WebSphere Message Broker

Deploying and Debugging

Version 6 Release 1

<|ll

WebSphere Message Broker

Deploying and Debugging

Version 6 Release 1

<|ll

Note
FBefore you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 1, modification 0, fix pack 8 of IBM WebSphere Message Broker and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2010.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this topic collection. .V
Part 1. Deploying . 1
Deploying . .3
Deployment overview3
Deploying a message flow apphcatlon .15
Deploying a broker configuration . . .25
Deploying a publish/subscribe topology .27
Deploying a publish/subscribe topics h1erarchy .29
Checking the results of deployment . . 30
Canceling a deployment that is in progress . .32
Renaming objects that are deployed to execution
groups . . . 35
Removing a deployed ob]ect from an executlon

group . 35
Part 2. Debugging . . 39
Testing and debugging message flow
applications .4
Flow debugger overview . .41
Debugging a message flow . .42
Debugging by using trace . 64
Testing message flows by using the Test Chent . 66

© Copyright IBM Corp. 2000, 2010

Part 3. Reference . 75
Flow application debugger . .77
Flow debugger shortcuts . . .77
Flow debugger icons and symbols. . 78
Java Debugger . 80
Test Client . . 81
Test Client Events tab . . 81
Test Client Configuration tab . 84
Test Client preferences. . 86
Deployment Location wizard . 87
JMS events in the Test Client . 88
Part 4. Appendixes. . 91
Appendix. Notices for WebSphere
Message Broker. . . . 93
Trademarks in the WebSphere Message Broker
Information Center . .o . 95
Index . 97

iii

iv Deploying and Debugging

About this topic collection

This PDF file has been created from the WebSphere Message Broker Version 6.1 (fix
pack 8 update, July 2010) information center topics. Always refer to the WebSphere
Message Broker online information center to access the most current information.
The information center is periodically updated on the [document update]site and
this PDF and others that you can download from that Web site might not contain
the most current information.

The topic content included in the PDF does not include the "Related Links"
sections provided in the online topics. Links within the topic content itself are
included, but are active only if they link to another topic in the same PDF
collection. Links to topics outside this topic collection are also shown, but result in
a "file not found "error message. Use the online information to navigate freely
between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to
ensure that you have access to the most current information, and use the Feedback
link that appears at the end of each topic to report any errors or suggestions for
improvement. Using the Feedback link provides precise information about the
location of your comment.

The content of these topics is created for viewing online; you might find that the
formatting and presentation of some figures, tables, examples, and so on are not
optimized for the printed page. Text highlighting might also have a different
appearance.

© Copyright IBM Corp. 2000, 2010 \%

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi Deploying and Debugging

Part 1. Deploying

Deploying .
Deployment overview .
Deployment methods
Types of deployment .
Message flow application deployment
Broker configuration deployment .
Publish/subscribe topology deployment
Publish/subscribe topics hierarchy deployment
Cancel deployment .
Deploying a message flow apphcatlon
Creating a broker archive.
Adding files to a broker archive .
Refreshing the contents of a broker archive.
Deploying a broker archive file .
Deploying a message flow application that uses
WebSphere Adapters .
Deploying a broker configuration .
Using the Message Broker Toolkit .
Using the mqsideploy command .
Using the Configuration Manager Proxy.
Deploying a publish/subscribe topology
Using the Message Broker Toolkit .
Using the mgsideploy command .
Using the Configuration Manager Proxy.
Deploying a publish/subscribe topics hierarchy .
Using the Message Broker Toolkit .
Using the mgsideploy command .
Using the Configuration Manager Proxy.
Checking the results of deployment
Using the Message Broker Toolkit .
Using the mgsideploy command
Using the CMP API .
Canceling a deployment that is in progress
Using the Message Broker Toolkit .
Using the mgsideploy command .
Using the Configuration Manager Proxy.
Renaming objects that are deployed to execution
groups . .
Removing a deployed ob]ect from an executlon
group .
Using the Message Broker Toolk1t
Using the mgsideploy command
Using the CMP API

© Copyright IBM Corp. 2000, 2010

N =W W

N

.11

13
.14
.15
. 16
. 16
.21
.22

.25
. 25
. 26
. 26
. 26
. 27
. 27
. 28
. 28
. 29
.29
. 29
. 30
. 30
. 31
.31
.32
. 32
. 33
. 33
. 34

. 35

. 35
. 35
. 35
. 36

2 Deploying and Debugging

Deploying

Deploy resources that you create in the workbench, such as message flows, to
execution groups on brokers in your broker domain.

Read the overview section to learn about the different ways in which you can
deploy resources, and the different types of deployment:

* |"“Deployment overview”|

- ["“Deployment methods” on page 4|

— [“Types of deployment” on page 6|

[“Message flow application deployment” on page 7|

— |“Broker configuration deployment” on page 11

[“Publish /subscribe topology deployment” on page 12|

— [“Publish/subscribe topics hierarchy deployment” on page 13|

[‘Cancel deployment” on page 14|

The tasks in this section assume that you have already set up your broker, and
connected to it. For information about how to complete those tasks, and other
related actions, see [Administering the broker domain|

Refer to the following topics for information about how to deploy a message flow
application:

* ["“Deploying a message flow application” on page 15|

— [“Creating a broker archive” on page 16|

- [“Adding files to a broker archive” on page 16|

— [“Refreshing the contents of a broker archive” on page 21|

[‘Deploying a broker archive file” on page 22|

- |"“Deploying a message flow application that uses WebSphere Adapters” on|

page 25|

Learn how to perform other types of deployment:

* |“Deploying a broker configuration” on page 25|

+ [“Deploying a publish/subscribe topology” on page 27|

* |"“Deploying a publish/subscribe topics hierarchy” on page 29|

Further topics describe other deployment tasks:

* [“Checking the results of deployment” on page 30|

+ [“Canceling a deployment that is in progress” on page 32|

* [“Renaming objects that are deployed to execution groups” on page 35|

+ ['Removing a deployed object from an execution group” on page 35|

Deployment overview

Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker domain. Message flows and associated
resources are packaged in broker archive (BAR) files for deployment.

© Copyright IBM Corp. 2000, 2010

When you create application resources such as message flows in the workbench,
you must distribute them to the brokers on which you want them to run.
Associated with the resources that you create is the configuration associated with
those brokers in your broker domain. Data for message flows and associated
resources is packaged in a broker archive (BAR) file before being sent to the
Configuration Manager, from where it is unpackaged and distributed
appropriately.

You can initiate a deployment in the following ways:

* From the workbench

¢ Using the mgsideploy command

 Using functions defined by the Configuration Manager Proxy API

Depending on your work patterns, you might use all these methods at different
times. These options are described in [‘Deployment methods.”|

You can also perform different types of deployment, depending on whether you
are working with new resources, or updating existing ones. Most types of
deployment can typically be configured in one of two ways:

e Complete deployment; in which all resources are deployed (or redeployed) to
the whole domain

* Delta or incremental deployment; made either only to update information or to
deploy to selected brokers within the domain, depending on the type of
deployment

See ["Types of deployment” on page 6| for further information about full and delta
deployment.

When you have read these overview topics, find detailed instructions for the tasks
that you want to complete in subsequent topics in this section.

Read the IBM® Redbooks® publication [WebSphere® Message Broker Basics| for
further information about deployment.

Deployment methods

Choose the appropriate method of deployment to suit the way in which you are
working. You can use the workbench, the mqgsideploy command, or functions
described by the Configuration Manager Proxy (CMP).

Using the Message Broker Toolkit
In the Broker Administration perspective of the workbench, the Domain
view displays all the objects associated with a specific domain. For
example, if you expand a topology, all the brokers in the domain are
displayed; if you expand a broker, all the execution groups within that
broker are displayed. From the Domain view you can deploy a topology to
all the brokers in the domain, or you can deploy all the execution groups
to a particular broker. You can also drag a broker archive (BAR) file from
the Broker Development view onto an execution group within the Domain
Navigator view to deploy the contents of the broker archive.

You might typically use the workbench if you are working in a
development environment, or if you are new to WebSphere Message
Broker.

Using the mqsideploy command
You can deploy from the command line using the mqsideploy command.

4 Deploying and Debugging

http://www.redbooks.ibm.com/abstracts/sg247137.html

On the command line, you specify the connection details as well as
arameters specific to the deployment. See [“Types of deployment” on page]
for more information about what resources you can deploy.

You might typically use the mgsideploy command in a script when you are
more familiar with WebSphere Message Broker.

WebSphere Message Broker provides two files to help you when writing
your own scripts that run the mqgsideploy command:

* Initialization file mqsicfgutil.ini. This file is a plain text file in the
working directory of the command, which contains
configurable variables that are required to connect to the Configuration
Manager. For example:
hostname = Tocalhost
queueManager = QMNAME

port = 1414
securityExit = test.myExit

Information that you do not explicitly specify as parameters on the
mgsideploy command (as shown in the examples in subsequent topics),
is taken from the mgsicfgutil.ini file.

Alternatively, use the -n parameter on the command to specify an
XML-format .configmgr file that describes the connection parameters to
the Configuration Manager.

« WM Batch file mgsideploy.bat. On Windows® platforms only, you
can use mqsideploy.bat.

You must modify the parameters in this file before you use it.

Using the CMP API
You can control deployment from a Java program by using functions
described by the CMP API You can also interrogate the responses from the
broker and take appropriate action.

Java applications can also use the CMP API to control other objects in the
domain, such as brokers, execution groups, publish/subscribe topologies,
topics, subscriptions, and the Configuration Manager and its event log.
Therefore, you can use the CMP API to create and manipulate an entire
domain programmatically.

Synchronous and asynchronous operations
The goals of a deployment are the same, regardless of how you initiate it;
however, the method that you choose might affect how the operation
works:

* If you use the workbench or the CMP AP], the request is asynchronous.
Control returns immediately to the application from which you initiated
the deployment request. You must request the result of the operation at
a later time:

— If you are using the workbench, switch to the Broker Administration
perspective and check the Event log.

A deployment request always completes, because either the broker
has sent a response or the timeout has expired. If you have reason to
believe that the deployment might not be successful, for example if
you become aware that a problem with the network or the broker
might prevent its completion, you can cancel the deployment request.
Cancel requests only in exceptional circumstances; cancelation might
cause the state of the execution groups to become unpredictable.

Deploying 5

— If you are using the CMP API, you can request responses to the
deployment later in your program.

When the request is received by the broker, it communicates with the
execution groups that are affected by the contents of the deployment
request. The broker waits for a certain amount of time, during which
it expects the execution groups to complete the work. If the execution
groups do not indicate that they have finished before the time has
expired, the broker sends back a negative response with message
BIP2066.

* If you use the mgsideploy command, the deployment is synchronous
and the command waits for a response. Control is returned to the
command line, or to the script that issued the command, when a
response is received by the broker, or when the wait time defined by the
-w parameter has expired, whichever occurs first. If the time expires
before a response is received, the command completes with a warning
message that informs you what has happened. The warning does not
mean that the command has failed, only that a response was not
received during the time for which it waited.

Types of deployment

Choose the appropriate type of deployment to achieve your goal; check what types
are available, and the circumstances in which to use them.

Follow the links to later topics in this section that describe the types of deployment
that you can perform from the workbench, and when to use, or not use, each type.

* To deploy message flows, message sets, and other deployable objects to an
execution group, see ["Message flow application deployment” on page 7|

This type of deployment uses a broker archive (BAR) file.

. T.odeploy configuration details, see [“Broker configuration deployment” on pagel

* In publish/subscribe scenarios, you can deploy topics and topologies:

— [“Publish/subscribe topics hierarchy deployment” on page 13|

— [“Publish/subscribe topology deployment” on page 12|

* To stop a deployment, see [“Cancel deployment” on page 14

This table lists examples of appropriate ways of deploying in a number of common
scenarios:

Scenario Suggested deployment

Adding a broker to the domain (when not | None required.
using publish/subscribe)

Modifying the publish/subscribe topic Delta deployment of the topics hierarchy.

hierarchy (The changed elements only in the topic
hierarchy are deployed to all brokers in the
domain.)

Connecting publish/subscribe brokers using | Delta topology deployment.
connections or a collective

Modifying the publish/subscribe topic Complete topics deployment. (The entire
hierarchy, after adding a new broker to the | topic hierarchy is deployed to all brokers in
domain the domain. The new broker also receives

the complete topic hierarchy.)

6 Deploying and Debugging

Scenario

Suggested deployment

Tidying up broker resources after removing
it from the topology

If the broker is part of a publish/subscribe
network, or if you are using the workbench,
initiate a delta publish/subscribe topology
deployment. Otherwise, no deployment is
required.

Creating an execution group

Message flow application deployment using
an incremental BAR file deployment.

Deleting an execution group

None required.

Creating and populating a new BAR file

Message flow application deployment using
a complete BAR file deployment.

Adding to, or removing from, a deployed
BAR file

Message flow application deployment using
an incremental BAR file deployment.

If a broker is not responding to a deploy
request

Ensure that the broker is running. If the
broker is not running, cancel the broker
deployment. Cancel a broker deployment
only if you are sure that the broker will
never respond to the deployment request.

Message flow application deployment

Package all the resources in your message flow into a broker archive (BAR) file for

deployment.

You cannot deploy a message flow application directly to an execution group. You

must package all the relevant resources into a BAR file, which you then deploy.
When you add files to the broker archive, they are automatically compiled as part
of the process. JAR files that are required by JavaCompute nodes in message flows
are added automatically from your Java project.

The broker archive file is a compressed file, which is sent to the Configuration
Manager, where its contents are extracted and distributed to execution groups.

The mode in which your broker is working, can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can

use. See [Restrictions that apply in each operation mode]

This diagram shows the flow of events when you deploy a message flow

application:

Deploying

7

message set message flow
project project

message set I D I - message

containing message flows, esql,

definitions mappings
| |

compile compile

| |

N can depend N can depend N
on on
4 ---------------- > E

compiled compiled

message dictionary message flows (x(r)r:Iheglllesar)
(.dictionary) (.cmf) X, XS,
package

broker archive
file (.bar)

configuration

deploy manager

m m
)/)/

A 4

execution
group

A=g

broker

The diagram illustrates the following steps.
1. You create a broker archive.
2. You add files to the broker archive.

3. You deploy the BAR file by sending it to the Configuration Manager, from
where its contents are distributed to execution groups on brokers in the
domain.

You can deploy a BAR file in two ways:

8 Deploying and Debugging

* [“Incremental BAR file deployment.”| Deployed files are added to the execution
group. Files which exist in the execution group are replaced with the new
version.

* [“Complete BAR file deployment.”| Files that are already deployed to the
execution group are removed before the entire contents of the BAR file are
deployed. Therefore, nothing is left in the execution group from any previous
deployment.

Incremental BAR file deployment

If you run an incremental deployment of a BAR file, the Configuration Manager

extracts the contents of the BAR file and sends the contents to the specified

execution group. The following conditions are applied when a file is deployed to
the BAR file:

* If a file in the BAR file has the same name as an object that is already deployed
to the execution group, the version that is already deployed is replaced with the
version in the BAR file.

* If a file in the BAR file is of zero length, and a file of that name has already been
deployed to the execution group, the deployed file is removed from the
execution group.

When to use
* To incrementally deploy message flows, message sets, or other
deployable objects to an execution group.
When not to use

* To completely clear the contents of the execution group before the BAR
file is deployed. Use a complete BAR file deployment if you want this
action.

Complete BAR file deployment
If you run a complete deployment of a BAR file, the Configuration Manager
extracts the deployable content of the BAR file and sends the contents to the
specified execution group, first removing any existing deployed contents of the
execution group.
When to use

* To deploy message flows, message sets, or other deployable objects to an

execution group.

When not to use

* To merge the existing contents of the execution group with the contents
of the BAR file. Use an incremental BAR file deployment if you want
this action.

Broker archive
The unit of deployment to the broker is the broker archive or BAR file.

The BAR file is a compressed file that can contain a number of different files:

* A .cmf file for each message flow. This file is a compiled version of the message
flow. You can have any number of these files within your BAR file.

* A .dictionary file for each message set dictionary. You can have any number of
these files within your BAR file.

* One or more XSD compressed files (.xsdzip), if XML Schema and WSDL are
defined within a message set.

Deploying 9

* A broker.xml file. This file is called the broker deployment descriptor. You can have
only one of these files within your BAR file. This file, in XML format, resides in
the META-INF folder of the compressed file and can be modified by using a text
editor or shell script.

* One or more XML files (.xml), style sheets (.xs1), and XSLT files (.x1st), if
required by nodes in the message flows you have added to this BAR. The
XSLTransform node is one that might require these files.

¢ One or more JAR files, if required by JavaCompute nodes in the message flows
you have added to this BAR.

* One or more inbound or outbound adapter files (.inadapter or ,outadapter), if
required by WebSphere Adapter nodes (for example, the Siebellnput node) in the
message flows you have added to this BAR

* One or more PHP script files (.php), if required by PHPCompute nodes in the
message flows you have added to this BAR.

 Other files that you might want to associate with this BAR file. For example,
you might want to include Java source files, .msgflow files, or .wsd1 files for
future reference. BAR files can contain all files types.

To deploy XML, XSL, and JAR files inside a broker archive, the connected
Configuration Manager and target broker must be Version 6.0 or later.

Configurable properties of a broker archive
System objects that are defined in message flows can have properties that you can
update within the broker archive (BAR) file before deployment.

Configurable properties allow an administrator to update target-dependent
properties, such as queue names, queue manager names, and database connections.

By changing configurable properties, you can customize a BAR file for a new
domain (for example, a test system) without needing to edit and rebuild the
message flows or the resources that they work with, such as message mappings,
ESQL code, and Java code. Properties that you define are contained within the
deployment descriptor, META-INF/broker.xml. The deployment descriptor is parsed
when the BAR file is deployed.

Edit the configurable properties using either the Broker Archive editor or the
mgsiapplybaroverride command from a command prompt.

Use the supplied editor and command to ensure that the BAR file contents are
correct after the changes are applied. You can also edit the XML-format
deployment descriptor manually by using an external text editor or shell script; in
this case, you must ensure that you have not invalidated the XML content.

Version and keyword information for deployable objects
Use the Broker Archive file editor to view the version and keyword information of
deployable objects.

You can display properties of deployed objects, and can modify associated
comments:

+ |["Displaying object version in the Broker Archive editor” on page 11|

+ |"Displaying version, deploy time, and keywords of deployed objects” on page 11

+ [“Populating the Comment and Path columns” on page 11|

10 Deploying and Debugging

Displaying object version in the Broker Archive editor

The column in the Broker Archive editor called Version displays the version tag for
all objects that have a defined version:

e .dictionary files
e .cmf files
* Embedded JAR files with a version defined in a META-INF/keywords.txt file

You cannot edit the Version column.

You can use the mqsireadbar command to list the keywords that are defined for
each deployable file within a deployable archive file.

Displaying version, deploy time, and keywords of deployed objects

The Properties View displays the following properties for all deployed objects:
¢ Version

* Deploy Time

* All defined keywords

For example, you deploy a message flow with the following literal strings:
¢ $MQSI_VERSION=v1.0 MQSI$

e $MQSI Author=fred MQSI$

e $MQSI Subflow 1 Version=v1.3.2 MQSI$

The Properties View displays these properties:

Deployment Time Date and time of deployment
Modification Time Date and time of modification
Version v1.0
Author fred
Subflow 1 Version vl.3.2

If the keyword information is not available, a message is displayed in the
Properties View to indicate the reason. For example, if keyword resolution has not
been enabled at deploy time, the Properties View displays the message Deployed
with keyword search disabled.

If you deploy to a Configuration Manager that is an earlier version than Version
6.0, the message is Keywords not available on this Configuration Manager.

Populating the Comment and Path columns
If you add source files, the Path column is populated automatically.

To add a comment, double-click the Comment column and type the text that you
require.

Broker configuration deployment

A broker configuration deployment informs a broker of various configuration
settings, including a list of execution groups, and multicast and inter-broker
settings.

Deploying 11

When to use

¢ If you have modified runtime properties in a Configuration Manager
Proxy (CMP) application.

* If several CMP programs have modified runtime properties, You can use
the mgsideploy command to deploy all of the changes together.
When not to use

* If you are adding execution groups. In this case, the first time that you
deploy a broker archive (BAR) file, the execution group is automatically
initialized.

Publish/subscribe topology deployment

Deploying a topology informs each broker in the domain of the brokers with
which it can share publications and subscriptions. Topology deployment is
required only when using publish/subscribe.

You can deploy a topology configuration in two ways:

+ |Complete topology deployment] in which all brokers are told of their
neighboring publish/subscribe brokers.

* [Delta topology deployment} in which only changes to the publish/subscribe
topology are deployed. Such changes are deployed only to those brokers whose
neighbor lists have changed since the last successful topology deployment.

Whichever of these types of deployment you perform, the Configuration Manager
attempts to subscribe to the status messages for the broker, if it is the first
deployment to the broker. However, only a complete topology deployment initiates
a further subscription.

Complete topology deployment
Deploying a complete topology has the following effects:

e FEach broker in the domain is informed of the set of brokers with which it can
share publish/subscribe information.

* The Configuration Manager is forced to subscribe again to the status topics for
the broker, such as start and stop messages.
When to use

¢ If the Configuration Manager is not correctly reporting whether it is in a
stopped or started state.

* If you have moved a Configuration Manager from one queue manager
to another.

* If a broker publish/subscribe function has become inconsistent. An
example of inconsistency might be if one broker is able to share
publications with a second broker, but not the other way round.

When not to use

* If you are adding brokers to the domain and you are not using
publish/subscribe. That is, if you are not connecting brokers together so
that they can share publications and subscriptions.

* If you are adding execution groups to a broker.

* If you have changed the publish/subscribe network. In this case, deploy
a delta topology, if possible, so that you deploy only to those brokers
affected by the changes you have made.

* If you have removed a broker from the domain.

12 Deploying and Debugging

Delta topology deployment
Deploying a delta topology sends updated publish/subscribe network information
to any broker with a publish/subscribe configuration that the Configuration
Manager determines not to be current.
When to use

¢ If you have modified a publish/subscribe network.

* If you are using the workbench to remove a broker from the domain. In
this case, the Configuration Manager automatically requests the broker
component to stop message flows that are running and to tidy up any
resources in use. If this operation fails, you can again request the broker
to tidy up. Deploying a delta topology is the most convenient way to
deploy only to those brokers affected by the topology changes.

When not to use

* If you are adding brokers to the domain and you are not using
publish/subscribe. That is, if you are not connecting brokers together so
that they can share publications and subscriptions.

* If you are adding or removing execution groups.

Publish/subscribe topics hierarchy deployment

In some circumstances, you might want to deploy the publish/subscribe topics
hierarchy.

The deploy might be required:

* If you have modified the hierarchy of topics. The deployment communicates the
new hierarchy to each broker.

* If you have added a broker to the domain and you want it to use the existing
topics hierarchy. The deployment communicates the hierarchy to the new broker.

You can deploy a publish/subscribe topics hierarchy in two ways:

* |Complete deployment} in which the complete topics hierarchy is sent to all the
brokers in a domain.

+ [Delta deployment} in which changes to the topics hierarchy (made since the last
topics deployment) are sent to all the brokers in a domain.

Complete topics deployment

A complete topics deployment sends the entire publish/subscribe topics hierarchy
to all the brokers in a domain.

When to use

* If you have changed the topics hierarchy and one of the brokers has an
inconsistent view of the expected topics hierarchy.

* If you have added a new broker to the domain that uses the topics
hierarchy.
When not to use

¢ If you have changed the topics hierarchy. In this case, a delta topics
deployment is typically sufficient.

Delta topics deployment
A delta topics deployment sends only the changes made to the publish/subscribe
topics hierarchy to all the brokers in a domain.

When to use

Deploying 13

* If you have changed the topics hierarchy.

When not to use
* If the topics hierarchy has not changed.

Cancel deployment

Canceling a deployment tells the Configuration Manager to assume that a broker
will never respond to an outstanding deployment.

You might need to cancel a deployment because the Configuration Manager allows
only one deployment to be in progress to each broker at any one time. If for some
reason a broker does not respond to a deployment request, subsequent requests
cannot reach the broker, because, to the Configuration Manager, a deployment is
still in progress.

If a broker subsequently does provide a response to an outstanding deployment
that has been canceled, the response is ignored by the Configuration Manager, and
an inconsistency subsequently exists between what is running on the broker and
the information that is provided by the Configuration Manager.

Because of this risk of inconsistency, cancel a deployment only as a last resort, and
only if you are sure that a broker will never be able to process a previous
deployment request. However, before canceling a deployment, you can manually
remove outstanding deployment messages to ensure that they are not processed.

You can cancel a deployment in two ways:

+ |Cancel deployment to a domain|

* |Cancel deployment to a broker|

Cancel deployment to a domain
Canceling a deployment to a domain has the following effects:

* The Configuration Manager assumes that all brokers in the domain that have
outstanding deployments will not respond.

* The locks for all outstanding deployments in the domain are removed.

* Deployment messages that have not yet been processed are not removed from
any of the brokers in the domain by the Configuration Manager. For brokers that
have successfully deployed a configuration, the deployed information remains
on the broker.

When to use
Cancel a domain deployment only if both of these conditions are met:
* You receive error message BIP1510 when you attempt a deployment.

* None of the brokers that have outstanding deployments are responding.

When not to use

* If the broker is taking a long time to respond to a deployment request,
and you are aware of no other problems. The broker might have been
temporarily stopped, for example.

* If other users might be deploying to the domain at the same time.

* If only one broker is not responding, or a small number of brokers are
not responding. In this case, cancel the deployment to individual brokers
instead.

14 Deploying and Debugging

Cancel deployment to a broker
Canceling a deployment to an individual broker has the following effects:

* The Configuration Manager assumes that the specific broker will not respond to
outstanding deployments.

* The locks for outstanding deployments to that broker only are removed.

¢ The Configuration Manager attempts to remove from the broker, deployment
messages that have not yet been processed. This succeeds only if the broker and

the Configuration Manager share the same queue manager, and if the message
has not already been processed by the broker.

When to use
Cancel a domain deployment only if both of these conditions met:
* You receive error message BIP1510 when you attempt a deployment.
* The broker is not responding.

When not to use

* If the broker is taking a long time to respond to a deployment request,
and you are aware of no other problems . The broker might have been
temporarily stopped, for example.

* The connected Configuration Manager is at Version 6.0 or later. If the
version is earlier, canceling deployment to a specific broker has no effect;
you must cancel the entire domain deployment instead.

Deploying a message flow application

Deploy message flow applications to execution groups by adding required
resources, optionally with their source files, to a broker archive (BAR) file. Send the
BAR file to a Configuration Manager, where it is unpacked and the individual files
distributed to execution groups on individual brokers.

Before you start:

Before you can deploy a message flow application, you must have created and
started a Configuration Manager. You must also start a WebSphere MQ listener for
the associated queue manager.

In the workbench, you must create a domain, add a broker to that domain, and
create an execution group within the broker. The broker that you add to the
domain is a reference to a physical broker that you must create and start on the
target system, and start a WebSphere MQ listener on its queue manager. See the
links to related tasks at the end of this topic for help with these actions.

The mode in which your broker is working, can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See [Restrictions that apply in each operation mode}

The tasks in this section describe the process:

—_

. [/Creating a broker archive” on page 16|

. ["Adding files to a broker archive” on page 16|

. |"Refreshing the contents of a broker archive” on page 21|

2

3

4. ["Deploying a broker archive file” on page 22|

5. [“Deploying a message flow application that uses WebSphere Adapters” on page|

|

Deploying 15

If your message flows include user-defined nodes, you must also distribute the
compiled C or Java code for each node to every broker that uses those message
flows. For more details, see [Developing user-defined extensions|

Creating a broker archive

Create a separate broker archive (BAR) file for each configuration that you want to
deploy to execution groups on brokers in your broker domain.

You can create a BAR file in two ways:
+ |Using the Message Broker Toolkit|
+ |Using the mgsicreatebar command|

Using the Message Broker Toolkit

Follow these steps to create a BAR file by using the workbench:
1. Switch to the Broker Administration perspective.

2. Click File » New » Message Broker Archive.

3. Enter a name for the BAR file that you are creating.

4. Click Finish.

A file with a .bar extension is created and is displayed in the Broker
Administration perspective Navigator view, under the Broker Archives folder. The
Content editor for the BAR file opens.

Next:
1. |Add files to the BAR file|
2. [Deploy the BAR file|

Using the mqsicreatebar command

Follow these steps to create a BAR file by using the command:

1. Open a command window that is configured for your environment.
2. Enter the command, typed on a single line. For example:
mgsicreatebar -b barName -o filePath -p projectNames -cleanBuild

You must specify the -b (BAR file name) and -o (path for included files)
parameters. The -p (project names) parameter is optional. For further details,
see the [mgsicreatebar command|

If you have made changes to resources in the broker archive by using external
tools, add the -cleanBuild parameter to refresh all the projects and invoke a
clean build. A file with a .bar extension is created.

Next:
1. |Add files to the BAR file|
2. [Deploy the BAR file]

Adding files to a broker archive

To deploy files to an execution group, you must first include them in a broker
archive.

Before you start:

16 Deploying and Debugging

Create a broker archive (BAR) file for each configuration that you want to deploy.

You can add any deployable resources from your workspace to a BAR file. If you
select Include source files, the source files for all message flows, message sets, or
other deployable resources in the broker archive are included.

For further information about the files that you can include in a broker archive, see
[‘Broker archive” on page 9|

To deploy XML, XSL, and JAR files inside a broker archive, the connected
Configuration Manager and target broker must be Version 6.0 or later.

Subflows are not displayed in the Build page as separate items, and are added
automatically, therefore you have to add only the parent flow to include the
subflows.

You can manually add XML, XSL, and JAR files by following these steps. However,
JAR files that are required by [JavaCompute nodes| within message flows are added
automatically from your Java project when you add the message flow. XML and
XSL files are also added automatically if they are required by the flow.

You do not have to redeploy JAR files unless you have updated them. If one or
more JAR files in your BAR file are present on the computer where the broker is
running, you can safely remove them from your BAR file before you deploy again.
JAR files available to the broker include JAR files that you have deployed as well
as JAR files that exist in the shared-classes directory or the classes subdirectory of
the installation directory. For example, the files com.ibm.mq. jar,
ConfigManagerProxy.jar, jplugin2.jar, and javacompute.jar are always visible to
the broker, and do not have to be deployed separately.

You cannot read deployed files back from broker execution groups. Therefore, keep
a copy of the deployed BAR file, or of the individual files within it.

Follow these steps to add files to a broker archive using the workbench:

1. Switch to either the Broker Administration perspective or the Broker
Application Development perspective.

2. Double-click your BAR file in the Broker Administration Navigator view to
open it. The contents of the BAR file are shown in the Manage and Configure
page of the Broker Archive editor. (If the BAR file is new, this view is empty.)

3. On the Prepare page of the Broker Archive editor, select deployable workspace
resources to add to the broker archive file.

4. Optional: If you want to include your source files, select Include source files.

5. Optional: If you are adding a message flow to a broker archive for a second
time, and have used the Manage and Configure page to change flow
parameters, select Override configurable property values to reset configuration
settings. If this control is cleared, existing settings are left in place when a flow
is replaced.

6. Optional: You can manually remove the resources that you have added to the
BAR file using Remove in the Manage and Configure page.

7. Click Build broker archive. To rebuild selected deployable resources, you can
either click Build broker archive on the Prepare page, or click Build on the
Manage and Configure page.

Deploying 17

A list of the files that are now in your BAR file is displayed on the Manage and
Configure page. You can choose not to display your source files by selecting Built
resources or Configurable properties from the list in the Filter by menu.

Next:

If you use configurable properties, see [“Editing configurable properties.”|

If you want to have multiple instances of a flow with different values for the
configurable properties, see [“Adding multiple instances of a message flow to a|
[proker archive” on page 19/

To make further changes to your BAR file, see |“Editing a broker archive file|

manually.”

When iour BAR file is complete, the next task is: ['Deploying a broker archive file”|

Editing a broker archive file manually
Edit resources that you want to change, in an editor of your choice, by exporting a
broker archive (BAR) file from the workbench.

Before you start:

If you have not already created a BAR file, create it now. See |[’Creating a broker|
[archive” on page 16/

Follow these steps to edit a BAR file manually by using the workbench:
1. Export the BAR file.
a. From the workbench, click File » Export. The Export window appears.

b. Select the export destination, such as a compressed file with .zip extension,
and click Next.

C. Select the resources that you want to export and click Next.

d. Complete the destination information and click Finish. The file appears at
the destination you specified as a compressed file.

2. Extract files from the BAR file.
3. Edit the properties that you want to change in an editor of your choice.
4. Save the file.
5. Import the BAR file back into the workbench for deployment.
a. From the workbench, click File » Import. The Import window appears.
b. Select Zip file from the list and click Next
C. Specify the name and location of your BAR file.
d. Select the project that you want to contain the BAR file.
e. Click Finish.
Next:

[‘Deploying a broker archive file” on page 22

Editing configurable properties
You can edit configurable properties in the deployment descriptor file (typically
broker.xml) of your broker archive.

18 Deploying and Debugging

Before you start:

If you have not already created a BAR file, create it now. See [“Creating a broker|
[archive” on page 16/

You can edit configurable properties in two ways:
+ [Using the Message Broker Toolkit|
* |Using the mgsiapplybaroverride command|

Using the Message Broker Toolkit:

Follow these steps to edit properties using the workbench:

1. Switch to the Broker Administration perspective or Broker Application
Development perspective.

2. Open your broker archive, and select the Manage and Configure tab. The
resources in your broker archive are listed.

3. Optional: You can view the properties that can be configured for your message
flows by selecting Configurable properties from the Filter by list.

4. Expand the message flow in the Manage and Configure tab to display the
nodes that you can configure. Click on the node you want to configure. The
values that you can configure for the node are displayed in the Properties view.

5. Select the value that you want to edit in the Properties view, and enter the new
value. Repeat these steps for all the properties that you want to configure in
your message flow.

6. Save your BAR file.

Next:

[‘Deploying a broker archive file” on page 22|

Using the mqsiapplybaroverride command:

Follow these steps to edit properties using the mgsiapplybaroverride command:
1. Open a command window that is configured for your environment.
2. Create a text file (with a .properties file extension).

3. Enter the command, typed on a single line, specifying the location of your
broker archive deployment descriptor (typically broker.xml) and the file that
contains the properties to be changed. See [mgsiapplybaroverride| for examples
on how to use the command. A file with a .bar extension is created.

Next:

[‘Deploying a broker archive file” on page 22

Adding multiple instances of a message flow to a broker archive
Edit the name of your files in the broker archive (BAR) file so that you can deploy
multiple instances of a message flow with different values for the configurable
properties.

Before you start:

Add the file to the broker archive. See [“Adding files to a broker archive” on page|

Deploying 19

To deploy multiple instances of the flow with different values for the configurable

properties:

1. Rename the message flow file (.cmf) in the broker archive editor. Ensure you
keep the .cmf file extension when you change the file name. You are unable to
configure the file if you change the extension.

2. Clear Remove contents of Broker Archive before building to prevent your
renamed message flow file from being removed from the broker archive when
you build the broker archive.

3. Add the message flow to the BAR file again. It is added to the BAR file with
the original name.

4. Click the Manage and Configure tab. You can now edit the configurable
properties for both message flows.

Tip: The names assigned in the BAR file are also used on the command line; for
example, if you run [mgsilis{ on your execution group or if you run
[mgsichangetrace| for a message flow.

Next:

Deploy the BAR file. Both message flows are deployed to the execution group and
use the values for the configurable properties that you set in the BAR file.

Configuring a message flow at deployment time with
user-defined properties

Use user-defined properties (UDPs) to configure message flows at deployment and
run time, without modifying program code. You can give a UDP an initial value
when you declare it in your program, or when you use the Message Flow editor to
create or modify a message flow.

For an overview of user-defined properties, see [User-defined properties}

See the [DECLARE statement| for an example of how to code a UDP statement.

In ESQL, you can define UDPs at the module or schema level.

After a UDP has been defined by the Message Flow editor, you can modify its
value before you deploy it.

To configure UDPs:

1. Switch to the Broker Administration perspective or Broker Application
Development perspective.

2. Double-click the broker archive (BAR) file in the Navigator view. The contents
of the BAR file are shown in the Manage and Configure page of the Broker
Archive editor.

3. Click the Manage and Configure tab. This tab shows the message flows in
your broker archive; expand a flow to show the individual nodes that it
contains.

4. Click the message flow that you are interested in. The UDPs that are defined in
that message flow are displayed with their values in the Properties view.

5. If the value of the UDP is unsuitable for your current environment or task,
change it to the value that you want. The value of the UDP is set at the flow
level, and is the same for all eligible nodes that are contained in the flow. If a
subflow includes a UDP that has the same name as a UDP in the main flow,
the value of the UDP in the subflow is not changed.

20 Deploying and Debugging

6. Save your broker archive.

Now you are ready to deploy the message flow. See [“Deploying a broker archive|
[file” on page 22|

Refreshing the contents of a broker archive

Refresh the contents of a broker archive by using Build on the Manage and
Configure page or Build broker archive on the Prepare page in the Broker Archive
editor. Alternatively, remove resources from your broker archive and, having made
the required changes, add them back again.

Before you start:

See [“Creating a broker archive” on page 16/ and [“Adding files to a broker archive”|

|on page 16.|

You are likely at some time to make changes to resources that you have already
added to your broker archive (BAR) file. Follow these steps to refresh the contents
of a broker archive so that they are reflected in the archive before you deploy it.

1. Switch to the Broker Administration perspective or Broker Application
Development perspective.

BAR files that need to be refreshed are shown with an 'out-of-sync' icon g in
the Navigator view. (When any changes are made to deployable files in the
workspace, that have previously been built in the broker archive, the BAR file
is considered to be inconsistent. The BAR file is also inconsistent if any changes
are made to the project that the files belong to.)

2. Double-click your BAR file in the Navigator view to open it.

The contents of the BAR file are shown in the Manage and Configure page of
the Broker Archive editor.

3. To refresh all the resources in the broker archive, click either Build B:lD .

A dialog box opens, showing progress. When the operation is complete, click
Details to see information about what was refreshed, what was not, and why.
If the refresh process was successful, you see the same information that is
placed in the user log by each of the resource compilers.

Alternatively, you can refresh the archive contents by right-clicking a BAR file
in the Navigator view and selecting Build Broker Archive. The broker archive
is rebuilt in the background.

You can view, and clear (L, the user and service logs by clicking the
appropriate tabs in the Broker Archive editor.

4. (Optional) To view details about the build of an individual deployable resource
in the Manage and Configure page, right-click the deployable resource and
click Details.

The Properties view opens (if it is not already in the perspective) and the
Details tab is displayed. The Details tab shows the following details about the
deployable resource:

* Workspace Resource, with references to the linked workspace resources
(.msgflow, .mset, .xml, and .xs1t files, for example).

* Last Compile Status, which shows the user log entry for the last compilation.
You can copy text, but you cannot modify it.

Next:

Deploying 21

[‘Deploying a broker archive file”|

Deploying a broker archive file

After you have created and populated a broker archive (BAR) file, you must
deploy the file to an execution group on a broker, so that the file contents can be
used in the broker domain.

Before you start:

You must create a BAR file. See [“Creating a broker archive” on page 16

Choose one of the following methods to deploy a broker archive file:
* [“Using the Message Broker Toolkit"]

* |“Using the mgsideploy command” on page 23|

* [Using the CMP AP]|

If you change a BAR file, and want to propagate those changes to one or more
brokers, you can redeploy the updated BAR file by using one of the methods listed
previously:

+ ["Redeploying a broker archive file” on page 24|

If the execution group to which you want to deploy is restricted by an ACL, you
must have appropriate access rights to complete this task.

The mode in which your broker is working, can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See [Restrictions that apply in each operation mode]

Using the Message Broker Toolkit

Follow these steps to deploy a BAR file by using the Message Broker Toolkit:
1. Switch to the Broker Administration perspective.

2. Optional: Typically, an incremental BAR file deployment is performed. To
perform a complete BAR file deployment, right-click the target execution group
in the Domains view and select Remove Deployed Children. Wait for the
operation to complete before continuing.

Do not Remove Deployed Children if you want only to refresh one or more of
the child processes with the contents of the BAR file. For an explanation of the
difference between a complete and an incremental BAR file deployment, see
[“Message flow application deployment” on page 7|

3. In the Navigator view, select the BAR file that you want to deploy.

4. Deploy the BAR file to an execution group by using one of the following
methods:

* Drag the file onto your target execution group, shown in the Domains view.

* Right-click the BAR file, and click Deploy file. A window opens, and lists all
the broker domains, and all execution groups in those broker domains to
which the workbench is connected, to which you can deploy the BAR file.
Select an execution group, and click OK to deploy the BAR file.

If you select a broker topology that is not connected to a domain, an attempt
is made to connect the broker topology. If you click Cancel, the broker
topology remains unconnected to a domain.

22 Deploying and Debugging

Whichever method you use, you can select (and deploy to) only one execution
group at a time.

5. If you have not saved the BAR file since you last edited it, you are asked
whether you want to save the file before deploying. If you click Cancel, the
BAR file is not saved and deployment does not take place.

The BAR file is transferred to the Configuration Manager, which deploys the file
contents (message flows and message sets, for example) to the execution group. In
the Domains view, the assigned message flows and message sets are added to the
appropriate execution group.

Next: Continue by checking the results of the deployment; see [“Checking the
[results of deployment” on page 30/

Using the mqgsideploy command

Follow these steps to deploy a BAR file by using the mgsideploy command:

1. Open a command window that is configured for your environment.

2. Enter the appropriate command for your platform and configuration, using the
following examples as a guide.

On distributed platforms:
mgsideploy -i ipAddress -p port -q gmgr -b broker -e egroup -a barfile

The command performs an incremental deployment. Add the -m
parameter to perform a complete BAR file deployment.

The -i (IP address), -p (port), and -q (queue manager) parameters
represent the connection details of the queue manager computer.

You must also specify the -b (broker name), -e (execution group name),
and -a (BAR file name) parameters.

On z/0S®:
/f MQO1CMGR,dp b=broker e=egroup a=barfile

The command performs an incremental deployment. Add the m=yes
parameter to perform a complete BAR file deployment.

In the example, MQOICMGR is the name of the Configuration Manager
component. You must also specify the names of the broker, execution
group, and BAR file (the b=, e=, and a= parameters).

The command reports when responses are received from the Configuration
Manager and all brokers that are affected by the request. If the command
completes successfully, it returns 0.

Next: Continue by checking the results of the deployment; see|“Checking the
[results of deployment” on page 30.

Using the CMP API

Use the deploy method of the ExecutionGroupProxy class.

The following code shows how an application can perform an incremental
deployment:

import com.ibm.broker.config.proxy.=*;
import java.io.IOException;

Deploying 23

public class DeployBar {
public static void main(String[] args) {
ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters("localhost", 1414, "QM1");
try {
ConfigManagerProxy cmp = ConfigManagerProxy.getInstance(cmcp);
TopologyProxy t = cmp.getTopology();
BrokerProxy b = t.getBrokerByName ("BROKER1");
ExecutionGroupProxy e = b.getExecutionGroupByName("default");
e.deploy("deploy.bar");
1
catch (ConfigManagerProxyException cmpe) {
cmpe.printStackTrace();
1
catch (IOException ioe) {
ioe.printStackTrace();
1
}
1

By default, the deploy method performs an incremental deployment. To perform a
complete deployment, use a variant of the method that includes a false value for
the Boolean isIncremental parameter. For example, e.deploy("deploy.bar" false,0).
Set this parameter to true requests an incremental deployment.

Next: Continue by checking the results of the deployment; see [“Checking the
[results of deployment” on page 30.

Redeploying a broker archive file

If you change a BAR file, and want to propagate those changes to one or more
brokers, you can redeploy the updated BAR file to one or more execution groups,
by using one of the deployment methods described previously. You do not have to
stop the message flows that you deployed previously; all resources in the
execution group or groups that are in the redeployed BAR file are replaced and
new resources are applied.

If your updates to the BAR file include the deletion of resources, a redeployment
does not result in their deletion from the broker. For example, assume that your
BAR file contains message flows F1, F2, and F3. Update the file by removing F2
and adding message flow F4. If you redeploy the BAR file, all four flows are
available in the execution group when the redeployment has completed. F1 and F3
are replaced by the contents of the redeployed BAR file.

If you want to clear previously deployed resources from the execution group
before you redeploy, perhaps because you are deleting resources, use one of the
methods described earlier:

* To use the workbench, follow the instructions for a complete deployment,
making sure that you select Remove Deployed Children before deploying.

* To use the mgsideploy command, follow the instructions, making sure that you
add the —-m parameter to perform a complete BAR file deployment.

* To use the CMP API], follow the instructions for a complete deployment.

If your message flows are not transactional, stop the message flows before you
redeploy to be sure that all the applications complete cleanly and are in a known
and consistent state. You can stop individual message flows, execution groups, or
brokers.

24 Deploying and Debugging

If your message flows are transactional, the processing logic that handles
commitment or rollback ensures that resource integrity and consistency are
maintained.

Next: Continue by checking the results of the redeployment. See [“Checking the
[results of deployment” on page 30.

Deploying a message flow application that uses WebSphere
Adapters

Deploy the resources that are generated when you run the Adapter Connection
wizard by adding them to a broker archive (BAR) file.

Before you start:
* Read [WebSphere Adapters nodes|

* Perform the steps in [Preparing the environment for WebSphere Adapters nodes|

* Perform the steps in [Connecting to an EIS by using the Adapter Connection|

To deploy the message flow successfully, you must deploy the WebSphere
Adapters component, either on its own or in the same BAR file as your message
flow. If the WebSphere Adapters component is not available, deployment of the
message flow fails. The following list includes the file extensions of the resources
that you deploy:

e .msgflow (the message flow)

* .inadapter (the inbound WebSphere Adapters component)

e .outadapter (the outbound WebSphere Adapters component)
e .xsdzip (the message set)

The mode in which your broker is working, can affect the number of execution
groups and message flows that you can deploy, and the types of node that you can
use. See [Restrictions that apply in each operation mode}

1. For details of the steps that you must perform before you can deploy a
message flow application, see [“Deploying a message flow application” on page]
2. Add the message flow to the BAR file. (For a description of how to add files to
a BAR file, see [“Adding files to a broker archive” on page 16)) When you add a
message flow that contains one or more WebSphere Adapters nodes to a BAR
file, a dialog box opens so that you can identify the following resources:
* One or more WebSphere Adapters components to be used by the WebSphere
Adapters nodes
* One or more message sets that contain an XSD for the business objects that
are used by the WebSphere Adapters nodes

3. When you have added the message flow, WebSphere Adapters components,
and message set, deploy the BAR file.

Deploying a broker configuration

If you have modified runtime properties, including details of execution groups,
and multicast and inter-broker settings, use a broker configuration deployment to
inform the broker of your changes.

You can deploy a broker configuration in three ways:

Deploying 25

+ |Using the Message Broker Toolkit|
+ |Using the mgsideploy command|

+ |Using the Configuration Manager Proxy AP]|

Using the Message Broker Toolkit

You do not need to deploy a broker configuration manually from the workbench. If
you modify multicast or interbroker settings in the Broker Administration
perspective, a broker configuration deployment starts automatically when you
apply the changes. This process runs in the background.

Using the mqgsideploy command

Follow these steps to deploy a broker configuration using the

command:

1. Open a command window that is configured for your environment.

2. Using the examples below, enter the appropriate command, specifying the
broker to which you want to deploy:

On distributed platforms:
mgsideploy -i ipAddress -p port -q gmgr -b broker

where -i (IP address), -p (port), and -q (queue manager) represent the
connection details of the queue manager workstation.

On z/0S:
/f MQO1CMGR,dp b=broker

where MQOICMGR is the name of the Configuration Manager
component.

If you specify the broker to which you want to deploy (-b or b=), without
indicating a BAR file (-a), the broker configuration is deployed, rather than a
message flow application.

Next:

Continue by [checking the results| of the deployment.

Using the Configuration Manager Proxy

Use the deploy method of the BrokerProxy class. By default, the deploy method
performs an incremental (delta) deployment. To deploy the complete hierarchy, use
a variant of the method that includes the Boolean isDelta parameter set to false.
Setting this parameter to true indicates an incremental deployment.

To perform an incremental deployment, for example:
import com.ibm.broker.config.proxy.x*;

public class DeployBrokerConfig f{
public static void main(String[] args) {
ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters
("localhost", 1414, "QM1");
try {
ConfigManagerProxy cmp = ConfigManagerProxy.getInstance(cmcp);
TopologyProxy t = cmp.getTopology();

26 Deploying and Debugging

BrokerProxy b = t.getBrokerByName("BROKER1");
if (b !'= null) {

b.deploy();
}

catch (ConfigManagerProxyException e) {
e.printStackTrace();
1
}
1

Next:

Continue by [checking the results| of the deployment.

Deploying a publish/subscribe topology

When you make a change to your publish/subscribe topology these changes must
be deployed to your broker domain.

Before you start:

Make sure that you have [configured your broker domain|

The [publish /subscribe topology deployment| overview explains when you might
want to deploy a topology and the difference between a complete and delta
deployment.

You can deploy topology information in three ways:
+ |Using the Message Broker Toolkit|
+ [Using the mgsideploy command|

+ |[Using the Configuration Manager Proxy API|

After you have deployed a publish/subscribe topology, you might see an extra
execution group process called $SYS_mgsi in a process listing or in the output
from the command. When you deploy a publish/subscribe topology for
the first time, a new execution group process is started on your broker to handle
the publish/subscribe messages. This execution group is used only internally: it
does not appear in the workbench and you cannot deploy message flows to it.
After you have deployed one or more of your own flows to another execution
group, $SYS_mgsi is removed when the broker is subsequently restarted.

Using the Message Broker Toolkit

You can configure the workbench so that topology information is automatically
deployed after a change. See [Changing Broker Administration preferences|

Follow these steps to manually deploy a topology configuration using the
workbench:

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the Domains from where you want to perform
the deploy.

3. Right-click Broker Topology hierarchy.
4. Click Deploy Topology Configuration.

Deploying 27

5. Click Delta to deploy only the changed items or click Complete to deploy the
entire configuration.

Alternatively, you can make a change to the Topology document in the Broker
Administration perspective, save the changes, and then select Delta. This
behavior can be modified in the workbench preferences dialog.

The topology is deployed and the Configuration Manager distributes it to the
brokers in the domain.

Next:

[‘Checking the results of deployment” on page 30|

Using the mqsideploy command

Follow these steps to deploy a topology configuration using the
command:

1. Open a command window that is configured for your environment.

2. Using the example below, enter the appropriate command, typed on a single
line:
On z/0S:
/f MQO1CMGR,dp T=yes

This command performs a delta deployment. Add the m=yes parameter to
deploy the entire configuration. MQO1ICMGR is the name of the Configuration
Manager component.

On other platforms:
mqsideploy —i ipAddress —p port —q qmgr -1

This command performs a delta deployment. Add the -m parameter to deploy
the entire configuration. The -i (IP address), -p (port), and -q (queue manager)
parameters represent the connection details of the queue manager workstation.

Next:

[‘Checking the results of deployment” on page 30|

Using the Configuration Manager Proxy

Use the deploy method of the TopologyProxy class. By default, the deploy method
performs an incremental (delta) deployment. To deploy the complete hierarchy, use
a variant of the method that includes the Boolean isDelta parameter set to false.
Setting this parameter to true indicates an incremental deployment.

To perform a complete deployment, for example:
import com.ibm.broker.config.proxy.x*;

public class DeployTopology {
public static void main(String[] args) {
ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters
("Tocalhost", 1414, "QM1");
try {
ConfigManagerProxy cmp =
ConfigManagerProxy.getInstance(cmcp);
TopologyProxy t = cmp.getTopology();
t.deploy(false);

28 Deploying and Debugging

1
catch (ConfigManagerProxyException e)
e.printStackTrace();
1
}
1

Next:

[‘Checking the results of deployment” on page 30|

Deploying a publish/subscribe topics hierarchy

Deploy your topics hierarchy using the workbench, the mqgsideploy command, or
the Configuration Manager Proxy.

Before you start:

Make sure that you have fconfigured your broker domain|

The [topic deployment overview] explains when you might want to deploy a topic
hierarchy and the difference between a complete and a delta deployment.

You can deploy a topics hierarchy in three ways:
+ |Using the Message Broker Toolkit|
* |[Using the mgsideploy command|

+ |Using the Configuration Manager Proxy AP]|

You can the workbench preferences so that a topics hierarchy is
automatically deployed after you have made a change.

Using the Message Broker Toolkit

Follow these steps to deploy a topics hierarchy using the workbench:
1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the Domains from where you want to perform
the deploy.

3. Right-click Topics hierarchy.
4. Click Deploy Topics Configuration.

5. Click Delta to deploy only the changed items, or click Complete to deploy the
entire configuration.

The topics hierarchy is deployed, and the Configuration Manager distributes the
topics to brokers in the domain.

Next:

[‘Checking the results of deployment” on page 30|

Using the mqgsideploy command

Follow these steps to deploy a topics hierarchy using the command:

1. Open a command window that is configured for your environment.

Deploying 29

2. Using the examples below, enter the appropriate command, typed on a single
line:
On z/0S:
/f MQO1CMGR,dp t=yes

This command performs a delta deployment. Add the m=yes parameter to
deploy the entire configuration.

On other platforms:
mgsideploy -i ipAddress -p port -q gmgr -t
This command performs a delta deployment. Add the -m parameter to deploy

the entire configuration. The -i (IP address), -p (port), and -q (queue manager)
parameters represent the connection details of the queue manager workstation.

Next:

[‘Checking the results of deployment”|

Using the Configuration Manager Proxy

Use the deploy method of the TopicRootProxy class. By default, the deploy method
performs an incremental (delta) deployment. To deploy the complete hierarchy, use
a variant of the method that includes the Boolean isDelta parameter set to false.
Setting this parameter to true indicates an incremental deployment.

To perform a complete deployment, for example:
import com.ibm.broker.config.proxy.x*;

public class DeployTopics {
public static void main(String[] args) {
ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters
("localhost", 1414, "QM1");
try {
ConfigManagerProxy cmp =
ConfigManagerProxy.getInstance(cmep);
TopicRootProxy t = cmp.getTopicRoot();
t.deploy(false);
1
catch (ConfigManagerProxyException e) {
e.printStackTrace();
1
}
1

Next:

[‘Checking the results of deployment”

Checking the results of deployment

After you have made a deployment, check that the operation has completed
successfully.

You can check the results of a deployment in the following ways:
+ |Using the Message Broker Toolkit|

* |[Using the mgsideploy command|

* |[Using the CMP AP]|

30 Deploying and Debugging

Also, check the system log on the target system where the broker was deployed to
make sure that the broker has not reported any errors.

Using the Message Broker Toolkit

Follow these steps to check a deployment using the workbench:
1. Switch to the Broker Administration perspective.

2. Expand the Domains view.

3. Double-click Event Log.

When the deployment is initiated, an information message is displayed, confirming
that the request was received by the Configuration Manager:

+ BIP08921

If the deployment completes successfully, you might also see one or more of these
additional messages:

+ BIP40401

» BIP40451

* BIP20561

Using the mqgsideploy command

If you use the mgsideploy command to deploy, it returns numeric values from the
Configuration Manager and all brokers affected by the deployment, to indicate the
outcome. If the deployment completes successfully, the command returns 0. For
details of other values that you might see returned, see [ngsideploy command}

Using the CMP API

If you are using a CMP API application, you can find out the result of a
publish/subscribe topology deployment operation, for example, by using code like
this snippet:

TopologyProxy t = cmp.getTopology();

boolean isDelta = true;
long timeToWaitMs = 10000;
DeployResult dr = topology.deploy(isDelta, timeToWaitMs);

System.out.printIn("Overall result = "+dr.getCompletionCode());

// Display overall log messages

Enumeration TogEntries = dr.getLogEntries();

while (TogEntries.hasMoreElements()) {
LogEntry Te = (LogEntry)logEntries.nextElement();
System.out.printin("General message: " + le.getDetail());

}

// Display broker specific information
Enumeration e = dr.getDeployedBrokers();
while (e.hasMoreElements()) {

// Discover the broker
BrokerProxy b = (BrokerProxy)e.nextElement();

// Completion code for broker

System.out.printin("Result for broker "+b+" = " +
dr.getCompletionCodeForBroker(b));

Deploying 31

// Log entries for broker
Enumeration e2 = dr.getLotEntriesForBroker(b);
while (e2.hasMoreElements()) {
LogEntry le = (LogEntry)e2.nextElement();
System.out.printin("Log message for broker " + b +
le.getDetail()));
}

}

The depToy method blocks other processes until all affected brokers have
responded to the deployment request.

When the method returns, the DeployResult object represents the outcome of the
deployment at the time when the method returned; the object is not updated by
the Configuration Manager Proxy.

If the deployment message cannot be sent to the Configuration Manager, a
ConfigManagerProxyLoggedException exception is thrown at the time of
deployment. If the Configuration Manager receives the deployment message, log
messages for the overall deployment are displayed, followed by completion codes
specific to each broker affected by the deployment. The completion code. shown in
the following table, is one of the static instances from the CompletionCodeType

class.

Completion Description

code

pending The deployment is held in a batch and is not sent until you call
ConfigManagerProxy.sendUpdates().

submitted The deployment message was sent to the Configuration Manager but no
response was received before the timeout period expired.

initiated The Configuration Manager indicated that deployment has started, but
no broker responses were received before the timeout period expired.

successSoFar The Configuration Manager indicated that deployment has started and
some, but not all, brokers responded successfully before the timeout
period expired. No brokers responded negatively.

success The Configuration Manager indicated that deployment has started and
all relevant brokers responded successfully before the timeout period
expired.

failure The Configuration Manager indicated that deployment has started and
at least one broker responded negatively. You can use
getLogEntriesForBroker method of the DeployResult class to get more
information about the deployment failure. This method returns an
enumeration of available LogEntry objects.

notRequired The deployment request submitted to the Configuration Manager was
not sent to the broker, because the broker configuration is already up to
date.

Canceling a deployment that is in progress

You can cancel all outstanding deployments in the domain, or just those sent to a
particular broker. But cancel a deployment only as a last resort and be sure that the
brokers affected, will never be able to process a previous deployment request.

Before you start:

32 Deploying and Debugging

Using

Using

Make sure that you understand the implications of this action. See
[deployment” on page 14

Make sure that you have the necessary access authority:

* When canceling deployment across the domain, you must have full access
authority on the Configuration Manager.

* When canceling deployment to a specific broker, you must have full access
authority on that broker.

To ensure that previous deployment messages are not processed when an affected
broker is restarted, first remove all existing deployment messages:

1. Stop the broker.

2. Check the two queues used by the broker: SYSTEM.BROKER.ADMIN.QUEUE
and SYSTEM.BROKER.EXECUTIONGROUP.QUEUE. Manually remove all
deployment messages.

3. Proceed to cancel the deployment.

You can cancel a deployment in three ways:
+ [Using the Message Broker Toolkit|
+ |Using the mgsideploy command|

» |Using the Configuration Manager Proxy AP]|

the Message Broker Toolkit

Check the details at the start of this topic, and then follow these steps to cancel the
deployment to a particular broker or all outstanding deployments in a domain,
using the workbench:

1. Switch to the Broker Administration perspective.

2. In the Domains view, right-click either a particular broker or a connected
domain.

3. Click Cancel Deployment.
Deployments to the broker or domain are canceled.

Next:

[“Checking the results of deployment” on page 30 A BIP0892I information message
is displayed to show that the request was received by the Configuration Manager.

the mgsideploy command

Check the details at the start of this topic, and then follow these steps to cancel a
deployment using the command:

1. Open a command window that is configured for your environment.

2. Using the examples below, enter the appropriate command, typed on a single
line:
On z/0S:
/f MQOICMGR,dp t=yes b=B1

This command cancels deployment to the broker called B1. Omit the b
argument to cancel all outstanding deployments in the domain. MQO1CMGR is
the name of the Configuration Manager component.

Deploying 33

On other platforms:

mgsideploy -i ipAddress -p port -q gmgr —c —b Bl

This command cancels deployment to the broker called B1. Omit the -b
parameter to cancel all outstanding deployments in the domain. The -i (IP

address), -p (port), and -q (queue manager) parameters represent the
connection details of the queue manager workstation.

Next:

[“Checking the results of deployment” on page 30 A BIP0892I information message
is displayed to show that the request was received by the Configuration Manager.

Using the Configuration Manager Proxy

First, check the details at the start of this topic

To cancel all outstanding deployments in a domain
Use the cancelDeployment method of the ConfigManagerProxy class. For
example:

public class CancelAl1Deploys {
public static void main(String[] args) {
ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters
("Tocalhost", 1414, "QM1");
try {
ConfigManagerProxy cmp =
ConfigManagerProxy.getInstance(cmecp);
cmp.cancelDeployment () ;
}
catch (ConfigManagerProxyException e)
e.printStackTrace();
}
1
1

To cancel deployment to a specific broker in a domain
Use the cancelDeployment method of the BrokerProxy class. For example,
to cancel deployment to a broker called BI:

import com.ibm.broker.config.proxy.=*;

public class CancelDeploy {
public static void main(String[] args) {
ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters
("Tocalhost", 1414, "QM1");
try {
ConfigManagerProxy cmp =
ConfigManagerProxy.getInstance(cmecp);
TopologyProxy t = cmp.getTopology();
BrokerProxy b = t.getBrokerByName("B1");
b.cancelDeployment();
}
catch (ConfigManagerProxyException e) {
e.printStackTrace();
}
1
1

Next:

34 Deploying and Debugging

[“Checking the results of deployment” on page 30, A BIP0892I information message
is displayed to show that the request was received by the Configuration Manager.

Renaming objects that are deployed to execution groups

You cannot rename an object while it is still deployed to an execution group. You
must change it in the broker archive, then redeploy the broker archive (BAR) file.

Follow the steps in the following topics:

1. ["Removing a deployed object from an execution group”]

Rename the object

[‘Refreshing the contents of a broker archive” on page 21]

Ll A

[“Deploying a broker archive file” on page 22|

Removing a deployed object from an execution group

Remove deployed objects from an execution group; for example, to rename them.

Before you start:

Stop all message flows in the execution group. See [Starting and stopping message]
iows

You can remove deployed objects from an execution group in the following ways:
+ [“Using the Message Broker Toolkit”|

* [“Using the mgsideploy command”]

+ [“Using the CMP API” on page 36|

Using the Message Broker Toolkit

Follow these steps to remove an object from an execution group using the
workbench.

1. Switch to the Broker Administration perspective.
2. In the Domains view, right-click the object that you want to remove.
3. Click Remove, then OK to confirm.

An automatic deployment is performed for the updated broker and a BIP08921
information message is produced, which confirms that the request was received by
the Configuration Manager.

Next: If you have removed one or more message flows, you can now remove the
resource files that are associated with those message flows; for example, JAR files.

Using the mqgsideploy command

Follow these steps to remove an object from an execution group using the
mgsideploy command:

1. Open a command window that is configured for your environment.

2. Enter the appropriate command for your platform and configuration, using the
following examples as a guide.

Deploying 35

On distributed platforms:
mgsideploy -i ipAddress -p port -q gmgr —b broker —e egroup
—d filel.cmf:fileZ.cmf:file3.dictionary:file4.xml

where -i IP address, -p port, and -q gmgr specify the connection details
for the Configuration Manager.

On z/0OS:
/f MQOICMGR,dp t=yes b=broker e=egroup
d=filel.cmf:file2.cmf:file3.dictionary:file4.xml

where MQOICMGR is the name of the Configuration Manager
component.

The -d parameter (d= on z/OS) is a colon-separated list of files that you want
to remove from the named execution group. When you run the command, the
deployed objects (filel.cmf, file2.cmf, file3.dictionary, file4.xml) are
removed from the specified execution group.

Optionally, specify -m (m= on z/OS) to clear the contents of the execution
group. This option tells the execution group to completely clear all existing
data before the new BAR file is deployed.

The command reports when responses are received from the Configuration
Manager and all brokers that are affected by the deployment. If the command
completes successfully, it returns 0.

Next: If you have removed one or more message flows, you can now remove the
resource files that are associated with those message flows; for example, JAR files.

Using the CMP API

To remove deployed objects from an execution group, get a handle to the relevant
ExecutionGroupProxy object, and then invoke the deleteDeployedObjectsByName
method. Use the following code as an example:

import com.ibm.broker.config.proxy.x*;

publ

ic class DeleteDeployedObjects {

public static void main(String[] args) {

}
}

36 Deploying and Debugging

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters
("Tocalhost", 1414, "QM1");
try {
ConfigManagerProxy cmp =
ConfigManagerProxy.getInstance(cmcp);
TopologyProxy t = cmp.getTopology();
BrokerProxy b = t.getBrokerByName("brokerl");
ExecutionGroupProxy e =
b.getExecutionGroupByName ("default");
e.deleteDeployedObjectsByName (
new String[] { "filel.cmf",
"file2.cmf",
"file3.dictionary",
"filed.xm1" }, 0);
1
catch (ConfigManagerProxyException e) {
e.printStackTrace();

}

Next: If you have removed one or more message flows, you can now remove the
resource files that are associated with those message flows; for example, JAR files.

Deploying 37

38 Deploying and Debugging

Part 2. Debugging

Testing and debugging message flow
applications . e
Flow debugger overview .
Debugging a message flow .
Starting the flow debugger .
Working with breakpoints in the ﬂow debugger
Stepping through message flow instances in the
debugger .
Debugging data . . .
Managing flows and flow mstances durmg
debugging .
Debugging message ﬂows that contam
WebSphere Adapters nodes .
Debugging by using trace
Debugging with user trace
Debugging by adding Trace nodes to a message
flow .
Testing message flows by usmg the Test Chent
Test Client overview .o
Testing a message flow
Using the Test Client in trace and debug mode

© Copyright IBM Corp. 2000, 2010

.M
.41
.42
. 43

48

. 52
. 56

. 60

. 62
. 64
. 64

. 65
. 66
. 66
. 67

73

39

40 Deploying and Debugging

Testing and debugging message flow applications

Use the flow debugger to track messages through your message flows and check
for errors, or use the Test Client to test your message flows in a safe environment
before they are used on a production system.

Before you start:

To use the flow debugger effectively, you must have a basic understanding of
message flows and their representation in the workbench. See

The IBM Redbooks publication [WebSphere Message Broker Basics| also provides
information about using the debugger for your message flows.

* “Flow debugger overview”)

Learn about the function provided by the flow debugger, and why you might
want to use it.

* |"Debugging a message flow” on page 42|

Start the flow debugger and set options to test and debug the message flow.

* |"“Debugging by using trace” on page 64|

Use trace in various ways to debug messages flows.

+ [“Testing message flows by using the Test Client” on page 66|

Use the Test Client to monitor the output nodes in the message flow, and
provide information about the path that a test message takes through a message
flow.

Flow debugger overview

Use the flow debugger in the workbench to track messages through your message
flows.

Use the Debug perspective in the workbench to use the flow debugger. For an
introduction to the Debug perspective and the views it presents, see:

perspective

You can set breakpoints in a flow, then step through the flow. While you are
stepping through, you can examine and change the message variables and the
variables used by ESQL code, Java code, and mappings. You can debug a wide
variety of error conditions in flows, including the following:

* Nodes that are wired incorrectly (for example, outputs that are connected to the
wrong inputs)

* Incorrect conditional branching in transition conditions

* Unintended infinite loops in flow

From a single workbench, you can attach the debugger to one or more execution
groups, and debug multiple flows in different execution groups (and therefore
multiple messages) at the same time. However, an execution group can be
debugged by only one user at a time. Therefore, if you attach your debugger to an
execution group, another user cannot attach a debugger to that same execution
group until you have ended your debugging session.

© Copyright IBM Corp. 2000, 2010 41

http://www.redbooks.ibm.com/abstracts/sg247137.html

When you debug message flows, use a broker that is not being used in a
production environment. Debugging might degrade the performance of all
message flows in the same execution group and those in other execution groups
that share the same broker because they might be affected by potential resource
contention.

Debugging code and mappings in message flow nodes

You can use the flow debugger to examine the behavior of code and mappings in
message flow nodes.

After you have deployed a message flow, you can set a breakpoint just before one
of the nodes listed in this section so that, when the flow pauses at the breakpoint,
you can step through the code or mappings line by line. This allows you to
examine the logic, and check the actions taken and their results. You can set
additional breakpoints and you can also examine and change variables.

The following nodes can contain ESQL code modules:
* Compute node

* Filter node

¢ Database node

The following nodes can contain Java code modules:
* User-defined nodes
* JavaCompute node

The following nodes can contain mappings:
* Mapping node

* Datalnsert node

e DataUpdate node

e DataDelete node

* Extract node

* Warehouse node

Restrictions

The following restrictions apply when you debug a message flow:

* You must use the same version of the broker and the Message Broker Toolkit; for
example, you cannot use the Message Broker Toolkit Version 6.1 to debug a
message flow that you have deployed to a broker at an earlier version.

* You should not debug message flows over the Internet; there might be security
issues.

Debugging a message flow

Use the tasks described in this section of the documentation to manage and work
with the flow debugger.

Before you start

If you are new to debugging, see: [“Flow debugger overview” on page 41

Deploy your message flow to an execution group in a broker and make sure that
the broker is running. See: [‘Deploying a message flow application” on page 15,

42 Deploying and Debugging

To debug a message flow, perform the following tasks. You might want to vary the
tasks you perfom and repeat certain tasks, depending on your particular
debugging requirements.

1.

Start the flow debugger.

Set the required preferences, then start debugging by attaching the flow
debugger to an execution group. You can then send test messages along the
flow. See: [“Starting the flow debugger.”|

Work with breakpoints.

Add and manipulate breakpoints in your message flow. See:

[preakpoints in the flow debugger” on page 48|

Follow the progress of a test message.

Use breakpoints to pause the progress of a test message so that you can
observe its behavior. See: [“Stepping through message flow instances in the
[debugger” on page 52

View message data.

View (and change) data in messages, ESQL code, Java code or mappings as
debugging progresses. See: |“Debugging data” on page 56/

Manage message flows.

During a debugging session, there are various administrative tasks you might
need to do. When you have finished debugging, detach the debugger from the

execution group. See: |“Managing flows and flow instances during debugging”|

Starting the flow debugger

To start the flow debugger, you must attach it to an execution group. You might
first want to set certain parameters. When the flow debugger is started, you can
introduce test messages to your message flow.

Complete the following tasks to start the debugger:

1.
2.

3.
4.

Optional: [“Setting flow debugger preferences”

" Attaching the flow debugger to an execution group for debugging” on pagel
&

Optional: [‘Debug: putting a test message on an input queue” on page 46|

Optional: [‘Debug: getting a test message from an output queue” on page 47]

Setting flow debugger preferences
Set your own preferences for the flow debugging environment in the Broker
Application Development perspective of the workbench.

Complete these steps to set preferences for the flow debugging environment in the
workbench:

1.
2.

3.
4.

Switch to the Broker Application Development perspective.

Click Run ~» Debug to display the Create, Manage, and Run configurations
panel.

Click Message Broker Debug » New Configuration.

Assign a new port in the Java Debug Port field and click Select Execution
Group to attach the port to an execution group from the displayed list.

You cannot use this dialog box to set the port on which the execution group
listens. To set the port, follow the instructions in [“Attaching the flow debugger|
[to an execution group for debugging” on page 44|

Testing and debugging message flow applications 43

5. Click Debug to launch the debugger or Close to close the wizard and save
your changes.

Attaching the flow debugger to an execution group for
debugging

Before you can debug your message flow, you must attach the flow debugger to
the execution group where your flow is deployed, then start a debugging session.

Before you start:

* Create a message flow. See: [Developing message flows|

* Deploy your message flow to a broker execution group. See:

[message flow application” on page 15|

* Start the broker. See: [Starting and stopping a broker|

From a single workbench, you can attach the flow debugger to multiple execution
groups that are running on the same or on different host computers, and debug
their flows (and therefore multiple messages) simultaneously.

An execution group can be debugged by only one user at a time. If you attach
your debugger to an execution group, another user cannot attach a debugger to
that same execution group until you have ended your debugging session.

The flow debugger can debug runtime brokers from previous versions. Select the
version of the broker that you want to debug by checking the corresponding
option on the Engine Selection panel in the Debug wizard, as described previously.

To attach the debugger to an execution group:

1. Switch to the Broker Administration perspective. Note the name of your
message flow as it is displayed in the Domains pane.

2. Set a Java debug port number. To configure the broker JVM with a debug port
number, use one of the following methods:

* Right-click the execution group with which you want to work, and click
Preferences. You can now set the port number.

* Set the Java debug port by running the mgsichangeproperties command (all
on one line) in the Command Console:

mqsichangeproperties broker_name -e execution_group_name
-o ComIbmJVMManager -n jvmDebugPort -v port_number

For example:

mgsichangeproperties TEST -e default
-0 ComIbmJVMManager -n jvmDebugPort -v 3920

When this command has completed, restart the broker. See:
[stopping a broker|

The Java JIT (just-in-time) compiler is disabled if the jvmDebugPort parameter
is set to an integer greater than zero. If you are not debugging a message flow,
reset the jvmDebugPort parameter to zero to maximize performance.

3. Open the message flow that you want to debug in the Message Flow editor by
double-clicking its name in the Broker Development view.

4. Add a breakpoint to a connection that leads out of the input node to ensure
that the message flow does not run to completion before you can begin to
debug it.

44 Deploying and Debugging

The breakpoint appears as @ For information about adding a breakpoint,
see [“Working with breakpoints in the flow debugger” on page 48|

5. Switch to the Debug perspective.

6. Click the down-arrow on the Debug icon *ﬁ-‘ on the toolbar, and click Debug
to invoke the Debug (Create, manage, and run configurations) wizard.

You are now creating a debug launch configuration. If you have created one

previously, you can relaunch it by clicking directly on the Debug icon ﬁ‘i‘
itself. This action generates an error if any of the following conditions are true:

* You have not already created a debug launch configuration.

¢ The broker and execution group to which you previously attached are no
longer running.

* The broker and execution group have been restarted and therefore have a
new process ID.

7. In the list of configurations, select Message Broker Debug and click New. A
tab menu displays, beginning with the Connect tab.

You cannot click Debug until you complete the fields on the Connect panel.
You can then choose to complete the fields on the other panels, or click
Debug straight away.The panels in the wizard are:

* Java debug setting: use this panel to debug a message flow. The Java port is
the port number that is specified for the broker JVM. If you do not specify a
port, Java debugging is disabled.

¢ Deployment Location: click the Select Execution Group button to display a
list of Execution groups.

* Source: use this panel to tell the debugger where to look for your source
files for flow, mapping, ESQL, or Java, during debugging. The lookup path
can be an Eclipse project name, an external folder, or a compressed (.zip)
file. You can specify multiple locations, but the debugger always looks first
in the message flow project that you specified on the Connect panel. If you
do not correctly configure the location of the source files, message flow,
ESQL, and Java files might not be displayed during debugging. If the
source lookup path is not specified for a mapping node, you might
encounter unexpected behavior when you use the debugger to step through
the message map.

¢ Common: this panel is not directly used by the flow debugger; however

setting options in this panel does affect the debugger. See the

er Guide| for details.

8. Click Debug. In the Debug view, the name of the selected host computer and
execution group are displayed.

9. When the next message comes into your flow and arrives at breakpoint you
added after the input node, the flow pauses, the breakpoint icon is

highlighted: L , and you can start debugging.

10. In the Debug view, double-click the message flow that you want to debug.
The message flow opens in the Message Flow editor. You can now add more
breakpoints, start stepping over the flow, and so on.

Next:

Continue with one of the following tasks:

Testing and debugging message flow applications 45

+ Optional: [“Debug: putting a test message on an input queue”| and [“Debug]
[zetting a test message from an output queue” on page 47] These tasks involve
putting messages to, and taking messages from, WebSphere MQ queues and are
therefore useful only if your message flow includes MQInput and MQOutput
nodes.

+ [“Working with breakpoints in the flow debugger” on page 48|

Debug: putting a test message on an input queue
You can put a message on an input queue to test a message flow that you are
debugging.

Before you start

Complete the steps described in [“Attaching the flow debugger to an execution|
[zroup for debugging” on page 44

If your message flow includes MQInput and MQOutput nodes, you can test the
flow by putting a message on the input queue of your first MQInput node.

You can use the command line interfaces or WebSphere MQ Explorer to put a
message to a queue.

You can also use the Test Client as a repeatable alternative. To use the Test Client,
complete the steps described in the following sections:

+ [“Using enqueue in the Test Client”|

+ |“Adding data to your message” on page 47|

+ [“Optional: Using a file of sample data” on page 47

If the message is processed by the message flow and is put on an output queue,
you can retrieve it from that queue. See: |[“Debug: getting a test message from an|
[output queue” on page 47

Using enqueue in the Test Client:

To configure an enqueue event in the Test Client so that you can use it to send a
test message:

1. Switch to the Broker Application Development perspective.
2. Click File » New » Other. The New dialog opens.

3. Select Message Broker Test Client in the Message Brokers category and click
Next. The wizard opens and displays its first panel.

4. Select the project in which you want to create the Test Client file.

5. Enter a name for the Test Client file and click Finish. The Test Client editor
opens.

6. On the toolbar at the upper right of the Test Client editor, click the Put a

=
message onto a queue icon [ZE| .

7. Enter the names of the queue manager and the queue for the input node for
this flow. Queue manager names are case-sensitive; check that you enter the
name correctly.

If you are putting a message onto an input queue that is on a remote computer,
ensure that the queue manager of the associated broker has a server-connection
channel called SYSTEM.BKR.CONFIG.

46 Deploying and Debugging

8. If you are putting a message onto a remote queue, enter values to identify the
host and port of the computer that is hosting the queue.

9. Click File » Save to save the file.
Adding data to your message:

If you want to add just a small amount of test data in your test message, type the
data into the Source section of the Message pane:

1. Open your Test Client file.
2. Type your test data directly into the Source section of the Message pane.
3. Put the test message by clicking Send Message.

Optional: Using a file of sample data:

If you want your test message to contain a larger quantity of sample data (for
example some structured XML), you can import a file containing that data into the
Test Client:

1. In the Events tab of your Test Client file, click Import Source.

2. Select the file you want to use as the content for the test message, and click
Open. The contents of the selected file is added to the Source pane.

3. Click File » Save when you have finished.
4. Put the test message by clicking the Send Message button.

Debug: getting a test message from an output queue
You can get a message from an output queue to test a message flow that you are
debugging.

Before you start

Completed the following tasks:

* [Developing message flows|

+ ["“Deploying” on page 3|

* |“Attaching the flow debugger to an execution group for debugging” on page 44|

* ['Debug: putting a test message on an input queue” on page 46|

If your message flow includes MQInput and MQOutput nodes, you can test the
flow by putting a message on the input queue of your first MQInput node and
retrieving it from an MQOutput node.

You can use the command line interfaces or WebSphere MQ Explorer to get a
message from an output queue.

You can also use the Test Client as a repeatable alternative. To use the Test Client,
complete the following steps:

1. Switch to the Broker Application Development perspective.
2. Click File » New » Other. The New dialog opens.

3. Select Message Broker Test Client in the Message Brokers category and click
Next. The wizard opens and displays its first panel.

4. Select the project in which you want to create the Test Client file.

5. Enter a name for the Test Client file and click Finish. The Test Client editor
opens.

Testing and debugging message flow applications 47

6. On the toolbar at the upper right of the Test Client editor, click the Get a

message from a Queue icon ?
7. Enter the name of the queue manager and output node queue.
8. Click Get Message to read a message from the queue.

When a message is available on an output queue, you can see it in the Test Client
editor.

Working with breakpoints in the flow debugger

When you have started a debugging session by attaching the debugger to an
execution group, you can set breakpoints to control where the message flow will
pause.

Use the following tasks to manage breakpoints:

+ [“Adding breakpoints in the flow debugger”|

* |“Restricting breakpoints in the flow debugger to specific flow instances” on page|
9]

* [“Enabling and disabling breakpoints in the flow debugger” on page 50|

* [“Removing breakpoints in the flow debugger” on page 51|

Next:

After you have set one or more breakpoints in the message flow, continue your
debugging session by stepping through the message flow, pausing at each active
breaki oint. See: |“Stepping through message flow instances in the debugger” on|

You can also examine message data, code, and mappings at appropriate points.
See: [“Debugging data” on page 56|

Adding breakpoints in the flow debugger
Add breakpoints to connections in your message flow to control where flow
processing will pause.

Before you start:

Attach the flow debugger to the execution group where your flow is deployed.
See: |[“Attaching the flow debugger to an execution group for debugging” on page

You can add breakpoints to the connections of a message flow that is open in the

Message Flow editor. Each breakpoint that you add to a flow is also automatically
added to all other instances of the flow and you do not need to restart any of the

instances.

Every breakpoint is automatically enabled when you add it to a connection and the

connection is flagged with the enabled breakpoint symbol & .
Manually set a breakpoint after the collector node or any other multithreaded
node. When you use the Debug perspective on the node, you see that the thread

has been ended.

To add breakpoints to the connections of a message flow:

48 Deploying and Debugging

1. Switch to the Debug perspective.

2. Add breakpoints to the appropriate connections. Use any of the following

methods:

Option

Method

Add breakpoints individually to selected
connections.

1.

In the Message Flow editor, right-click
the connection where you want to set the
breakpoint.

Click Add Breakpoint.

Add breakpoints simultaneously to all
connections entering a selected node.

. In the Message Flow editor, right-click

the node before which you want to set
breakpoints.

Click Add Breakpoints Before Node.

Add breakpoints simultaneously to all
connections leaving a selected node.

. In the Message Flow editor, right-click

the node after which you want to set
breakpoints.

Click Add Breakpoints After Node.

Next:

After you have set one or more breakpoints in the message flow, step through the
flow, pausing at each active breakpoint. See: [“Stepping through message flow]|

[instances in the debugger” on page 52

You can also examine message data, code, and mappings at appropriate points.

See: [“Debugging data” on page 56|

Restricting breakpoints in the flow debugger to specific flow

instances

Breakpoints can be applied to particular flow instances, instead of all instances,

which is the default behavior.

Before you start:

Add one or more breakpoints to your message flow. See: |“Adding breakpoints in|

[the flow debugger” on page 48

When you add a breakpoint to a message flow in the Message Flow editor, the
breakpoint automatically applies to all instances of the flow. However, you can
restrict a breakpoint to one or more instances of a flow. This enables you to work
more easily with just those instances that you are currently interested in, rather

than with all instances.

To restrict a breakpoint to one or more flow instances:

1. Switch to the Debug perspective.

2. In the Breakpoints view, right-click the breakpoint that you want to restrict,
then click Properties to open the Flow Breakpoints Properties window.

3. In the Restrict to Selected Flow Instance(s) list box, select those instances to
which you want to restrict the breakpoint.

* You must have at least one instance active; if not, the Restrict to Selected

Flow Instance(s) list box is empty.

Testing and debugging message flow applications 49

* If any instance is currently paused at the breakpoint, all check boxes in the
Restrict to Selected Flow Instance(s) list box are disabled and you cannot
select them.

4. Click OK.
Next:

Now you can add additional breakpoints (if needed), step through the flow
instance, and work with data:

+ |“Adding breakpoints in the flow debugger” on page 48|

* |“Stepping through message flow instances in the debugger” on page 52|

* |"“Debugging data” on page 56|

Enabling and disabling breakpoints in the flow debugger

You can disable breakpoints that are currently enabled, and vice versa.

Before you start:

Add one or more breakpoints to your message flow. See: |“Adding breakpoints in|
[the flow debugger” on page 48

Message flow processing pauses only at breakpoints that are enabled. By
controlling which breakpoints are enabled and which are disabled, you can, for
example, allow processing to continue to the part of a flow that you are interested
in without having to continually add and remove breakpoints.

The following symbols identify breakpoints:
@ Enabled breakpoint

' Disabled breakpoint

If you disable all the breakpoints in a message flow, you cannot perform any other
debugging tasks until you add a new breakpoint, or enable an existing breakpoint.

To change the state of breakpoints:
1. Switch to the Debug perspective.

2. In the Breakpoints view, select one or more breakpoints that you want to enable
or disable.

3. Right-click the selected breakpoints and click Enable or Disable.

4. Optional: to change the state of a single breakpoint, right-click the breakpoint
and click Properties. Select or clear the Enabled check box as required, then
click OK.

The state of breakpoints is changed in all instances of the message flow where they
are set.

Next:

ﬁ/ou have finished debugging, continue with: [“Debug: ending a session” on page|

50 Deploying and Debugging

Removing breakpoints in the flow debugger
Remove breakpoints that are no longer required from connections in your message
flow.

Before you start:

Add one or more breakpoints to your message flow. See: |[“Adding breakpoints in|
[the flow debugger” on page 48

The following symbols identify breakpoints:
2 Enabled breakpoint
“ Disabled breakpoint

If you remove a breakpoint from a message flow, it is automatically removed from
all instances of the message flow where it is set.

If you remove all the breakpoints that you have added to your message flow, you
cannot perform any other debugging tasks until you add a new breakpoint.

To remove breakpoints:
1. Switch to the Debug perspective.

2. Remove the breakpoints. Use one of the following methods, depending on how
many breakpoints you want to remove:

Option Method

Remove individual breakpoints. 1. In the Message Flow editor, right-click
the breakpoint that you want to remove,
then click Remove Breakpoint.

R.emove several breakpoints 1. Click the Flow Breakpoints tab to show
simultaneously. the Breakpoints view.

2. Select one or more breakpoints that you
want to remove.

3. Click the Remove Selected Breakpoints
icon “ on the toolbar, or right-click

the selected breakpoints, then click *
Remove.

Remove all breakpoints simultaneously. 1. Click the Breakpoints tab to show the
Breakpoints view.

2. Click the Remove All Breakpoints icon

Eﬁ on the toolbar, or right-click any

breakpoint, then click % Remove All

Next:

arou have finished debugging, continue with: [‘Debug: ending a session” on page]

Testing and debugging message flow applications 51

Stepping through message flow instances in the debugger

After you have added one or more breakpoints to a message flow in the debugger,
you can step through the flow, pausing as required.

Before you start:

Add one or more breakpoints to your message flow. See: [“Adding breakpoints in|
[the flow debugger” on page 48

The message flow debugger pauses flow processing at the first breakpoint it
encounters. You can then continue with one or more of the following tasks, as
appropriate:

* ["'Debug: resuming message flow processing”|

* |“Debug: running to completion” on page 53|

* |"“Debug: stepping over nodes” on page 53]

* |“Debug: stepping into subflows” on page 54|

* ["Debug: stepping out of subflows” on page 54|

+ ["“Debug: stepping through source code” on page 55|

Next:

As you step through the message flow you can look at the processing data. When
you have finished, end your debugging session:

* |"“Debugging data” on page 56|

* ["Debug: ending a session” on page 62|

Debug: resuming message flow processing
Each time message flow processing pauses at an active breakpoint, you can
investigate the state of the flow, then resume processing.

Before you start:

Add one or more breakpoints to your message flow. See: |“Adding breakpoints in|
[the flow debugger” on page 48

When message flow processing has paused at a breakpoint, you can resume
processing;:

1. Switch to the Debug perspective.
2. In the Debug view, take one of the following steps:

- On the toolbar click Resume Flow Execution LF*

* Right-click the flow stack frame, then click Resume b
Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

Next:

If you have completed debugging this message flow, you can remove the
breakpoints, or end the debugging session:

52 Deploying and Debugging

+ [“Removing breakpoints in the flow debugger” on page 51|

* |“Debug: ending a session” on page 62|

Debug: running to completion
When message flow processing pauses at an active breakpoint, you can let it
continue to the end of the flow, ignoring other breakpoints.

Before you start:

Add one or more breakpoints to your message flow. See: [“Adding breakpoints in|
[the flow debugger” on page 48

When message flow processing has paused at a breakpoint, you can restart
processing so that the message flow runs to completion.

If you want the flow to continue processing, but you want to pause at the next
enabled breakpoint instead of running to completion, see: [“Debug: resuming]|
[message flow processing” on page 52,

1. Switch to the Debug perspective.
2. In the Debug view:

* either, click Run to completion P‘l] on the toolbar.
* or, right-click the flow stack frame, then click Run to completion P‘l] .

The flow instance ignores all breakpoints and processing continues to the end. The
flow instance is automatically removed from the Debug view.

Next:

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:

+ [“Removing breakpoints in the flow debugger” on page 51|

* |“Debug: ending a session” on page 62|

Debug: stepping over nodes

When message flow processing pauses at an active breakpoint, you can step over
the node and continue processing until the next active breakpoint, ignoring
breakpoints that might have been set in code within the node.

Before you start:

Add one or more breakpoints to your message flow. See: |“Adding breakpoints in|
[the flow debugger” on page 48

To step over the next node and continue message flow processing:
1. Switch to the Debug perspective.
2. In the Debug view:

* either, click Step Over Node 7 on the toolbar.
* or, right-click the flow stack frame, then click Step Over Node =

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint

Testing and debugging message flow applications 53

at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

Next:

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:

+ ['Removing breakpoints in the flow debugger” on page 51

* ["Debug: ending a session” on page 62|

Debug: stepping into subflows
When message flow processing pauses at a breakpoint, you can step into the
subflow that follows.

Before you start:

Add one or more breakpoints to your message flow. See: |“Adding breakpoints in|
[the flow debugger” on page 48

To step into a subflow:
1. Switch to the Debug perspective.
2. In the Debug view:

* either, click Step Into Subflow —k. on the toolbar.
* or, right-click the flow stack frame, then click Step Into Subflow e

The subflow opens in the Message Flow editor and displaces the parent message
flow. Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

Next:

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:

+ [“Removing breakpoints in the flow debugger” on page 51|

* |“Debug: ending a session” on page 62|

Debug: stepping out of subflows
When message flow processing has paused at a breakpoint in a subflow, you can
step out of the subflow.

Before you start

Complet the following tasks:

+ |“Adding breakpoints in the flow debugger” on page 48|

+ |"“Debug: stepping into subflows’]

To step out of a subflow:
1. Switch to the Debug perspective.
2. In the Debug view:

54 Deploying and Debugging

* either, click Step Out of Subflow -2 on the toolbar.

e or, right-click the flow stack frame, then click Step Out of Subflow -[l{i.
The debugger continues processing until it reaches the connection from the output
terminal of the subflow, where it pauses. The parent flow opens in the Message
Flow editor, displacing the subflow.

Next:

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:

+ [“Removing breakpoints in the flow debugger” on page 51|

* ["Debug: ending a session” on page 62|

Debug: stepping through source code
When message flow processing has paused at a breakpoint on entry to a node that
contains ESQL code, Java code, or mappings, you can step through the code.

Before you start:

Add one or more breakpoints to your message flow. See: |[“Adding breakpoints in|
[the flow debugger” on page 48

The nodes that can contain ESQL code, Java code, or mappings are listed in:
[debugger overview” on page 41| Add breakpoints as appropriate:

* ESQL code: add a breakpoint in the ESQL code.
* Java code: add a breakpoint in the Java code.

* Mappings: add a breakpoint to a map using the Map Script panel. Note that
mapping routines are implemented in ESQL; you might choose to step through
the ESQL code rather than the mappings.

To step through your source code:
1. Switch to the Debug perspective.
2. Step into the source code. In the Debug view:

* either, click Step into Source Code i on the toolbar.

* or, right-click the flow stack frame, then click Step Into ¥ .

3. When message flow processing has paused at a breakpoint within ESQL code,
Java code, or mappings, you can step through the source code, line by line.
Repeat this step as often as necessary. In the Debug view:

* either, click Step Over @3’ on the toolbar.

¢ or, right-click the flow stack frame, then click Step Over ﬁﬁ}’

A single line of source code runs and the flow pauses at the next line of code.
What you can do depends on what type of code is contained within the node.
See:

* ["“Debugging ESQL” on page 57|
* |"“Debugging Java” on page 58|

* [“Debugging mappings” on page 59|

Testing and debugging message flow applications 55

If the debugger is paused before the last line of code when you step over, the
last line of code runs and message flow processing continues until the next
breakpoint in the logical processing of the current message. If there is no
further enabled breakpoint at which the flow instance can pause, processing
runs to completion and the flow instance is removed from the Debug view.

4. If you have finished looking at the code or mappings before the last breakpoint,
you can continue processing the message flow. In the Debug view:

* either, click Step Return -U'J'E on the toolbar.

* or, right-click the flow stack frame, then click Step Return -[l?.

The source code runs to completion from the current breakpoint and message
flow processing continues until the next breakpoint that is set in the logical
processing of the current message. If there is no further enabled breakpoint at
which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

Next:

If you have completed debugging this message flow, you can remove the
breakpoints, or end the debugging session:

* |[“Removing breakpoints in the flow debugger” on page 51|

* ["Debug: ending a session” on page 62|

Debugging data

You can view (and change) data in messages, ESQL code, Java code or mappings
as debugging progresses.

When you have added one or more breakpoints to a deployed message flow, the
debugger stops the message flow processing at each breakpoint. Depending on the
context of the breakpoint, you can do one of the following tasks:

* ["Debugging messages”|
* |"Debugging ESQL” on page 57|
* |"“Debugging Java” on page 58|

* |"“Debugging mappings” on page 59

When you have finished debugging a message flow, you can remove the
breakpoints, or end the debugging session:

* |[“Removing breakpoints in the flow debugger” on page 51|

* |"“Debug: ending a session” on page 62|

Debugging messages
When message flow processing has paused at a breakpoint in your message flow,
you can examine and modify the message content.

Before you start

Add one or more breakpoints to your message flow. See: [*Adding breakpoints in|
[the flow debugger” on page 48

To examine and modify message data:
1. Switch to the Debug perspective.

56 Deploying and Debugging

2. View the messages in the Variables view.

The Breakpoints view and the Variables view share the same pane. Click the
tab at the bottom to select the view that you want.

3. To alter a message, right-click it and select an option from the menu. You
cannot alter the content of exceptions within a message.

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

Next:

If you have finished debugging this message flow, you can remove the
breakpoints, or end the debugging session:

+ ["Removing breakpoints in the flow debugger” on page 51|

* ["Debug: ending a session” on page 62|

Debugging ESQL

When message flow processing has paused at a breakpoint that you have set in
source code within a node that contains ESQL code, you can examine and modify
the ESQL variables in the Flow Debugger.

Before you start

Complete the following tasks:

* |“Adding breakpoints in the flow debugger” on page 48|

* ["“Debug: stepping through source code” on page 55|

You can browse ESQL variables in the Variables view in the Debug Perspective,
and change their associated data values. You can also set breakpoints on lines in
the ESQL code. See the following sections for further details:

+ [“Using breakpoints on ESQL code lines”]
+ [“Working with ESQL variables”

Using breakpoints on ESQL code lines:

1. Switch to the Debug perspective.

2. Open the ESQL editor.

3. Right-click a line where you want to set a breakpoint.
You cannot set a breakpoint on a comment line or a blank line.

4. Select from the menu to create, delete, or restrict the breakpoint, in a similar
way to normal debugger breakpoints, as described in

[preakpoints in the flow debugger” on page 48|

Working with ESQL variables:
1. Switch to the Debug perspective.

2. Open the Variables view. Variables are shown in a tree, using the symbol v

3. To work with a variable, right-click it and select an option from the pop-up
menu.

You cannot update message trees, or REFERENCE variables.

Testing and debugging message flow applications 57

For example, if you have declared the following ESQL variables, you can
change their values in the debugger:

DECLARE myInt INT 0O;

DECLARE myFloat FLOAT 0.0e-1;

DECLARE myDecimal DECIMAL 0.1;
DECLARE myInterval INTERVAL DAY TO MONTH;

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

Next:

If you have finished debugging this message flow, you can remove the
breakpoints, or end the debugging session:

* [“Removing breakpoints in the flow debugger” on page 51|

* |"“Debug: ending a session” on page 62|

Debugging Java

When message flow processing has paused at a breakpoint that you have set in
source code within a node that contains Java code, you can examine and modify
the Java variables in the Flow Debugger.

1. Switch to the Broker Administration perspective.

2. Click Start » Programs > IBM WebSphere Message Brokers 6.1 >+ Command
Console to open the Command Console.

3. Start the broker by running the mgsistart command in the Command Console.

4. Set the Java debug port by running the mgsichangeproperties command (all
on one line) in the Command Console:

mgsichangeproperties broker_name -e execution_group_name
-o ComIbmJVMManager -n jvmDebugPort -v port_number

For example:

mgsichangeproperties TEST -e default
-0 ComIbmJVMManager -n jvmDebugPort -v 3920

5. Stop and restart the broker by running the mqsistop and mgqsistart commands.

6. Open the message flow that you want to debug in the Message Flow editor by
double-clicking its name in the Broker Development view.

7. Add a breakpoint where the Java method is called, by following the
instructions in [“Adding breakpoints in the flow debugger” on page 48|

8. To step directly into the Java code during the debugging process, add a
breakpoint in the Java code.

9. Deploy the broker archive (BAR) file that includes the JAR file that contains
the Java code, by following the instructions in [‘Deploying a broker archive]
[file” on page 22|

10. Click Run » Debug to open the Debug wizard.

11. Right-click Message Broker Debug in the list of elements on the left and click
New.

12. Set the Java Debug Port with the same value that you specified for the -v
parameter on the mgsichangeproperties command, and click Apply to save
your changes.

13. Click the Source tab, specify the source file location, and click Apply to save
your changes.

58 Deploying and Debugging

14. Click Debug to start the debug process.
Working with Java variables:

When message flow processing has paused at a breakpoint in the source code
within a node that contains Java code (a user-defined node or a JavaCompute
node), you can browse Java variables in the Variables view on the Debug
perspective, and change their associated data values.

1. Switch to the Debug perspective.
2. Click the Variables tab to open the Variables view if it is not already open.

Variables are shown in a tree, using the symbol
3. To work with a variable, right-click it and select an option from the menu.

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

Next:

When you have completed debugging the message flow, you can remove the
breakpoints or end the debugging session:

* ['Removing breakpoints in the flow debugger” on page 51|

* ["Debug: ending a session” on page 62|

Debugging mappings

When message flow processing has paused at a breakpoint that you have set in
source code within a node that contains mappings, you can view the mapping
routines and modify user-defined variables in the Flow Debugger.

Before you start

To complete this task, you must have completed the following tasks:

* |“Adding breakpoints in the flow debugger” on page 48|

+ ["Debug: stepping through source code” on page 55|

Mapping routines are implemented in ESQL. If you step into the code, you can
either step through the ESQL code, or step through the mappings.

1. Switch to the Debug perspective.
2. In the Debug view, take one of the following steps:

* Click Step into Source Code i on the toolbar.

* Right-click the flow stack frame, then click Step into 5.

The Message Mapping editor opens with the mapping routine highlighted in
both the Mapping editor and the Outline view.
3. To use breakpoints on mapping lines:

a. In the Message Mapping Editor, select the line for the mapping command
that you want to use, right-click the space beside it and select from the
menu to add or disable a breakpoint. (Alternatively, double-click the same
space to add or remove a breakpoint.)

Testing and debugging message flow applications 59

b. Select from the menu to create, delete, or restrict the breakpoint, in a similar
way to normal debugger breakpoints, as described in:

[preakpoints in the flow debugger” on page 48

You cannot set a breakpoint on a comment line or a blank line.
4. Check the mapping routines by stepping through the mappings.

In the Debug view, the stack frame shows the list of mapping commands and
the current command. The Variables view shows your user-defined mapping

variables and the current message. You can change the values of user-defined
variables.

Message flow processing continues until the next breakpoint that is set in the
logical processing of the current message. If there is no further enabled breakpoint
at which the flow instance can pause, processing runs to completion and the flow
instance is removed from the Debug view.

Next:

If you have finished debugging, you can remove the breakpoints, or end the
debugging session:

+ [“Removing breakpoints in the flow debugger” on page 51|

* ["Debug: ending a session” on page 62|

Managing flows and flow instances during debugging

During a debugging session, there are various administrative tasks that you might
need to do, which include detaching the debugger from the execution group when
you have finished.

When you have started a session for message flow debugging, you might want to
complete one or more of the following associated tasks:

* |“Debug: querying a broker to find deployed flows”]

+ “Debug: stopping a message flow instance” on page 61

* |“Debug: redeploying a message flow” on page 61|

* ["Debug: ending a session” on page 62|

Debug: querying a broker to find deployed flows
You can find the message flow that you want to work with in the Flow Debugger
by refreshing the list of available flows.

During an active debugging session, you can query an execution group on a
broker to find out what flows are currently deployed to it. The displayed list of
message flows that are available in that execution group is updated. The updated
list might include message flows that were not previously deployed, or that were
not accessible because the flow was already being accessed by another developer.

To query an execution group for deployed flows:
1. Switch to the Debug perspective.

2. In the Debug view, select the execution group that you want to query, then:

* either, click Refresh Selected Flow Engine to Get More Flow Types ._-;.{}{h;- on
the toolbar.

* or, right-click the execution group, then click Refresh ,5.{}-%}'3. .

60 Deploying and Debugging

The Debug view is refreshed with the names of the flows that are currently
deployed to the execution group and are available.

Next:

You can continue your debugging session and debug one of the listed message
flows, or end your debugging session:

* ["Working with breakpoints in the flow debugger” on page 48|

* ["Debug: ending a session” on page 62|

Debug: stopping a message flow instance
While debugging, a message flow cannot be redeployed until it has been stopped.

While you are debugging, you might need to stop a message flow instance. For
example, you might want to correct an error in your flow or source code. To do

this, you must stop the flow and then redeploy it. See ["Debug: redeploying af

To stop message flow processing, run it to completion:

1. Switch to the Debug perspective.
2. In the Debug view:

* either, click Run to completion P‘l] on the toolbar.
e or, right-click the flow stack frame, then click Run to completion b‘l] .

The flow instance ignores all breakpoints and processing continues to the end. The
flow instance is automatically removed from the Debug view.

Next:

After stopping a flow instance, you can start to debug another message flow, or
end your debugging session:

* [|“Attaching the flow debugger to an execution group for debugging” on page 44|

* ["Debug: ending a session” on page 62|

Debug: redeploying a message flow
If you want to change your message flow while you are debugging it, you must
redeploy it to the execution group, then reattach the flow debugger.

Before you start

Stop the message flow before you redeploy it. See: [“Debug: stopping a message]

During your debugging session, you might find a problem in a message flow that
you want to correct or see a behavior that you want to change. You can alter the
flow to resolve the situation and redeploy the flow to the broker:

1. Switch to the Debug perspective.
2. Detach the debugger from the execution group by clicking Detach from the

Selected Flow Engines 37 on the toolbar.
3. Switch to the Broker Application Development perspective.
4. Edit the flow in the Message Flow editor and save your changes.

Testing and debugging message flow applications 61

5. Switch to the Broker Administration perspective.

6. Double-click the broker archive (BAR) file that contains your flow. Remove the
flow, then add your edited version and save your changes.

See|“Adding files to a broker archive” on page 16|
7. Deploy your BAR file.
Drag your BAR file from the Broker Administration Navigator view to the

execution group in the Domains view. Check the Event log to make sure that
the deployment was successful.

See: [“Deploying a broker archive file” on page 22

8. Switch to the Debug perspective.
9. Reattach the debugger to the execution group.

Click the down-arrow on the Debug icon %‘ on the toolbar, and select Debug
to invoke the Debug (Create, manage, and run configurations) wizard, and
attach the flow engine again, following the instructions in [’Attaching the flow|
[debugger to an execution group for debugging” on page 44

The modified message flow is now deployed to the broker, and the debugging
session is ready for you to debug the new flow logic.

Next: Continue to use these tasks to debug your message flow:

* [“Working with breakpoints in the flow debugger” on page 48|

+ [“Stepping through message flow instances in the debugger” on page 52|

Debug: ending a session
Finish debugging by detaching the flow debugger from the execution group to
which your message flows are deployed.

When you have finished debugging a flow, detach the flow debugger from the
execution group. Other developers are then able to attach the debugger to the
execution group. Detaching the flow debugger also restores the performance of
your workbench environment, which might have been reduced by having the
debugger attached.

To detach the flow debugger from an execution group:
1. Switch to the Debug perspective.

2. In the Debug view, select the name of the execution group from which you
want to detach the flow debugger, then take one of the following steps:

* On the toolbar, click Detach from the Selected Flow Engines 5" 'E .
* Right-click the execution group, then click &7 Detach).

All existing flow instances are automatically run to completion and the flow
debugger is detached from the execution group. Your debugging session is now
finished. You can start a new debugging session at any time.

Debugging message flows that contain WebSphere Adapters
nodes

You can use various methods to monitor message flows that include WebSphere
Adapters nodes.

62 Deploying and Debugging

Before you use any of the methods listed in this section, ensure that the
appropriate JAR files and shared libraries are available to the WebSphere Adapters
nodes. For more information, see [Preparing the environment for WebSphere
[Adapters nodes|

Also, check for the latest information about WebSphere Adapters; see [WebSphere
[Adapters technotes]

* User and service trace: You can use user and service trace to trace a message
Using]

flow that contains WebSphere Adapters nodes. For more information, see
[rrace]

* Flow debugger: Use the flow debugger in the normal way to debug a message
flow that contains WebSphere Adapters nodes. For more information, see
[‘Debugging a message flow” on page 42

* Adapter event table: The WebSphere Adapters nodes use an event table to
communicate the outcome of operations asynchronously to a calling application.
For more information, see [Creating a custom event project in PeopleTools]

Handling exceptions that are raised by a WebSphere Adapters request node

The WebSphere Adapters request nodes raise exceptions that indicate the following
Enterprise Information System (EIS) failures.

Message

number Exception type Explanation

BIP3511 RecordNotFound The requested record could not be found in the
EIS.

BIP3512 DuplicateRecord An attempt was made to create a record that
already exists in the EIS.

BIP3513 MultipleMatchingRecords | A retrieve request matched more than one
record. To retrieve multiple records, perform a
retrieveall operation.

BIP3515 MatchesExceededLimit A retrieveall exception returned more entries
than the maximum allowed number.

BIP3516 MissingData The message tree that was sent to the adapter
request node does not have all the required
fields set.

If an exception occurs that does not fit into the categories in the table, the node
raises a general BIP3450 message that describes the problem.

You can use these exceptions to perform special processing when you do not want
the exceptions to be treated as errors. For example:

* If a create operation fails because the record already exists, you could modify
the request to an update.

 If a retrieve operation fails because the request matches more than one record,
you could try a retrieveall operation instead.

* If a retrieve operation fails because the record could not be found, an empty
record could be returned.

To handle these exceptions, you can connect a message routing node, Compute
node, or JavaCompute node to the Failure terminal of the WebSphere Adapters
request node, and route the exception to other processing nodes based on the
exception message number.

Testing and debugging message flow applications 63

http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8
http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8

Debugging by using trace

You can use trace in several ways to analyze message flow behavior.

Enabling user trace shows the history of processing that is carried out in a
particular message flow, but it shows only those parts of the messages that were
accessed. You can use Trace nodes to write out your own debugging information at
specific points in the message flow, including the full message tree at that point,
provided that you have coded the flow to include it.

You can use both of these methods to review behavior only after a message has
been processed.

* |[“Debugging with user trace”|

* |"“Debugging by adding Trace nodes to a message flow” on page 65|

Debugging with user trace

Built-in nodes write messages to user trace when they are processing work. You
can use these messages offline to review the activity in a message flow and show
information such as which nodes were invoked, what code they ran, and through
which terminals the messages was sent.

Before you start:

Before you start to trace a broker, or any of its execution groups or messages flows,
the broker must be running, and you must have deployed the message flows by
using the workbench.

If part of the message is parsed by the nodes, user trace shows the fields that are
being navigated.

If an error occurs while a message is being processed, the exception is written to
user trace. If the error is not caught in the message flow, it is also be written to the
system log. Each entry in user trace is prefixed by "BIP". You can search for BIP
messages in the information center. For information about the location of user trace
log files on different operating systems, see

When you start user tracing, you cause additional processing for every activity in
the component that you are tracing. Large quantities of data are generated by the
components. Expect to see some effect on performance while trace is active. You
can limit this additional processing by being selective about what you trace, and
by restricting the time during which trace is active.

* Trace is inactive by default. Turn it on by following the instructions in [Starting|

ser trace

* If you need to check what tracing options are currently active for your brokers,
use the mqsireporttrace command, as described in [Checking user trace options}

* To change user trace options, use the mgsichangetrace command, as described in
[Changing user trace options}

 To retrieve user trace, use the mqgsireadlog command, as described in [Retrieving
ser trace

* To format the information that is generated by the mgsireadlog command, use
the mqsiformatlog command, as described in [Formatting trace

* For information about how to interpret the contents of user trace, see
[[nterpreting trace}

64 Deploying and Debugging

ser trace

¢ To clear old information from trace files, use the mgsichangetrace command, as
described in |Clearing old information from trace files}

* To stoi user trace, use the mgsichangetrace command, as described in

* Alternatively, you can include a Trace node in your message flows when you
design them. Use a Trace node when you want to specify an alternative location
for the trace contents. For more details, see [“Debugging by adding Trace nodes|
[to a message flow.”|

Debugging by adding Trace nodes to a message flow

By adding a Trace node to a message flow, you can write debugging messages to a
file, to user trace, or to the system log, and review those messages after the
message flow has processed some data.

You must add a Trace node when the message flow is designed.
[logical message tree in trace output] explains how to view the structure of the
logical message tree at any point in the message flow, and contains an example of
the message content. You can turn the Trace node off when a message flow is
promoted to production to improve performance, but you can turn the node on
when required. Performance can be affected when Trace nodes are active. The
extent to which performance is affected depends on the destination that you
choose for the debugging messages; for example, writing to user trace is typically
faster than writing to a file or to the system log.

The debug messages can include writing part or all of the logical message tree, but
they can also include hard-coded strings to identify a particular point in the
message flow (such as PRINTF in a C program). If you write the entire message tree
in a Trace node, the behavior of the message flow might be changed. Typically,
only the parts of the message that are referenced are parsed, rather than the entire
message.

* Add a Trace node to your message flow, then set the following properties on the

node (as described in detail in [Trace node):

— Set the destination of the trace record that is written by the node to User
Trace, Local Error Log, or File.

— If you choose File, set the file path of the file to which to write records.

— Use the Pattern property to create an ESQL pattern that specifies the data to
be included in the trace record.

— Specify the message catalog from which the error text for the error number of
the exception is extracted.

— Specify the error number of the message that is written.

* After you have added a Trace node to your message flow, you can turn it on or
off, as described in [Switching Trace nodes on and off|

* To view the structure of the logical message tree at any point in the message
flow, include a Trace node and write some or all of the message (including
headers and all four message trees) to the trace output destination. The
following topics describes how to view that output: [Viewing the logical message]
[tree in trace output]

* If you write debugging messages to user trace, the following topic describes
how to retrieve user trace: [Retrieving user trace|

Testing and debugging message flow applications 65

Testing message flows by using the Test Client

You can test message flows in a safe environment before they are used on a
production system by using the Test Client.

You can use the Test Client to send test messages to message flows that use
WebSphere MQ, JMS, SOAP, or HTTP input nodes. The Test Client monitors the
output nodes in the message flow, and can provide information about the path that
a test message takes through a message flow. The Test Client can also provide
information about errors that are generated by the message flow.

You can perform the following tasks using the Test Client:

* [“Testing a message flow” on page 67|

+ [“Configuring the test settings” on page 69|

+ [“Creating and editing a test message” on page 70|

* |“Using the Test Client in trace and debug mode” on page 73|

Test Client overview

Use the Test Client to test message flows in a safe environment before they are
used in a production system.

You can use the Test Client to send test messages to message flows that use any of
the following input nodes:

* WebSphere MQ
* JMS

* HTTP

* SOAP

Configuring the input message

You can use the Test Client to change the content of test messages that are sent to a
message flow, to help you determine if the message flow is working as expected.

WebSphere MQ queues
If your message flow uses WebSphere MQ queues, the Test Client clears
the queues before your test messages are sent to the message flow.

XML messages
If the input node in the message flow that you select expects an XML
message from an associated message set, the message structure is
provided, and it can be edited to produce the appropriate test message.
Alternatively, you can create a new test message, or import an existing
message from your file system.

WebSphere MQ and JMS messages
If the message format is WebSphere MQ or JMS, you can also configure an
appropriate header for the test message.

Monitoring a flow with the Test Client
The Test Client monitors output nodes in the message flow so that you can see
which nodes output messages are received on. When an error message is produced

as the message passes along the flow, or when a message is received on an output
node, a test event is recorded in the Test Client.

66 Deploying and Debugging

You can view the content of the output message, and view error messages. The
details of the test configuration and the test events can be saved as a .mbtest file.
You can use this file to repeat the test or to review the results later.

Deploying message flows when you use the Test Client

If you change your message flow, you can use the same test configuration to test
the changes. The default behavior of the Test Client is to deploy the message flow
that you want to test automatically to an execution group, whenever a change is
made to the message flow. You can therefore change a message flow, and quickly
test the result using the Test Client, without the need to manually deploy your
message flows.

The first time that you send a test message to an input node, you configure the
execution group to deploy the message flow by using the Deployment location
wizard. You can configure the deployment options to override the default behavior
of the Test Client to deploy the message flow manually, or to deploy the message
flow every time that you pass a test message to the message flow.

Stopping the Test Client

The default behavior of the Test Client is to stop the test when the first output
message is received. You can configure the Test Client to wait for multiple output
messages to be received. In this case, you stop the test manually. Stopping the test
disconnects the monitors that are running, but does not stop the message flow.

Synchronous tests
A synchronous test, such as when the message flow is invoked from an
HTTPInput node, is stopped automatically when a reply message is
received.

Asynchronous tests
You can stop an asynchronous test, such as when the message flow is
invoked from an MQInput node, manually depending on the monitor
setting in the configuration panel.

All test events are stopped when the Test Client is closed, and all test monitors
removed.

Using The flow debugger with the Test Client

You can run the Test Client using the trace and debug mode to view more
information about the path that the message takes through the message flow. A test
event is produced when the message passes from one node to the next node in the
message flow. The structure of the message is recorded as it leaves each node in
the message flow. The flow debugger is launched in the trace and debug mode so
that the test message stops at breakpoints that are configured in the message flow.

Testing a message flow

You can test your message flows using the Test Client.
Before you start:

You must have a broker domain configured and running. If you do not have an
existing broker domain, create one using the Default Configuration wizard; see

Testing and debugging message flow applications 67

[Using the Default Configuration wizard} If the broker domain is not already
configured in the Message Broker Toolkit, use the Deployment Location wizard to
connect to the broker domain.

To test a message flow, complete the following tasks:
1. [“Opening the Test Client editor”]
2. ["Configuring the test settings” on page 69|

3. [“Creating and editing a test message” on page 70|

4. [“Selecting the deployment location for the message flow” on page 72]

The test message is put to the selected input node. The Test Client monitors the
output nodes in the message flow and events are generated as the message passes
through the message flow. You might need to stop the test manually, depending on
the nodes in the message flow and the settings that you have configured in the
Test Client.

Next:

To test the message flow again, right-click Invoke Message Flow in the Message
Flow Test Events pane and click Invoke to start a new test; or click Duplicate or
Re-run to re-run the test using the same message.

Opening the Test Client editor

Open the Test Client editor and select a message flow to test.
Before you start:
Ensure that there are no errors in your message flow before you open it with the

Test Client. Errors are displayed in the Problems view, see [Problems view]|in [Broker|
[Application Development perspective| for more details.

To open the Test Client editor and ensure that the message flow that you want to
test is selected, use one of the following methods:

* From a message flow file:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development pane, right-click the message flow you want to
test and click Test Message Flow.
The Test Client editor is opened with settings from the message flow.
* From an input node:
1. Open the message flow that you want to test.
2. Right-click an input node in the message flow and click Test.
The Test Client editor is opened with settings from the message flow, and the
input node is selected.
¢ From a message flow:
1. Open the message flow that you want to test.
2. Right-click anywhere in the message flow and click Test. This menu option is
disabled if there are no input nodes that can be tested.
The Test Client editor is opened with settings from the message flow.
* From the Flow menu:
1. Open the message flow that you want to test.

68 Deploying and Debugging

2. Click Flow - Test. This menu option is disabled if there are no input nodes
that can be tested.

The Test Client editor is opened with settings from the message flow.

You can now configure a test message to send to the message flow, or configure
the Test Client settings.

Next:

You can save the Test Client configuration in a .mbtest file:

1. Click File » Save. The Save Execution Trace window is displayed.

2. Enter a name for the file, and select a project in which to save the file.
3. Click Finish to save the file.

Configuring the test settings
You can configure the settings in the Test Client to control how your tests are run.

Before you start:

You must complete the following tasks before you can configure test settings:

* |Creating a message flow|
* [“Opening the Test Client editor” on page 68

Use the following topics to help you to configure the settings on the Test Client:

+ [“Testing a message flow that has WebSphere MQ nodes”]

* [“Testing a message flow that uses JMS nodes” on page 70|

+ [“Test Client Configuration tab” on page 84

You can modify settings that relate to all your test configurations using the Test
Client preferences; see [“Test Client preferences” on page 86

Testing a message flow that has WebSphere MQ nodes:

You can configure settings in the Test Client for testing message flows that have
WebSphere MQ nodes.

To test a message flow that uses WebSphere MQ nodes:

1. Right-click on your message flow and click Test Message Flow. The Test Client
opens with the settings from the selected message flow.

2. In the Test Client, click the Configuration tab to display the Test Client
configuration settings.

3. Click MQ Settings and select the appropriate options for your test.

4. Click MQ Message Header "Default Header" to view the settings for the
message header that is used for the test message. You can edit the options for
the default header, or alternatively, you can create a new header to edit:

a. Click MQ Message Headers.

b. Click Add and enter a unique name for the header.
c. Edit the header settings.
d

. Click the Events tab, and select the appropriate header for your message
from the Header list.

Testing and debugging message flow applications 69

5. You can use the Test Client to create WebSphere MQ queues that are used in
nodes in your message flow. To configure the Test Client to create the queues:

a. Click Window - Preferences.
b. Expand Broker Development and click Message Broker Test Client.

c. Ensure Create queues of input and output nodes of message flows when
host name is localhost is selected and click OK.

6. Create a test message to test your message flow, see ['Creating and editing a

7. When you have created your test message, you must select the execution group
to deploy the message flow to, see [“Selecting the deployment location for the]
[message flow” on page 72

Testing a message flow that uses JMS nodes:

You can configure settings in the Test Client for testing message flows that uses
JMS nodes.

To test a message flow that uses JMS nodes:

1. Right-click on your message flow and click Test Message Flow. The Test Client
opens with the settings from the selected message flow.

2. In the Test Client, click the Configuration tab to display the Test Client
configuration settings.

3. Click JMS Settings and select the appropriate options for your test. You can
add references to the client JAR files used to create the JMS connection.

To add a reference to these JAR files into your test configurations:
a. Click Configure preference settings. The Test Client preferences are
displayed.

b. Click Add and locate the JAR files in your file system.

c. Click OK to add the reference to the JAR files.

d. Ensure that Use preference settings is selected in the Configuration tab.
4. Click JMS Message Headers to create a JMS header:

a. Click Add and enter a unique name for the header.

b. Edit the header settings.

c. Click the Events tab, and select the appropriate header for your message
from the Header list.

5. Create a test message to test your message flow, see [‘Creating and editing a

6. Select the execution group to which you want to deploy the message flow to,
see [“Selecting the deployment location for the message flow” on page 72)

Creating and editing a test message
To use the Test Client, you must create or edit a test message to send to your
message flow.

Before you start:

Complete these tasks before you edit your test message:

1. [“Opening the Test Client editor” on page 68|

2. ["Configuring the test settings” on page 69|

70 Deploying and Debugging

A number of editors are available in the Test Client for creating a test message. The
most appropriate editor to use depends upon the type of test message you want to
send to your message flow.

If the input node that you want to send the message to for the test expects an
XML message, and the message flow is associated with a message definition, the
Edit as XML structure editor is available.

If you want to send an XML message, but do not have a message definition
defined, or you want to create a test message that is not in XML format, you can
use the Edit as text editor.

If you want to use an existing test message from a workspace resource or file
system file, you can use the Import from external file editor.

Alternatively you can import an existing test message into the Edit as text
editor, or take the generated source from the Edit as XML structure editor and
paste it into the Edit as text editor.

Select from the following options to create and edit a test message:

Edit as XML structure:

1. In the Events tab of the Test Client, select Edit as XML structure from the
Body list.

2. Edit the entries in the Value column for each field to change the content of
the test message.

3. Right-click the fields in the Edit as XML structure editor to see additional
options for defining the content of the test message. These options include
adding message parts and elements, for example if your message has
repeating fields.

4. You can save your file with the updated test message by clicking File » Save.

5. To view and copy the generated test message, click Show Generated Source.

e Edit as text:

1. In the Events tab of the Test Client, select Edit as text from the Body list.

2. Enter the text content for your test message. You can copy content into the
editor from another source by right-clicking in the editor and selecting Paste,
or import content from an existing test message by clicking Import Source.

3. You can save your file with the updated test message by clicking File » Save.

* Import from external file:

1. In the Events tab of the Test Client:

— If the input node expects an XML message, select Import from external
file from the Body list.

— If the input node does not expect an XML message, select Import from
external file (Binary and Text) from the Body list.

2. Select from the following options to locate the file containing your test
message:

— Workspace resource

a. Click Workspace. You can then locate your existing test message from
your workspace.

b. Click OK to use the selected resource.
c. Click Edit to open the default editor associated with the resource.
— File system file

a. Click File system. You can then locate your existing test message from
your file system.

Testing and debugging message flow applications 71

b. Click Open to use the selected file.

3. You can save your file with the updated test message file details by clicking
File » Save.

Next:

Ensure that you have selected the correct input node to send the test message to in
your message flow. Click Send Message to send your test message to the selected
input node. If this is the first time you have sent a message using this Test Client
file, the Deployment Location wizard opens. See [“Selecting the deployment|
[location for the message flow.”]

Selecting the deployment location for the message flow
You can specify the execution group to which to deploy a message flow by using
the Deployment Location wizard within the Test Client.

Before you start:

Before you can test your message flow, you must have configured a broker domain
with a broker. The components in the broker domain must all be running. If you
do not have an existing broker domain, you can create one using the Default
Configuration wizard; see [Using the Default Configuration wizard} If the broker
domain is not already configured in the Message Broker Toolkit, you can use the
Deployment Location wizard to connect to the broker domain by selecting New
Domain Connection.

When you first send a test message to a message flow using the Test Client, the
Deployment Location wizard is opened. You can use the wizard to select an
execution group to which to deploy the message flow.

1. In the Test Client, click Send Message, to open the Deployment Location
wizard.

2. If your domain is not connected, click Connect.

3. From the list in the wizard, select the execution group to which to deploy your
message flow. You can also create a new execution group from the Deployment
Location wizard by selecting a broker, and clicking New Exec Group.

4. Select the Mode to run the test in.
5. Select Run to monitor the output nodes only.

6. Select Trace to receive information about each node that the message passes
through in the message flow.

7. Click Next.
8. Modify the test settings as required.
9. Click Finish to save the settings and deploy the message flow.

Next:

You can change the deployment location settings from the Configuration tab.
1. Click Configuration in the Test Client.

2. Click Deployment to display the deployment settings.

3. Click Change to open the Deployment Location wizard.

72 Deploying and Debugging

Using the Test Client in trace and debug mode

You can run the Test Client in trace and debug mode to trace the path of a test
message through a message flow.

Before you start:

Before you can test your message flow, you must have configured a broker domain
with a broker. The components in the broker domain must all be running. You
must also have created an execution group to deploy your message flows to.

You can use the trace and debug mode to:

Stop the test message at breakpoints in the message flow by using the flow
debugger.

Trace the message nodes and terminals that the test message passes through.
See the test message change as it passes through the message flow.

View a message node, where an exception occurs, and the associated exception
message and trace details.

All output from the trace and debug mode is written to the “Message flow test
events” section on the Message flow Test Events tab.

To use the Test Client in trace and debug mode:

1.

Set the Java Debug Port for the execution group by using the
[mgsichangeproperties| command:

a. Open a command window that is configured for your environment.
b. Enter the following command:

mgsichangeproperties broker -e exec_group -o ComIbmJVMManager
-n jvmDebugPort -v port_number

where broker is the name of your broker, exec_group is the name of your
execution group, and port_number is an unused port number

c. Stop and restart your broker by using the [mgsistop| and [mgsistart|

commands.

2. In the Test Client, click Send Message to open the Deployment Location
wizard.

3. If your domain is not connected, click Connect. From the list in the wizard,
select the execution group to which you want to deploy your message flow.

4. Click Trace and debug.

5. Optional: If you want the test message to stop at a breakpoint after the input
node, click Stop at the beginning of the flow during debug.

6. Click Next and modify the test settings as required.

7. Click Finish to save the settings and deploy the message flow.

Next:

You can modify the deployment location settings from run mode to trace and
debug mode by using the Deployment Location wizard:

1.
2.
3.

Click Configuration in the Test Client.
Click Deployment to display the deployment settings.
Click Change to open the Deployment Location wizard.

Testing and debugging message flow applications 73

74 Deploying and Debugging

Part 3. Reference

Flow application debugger

Flow debugger shortcuts .
Debug view . .
Breakpoints view . . .

Flow Breakpoint Properties dialog .

Variables view L.
Flow debugger icons and symbols.
Debug perspective .
Debug view . .
Message Flow editor
Breakpoints view
Variables view
Java Debugger

Test Client .
Test Client Events tab .
Enqueue
Dequeve
Test Client Configuration tab
Test Client preferences.
Deployment Location wizard
JMS events in the Test Client

© Copyright IBM Corp. 2000, 2010

.77
.77
.77
.78
.78
.78
. 78
.78
.79
.79
. 80
. 80
. 80

. 81
. 81
. 84
. 84
. 84
. 86
. 87
. 88

75

76 Deploying and Debugging

Flow application debugger

The flow debugger is a visual interface that supports the debugging of message
flow applications in the workbench.

The following topics provide reference information to help you use the debugger
effectively:

* [“Flow debugger shortcuts”]

* [“Flow debugger icons and symbols” on page 78|

You can also use the [“Java Debugger” on page 80| provided by the Java
Development tools to debug Java code within the workbench.

Flow debugger shortcuts

You can use function keys and shortcut keys to complete actions in the flow
debugger views and windows.

Shortcut keys are shown as a pair that you press together, followed by a
subsequent key, for example Shift-F10, C means hold the Shift key down and
press F10, then release both and press key C.

The following tables describe the main shortcuts that are available in the debug
session:

* [“Debug view”

* [“Breakpoints view” on page 78|

* [“Flow Breakpoint Properties dialog” on page 78|

* [“Variables view” on page 78

To see a complete list of all the shortcuts that are available, press Shift-F10 and
release; the contextual menu is displayed.

Debug view

Key combination Function

Shift-F10, C Run to completion
Shift-F10, E Disconnect

F5 or Shift-F10, I Step into

F8 or Shift-F10, M Resume

Shift-F10, N Terminate All

F6 or Shift-F10, O Step over

Shift-F10, T Terminate

F7 or Shift-F10, U Step return

Shift-F10, V Terminate and Remove

© Copyright IBM Corp. 2000, 2010

Breakpoints view

Key combination Function
Shift-F10, A Select All
Shift-F10, B Add breakpoint

Shift-F10, D

Disable the selected breakpoints

Shift-F10, E

Enable the selected breakpoints

Shift-F10, L

Remove all breakpoints

Shift-F10, O

Remove the selected breakpoints

Flow Breakpoint Properties dialog

Key combination

Function

E

Enable the breakpoint

Alt-R, <space>

Restrict the breakpoint to the selected flow instances

Variables view

Key combination

Function

Shift-F10, A

Select All

Shift-F10, C

Change the value of the selected flow variable

Shift-F10, V

Copy variables

Flow debugger icons and symbols

The Debug perspective uses various debugger icons and symbols.

This topic describes the icons and symbols used in the Debug perspective and its

views:

+ |“Debug perspective”]

* ["Debug view” on page 79|

* ["Message Flow editor” on page 79|

* [“Breakpoints view” on page 80|

+ [“Variables view” on page 80

Debug perspective

These icons and symbols are used in the Debug perspective outside any individual

view.

Icon or

Symbol | Description

ﬁ Debug perspective (symbol)

ﬁ_\ Attach to Flow runtime environment (icon)

78 Deploying and Debugging

Debug view

Icon or
Symbol

Description

Debug view (symbol)

Flow engine (symbol)

Flow (symbol)

Flow instance paused (symbol)

Flow instance running (symbol)

Flow instance terminated (symbol)

Stack frame (symbol)

Detach from the selected flow engine (icon)

Resume flow execution (icon)

TFIFIZIMN% % 5% % 4

Run the flow to completion (icon)

&

Step into subflow (icon)

)

Step over node (icon)

=

Step out of subflow (icon)

O

Step into source code (icon)

Message Flow editor

These icons and symbols in the message flow editor are specific to the flow

debugger.
Icon or
Symbol | Description
@ Enabled breakpoint (symbol)

Disabled breakpoint (symbol)

@ | O

Paused at breakpoint (symbol)

Source code available (symbol)

e | Cdf

Error or exception (symbol)

Flow application debugger

79

Breakpoints view

Icon or
Symbol

Description

®s

Breakpoints view (symbol)

y-

Enabled breakpoint (symbol)

D

Disabled breakpoint (symbol)

Remove selected breakpoints (icon)

%

Remove all breakpoints (icon)

Variables view

These icons and symbols in the Variables view are specific to ESQL.

Icon or
Symbol

Description

Variable view (symbol)

Tree reference variable (symbol)

Message (symbol)

ESQL reference variable (symbol)

ESQL constant (symbol)

ESQL scalar variable (symbol)

ESQL schema variable (symbol)

lgs'ql

ESQL module variable (symbol)

Java Debugger

The Java Development Tools include a debugger that enables you to detect and
diagnose errors in your programs running on local or remote systems. You can
control the execution of your program by setting breakpoints, suspending launched
programs, stepping through your code, and examining the contents of variables.

For further information about the Java debugger, refer to the [[ava Development]

[User Guide plug-in - Debugger|

80 Deploying and Debugging

Test Client

Use the Test Client to test message flow applications.

The following topics provide reference information to help you to use the Test
Client effectively:

* [“Test Client Events tab’]
* [“Enqueue” on page 84|

+ ["Dequeue” on page 84

[“Test Client Configuration tab” on page 84|

[“Test Client preferences” on page 86|

* |"“Deployment Location wizard” on page 87
[‘TMS events in the Test Client” on page 88|

Test Client Events tab

You can use the Events tab in the Test Client to edit the properties and content of
your test messages. You also view test events in the Events tab when you run the
test.

Purpose

Use the Events tab to edit and send the test messages, and to monitor the results
of the test.

Message Flow Test Events

The Message Flow Test Events section of the Events tab displays the status and
history of the test execution:

Invoke Message Flow
The Invoke Message Flow event starts the selected message flow. The
message flow selection is defined by the selected message flow input node.
Invoke Message Flow can also be the start of a new test execution with an
empty test message. You can enter the message content and start the
execution.

Starting
The Starting event indicates the beginning of the test execution.

Sending Message
The Sending Message event indicates that the message is being sent.

Enqueue
The Enqueue event indicates that the current message has been queued on
an existing WebSphere MQ queue. Put a message to the specified queue
manager, queue, port, and host name as defined in the Detailed Properties
section. For more information, see [“Enqueue” on page 84/

Dequeue
The Dequeue event indicates that the current message has been dequeued
from an existing WebSphere MQ queue. Click Get Message from the

© Copyright IBM Corp. 2000, 2010 81

specified queue manager, queue, port and host name as defined in the
Detailed Properties section. For more information, see [‘Dequeue” on pagel

Monitor

The Monitor event indicates the message was received on an output node
monitor.

Stopped
The Stopped event indicates that the test execution has been stopped. The
test execution can be stopped either by the Test Client or by the user.

Exception
The Exception event indicates when errors are encountered during the test.
A message is displayed in the Exception message box on the right of the
page and the message flow execution errors are logged in the Windows
Event Viewer application log. To view the Windows Event Viewer
application log, click Event Viewer.

Exception Trace
An Exception Trace event occurs when errors are encountered during test
and Trace has been selected. Trace details are displayed in the Exception
Trace panel on the right of the page.

Events tab actions

The following actions can be initiated on the Events tab, by right-clicking in
Message Flow Test Events:

Re-run
Reruns the current message. To clone and rerun a previously started test
message, right-click the message flow and click Re-run.

Duplicate
Duplicates the current message. To duplicate a previously started test
message, right-click the message flow and click Duplicate.

Invoke
Restarts the current message. To restart a previously started test message,
right-click the message flow and click Invoke.

Buttons on the Events tab

Several buttons are provided on the upper right of the Events tab:

Invoke
Starts a new Invoke Message Flow event where you can enter a request
message and start the test execution.

Enqueue
Puts the message to the specified queue manager, queue, port, and host
name as defined in the Detailed Properties section on the right of the page.

Dequeue
Gets the message from the specified queue manager, queue, port, and host
name as defined in the Detailed Properties section on the right of the page.

Saved Messages
Displays the Data Pool editor in which you can select values that you have
used in a previous test session. You can use the Data Pool editor to save or
retrieve values for use during tests. When you use the Data Pool editor to

82 Deploying and Debugging

save or retrieve values, the values are saved to, or retrieved from, a global
data pool in your workspace. By selecting Saved Messages, you ensure
that you are always working with the same set of values regardless of how
many Test Client instances or test configurations you are using in your
tests.

Stop Stops the current test.

Show Event Viewer
Displays the Event Viewer if the operating system is Windows.

Show Console
The Message Broker Runtime Console view opens. This view shows more
details of the test run.

Detailed Properties

The Detailed Properties section varies according to the different events that you
have selected in the Message Flow Test Events pane. The Detailed Properties
section displays details of the current event type. The default details are:

* Message Flow. The name of the message flow that is being tested.
¢ Input node. The input node to which the test message is being sent.

Message
The Message section either displays the test message or the output
message from a test event. If you are creating a new test message, you can
select either the XML Structure editor or the Source editor to edit the test
message. The XML Structure editor is available only if the input node that
is selected on the message flow is expecting an XML message, and an
existing message definition is associated with the message flow.

Header
Select the header to use for your test message if your message flow
uses a WebSphere MQ or JMS input node.

SOAP operation
Select the SOAP operation to use for your test message if your
message flow uses a SOAP input node.

Viewer
Select the appropriate editor to view or edit your test message or
output message from the following editors:

XML Structure editor

Use the XML Structure editor to view and edit an XML test
message derived from an associated message definition.
You can change the content of the message by editing the
entries in the Values column. Right-click to display a menu
with options to change the content of the XML structure,
including adding and removing elements. To view the
generated source code, click Show Generated Source.
Click Saved messages to display a list of saved error
messages.

Source editor
Use the Source editor to compose and send test messages if
you want to import a test message, or if the test message is
not in XML format. To import a test message from a file,
click Import Source.

Test Client 83

Source tab
Edit the test message as plain text using the Source
tab.

XML Source tab
Edit the test message in an XML editor using the
XML Source tab.

Hexadecimal (read only) tab
View the test message in hexadecimal format by
using the Hexadecimal (Read Only) tab.

Enqueue

Enqueue is the term that is used to describe the process of putting a message on to
a WebSphere MQ queue.

The following properties are entered on the Events page:

Host The name of the host computer.

Port The number of the port that is used.

Queue Manager
The name of WebSphere MQ Queue manager.

Queue
The name of the queue on the Queue manager.

Dequeue

Dequeue is the term that is used to describe the process of removing a message
from a WebSphere MQ queue.

The following properties are entered on the Events page:

Host The name of the host computer.

Port The number of the port that is used.

Queue Manager
The name of WebSphere MQ Queue manager.

Queue
The name of the queue on the Queue manager.

Test Client Configuration tab

Configure your test environment in the Configuration tab in the Test Client.
Purpose

You can use the Test Client Configuration tab to alter the settings that are used
when you test your message flow.

You can set the following settings in the Configuration tab:
* Message Flows

* Deployment

* MQ Settings

* JMS Settings

* MQ Message Headers

* JMS Message Headers

84 Deploying and Debugging

MQ settings apply to invoke, enqueue, and dequeue events; all other settings
apply to invoke events only.

Select the relevant options in the left pane to display the properties in the right
pane of the Configuration tab. The following sections describe the properties on
the Configuration tab.

Message Flows

Add or remove Message Flows to be tested
In this section of the Configuration tab, the message flow that you have
selected to test is listed. You can add more message flows to the test
configuration so that you can test multiple message flows at the same time;
for example, if you have an output message from one message flow that
triggers another message flow, or if you are using subflows. Click Add to
add message flows to your test configuration. Click Remove to remove
message flows from the configuration.

Deployment

I will deploy the specified Broker Archive manually
You can select this option to prevent the Test Client from deploying the
message flow before you send a message to test the message flow. Specify
the broker archive (.bar) file that you want to deploy manually in the
Specify Broker Archive file property on the Deployment section of the
Configuration tab. Deploy the broker archive file to the execution group
that is specified in the Deployment Location section.

Always rebuild and deploy a Broker Archive automatically
The Test Client always builds and deploys the file irrespective of whether
there is a change to the broker archive file or its dependents, including
message flows.

You can use this option to force the Test Client to deploy when the Test
Client cannot detect changes in the message flow.

Only rebuild and deploy Broker Archive when changes occur
The Test Client rebuilds and deploys the broker archive file only when
there is a change in the content of the message flow. This action is the
default option.

Override configurable properties when rebuilding Broker Archive file
You can define the configurable properties in the Broker Archive editor.
Use this option to specify whether the user-defined value is overridden
when the Test Client rebuilds the broker archive file.

Click Change to select a deployment location, see the [“Deployment Location|
[wizard” on page 87/

MQ Settings

Stop when first MQ message is received
Use this option if you want the Test Client to stop receiving events when
the first WebSphere MQ Output queue contains a message.

Add one or more conditions. This option is ignored if no MQ queues are
being monitored.

The Test Client monitors MQ queues that are defined in the MQOutput
nodes in the message flows that are being tested. If you check the option,

Test Client 85

it instructs the Test Client to stop testing when the message reaches any of
the WebSphere MQ queues that are being monitored.

Select Purge or Browse option
Use this option to either purge a message from the queue or to browse the
messages on the output queue.

Queue manager connection parameters
Enter the character set ID to use for connection to your queue manager.

JMS Settings

Stop when first JMS message is received
Use this option to stop the Test Client receiving events when the first J]MS
Output destination contains a message.

Specify JMS Client JARs
Use this option to add and remove JAR files that are used to create JMS
connections.

Select Use preference settings to configure preference settings. This option
is a global setting that can be applied to all Test Clients in the same
workbench.

WMQ Message Headers

WMQ Message Headers
Use this option to build multiple MQMD header definitions. When you
send a message to a message flow that contains an MQInput node, you
have the option to select an MQMD with suitable values for your test.
Click Add to enter additional MQMD headers. Each new header is listed
under 'MQ Message Headers' in the left navigator column. Each MQMD
definition name must be unique within the Test Client configuration file.

MQ Message Header "Default Header"
This options specifies the default MQ Message Header definition. You can
edit the values in this definition for your test configuration, or create a
new WebSphere MQ Message Header definition.

JMS Message Headers

JMS Message Headers
Use this option to enter multiple JMS Message Headers. Click Add to enter
additional headers. Each new header is listed under 'JMS Headers' in the
left navigator column.

Select each JMS Message Header to view and change the settings.

JMS Header
Enter the values for your JMS configuration in the J]MS Header page.

Test Client preferences

You can set test settings for the local test environment that are used by the
Websphere Message Broker Test Client.

You can configure the settings for the test in the Deployment Location wizard, or
on the Test Client preferences. If you configure the settings on the Test Client
preferences, these settings are applied to all tests. You can access the Test Client
preferences by using the following instructions:

1. Click Window - Preference. The Preferences dialog is displayed.

86 Deploying and Debugging

2. Expand the item for Broker Development on the left and click Message Broker
Test Client.

Use the following fields to define the settings for the local test engine:

Seconds to wait for deployment completion
The amount of time in seconds to allow for deployment. The default value
is 20.

Seconds to wait after Test Client complete the deployment
The amount of time in seconds to wait after the Test Client completes
deployment. The default value is 0.

Seconds to wait on launching the debugger for tracing purposes
The amount of time in seconds to wait before launching the debugger. The
default value is 20.

Show information dialog before disconnecting the debugger
Select this option to display a dialog when you use the Test Client in Run
mode if the flow debugger is already connected.

Seconds to wait for test client to stop
The amount of time in seconds to wait before ending the test. When the
number of seconds has elapsed, monitoring of output nodes is stopped,
and a Timeout event and a Stop event are displayed in the Test Client. The
default value is 120.

Also select the required options:

Create queues of input and output nodes for message flows when host name is
localhost
Use this option to create queues for the local host.

Add or modify (but not clear) what has already been deployed on the execution
group Use this option to add or change, but not delete, what has previously been
deployed on the current execution group.

Deployment Location wizard

Use the Deployment Location wizard to set the execution group to which the test
message flow is deployed. You can also use the wizard to create a domain
connection, a broker, and a new execution group.

The Deployment Location wizard is displayed when you click Send Message on
the Events tab of the Test Client the first time that you run a test.

You can run the Test Client in one of the following modes:

* Run mode: test events are produced when the test message has been sent
successfully from the message flow, or when an error occurs. Although you can
also use the debugger, and the Test Client execution halts at the breakpoints, the
Test Client does not receive and record message node-level trace information.
When you use the Test Client in this mode, you are given the option to
disconnect the flow debugger if it is already running. To use the Test Client in
Run mode, ensure that Trace and Debug is not selected on the Deployment
location wizard.

* Trace and debug mode: test trace events are produced when the test message
leaves each node so that you can see the path that the message takes through
the message flow. The results are stored in the broker. If you save the message
flow test file, you can view the results at a later time. The flow debugger is

Test Client 87

launched in this mode, if it is not already connected. The test message stops at
any breakpoints that you have configured in the message flow. You must
configure a Java Debug port to run the test in the trace and debug mode.

If you use the Test Client in trace and debug mode, you can select the option Stop
at the beginning of the flow during debug. This option suspends the test at the
beginning of the message flow by setting a breakpoint on every connection after
the selected input node. When you use the Test Client in the trace and debug
mode, you can use the flow debugger in the Debug perspective.

You can also use the Deployment Location wizard to specify settings for the test.
For more information about the test settings, see [“Test Client preferences” on page|

After you run a test for the first time, you can access the settings for the
deployment location by clicking Change in the Deployment section of the
Configuration tab.

You can create broker domain components and associated resources by selecting
the options that are described in the following table.

Resource Option Action

Domain connection New Domain Launches the Create a Domain
Connection wizard.

Configuration Manager | New Domain Launches the Create a Domain

Connection wizard.
New Broker

Launches the Create a Broker
Reference wizard and connects to
the domain if the domain is not
already connected.

Broker topology New Domain Connection |Launches the Create a Domain

Connection wizard.
New Exec group

Launches the Create an Execution
Group wizard.

JMS events in the Test Client

Use the information in this topic to help you to understand JMS events in the Test
Client.

When you test a message flow that contains JMS nodes, you might see some of the
following events in the Message Broker Test Events section of the Test Client.

JMS Information event
The event details are displayed in the following properties.

Property name Description

Initial Context Factory The initial context factory that is used for
JNDI look up

Location JNDI binding The JNDI URL that is used for JNDI look up

Connection Factory The JNDI name of the Connection Factory

Message Properties The properties of the JMS message

88 Deploying and Debugging

Property name

Description

Message Header

The header of the J]MS message

The message content is displayed in the XML Structure or Source view.

JMS Response event

The event details are displayed in the following properties.

Property name

Description

Initial Context Factory

The initial context factory that is used for
JNDI look up

Location JNDI binding

The JNDI URL that is used for JNDI look up

Connection Factory

The JNDI name of the Connection Factory

Message Properties

The properties of the JMS message

Message Header

The header of the J]MS message

The message content is displayed in the XML Structure or Source view.

JMS Exception event

The event details are displayed in the following properties.

Property name

Description

Initial Context Factory

The initial context factory that is used for
JNDI look up

Location JNDI binding

The JNDI URL that is used for JNDI lookup

Connection Factory

The JNDI name of the Connection Factory

The detailed trace message is displayed as well as the Exception trace

details.

Test Client 89

90 Deploying and Debugging

Part 4. Appendixes

© Copyright IBM Corp. 2000, 2010

91

92 Deploying and Debugging

Appendix. Notices for WebSphere Message Broker

Read the legal notices for WebSphere Message Broker.
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2000, 2010 93

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

5021 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

94 Deploying and Debugging

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks in the WebSphere Message Broker Information Center

Review the trademark information for WebSphere Message Broker.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at
[frademark information| at www.ibm.com/Tegal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

Intel, I[tanium, and Pentium are trademarks of Intel Corporation in the United
States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices for WebSphere Message Broker 95

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

96 Deploying and Debugging

Index
A

Adapters (WebSphere)
deploying 25

BAR files 9
creating 16
deploying 22
editing
manually 18
properties 19
message flows
adding 16
adding multiple instances 19
message sets, adding 16
redeploying 22
breakpoints 48
adding 48
disabling 50
enabling 50
removing 51
restricting 49
broker archive 9
configurable properties 10
deployment 7
broker archive files
creating 16
deploying 22
editing
manually 18
properties 19
message flows
adding 16
adding multiple instances 19
message sets, adding 16
redeploying 22
broker configuration deployment 12
broker configuration, deploying 25
brokers
cancel deployment 14
deployed flows, querying 60

C

cancel deployment 14

complete broker archive deployment

complete topics deployment 13

complete topology deployment 12

configurable properties, broker
archive 10

D

debugging 41

data 56
ESQL 57
Java 58

mappings 59

© Copyright IBM Corp. 2000, 2010

debugging (continued)
data (continued)
messages 56
dequeuing 47
enqueuing 46
icons and symbols 78
keyboard shortcuts 77
message flows 42
starting 43
stepping through message flows
delta topics deployment 13
delta topology deployment 12
deployment 3
broker archive (bar) files 22
broker configuration 25
canceling 32
checking results 30
complete 3
delta 3
message flow application 15
message flows 3
message sets 3
overview 4
broker archive (bar) files 9
broker configuration 12
cancel 14
configurable properties 10
message flow applications 7

methods 4
topics 13
topology 12
types 6

publish/subscribe topics
hierarchy 29
publish/subscribe topology 27
WebSphere Adapters nodes 25
dequeuing, using in debugging 47
domains
cancel deployment 14

E

enqueuing, using in debugging 46
ESQL

debugging 57
execution groups

message flows, removing 35

F

flow debugger 41
ESQL nodes 41
icons and symbols 78
Java nodes 41
keyboard shortcuts 77
mapping nodes 41
flow engine
attaching to 44
detaching from 62

flow

instances

managing 60

st

epping through 52
resuming execution 52
running to completion 53
stepping into subflows 54
stepping out of subflows 54
stepping over nodes 53
stepping through source code 55

terminating 61

icons

flow debugger 78
incremental broker archive
deployment 7

J

Java

debugging 58
JDT Java debugger 80

K

keyboard shortcuts
flow debugger 77

M

mappings

debugging 59
message flow application, deploying 15
message flows

broker archive (bar) file, adding

to 16

debugging 42

deploying 3

managing 60

redeploying 61

removing from an execution

mess

group 35
age sets

broker archive (bar) file, adding

to 16

deploying 3

mess

ages

debugging 56

test message, getting 47

test message, putting 46
MQOutput node

using in debugging 47

N

node:

s, stepping over using the flow

debugger 53

97

(0

object keyword 10
object version 10

P

preferences
flow debugger 43

R

redeploying BAR files 22
renaming deployed objects 35

S

source code

stepping through 55
subflows

stepping into 54

stepping out of 54
symbols for flow debugger 78

T

test messages

getting 47
putting 46
topics

deployment 13
topics hierarchy, deploying 29
topology

deploying 27

deployment 12
trademarks 95

W

WebSphere Adapters nodes
deploying 25
monitoring 63

98 Deploying and Debugging

Printed in USA

	Contents
	About this topic collection
	Part 1. Deploying
	Deploying
	Deployment overview
	Deployment methods
	Types of deployment
	Message flow application deployment
	Broker configuration deployment
	Publish/subscribe topology deployment
	Publish/subscribe topics hierarchy deployment
	Cancel deployment

	Deploying a message flow application
	Creating a broker archive
	Adding files to a broker archive
	Refreshing the contents of a broker archive
	Deploying a broker archive file
	Deploying a message flow application that uses WebSphere Adapters

	Deploying a broker configuration
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Deploying a publish/subscribe topology
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Deploying a publish/subscribe topics hierarchy
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Checking the results of deployment
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the CMP API
	

	Canceling a deployment that is in progress
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Renaming objects that are deployed to execution groups
	Removing a deployed object from an execution group
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the CMP API

	Part 2. Debugging
	Testing and debugging message flow applications
	Flow debugger overview
	Debugging a message flow
	Starting the flow debugger
	Working with breakpoints in the flow debugger
	Stepping through message flow instances in the debugger
	Debugging data
	Managing flows and flow instances during debugging
	Debugging message flows that contain WebSphere Adapters nodes

	Debugging by using trace
	Debugging with user trace
	Debugging by adding Trace nodes to a message flow

	Testing message flows by using the Test Client
	Test Client overview
	Testing a message flow
	Using the Test Client in trace and debug mode

	Part 3. Reference
	Flow application debugger
	Flow debugger shortcuts
	Debug view
	Breakpoints view
	Flow Breakpoint Properties dialog
	Variables view

	Flow debugger icons and symbols
	Debug perspective
	Debug view
	Message Flow editor
	Breakpoints view
	Variables view

	Java Debugger

	Test Client
	Test Client Events tab
	Enqueue
	Dequeue

	Test Client Configuration tab
	Test Client preferences
	Deployment Location wizard
	JMS events in the Test Client

	Part 4. Appendixes
	Appendix. Notices for WebSphere Message Broker
	Trademarks in the WebSphere Message Broker Information Center

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	K
	M
	N
	O
	P
	R
	S
	T
	W

