
The -TEXT- is the data string which caused the
overflow.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

DEFCOM-026 12 -TEXT- :ILLEGAL/INVALID FORM
OF EXPRESSION

Explanation: A character following a sublisted string
has been detected that is not a comma, space, or macro
end delimiter.

User Response: Remove the unneeded character(s).

DEFKIK-001 12 :CONDITIONAL INTERPRETER
LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

DEFCOM-016 12 • DEFKIK-001 12

204 Migration Utility V1R1 User’s Guide and Reference

DEFKIK-002 12 :DIVISION IS IMPROPERLY
DECLARED

Explanation: One of the COBOL division declarations
is not followed by the word ″DIVISION″. That is, the
Division declarative is either incomplete or misspelled.

User Response: Correct the statement in error.

DEFKIK-003 12 :CONTROL SECTION IS
IMPROPERLY DECLARED

Explanation: One of the COBOL section declaratives is
not followed by the word ″SECTION″. That is, the
Section declaration is either incomplete or misspelled.

User Response: Correct the statement in error.

DEFKIK-004 12 :DECLARATION OF
DIVISION/SECTION IS INCOMPLETE

Explanation: One of the COBOL section or division
declaratives is followed by all spaces.

User Response: Correct the statement in error.

DEFKIK-005 12 -TEXT- :VERB/STATEMENT
DISALLOWED DUE TO KICKS
OPTION

Explanation: The displayed COBOL
VERB/STATEMENT is disallowed because of
KICKS=YES in the COPTION PEngiCCL preprocessor
options.

User Response: The KICKS VERBS/STATEMENTS
disallowed are located in the FSKIKTAB table. This
table has been distributed with the
VERBS/STATEMENTS, as per FSKIKTAB description in
this document or it has been customized by your
PEngiCCL software administrator. In either case, if the
KIKS=YES option is selected for PEngiCCL preprocess,
you cannot use any VERBS/STATEMENTS in your
program that exist in the FSKIKTAB.

DEFKIK-006 12 -TEXT- :V.S.M ERROR
ALLOCATING CSECT CB QUEUE

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

DEFLEX-001 12 -TEXT- :UNPAIRED PARENS IN
EXPRESSION

Explanation: The number of left parentheses is not
equal to the number of right parentheses, which are not
a part of a quoted string, in the expression. The -TEXT-
is the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-002 12 -TEXT- :UNPAIRED LEFT PAREN IN
EXPRESSION

Explanation: The number of left parentheses is not
equal to the number of right parentheses, which are not
a part of a quoted string, in the expression. The -TEXT-
is the tail-end of the last data examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-003 12 :INTERMEDIATE OUTPUT
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the decoded format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

DEFLEX-004 12 -TEXT- :UNPAIRED RIGHT PAREN
IN EXPRESSION

Explanation: The number of right parentheses is not
equal to the number of left parentheses, which are not
a part of a quoted string, in the expression. The -TEXT-
is the tail-end of the last data examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-005 12 :INTERMEDIATE INPUT
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the requirements of the conditional expression.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-006 12 -TEXT- :VARIABLE NAME IS TOO
LONG

Explanation: The variable name in attribute T’
expression is missing or it is too long.

User Response: Code a variable name following the

DEFKIK-002 12 • DEFLEX-006 12

Chapter 11. Messages 205

attribute T’. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

DEFLEX-007 12 -TEXT- :ILLEGAL FORM OF
ATTRIBUTE T EXPRESSION

Explanation: The variable name in attribute T’
expression does not begin with a “&” or it begins with
a “&&”

User Response: Code a variable name properly
following the attribute T’. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFLEX-008 12 -TEXT- :UNPAIRED QUOTES IN
QUOTED STRING

Explanation: The string contains an uneven number of
quotes. A quoted string must contain an even number
of quotes. Double quotes inside a quoted string can be
coded for quotes which need to be a part of the data
string.

User Response: Code expression according to the
PEngiCCL coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFLEX-009 12 -TEXT- :INCONSISTENT
EXPRESSION, LOGIC/REL TERM
EXPECTED

Explanation: A data item or a bracketed expression is
not followed by a logical or relational operator.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFLEX-010 12 -TEXT- :ILLEGAL AMP SIGN IN
QUOTED EXPRESSION

Explanation: A single “&” has been detected at the
end of a quoted data string.

User Response: A single “&” indicates the beginning
of a variable. Code the variable name as needed. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-011 12 :EXPRESSION EXCEEDS
MAXIMUM OF 64 NESTS

Explanation: The maximum number of bracketed
expressions supported by PEngiCCL has been
exceeded.

User Response: Your are limited to the maximum of
64 bracketed expressions in a single conditional request.

Limit the number of bracketed expressions to the
maximum of 64. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

DEFLEX-012 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION,)(IS ILLEGAL

Explanation: A left and a right parenthesis have been
coded back-to-back outside a quoted string.

User Response: Insert the appropriate logical or
relational operator between the parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-014 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION, LOGIC/REL TERM
EXPECTED

Explanation: A data item or a bracketed expression is
not followed by a logical or relational operator.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFLEX-015 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION, LOGICAL TERM
EXPECTED

Explanation: A data item or a bracketed expression is
not followed by a logical or relational operator.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFLEX-016 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION, AND / OR EXPECTED

Explanation: A data item or a bracketed expression is
not followed by a logical operator.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFLEX-017 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION,)(IS ILLEGAL

Explanation: A left and a right parenthesis have been
coded back-to-back outside a quoted string.

User Response: Insert the appropriate logical or
relational operator between the parentheses. If the error
occurred on a Migration Utility macro, contact

DEFLEX-007 12 • DEFLEX-017 12

206 Migration Utility V1R1 User’s Guide and Reference

Migration Utility software support center.

DEFLEX-019 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION, RELATION EXPECTED

Explanation: A logical or relational operator was
followed by a right parenthesis “)”.

User Response: Correct the expression in error. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-021 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION, LOGICAL TERM
EXPECTED

Explanation: A data item or a bracketed expression is
not followed by a logical or relational operator.

User Response: Correct the expression in error. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-022 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION, AND / OR EXPECTED

Explanation: A data item or a bracketed expression is
not followed by a logical operator.

User Response: Make sure that your conditional
expression complies with PEngiCCL conditional
expression coding rules. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFLEX-023 12 -TEXT- :ALPHANUMERIC
EXPRESSION EXCEEDS 256
CHARACTERS

Explanation: A single quoted/data string in
conditional expression exceeds 256 characters.

User Response: Reduce the string size to below 256. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-024 12 -TEXT- :ILLEGAL FORM OF
LOGICAL EXPRESSION

Explanation: The expression is invalid as written. The
-TEXT- is the tail-end of the expression in error.

User Response: Correct the expression in error. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-025 12 -TEXT- :ARITHMETIC EXPRESSION
EXCEEDS 256 CHARACTERS

Explanation: A single arithmetic expression, in the
conditional expression, exceeds 256 characters.

User Response: Reduce the expression size to below

256. If the error occurred on a Migration Utility macro,
contact Migration Utility software support center.

DEFLEX-026 12 -TEXT- :ILLEGAL EXPRESSION,
ALPHA TERM IS UNEXPECTED

Explanation: A quoted data string has been coded
following a relational or logical operator that was
preceded by a numeric term or expression.

User Response: Make sure that the data type in the
relation or expression is of the same type, that is, all
numeric or all alphanumeric, but not a mixture of both.
If the error occurred on a Migration Utility macro,
contact Migration Utility software support center.

DEFLEX-027 12 -TEXT- :ILLEGAL EXPRESSION,
NUMERIC TERM IS UNEXPECTED

Explanation: A numeric term/expression has been
coded following a relational or logical operator that
was preceded by an alphanumeric string.

User Response: Make sure that the data type in the
relation or expression is of the same type, that is, all
numeric or all alphanumeric, but not a mixture of both.
If the error occurred on a Migration Utility macro,
contact Migration Utility software support center.

DEFLEX-028 12 -TEXT- :ILLEGAL EXPRESSION,
THE NOT IS UNEXPECTED

Explanation: The logical operator ″NOT″ is illegal as
written or out of sequence. The logical ″NOT″ can be
used before a Boolean or a logical expression and in
conjunction with the logical operators: AND OR, AND
NOT, OR NOT.

User Response: Correct the expression in error. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-029 12 -TEXT- :ILLEGAL EXPRESSION,
RELATIONAL TERM IS UNEXPECTED

Explanation: The relational operator is illegal as
written or out of sequence. A relational operator must
be preceded and followed by a data string or an
arithmetic expression.

User Response: Correct the expression in error. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-030 12 -TEXT- :ILLEGAL EXPRESSION,
LOGICAL TERM IS UNEXPECTED

Explanation: The logical operator is illegal as written
or out of sequence. A logical operator must be preceded
and followed by a Boolean or a relational expression.

User Response: Correct the expression in error. If the
error occurred on a Migration Utility macro, contact

DEFLEX-019 12 • DEFLEX-030 12

Chapter 11. Messages 207

Migration Utility software support center.

DEFLEX-031 12 -TEXT- :ILLEGAL EXPRESSION,
NUMERIC TERM IS UNEXPECTED

Explanation: A numeric term/expression has been
coded following a relational or logical operator that
was preceded by an alphanumeric string.

User Response: Make sure that the data type in the
relation or expression is of the same type, that is, all
numeric or all alphanumeric, but not a mixture of both.
If the error occurred on a Migration Utility macro,
contact Migration Utility software support center.

DEFLEX-033 12 -TEXT- :NULL EXPRESSION IS NOT
ALLOWED

Explanation: A bracketed expression has been coded
with no data, so it is simply “()”.

User Response: Correct the expression in error. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-034 12 -TEXT- :INCOMPLETE/ILLEGAL
EXPRESSION

Explanation: There are more left than right
parentheses in expression, or expression was
prematurely terminated.

User Response: Correct the expression in error. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFLEX-035 12 -TEXT- :ILLEGAL FORM OF
SUBSTRING/CONCATENATION

Explanation: The substring expression is illegal as
written. The -TEXT- is the tail-end of the expression in
error.

User Response: Correct the expression in error. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMAC-001 12 MACNAME :INTERMEDIATE
OUTPUT EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the nested macro parameters in the decoded format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

DEFMOD-001 12 VARNAME :PROTOTYPE MODEL
VARIABLE SYMBOL IS TOO LONG

Explanation: The variable symbol exceeds 12
characters.

User Response: Reduce the variable symbol to
maximum of 12 characters. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-002 12 VARNAME :IMPROPER
VARIABLE SYMBOL SPECIFICATION

Explanation: The VARNAME has been coded as a
keyword variable (with “=”), but a keyword variable is
not allowed in the macro label.

User Response: Change the variable to a non-keyword
format (drop the “=”). If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-003 12 MACNAME :MACRO NAME IS
NOT FOUND IN PROTOTYPE
DEFINITION

Explanation: The prototype model macro name is
missing.

User Response: Add the macro name to the model
statements. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

DEFMOD-004 12 -TEXT- :PROTOTYPE MODEL
MACRO NAME IS TOO LONG

Explanation: The prototype model macro name
exceeds 12 characters.

User Response: Code the correct macro name. Note
that the macro name can be up to 8 characters long on
MVS/XA and VM/CMS operating systems, because of
the PDS and CMS member naming conventions.
However, temporary macro names can be up to 12
characters long. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

DEFMOD-005 12 -TEXT- :PROTOTYPE MODEL
MACRO NAME IS INCONSISTENT

Explanation: The macro name does not equal to the
member name that houses the macro source.

User Response: Make your macro name in the
prototype model equal to the PDS/CMS member name
that houses this macro. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFLEX-031 12 • DEFMOD-005 12

208 Migration Utility V1R1 User’s Guide and Reference

DEFMOD-006 12 -TEXT- :PROTOTYPE MODEL
VARIABLE SYMBOL IS TOO LONG

Explanation: The variable symbol exceeds 12
characters.

User Response: Reduce the variable symbol to
maximum of 12 characters. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-007 12 -TEXT- :NO VARIABLE FOUND
IN PROTOTYPE DEFINITION

Explanation: A local or global directive has been
coded without the variable name.

User Response: Add the required variable or remove
the unneeded directive. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-008 12 -TEXT- :MISSING END QUOTE,
PROTOTYPE MODEL IS INCOMPLETE

Explanation: Unpaired quotes have been detected in
the macro prototype model definition.

User Response: Add quotes as needed. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-011 12 -TEXT- :INCOMPLETE QUOTED
STRING IN PROTOTYPE DEFINITION

Explanation: Unpaired quotes have been detected in
the macro prototype model definition.

User Response: Add quotes as needed. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-012 12 -TEXT- :RIGHT PAREN IS
MISSING IN PROTOTYPE
DEFINITION

Explanation: The number of right parentheses doesn’t
equal the number of left parentheses in the expression,
which are not a part of a quoted string. The -TEXT- is
the tail-end of the last data examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-017 12 -TEXT- :UNPAIRED PARENS IN
PROTOTYPE DEFINITION

Explanation: The number of right parentheses doesn’t
equal the number of left parentheses in the expression,
which are not a part of a quoted string. The -TEXT- is
the tail-end of the last data examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-019 12 VARNAME :EXCEEDS
VARIABLES BUFFER CAPACITY

Explanation: The acquired buffer during the variable
decoding in PASS1 cannot accommodate the variable
data string. This is probably PEngiCCL preprocessor
error.

User Response: Contact PEngiCCL software support
center.

DEFMOD-020 12 VARNAME :SUBLISTED STRING
IS TOO LONG

Explanation: The data string exceeds maximum
allowable string size.

User Response: Limit your sublisted string to the
allowable size. The maximum string size is set at
PEngiCCL installation time. The default size is 256
characters. If the error occurred on a Migration Utility
macro, see “Note 2” on page 143.

DEFMOD-021 12 VARNAME :ILLEGAL
PROTOTYPE VARIABLE SYMBOL

Explanation: The variable name contains illegal
characters. The variable name can contain the
alphanumeric characters A-I, J-R, S-Z, 0-9, “#”, “.”, and
“-”.

User Response: Assign a name that contains the
allowed characters only. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-022 12 VARNAME :ILLEGAL
CHARACTERS IN PROTOTYPE
VARIABLE SYMBOL

Explanation: The variable name contains illegal
characters. The variable name can contain the
alphanumeric characters A-I, J-R, S-Z, 0-9, “#”, “.”, and
“-”.

User Response: Assign a name that contains the
allowed characters only. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-023 12 VARNAME :ILLEGAL
CHARACTERS IN PROTOTYPE
VARIABLE SYMBOL

Explanation: The variable name contains illegal
characters. The variable name can contain the

DEFMOD-006 12 • DEFMOD-023 12

Chapter 11. Messages 209

alphanumeric characters A-I, J-R, S-Z, 0-9, “#”, “.”, and
“-”.

User Response: Assign a name that contains the
allowed characters only. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-024 12 -TEXT- :MISSING RIGHT PAREN
IN GBL/LCL SET DEFINITION

Explanation: A right parenthesis is missing in the
dimension of a local or global set symbol.

User Response: Add the necessary right parenthesis.
If the error occurred on a Migration Utility macro,
contact Migration Utility software support center.

DEFMOD-025 12 VARNAME :ILLEGAL USE OF
RESERVED SYSTEM VARIABLE

Explanation: The VARNAME is a reserved PEngiCCL
system variable symbol. System variable symbol cannot
be declared inside a macro prototype or macro set
symbols.

User Response: Use a non-system variable name. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-026 12 -TEXT- :ILLEGAL VALUE IN
SUBLIST DIMENSION

Explanation: A null entry has been coded for the
local/global set symbol dimension.

User Response: Code a numeric dimension. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-027 12 -TEXT- :DIMENSION EXCEEDS 5
DIGITS IN GBL/LCL DEFINITION

Explanation: The dimension of the local/global set
symbol exceeds 5 characters.

User Response: Limit the dimension to 5 characters in
length. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

DEFMOD-028 12 -TEXT- :DIMENSION IS NOT
NUMERIC IN GBL/LCL DEFINITION

Explanation: The dimension value of the local/global
set symbol is not numeric.

User Response: Code a numeric dimension. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-029 12 -TEXT- :ILLEGAL DIMENSION IN
GBL/LCL SET DEFINITION

Explanation: The dimension value of the local/global
set symbol is zero.

User Response: The allowed dimension can be 1 to
32767. Code a valid dimension. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-030 12 -TEXT- :DIMENSION EXCEEDS
MAXIMUM IN GBL/LCL DEFINITION

Explanation: The dimension value of the local/global
set symbol is greater than 32767.

User Response: The allowed dimension can be 1 to
32767. Code a valid dimension. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-031 12 -TEXT- :ILLEGAL LCL/GBL
DECLARATIVE

Explanation: The local/global set symbol dimension is
illegal as written.

User Response: Code dimension according to the
PEngiCCL coding standards. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-032 12 -TEXT- :ILLEGAL OR
UNDECLARED SYMBOL IN SET
DEFINITION

Explanation: The Symbol used in the local/global set
dimension is undefined.

User Response: Code dimension according to the
PEngiCCL coding standards. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-033 12 VARNAME :DUPLICATE OR
ILLEGAL PROTOTYPE VARIABLE
SYMBOL

Explanation: The VARNAME variable has been
previously declared either in the prototype model or as
a local/global set symbol.

User Response: Delete the duplicate variable
definition. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

DEFMOD-024 12 • DEFMOD-033 12

210 Migration Utility V1R1 User’s Guide and Reference

DEFMOD-035 12 MACNAME :NO VIRTUAL
STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA system increase the
REGION size on the EXEC statement, on VM/CMS
system increase the virtual storage of your CMS
machine.

DEFMOD-036 12 VARNAME :INCONSISTENT
GLOBAL VARIABLE DEFINITION

Explanation: The VARNAME global set
symbol/variable is not consistent with the definition of
the same global set symbol/variable defined in another
macro. The items that can cause inconsistency are the
dimension, the set symbol type and the variable-length.

User Response: Identify the differences and code your
variable to comply. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

DEFMOD-037 12 VARNAME :INCONSISTENT
GLOBAL VARIABLE DEFINITION

Explanation: The VARNAME global set
symbol/variable is not consistent with the definition of
the same global set symbol/variable defined in another
macro. The items that can cause inconsistency are the
dimension, the set symbol type and the variable-length.

User Response: Identify the differences and code your
variable to comply. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

DEFMOD-038 12 VARNAME :MAXIMUM NUMBER
OF LOCAL VARIABLES EXCEEDED

Explanation: The maximum number of macro
variables (prototype model and set symbols) that can
be coded for this macro has been exceeded.

User Response: The number of variables is limited as
declared in the macro statement via the VARQ=NN
option, where NN = the number of allowed variables.
The default support for the number of macro local and
global variables is established at PEngiCCL installation
time by the PEngiCCL software administrator.

User Response: Increase the NN value of the
VARQ=NN option on the macro statement to support
additional entries. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center. Caution: Do not grossly over estimate
the NN value, as it could cause the use of unnecessary
virtual storage.

DEFMOD-039 12 VARNAME :MAXIMUM NUMBER
OF GLOBAL VARIABLES EXCEEDED

Explanation: The maximum number of the global set
symbols/variables has been exceeded.

User Response: The default support for the number of
global variables is established at PEngiCCL installation
time by the PEngiCCL software administrator. If you
are in a need of more variables, have the PEngiCCL
software administrator change the default value. The
value can be changed via the GBLGRP=NN keyword in
the FSCOBNUC program. However, the PEngiCCL
nucleus must be re-linked. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-040 12 VARNAME :ILLEGAL FORM OF
SUBSCRIPT EXPRESSION

Explanation: An element (slot) length has been coded
for a sublisted local/global SETA or SETB symbol.

User Response: The element size is supported for the
SETC symbols only. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFMOD-041 12 VARNAME :LENGTH
DEFINITION IN SUBSCRIPT IS TOO
SHORT/LONG

Explanation: The length for the VARNAME sublisted
SETC symbol is either zero or it exceeds 15 digits.

User Response: Code a proper numeric length. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-042 12 VARNAME :LENGTH VALUE IN
SUBSCRIPT EXPRESSION IS NOT
NUMERIC

Explanation: The length value for the VARNAME
sublisted SETC symbol is not numeric.

User Response: Code a proper numeric length. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-043 12 VARNAME :LENGTH VALUE IN
SUBSCRIPT EXPRESSION IS ILLEGAL

Explanation: The length for the VARNAME sublisted
SETC symbol is either zero or it exceeds 15 digits.

User Response: Code a proper numeric length. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-035 12 • DEFMOD-043 12

Chapter 11. Messages 211

DEFMOD-044 12 -TEXT- :INVALID/ILLEGAL
PROTOTYPE MODEL EXPRESSION

Explanation: Sublisted prototype model expression is
illegally terminated. That is, the expression is not
followed by a space or comma.

User Response: Remove extraneous data following the
expression or insert a comma or space. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFMOD-045 12 MACNAME :COBOLBAS OR
CICSBASE MACRO IS REQUIRED

Explanation: The COBOLBAS or the CICSBASE macro
was not coded before the macro in error.

DEFMOD-046 12 MACNAME :REQUIRES
CICSBASE MACRO

Explanation: The macro can be used with CICSBASE
macro only.

DEFMOD-047 12 MACNAME :REQUIRES
COBOLBAS MACRO

Explanation: The macro can be used with COBOLBAS
macro only.

DEFOPT-001 04 -TEXT- :UNKNOWN OR
IMPROPER COPTION PARAMETER

Explanation: The -TEXT- is an unsupported/unknown
PEngiCCL option.

User Response: Correct by using one of the allowed
COPTION parameters.

DEFOPT-002 04 -TEXT- :IMPROPER COPTION
PARAMETER VALUE

Explanation: An illegal value or no data has been
coded for one of the COPTION parameters.

User Response: Code a proper value for the keyword
in error.

DEFSQE-001 12 MACNAME :INTERMEDIATE
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSQE-002 12 -TEXT- :STRING EXCEEDS 256
CHARACTERS

Explanation: A quoted data string exceeds maximum
allowable string size.

User Response: Limit your quoted data strings to the
allowable size of 256 characters. If the error occurred
on a Migration Utility macro, contact Migration Utility
software support center.

DEFSQE-003 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION

Explanation: The quoted string contains either illegal
attributes or improper concatenation. The -TEXT- is the
tail-end of the string in error.

User Response: Correct the string to comply with
PEngiCCL quoted string coding rules. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSQE-004 12 -TEXT- :UNPAIRED PARENS IN
SUBSTRING EXPRESSION

Explanation: The number of right parentheses is not
equal to the number of left parentheses in the substring
expression. The -TEXT- is the tail-end of the last data
examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSQE-005 12 -TEXT- :SUBSTRING EXCEEDS 256
CHARACTERS

Explanation: The substring expression exceeds 256
characters in length.

User Response: Limit your expression to maximum of
256 characters. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

DEFSQE-006 12 -TEXT- :ILLEGAL SUBSTRING
EXPRESSION

Explanation: The subscript expression is illegal as
written.

User Response: Remove the unneeded expression. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSRT-001 12 :VARIABLE TO BE SORTED IS NOT
SUPPLIED

Explanation: The ASORT directive has been coded
with no variable to sort.

DEFMOD-044 12 • DEFSRT-001 12

212 Migration Utility V1R1 User’s Guide and Reference

User Response: Supply the variable to be sorted. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSRT-002 12 VARNAME :VARIABLE SYMBOL IS
TOO LONG

Explanation: The variable name exceeded 12
characters.

User Response: Limit the variable name to maximum
of 12 characters. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

DEFSRT-003 12 -TEXT- :ILLEGAL SPECIFICATION
OF VARIABLE SYMBOL

Explanation: The variable name to be sorted does not
start with a “&”.

User Response: Prefix variable name with a “&”. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSRT-004 12 VARNAME :UNDEFINED
VARIABLE SYMBOL

Explanation: The VARNAME variable to be sorted is
undefined in this macro.

User Response: Supply a correct variable that has
been defined in this macro. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFSRT-006 12 -TEXT- :ILLEGAL SORT TYPE,
VALID OPTIONS ARE A OR D

Explanation: The sort option is invalid.

User Response: Correct the bad option. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSRT-007 12 VARNAME :ILLEGAL USE OF
PROTOTYPE MODEL VARIABLE

Explanation: The variable to be sorted is a prototype
model variable. The prototype model variables cannot
be sorted.

User Response: Use the correct variable that has been
defined as a local or global set symbol. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSRT-008 12 -TEXT- :ILLEGAL SORT SUPPRESS
INDICATOR, MUST BE Y OR N

Explanation: The sort suppress option indicator is
invalid. The suppress indicator can be Y or N only.

User Response: Correct the bad option indicator. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSRT-009 12 VARNAME :ILLEGAL USE OF
NON-DIMENSIONAL VARIABLE

Explanation: An attempt to sort a non-dimensional
variable has been detected.

User Response: Only multi-dimensional variables can
be sorted. Supply a multi-dimensional variable. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSRT-010 12 -TEXT- :ILLEGAL ASORT OPTIONS

Explanation: The ASORT options are illegal as written.

User Response: Correct the bad options. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSUB-001 12 -TEXT- :UNPAIRED PARENS IN
EXPRESSION

Explanation: The number of right parentheses is not
equal to the number of left parentheses in the
expression. The -TEXT- is the tail-end of the last data
examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSUB-002 12 -TEXT- :MISSING RIGHT PAREN
IN EXPRESSION

Explanation: The number of right parentheses is not
equal to the number of left parentheses in the
expression. The -TEXT- is the tail-end of the last data
examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSUB-003 12 :INTERMEDIATE EXPRESSION IS
TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSRT-002 12 • DEFSUB-003 12

Chapter 11. Messages 213

DEFSUB-004 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION (SUBSCRIPT EXPECTED)

Explanation: The subscript expression is not preceded
by a valid variable symbol.

User Response: Correct the expression. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSUB-005 12 -TEXT- :INTERMEDIATE
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSUB-006 12 :ILLEGAL USE OF SUBSTRING IN
ARITHMETIC EXPRESSION

Explanation: The double subscript (X,Y) was used for
a variable that was not a &SYSLIST variable.

User Response: Correct the expression. The subscript
can be of (X,Y) format only for the &SYSLIST system
variable. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

DEFSUB-007 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION

Explanation: A bracketed expression was coded with
no data inside of it, as “()”. This expression is illegal.

User Response: Correct the expression. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSUB-008 12 -TEXT- :ILLEGAL
BEGINNING/END OF EXPRESSION

Explanation: An arithmetic operator was followed by
a right parenthesis, or a right parenthesis was not
followed by an arithmetic operator.

User Response: Correct the expression. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFSUB-009 12 :EXPRESSION EXCEEDS
MAXIMUM OF 64 BRACKETED
TERMS

Explanation: The maximum number of bracketed
expressions supported by PEngiCCL was exceeded.

User Response: Your are limited to a maximum of 64
bracketed expressions in a single arithmetical
expression. Limit the number of bracketed expressions
to the maximum of 64. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

DEFTXT-001 12 MACNAME :INTERMEDIATE
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

DEFTXT-002 12 -TEXT- :STRING EXCEEDS 256
CHARACTERS

Explanation: The data string exceeds 256 characters.

User Response: Limit your data string to maximum of
256 characters. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

GENSUB-001 12 MACNAME :INTERMEDIATE
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENSUB-002 12 VARNAME :ILLEGAL USE OF
SUBSCRIPT FOR THIS VARIABLE

Explanation: The VARNAME variable is not a
sublisted variable.

User Response: The non-sublisted variables cannot be
subscripted. Delete the subscript. If the error occurred
on a Migration Utility macro, contact Migration Utility
software support center.

GENSUB-003 12 VARNAME :UNDEFINED
VARIABLE SYMBOL

Explanation: The VARNAME variable is undefined in
this macro.

User Response: Supply a correct variable that has
been defined in this macro. If the error occurred on a

DEFSUB-004 12 • GENSUB-003 12

214 Migration Utility V1R1 User’s Guide and Reference

Migration Utility macro, contact Migration Utility
software support center.

GENSUB-004 12 VARNAME :INTERMEDIATE
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENSUB-005 12 VARNAME :ILLEGAL USE OF T
ATTRIBUTE IN ARITHMETIC

Explanation: The use of T’ attribute has been detected
in arithmetic expression.

User Response: The attribute T’ is an alphanumeric
type. Delete the erroneous attribute. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENSUB-006 12 VARNAME :ILLEGAL USE OF
SUBSTRING EXPRESSION

Explanation: The subscript expression is illegal as
written or it is not allowed in expression.

User Response: Correct the erroneous expression. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENSUB-007 12 VARNAME :SUBLIST IS NOT
ALLOWED

Explanation: The double subscript (X,Y) has been
used for a variable that is not a &SYSLIST variable.

User Response: Correct the expression. The subscript
can be of (X,Y) format only for the &SYSLIST system
variable. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

GENSUB-008 12 VARNAME :ILLEGAL USE OF
SUBSTRING IN ARITHMETIC

Explanation: A substring notation was detected
following an attribute expression.

User Response: Substring usage is not allowed in an
arithmetic expression, as it deals with alphanumeric
data. Correct the erroneous expression. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENSUB-009 12 -TEXT- :UNPAIRED PARENS IN
SUBSCRIPT EXPRESSION

Explanation: The number of right parentheses is not
equal to the number of left parentheses in the
expression. The -TEXT- is the tail-end of the last data
examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENSUB-010 12 -TEXT- :ILLEGAL VALUE IN
ARITHMETIC EXPRESSION

Explanation: Illegal data has been coded in arithmetic
expression. The -TEXT- is the tail-end of the last data
examined.

User Response: Remove or correct the illegal/invalid
data string. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

GENSUB-011 12 :PREPROCESSOR LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

GENSUB-012 12 VARNAME :THE USE OF
VARIABLE REQUIRES A SUBSCRIPT

Explanation: The VARNAME sublisted variable was
coded without a subscript.

User Response: Code the required subscript. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENSUB-013 12 -TEXT- :UNPAIRED QUOTES IN
HEX EXPRESSION

Explanation: Hex expression was not properly coded
in quotes.

User Response: Code quotes around the hex value. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENSUB-014 12 -TEXT- :ILLEGAL HEX
EXPRESSION

Explanation: Hex expression was either too long or
too short.

User Response: Adjust the hex value within the limits
of PEngiCCL rules. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

GENSUB-004 12 • GENSUB-014 12

Chapter 11. Messages 215

GENSUB-015 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION

Explanation: Hex expression contains illegal (non-hex)
characters.

User Response: Correct the erroneous characters. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENTXT-001 12 MACNAME :INTERMEDIATE
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENTXT-002 12 VARNAME :VARIABLE SYMBOL
IS TOO LONG

Explanation: The variable name exceeded 12
characters.

User Response: Limit the variable name to maximum
of 12 characters. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

GENTXT-003 12 VARNAME :UNDEFINED
VARIABLE SYMBOL

Explanation: The VARNAME variable to be sorted
was undefined to this macro.

User Response: Supply a correct variable that is
defined in this macro. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

GENTXT-004 12 VARNAME :INTERMEDIATE
EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENTXT-005 12 VARNAME :SUBLIST/SUBSTRING
EXPRESSION IS ILLEGAL

Explanation: Attribute T’ expression for the
VARNAME variable was followed by a quote and a left
parenthesis, which implies a substring usage.
Substrings are not allowed for attribute expressions.

User Response: Code the expression to comply with
PEngiCCL coding conventions. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

GENTXT-006 12 VARNAME :ATTRIBUTES ARE
NOT ALLOWED

Explanation: Attribute T’ expression for the
VARNAME variable was followed by a quote and a left
parenthesis, which implies a substring usage.
Substrings are not allowed for attribute expressions.

User Response: Code the expression to comply with
PEngiCCL coding conventions. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

GENTXT-007 12 VARNAME :SUBLIST/SUBSTRING
EXPRESSION IS ILLEGAL

Explanation: Attribute K’ expression for the
VARNAME variable was followed by a quote and a left
parenthesis, which implies a substring usage.
Substrings are not allowed for attribute expressions.

User Response: Code the expression to comply with
PEngiCCL coding conventions. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

GENTXT-008 12 VARNAME :SUBLIST EXPRESSION
IS ILLEGAL

Explanation: A subscript was coded for an attribute
N’ expression. The subscripts are allowed in the
attribute N’ expression only for the &SYSLIST variable.

User Response: Code the expression to comply with
PEngiCCL coding conventions. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

GENTXT-009 12 VARNAME :SUBSTRING
EXPRESSION IS ILLEGAL

Explanation: Attribute N’ expression for the
VARNAME variable was followed by a quote and a left
parenthesis, which implies a substring usage.
Substrings are not allowed for attribute expressions.

User Response: Code the expression to comply with
PEngiCCL coding conventions. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

GENSUB-015 12 • GENTXT-009 12

216 Migration Utility V1R1 User’s Guide and Reference

GENTXT-010 12 VARNAME :ILLEGAL USE OF
SUBSCRIPT FOR VARIABLE TYPE

Explanation: The VARNAME variable was not a
sublisted variable.

User Response: The non-sublisted variables cannot be
subscripted. Delete the subscript. If the error occurred
on a Migration Utility macro, contact Migration Utility
software support center.

GENTXT-011 12 -TEXT- :STRING EXCEEDS
MAXIMUM OF 256 CHARACTERS

Explanation: A continuous data string was detected
that was longer than 256 characters.

User Response: Limit the string to maximum of 256
characters. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

GENTXT-012 12 -TEXT- :INCOMPLETE SUBSCRIPT
EXPRESSION

Explanation: The expression was not properly
enclosed in parentheses or no data was supplied in
subscript.

User Response: Code the expression to comply with
PEngiCCL coding conventions. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

GENTXT-013 12 -TEXT- :UNPAIRED RIGHT PAREN
IN SUBSCRIPT EXPRESSION

Explanation: The number of right parentheses doesn’t
equal the number of left parentheses in the expression.
The -TEXT- is the tail-end of the last data examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENTXT-014 12 -TEXT- :SUBSCRIPT EXPRESSION
IS TOO LONG

Explanation: The expression exceeds 256 characters.
The -Text- is the tail-end of the last data examined.

User Response: Limit expression to maximum of 256
characters. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

GENTXT-015 12 -TEXT- :ILLEGAL USE OF
SUBSTRING FOR VARIABLE TYPE

Explanation: The double subscript (X,Y) was used for
a variable that was not a &SYSLIST variable.

User Response: Correct the expression. The subscript
can be of (X,Y) format only for the &SYSLIST system
variable. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

GENTXT-016 12 VARNAME :THE USE OF
VARIABLE REQUIRES A SUBSCRIPT

Explanation: The VARNAME sublisted variable was
coded without a subscript.

User Response: Code the required subscript. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

GENTXT-017 12 -TEXT- :SINGLE QUOTE IS
ILLEGALLY USED IN QUOTED
STRING

Explanation: A single quote was detected in a quoted
string.

User Response: Quotes inside a quoted string must be
coded in pairs, that is, as double quotes. Correct the
erroneous expression. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

GETCOM-001 12 -TEXT- :ILLEGAL VALUE IN
COBOL CC 7

Explanation: The character in position seven was not
a ″*″, ″/″, ″-″ or a space.

User Response: Remove the invalid character.

GETCOM-002 12 :NON BLANK FOUND BEFORE
CONTINUATION COLUMN CC16

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation,
however, data was located before continuation column
16 of this statement.

User Response: Continuation starts in position 16 for
Assembler macros and in position 12 for COBOL
macros. Correct the statement in error.

GETCOM-004 12 -TEXT- :OPCODE OR MACRO IS
TOO LONG

Explanation: The macro name exceeded 12 characters.

User Response: Limit macro name to maximum of 12
characters.

GETCOM-005 12 MACNAME :FS-PEngiCCL
MACRO IS ILLEGALLY USED IN
FSCOPY

Explanation: The special PEngiCCL feature of
FSCOPY directive to support CICS macros in COBOL

GENTXT-010 12 • GETCOM-005 12

Chapter 11. Messages 217

was activated, but the MACNAME macro was not in
FSUSRTAB macro table.

User Response: The FSUSRTAB contains all macro
names allowed for use with the FSCOPY directive.
Contact your PEngiCCL software administrator for the
valid macros.

GETCPY-001 12 COPYNAME :COPY MEMBER NOT
FOUND IN COPY LIBRARY

Explanation: The COPYNAME member did not exist
in the copy library. This was caused by either an
erroneous COPYNAME or the library which contained
the member was not properly accessed/concatenated.

User Response: Correct the COPYNAME or
concatenate/access the correct library.

GETCPY-002 12 COPYNAME :ERRORS DETECTED
IN MACRO PROTOTYPE

Explanation: An error has been detected in Easytrieve
Plus macro model.

User Response: Refer to PEngiEZT Reference Manual
for syntax rules.

GETCPY-003 12 SUPPLIED PARAMETERS EXCEED
BUFFER SIZE

Explanation: Easytrieve Plus macro input parameters
exceed the reserved buffer space.

User Response: The buffer space is allocated based on
input macro prototype. Verify input parameters for
proper values and/or size.

GETCPY-004 12 KEYWORD :UNDEFINED
KEYWORD

Explanation: Easytrieve Plus macro input keyword is
not defined in macro model.

User Response: Verify input parameters for proper
keywords.

GETCPY-005 12 KEYWORD :DUPLICATE USER
KEYWORD

Explanation: There is a duplicate keyword in the
supplied Easytrieve Plus macro parameters.

User Response: Remove the duplicate keyword.

GETCPY-006 12 -TEXT- :EXTRANEOUS USER
PARAMETERS

Explanation: Too many parameters has been supplied
for Easytrieve Plus macro.

User Response: Remove the extraneous parameters.

GETMAC-001 12 MACNAME :INVALID OP CODE
OR MACRO NOT FOUND IN
LIBRARY

Explanation: The MACNAME member did not exist
in the macro library. This was caused by either an
erroneous MACNAME or the library which contained
the member was not properly accessed/concatenated.

User Response: Correct the MACNAME or
concatenate/access the correct library.

GETMAC-002 12 MACNAME :INVALID OP CODE
OR MACRO WAS FOUND IN ERROR

Explanation: The MACNAME member did not exist
in the macro library or the macro was previously found
in error. This could be caused by either an erroneous
MACNAME or the library which contained the
member was not properly accessed/concatenated.

User Response: Correct the MACNAME or
concatenate/access the correct library.

GETPGM-001 12 PROGRAM :PREMATURE END
OF INPUT OR MEND IS MISSING

Explanation: A premature end of input program
source was detected. This could be caused by an
improperly coded MEND directive in one of the
temporary macros included before the program, or the
program was not located in the FJSYSIN library.

User Response: Correct the erroneous temporary
macro, or supply the proper program name on the
FJSYSIN if on MVS/XA, or CMS member name and
type if on VM/CMS.

GETPGM-002 12 -TEXT- :IMPROPER
DECLARATION OF MACRO LABEL IN
PROTOTYPE

Explanation: The prototype model macro label
variable did not start with a “&” in the temporary
macro definition. This error can happen only if you
code temporary macros before your program.

User Response: Add a “&” to the macro label.

GETPGM-003 12 -TEXT- :EXPECTING A MACRO
NAME, NONE FOUND

Explanation: The macro name was expected in the
prototype model in the first 32 positions of the first
model statement, or in the first 32 positions after the
macro label, if the label was coded. This error can
happen only if you code temporary macros before your
program.

User Response: Make sure that the macro name starts
within the first 32 positions of the first macro model
statement.

GETCPY-001 12 • GETPGM-003 12

218 Migration Utility V1R1 User’s Guide and Reference

GETPGM-004 12 -TEXT- :MACRO NAME EXCEEDS
MAXIMUM LENGTH

Explanation: The macro name exceeded 12 characters.
This error can happen only if you code temporary
macros before your program.

User Response: Limit the macro name to maximum of
12 characters.

GETPGM-005 12 MACNAME :FSVSMADD CALL,
NO VIRTUAL STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA systems increase the
REGION size on the EXEC statement, on VM/CMS
systems increase the virtual storage of your CMS
machine.

GETPGM-006 12 MACNAME :FSVSMDSA CALL,
NO VIRTUAL STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA systems increase the
REGION size on the EXEC statement, on VM/CMS
systems increase the virtual storage of your CMS
machine.

GETPGM-007 12 MACNAME :FSVSMDSA CALL,
NO VIRTUAL STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA systems increase the
REGION size on the EXEC statement, on VM/CMS
systems increase the virtual storage of your CMS
machine.

GETPGM-008 12 MACNAME :PREMATURE END
OF INPUT OR MEND IS MISSING

Explanation: A premature end of input program
source was. This could be caused by an improperly
coded MEND directive in one of the temporary macros
included before the program, or the program was not
located in the FJSYSIN library.

User Response: Correct the erroneous temporary
macro or supply the proper program name on the
FJSYSIN if on MVS/XA, or CMS member name ad type
if on VM/CMS.

GETPGM-009 12 MACNAME :FSVSMDSA CALL,
NO VIRTUAL STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA system increase the
REGION size on the EXEC statement, on VM/CMS
system increase the virtual storage of your CMS
machine.

GETPGM-010 12 VARNAME :PROTOTYPE MODEL
VARIABLE SYMBOL IS TOO LONG

Explanation: The macro label (variable symbol)
exceeded 12 characters. This error can happen only if
you code temporary macros before your program.
Solution. Limit the label symbol to the maximum of 12
characters.

GETSYS-001 12 MACNAME :V.S.M FAILED ON
LOADING SYSTEM VARIABLES

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA system increase the
REGION size on the EXEC statement, on VM/CMS
system increase the virtual storage of your CMS
machine.

GETSYS-002 12 MACNAME :SYSPARM DATA
LENGTH EXCEEDS 54 BYTES

Explanation: The COPTION parameters coded in the
SYSPARM of MVS/XA JCL exceeded 54 characters.

User Response: The MVS/XA SYSPARM can contain
maximum of 54 characters. Reduce the COPTION
parameters to the maximum of 54 bytes.

GSECT0-001 12 GSECT :CONTROL SECTION
NAME EXCEEDS MAXIMUM LENGTH

Explanation: The GSECT expression exceeded 12
characters after all string substitutions have been made.

User Response: Limit the string to maximum of 12
characters. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

GSECT0-002 12 GSECT :CONTROL SECTION
NAME IS ILLEGAL AS WRITTEN

Explanation: The GSECT expression was less than 2
characters after all string substitutions were made.

User Response: Limit the string to minimum of 2 and
a maximum of 12 characters. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

GETPGM-004 12 • GSECT0-002 12

Chapter 11. Messages 219

GSECT0-003 12 GSECT :UNKNOWN CONTROL
SECTION

Explanation: The GSECT generating section was
unknown to PEngiCCL.

User Response: Code a proper GESCT identification.
If the error occurred on a Migration Utility macro,
contact Migration Utility software support center.

GSECT0-004 12 -TEXT- :CONTROL SECTION
NAME NOT ENCLOSED IN PARENS

Explanation: The GSECT name was not properly
enclosed in parentheses.

User Response: Enclose the name in parentheses. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

GSECT0-005 12 -TEXT- :ILLEGAL CHARACTERS IN
CONTROL SECTION NAME

Explanation: The GSECT name contains illegal
characters.

User Response: The allowed characters are: #, A-I, J-R,
S-Z and 0-9. Change the GSECT name to contain
proper characters. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

GSECT0-006 12 GSECT :ILLEGAL
GSECT,LANG=ASM ALLOWS GP
GSECT ONLY

Explanation: An illegal GSECT for LANG=ASM
PEngiCCL preprocessor option was detected.

User Response: Only General purpose (GP) GSECT
can be used when preprocessing assembler programs. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

IOR000-001 12 :ILLEGAL VALUE IN COBOL
SEQUENCE (CC 0-5)

Explanation: Non-numeric characters was detected in
position 1-6. This error appears only when
COBLSEQ=YES COPTION is in effect.

User Response: Remove erroneous sequence number.

IOR003-001 12 PREMATURE END OF FUNCTION

Explanation: End of input source has been detected
while decoding function. This can occur when input
parameters contain unpaired quotes or parentheses.

User Response: Correct the problem.

IOR003-002 12 XXXXX UNPAIRED PARENS IN
EXPRESSION

Explanation: Data has been detected in cc 8 - 12
before a paired parenthesis could be reached.

User Response: Correct the problem.

IOR003-003 12 XXXXX EXPRESSION IS TOO LONG

Explanation: Function, with its parameters, exceeds
the buffer size specified by the BUFSIZE=nnn in
COPTION. Also, this can occur when input parameters
contain unpaired quotes or parentheses.

User Response: Correct the problem.

IOR003-004 12 XXXXX PARAMETER LIST IS
MISSING

Explanation: Function is not followed by a parameter
list enclosed in parentheses. The error can also occur
when there are more right parentheses “(” than left
parentheses “)” in the parameter list.

User Response: Correct the problem. Note that if you
do not have any function parameters, you must code
an empty list, that is ().

IOR003-005 12 CCL1 LOGIC ERROR

Explanation: A serious error has occurred during
function decoding.

User Response: Contact Support Center.

IOR003-006 12 XXXXX FUN/OBJECT UNDEFINED
OR TOO LONG

Explanation: Function is undefined or the function
name is too long.

User Response: For function naming conventions refer
to VSMF00-08 message, otherwise, functions must be
declared in order to use them.

IOR003-007 12 XXXXX OVERLY FRAGMENTED
FUNCTION

Explanation: The function design cannot be handled
by Migration Utility preprocessor. This can happen
when a function contains too many imbedded
functions, causing the management of the generated
code impossible.

User Response: Simplify function design.

IOR003-008 12 XXXXX IMPROPER USE OF
FUNCTION

Explanation: The use of function is improper as
coded.

User Response: Refer to PEngiCCL Reference Manual

GSECT0-003 12 • IOR003-008 12

220 Migration Utility V1R1 User’s Guide and Reference

for function usage. In general, if a function is used with
a COBOL instruction, then it must be coded with a
leading “%”.

For example:

IF SEL_OBJECT (OBJECT OPTION) = ZERO

is syntactically incorrect. It should be coded with “%”
as:

IF %SEL_OBJECT (OBJECT OPTION) = ZERO

IOR003-009 12 XXXXX INCONSISTENT NUMBER
OF PARAMETERS

Explanation: The number of coded function
parameters does not match to the number declared in
the function model.

User Response: Correct the problem.

IOR003-010 12 MAXIMUM OF 999 FUNCTIONS
EXCEEDED

Explanation: The number of selector functions in the
program exceeds 999.

User Response: None. The only recourse is to split
your program into multiple modules or use fewer
selector functions.

IOR003-011 12 XXXXX NON-BLANK BEFORE
COLUMN 12

Explanation: A non-blank was detected in cc 8 - 12
during function decoding. This can occur when input
parameters contain unpaired quotes or parentheses.

User Response: Correct the problem. Also see “Note
3” on page 143.

IOR003-012 12 XXXXX INVALID OR MISSING
OBJECT NAME

Explanation: Non-inline function has a null first
parameter, or the first parameter is a quoted string or
not a valid COBOL field name.

User Response: Correct the problem.

IOR003-013 12 XXXXX INLINE FUNCTION LOGIC
ERROR

Explanation: Inline function did not generate any
statements.

User Response: This is function designer error.
Function must be corrected to generate at least one
COBOL line (even if it is a blank or comment.

IOR003-014 12 XXXXX INLINE FUNCTION AREA
″A″ NON-BLANK

Explanation: A non-blank was detected in cc 8 - 12 in
the code generated by the inline function.

User Response: This is function designer error.
Function must be corrected to generate inline
statements starting in cc 12 and after.

MEXIT0-001 12 MACNAME :ERROR FREEING
MACRO POINTERS

Explanation: An error occurred, which freed macro
working set virtual storage pointers. This is Probably
PEngiCCL preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

MNOTE0-001 12 -TEXT- :ILLEGAL EXPRESSION
FORMAT

Explanation: The MNOTE condition code and text are
illegal as coded. The -TEXT- is the last data analyzed.

User Response: Code the mnote according to the
PEngiCCL MNOTE directive coding rules. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

MNOTE0-002 12 -TEXT- :ILLEGAL EXPRESSION,
CC AND TEXT REQUIRED

Explanation: The MNOTE condition code and text are
illegal as coded. The -TEXT- is the last data analyzed.

User Response: Code the MNOTE according to the
PEngiCCL MNOTE directive coding rules. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

MNOTE0-003 12 -TEXT- :CONDITION CODE
LENGTH ERROR

Explanation: The condition code was more than 10
characters long.

User Response: Limit condition code to a maximum
of 10 characters. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

MNOTE0-004 12 -TEXT- :CONDITION CODE IS
NOT NUMERIC

Explanation: The condition code was not numeric.

User Response: Code a numeric value for condition
code from 0 through 999. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

IOR003-009 12 • MNOTE0-004 12

Chapter 11. Messages 221

MNOTE0-005 12 -TEXT- :CONDITION CODE
EXCEEDS 999

Explanation: The condition code exceeded maximum
of 999.

User Response: Reduce condition code to maximum
of 999. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

MNOTE0-007 12 -TEXT- :SYNTAX ERROR, ILLEGAL
TEXT FORMAT

Explanation: A null or illegal text was coded for the
MNOTE message.

User Response: Correct the necessary message text. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

MNOTE0-008 12 -TEXT- :SYNTAX ERROR, TEXT
MUST BE IN QUOTES

Explanation: The MNOTE message was not enclosed
in quotes.

User Response: Enclose the message text in quotes. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

MNOTE0-009 12 -TEXT- :SYNTAX ERROR, END
QUOTE IS MISSING

Explanation: The MNOTE message was not
terminated with a quote.

User Response: Enclose the message in quotes. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

MNOTE0-010 12 -TEXT- :SYNTAX ERROR,
IMPROPER ERROR NUMBER

Explanation: The MNOTE message is improper as
coded.

User Response: Refer to PEngiCCL Reference manual
for proper MNOTE syntax. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

PREGEN-001 12 VARNAME :VARIABLE SYMBOL
IS TOO LONG

Explanation: The variable name exceeded 12
characters.

User Response: Limit the variable name to a
maximum of 12 characters. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

PREGEN-002 12 -TEXT- :SUBSCRIPT EXPRESSION
EXCEEDS 256 CHARACTERS

Explanation: The subscript expression exceeded 256
characters. The -text- is the tail-end of the last data
examined.

User Response: Limit expression to a maximum of
256 characters. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

PREGEN-003 12 LABEL :INTERNAL MACRO
REFERENCE LABEL IS TOO LONG

Explanation: The internal macro reference label was
too long.

User Response: Limit the reference label symbol to a
maximum of 12 characters. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

PREGEN-004 12 LABEL :INVALID INTERNAL
MACRO REFERENCE LABEL

Explanation: An internal macro reference label was
coded without a directive. A directive could not be
located in the first 32 bytes following the internal label.

User Response: An internal macro reference label
must be followed by a valid assembler instruction or a
PEngiCCL directive. Furthermore, the
instruction/directive must be located within the first 32
bytes following the internal reference label. Correct
erroneous statement. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

PREGEN-005 12 LABEL :INTERNAL MACRO
REFERENCE REQUIRES A DIRECTIVE

Explanation: The directive following the internal
macro reference label was too long or invalid as
written.

User Response: Code the proper directive or
assembler instruction following the internal reference
label. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

PREGEN-006 12 -TEXT- :SET DIRECTIVE IS NOT
PRECEDED BY A VARIABLE

Explanation: A PEngiCCL set directive was coded, but
it was not preceded by a target variable symbol starting
in position 1.

User Response: Provide a target variable for the SET
directive. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

MNOTE0-005 12 • PREGEN-006 12

222 Migration Utility V1R1 User’s Guide and Reference

PREGEN-007 12 LABEL :ILLEGAL INTERNAL
MACRO REFERENCE LABEL

Explanation: The internal reference label was illegal as
written.

User Response: Code the internal reference label
according to PEngiCCL conventions. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

PREGEN-009 12 :ERROR, MACRO STATEMENT IS
MISSING

Explanation: The ″MACRO″ statement was missing. A
non-comment statement was encountered while
searching for the MACRO statement.

User Response: All PEngiCCL macros must contain a
MACRO statement before the prototype model
statements. Add a ″MACRO″ statement to the macro. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

PREGEN-010 12 -TEXT- :PREPROCESSOR
PROGRAM WAS IMPROPERLY
INSTALLED

Explanation: PEngiCCL was improperly installed. A
program used by the displayed DIRECTIVE was not
properly resolved by the link edit program.

User Response: Contact your PEngiCCL software
administrator.

PREGEN-011 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION FOR DIRECTIVE

Explanation: The variable coded starting in position 1
of the statement is not supported for this directive.
That is, the directive does not support coding
conventions of this type.

User Response: Remove the variable or correct the
erroneous statement as needed. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

PREGEN-012 04 MACNAME :MEND STATEMENT
IS MISSING, ASSUMED PRESENT

Explanation: The ″MEND″ statement is missing. The
end of macro input statements was reached but no
″MEND″ statement was located.

User Response: All PEngiCCL macros must contain an
MEND statement at the end of macro source. Add an
MEND statement as required. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

PREGEN-013 12 :MACRO PROTOTYPE MODEL
DEFINITION IS MISSING

Explanation: All statements following the ″MACRO″
statement are either comments or spaces, or no
statements exist following the ″MACRO″ statement.

User Response: A PEngiCCL macro requires at least a
MACRO, Prototype model and an MEND statement.
Change your macro to comply with the PEngiCCL
conventions. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

PREGEN-014 12 :V.S.M ERROR OR INSUFFICIENT
VIRTUAL STORAGE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA system increase the
REGION size on the EXEC statement, on VM/CMS
system increase the virtual storage of your CMS
machine.

PREGEN-016 12 LABEL :INTERNAL REFERENCE
LABEL IS ILLEGAL AS SPECIFIED

Explanation: The internal macro reference label is too
short.

User Response: The internal reference label must start
with a period (.) and contain 1 to 12 characters. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

PREGEN-017 12 LABEL :DUPLICATE INTERNAL
REFERENCE LABEL

Explanation: The internal reference label has been
previously declared.

User Response: Choose a unique name to avoid
duplicates. If the error occurred on a Migration Utility
macro, contact Migration Utility software support
center.

PREGEN-018 12 LABEL :MAXIMUM NUMBER OF
REFERENCE LABELS EXCEEDED

Explanation: The number of internal reference labels
exceeds the number of allocated slots. This is probably
a PEngiCCL logic error.

User Response: Contact PEngiCCL software support
center.

PREGEN-019 12 :INTERMEDIATE EXPRESSION IS
TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

PREGEN-007 12 • PREGEN-019 12

Chapter 11. Messages 223

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

PREGEN-020 12 :PREPROCESSOR PROGRAM 1 IS
NOT RESOLVED

Explanation: PEngiCCL was improperly installed. A
program used by the displayed DIRECTIVE, in the
statement before this message, was not properly
resolved by the link edit program.

User Response: Contact your PEngiCCL software
administrator.

PREGEN-021 12 :PREPROCESSOR PROGRAM 2 IS
NOT RESOLVED

Explanation: PEngiCCL was improperly installed. A
program used by the displayed DIRECTIVE, in the
statement before this message, was not properly
resolved by the link edit program.

User Response: Contact your PEngiCCL software
administrator.

PREGEN-022 12 :PREPROCESSOR PROGRAM 3 IS
NOT RESOLVED

Explanation: PEngiCCL was improperly installed. A
program used by the displayed DIRECTIVE, in the
statement before this message, was not properly
resolved by the link edit program.

User Response: Contact your PEngiCCL software
administrator.

PREGEN-023 12 :PREPROCESSOR PROGRAM 4 IS
NOT RESOLVED

Explanation: PEngiCCL was improperly installed. A
program used by the displayed DIRECTIVE, in the
statement before this message, was not properly
resolved by the link edit program.

User Response: Contact your PEngiCCL software
administrator.

PREGEN-024 12 VARNAME :ILLEGAL OR
UNDEFINED VARIABLE SYMBOL

Explanation: The VARNAME variable is undefined in
this macro.

User Response: Supply a correct variable that has
been defined in this macro. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

PREGEN-025 12 VARNAME :ILLEGAL USE OF
PROTOTYPE OR READONLY
VARIABLE

Explanation: A set directive was coded using a
read-only or a prototype model variable as the target.

User Response: The read-only and prototype model
variables cannot be altered. Correct your expression to
use a correct variable. If the error occurred on a
Migration Utility macro, contact Migration Utility
software support center.

PREGEN-026 12 VARNAME :VARIABLE IS
INCONSISTENTLY USED WITH ITS
DECLARATION

Explanation: A SET directive was attempted using the
VARNAME variable as the target; however, the
declared variable type was not consistent with the
attempted set directive. That is, a SETC was attempted
on a SETA or SETB variable type.

User Response: Use the SET directive which is
consistent with the declared variable type. If the error
occurred on a Migration Utility macro, contact
Migration Utility software support center.

PREGEN-027 12 VARNAME :ILLEGAL USE OF
SUBSCRIPT FOR NON-SUBSCRIPTED
VARIABLE

Explanation: A subscript was coded for the
VARNAME non-subscripted variable.

User Response: Correct the erroneous expression. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

PREGEN-028 12 VARNAME :VARIABLE REQUIRES
THE USE OF SUBSCRIPT

Explanation: A subscript was not been coded for the
VARNAME sublisted variable.

User Response: Code a subscript as required. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

PREGEN-029 12 : MEND WAS PROCESSED, THIS
LINE IS ILLEGAL

Explanation: The displayed statement was located in
the macro source after the MEND statement.

User Response: Place your MEND as the last entry of
macro source. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

PREGEN-020 12 • PREGEN-029 12

224 Migration Utility V1R1 User’s Guide and Reference

PREGEN-030 12 -TEXT- :VARQ= OPTION IS
INVALID

Explanation: The NN value in the VARQ=NN was
either not numeric, exceeded 10 digits or it exceeded
1024.

User Response: Correct the erroneous value. If the
error occurred on a Migration Utility macro, contact
Migration Utility software support center.

PREGEN-031 12 -TEXT- :MODE= OPTION IS
INVALID

Explanation: The MODE= options of MACRO
statement are invalid.

User Response: Refer to the PEngiCCL Reference
Manual for the allowed Macro Modes.

PREGEN-032 12 -TEXT- :UNBALANCED
TERMINATOR, MACRO
STMT=NNNNN

Explanation: ENDAIF or ENDADO is missing.

User Response: Each AIFINL and ADOWHL must be
paired with the respective terminator.

PREGEN-033 12 -TEXT- :NO TERMINATOR,
MACRO STMT=NNNNN

Explanation: ENDAIF or ENDADO is missing

User Response: Each AIFINL and ADOWHL must be
paired with the respective terminator.

READ00-001 12 VARNAME :VARIABLE IS NOT
DEFINED

Explanation: The displayed Varname is undefined.

User Response: Contact Migration Utility Software
Support Center.

READ00-002 12 -TEXT- :UNPAIRED OR IMPROPER
USE OF QUOTES

Explanation: A data string with no ending quote was
detected on the line displayed before the message.

User Response: Provide the end quote. Also see “Note
3” on page 143.

READ00-003 12 -TEXT- :RIGHT PAREN IS MISSING
IN BRACKETED STRING

Explanation: Unpaired brackets were detected in the
bracketed expression.

User Response: The displayed -TEXT- shows the
beginning of the bracketed expression. Provide
additional brackets as needed. Note that the bracketed
expressions can span over multiple input lines.

READ00-004 12 -TEXT- :IMPROPER TERMINATION
OF BRACKETED STRING

Explanation: Refer to the READ00-003 message.

READ00-005 12 -TEXT- :DATA ELEMENT IS TOO
LONG

Explanation: The data string is longer than the
maximum allowed by PEngiCCL (usually 256 bytes).

User Response: Reduce the data string in error.

READ00-006 12 -TEXT- :UNPAIRED PAREN OR
EXPRESSION IS TOO LONG

Explanation: The data string enclosed in parentheses
is too long or parentheses are not paired.

User Response: Reduce/correct the data string in
error.

READ00-007 12 VARNAME :VARIABLE BUFFER
LESS THAN MINIMUM REQUIRED

Explanation: The &SYSTOKEN system variable is not
properly defined.

User Response: Contact Migration Utility software
support center.

READ00-008 12 VARNAME :OVER 2046 WORDS IN
INPUT. CANNOT TOKENIZE.

Explanation: The input text contains more than 2046
data elements.

User Response: Reduce the number of data elements
in the input.

READ00-009 12 VARNAME :INPUT STRING
EXCEEDS SYSTOKEN SIZE

Explanation: The data contained in the Variable of
ACCL TOKEN directive exceeds 16,000 bytes

User Response: Reduce the variable contents to
maximum of 16,000 bytes.

READ00-010 12 MACNAME :FILE IS NOT OPENED
FOR READ

Explanation: An attempt was made to use the ACCL
READ directive before an ACCL OPEN.

User Response: Code an ACCL OPEN directive before
the ACCL READ.

PREGEN-030 12 • READ00-010 12

Chapter 11. Messages 225

READ00-011 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: Area before continuation column is not
spaces.

User Response: This can occur on improperly coded
bracketed expressions. i.e, an unpaired bracketed
expression on a single line causes the read of the next
statement/record that does not belong to the bracketed
expression. Also see “Note 3” on page 143.

READ00-012 12 :DATA STRING IS TOO LONG

Explanation: The input bracketed data string exceeds
the BUFSIZE= value in the COPTION statement

User Response: Increase BUFSIZE=NNNN value
(refer to INSTALLATION Manual). Also see “Note 3”
on page 143.

READ00-013 12 :EXPECTED CONTINUATION NOT
FOUND

Explanation: The last Easytrieve Plus line was coded
with a ’+’ or a ’-’ but here is no more input.

User Response: Correct the erroneous statement.

READ00-014 12 VARNAME :UNDECLARED
VARIABLE SYMBOL

Explanation: VARNAME variable was located in
Easytrieve Plus macro but there is no corresponding
declared variable on the MACRO statement.

User Response: Add the VARNAME to the macro
statement.

READ00-015 12 MACNAME :DUPLICATE
TEMPORARY MACRO NAME

Explanation: The macro name already exists (it was
previously processed)

User Response: Make sure that you code unique
macro names. Macros coded at the beginning of an
Easytrieve Plus program must be unique.

READ00-016 12 :MACRO NAME IS MISSING

Explanation: Easytrieve Plus macro statement
″MSTART″ was coded without the macro name.

User Response: Provide a valid macro name following
the MSTART statement.

READ00-017 12 :LENGTH OF MACRO NAME
EXCEEDS 12 CHARACTERS

Explanation: Easytrieve Plus macro name following
the ″MSTART″ is too long.

User Response: Provide a valid 1-12 characters macro
name.

READ00-018 12 : - TEXT -

Explanation: Error managing macro queue (most
probably short on memory).

User Response: This message was probably preceded
by a GETMAIN error. Try to increase REGION size on
your JOB statement. Please ignore the text part of this
message.

READ00-019 12 MACNAME :TEMPORARY MACRO
″MEND″ IS MISSING

Explanation: MEND was not located for the
temporary macro.

User Response: Code MEND as required.

READ00-020 12 -TEXT- :IMPROPER TERMINATION
OF STRING

Explanation: Expected space is not found following
the expression.

User Response: Check expression syntax.

REFLAB-001 12 -TEXT- :UNDEFINED INTERNAL
REFERENCE LABEL

Explanation: The displayed macro reference label is
undefined

User Response: Provide the label inside the macro.

REFLAB-002 12 -TEXT- :INTERNAL REFERENCE
LABEL LENGTH ERROR

Explanation: The reference label exceeds 12 characters.

User Response: Reduce the label size.

REPDIR-001 12 :PREPROCESSOR ERROR,
STX,TXT,SPC IS MISSING

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

REPDIR-007 12 :PREPROCESSOR ERROR,
ETX/SAE/SQE IS MISSING

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

READ00-011 12 • REPDIR-007 12

226 Migration Utility V1R1 User’s Guide and Reference

REPDIR-008 12 :INTERMEDIATE BUFFER
CAPACITY EXCEEDED

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

REPDIR-009 12 :PREPROCESSOR ERROR,
CHAIN/NUL ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

REPDIR-010 12 VARNAME
:INCONSISTENT/ILLEGAL
SUBSTRING USAGE (N,M)

Explanation: A subscript was coded for an attribute
N’ expression. The subscripts are allowed in the
attribute N’ expression, only for the &SYSLIST variable.

User Response: Code the expression to comply with
PEngiCCL coding conventions. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

REPDIR-011 12 VARNAME :SUBSCRIPT VALUE
EXCEEDS 32,767

Explanation: The computed subscript value exceeds
32,767.

User Response: Make sure that the subscript does not
result in a number greater than 32,767. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

REPDIR-012 12 VARNAME :SUBSCRIPT EXCEEDS
DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the
declared variable dimension.

User Response: Make sure that the subscript
expression does not result in a number greater than the
variable dimension. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

REPSQC-001 12 :PREPROCESSOR ERROR,
SQE/SQC IS MISSING

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

REPSQC-002 12 :PREPROCESSOR ERROR, SXE/EXC
IS MISSING

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

REPSQC-003 12 :PREPROCESSOR ERROR, SXE/SXC
IS MISSING

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

REPSQC-004 12 :ILLEGAL SUBSTRING
DISPLACEMENT (MUST BE > 0)

Explanation: The computed displacement X of
substring expression (X,Y) is less than 1 or negative.

User Response: Make sure that the substring
expression results in a substring displacement position
greater than zero. If the error occurred on a Migration
Utility macro, see “Note 2” on page 143.

REPSQC-005 12 :SUBSTRING DISPLACEMENT
EXCEEDS THE STRING LENGTH

Explanation: The computed displacement X of
substring expression (X,Y) is greater than the string
length.

User Response: Make sure that the substring
expression results in a substring displacement within
the range of the string size. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

REPSQC-007 12 :PREPROCESSOR ERROR,
EQE/SQE IS MISSING

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

REPSQC-008 12 :INTERMEDIATE EXPRESSION IS
TOO LONG

Explanation: The work buffer cannot accommodate
the expression in the preprocessed format.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

REPDIR-008 12 • REPSQC-008 12

Chapter 11. Messages 227

REPSQC-009 12 :PREPROCESSOR ERROR,
CHAIN/NUL ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

REPSQC-010 12 VARNAME
:INCONSISTENT/ILLEGAL
SUBSTRING USAGE (N,M)

Explanation: A subscript has been coded for an
attribute N’ expression. The subscripts are allowed in
the attribute N’ expression, only for the &SYSLIST
variable.

User Response: Code the expression to comply with
PEngiCCL coding conventions. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

REPSQC-011 12 VARNAME :SUBSCRIPT VALUE
EXCEEDS 32,767

Explanation: The computed subscript value exceeds
32,767.

User Response: Make sure that the subscript does not
result in a number greater than 32,767. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

REPSQC-012 12 VARNAME :SUBSCRIPT EXCEEDS
DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the
declared variable dimension.

User Response: Make sure that the subscript
expression does not result in a number greater than the
variable dimension. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

SETA00-001 12 :PREPROCESSOR LOGIC ERROR,
HCPSAE IS MISSING

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETA00-002 12 :PREPROCESSOR LOGIC ERROR,
HCPEAE IS MISSING

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETA00-003 12 :PREPROCESSOR LOGIC ERROR,
BAD SAC..EAC CHAIN

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETA00-004 12 :ILLEGAL/INCONSISTENT MATH
OPERATIONS

Explanation: Two high order math operations (* OR /)
were coded in succession. Or a variable between these
operation codes contained a null value.

User Response: Correct the erroneous expression. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

SETA00-005 12 :INCOMPLETE/INCONSISTENT
EXPRESSION

Explanation: The math expression is illegally
terminated with a math operation symbol. This can be
caused by a null value in the last variable within the
expression.

User Response: Correct the erroneous expression. If
the error occurred on a Migration Utility macro, contact
Migration Utility software support center.

SETA00-006 12 :ILLEGAL FORM OF EXPRESSION

Explanation: Two data fields are detected in
succession. This would indicate a problem with
PEngiCCL preprocessor logic.

User Response: Contact PEngiCCL software support
center.

SETA00-007 12 :PREPROCESSOR LOGIC ERROR,
CHAIN/NUL ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETA00-009 12 VARNAME :NON-NUMERIC ENTRY
USED IN ARITHMETIC

Explanation: The VARNAME variable does not
contain numeric data.

User Response: Before you use a SETC symbol in an
arithmetic expression, make sure that the data it
contains is numeric. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

REPSQC-009 12 • SETA00-009 12

228 Migration Utility V1R1 User’s Guide and Reference

SETA00-010 12 VARNAME :PREPROCESSOR
LOGIC ERROR, ILLEGAL HEX VALUE

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETA00-011 12 VARNAME
:INCONSISTENT/ILLEGAL
SUBSTRING USAGE (N,M)

Explanation: A subscript has been coded for an
attribute N’ expression. The subscripts are allowed in
the attribute N’ expression only for the &SYSLIST
variable.

User Response: Code the expression to comply with
PEngiCCL coding conventions. If the error occurred on
a Migration Utility macro, contact Migration Utility
software support center.

SETA00-012 12 VARNAME :PREPROCESSOR
ERROR, SUBSCRIPT/CHAIN/NUL
ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETA00-013 12 VARNAME :SUBSCRIPT VALUE
EXCEEDS 32,767

Explanation: The computed subscript value exceeds
32,767.

User Response: Make sure that the subscript does not
result in a number greater than 32,767. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

SETA00-014 12 VARNAME :SUBSCRIPT EXCEEDS
DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the
declared variable dimension.

User Response: Make sure that the subscript
expression does not result in a number greater than the
variable dimension. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

SETA00-015 12 :INTERMEDIATE ARITHMETIC
VALUE EXCEEDS MAXIMUM

Explanation: A numeric overflow resulted while
trying to carry out an arithmetic operation in
expression. Note that in the intermediate operations,
the high order (* or /) operations internal product or
quotient can be up to 15 significant digits, and the low

order (+ or -) operations internal sum or difference can
be up to 31 digits. The final outcome of each individual
expression cannot exceed 2147483647.

User Response: Make sure that the operands in math
operations are not used improperly by validating each
operand before it is used in an arithmetic operation. If
the error occurred on a Migration Utility macro, see
“Note 2” on page 143.

SETA00-016 12 :DIVISOR IS ZERO, CANNOT
DIVIDE BY ZERO

Explanation: The computed divisor is zero.

User Response: Make sure that the operands in math
operations are not used improperly by validating each
operand before it is used in an arithmetic operation. If
the error occurred on a Migration Utility macro, see
“Note 2” on page 143.

SETA00-017 12 :MAXIMUM OF 64
TERMS/EXPRESSIONS EXCEEDED

Explanation: The maximum number of bracketed
expressions that can be supported by PEngiCCL has
been exceeded.

User Response: Your are limited to the maximum of
64 bracketed expressions in a single conditional request.
Limit the number of bracketed expressions to the
maximum of 64. If the error occurred on a Migration
Utility macro, contact Migration Utility software
support center.

SETA00-018 12 VARNAME :VARIABLE USED IN
ARITHMETIC HAS A NULL STRING

Explanation: The VARNAME used in arithmetic
expression contains no data.

User Response: Make sure that the operands in math
operations are not used improperly by validating each
operand before it is used in an arithmetic expression. If
the error occurred on a Migration Utility macro, see
“Note 2” on page 143.

SETA01-001 12 MACNAME :PREPROCESSOR
PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETA01-002 12 VARNAME :SUBSCRIPT EXCEEDS
DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the
declared variable dimension.

User Response: Make sure that the subscript

SETA00-010 12 • SETA01-002 12

Chapter 11. Messages 229

expression does not result in a number greater than the
variable dimension. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

SETB00-001 12 MACNAME :PREPROCESSOR
PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETB00-002 12 VARNAME :SUBSCRIPT EXCEEDS
VARIABLE DIMENSION

Explanation: The computed subscript exceeds the
declared variable dimension.

User Response: Make sure that the subscript
expression does not result in a number greater than the
variable dimension. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

SETB00-003 -TEXT- :VALUE IS NOT A BOOLEAN 0
OR 1

Explanation: The SETB value is not a valid Boolean.

User Response: Make sure that you use a valid
Boolean in SETB directive.

SETCPY-001 12 :COPY DIRECTIVE BUT NO
MEMBER SPECIFIED

Explanation: An FSCOPY directive was coded without
a copy member name.

User Response: Specify the member name to be
copied following the FSCOPY directive.

SETCPY-002 12 COPYNAME :IMPROPER
SPECIFICATION OF MEMBER NAME

Explanation: An FSCOPY directive was coded without
a copy member name.

User Response: Specify the member name to be
copied following the FSCOPY directive.

SETCPY-003 12 COPYNAME :COPY MEMBER
NAME IS TOO LONG

Explanation: The FSCOPY member name exceeds 12
characters.

User Response: Code the correct FSCOPY member
name. Note: Because of the PDS and CMS member
naming conventions, the copy name can be up to 8
characters long on MVS/XA and VM/CMS operating
systems.

SETCPY-005 12 -TEXT- :ILLEGAL VALUE IN CC 7

Explanation: The character in position seven is not a
″*″, ″/″, ″-″ or a space.

User Response: Remove the invalid character.

SETCPY-006 12 -TEXT- :EXTRANEOUS DATA IN
COPY STATEMENT

Explanation: The FSCOPY statement contains
extraneous data following the copy member name.

User Response: Remove the unnecessary extraneous
data from the statement.

SETCPY-007 12 -TEXT- :SPECIAL COPY IS ILLEGAL
INSIDE MACRO DEFINITION

Explanation: The special ″FSCOPY member (ASM)″
FSCOPY expression was coded inside a macro.

User Response: The special FSCOPY for CICS macro
support is not allowed inside macros. Remove it.

SETC00-001 12 MACNAME :PREPROCESSOR
PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETC00-002 12 VARNAME :SUBSCRIPT EXCEEDS
DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the
declared variable dimension.

User Response: Make sure that the subscript
expression does not result in a number greater than the
variable dimension. If the error occurred on a
Migration Utility macro, see “Note 2” on page 143.

SETC00-003 12 VARNAME :DATA STRING
EXCEEDS MAXIMUM VARIABLE SIZE

Explanation: The data string is longer than the
variable size.

User Response: Limit the data string to the variable
size. If the error occurred on a Migration Utility macro,
see “Note 2” on page 143.

SETW00-001 12 MACNAME :NO DATA IN INPUT

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETB00-001 12 • SETW00-001 12

230 Migration Utility V1R1 User’s Guide and Reference

SETW00-002 12 MACNAME :INPUT STRING IS
TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. Increase the
buffer size by coding the BUFSIZE=NNN in the
PEngiCCL COPTION parameters. See “Note 3” on
page 143.

SETW00-003 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation, therefore,
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72. Also see “Note 3” on page 143.

SETW00-004 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error. Also see “Note 3” on page 143.

SETW01-001 12 :REQUIRED STRING NOT IN
QUOTES

Explanation: The data string in the statement
displayed before this message does not start with a
quote.

User Response: Enclose the data string in quotes as
required.

SETW01-003 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message. Also see “Note 3” on page 143.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW01-004 12 -TEXT- :UNPAIRED QUOTES IN
QUOTED STRING

Explanation: An uneven number of quotes has been
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote. Also see “Note 3” on page 143.

SETW01-005 12 :UNPAIRED QUOTES, NO
CONTINUATION

Explanation: The end of data string which starts with
a quote was reached before the end quote could be
located.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote. Also see “Note 3” on page 143.

SETW01-006 12 :UNPAIRED QUOTES IN QUOTED
STRING

Explanation: An uneven number of quotes has been
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

SETW01-007 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message. Also see “Note 3” on page 143.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW01-008 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message. Also see “Note 3” on page 143.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW01-009 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation, therefore,
continuation statements are expected.

User Response: Add the necessary continuation

SETW00-002 12 • SETW01-009 12

Chapter 11. Messages 231

statements or remove the non-blank character from
position 72. Also see “Note 3” on page 143.

SETW01-010 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW02-001 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW02-002 12 -TEXT- :END QUOTE MISSING

Explanation: The end of data string which starts with
a quote was reached before the end quote could be
located.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

SETW02-003 12 :UNPAIRED QUOTES, BUT NO
CONTINUATION

Explanation: The end of data string which starts with
a quote was reached before the end quote could be
located.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

SETW02-004 12 :UNPAIRED QUOTES IN INPUT
STRING

Explanation: An uneven number of quotes has been
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

SETW02-005 12 :INPUT STRING IS TOO LONG
SETW02-006 12 :INPUT STRING IS
TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW02-007 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW02-008 12 -TEXT- :NON BLANK DATA
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW02-009 12 :DIRECTIVE EXPRESSION IS
MISSING

Explanation: A directive was coded without the
necessary expression.

User Response: Code the necessary expression as
required by the directive.

SETW02-011 12 :UNPAIRED PARENS IN INPUT
STRING

Explanation: The number of left parentheses is not
equal to the number of right parentheses in the
expression, which are not a part of a quoted string. The
-TEXT- is the tail-end of the last data examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

SETW01-010 12 • SETW02-011 12

232 Migration Utility V1R1 User’s Guide and Reference

SETW02-012 12 -TEXT- :EXPRESSION MUST BE
ENCLOSED IN PARENS

Explanation: The data string following the directive is
not enclosed in parentheses.

User Response: Enclose expression in parentheses as
required.

SETW02-013 12 -TEXT- :ILLEGAL TERMINATION
OF SETB EXPRESSION

Explanation: The SETB expression is illegally
terminated. A non-blank was coded following the last
bracket of expression.

User Response: Remove the extraneous characters.

SETW02-014 12 -TEXT- :UNPAIRED PARENS OR
ILLEGAL TERMINATION OF STRING

Explanation: The number of left parentheses is not
equal to the number of right parentheses in the
expression, which are not a part of a quoted string. The
-TEXT- is the tail-end of the last data examined.

User Response: Make sure that you have an even
number of left and right parentheses. If the error
occurred on a Migration Utility macro, see “Note 2” on
page 143.

SETW02-015 12 -TEXT- :EXPRESSION EXCEEDS
MAXIMUM ALLOWABLE SIZE

Explanation: The target macro reference label
expression exceeds 256 characters.

User Response: Limit your expression to maximum of
256 characters.

SETW02-017 12 -TEXT- :ILLEGAL TARGET
REFERENCE LABEL

Explanation: The target macro reference label
expression is too short.

User Response: Limit your expression to maximum of
2 characters.

SETW02-018 12 -TEXT- :ILLEGAL FORM OF
EXPRESSION FOR SETB DIRECTIVE

Explanation: The expression following the SETB
directive is not enclosed in parentheses, or it is not a
valid Boolean variable (which is either 0 or 1).

User Response: The SETB directive requires that an
explicit non-boolean expression be enclosed in
parentheses. Correct it as required.

SETW03-001 12 :FS-PEngiCCL LOGIC ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETW03-002 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW03-003 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW03-004 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW04-001 12 -TEXT- :FS-PEngiCCL LOGIC
ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETW04-002 12 -TEXT- :ILLEGAL OPCODE OR
ILLEGAL EXPRESSION

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETW02-012 12 • SETW04-002 12

Chapter 11. Messages 233

SETW04-004 12 -TEXT- :REQUIRED DATA IS NOT
LOCATED

Explanation: The macro has been illegally placed near
position 72.

User Response: Code the macro instruction within the
first 32 positions following the macro label if any.

SETW04-005 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW04-006 12 :UNPAIRED QUOTES IN
EXPRESSION

Explanation: An uneven number of quotes was
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

SETW04-007 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW04-008 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW04-009 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW04-010 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW05-001 12 -TEXT- :PREPROCESSOR LOGIC
ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETW05-005 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message. Also see “Note 3” on page 143.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW05-006 12 :UNPAIRED QUOTES IN
EXPRESSION

Explanation: an uneven number of quotes was
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote. Also see “Note 3” on page 143.

SETW05-007 12 -TEXT- :INCOMPLETE
CONTINUATION LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72. Also see “Note 3” on page 143.

SETW04-004 12 • SETW05-007 12

234 Migration Utility V1R1 User’s Guide and Reference

SETW05-008 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error. Also see “Note 3” on page 143.

SETW05-009 12 -TEXT- :INCOMPLETE
CONTINUATION LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72. Also see “Note 3” on page 143.

SETW05-010 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error. Also see “Note 3” on page 143.

SETW05-012 12 -TEXT- :ILLEGAL VALUE IN CC 7

Explanation: The character in position seven is not a
″*″, ″/″, ″-″ or a space.

User Response: Remove the invalid character.

SETW05-013 12 :EXPECTING CONTINUATION IN
CC 72

Explanation: A comma was detected following the last
data string in the macro prototype model, but the
continuation position 72 does not contain a non-blank
character. This error occurs only when IBM macro
conventions are being used. That is, for macros that do
not start with a macro delimiter.

User Response: Code a non-blank in position 72 to
indicate continuation.

SETW06-001 12 :SYNTAX ERROR, MNOTE
REQUIRES CONDITION CODE

Explanation: An MNOTE directive was coded without
the message.

User Response: Code a condition code and a message
enclosed in quotes following the directive.

SETW06-003 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW06-004 12 -TEXT- :REQUIRED STRING IS
NOT IN QUOTES

Explanation: The data string in the statement
displayed before this message does not start with a
quote.

User Response: Enclose the data string in quotes as
required.

SETW06-005 12 :UNPAIRED QUOTES, NO
CONTINUATION

Explanation: The end of data string which starts with
a quote was reached before the end quote could be
located.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

SETW06-006 12 :UNPAIRED QUOTES IN QUOTED
STRING

Explanation: An uneven number of quotes was
detected in a data string which started with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

SETW06-007 12 :INPUT STRING IS TOO LONG
SETW06-008 12 :INPUT STRING IS
TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW05-008 12 • SETW06-007 12

Chapter 11. Messages 235

SETW06-009 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW06-010 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW07-001 12 MACNAME :NO DATA IN INPUT

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETW07-002 12 MACNAME :EXCEEDS BUFFER
CAPACITY

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW07-003 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW07-004 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW08-001 12 :NO DATA IN INPUT

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETW08-002 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW08-003 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW08-004 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW09-001 12 -TEXT- :IMPROPER VARIABLE
SYMBOL IN PROTOTYPE NAME

Explanation: The macro label variable symbol did not
start with a “&” or it is too long.

SETW06-009 12 • SETW09-001 12

236 Migration Utility V1R1 User’s Guide and Reference

User Response: Correct the variable symbol as
required.

SETW09-002 12 -TEXT- :FS-PEngiCCL LOGIC
ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

SETW09-004 12 -TEXT- :MACRO NAME IS TOO
LONG

Explanation: The macro name exceeds 12 characters.

User Response: Code the correct macro name. Note
that the macro name can be up to 8 characters long on
MVS/XA and VM/CMS operating systems, because of
the PDS and CMS member naming conventions.
However, temporary macro names can be up to 12
characters long.

SETW09-005 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW09-006 12 :UNPAIRED QUOTES IN
EXPRESSION

Explanation: An uneven number of quotes was
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

SETW09-007 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW09-008 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW09-009 12 :INCOMPLETE CONTINUATION
LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements in input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW09-010 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW09-011 12 :UNEXPECTED CONTINUATION
IN CC72

Explanation: A blank was detected following the last
data string in the macro prototype model, but the
continuation position 72 contained a non-blank
character. This error can be caused by an erroneous
character in position 72 due to overlapping comments.

User Response: The macro prototype model coding
standards require that a comma (,) is placed after the
last data string on each line whenever continuation
lines follow. The comma must not be placed on the last
line. Correct the statement as required.

SETW10-004 12 -TEXT- :UNKNOWN ACCL
FUNCTION

Explanation: The supported function is not supported
by ACCL directive.

User Response: None. Use the correct function.

SETW09-002 12 • SETW10-004 12

Chapter 11. Messages 237

SETW10-005 12 -TEXT- :INPUT STRING IS TOO
LONG

Explanation: The work buffer cannot accommodate
the input data string. The string in error is displayed
before the message.

User Response: The default work buffer size is
generated at PEngiCCL installation time. You can
increase the buffer size by coding the BUFSIZE=NNN
in the PEngiCCL COPTION parameters.

SETW10-006 12 -TEXT- :UNPAIRED QUOTES IN
EXPRESSION

Explanation: An uneven number of quotes was
detected in a data string which starts with a quote.

User Response: A data string which is enclosed in
quotes must contain an even number of quotes. Add
the necessary quote.

SETW10-007 12 -TEXT- :INCOMPLETE
CONTINUATION LINE

Explanation: A non-blank character was found in
position 72 of the last statement, but there were no
more statements to input. A non-blank character in
position 72 denotes continuation and therefore
continuation statements are expected.

User Response: Add the necessary continuation
statements or remove the non-blank character from
position 72.

SETW10-008 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of
the previous statement, implying continuation, but data
was located before continuation column 16 of this
statement.

User Response: All continuation lines inside
PEngiCCL macros must start in position 16. Correct the
statement in error.

SETW10-009 12 -TEXT- :INCOMPLETE
CONTINUATION LINE

Explanation: The same as the message SETW10-007.

SETW10-010 12 -TEXT- :NON-BLANK FOUND
BEFORE CONTINUATION COLUMN

Explanation: The same as the message SETW10-008.

SRTMOD-001 12 MACNAME :FSBUSORT ERROR
SORTING REFERENCE LABELS

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

VSMF00-001 12 INPUT STRING IS TOO LONG

Explanation: Input string exceeds 2048 characters.
This can be caused by unpaired quotes or parentheses.

User Response: Correct the problem.

VSMF00-002 12 UNPAIRED PARENS/QUOTES
(CHECK CC 72)

Explanation: Unpaired parens or quotes in the user
parameters.

User Response: Make sure that you have paired
parentheses or quotes.

VSMF00-003 12 TOO MANY FUNCTION
PARAMETERS

Explanation: Inline function number of user
parameters exceeds that allowed by the function model.

User Response: Code the correct number of
parameters.

VSMF00-004 12 KEYWORD PARAMETERS ARE
NOT ALLOWED

Explanation: A keyword parameter was coded in the
function parameters.

User Response: Keywords are not allowed in the
function parameter list. Remove it.

VSMF00-005 12 EXTRANEOUS DATA AFTER
BRACKETED STRING

Explanation: The character past the last paired
parenthesis is not a right parenthesis, a space, a comma
or a period.

User Response: Remove extraneous character.

VSMF00-006 12 EXTRANEOUS DATA AFTER
QUOTED STRING

Explanation: The character post last paired quote is
not a right parenthesis, a left parenthesis, a space or a
comma.

User Response: Remove extraneous character.

SETW10-005 12 • VSMF00-006 12

238 Migration Utility V1R1 User’s Guide and Reference

VSMF00-007 12 END QUOTE IS MISSING IN
QUOTED STRING

Explanation: COBOL continuation line was detected
but the continued line does not start with a quote.

User Response: Place end quote where it belongs.

VSMF00-008 12 RESULTING FUNCTION NAME IS
TOO LONG

Explanation: Derived function paragraph name is
more than 30 characters long.

User Response: For each function, Migration Utility
generates a COBOL paragraph name under which it
expands COBOL logic associated with the function.
Subsequently, the generated paragraph is performed
whenever such function is encountered in the COBOL
source.

Local function paragraph name is composed of the
function name, and a 6 digit sequence number. For
example SEL_READ-FILE (..): function paragraph
name would be F00000-READ-FILE:. Thus the function
name can be maximum 23 characters.

CON_OBJECT (&OBJECT &OPTION) and SEL_OBJECT
(&OBJECT &OPTION) function paragraph name is
composed of the function type, the object name, and
the option, preceded by the sequence number.

For example SEL_OBJECT (FILEIN1 READ): function
paragraph name would be F00000-SEL-FILEIN1-READ:.
Thus the object name plus the option can be maximum
of 19 characters (including the dash).

VSM000-001 00 MEMBER :PROGRAM ERROR,
FSVSMADD FOR EXISTING MEMBER

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

VSM000-002 00 MEMBER :INSUFFICIENT
VIRTUAL STORAGE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA system increase the
REGION size on the EXEC statement, on VM/CMS
system increase the virtual storage of your CMS
machine.

VSM000-003 00 MEMBER :PROGRAM ERROR,
FSVSMDSA FOR NON EXISTING
MEMBER

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

VSM000-004 00 MEMBER :INSUFFICIENT
VIRTUAL STORAGE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA system increase the
REGION size on the EXEC statement, on VM/CMS
system increase the virtual storage of your CMS
machine.

VSM000-005 00 MEMBER :MEMBER NOT
LOCATED, FSVSMLOC CALL

Explanation: A request to locate a member in the
virtual storage manager pool resulted in ″Not Found″
condition. This message is for the internal PEngiCCL
use only.

User Response: NONE

VSM000-006 00 MEMBER :PROGRAM ERROR, NO
C/B CHAIN POINTERS

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

VSM000-007 00 MEMBER :INSUFFICIENT
VIRTUAL STORAGE

Explanation: PEngiCCL preprocessor ran out of
virtual storage.

User Response: On MVS/XA system increase the
REGION size on the EXEC statement, on VM/CMS
system

VSM000-008 00 MEMBER :PROGRAM ERROR, NO
C/B CHAIN POINTERS

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

VSM000-009 00 MEMBER :DATA EXCEEDS V.S.M.
BUFFER CAPACITY

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

VSMF00-007 12 • VSM000-009 00

Chapter 11. Messages 239

VSM001-001 00 MEMBER :MEMBER NOT
LOCATED, FSVSMLOC CALL

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

VSM001-002 00 MEMBER :PROGRAM ERROR, NO
C/B CHAIN POINTERS

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

VSM001-003 00 MEMBER :PROGRAM ERROR,
FREEMAIN/FREEVIS ERROR

Explanation: An internal PEngiCCL Macro
Preprocessor logic error.

User Response: Contact PEngiCCL software support
center.

Runtime I/O error messages

FSY001E message text

Explanation: This message is issued by Migration
Utility when:

v A serious error is detected while loading Migration
Utility macros byte code.

In general, this indicates a corrupt SYS1.SFSYFJCC
library pointed to by the FJCCLLB DDname. Make
sure that your library has not been corrupted and
that you are pointing to the correct byte code PDS.

v A serious error is detected in sub-modules while
simulating logical operations during application run
time. This is a user error.

User Response: The message text printed is
self-explanatory.

FSY001I message text

Explanation: This is an informational message, usually
printed after an E-level message is encountered.

FSY002E &MODNAME: message text

Explanation: This message is issued by Migration
Utility whenever a serious error is detected in the
dynamic I/O modules during the application run time.

User Response: The message text printed is
self-explanatory.

Many unrecoverable I/O error conditions are intercepted by IBM standard I/O error routines. Always
check console for messages not included in this manual.

VSAM I/O error supplemental RPL information
When running in dynamic mode, Migration Utility runtime VSAM I/O modules
return COBOL-compliant STATUS-CODE to the application program, along with
the RPL information as saved at the time of error.

When an application program abnormally terminates via the FSABECOB program,
the RPL information is displayed on SYSOUT and FJSYABE files as a supplement
to the STATUS-CODE error as follows:
FSDYNKSO: VSAM ERROR: &DNAME,&FUNCTION,RPLRTNCD=NN,RPLERRCD=NN,RPLCMPON=NN,
RPLFUNCD=NN

The displayed codes RPLRTNCD, RPLERRCD, and RPLCMPON are the values
found in the RPL. These meaning of these codes can be found in the VTAM/VSAM
Messages and Codes manual.

VSM001-001 00 • FSY002E

240 Migration Utility V1R1 User’s Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

© Copyright IBM Corp. 2002, 2003 241

PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

CICS
DB2
IBM
MVS
MVS/ESA

MVS/XA
OS/390
S/390
SQL/DS
z/OS

Other company, product, and service names may be trademarks or service marks
of others.

Notices

242 Migration Utility V1R1 User’s Guide and Reference

Index

Special characters
%COBOL statement

embedding COBOL code 77
supporting DL1 and IDMS files 9

%END statement
terminating embedded COBOL

code 77
%PUNCH 99
&FILE:KEY 66

A
ACROSS

number of labels printed across
page 70

ADD WRITE option 47
ADJUST installation option 111
AFTER-BREAK report exit 76
AFTER-LINE report line exit 76
ALL numeric display field method 116
ALL print control method 69
ambiguous field position 12
appending to reserved words 113
arguments, from a single parsed

string 116
ASA file attribute 25
ASC sort order for SQL SELECT

statement 95
ASSIGN statement, support for COBOL

and PEngi functions 79
assigning hex values 14
assignment statement 42
automatic retrieval without a file 83, 89
automatic SQL cursor management 83

B
BAL supplied modules 104
binary fields

handling 14
maximum value 34

bind option 117
BIND SQL/DB2 bind option 117
bit testing in IF statement 59
block size 31
bracketed expression

maximum string size 116
BREAK report field 66
BREAK-LEVEL report field 66
BUFNO file attribute 25
BUFSIZE COPTION parameter 106
BWZ keyword 33

C
CAF (Call Attachment Facility)

description 109
CAFOWNR keyword 113
CAFPLAN keyword 113

Call Attachment Facility (CAF)
default DB2 table creator/owner 113
default plan name 113
description 109

CALL statement 53
calling subprograms 15
CARD file organization 25
CASE statements 56
CBLCNVRT macro 99
CCL1 preprocessor options 106
CLOSE SQL statement 90
CLOSE statement 91
closing a file 91
COBOL

COPY generated 114
copybook option 113
copybooks bad character

replacement 114
generating COPY statements 102
native support 77
preventing compiler errors 113
selecting type of COBOL 113
supplied modules 104

COBOL keyword 113
COBOL status codes 17
COBOL syntax rules 27
COBOL-VS compatibility 15
COBOLCOPY option 101
COBOLII/S390 compatibility 15
COBVERBS keyword 113
COMMIT SQL statement 90
communication area 86
compatibility check 9
conditional expressions 58
CONNECT SQL statement 90
CONTROL statement 72
controlled statements 87
COPTION parameters 106
COPY statement 35
COPYBOOK keyword 104, 113, 114
copybook names

maximum number 117
copybook option 113
COPYCHAR keyword 114
COPYNTAB keyword 114
COPYNTAB option 104
COPYVERB keyword 114
COPYWRAP keyword 115
CURRENCY keyword 115

D
data types

SQL 85
DATEABE keyword 115
DB2

bind option 117
DBCS character support 9
DBSCODE file attribute 25
DDFNAME keyword 115
DDname considerations 22

DDnames
summary 105

DEBUG switch 4
DECIMAL keyword 115
decimal point defined 115
DECLARE SQL statement 90
DECLGEN keyword 115
default options

REPORT 111
defining records 32
defining sequential files 30
defining tables 27
defining unit record devices 30
defining VSAM files 26
defining working storage 32
DELETE SQL statement 90
DELETE statement 91
DELETE WRITE option 47
deleting a row 91
DESC sort order for SQL SELECT

statement 95
device 30
DISK file organization 25
DISPLAY statement 51
displaying paragraph names 4
DLI file organization 25
DO statements 56
DOWHILE keyword 115
DOWN

number of print lines for label 70
DTLCOPY

minor level total report detail 69
DTLCOPYALL

detail level information on control
breaks 69

DTLCTL
printing method of control fields on

detail lines 69
duplicate fields usage 22
DUPLICATE test 41
DYNAM COBOL compile option 105
DYNAM I/O mode option 116

E
Easytrieve file defined as an SQL file 83
Easytrieve macros 96
Easytrieve Plus

SQL files 86
Easytrieve program

statement order 5
structure 5

Easytrieve punctuation rules 6
Easytrieve status codes 17
ELSE statements 57
embedding COBOL code 77
embedding options in source 119
END-CASE statements 56
END-DO statements 56
END-IF statements 57
END-PROC statements 62

© Copyright IBM Corp. 2002, 2003 243

ENDCOL keyword 115
EOF processing

SQL 86
ERRLIMT COPTION parameter 106
errors

COB2 step 4
ETBROWS keyword 115
EVEN keyword 33
EXTENDED file attribute 25
extended printer support 11
external tables

default number of rows 115
record length 18

EZTCNVRT macro 101
EZTCOB proc 3
EZTLKG proc 3
EZTPA00 program loader 110

F
F file record format 25
FB file record format 25
FETCH SQL statement 90
FETCH statement 92
field headings 14
field naming conventions 12
fields

group fields for SQL/DBS usage 19
Index and OCCURS 12
maximum number in Report

Heading 116
maximum number of definitions 115
maximum number of SQL fields 117
maximum number of Title fields in a

report 116
maximum number on report 117
OCCURS fields for SQL/DB2

usage 20
overlapping on report lines 19
packed unsigned 21
prefix for SQL files 117
processing SQL nullable 85
reducing names to 16 characters 118
replacing ambiguous names 119
sign for numeric 15, 115
SQL Communication Area 86
SQL system-defined 85
storing reduced length names 115
system-defined 64
translate table for special characters in

names 117
FIELDS keyword 115
file

automatic SQL retrieval without a
file 89

closing SQL 91
opening an SQL file 94

file attributes
non-supported 25
supported 25

file existence 41
file organization support 9
file organizations

non-supported 25
supported 25

file processing
synchronized 38

file records
initializing 116

FILE-STATUS codes 17
files

defining 25
Easytrieve Plus SQL 86
generating copy statements 113
I/O error 116
I/O mode 116
maximum number of supported 115

FILES keyword 115
FIRST-DUP test 41
fixed-length records 9
FJBIND0 system file 105
FJCCLLB system file 105
FJCPYLB system file 105
FJMACLB system file 105
FJNAMES system file 106
FJSYS01 system file 106
FJSYSER translator error file 106
FJSYSIN system file 105
FJSYSJC system file 105
FJSYSP0 system file 106
FJSYSPH system file 105
FJSYSPW system file 105
FONT# keyword 33
format notation

description v
FSIGN keyword 115

G
generating COBOL COPY 114
generating COBOL COPY

statements 102
generating copy statements 113
generating SQL INCLUDE

information 115
generating unique I/O error return

code 116
GET statement 47
GOTO statement 54
group fields for SQL/DB2 usage 19

H
HEADERS keyword 116
heading literal

maximum length 73
HEADING statement 73
HEX keyword 33
HFIELDS keyword 116
HIAR print control method 69

I
I/O operation

on WRITE statement 47
IDMS file organization 25
IF statements 57

in synchronization 41
maximum indentation 116
maximum number of arguments 116
maximum number of nested 117

INARGS keyword 116
INCLUDE facility 84

INDENT keyword 116
indentation 116
index entries

maximum number for OCCURS 116
index usage 11
INDEXED file organization 25
INDEXS keyword 116
initializing file records 116
input arguments, from a single parsed

string 116
input source

end column 115
INSERT SQL statement 90
INSERT statement 94
inserting a row 94
installing Migration Utility 109
installing procedures 3
invoking macros 97
IOCODE keyword 116
IOERC keyword 116
IOMODE keyword 116
IS file organization 25

J
JCEIND00 proc 2
JCEZC390 proc 2
JCEZCOB1 proc 2
JCEZCOB2 proc 2
JCEZCOB3 proc 2
JCEZCOB4 proc 2
JCEZDB2A proc 2
JCEZDB2B proc 2
JCEZDB2R proc 2
JCEZE390 proc 2
JCEZG390 proc 3
JCEZL390 proc 3
JCL for converted program 18
JOB Activity Section 37

K
keywords

reserved 67

L
LABELS

mailing label printing 69
labels inside a DO and IF pair of

statements 17
LAST-DUP test 41
LEVEL report field 66
library section for SQL processing 84
license inquiry 241
LINE statement 75
LINE-COUNT report field 66
LINE-NUMBER report field 66
LINES COPTION parameter 107
LINES keyword 116
LIST COPTION parameter 107
listing Easytrieve macros 114

244 Migration Utility V1R1 User’s Guide and Reference

M
macros

invoking 97
maximum number of nests 116
maximum number of supported

parameters 117
mask identifier table 112
mask of numeric fields 21
MATCHED IF test 41
MAXARG keyword 116
MAXINDENT keyword 116
MAXPROC keyword 116
MAXSTR keyword 116
MEMINIT keyword 116
Migration Utility

files 104
installing 109
translator options 112

MNESTS keyword 116
MOVE LIKE statement 46
MOVE statement 16, 44
MPARMS keyword 117

N
NAMETAB keyword 117
native COBOL support 77
native SQL processing 89
native SQL statements 82
NCOPIES keyword 117
NESTS keyword 117
NEWPAGE

label top line force 70
NO numeric display field method 116
NOADJUST installation option 111
NODYNAM COBOL compile

option 105
NODYNAM I/O mode option 116
non-supported file attributes 25
non-supported file organizations 25
non-VSAM variable-length records 10
NONE print control method 69
notation

description v
numeric fields

mask 21
sign 15

O
objects

maximum number for
COBOLBAS 117

OBJECTS keyword 117
OCCURS

maximum number of index
entries 116

OCCURS 1 problem, solution 21
OCCURS fields for SQL/DB2 usage 20
OCCURS1 keyword 117
OPEN SQL statement 90
opening a file 94
options

embedding in source 119
OTHERWISE statements 56
OVERFLOW keyword 117

overlapping fields on report lines 19

P
packed unsigned fields 21
PAGE-COUNT report field 66
paragraph naming conventions 14
PARM statement parameters 83
PDS file organization 25
PERFORM statement 50
PGMNAME SQL/DB2 bind option 117
POINT statement 49
PRINT statement 62
PRINTER file organization 25
PROC paragraphs

maximum 116
PROC statements 62
procedures

installing 3
processing SQL nullable fields 85
procs

described 2
program

loader, EZTPA00 110
maximum number of copy book

names 117
programs

embedding options in 119
PUNCH file organization 25
PUT SQL statement 90
PUT statement 46

R
railroad track format

how to read v
READ statement 48
record availability

during synchronization 39
record format 30
record length 30
records

defining 32
fixed-length 9
non-VSAM variable-length 10
variable-length (non-VSAM) 10
variable-length (VSAM) 10
VSAM variable-length 10

reducing field names to 16
characters 118

RELATIVE file organization 25
replacing ambiguous field names 119
replacing bad characters 114
replacing hard-coded layout 114
REPORT default options 111
report exits 76
Report Heading

maximum number of fields 116
REPORT statement 67
reports

maximum number of fields 117
maximum number of report lines 116
maximum number of Title fields 116

reserved keywords 67
reserved words

appending to 113

RESET keyword 33
RETAIN file attribute 25
RETRIEVE statement 63
Return Code 116
RFIELDS keyword 117
ROLLBACK SQL statement 90
rows

deleting from SQL file 91
fetching from SQL file 92
inserting into SQL file 94
updating an SQL file 94

runtime requirements 105

S
SBCS character support 9
SEARCH statement 50
SELECT statement 63, 94
SEQUENCE statement 71
SEQUENTIAL file organization 25
sequential files

defining 30
SET CURRENT SQLID statement 90
setting the currency sign 115
sign of numeric fields 15
SORT Activity Section 36
special characters

translate table for field names 117
SQL

automatic cursor management 83
automatic retrieval without a file 89
bind option 117
catalog INCLUDE facility 84
CLOSE statement 91
closing a file 91
Communication Area fields 86
controlled statements 87
data types 85
DELETE statement 91
deleting a row 91
Easytrieve Plus files 86
EOF processing 86
FETCH statement 92
fetching a row 92
file field prefix 117
INCLUDE generation 115
INCLUDE statement 92
INSERT statement 94
inserting a row 94
library section for processing 84
maximum number of fields 117
multiple tables 87
native processing 89
native statements supported 90
opening a file 94
SELECT statement 94
syntax checking 85
system-defined fields 85
UPDATE statement 94
updating a row 94
using DEFER with SELECT 87

SQL cursor
automatic management 83

SQL file organization 25
SQL INCLUDE statement 92
SQL statements

converting programs containing 5

Index 245

SQL statements (continued)
syntax rules 83

SQL/DB2
group fields 19
OCCURS fields 20

SQL/DB2 support 81
SQLCA 86
SQLFLDS keyword 117
SQLMODE keyword 117
SQLPFIX keyword 117
SSMODE keyword 117
stacked items vi
standard procs 2
STATUS codes 17
STOP statement 55
storing reduced length field names 115
string length

maximum in a heading 14
structure of Easytrieve programs 5
SUM statement 73
SUMCTL

printing method of control fields on
total lines 69

SUMMARY
print summary report 69

supported file attributes 25
supported file organizations 25
supported sequential file record

formats 25
synchronized file processing 38
syntax checking

SQL 85
syntax notation

description v
syntax rules

COBOL 27
SQL statements 83

SYS1.SFSYLOAD contents 104
SYSIN system file 106
SYSLIST system file 106
system information 104
system-defined fields 64

T
TABLE file organization 25
tables

defining 27
multiple SQL 87

TAG
annotates totals 69

TALLY report field 66
TAPE file organization 25
THRESMOD keyword 117
TITLE statement 74
TRANSLATE FIELDS keyword 119
translate table

for special characters in field
names 117

TRANSLATE WORDS keyword 118
translating concepts 81
translating guidelines 2
translator error file, FJSYSER 106

U
U file record format 25
unavailable field reference 22
undetected errors 15
uninitialized Working Storage fields 16
unit record devices

defining 30
UPDATE statement 90, 94
UPDATE WRITE option 47
updating a row 94
user exits 99
USERMASK 112
USERXIT keyword 118
using DEFER with SELECT 87

V
V file record format 25
VARYING keyword 34
varying-length fields 16
VB file record format 25
VBS file record format 25
VIRTUAL file organization 25
VIRTUAL files 11
VSAM files

defining 26
VSAM key usage 11
VSAM variable-length records 10
VSAM-SEQ file organization 25

W
WARNDUP keyword 118
WHEN statements 56
WORKAREA file attribute 25
working storage

defining 32
Working Storage fields

uninitialized 16
WRITE statement 47
WS-PENGI-DATE-9 66
WS-PENGI-DATE-LONG-9 66

Y
YES numeric display field method 116

246 Migration Utility V1R1 User’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

IBM Migration Utility for z/OS and OS/390
User’s Guide and Reference
Release 1

Publication No. SC27-1685-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC27-1685-03

SC27-1685-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
H150/090
555 Bailey Avenue
San Jose, CA 95141-9989

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-I18

Printed in U.S.A.

SC27-1685-03

	Contents
	About this manual
	Who should use this manual
	Structure of this manual
	Syntax notation
	Summary of changes
	PTF UQ75386

	Chapter 1. Introducing Migration Utility
	What is supported
	Translating concepts
	Translating guidelines
	Structure of Easytrieve programs
	Order of statements in an Easytrieve program

	Review of the Easytrieve punctuation rules

	Chapter 2. Compatibility check
	File organization support
	SBCS and DBCS character support
	Fixed-length records
	NON-VSAM variable-length records
	VSAM variable-length records
	VSAM key usage
	VIRTUAL files
	Extended printer support
	Index usage
	Field naming conventions
	Ambiguous field position; fields with Index and OCCURS
	Binary field handling
	Assigning hex values
	Field headings
	Paragraph-naming conventions
	COBOLII/S390 and COBOL-VS compatibility
	Calling subprograms
	Undetected errors
	Sign of numeric fields
	Varying-length fields
	Uninitialized Working Storage fields
	The MOVE statement
	FILE-STATUS (STATUS) codes
	Labels inside a DO and IF pair of statements
	External table record length
	JCL for converted program
	Overlapping fields on report lines
	Group fields for SQL/DB2 usage
	OCCURS fields for SQL/DB2 usage
	Packed unsigned fields
	Mask of numeric fields
	Solution for OCCURS 1 problem
	Duplicate fields usage and reference
	Duplicate fields usage
	Unavailable Field reference

	File DDname considerations

	Chapter 3. Defining entities
	Defining files
	Supported file organizations
	Supported sequential file record formats
	Non-supported file organizations
	Non-supported file attributes (these attributes are bypassed)
	Supported file attributes

	Defining VSAM files
	Defining tables
	Defining unit record devices and sequential files
	Defining Records and Working Storage

	Chapter 4. Program instruction reference
	COPY statement
	SORT Activity Section
	JOB Activity Section
	Synchronized file processing
	Record availability
	Special IF statements in synchronized process
	MATCHED
	File existence
	DUPLICATE, FIRST-DUP, LAST-DUP

	Assignment statement
	MOVE statement
	MOVE LIKE statement
	PUT statement
	WRITE statement
	GET statement
	READ statement
	POINT statement
	SEARCH statement
	PERFORM statement
	DISPLAY statement
	CALL statement
	GOTO statement
	STOP statement
	CASE, WHEN, OTHERWISE and END-CASE statements
	DO and END-DO statements
	IF, ELSE, and END-IF statements
	Conditional expressions
	PRINT statement
	PROC and END-PROC statements
	RETRIEVE statement
	SELECT statement (SORT and REPORT selection)
	System-defined fields
	Easytrieve reserved keywords
	REPORT statement
	SEQUENCE statement
	CONTROL statement
	SUM statement
	HEADING statement
	TITLE statement
	LINE statement
	Report exits

	Native COBOL support
	Support for COBOL and PEngi Functions in ASSIGN statement
	Generating rules

	Chapter 5. SQL/DB2 support
	Translating concepts
	Native SQL statements
	Automatic cursor management
	Easytrieve file defined as an SQL file
	Automatic retrieval without a file

	SQL statements syntax rules
	PARM statement parameters
	Library section for SQL processing
	SQL catalog INCLUDE facility
	When to use SQL INCLUDE

	Processing nullable fields
	SQL data types
	SQL syntax checking
	System-defined fields
	EOF processing
	Communication Area fields
	Easytrieve Plus SQL files
	Using DEFER with SELECT
	Multiple tables
	Controlled processing
	Automatic retrieval without a file
	Native SQL processing

	Chapter 6. SQL File I/O statement reference
	CLOSE statement
	DELETE statement
	FETCH statement
	SQL INCLUDE statement
	INSERT statement
	UPDATE statement
	SELECT statement
	Easytrieve macros
	Invoking macros

	Chapter 7. User exits
	CBLCNVRT macro
	Running a standalone job to do the conversion.
	Coding CBLCNVRT in Easytrieve Plus programs.

	EZTCNVRT macro
	Generating COBOL COPY statements
	System information
	Migration Utility files
	Called by the translated COBOL programs

	Runtime requirements
	Summary of DDnames
	Translator CCL1 preprocessor options
	COPTION parameters

	Chapter 8. Installation and Migration Utility options
	Installation
	Activating Call Attachment Facility (CAF) for DB2 users
	Using EZTPA00 program loader
	REPORT default options
	Mask identifier table to facilitate Easytrieve USERMASK

	Migration Utility translator options
	Embedding options in the program source

	Chapter 9. Dynamic I/O mode and PDS/PDSE support
	Dynamic I/O mode
	How does it work?
	Dynamic I/O considerations
	Benefits of Dynamic I/O

	Support for PDS/PDSE libraries
	Guidelines for accessing PDS/PDSE libraries

	Chapter 10. Toolkit replacement macros
	Toolkit and date-handling replacement macros
	Macros search sequence

	Enhanced date threshold handling
	Available date masks

	ALPHACON macro: coding rules
	CONVAE macro: coding rules
	CONVEA macro: coding rules
	DATECALC macro: coding rules
	DATECONV macro: coding rules
	DATEVAL macro: coding rules
	DAYSAGO macro: coding rules
	DAYSCALC macro: coding rules
	DIVIDE macro: coding rules
	EXPO macro: coding rules
	GETDATE macro: coding rules
	GETDATEL macro: coding rules
	GETDSN macro: coding rules
	GETJOB macro: coding rules
	GETPARM macro: coding rules
	NUMTEST macro: coding rules
	PARSE macro: coding rules
	RANDOM macro: coding rules
	SQRT macro: coding rules
	UNBYTE macro: coding rules
	WEEKDAY macro: coding rules

	Chapter 11. Messages
	Migration Utility (macro) generated error messages
	Migration Utility macro generated messages
	Migration Utility function generated messages
	PEngiCCL generated messages
	Runtime I/O error messages
	VSAM I/O error supplemental RPL information

	Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

