
© 2014 IBM Corporation

IBM Sterling CPQ version 9.4
Sub Model Enhancements, Upgrade BOM and Globalization

Dinup P Pillai

dinup.pillai@in.ibm.com

mailto:dinup.pillai@in.ibm.com
mailto:dinup.pillai@in.ibm.com

© 2014 IBM Corporation 2

Agenda

• Sub-model support via Sterling Configurator XAPIs
• Upgrade Bill of Material
• Enhanced integration with Websphere Commerce
• Extensibility Improvements in Sterling Configurator

© 2014 IBM Corporation

Sub-model Overview and types of Sub-model

• Sub-model allows the modeler to build models inside VM in a more modular way by
factoring reusable component/rule out of a huge model into a set of smaller sub-
models.

• As of CPQ v9.3, this feature is exposed only in Configurator application.

• Sterling Configurator APIs have been enhanced to support sub-model configuration.

• Configurator/VM supports two types of sub-model configuration:
– Sub-model punch-in punch-out
– Dynamic Instantiation

© 2014 IBM Corporation

Sub-model punch in punch out

 Configurator transitions from one model to another and evaluate smaller set of
information at a time.

 Actions:
 punch into a sub-model
 perform sub-model configuration
 return from sub-model to the parent model

 The parent model picks, including the derived states, is made available for evaluation
inside the child models.

 When done with the child configuration, the resulted configuration is returned to the
parent model.

 Generate configuration output (BOM) with the aggregate of parent and child
configurations.

© 2014 IBM Corporation

Dynamic Instantiation

 Dynamic instantiation provides a way to allow users to configure products on the fly
while avoiding the need to create option items for each possible product configuration in
your model.

 Actions:
 instantiate 'n' number of child models
 punch into a sub-model
 perform sub-model configuration
 return from sub-model to the parent model

© 2014 IBM Corporation

APIs: Design & details

 Focus to simplify the creation of API input to improve API usability.

 Input to all Configurator APIs can be constructed by extracting certain sections/elements
of the output from the previous API call.

 As configurator is a stateless engine:
– The current state of the configuration is passed as input.
– The derived state of the configuration is returned as output.

 Sub-model APIs re-use the API input/output structure of processConfigurationPicks
API with some additional sub-model specific attributes/elements.

© 2014 IBM Corporation

Sub Model APIs

 New Sub-model APIs:
 instantiateSubModel
 punchIntoSubModel
 returnFromSubModel

 The following APIs were enhanced to support sub-models:
 processConfigurationPicks
 generateConfigurationBOM
 extractPicksFromConfigurationBOM

© 2014 IBM Corporation

instantiateSubModel API

 The API to dynamically instantiate 'n' number of child models and attach them to the
corresponding option class.

 The API enables the user to:
 Create new child model instances - To create references/hooks to child models in

the current model.
<AddSubModel Item="" Quantity=""/>

 Copy child configurations - To create one or more copies of a child model
configuration
<CopySubModel Item="" Quantity=""/>

 Remove a child configuration - To remove a child configuration associated with
the current model.
<RemoveSubModel Item=""/>

© 2014 IBM Corporation

punchIntoSubModel API

 The API to punch into the sub-model linked to the current model. The call is made in the
context of the current model. At the end of call, the context transitions into the child.

 The API returns sub-model configuration (picks) & parent configuration (configuration
BOM & input properties).

 API input elements/attributes:
 PunchInItem - The path of the option item on which the punch in action is

invoked. The API punches into the sub-model associated with this option item.
<PunchIntoSubModel PunchInItem="">

 Picks - The picks for the current model. Also contains the configuration and state
of the sub-model attached to the option item.
<Pick Item="" ItemId="" Quantity="" Type="" Value="">

<NestedConfiguration>
<ConfiguratorBOM/>

</NestedConfiguration>
<NestedProperties>

<properties/>
</NestedProperties>

</Pick>

© 2014 IBM Corporation

punchIntoSubModel API (cont)

 API input elements/attributes (cont):
 Parent - ConfigurationBOM & Input Properties

<ParentConfigurations>
<ParentConfiguration ModelDepth="" PunchInItem=""

SubModelReturn="" SubModelValidate="">
<InputProperties/>
<ConfiguratorBOM/>

</ParentConfiguration>
</ParentConfigurations>

 Input Properties - The input properties applicable for the current model.
<InputProperties>

<Property External="" Name="" Path="" Type="" Value=""/>
</InputProperties>

© 2014 IBM Corporation

returnFromSubModel API

 The API to return from the sub-model to parent model. At the end of the call, the context
is switched from current (sub-model) to its parent.

 API input elements/attributes:
 Abandon flag - This flag indicates whether the sub-model configuration should be

abandoned on return to parent model.
<ReturnFromSubModel Abandon="">
 Abandon=N (default): The current state of the model and its children are

saved.
 Abandon=Y: The current state of the model and its children are

abandoned.

 Picks - The picks for the current model. Also contains the configuration and state
of the sub-model attached to the option item.

 Parent - ConfigurationBOM & Input Properties.
 Input Properties - The input properties applicable for the current model.

© 2014 IBM Corporation

processConfigurationPicks & generateConfigurationBOM API

 Input to these existing APIs have been re-structured to accommodate nested
configuration, parent configuration & input properties.

 processConfigurationPicks API re-constructs the state of the current model after
evaluating the picks against the rules in the context of both parent and child
configurations/properties.

 generateConfigurationBOM API can be invoked from:
 Parent/Root model: Constructs the ConfiguratorBOM of the current model and

nested child configurations.
 Sub-model: Constructs the ConfigurationBOM of the sub-model and nested child

configurations. The parent configurations are ignored.

© 2014 IBM Corporation

Sub-model scenario

• Telecom Bundle contains various lines of
business:

– Fixed Line Service Plan
– Mobile Service Plan & so on

• User can configure one or more accounts for a
chosen service plan.

• Service Plan options are modeled as sub-
models.

• Within Mobile Service Plan, Mobile phones and
its accessories can be added to the selection.
These options are modeled as sub-model of
Mobile Service plan.

© 2014 IBM Corporation

Sub-model scenario (cont)

User wants to configure a Telecom Bundle

Flow:

1. processConfigurationPicks (existing API) – Load the Model

2. processConfigurationPicks – to add “Fixed Line Telephone” & “1 year” contract.

© 2014 IBM Corporation

Sub-model scenario (cont)

User wants to create one or more
accounts for a “Fixed Line
Service Plan”

Flow:

1. processConfigurationPicks – to
add “Service Plan 2”

2. instantiateSubModel (new API)
– to create one or more dynamic
option item(s) that holds the
service plan (sub-model)
configuration.

© 2014 IBM Corporation

Sub-model scenario (cont)

User wants to configure the
“Service plan” account created
in the previous step.

Flow:

1. punchIntoSubmodel (new API)
– Punch-in to the sub-model to
configure the options.

2. processConfigurationPicks – to
add “Telephone Set 4” in the
sub-model configuration.

© 2014 IBM Corporation

Sub-model scenario (cont)

User wants to save the “Fixed Line Service Plan 2” configuration and return to (parent)
Telecom Bundle Configuration.

Flow:

1. returnFromSubModel (new API) – Save the sub-model configuration and return to parent
model.

© 2014 IBM Corporation

Demo

© 2014 IBM Corporation

Troubleshooting – Logging and tracing

Configurator APIs

Configurator application

© 2014 IBM Corporation

Upgrade Bill of Material

• Upgrade BOM provide a means of capturing the delta changes the seller is making to the
current offer.

• Seller is modifying a customer's existing offer and based on the customer's need is
upgrading the current offer with additional options.

• The act of modifying the offer is recorded as upgrade to the current offer.

• Comparison view to show the difference between base configuration and updated
configuration.

• Upgrade BOM Flow:
– An external system invokes Configurator passing the base BOM and upgrade flag as

true.
– Configurator is launched in the upgrade mode.

© 2014 IBM Corporation

Upgrade Bill of Material

© 2014 IBM Corporation

Upgrade Bill of Material

© 2014 IBM Corporation

Enhanced integration with Websphere Commerce

• We integrated with Websphere Commerce in previous release and continue to improve the
integration.

• In the current integration scenarios the URL of the Visual Modeler application and product
configurator is static.

• Through this feature, an extra parameter “LocaleCode” is provided which is the user
preferred locale.

• Websphere Commerce Business user will now be able to launch Visual modeler in his
preferred language from Websphere Commerce when locale code parameter is set as a
request parameter by the calling application.

• Websphere Commerce store user will be able to punchin to the configurator in his
preffered language from Websphere commerce when locale code parameter is set as a
request parameter by the calling application.

© 2014 IBM Corporation

Extensibility Improvements for IBM Sterling Configurator

• In our continued effort to reduce TCO, we have made extensibility improvements

• Standardizes the customization's for Sterling Configurator and Configurator XAPIs to use
customer overrides for customizations

• Customer overrides file is used to override
– functionhandlers.properties
– controls.properties
– ObjectMap.properties
– cachetypes.properties
– EhCache.xml
– RegressionTestReport.xml

• The customer override properties file is not changed during installation of upgrades or
patches. Prevents from customized settings being overwritten

© 2014 IBM Corporation

Extensibility Improvements for IBM Sterling Configurator

Configurator File Name Configurator Property Name
functionhandlers.properties yfs.yfs.function.handler.files

controls.properties yfs.yfs.control.handler.files

ObjectMap.properties yfs.yfs.objectmap.extension.file

cachetypes.properties yfs.yfs.cachetypes.extension.file

EhCache.xml yfs.yfs.ehcache.override.file

RegressionTestReport.xml yfs.yfs.regressiontestreport.override.file

© 2014 IBM Corporation

Knowledge Center Links for CPQ 9.4

http://www-01.ibm.com/support/knowledgecenter/SS4QMC_9.4.0/com.ibm.help.cpq.newfeatures.doc/c_functional.html

http://www-01.ibm.com/support/knowledgecenter/SS4QMC_9.4.0/com.ibm.help.cpq.newfeatures.doc/c_functional.html

	Slide Number 1
	Slide Number 2
	Sub-model Overview and types of Sub-model
	Sub-model punch in punch out
	Dynamic Instantiation
	APIs: Design & details
	Sub Model APIs
	instantiateSubModel API
	punchIntoSubModel API
	punchIntoSubModel API (cont)
	returnFromSubModel API
	processConfigurationPicks & generateConfigurationBOM API
	Sub-model scenario
	Sub-model scenario (cont)
	Sub-model scenario (cont)
	Sub-model scenario (cont)
	Sub-model scenario (cont)
	Slide Number 18
	Troubleshooting – Logging and tracing
	Upgrade Bill of Material
	Upgrade Bill of Material
	Upgrade Bill of Material
	Enhanced integration with Websphere Commerce
	Extensibility Improvements for IBM Sterling Configurator
	Extensibility Improvements for IBM Sterling Configurator
	Knowledge Center Links for CPQ 9.4

