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Agenda 

• Sub-model support via Sterling Configurator XAPIs 
• Upgrade Bill of Material 
• Enhanced integration with Websphere Commerce 
• Extensibility Improvements in Sterling Configurator 
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Sub-model Overview and types of Sub-model 

• Sub-model allows the modeler to build models inside VM in a more modular way by 
factoring reusable component/rule out of a huge model into a set of smaller sub-
models. 

• As of CPQ v9.3, this feature is exposed only in Configurator application.  

• Sterling Configurator APIs have been enhanced to support sub-model configuration. 

• Configurator/VM supports two types of sub-model configuration: 
– Sub-model punch-in punch-out 
– Dynamic Instantiation 
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Sub-model punch in punch out 

 Configurator transitions from one model to another and evaluate smaller set of 
information at a time. 

 Actions: 
 punch into a sub-model 
 perform sub-model configuration 
 return from sub-model to the parent model 

 The parent model picks, including the derived states, is made available for evaluation 
inside the child models.  

 When done with the child configuration, the resulted configuration is returned to the 
parent model.  

 Generate configuration output (BOM) with the aggregate of parent and child 
configurations. 
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Dynamic Instantiation 

 Dynamic instantiation provides a way to allow users to configure products on the fly 
while avoiding the need to create option items for each possible product configuration in 
your model. 

 Actions: 
 instantiate 'n' number of child models 
 punch into a sub-model 
 perform sub-model configuration 
 return from sub-model to the parent model 
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APIs: Design & details 

 Focus to simplify the creation of API input to improve API usability. 

 Input to all Configurator APIs can be constructed by extracting certain sections/elements 
of the output from the previous API call. 

 As configurator is a stateless engine: 
– The current state of the configuration is passed as input. 
– The derived state of the configuration is returned as output.  

 Sub-model APIs re-use the API input/output structure of processConfigurationPicks 
API with some additional sub-model specific attributes/elements. 
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Sub Model APIs 

 New Sub-model APIs: 
 instantiateSubModel 
 punchIntoSubModel 
 returnFromSubModel 

 The following APIs were enhanced to support sub-models: 
 processConfigurationPicks 
 generateConfigurationBOM 
 extractPicksFromConfigurationBOM 
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instantiateSubModel API 

 The API to dynamically instantiate 'n' number of child models and attach them to the 
corresponding option class. 

 The API enables the user to: 
 Create new child model instances - To create references/hooks to child models in 

the current model. 
<AddSubModel Item="" Quantity=""/> 

 Copy child configurations - To create one or more copies of a child model 
configuration 
<CopySubModel Item="" Quantity=""/> 

 Remove a child configuration - To remove a child configuration associated with 
the current model. 
<RemoveSubModel Item=""/> 
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punchIntoSubModel API 

 The API to punch into the sub-model linked to the current model. The call is made in the 
context of the current model. At the end of call, the context transitions into the child. 

 The API returns sub-model configuration (picks) & parent configuration (configuration 
BOM & input properties). 

 API input elements/attributes: 
 PunchInItem - The path of the option item on which the punch in action is 

invoked. The API punches into the sub-model associated with this option item. 
<PunchIntoSubModel ..... PunchInItem=""> 
 

 Picks - The picks for the current model. Also contains the configuration and state 
of the sub-model attached to the option item. 
<Pick Item="" ItemId="" Quantity="" Type="" Value=""> 

<NestedConfiguration> 
<ConfiguratorBOM/> 

</NestedConfiguration> 
<NestedProperties> 

<properties/> 
</NestedProperties> 

</Pick> 
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punchIntoSubModel API (cont) 

 API input elements/attributes (cont): 
 Parent - ConfigurationBOM & Input Properties 

<ParentConfigurations> 
<ParentConfiguration ModelDepth="" PunchInItem="" 

SubModelReturn="" SubModelValidate=""> 
<InputProperties/> 
<ConfiguratorBOM/> 

</ParentConfiguration> 
</ParentConfigurations> 
 

 Input Properties  - The input properties applicable for the current model. 
<InputProperties> 

<Property External="" Name="" Path="" Type="" Value=""/> 
</InputProperties> 
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returnFromSubModel API 

 The API to return from the sub-model to parent model. At the end of the call, the context 
is switched from current (sub-model) to its parent. 

 API input elements/attributes: 
 Abandon flag - This flag indicates whether the sub-model configuration should be 

abandoned on return to parent model. 
<ReturnFromSubModel .... Abandon=""> 
 Abandon=N (default): The current state of the model and its children are 

saved. 
 Abandon=Y: The current state of the model and its children are 

abandoned.  
 

 Picks - The picks for the current model. Also contains the configuration and state 
of the sub-model attached to the option item. 

 Parent - ConfigurationBOM & Input Properties. 
 Input Properties  - The input properties applicable for the current model. 
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processConfigurationPicks & generateConfigurationBOM API 

 Input to these existing APIs have been re-structured to accommodate nested 
configuration, parent configuration & input properties. 

 processConfigurationPicks API re-constructs the state of the current model after 
evaluating the picks against the rules in the context of both parent and child 
configurations/properties. 

 generateConfigurationBOM API can be invoked from: 
 Parent/Root model: Constructs the ConfiguratorBOM of the current model and 

nested child configurations. 
 Sub-model: Constructs the ConfigurationBOM of the sub-model and nested child 

configurations. The parent configurations are ignored. 
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Sub-model scenario 

 

• Telecom Bundle contains various lines of 
business:  

– Fixed Line Service Plan 
– Mobile Service Plan & so on 

• User can configure one or more accounts for a 
chosen service plan. 

• Service Plan options are modeled as sub-
models. 

• Within Mobile Service Plan, Mobile phones and 
its accessories can be added to the selection. 
These options are modeled as sub-model of 
Mobile Service plan. 
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Sub-model scenario (cont) 

User wants to configure a Telecom Bundle  

 

 

 

 

 

 

 

 

 

Flow: 

1. processConfigurationPicks (existing API) – Load the Model 

2. processConfigurationPicks – to add “Fixed Line Telephone” & “1 year” contract. 
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Sub-model scenario (cont) 

User wants to create one or more 
accounts for a “Fixed Line 
Service Plan”  

Flow: 

1. processConfigurationPicks – to 
add “Service Plan 2” 

2. instantiateSubModel (new API) 
– to create one or more dynamic 
option item(s) that holds the 
service plan (sub-model) 
configuration. 
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Sub-model scenario (cont) 

User wants to configure the 
“Service plan” account created 
in the previous step. 

Flow: 

1. punchIntoSubmodel (new API) 
– Punch-in to the sub-model to 
configure the options. 

2. processConfigurationPicks – to 
add “Telephone Set 4” in the 
sub-model configuration. 
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Sub-model scenario (cont) 

User wants to save the “Fixed Line Service Plan 2” configuration and return to (parent) 
Telecom Bundle Configuration. 

 

 

 

 

 

 

 

 

 

 
Flow: 

1. returnFromSubModel (new API) – Save the sub-model configuration and return to parent 
model. 
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Demo 
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Troubleshooting – Logging and tracing 

Configurator APIs 

Configurator application 
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Upgrade Bill of Material 

• Upgrade BOM provide a means of capturing the delta changes the seller is making to the 
current offer.   

• Seller is modifying a customer's existing offer and based on the customer's need is 
upgrading the current offer with additional options.  

• The act of modifying the offer is recorded as upgrade to the current offer. 

• Comparison view to show the difference between base configuration and updated 
configuration. 

• Upgrade BOM Flow: 
– An external system invokes Configurator passing the base BOM and upgrade flag as 

true. 
– Configurator is launched in the upgrade mode. 
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Upgrade Bill of Material 
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Upgrade Bill of Material 
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Enhanced integration with Websphere Commerce 

• We integrated with Websphere Commerce in previous release and continue to improve the 
integration.  

• In the current integration scenarios the URL of the Visual Modeler application and product 
configurator is static.  

• Through this feature, an extra parameter “LocaleCode”  is provided which is the user 
preferred locale. 

• Websphere Commerce Business user will now be able to launch Visual modeler in his 
preferred language from Websphere Commerce when locale code parameter is set as a 
request parameter by the calling application. 

•  Websphere Commerce store user will be able to punchin to the configurator in his 
preffered language from Websphere commerce when locale code parameter is set as a 
request parameter by the calling application.  
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Extensibility Improvements for IBM Sterling Configurator 

• In our continued effort to reduce TCO, we have made extensibility improvements 

• Standardizes the customization's for Sterling Configurator and Configurator XAPIs to use 
customer overrides for customizations 

• Customer overrides file is used to override 
– functionhandlers.properties 
– controls.properties 
– ObjectMap.properties 
– cachetypes.properties 
– EhCache.xml 
– RegressionTestReport.xml 

• The customer override properties file is not changed during installation of upgrades or 
patches. Prevents from customized settings being overwritten 
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Extensibility Improvements for IBM Sterling Configurator 

Configurator File Name Configurator Property Name 
functionhandlers.properties yfs.yfs.function.handler.files 

controls.properties yfs.yfs.control.handler.files 

ObjectMap.properties yfs.yfs.objectmap.extension.file 

cachetypes.properties yfs.yfs.cachetypes.extension.file 

EhCache.xml yfs.yfs.ehcache.override.file 

RegressionTestReport.xml yfs.yfs.regressiontestreport.override.file 
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Knowledge Center Links for CPQ 9.4 

http://www-01.ibm.com/support/knowledgecenter/SS4QMC_9.4.0/com.ibm.help.cpq.newfeatures.doc/c_functional.html  

http://www-01.ibm.com/support/knowledgecenter/SS4QMC_9.4.0/com.ibm.help.cpq.newfeatures.doc/c_functional.html
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