
© 2015 IBM Corporation

Extensibility in IBM Sterling Store v9.4

Nimit Chauhan

Senior Staff Software Developer

© 2015 IBM Corporation

Framework Terminology

Extensibility Concepts

Using Extensibility Workbench

Use cases – demo

Debugging Tips

Agenda

© 2015 IBM Corporation

Framework Terminology

Extensibility Concepts

Using Extensibility Workbench

Use cases – demo

Debugging Tips

© 2015 IBM Corporation

o Widget

o uId – unique identifier

o Screen (View)

o Model

o Binding

o Namespace

o Events and Subscribers

o Mashup

o Mashup Reference (MashupRef)

o Controllers

o Wizard

o Editor

Terms

© 2015 IBM Corporation

Widget, uId
o Widget

• GUI element that allows the user to interact with application by directly reading or
editing information.

• Modeled as an object: attributes/properties (maintain state) and behaviors.

• Dojo and IDX (IBM Dojo Extensions) widgets used.

o uId

• Unique identifier for widget.

• Unique in a screen vs. DOM id that must be unique in a browser tab.

• Used mainly for extensibility.

© 2015 IBM Corporation

Screen, Model, Binding, Namespace

Presenter
Presentation Notes
Extensibility Tool also helps in identifying individual screens.

© 2015 IBM Corporation

Theater

screen,
seats

playMovie(),
letPeopleIn(),
letPeopleOut()

© 2015 IBM Corporation

o Ticket: Associated with a Seat and equivalent of binding. E.g.: YJ1-J1, ZA2-A2.

• Source (input) namespace: entry door. E.g.: Y, Z.

• Target (output) namespace: exit door. E.g.: J, A.

• Path: seat number. E.g.: entry path-J1, exit path-1; entry path-A2, exit path-2.

Theater Screen

Seats Widgets

People Model

Entry doors Source
namespaces

Exit doors Target namespaces

Tickets Binding

letPeopleIn() setModel()

letPeopleOut() getTargetModel()

Presenter
Presentation Notes
This diagram represents a very simplified analogy for Screen and Binding concepts.
This analogy is more apt for the logical arrangement of widgets under a namespace in memory than in UI.

Entry is through doors Y and Z to their respective levels.
Exit is available for each row. Shown in diagram only for 4 rows for simplicity.
NOTE: On a real screen and widgets, the data can be changed. This has not be represented by the above example.

© 2015 IBM Corporation

o Screen

• Re-usable composite widget that provides data binding and validation capability

on its constituents. It is created dynamically from a template.

• Template HTML: provides the UI to the screen and contains all constituent
widgets as they will be visible in UI.

• JavaScript files: Contain user defined behavior and events required for screen.

• Screen Reference: Special widget used to refer/use a screen inside another.

• setModel() and getTargetModel(): methods to show and get data from screen.

© 2015 IBM Corporation

o Model

• The data. Will be in JSON format on UI and XML at the backend.

o Binding

• As a concept it means associating data with a widget/control. It has namespace
and path components.

• Framework supports one-way binding.

• Main types:

 Source: Input. Used to show data on UI.

 Target: Output. Capture data from UI for server calls.

o Namespace

• The input and output routes for data on screen or any widget.

© 2015 IBM Corporation

o Binding in action

Presenter
Presentation Notes
Screen is a type of widget.
Every widget has a binder that gets data from it and sets data on it.
Above illustration represents a simplified picture of the same.

© 2015 IBM Corporation

Events and Subscribers
o The event framework follows the pub-sub model.

o Screens and their constituent widgets generate/publish events.

Screen

Text field
uId: orderNo

Text field
uId: lName

Button
uId: bSearch

validate()

search()

onBlur

onBlur

onClick

Publisher Framework Event Subscriber

afterScreenInit

orderNo_onBlur

bSearch_onClick

lName_onBlur

Presenter
Presentation Notes
Events are always published.
Some action is performed only if a subscriber is associated/registered for a particular event.
Same subscriber can be invoked for more than one events.

© 2015 IBM Corporation

o Events may be categorized as:

1. UI events: Published by widgets to notify any UI action.

• Examples: onClick, onBlur, onChange etc.

• Naming convention: <uId>_<UI event>. E.g.: btnSearch_onClick.

• Varies from widget to widget but list is fixed.

2. Screen events: Published by every screen to indicate completion of certain
screen level activity.

• No variation between screens: like UI events, these are fixed.

i. Initialization events: Signify that screen is loaded and ready. E.g.:
afterScreenInit, afterScreenLoad.

ii. General events: Available on all screens. E.g.: onExtnMashupCompletion,
beforeBehaviorSetModel.

© 2015 IBM Corporation

3. Business events: Custom events triggered programmatically by the application
based on business logic.

• Generally, not associated with any UI widget.

• Examples: backroompickComplete, containerCapacityExceeded,
readyForCustomerPick etc.

• Events will vary between screens.

• Usually used to communicate between screens.

o Subscribers: Associated with an event.

• Notified whenever relevant event is published. Has logic to be performed on an event.

• No subscriber => no action performed.

• Local subscribers: called within context of a screen i.e. when an event is triggered,
subscribers within that screen get notified.

• Global subscribers: called across screens i.e. when event is triggered, subscribers
between present on all active screens get notified.

© 2015 IBM Corporation

Mashup, Mashup Reference, Controllers
o Mashup

• Backend component used to invoke APIs.

o Mashup Reference

• Association between a screen and mashup(s).

• Two types: init and behavior.

Mashup Mashup Reference (MashupRef)
Contains information about API to call, input
and output to the API.

Essentially, screen level a reference to the
mashup being invoked. Contains mashup id
and namespace.

Handles authorization, transforming data and
invoking API/business logic.

Used by the controller to invoke the required
mashup.

Context of a mashup is the entire application. Context limited to a screen.

Identified by id and must be unique for the
application.

Identified by mashupRefId and must be
unique for the screen.

Presenter
Presentation Notes
Most APIs used by framework are XML APIs or XAPIs.
Mashups may also be used to invoke non-XPIs and services.

© 2015 IBM Corporation

o Controllers

• Act as mapping between client and the backend mashup layer.

• Manage the flow of data from the UI to the server.

• Init Controller:

 Contains Init Mashup Refs that are invoked during screen initialization.

• Behavior Controller:

 Contains Behavior Mashup Refs that are generally invoked on UI action like:
button click on the screen.

© 2015 IBM Corporation

Behavior Controller

mashupRef2
mashupRef3

InitController

mashupRef1

mashup1

mashup3

API1

API3

setModel()

handleMashupCompletion()

Screen

Screen initialization

UI action e.g.: button click

Presenter
Presentation Notes
Init controller only calls APIs if init mashup ref is provided in the screen.
Once mashup call is successful, output is set on screen by setModel.

Behavior controller is used to call mashups on custom logic/behavior on screen. E.g.: Button click.
handleMashupCompletion(): method called on screen with the response of the mashup call.
handleMashupOutput(): Wrapper written by applications for the above method. All application screens invoking behavior mashups call screens have this method

onExtnMashupCompletion: Event published when a behavior mashup call completes on an extension.

© 2015 IBM Corporation

Editor, Wizard
Editors as

Tabs

Container
Pack Wizard

Shipment
Editor

Container
Pack Screen

Mobile Editor

Container
Pack Wizard

Container
Pack Screen

Presenter
Presentation Notes
MDI: Multi document interface. Multiple editors open as separate tabs. Used only in Store for desktop.
Mobile version uses SDI (single document interface) where only one editor is open at a time.

© 2015 IBM Corporation

o Editor:

• An editor usually corresponds to an entity. In Web Store we have editors like:
Shipment, Product, Home etc.

• An editor will contain placeholders to display screens and wizards.

o Wizard:

• A set of screens loaded sequentially, commonly used to complete a series of
operations that require more than one input.

• Wizards are used to complete a flow in the application. E.g.: Backroom pick.

• Transition between screens/pages is governed by rules.

• Wizards components:

• Frontend component: js and HTML files that render wizard on the browser.

• Backend component: wizard flow definition xml and java implementation
classes.

© 2015 IBM Corporation

o Wizard definition xml (Knowledge Center link in slide notes):

o Example: Backroom pick wizard is a simple 2 page wizard.

Click Next

Trans
ition
Rule

Page 1

Page 2

Page 3 Transition
rule 1

Transition
rule 2

Entities They can be pages or rules

Transitions How to move between
pages or rules

Presenter
Presentation Notes
Info center link for wizards: http://www-01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/c_wizard_overview.html
For a wizard like Backroom pick, customer can extend/override the flow xml to either have a single page or add more rules and pages.

© 2015 IBM Corporation

Screen and its associated files

Template HTML
•Custom js file
•Called js file

Init Controller js file Behavior Controller js file

•Generated JavaScript (js) file
•Called UI.js file

Init Controller xml

Files required at server side

Behavior Controller xml

Presenter
Presentation Notes
NOTE:
For a custom screen, only a single file - .js file will suffice.
Template HMTL is present in templates folder located in screen directory (package).
Other files:
Init and Behavior controller xmls – contain mashupRefs. Essentially xml representation of json data in js files.
Mashup xmls – not directly related to screen but must be present if screen has any mashupRefs.
ScreenBundle files – used only by extensibility workbench for suggesting g11n bundles.

© 2015 IBM Corporation

How it all works together

Screen (View)

Behavior (Functions)

Backend Layer

Widgets

Controller

JSON
Initialization Mashup Reference

Mashup Layer (Authentication, Transaction Handling, Mashup Implementation)

Business Logic Layer (XML APIs)

XM
L

Behavior Mashup Reference

XML
Model

JSON
Model

Presenter
Presentation Notes
Store follows MVC framework.

© 2015 IBM Corporation

Framework Terminology

Extensibility Concepts

Using Extensibility Workbench

Use cases – demo

Debugging Tips

© 2015 IBM Corporation

Introduction
o Designed for future: A design principle where the implementation considers future growth

or modification.

o Runtime extensibility: A system whose behavior is modifiable at runtime without
recompiling or changing the original source code. UI extensibility in our framework follows
this paradigm.

Need for extensibility is driven by:

• Integration with other applications.

• Changed use cases.

• Need to capture/show more relevant data to user.

• Need to display data in an easy to understand way.

• Other unforeseen requirements.

Extensibility should not be mistaken with extends (key word in java) or inheritance.

© 2015 IBM Corporation

Types
o Types of Extensions: There are 2 types of extensions supported.

• Differential: Add or modify the existing entity. Typically stored in separate file.
• Override: Replace the entity being extended.

Override Differential
Pros:
• Easy to change behavior, like a new
screen.

Pros:
• Less work and source code
management.
• Framework provides tools:
Extensibility workbench.

Cons:
• More work, as need to re-write
existing functionality.
• Upgrade issues.

Cons:
• Work in a framework defined way.

© 2015 IBM Corporation

o Differential UI Extensibility: Involves merging of behavior and UI.

UI Control

UI Control

Application
Function

Application
Function

Extensibility Control

Extensibility
Function

Application Screen Extension Screen Final Screen

Extensibility Control

Extensibility
Function

Application
Function

Application
Function

UI Control

UI Control

Differential

Presenter
Presentation Notes
Extensions are applied to the functionality of the application.
Screen widget is modified with minor UI and functionality changes.

Used when screen requires enhancements such as removing controls or changing minor business use cases.
The differential extensions are provided at screen widget level not at instance level.

© 2015 IBM Corporation

o Override UI Extensibility

Application Screen Custom Screen

Final Screen
(Custom Screen)

Override

UI Control

UI Control

Application
Function

Application
Function

Extensibility Control

Extensibility
Function

Extensibility Control

Extensibility
Function

Extensibility Control

Extensibility
Function

Extensibility Control

Extensibility
Function

Presenter
Presentation Notes
Screen widget is replaced with custom implementation.
Used when screen requires major enhancements.

© 2015 IBM Corporation

Framework Terminology

Extensibility Concepts

Using Extensibility Workbench

Use cases – demo

Debugging Tips

© 2015 IBM Corporation

About the Tool
o Extensibility workbench is a WYSIWYG (what you see is what you get) tool.

o It can be used for:

1. Differentially extending the screen: add/move/hide/change widgets.

2. Adding new events and subscribers: subscriber method implementation required
in custom js.

3. Define new namespaces on screen.

4. Extending mashups: differential/override/new.

5. Viewing utility method documentation.

6. Understanding the flow with the browser debugger.

o Tool’s WYSIWYG capability is not available for creating new screens or extending wizards
and editors. There are well documented steps available for the same on the Knowledge
Center: (refer notes section on the slide)

Presenter
Presentation Notes
Create new screen: http://www-01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/c_create_custom_screens.html
Wizards: http://www-01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/c_wizard_overview.html
Editors: http://www-01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/c_create_custom_editor.html

© 2015 IBM Corporation

Screen Extension (_EXTENSION.xml)

UI

Extension
behavior Widgets &

extensions

Screen extension and its associated files

Template HTML
•Custom js file
•Called js file

Init Controller js file Behavior Controller js file

•Generated extension
JavaScript (js) file
•Called UI.js file

Init Controller xml

Files required at server side

Behavior Controller xml

Files required by tool

Mashup xmls – if extended Screenbundle xmls ExtnMetaData.xml

Presenter
Presentation Notes
NOTE: Template HMTL is present in templates folder located in extension screen directory (package).

ExtnMetaData.xml – this file contains information about the screen and its extensions.

© 2015 IBM Corporation

o Before you begin.. a few things to know
• Installation or extension directory should be accessible:

• write access: to save and modify extensions.
• read access: to load/view extensions.

• Deploy exploded development Web Archive (wscdev.war).
• Ensure that the value of the uiExtensibilityMode system argument for the application

server is set to true.
• Further reference: http://www-

01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/c
_understand_extensibility_tool.html

Presenter
Presentation Notes
By default, the extensions are created in the <INSTALL DIR>/extensions/<APP>/webpages/ directory. Here, <APP> refers to the application code, which will be wsc here.
Ensure that the installation directory is accessible (read and write) on the server where the Store application is deployed.
It is suggested that you deploy the application in exploded development Web Archive (WAR) mode. Use the wscdev.war file. This file contains more folders and web.xml entries that are required for extensibility.
In production, you must deploy wsc.war with the files created during extensibility extensions folder in the installation directory and preferably set the uiExtensibilityMode system argument as false for application server.

© 2015 IBM Corporation

Information about screen like: complete screen name, extension name, path etc.

Namespaces, Mashups and Mashup References

Events and subscribers

Widget Palette: Widgets that can be added to screen.
Screen Outline: Hierarchical representation of widgets as they appear on screen.
Properties: Editable properties for a widget.

© 2015 IBM Corporation

Framework Terminology

Extensibility Concepts

Using Extensibility Workbench

Use cases – demo

Debugging Tips

© 2015 IBM Corporation

Use Case 1: Ship from Store
o Problem Statement:

• Customize Web Store to enable a store associate to manually capture tracking
information on an Order.

o Current UI:

o Extended UI:

© 2015 IBM Corporation

o Action required: Differentially Extend the screen(s)

o Further reference: refer notes section on this slide

o Refer next slide for detailed steps

o Short hand notations used in next slide:

1. ContainerPackContainerList (List Screen) and ContainerPackContainerView (View
Screen). View Screen is the parent screen of List Screen.

2. Extensibility workbench: EWB

3. Any JavaScript editor: JSE

Steps Action Tool to use

1 Add new widgets Extensibility workbench

2 Add event subscribers Extensibility workbench

3 Add behavior mashup Extensibility workbench

4 Provide implementation for all
subscribers

Any JavaScript editor

Presenter
Presentation Notes
http://www-01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/t_adding_widget.html
http://www-01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/c_add_subscribers_to_events.html
http://www-01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/t_creating_custom_mashups.html

© 2015 IBM Corporation

Action Tool

1 List Screen: Add required widgets EWB

2 List Screen: Add event subscribers to button click EWB

3 List Screen: Provide target binding for the textfield EWB

4 List Screen: Provide implementation for subscriber associated in #2 –
a) get tracking number entered
b) fire an event to parent

JSE

5 View Screen: Create new mashup ref and mashup EWB

6 View Screen: Add subscribers for:
a) event published by child in #4b
b) screen event: onExtnMashupCompletion

EWB

7 View Screen: Provide implementation for subscriber associated in #6a –
invoke mashup defined in #5

JSE

8 View Screen: Provide implementation for subscriber associated in #6b –
a) Open print dialog to print tracking information
b) fire event to child

JSE

9 List Screen: Add event subscriber for event published in #8b EWB

10 List Screen: Provide implementation for subscriber associated in #9 -
update the data on screen

JSE

© 2015 IBM Corporation

Use Case 2: Extend Address panels
o Problem Statement:

• We need to move the Customer Name field from its location at the end to the 1st
position in the address panel for a Japanese address.

o Current UI:

o Extended UI:

JP

JP

US

US

© 2015 IBM Corporation

o Address Panel is a special screen – Identifier Screen.

o What is Identifier Screen?

• Special screen that has multiple UI flavors, each of which maps to a unique
identifier. Thus, the name.

• Without any input, the screen does not have any UI.

• The template HTML is computed in memory at runtime based on some
data/condition that returns the UI identifier to be loaded.

o Why Identifier Screen?

• Typically used when the UI of a screen varies significantly based on data but
underlying behavior and mashups invoked remain same.

• Each country has different address format: Thus, UI needs to vary accordingly.

• Country code is the distinguishing parameter here and can be used as identifier.

© 2015 IBM Corporation

o Identifier Screen: components

• New component: Identifier HTML file.

• Widget repository: normal HTML file.

• Identifier HMTL file is essentially a
wireframe/blueprint that contain
information about widgets arrangement
on the UI.

• Widgets are referred here. Widgets
substituted in these placeholders from
repository at runtime.

Widget Repository Identifier

Contains all widgets used across all
identifiers.

Each identifier contains widgets required
by it.

Flat list – no arrangement. Widgets arranged as they should appear
in UI.

Complete widget definition. Any properties to be changed defined.

Presenter
Presentation Notes
In an identifier screen, the HTML file that serves as template for regular screens serves as widget repository.
These screens do not have any UI until provided with an input of the identifier to load.

© 2015 IBM Corporation

o Identifier Screen: working

Widget Repository

•Name
•Zip code
•Country Code
•Address Line1
•Address Line 2

Identifier: US

•Name
•Address Line1
•Address Line 2
•Zip code
•Country Code

Identifier: JP

•Country Code
•Zip code
•Address Line1
•Name

Processing

Input with identifier
id: US

Presenter
Presentation Notes
Widget repository may be visualized as a box of lego bricks.
Identifiers may be visualized (small differences exist, but ok for simplicity) as pictorial blueprints/schematics of things that can be built.
Final UI observed for the screen may be thought of as the component/object built while following the blueprint.

© 2015 IBM Corporation

o Action required: Differentially Extend the screen for Japanese identifier only

o Further reference: http://www-
01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/t_ws_
movingwidgetsinanidentifierscreen.html

Steps Action Tool to use

1 Move the required widgets Extensibility workbench

© 2015 IBM Corporation

Use Case 3: Adding Related task
o Problem Statement:

• We need to add a new Related Task with a link for Advanced Search on the Home
page in Store.

o Action required: Create a custom screen for Related Task

o Further reference: http://www-
01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/c_cre
ate_custom_screens.html

Steps Action Tool to use
1 Create a new Screen with an

Advanced Search link
Any JavaScript/HTML
editor

2 Link new screen to the Home page
using Screen Reference widget

Extensibility workbench

3 Add business logic for Advanced
Search link

Any JavaScript editor

© 2015 IBM Corporation

Use Case 4: Customizing page size
o Problem Statement:

• Change the default records to fetch while searching for Orders on the mobile and
desktop screens to 10.

o Current UI: Extended UI:

© 2015 IBM Corporation

o Action required: Create page size definition JSON file

o Further reference: http://www-
01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/t_pagi
nation_extensibility.html

Steps Action Tool to use
1 Create the page size definition JSON

file in extension directory.
Re-build the WAR/EAR and re-start
server.

Any JavaScript editor

© 2015 IBM Corporation

Use Case 5: Phone number formatting
o Problem Statement:

• Format the phone number on the UI.

o Current UI:

o Extended UI:

© 2015 IBM Corporation

o Action required: Create new formatter and associate it with widget

o Further reference: http://www-
01.ibm.com/support/knowledgecenter/SS6PEW_9.4.0/com.ibm.help.ws.custom.doc/t_ws_
enablingformattingforphonenumberfields.html

Steps Action Tool to use
1 Create a phone number formatter Any JavaScript editor

2 Register the formatter Any JavaScript editor

3 Provide the registered formatter for
phone number field

Extensibility workbench

Presenter
Presentation Notes
Registering the formatter must be done in a file that will be loaded in a file that will load before the 1st phone number needs to be formatted.
This is required so that the method can be added to registry before a phone number is encountered.
Thus, the choice of Related Task panel created on Home Page.

© 2015 IBM Corporation

Framework Terminology

Extensibility Concepts

Using Extensibility Workbench

Use cases – demo

Debugging Tips

© 2015 IBM Corporation

Using the tool and browser debugger
o Debugging the action occurring on click of Update button on the

ContainerPackContainerList screen (updates container weight).

Requirement How to do?
To get name of screen being
extended:
ContainerPackContainerList

EWB – Screen tab

To get the method invoked on button
click: saveContainerWeight()

EWB – select button and refer
Events in Properties view (Layout
tab)

To view the source code loaded for
screen for debugging

Debugger – search for the selected
screen name.

To follow the flow of control once
button is clicked

Debugger –
•locate for the method and put a
breakpoint.
•Exit EWB and click on the button

© 2015 IBM Corporation

o Identifying data sent and received by screen: Select the Network tab on browser and clear
all old requests and click on Update button in UI.

1. Select the selected request on left to view the request headers. Posted data is under
scControllerData (highlighted in blue for effect).

2. Tip: Copy the highlighted text and switch to Console tab.

• Type dojo.fromJson(<put copied text here as a valid string>) – dojo method to
convert a json string to a json object.

• This creates a json object which is easy to understand.

© 2015 IBM Corporation

3. Select Preview to view response as json at the expanded path under controllerData:

4. Identifying if error occurred on server side:

• Response might contain some error code or error string.

• Data might be unexpected/invalid.

• In such scenarios, error may be at Mashup layer level or API level.

• No additional tooling/debugging capability is provided.

• Checking server logs and enabling API trace and verbose logs may be required.

Fully qualified controller class name: dots replaced by _

Mashup reference

Mashup reference

© 2015 IBM Corporation

Questions?

© 2015 IBM Corporation

Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, Coremetrics, DB2, PowerVM, Rational, WebSphere, and z/VM are
trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark
information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL
PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND
ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS
BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO
CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES
ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY
OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR
SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM
(OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY
AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2014. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

	Extensibility in IBM Sterling Store v9.4
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Trademarks, disclaimer, and copyright information

