
 Leadership in Document and
 Business Process Management
 Integration and Deployment

 Baltimore Irvine Kansas City

August 23, 2002 Copyright © 2002, SYSCOM, Inc. Page 1
 All rights reserved.

SYSCOM Message Handling Framework
Introduction
Many enterprise-tier server-side applications follow a similar implementation pattern; requests are
received, dispatched to coarse-grained business services, and then responses from the services are
sent. Those server applications use various communication protocols with the client applications
such as RMI, RMI/IIOP, message-based communication, sockets, or many other types of
communication mediums such as file of FTP based file transfer, email, etc…

Through the integration of many solutions using IBM MQSeries Workflow, WebSphere MQ Integrator,
and WebSphere MQ, we have concluded that a generic message handling framework is often
required to provide for the implementation of automated workflow activities and other services based
on the above mentioned pattern. Many systems are WebSphere MQ enabled, however, integration
with MQSeries Workflow requires complex business logic that goes beyond data transformation (i.e.,
WebSphere MQ Integrator) and simple data exchange (i.e., WebSphere MQ). Large-scale integration
requires that non-message-enabled applications be included in the workflow process.

The Message Handling Framework (MHF) is a set of Java interfaces and classes that facilitate the
portable development of the style of the above server applications, either from scratch or by using a
feature-rich, modular based implementation. The MHF, in itself, is not a message brokering
technology or an application server platform. It simply provides a framework made to facilitate and
accelerate the development of request/dispatch/service/response types of applications. The MHF
doesn’t rely on a Web application server or architecture to function, especially because server
applications built on the MHF are often located in the enterprise tier. Web applications can, however,
access the services of the MHF-based server application through whatever protocol is most
convenient (RMI, MQ Series, etc…) to invoke enterprise tier-based business functions.

Beyond facilitating the creation of business services and providing flexible sets of receiver and sender
types, the MHF makes available a configuration, logging and error handling infrastructure that can
be used by all the various modules (receivers, dispatchers, services, senders, logging services,
command modules) loaded in the MHF for the specific implementation needs of the application.

Lastly, the MHF provides the ability to control the server application, through a flexible command
interface to query, and administer it.

Several “enterprise tier” server applications have been built by SYSCOM using the MHF, including:
• The SYSCOM Error Handling Framework (EHF)
• The SYSCOM Workflow UPES Activity Implementation Framework (UPES Framework)
• The SYSCOM User Administration Facility (UAF)

This document presents the architecture of the MHF and shows how the framework can be
extended or built upon to create a server application that fits within the
request/dispatch/service(s)/response(s) paradigm.

Functional overview
The various modules that exist in an MHF-based server application include:
• Receivers
• Dispatchers (usually one per server

application)

• Services
• Senders

In addition to those basic modules, the MHF also includes:
• Logging services • Command modules

In MHF terminology, all the module types enumerated above are referred to as nodes. In the MHF,
messages are retrieved by the receiver nodes, dispatched by a dispatcher node, processed by one
or more message handling service nodes and responses are sent by sender nodes.

 Leadership in Document and
 Business Process Management
 Integration and Deployment

 Baltimore Irvine Kansas City

August 23, 2002 Copyright © 2002, SYSCOM, Inc. Page 2
 All rights reserved.

Each of the nodes described above must comply with a specific interface in order to be loaded by
and participate in the framework. The following scenario is representative of the processing of a
message through the framework:
• A receiver node receives a message.
• The message (or “request”) is forwarded to the dispatcher node.
• The dispatcher node examines the request parameters (and content if required) according to a set

of rules – defined by the specific dispatcher implementation – and forwards it to the appropriate
message Handling service(s).

• The message handling service node processes the request and (if required) responds through
“response” message.

• The response is filtered through the dispatcher node which examines response parameters (and
content if required) according to a set of rules and forwards it to the appropriate sender node(s).

Since MHF facilitates the implementation of server applications, MHF-based solutions must support
high transaction volumes (i.e. a high number of requests processed simultaneously). The ability to
safely “multithread” requests (and their associated processing) is neither imposed nor prevented by
the basic architecture of the framework. The retrieval of a message as well as its dispatching,
processing, and response can be performed within one thread, or across several threads.

The following list summarizes the major features available from the current MHF implementation.
Since MHF is often used in the context of workflow/UPES activity implementations, an emphasis is
made on the features of the MHF in the context of UPES activity implementations:
• Multithreaded framework capable of handling concurrent message invocations.
• Configurable processing volume capabilities.
• Configurable XA compliance (failed processing can cause invocation messages to be rolled back - XA

compliant resources used to process a message can participate in the transaction).
• Extensible multi-point transactional integrity support before and after messages are processed by an

MHF service. As long as the message serialization mechanism isn’t compromised (e.g. file system
full), messages cannot be lost during the end-to-end processing cycle (from message receipt to
service processing to response sending).

• Flexible/extensible administrative interface to control and query the running framework (through files,
MQ queue command messages, console based).

• Flexible/extensible logging capabilities (File logs, daily rotating file logs, console logging). Log buffering
capabilities to minimize impact of logging on performance.

• Integration with UPES activity performance analysis facility. Allows tracking of average, minimum,
maximum, and standard deviation for the duration of each UPES activity.

• Full integration with the SYSCOM Error Handling Framework to report errors.
• Support for synchronously implemented UPES activities through workflow/UPES specific interface

using highly workflow-specific objects to facilitate rapid UPES activity implementation.
• Rule-based message dispatching to allow UPES activities to be processed by UPES services based on

queue of origin and (optionally) workflow activity name.
• Support for asynchronously implemented UPES activities – this feature allows synchronous UPES

activities to be completed through any kind of external event (MQ messages, files in directories, Web
Service invocation, etc…). When an external event occurs it is retrieved by the MHF and correlated
with the appropriate waiting UPES activity. The content of the activity completion message can
include data from the original invocation message and/or from the external event message. The
acceptable order in which messages should be received (UPES message first, or external message
first, or any message first) is configurable.

High level framework design
All nodes in the framework are grouped inside containers according to their type, namely:
• The Message Receiver container: Repository of Message Receiver nodes. The receiver container

typically loads “daemon” nodes, which continuously check for incoming messages. When any receiver
node receives a message, it signals the event to the container which relays the message to the
dispatcher container.

• The Dispatcher container: Repository of the Dispatcher node. Typically, only one dispatcher node is
be loaded at any time. The dispatcher container receives a “standardized” message from the

 Leadership in Document and
 Business Process Management
 Integration and Deployment

 Baltimore Irvine Kansas City

August 23, 2002 Copyright © 2002, SYSCOM, Inc. Page 3
 All rights reserved.

message nodes container and routes it to the dispatcher node. The dispatcher container also routes
the message handling service invocation from the dispatcher to the message handling services
container. When the appropriate service or services have been invoked the dispatcher routes the
response to zero or more sender nodes.

• The Message Handling Services container: Repository of the Message Handling Service nodes. The
container is a message dispatch listener, which routes messages to one or more services as
specified by the message dispatcher.

• The Message Sender container: Repository of Message Sender nodes. The sender nodes in the
container are instantiated and wait for the dispatcher signal that a response must be sent. The
container routes the message response to the appropriate node as specified by the dispatcher.

• The Command Modules container: Repository of the Command Module nodes. The command
modules provide full framework operational and configuration control. The interface presented to
command module nodes through their container allows the dynamic loading, unloading and
configuring of nodes, shutdown of
the framework, and allows the
invocation actions specific to each
node in the framework.

• The Logging Services container:
Repository of Logging Service
nodes. All nodes in the framework
can generate logging events. Those
logging events ultimately arrive in
the Logging Services container. The
container then controls how logging
events are relayed to log services.

The diagram above presents the simplified high-level architecture of the MHF, detailing receivers,
dispatcher, services, and senders within their respective containers.

The bi-colored spheres on the diagram
represent container connections. The
light-colored side of each connector
represents the internal interface
between a container and its nodes. The
dark-colored side of the connectors
represents the external interface
between two or more containers. The
dotted arrows represent intra-container
communication while solid arrows show
container-to-container communication.
Those conventions also apply to the
diagram below, which presents the
comprehensive high-level architecture
of the MHF, including the nodes
detailed above and the command
modules and logging services within
their respective containers.

For more information...
If you would like additional information about the SYSCOM Message Handling Framework, or, if you
would like to engage SYSCOM in your project, please contact us at Sales@SYSCOM.com or:

Vickie Wysokinski
VP of Sales and Marketing
410.539.3737 x 1300
VWysokinski@SYSCOM.com

Rick Marcuson
Director of Sales – West
913.897.3304
RMarcuson@SYSCOM.com

Brian McConnell
Director of Sales – East
410.539.3737 x 1310
BMcConnell@SYSCOM.com

mailto:Sales@SYSCOM.com
mailto:VWysokinski@SYSCOM.com
mailto:RMarcuson@SYSCOM.com
mailto:BMcConnell@SYSCOM.com

