
WebSphere MQ
White paper

Increase the value of CICS applications
with WebSphere MQ.

February 2008

Author
Dermot Flaherty, senior technical staff member and lead architect,
WebSphere MQ Product and Technologies

Contributors
· Mark Cocker, software engineer, CICS Technical Strategy and Planning
· Carolyn Elkins, IT specialist, Advanced Technical Support
· John Tilling, senior software engineer, CICS Technical Planning and Strategy
· Steve Zemblowski, executive IT specialist, Advanced Technical Support

http://www.ibm.com/us/
http://www-306.ibm.com/software/websphere/

Increase the value of CICS applications with WebSphere MQ.
Page �

2	 Introduction

3	 Increased connectivity means

increased business

4	 Messaging backbone, SOA 	

and ESB

5	 What is WebSphere MQ?

9	 WebSphere MQ and workload delivery

12 WebSphere MQ clustering

14	 WebSphere MQ support of sysplex

shared queues

17	 WebSphere MQ support of the 	

CICS bridge

19	 Recent enhancements to CICS 	

and WebSphere MQ connectivity

20	 WebSphere MQ and the Web

21	 WebSphere MQ for z/OS helps

ensure secure and auditable

access to business data

22	 Summary

23	 For more information

Contents
Introduction

This white paper is intended for IT architects and application developers who

have an existing investment in the IBM CICS® platform and would like to see

how they can get more out of that investment. It examines the ways in which

IBM WebSphere® MQ can increase the processing capability of IBM CICS

Transaction Server. WebSphere MQ achieves this by extending the reach of

CICS from a wide range of computing platforms both inside and outside of your

enterprise to access business data of all types (file, database and so on).

The result is an increase in the business value of your investment in the

CICS platform.

We will also see how the innate, loosely coupled style of programming supported

by WebSphere MQ provides great flexibility in the placement of business logic,

and how it naturally supports a move toward a service oriented architecture (SOA).

This paper does not provide a detailed comparison of the various connectivity

mechanisms available to the CICS programmer. Instead, it will examine in

general terms the differences between them and their suitability for particular

application requirements.

The paper will also illustrate how IBM’s enterprise service bus (ESB) products

can provide additional business value.

Increase the value of CICS applications with WebSphere MQ.
Page �

Increased connectivity means increased business

A growing industry focus on SOA has led clients to view connectivity as a key

part of the overall aim of discovery and creation of business services. Clients

are aware that services can be used and reused to provide greater flexibility

and increased speed of deployment of new solutions to meet changing

business needs.

Enterprises today have a huge ongoing investment in the IBM System z™

platform. Mainframes contain significant core assets in business data and

applications with an estimated applications-replacement cost of US$20 trillion.

Furthermore, today’s businesses depend on the ability of CICS to process

billions of transactions a day with a total value of more than US$1 trillion a

week.1 In this context, it’s worth remembering that many of us use System z

applications and technology whenever we use an ATM to withdraw cash.

Given that background and the growing investment by both clients and IBM in

the System z platform, there is an increasing need to see how these assets can

be reused more effectively. A big part of this focus is on connectivity.

In 2006, IBM defined five entry points to help clients get started with SOA

adoption. One of these is the connectivity entry point. Within this space, IBM

defined the need for a messaging backbone as the foundation for connectivity

and introduced the concept of an ESB to enable more-intelligent and

more-dynamic routing of service requests.

Increase the value of CICS applications with WebSphere MQ.
Page �

Messaging backbone, SOA and ESB

One of the key principles of SOA is to decouple the physical implementation
of a software component from its representation or interface. In this way, the
service definition and its interface can remain stable for as long as the business
requires, shielding them from lower level technology changes. For example,
you might need to run a credit checking service as part of a business process.
It is highly likely that the application, function or provider that executes this
will change over time, but with a service oriented approach, processes that
use these services are unaffected by these changes.

Enabling all applications and data sources to be able to communicate in
this way requires a messaging backbone. The messaging backbone can be
thought of as a pervasive communications infrastructure. It provides reliable
and secure data communication between applications on all computing
platforms and in all execution environments. And it provides an inherently
loosely coupled way of integrating applications.

The term loosely coupled refers to the ability to make changes to application
deployments without necessarily requiring the connected applications
themselves to be changed.

As well as providing connectivity, the messaging backbone should also be able
to provide guaranteed qualities-of-transport service (for example, reliable
message delivery). It should allow higher-level functions, such as those
embodied in an ESB, to focus on service delivery.

WebSphere MQ provides messaging-based connectivity between applications
running on IBM z/OS®, Linux for IBM System z™, Linux®, Microsoft®
Windows®, IBM AIX®, IBM System i™ and Sun Solaris — in fact, all the major
computing platforms. WebSphere MQ is absolutely relied on by more than ten
thousand IBM customers who run it on 40 or so computing platforms in more
than 80 platform configurations. In addition, there are clients who use
WebSphere MQ networks today to carry data worth US trillions of dollars a day.

The key point is that WebSphere MQ has proven reliability in many different
client environments, and for them WebSphere MQ is their messaging backbone.

Now let’s relate the messaging backbone to ESB technology. Summed up
briefly, we could say that WebSphere MQ connects disparate applications
reliably using a common programming model but does not understand the
application data that it is carrying. Although WebSphere MQ will perform
code-page conversion as data in, for example, Spanish or German flows
between a Windows platform (ASCII) and a z/OS platform (EBCDIC),

it has no inherent knowledge of the data format.

Increase the value of CICS applications with WebSphere MQ.
Page �

An ESB has the capability to understand the data in the WebSphere MQ

message. From this understanding, it can take actions based on data values, it

can transform the data and it can enrich the data from external sources. This

ability eases the integration to CICS transactions from multiple sources.

For example, an XML message that uses one list of units-of-measure abbreviations

can be converted easily to a COBOL copybook format that uses a slightly

different list of abbreviations. The ESB can also be used to supply basic

information, such as the CICS program that needs to be run, so that client

programs do not have to be aware of the service provider.

Or an ESB could decide, based on either data content or some other service

criteria, that a particular service request should be processed through one of a

number of different mechanisms depending on a service classification. As we

will see, this is an important point when we examine the different interaction

patterns as we compare the asynchronous queued style of communications, as

embodied in WebSphere MQ, with, for example, direct forms of communication,

such as connectors from IBM CICS Transaction Gateway that use Java™ 2

Platform, Enterprise Edition (J2EE) Connector architecture (JCA) .

WebSphere MQ provides a messaging backbone that is supported by all of

IBM’s ESB offerings — IBM WebSphere Message Broker, IBM WebSphere

Enterprise Service Bus and IBM WebSphere DataPower® Integration

Appliance XI50.

What is WebSphere MQ?

As a market leader in message-oriented middleware, WebSphere MQ allows

clients to reliably integrate disparate applications across a wide variety of

computer software and hardware. It provides a simple, yet functionally rich

application programming interface, known as the Message Queue Interface

(MQI), across all its supported platforms. And it fully implements the industry-

standard Java Message Service (JMS) interface. These interfaces essentially

support application-to-application communication through queues and allow

those applications to not be concerned with the location of those queues or

who processes them.

Increase the value of CICS applications with WebSphere MQ.
Page �

The concept of the queue represents the service interface mentioned above. It
abstracts from the physical implementation and location of the application
being interacted with. As a result, the developer is unaffected by changes to the
destination application; the WebSphere MQ infrastructure takes care of that.
Queues are hosted by queue managers, and the MQI provides the bridge from
the application to a WebSphere MQ queue manager. Queues can either be local
to a queue manager or hosted on another queue manager. In the latter case,
WebSphere MQ provides transmission facilities to transport the message data.
Applications communicate with one another using PUT and GET verbs, which
allows great flexibility in creating application-interaction patterns ranging
from pseudo-synchronous request-and-response styles, to fire-and-forget styles
and mixtures of both.

A request-response interaction pattern is just what its name suggests. To the
requester, the application appears to be a completely synchronous invocation of
a server application with a response from the server after execution. But it is in
fact implemented by two distinct asynchronous, one-way message exchanges.
The MQI provides a simple way in which these two flows can be combined to
make a pseudo-synchronous pattern.

Many WebSphere MQ clients use just such an interaction pattern to support
customer-facing interactions and achieve satisfactory response times that meet
or exceed their business requirements.

Similarly, the fire-and-forget style applies to a one-way message exchange in
which a response is not required. WebSphere MQ provides reliable message
delivery to help ensure that the message data is propagated to the target queue.

These styles are shown in Figure 1.

Figure 1. Pseudo-synchronous or asynchronous styles

A

A

B

B

Customer-facing
transaction with
application A invoking
CICS Transaction B.

Many clients have such
topologies meeting
agreed service levels of
response time.

Queue

Queue

Queue

Fire-and-forget

Could also be a customer-
facing transaction, but no
response is required.

Request-reply

Increase the value of CICS applications with WebSphere MQ.
Page �

It can be readily seen how the two styles can be combined so that a

nonreturn, fire-and-forget flow can take advantage of additional

processing capacity to enable parallel execution. This is shown in

Figure 2, where we see that Transaction B has created a nonreturn

message flow for further processing in either another CICS transaction

or perhaps on another WebSphere MQ platform.

Figure 2. Pseudo-synchronous and asynchronous styles enable parallel processing

Transactional support is provided by WebSphere MQ — both as a resource

manager coordinated by transaction coordinators such as CICS or Resource

Recovery Services (RRS), and as an XA programming-interface coordinator on

distributed platforms. This helps to ensure that messages can be delivered with

full transactional integrity, providing assured delivery in support of business-

critical applications.

Naturally, in a real-world scenario in which CICS is the execution environment,

the server Transaction B (in the examples shown in the diagrams) will attempt

to ensure that the consumption of the request message, the generation of the

reply message and the generation of the fire-and-forget flow are all performed

under syncpoint control. In the event of transaction failure, the updates

(including the consumption of the request message) would be rolled back.

A

B

C

Queue

Queue

Queue

Request-reply

Another customer-facing
transaction but with additional
processing that can be run
in parallel.

Fire-and-forget flow,
perhaps for an audit trail.

Increase the value of CICS applications with WebSphere MQ.
Page �

This is shown in Figure 3, which also shows an IBM DB2® update as part of the

processing in Transaction B.

Figure 3. Transactional support ensures all or nothing

WebSphere MQ can efficiently carry data of any type and of any size (which is

achieved by grouping physical messages to create logical messages of unlimited

size). With Version 6, individual messages can be 100 MB in size across all

platforms (including IBM Parallel Sysplex® shared message queues on z/OS).

Message retrieval can be sequential (on a first-in-first-out basis), selective

(based on a message or correlation identifier that can be set by the application

when the message is created) or subject to message priority. Message priority

can also be set at message-creation time to provide support for expedited

message delivery.

The use of a message identifier, correlation identifier or both facilitates the very

common request-response message-interaction pattern in which the response

carries the original message or correlation identifier, and the response message

is one of a number going to the same reply queue.

A

C

B

DB2

Reliable messaging coupled
with transactional integrity
supports composition of
complex applications to fully
support parallel processing.

Request-reply

Message PUT, GET and relational
database management system
(RDBMS) operations can be part
of a single unit of work (UOW) to
ensure transactional integrity.

Queue

Queue

Queue

Fire-and-forget flow,
perhaps for an audit trail.

Increase the value of CICS applications with WebSphere MQ.
Page �

WebSphere MQ and workload delivery

As we have seen, WebSphere MQ provides a simple yet powerful set of application

programming interfaces (APIs) to support both reliable data transport and an

extremely flexible range of application-interaction patterns across all the major

computing platforms. In this way, it can be thought of as a consistent method

for delivering work to processing environments, such as CICS. In the following

sections, we’ll look at two important ways that WebSphere MQ provides a

business data pipe for CICS.

The WebSphere MQ programming model uses queues as an indirection

mechanism for application communication. The following example shows how

request-response interactions can easily be constructed using this model:

1.	 Application A issues a PUT command to send a message to the request queue

(specifying a reply queue for the response message).

2.	 Application A issues the appropriate COMMIT verb. (This has the effect of releasing

the request message for subsequent retrieval by Transaction B.)

3.	 Application A issues a GET command (with the Wait option) to receive a message

from the reply queue.

4.	 CICS Transaction B issues a GET command to receive a message from the

request queue.

5.	 CICS Transaction B processes the message (perhaps creating a DB2 update

and a further message for subsequent processing).

6.	 CICS Transaction B generates the response message.

7.	 CICS Transaction B issues an EXEC CICS SYNCPOINT call to commit the

resources (including the WebSphere MQ messages) processed in the transaction.

(This has the effect of releasing the response message for delivery to the waiting

Application A.)

8.	 Upon receipt of the response message, the GET command issued by Application

A is satisfied, and the application then completes processing, commits the message

update and ends.

Increase the value of CICS applications with WebSphere MQ.
Page 10

We can readily see that this is a classic client-server application pair with CICS

Transaction B taking the part of the server application. In messaging terms,

Transaction B is a message-driven application, in the sense that its work is

provided by the message it retrieves and its processing is typically bounded by

the receipt of the message and the final PUT issued for the reply.

If we look at this in more detail, we typically find the following pattern for CICS

Transaction B:

1.	 Transaction B starts.

2.	 Transaction B issues a GET command to receive a message from the request queue.

3.	 While there are no more request messages, Transaction B takes these actions:

	 a. Processes the message

	 b. Issues a PUT command to send a message to the reply queue.

	 c. Issues an EXEC CICS SYNCPOINT call.

	 d. Issues a GET command to receive a message from the request queue. (It waits if 	

	 no message is available.)

4.	 Transaction B ends.

So we can see that after the transaction starts, it will process the queue until

there are no more messages left to process. WebSphere MQ provides facilities

for allowing a GET message to wait for a specified interval to allow for late

messages to arrive (to prevent premature ending of the transaction).

This style of CICS application is not only very efficient but also scalable,

because multiple transactions can safely process messages in parallel.

As shown in the pattern, CICS Transaction B will retrieve the request

message, process it and generate the response message. If the processing

requires a DB2 update (for example), then depending on the business

requirements the update can be performed within the single unit of work that is

processing the request message (as illustrated in Figure 3), or it can be

processed in parallel by the simple mechanism of generating a fire-and-forget

message. The DB2 update could actually be performed by another CICS

transaction similar to Transaction C shown in Figure 3.

Increase the value of CICS applications with WebSphere MQ.
Page 11

Another important WebSphere MQ facility in this scenario is support for

triggering, which allows an application to start when messages first arrive on a

queue. So CICS Transaction B would not have to be a long-running transaction

waiting for messages to arrive, but would be started when (for example)

messages first arrive on an empty request queue.

The key point here is that through the use of message queues, WebSphere MQ

provides a flexible pull model for processing data, in which the processing

programs do not need to wait for input but instead can be triggered when there

is work to do. This is an extremely efficient way to use CICS resources,

especially when combined with the features for threadsafe transactions in

CICS Transaction Server, Version 3.2

Also notice that this model is well-suited to the notion of an application

queue, in which messages of a similar type — for example, those that require

processing by the same application — are placed on the same queue. This is a

common pattern.

Now let’s look at a case in which there is no requirement for message ordering,

in which each message would represent a piece of work, such as an order-entry

update, that is independent of its position in the message queue. In such a case,

the pull model easily supports multiple instances of server transactions (B or C)

processing a particular queue to maximize throughput. Each message carries

the information required to process it, including the message- and correlation-

identifier information as well as the reply-queue name. Therefore, it can be

processed by any instance of the CICS server transaction, provided there are no

other affinities.

It can be seen that the pull model and triggering facilities provided by

WebSphere MQ provide a powerful and flexible alternative to more-traditional

push models. As a result, we can avoid the typical issues we get with push

models in which the target is not available.

WebSphere MQ naturally supports work to be processed at rates that the CICS

system can sustain. To better understand this support, we will now look at

related aspects of workload delivery.

Increase the value of CICS applications with WebSphere MQ.
Page 12

WebSphere MQ clustering

If we look at the pull-model and triggering delivery style of WebSphere MQ

from an availability perspective, it can be seen that if there is any problem with

the queue itself, CICS Transaction B or even the application-owning region

(AOR) in which Transaction B runs, then we have a problem with the delivery

of the message data into CICS. WebSphere MQ provides two mechanisms to

address this. One is a platform-wide facility called WebSphere MQ clustering,

which we will look at now, and the other is support of sysplex shared queues,
which we will examine later.

WebSphere MQ clustering provides two powerful facilities that can be used to

reduce administration and provide workload distribution.

In the preceding example, we’ve seen how Application A, running perhaps on a

distributed platform, can interact with CICS Transaction B, running on z/OS.

(Application A could also be another CICS transaction or another program

running on z/OS.) The applications communicate as indicated, and all they

need to know is the names of the queues they are processing.

But clearly some administration is required to define the queues to WebSphere

MQ and to set up the paths to help ensure successful transmission of message

data between, for example, a WebSphere MQ queue manager running on

Windows and one running on z/OS. WebSphere MQ provides a number of

artifacts, particularly channels and transmission queues, that are required to

establish intercommunication between two instances of WebSphere MQ.

And it provides commands to define these artifacts.

WebSphere MQ clustering reduces this administration by allowing WebSphere

MQ queue managers to participate in a cluster. The key feature of a WebSphere

MQ cluster is a repository, accessible throughout the cluster, which contains

information about the location of cluster queues.

Increase the value of CICS applications with WebSphere MQ.
Page 13

A cluster queue is defined through normal WebSphere MQ commands but

known throughout the WebSphere MQ cluster and accessible from anywhere

in the cluster without the need for additional definitions. This reduces the

WebSphere MQ administration required and removes potential sources of

definition errors.

In addition, multiple instances of a cluster queue can be defined (one per queue

manager). WebSphere MQ provides support for workload balancing among the

instances for applications that perform a series of PUT operations to a cluster

queue. Figure 4 illustrates this concept.

Figure 4. Application A issues a PUT command to write three messages to a cluster queue.

Figure 4 shows a variation on the previous examples. Here we have Application

A sending three messages to what it considers a single queue. But the queue is

defined to be a cluster queue. The result is that WebSphere MQ distributes the

messages to the three actual instances of the queue. In this case, the instances

are assumed to be hosted by three queue managers, each of which is being

accessed by three CICS AORs, and each of which, in turn, is running an

instance of Transaction B.

B

B

B

A

Queue

Increase the value of CICS applications with WebSphere MQ.
Page 14

The result is that we not only achieve improved overall availability by spread-

ing the workload across a number of processing programs, but we achieve a

high degree of parallel processing, because each instance of Transaction B can

overlap its execution with other instances. Note that this support is completely

transparent to both Application A and Transaction B. WebSphere MQ will

spread the workload among the cluster queue instances according to the work-

load algorithm selected, and in this way, the message data can be spread across

multiple AORs to ameliorate the effects of a particular AOR (or WebSphere MQ

queue manager) not being available. In WebSphere MQ, Version 6, there is

support for simple round-robin distribution as well as more-sophisticated

spreading. (For example, you can select a particular route only if others are

not available.)

WebSphere MQ clustering is a widely used technique for spreading work across

the AORs in a CICS environment to increase the overall availability.

If a particular cluster queue is unavailable (for example, because the

WebSphere MQ queue manager that hosts that instance is down), new messages

can still reach other cluster instances, but any messages on the failed instance

remain unavailable until the availability is restored. (This is true of all queues

that are owned by individual queue managers.) To address this issue,

WebSphere MQ provides sysplex shared queues to provide maximum message

availability for z/OS.

WebSphere MQ support of sysplex shared queues

To provide the maximum availability of message data, WebSphere MQ on z/OS

provides unique technology that makes use of the coupling facility to hold a

shared queue.

In this case, the shared queue is not owned by any individual queue manager

and, as a result, is isolated from an outage of an individual queue manager or

logical partition (LPAR).

Increase the value of CICS applications with WebSphere MQ.
Page 15

As with WebSphere MQ clustering, the use of shared queues is transparent to

the application, which can use the normal WebSphere MQ facilities — message

priority, persistence, sequential or selective retrieval and triggering, for

example — to process them. With WebSphere MQ for z/OS, Version 6, shared

messages can now be up 100 MB in size, which is the same limit as that for

nonshared messages.

The key feature of shared queues is their availability across the sysplex.

This enables CICS transactions to run in multiple AORs and access the same

queue. This is illustrated in Figure 5.

Figure 5. WebSphere MQ for z/OS shared queues

Figure 5 shows multiple processing applications all able to access the same

shared queue in a queue-sharing group within the sysplex.

In the examples that we’ve been using with CICS Transaction B, we can see how

multiple instances of Transaction B can be running in AORs across the sysplex,

all processing messages from the same shared-request queue to maximize

throughput.

MQGET

z/OS

z/OS

z/OS
Coupling facility,

Shared queue

MQPUT

Queue-sharing group

Increase the value of CICS applications with WebSphere MQ.
Page 16

Furthermore, although applications running outside the sysplex cannot

retrieve messages directly from the shared queues (because GET operations

can access only those queues that are local to the connected queue manager),

they can use PUT operations to write messages to a shared queue.

WebSphere MQ supports dynamic, virtual IP addressing so that sysplex

distributor can be used to route connections around the sysplex under the

control of z/OS Workload Manager. Alternatively, WebSphere MQ clustering

can also be used for PUT operations to write messages to a shared queue.

Additionally, WebSphere MQ maintains knowledge, through the queue-sharing

group, of the transactional state of all the shared-queue resources. In this

manner, it provides support for dynamic backout of shared-queue messages

within a unit of work in case a connected queue manager fails. This is illustrated

in Figure 6.

Figure 6. Tolerance of queue-manager and server outages

Figure 6 shows an outage of one of the queue managers in the queue-sharing

group (QSG). If this occurs, the surviving members of the QSG roll back any

incomplete units of work that were in flight at the time of the outage.

MQGET

z/OS

z/OS

z/OS
Coupling facility

Shared queue

MQPUT

Queue-sharing group

Increase the value of CICS applications with WebSphere MQ.
Page 17

So, if we had an instance of Transaction B in flight at the time of the outage

(for example, if it had retrieved a message from the shared-request queue and

had started its processing but had not reached CICS syncpoint), the surviving

members of the queue-sharing group roll back the request message from the

shared queue (and any other shared messages created or retrieved within the

unit of work).

In this way, WebSphere MQ will act to ensure maximum availability of shared

messages for planned and unplanned queue-manager outages.

WebSphere MQ support of the CICS bridge

The previous sections have shown how the use of WebSphere MQ can provide

an extremely consistent and powerful way to access data from a wide variety of

sources and make them accessible to CICS transactions in a highly available

manner.

The examples have all shown CICS transactions applications using the MQI

within their processing programs to gain access to WebSphere MQ queues and

message data. But WebSphere MQ also provides support for implicit access to

WebSphere MQ by use of the CICS bridge.

This means you can reuse your existing CICS transactions that were controlled

by 3270-connected terminals to be controlled by WebSphere MQ messages,

without having to rewrite, recompile or relink those transactions.

The CICS bridge enables an application that is not running in a CICS environment

to run a program or transaction on CICS and get a response back. The

application can be run from any environment that has access to a WebSphere

MQ network that encompasses WebSphere MQ for z/OS.

Increase the value of CICS applications with WebSphere MQ.
Page 18

A program is a CICS program that can be invoked using the EXEC CICS LINK

command. It must conform to the distributed program link (DPL) subset of the

CICS API. That is, it must not use CICS terminal or syncpoint facilities.

A transaction is a CICS transaction designed to run on a 3270 terminal.

This transaction can use basic message service (BMS) or terminal control (TC)

commands. It can be conversational or part of a pseudoconversation. Issuing

syncpoints is permitted.

The CICS bridge allows an application to run a single CICS program or set of

CICS programs. Where multiple CICS programs are being invoked, the bridge

supports scenarios in which a response has to be received before the next

program can be run (synchronous processing) as well as those scenarios in

which this is not the case (asynchronous processing).

The CICS bridge also allows an application to run a 3270-based CICS transaction,

without knowledge of the 3270 data stream. It uses standard CICS and

WebSphere MQ security features. You can configure the bridge to authenticate,

trust or ignore the requestor’s user ID. Given this flexibility, there are many

instances in which you can use the CICS bridge:

•	 Write a new WebSphere MQ application that needs access to logic or data, or both,

that resides on your CICS server.

•	 Run CICS programs from an IBM Lotus® Notes® application.

•	 Access your CICS applications from any distributed platform where WebSphere MQ

is available.

With WebSphere MQ, Version 6, it is now possible to run multiple instances of

the CICS bridge-monitor task, accessing the same WebSphere MQ bridge

queue. Coupled with the ability to use CICS transaction routing with CICS

Transaction Server, Version 2.2, this feature allows a wide range of flexibility in

setting up the bridge environment. Figure 7 illustrates what is possible with

WebSphere MQ, Version 6.

Increase the value of CICS applications with WebSphere MQ.
Page 19

Figure 7. Bridge-monitor tasks running in multiple AORs

Figure 7 shows bridge-monitor tasks running in multiple AORs, accessing the

same shared queue and being able to drive work across the CICS AORs.

Recent enhancements to CICS and WebSphere MQ connectivity

The components to connect CICS and WebSphere MQ for z/OS have been

enhanced and are now integrated with CICS Transaction Server, Version 3.2.

These components include the CICS-MQ adapter, the CICS-MQ trigger monitor

and the CICS-MQ bridge. The enhancements include:

•	 Exploitation of the CICS open transaction environment. The components have been

made threadsafe and are enabled to use CICS open trusted computing bases (TCBs).

Exploitation of the CICS open transaction environment will benefit threadsafe

applications using WebSphere MQ. For multiple WebSphere MQ requests, TCB

switching can be avoided, resulting in a saving of CPU and an increase in overall

throughput, because applications can now run on multiple open TCBs and avoid

bottlenecking.

•	 Improved diagnostics, including use of CICS facilities for system trace, dump

formatting and messages.

•	 Improved statistical information, including the use of connections between

CICS and WebSphere MQ, and the type and success of calls made. This information

has also been made available within the IBM CICSPlex® System Manager Web

user interface.

DPL program

Transaction ABridge monitor

Transaction B

Transaction B

DPL programBridge monitor

Transaction A

DPL program

Transaction A

Transaction A

Transaction B

DPL program

Transaction B

CICS B

CICS A

CICS Y

CICS X Using the multiple bridge-monitor
and routing support allows the
equivalent of the terminal owning
region (TOR) - application owning
region (AOR) setup.

Multiple bridge-owning regions
(BORs) can take messages from a
shared queue and feed work to a
number of AORs, providing
scalability and eliminating single
points of failure.

Increase the value of CICS applications with WebSphere MQ.
Page 20

WebSphere MQ and the Web

The previous sections have shown how WebSphere MQ and the wider

WebSphere MQ network can provide a number of ways to deliver work to CICS.

We’ve also seen how CICS transactions can explicitly access WebSphere MQ

message data through the use of the MQI, or be driven implicitly by using the

CICS bridge.

The growing interest in SOA and Web Services has led to the ability to define

CICS transactions as services that can be invoked by SOAP requests over

HTTP transport.

WebSphere MQ, Version 6 provides the capability to invoke those same CICS

services over a a WebSphere MQ network. This enables service invocation over

the reliable WebSphere MQ network, which can be used for much wider data

access.

In addition to what might be viewed as standard Web services using SOAP,

there is a growing interest in the world of rich Internet applications and

Web 2.0. Many clients see AJAX and RESTful Web services as a way of rapidly

creating new dynamic applications with appropriate qualities of service to meet

business needs.

Increase the value of CICS applications with WebSphere MQ.
Page 21

WebSphere MQ has recently released SupportPac MA0Y — IBM WebSphere MQ

Bridge for HTTP — which enables Web 2.0 developers to use WebSphere MQ

itself as a service. This allows Web 2.0 developers to connect their applications

into the messaging backbone for SOA which, in turn, connects them to the wider

range of enterprise information.

WebSphere MQ will also provide a standardized way of describing WebSphere

MQ applications as services, which in turn will allow them to be cataloged in

registries. This capability will help them be reused as services in composite

SOA applications.

This focus on services in general and Web 2.0 support in particular provides an

increasing range of ways to access data for processing in CICS.

Figure 8. The WebSphere MQ Bridge for HTTP enables Web 2.0 applications to access business
information securely and reliably.

Web2.0

Rest-based
Web Service

No client applications (PDA,mobile device)

WebSphere MQ

Queues Topics

Integrated applications

New customer
HTTP

J2EE Web Server

Bridge for HTTP

Dynamic Web applications
• Speeds and eases integration
of new Web applications with

enterprise applications and data
• No MQ skills needed

No MQ client footprint
• Simplifies deployment and maintenance of

large-scale distributed applications

• Easy access to enterprise
applications and ESB

• Reliable delivery of SOAP
across MQ backbone

• Publish and subscribe
distribution

• Bridge for HTTP runs in a J2EE Application Server
• Maps HTTP traffic to MQ queues and topics

Increase the value of CICS applications with WebSphere MQ.
Page 22

WebSphere MQ for z/OS helps ensure secure and auditable access to business data

Security is a key client concern in a number of areas. The primary areas of

concern are connections to the queue managers and queue-manager networks,

the data passing into the queue managers, operational integrity and data

protection.

Connection security is usually implemented by using Secure Sockets Layer

(SSL) support for TCP/IP channels, provided natively by WebSphere MQ. In

addition, security exit points can be used to prevent unauthorized connections.

To address the security of operations and access to WebSphere MQ objects on

z/OS, WebSphere MQ uses a System Authorization Facility (SAF) interface to

control all command and administration access. Through the SAF interface,

you can use IBM Resource Access Control Facility (IBM RACF®), ACF/2, Top

Secret and other applications as your security manager on z/OS.

End-to-end security is a key concern in cases in which an application that is

located in a WebSphere MQ network (but not necessarily on z/OS) wants to

send encrypted-message data to a recipient on z/OS. To address this concern,

IBM provides an additional feature through WebSphere MQ Extended

Security Edition.

Increase the value of CICS applications with WebSphere MQ.
Page 23

Summary

WebSphere MQ provides a rich set of features that allow a wide range of data to

be accessed from and processed by your CICS applications. CICS applications

can use the functionally rich interface of WebSphere MQ (MQI) explicitly, or

they can have implicit access using the CICS bridge. The CICS bridge enables

you to reuse your existing CICS transactions to work with WebSphere MQ

without the need to rewrite, recompile or relink your transactions. CICS

services can be driven by SOAP requests over WebSphere MQ. This enables

service invocation over the reliable WebSphere MQ network, which can be used

for much wider data access. WebSphere MQ has recently extended its support

for the Web through SupportPac MA0Y. And it provides a number of security

features to protect your business data. All of these features can help provide

greater usage and value for your existing CICS installation.

For more information

To learn more about WebSphere MQ for z/OS, contact your IBM representative

or IBM Business Partner, or visit:

ibm.com/software/integration/wmq/zos/

To learn more about CICS Transaction Server for z/OS, contact your

IBM representative or IBM Business Partner, or visit:

ibm.com/software/htp/cics/

http://www-306.ibm.com/software/integration/wmq/zos/
http://www.ibm.com/software/htp/cics/

WSW14006-USEN-01

© 	Copyright IBM Corporation 2008.

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
02-08
All Rights Reserved

AIX, CICS, CICSPlex, DataPower, DB2, IBM, the
IBM logo, Lotus, Notes, Parallel Sysplex, RACF,
System i, System z, WebSphere and z/OS are trademarks
of International Business Machines Corporation in the
United States, other countries or both.

Java and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other coun-
tries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product, or service names may be
trademarks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in
any other countries.

 1	 Teubner, Russ. 2003. Integrating CICS applications
as Web services. SOAWorld Magazine. http://www.
webservices.sys-con.com/read/39850.htm (accessed
September 10, 2007).

http://www.webservices.sys-con.com/read/39850.htm
http://www.webservices.sys-con.com/read/39850.htm

