IBM WebSphere Commerce V7
Quarterly Releases — 2Q2015

Index Load

© 2015 IBM Corporation

* The existing WebSphere Commerce Search indexing infrastructure makes a number of
assumptions, specifically:
— Data for an index is retrieved from a single data source
* Typically, the WC instance database
* This can be amended by adding data from external sources in preprocessing, though
— Data for a given Solr core is added sequentially during reindexing
* Feature Pack 7 did add support for sharding, within the existing indexing framework

= Some clients have more complex setups, for example:
— Vast product catalogues, requiring parallel indexing of data to lower reindexing time
— Data stored in external sources, e.g. complex B2B prices in back-end systems
* Although these could be loaded into the WC database, this is not always optimal
— Different data updating at different intervals, requiring reindexing of different (parts) of
cores at different intervals

= Monitoring of the overall status of index loading is not currently easy for clients

* To address these concerns we now introduce IndexLoad, a new utility in the WebSphere
Commerce Search component

2 © 2015 IBM Corporation

* |ndexLoad is a new Web-based utility that supports:
— Improved indexing performance by avoiding remote HTTP calls to store data in index
— Indexing from parallel data feeds
— Separate, different data sources, allowing load of data directly from a client's back-end
system
— Partitioning of source data, allowing for easy sharding at index time
— Monitoring of indexing status

" |t runs on the Search server and is invoked by hitting the following URL.:

— http://<searchserver>/search/indexload/<command>?<parameters>
— Where <command> is one of:

* config: display configuration

* clear: delete all contents in the configured cores

* merge: merges all unloaded index data directories

* optimize: optimizes contents for all configured cores

* start: starts indexing

* stop: stops indexing

* status: retrieves the status of IndexLoad

3 © 2015 IBM Corporation

IndexLoad architecture

= Controlled through a REST
servlet

= Loader interface controls a
number of Load Items

= Each Load Item uses one or
more Readers to read data
from the physical source
— Database
— CSV file

= After loading the data, zero or
more chained Mediators can
modify the data

* Finally, the data is sent to the
Batch Writer, which handles
queuing and sending
documents to Solr

IndexLoad utility

Marme value pair
Profile name
IndexLoad REST serviet

---------= Profile name |

p
we-indexload-env.xmi

Solr

Category

Product

Inventory

Prica

I

v

v

o @

we-indexload. xml
.

Loader interface

FParallel-threaded

Threads

v Load items
@ Thread
J—b[Readers |:

wi-indexload-item . xmi

Query loader

[/ Dptmnial mediators]]J T l_l_l._

— 7 3

Database

YYyYY

Batch writer

Bafch size

p

Multi-threaded workers |
(with SCL using sub-range 10

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/concepts/csdsearchindexload.htm

© 2015 IBM Corporation

Sample Scenario: Loading prices from external source (1/2)

* Requirements:
— Prices are kept in external back-end system

— Prices provided from back-end system in a set of CSV files on a regular interval

* |ndexLoad setup:

— Create a new IndexLoad profile with a Load ltem for each CSV file that should be loaded
— Each Loadltem refers to a business object configuration that loads from a CSV in

standard Data Load syntax

<_config:Loadltem name="ExternalPrice-1" businessObjectConfigFile="wc-indexload-price-csv.xml">
<_config:property name="coreName" value="MC_10001_CatalogEntry_Price" />
<_config:DataSourcelLocation location="pricelist-1.csv" />

</_config:Loadltem>

<_config:Loadltem name="ExternalPrice-2" businessObjectConfigFile="wc-indexload-price-csv.xml|">
<_config:property name="coreName" value="MC_10001_CatalogEntry_Price" />
<_config:DataSourcelLocation location="pricelist-2.csv" />

</_config:Loadltem>

<_config:Loadltem name="ExternalPrice-3" businessObjectConfigFile="wc-indexload-price-csv.xml">
<_config:property name="coreName" value="MC_10001_CatalogEntry_Price" />
<_config:DataSourcelLocation location="pricelist-3.csv" />

</_config:Loadltem>

© 2015 IBM Corporation

Sample Scenario: Loading prices from external source (2/2)

= The CSV business object configuration:

< _config:DatalLoader className="com.ibm.commerce.foundation.server.services.indexload.loader.solr.SolrindexLoadCSVLoader" >

<_config:DataReader className="com.ibm.commerce.foundation.server.services.indexload.reader.solr.SolrindexLoadCSVReader"
firstLinelsHeader="true" useHeaderAsColumnName="true" />

<_config:BusinessObjectBuilder
className="com.ibm.commerce.foundation.internal.server.services.indexload.builder.SolrindexLoadMapObjectBuilder" >

< _config:DataMapping>
<_config:mapping xpath="catentry_id" value="catentry_id" />
<_config:mapping xpath="price_segments" value="price_segments" />
</_config:DataMapping>

<_config:BusinessObjectMediator
className="com.ibm.commerce.foundation.internal.server.services.indexload.mediator.SolrindexLoadBusinessObjectMediator">
<_config:extension
className="com.ibm.commerce.foundation.server.services.indexload.mediator.solr.SolrindexLoadExternalPriceMediator" />
</_config:BusinessObjectMediator>

</_config:BusinessObjectBuilder>

</_config:DataLoader>

6 © 2015 IBM Corporation

Sample Scenario: Loading prices from database (1/2)

* Requirements:
— Contract prices are loaded in the WC database, denormalized into TI_CNTRPRICE_1

* |ndexLoad setup:
— Create a new IndexLoad profile with a Load Item for loading from database

<_config:Loadltem name="ExternalPrice-2" businessObjectConfigFile="wc-indexload-price-sql.xmi">
<_config:property name="coreName" value="MC_10001_CatalogEntry Price" />
</_config:Loadltem>

7 © 2015 IBM Corporation

Sample Scenario: Loading prices from database (2/2)

* The SQL business object configuration is shown below
— Prices are assumed to be preprocessed in the temporary table TI CNTRPRICE_1

<_config:property name="ParallelLowerRangeSQL" value="SELECT MIN(CE.CATENTRY_ID) FROM CATENTRY CE" />
<_config:property name="ParallelUpperRangeSQL" value="SELECT MAX(CE.CATENTRY _ID) FROM CATENTRY CE" />
<_config:property name="ParalleINextRangeSQL" value="SELECT MIN(CE.CATENTRY_ID) FROM CATENTRY CE WHERE
CE.CATENTRY_ID > ?" />
<_config:DataReader
className="com.ibm.commerce.foundation.server.services.indexload.reader.solr.SolrindexLoadQueryMultiplexReader">
< _config:Query>
<_config:SQL>
SELECT TI.CATENTRY_ID,TI.PRICE
FROM TI_CNTRPRICE_1 TI
WHERE TI.CATENTRY_ID >= %ParallelLowerRange%
AND TI.CATENTRY_ID <= %ParallelUpperRange%
ORDER BY TI.CATENTRY_ID
</_config:SQL>
<_config:ColumnMapping name="CATENTRY _ID" value="catentry_id" />
<_config:ColumnMapping name="PRICE" value="price" />
</_config:Query>

<_config:property name="ParallelThreads" value="2" />
<_config:property name="ParallelLowerRange" value="" />
<_config:property name="ParallelUpperRange" value="" />
<_config:property name="ParallelPrefetchSize" value="100" />

8 © 2015 IBM Corporation

* IndexLoad provides detailed information about its performance when indexing

= Status reports provides real time indexing statistics for tuning IndexLoad settings:
— Read and write rate
— Indexed document average size and width
— Cumulative read, flush, commit time
— Memory utilization and CPU workload distribution
— Index size and other important core specific settings

= Use this data to tune the prefetch and commit count values

9 © 2015 IBM Corporation

The full indexing task has heen running for 15.626 seconds at &/13/15 1:59 PM.

633 records have been read at an average rate of 41.789 records per second.
325 documents have been indexed at an average rate of Z0.792 documents per second and Z1.532 documents per second since last flushing.

Read-to-Write ratio is approximately Z.003.

current batch gueue size is 5 with a maximum size of Z9.
Indexed document size average iz 160,048 bytes.
Indexed document width average is 5,002 columns.

Total cumulative flush time is on average 4.532 seconds based on a batch size of 10 per thread.

No cumulative commit time is available hecause commit count has been disabled.

Total cumulative read time 1s on average 0.612 seconds based on an average prefetch size of 10 per thread.
Total cuwmulative mediation time iz on average 1Z.853 seconds per thread.

Current average
Total awvailahle
Total amount of
Total number of

I/C throughput per second Cumulative processing time
Load item thread Btatus CPU usage Pead rate Write rate Reader
ExternalPrice-1 (000} Processing 23.02% 12.21 {(a7%) a6.10 (33%) 1.11 § 8%) 1z,
ExternalPrice—1 (001) Frocessing 27.54% 11.45 (&7%) S.69 (33%) 0.85 (4%) 13.
ExternalPrice-1 (002} Processing 24 .92% 13.57 {(&7%) 6.75 (33%) 0.37 § 3%) 1z,
ExternalPrice—1 (003) FProcessing 24.02% 11.58 (&7%) S5.75 (33%) 0.32 (2%) 1z2.

system load is approximately ZZ2.335.
processors are 8§ with 1.76Z 5B of maximum amount of memory.

used memory is 1.15 SE (&5%), free memory 1s 0.193 SE (11%), unallocated memory is 0.419 =B (24%).

configured threads is 4 and total number of threads currently running is 4.

Total number of active documents in index: 314
Total number of deleted documents in index: O
Maximum internal identifier in index: 314

Total number of index segments: 14

Total
Total
Index
Index
Index
Index
Index

number of static index fields:

number of dynamic index fielda:

data directory size: 25.0 ME
version number: 34150

paM buffer size: 100.0 ME
maximum buffered document: 10
merge factor: 10

1
5001

{(zeconds)

Mediator
oo (92%)
85 {(96%)
75 (98%)
a1 {(98%)

© 2015 IBM Corporation

* The overall logic flow for IndexLoad follows a diamond shape:
— Starts with one single source of input

" |mportant tuning parameters:

11

— Main body comprise multiple worker threads
— Ends with a single output

— Prefetch size controls the input rate to avoid overloading the database
— Number of threads control the level of parallelism

— Batch/commit count

os

Key Manager

Ll

Batch Writer

]

Solr
llip

© 2015 IBM Corporation

* The prefetch size controls how many rows are read from the data source at a time
— This must be tuned to balance database load against data availability for worker threads

* The thread count controls how many parallel threads are processing these rows
— This must be tuned to balance overall CPU load with ability to process data in parallel

* The ParalleINextRangeSQL is used to avoid gaps in input ID ranges

— Each range is fetched and distributed across the worker threads

= Batch count controls the sizes of the batches sent to Solr

12

’101f200\

ID Ranges
101..200 - ——
201..300] 201..300 \
(gap) DB
1001..1100 j
1101..1200 ’1001“1104
110[1204

ParallelPrefetchSize=100

Key Manager

Ll

ParallelThreads=5

Batch Writer

’ E 61?367(7)7" ‘
o

’1 001 :1204

batchCount=200

Solr

© 2015 IBM Corporation

IBM, the IBM logo, ibm.com, Coremetrics, DB2, PowerVM, Rational, WebSphere, and z/VM are
trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "

" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL
PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND
ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS |S"
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS
BASED ON IBM'S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO
CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES
ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY
OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO,
NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS
FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS
OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2015. All rights reserved.

13 © 2015 IBM Corporation

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

i)
[ATH

Ty
”‘!H“

IBM WebSphere Commerce V7
Quarterly Releases — 2Q2015

Index Load

© 2015 1BM Corporation

Welcome to the Index Load module of the technical enablement for the second quarter
release 2015 of IBM WebSphere Commerce version 7.

= The existing WebSphere Commerce Search indexing infrastructure makes a number of
assumptions, specifically:
— Data for an index is retrieved from a single data source
* Typically, the WC instance database
* This can be amended by adding data from external sources in preprocessing, though
— Data for a given Solr core is added sequentially during reindexing
* Feature Pack 7 did add support for sharding, within the existing indexing framework

= Some clients have more complex setups, for example:
— Vast product catalogues, requiring parallel indexing of data to lower reindexing time
— Data stored in external sources, e.g. complex B2B prices in back-end systems
 Although these could be loaded into the WC database, this is not always optimal
— Different data updating at different intervals, requiring reindexing of different (parts) of
cores at different intervals

= Monitoring of the overall status of index loading is not currently easy for clients

= To address these concerns we now introduce IndexLoad, a new utility in the WebSphere
Commerce Search component

2 © 2015 IBM Corporation

Some advanced requirements has historically been hard to implement using the existing
WebSphere Commerce Search indexing infrastructure.

This is due to some assumptions made in the design of the existing solution, specifically
that data mainly resides in the WebSphere Commerce database, and that data must be
processed sequentially.

In some scenarios, such as very large catalog sizes, or customers where some data, for
example prices, only reside in 3rd-party systems, these assumptions have caused some
head-ache for implementation teams.

Although there are existing solutions that help mitigate these assumptions, see for
example the index sharding topics in the Knowledge Center, we are now introducing a
new indexing tool to help address these concerns at a more fundamental level.

The new tool, Index Load, is based on a more flexible architecture, allowing for better
parallelization and open to external index sources.

= IndexLoad is a new Web-based utility that supports:
— Improved indexing performance by avoiding remote HTTP calls to store data in index
—Indexing from parallel data feeds
— Separate, different data sources, allowing load of data directly from a client's back-end
system
— Partitioning of source data, allowing for easy sharding at index time
— Monitoring of indexing status

= |t runs on the Search server and is invoked by hitting the following URL:
— http://<searchserver>/search/indexload/<command>?<parameters>
—Where <command> is one of:

« config: display configuration

clear: delete all contents in the configured cores

* merge: merges all unloaded index data directories

* optimize: optimizes contents for all configured cores

* start: starts indexing

* stop: stops indexing

* status: retrieves the status of IndexLoad

.

3 © 2015 IBM Corporation

The new Index Load solution is a Web-based utility, adding functionality for parallel data
feeds, separating the data source definition from the processing, partitioning of the source
data to allow for sharding, as well as improved indexing status monitoring.

We have also improved the performance in the communication with Solr. Where we
previously used HTTP connections, even when indexing locally on the same server as
Solr, we now use the embedded client to bypass the HTTP layer.

The main interface for Index Load is a REST-like servlet that accepts a number of URL-
based commands, as outlined on this slide, which makes it easier to build a graphical user
interface, if so desired, on top of this interface.

Name value pair
Profile names
IndexLoad REST serviet

IndexLoad utility “eeeeeoeeeaees Profile name |

| v
= Controlled through a REST ¥
servlet — ~

= Loader interface controls a @ weindedoad xmi
number of Load ltems weindoxiaad-emysiml Paraliehthrsadsd

Loader interface

Load items.

more Readers to read data E'% P
from the physical source § o

we-indexload-item xml | P

.
= Each Load Item uses one or (1 ‘
<

i L Query loader

— Database e . =
—C8Vfile : —

Catagon
Y Opticnal mediators

= After loading the data, zero or
more chained Mediators can
modify the data
Batch writer

= Finally, the data is sent to the |

Batch Writer, which handles Batch size Multthreeded workers |

queuing and sending (with SC,Lsrgsuh—ra'\qalDL}_
documents to Solr

Product R g

Inventor
il Database

Price

4 © 2015 IBM Corporation

This slide shows the architecture of the Index Load utility.

As mentioned previously, a REST interface is provided, through which all commands,
such as start indexing, retrieve index status, etc., are passed.

The REST interface passes all requests to the Loader Interface. This interface retrieves
the configuration for the index profile that the request relates to, and passes the incoming
command to the relevant Load Item or Load Items.

Each of the Load Items uses one or more Readers to retrieve the data from the data
source. A Reader can at this point read data from either a JDBC connection, or a comma-
delimited CSV file.

After loading the data, the data is passed through a chain of zero or more Mediators, to
allow for massaging of the data before it is sent on to Solr. Zero, because the data can be
sent directly to Solr without any modifications, but the configuration can employ any
number of mediators in sequence, as needed.

Instead of sending the processed data directly to Solr, the Index Load utility uses a
singleton Batch Writer. This component is responsible for queuing up the data and
control the flushing and committing of the data to Solr.

= Requirements:
— Prices are kept in external back-end system
— Prices provided from back-end system in a set of CSV files on a regular interval

= IndexLoad setup:
— Create a new IndexLoad profile with a Load Item for each CSV file that should be loaded
— Each Loadltem refers to a business object configuration that loads from a CSV in
standard Data Load syntax

5 © 2015 IBM Corporation

In this part of the presentation, we will cover two sample scenarios of employing Index
Load to optimize the loading of data into the WebSphere Commerce Search index.

First, we explore the configuration for a scenario where a client keep price data in a 3rd-
party back-end system, instead of loading the prices into the WebSphere Commerce
database.

In this scenario, the back-end system provides price updates at a regular interval through
three comma-delimited CSV files, each file containing a third of the total prices to
update.

To support this, you would create an Index Load profile with three Load Items. Each
Load Item loads the prices from one of the three CSV files. The relevant section of the
profile configuration file with the Load Items is shown here.

Note that all three Load Items refer to the same configuration file, wc-indexload-price-
csv.xml, but with different CSV file names specified.

Since we are thus indexing prices separately from the products, we store the prices in a
new Solr core, here referred to as MC_ 10001 CatalogEntry Price.

Not shown here are the modifications needed to remove prices from the regular product

B DR IS PSR PSR R ASPR TR T SR [PR T (R PRI AR

Sample Scenario: Loading prices from external source (2/2)

= The CSV business object configuration:

<_config:DataLoader className="com.ibm.commerce.foundation.server.services.indexload.loader.solr.SolrindexLoadCSVLoader" >

<_config:DataReader className="com.ibm.commerce.foundation.server.services.indexload.reader.solr. SolrindexLoadCSVReader"
firstLinelsHeader="true" useHeaderAsColumnName="true" />

<_config:BusinessObjectBuilder
className="com.ibm.commerce.foundation.internal.server.services.indexload.builder.SolrindexLoadMapObjectBuilder" >

<_config:DataMapping>
<_config:mapping xpath="catentry_id" value="catentry_id" />
<_config:mapping xpath="price_segments" value="price_segments" />
</_config:DataMapping>

<_config:BusinessObjectMediator
className="com.ibm.commerce.foundation.internal.server.services.indexload.mediator.SolrindexLoadBusinessObjectMediator">
<_config:extension
className="com.ibm.commerce.foundation.server.services.indexload.mediator.solr. SolrindexLoadExternalPriceMediator" />
</_config:BusinessObjectMediator>

</_config:BusinessObjectBuilder>

</_config:DataLoader>

6 ©2015 IBM Corporation

This slide shows a snippet from the wc-indexload-price-csv.xml file references on the
previous slide.

Note that the configuration specifies the type of Reader used, SolrIndexLoadCSVReader,
the mapping from CSV columns to Solr field names, and finally that we are using a
standard price mediator, SolrIndexLoadExternalPriceMediator, to manipulate the data
before it is stored directly in Solr.

Sample Scenario: Loading prices from database (1/2)

= Requirements:
— Contract prices are loaded in the WC database, denormalized into TI_CNTRPRICE_1

= IndexLoad setup:
— Create a new IndexLoad profile with a Load Item for loading from database

<_config:Loadltem name="ExternalPrice-2" businessObjectConfigFile="wc-indexload-price-sql.xml">
<_config:property name="coreName" value="MC_10001_CatalogEntry_Price" />
</_config:Loadltem>

7 © 2015 1BM Corporation

This slide introduces a second scenario for using Index Load.

In this scenario, we have a client where the contract prices are loaded into the database.
We assume the prices have already been denormalized into a temporary table.

In this case, you would define a similar configuration as before, except that you would a
Load Item configurations where prices are loaded from the database.

Sample Scenario: Loading prices from database (2/2)

= The SQL business object configuration is shown below
— Prices are assumed to be preprocessed in the temporary table TI_CNTRPRICE_1

<_config:property name="ParallelLowerRangeSQL" value="SELECT MIN(CE.CATENTRY_ID) FROM CATENTRY CE" />
<_config:property name="ParallelUpperRangeSQL" value="SELECT MAX(CE.CATENTRY_ID) FROM CATENTRY CE" />
<_config:property name="ParalleINextRangeSQL" value="SELECT MIN(CE.CATENTRY_ID) FROM CATENTRY CE WHERE
CE.CATENTRY_ID > ?" />
<_config:DataReader
className="com.ibm.commerce.foundation.server.services.indexload.reader.solr.SolrindexLoadQueryMultiplexReader">
<_config:Query>
<_config:SQL>
SELECT TI.CATENTRY_ID,TI.PRICE
FROM TI_CNTRPRICE_1 TI
WHERE TI.CATENTRY_ID >= %ParallelLowerRange%
AND TI.CATENTRY_ID <= %ParallelUpperRange%
ORDER BY TI.CATENTRY_ID
</_config:SQL>
<_config:ColumnMapping name="CATENTRY_ID" value="catentry_id" />
<_config:ColumnMapping name="PRICE" value="price" />
</_config:Query>

<_config:property name="ParallelThreads" value="2" />

8 © 2015 1BM Corporation

In this example, we assume that the prices have been preprocessed and are available in
the table TL CNTRPRICE 1.

Notice that we see four SQL statements defined here:

- A SQL, called ParallelLowerRangeSQL, which retrieves the smallest product ID in the
price table

- One called ParallelUpperRangeSQL, which retrieves the largest product ID in the price
table

- Paralle]NextRangeSQL, which retrieves the smallest ID, above a certain value
- And finally the main SQL, which retrieves all the prices for a given product ID range

These SQL statements allows for the Index Load utility to calculate the product ID ranges
and perform a sharded indexing, if requested.

Finally, this file also provides the mapping from SQL result column names to Solr field
names.

= IndexLoad provides detailed information about its performance when indexing

= Status reports provides real time indexing statistics for tuning IndexLoad settings:
— Read and write rate
—Indexed document average size and width
— Cumulative read, flush, commit time
— Memory utilization and CPU workload distribution
—Index size and other important core specific settings

= Use this data to tune the prefetch and commit count values

9 © 2015 IBM Corporation

Finally, we would like to make some comments on performance tuning of Index Load.

As mentioned, Index Load provides access to status information through the Web
interface. The status report contains detailed information about the current state of
indexing. This information is crucial in tuning a large Index Load.

The result of any change in the configuration can be monitoring on the status report page
by inspecting some of the values mentioned here, for example, the read, flush, and
commit times, and the memory utilitization and CPU workload distribution.

The full indexing task has besn running for 15.626 seconds at 6/19/15 1:59 BM.

653 records have been read at an average rate of 41.789 records per second.
325 documents have heen indexsd at an average rate of 20.793 documents per second and 21.552 documents per second since last flushing.

Read-to-Write ratio is approximately 2.009.

Current batch gueue size is 5 with a maximum size of 295.
Indexed document size average is 160,048 bytes.
Indexed document width average is 5,002 columns.

Total cumulative flush time is on average 4.532 seconds based on a batch size of 10 per thread.
No cumulative commit time is available because commit count has been disabled.

Total cumulative read time is on average 0.61Z seconds based on an average prefetch size of 10 per thread.
Total cumulative mediation time is on average 12.853 seconds per thread.

Current average system load is approximately 22.335.
Total available processors are 8 with 1.762 GB of maximum amount of memory.
Total amount of used memory is 1.15 GB (65%), free memory is 0.193 6B (11%), unallocated memory is 0.419 GB (24%).

Total mmber of configured threads is 4 and total mmber of threads currently running is 4.

1/0 throughput per sscond Cunulative processing tims (ssconds)
Load item thread Status CBU usage Read rate write rate Reader Mediator
ExternalPrice-1 (000) Processing 23.52% 12.21 (67%) 6.10 (33%) 1.11 (8y 12.00 (92%)
ExternalPrice-1 (001) Processing 27.54% 11.45 (67%) 5.63 (338) 0.65 (&%) 13.85 (96%)
ExternalPrice-1 (002) Processing 24.92% 13.57 (67%) 6.75 (33%) 0.37 (3%) 12.75 (98%)
ExternalPrice-1 (003) Processing z4.02% 11.58 (67%) 5.75 (338} 0.32 (z8%) 1z.81 (98%)
Index name: MC_10051_CatalogBntry Price_generic
Total mmber of active documents in index: 314
Total mumber of deleted documents in index: 0
Maximun internal identifier in index: 314
Total mmber of index segments: 14
Total mmber of static index fields: 1
Total mumber of dynamic index fields: 5001
Index dats directory size: 25.0 MB
Index version number: 34150
Index RAM buffer size: 100.0 MB
Tndex maximum buffered document: 10
Index merge facter: 10
10 © 2015 1BM Corporation

This slide shows an example of a status report during an Index Load.

Amongst other useful statistics, we can see four worker threads, their individual CPU
usage, read- and write rates, as well as where the processing time is spent between the
readers and mediators.

We can also see the memory utilization, overall read and write rates, as well as statistics
about document counts and sizes.

= The overall logic flow for IndexLoad follows a diamond shape:

— Starts with one single source of input
— Main body comprise multiple worker threads

— Ends with a single output
= Important tuning parameters:
— Prefetch size controls the input rate to avoid overloading the database
— Number of threads control the level of parallelism
— Batch/commit count

[=N

Key Manager
Batch Writer

© 2015 IBM Corporation

Since the processing flow in Index Load is comparable to a diamond shape, with a single
reader in one end, a single writer in the other and a number of parallel worker threads in
the middle, three important settings have an impact on overall performance:

- Prefetch size, controlling input buffering

- Number of worker threads, controlling the amount of parallelism; and

- Commit count, controlling the size of the batches sent to Solr for processing

The status report mentioned earlier, can be a useful aid in tuning these values.

= The prefetch size controls how many rows are read from the data source at a time
— This must be tuned to balance database load against data availability for worker threads

= The thread count controls how many parallel threads are processing these rows
— This must be tuned to balance overall CPU load with ability to process data in parallel

= The ParalleINextRangeSQL is used to avoid gaps in input ID ranges
— Each range is fetched and distributed across the worker threads

= Batch count controls the sizes of the batches sent to Solr

ID Ranges
101..200
201..300

(9ap)

1001..1100
1101..1200

[101 200 }

201 300

:

B k001 110

101 1204

ParallelPrefetc vSue 100

Key Manager

T

ParallelThreads=5

Batch Writer

batchCount=200

{ 101..300 }

b ‘ Solr

1001.1200

© 2015 IBM Corporation

Now we would like to cover the effect of the three core tuning parameters.

In this example, we are reindexing from a database source. The data we are loading has a
gap in the primary IDs. Between IDs 300 and 1001, there is no data for reindexing.

Furthermore, we have set the parallel prefetch size to 100, which means that the key
manager will load 100 entries at a time from the database.

We have defined five active threads by setting the ParallelThreads parameter to 5.

Finally, the batch count has been set to 200.

As a result, the ket manager will load the source data in batches of 100 at a time. The
SQL defined in the business object configuration will allow for detection of gaps in the
data, so we can see the four batches loaded to be IDs from 101 to 200, from 201 to 300,

and then skipping to 1001, etc.

Each batch is distributed across the five worker threads and when processed, the key
manager will load the next batch.

On the writer end, since the batch count is 200, we are queueing up the results in batches
of 200 records before sending these to Solr for inclusion in the index.

IBM, the IBM logo, ibm.com, Coremetrics, DB2, PowerVM, Rational, WebSphere, and z/VM are
trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "

" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL
PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND
ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS
BASED ON IBM'S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO
CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES
ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY
OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO,
NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS
FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS
OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2015. All rights reserved.

13 © 2015 IBM Corporation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Trademarks, disclaimer, and copyright information
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Trademarks, disclaimer, and copyright information

