
Design Rules, Naming Convention and A Minimum Symbol Set
For MQSeries System Design

Benjamin F. Zhou
IBM Certified Solution Expert

Financial Sciences Corp., USA

Graphical design is the most effective approach for describing a clean messaging system.
Although a messaging system, including application programs can be very complex; it is of key
importance that developers and administrators can easily understand its design.

With simplicity in mind, this author proposes a small set of symbols for use in this graphical
design approach. This set has been proven effective during the design, implementation and
training of staff both in-house and at major bank clients in the Wall Street Pre-Issuance
Messaging (PIM) project. Also presented in this paper is a set of design rules and naming
conventions based on design practice.

1. Graphical design – a minimum symbol set

It is easy to do system design on a graphical basis. To do this, an easy-to-understand set of
symbol definitions is needed. The following set of ten symbols (Fig.1), which are included in a
Visio template stencil file, can be used to describe any MQSeries design.

XM it QueueRemote Queue

Qmgr / Qmgr Alias / ReplyToQ alias

Appl. programLocal Queue

with XM itQ ... /
resolve to ...

Channel session

M sg movement
M Q operation
(PUT/GET)

 Figure 1. Minimum symbol set for MQ system design

(Note: depends on your reader tool version, the symbols may look differently. For better
readability, all diagrams are provided in Microsoft Visio format.)

Figure 2 is a sample multi-hop message flow diagram:

TradeProc

DLR DTC IPA

DTC IPA
INPUT.FROM.DLR

DTC

DLR

DLRREPLY.FROM.IPA

1. trigger

2. GET

3. PUT REPLY

INPUT.TO.IPA

SndTrade

2. GET

DLR/DTC

IPA/DTCDTC/DLR

DTC/IPA

PUT

ReplyProc
1. trigger

 Figure 2. sample design diagram

With the same symbol set, Figure 3 illustrates the use of queue manager alias to remap the queue
manager name specified in an MQOPEN call. This diagram refers to a section on queue manager
alias in chapter 3 of MQSeries Intercommunication Guide.

Outbound msg - altering or specififying the transmisstion queue
DEF QR (QM4) RNAME() RQMNAME(QM4) XMITQ(QM3)
Appl.: MQOPEN (... , QM4.INPUT, QM4..)

QM1 QM2 QM3 QM4

QM4

PUT

QM2 QM3 QM4 INPUT

INPUT
QM4.INPUT QM3.INPUT

PUT

msg heading QM4 INPUT

msg heading QM3 INPUT

QM2/QM3QM1/QM2 QM3/QM4

Figure 3. Use of Queue Manager Alias to remap queue manager name

2. Naming convention

With such a diagram, the most suitable naming convention becomes apparent. In our definition,
I setup the following naming convention:

• Local queue: take name from its role inside the Qmgr, including an implied message flow
direction, like INPUT.FROM.CSFB, REPLY.TO.GS, REPLY.FROM.CHASE. Do not
include Qmgr name in queue name.

• Transmission queues: use name of the immediate next destination Qmgr.

• Remote queue: specify(or just take name from) destination Qmgr, including an implied
message flow direction, like OUTPUT.TO.MSDW.

• ReplyToQ-alias: take name of the destination Qmgr, here, DLR at IPA

• Trigger process: use same name as the application name it is supposed to trigger. For
example, the process used to trigger TradeProc should be named as TradeProc

• Assign an alias queue for every sender party. Never give them your local input queue
name. This will shield your system from that of others. For controlled test, you may want
to point some of the alias to your DLQ.

• Do not put alias objects on your design diagram.

3. Use triggering if possible

• You cannot guarantee that your message processing application will be 100% reliable.
Using triggering can reduce the impact of failure to a minimum.

• A trigger monitor will not trigger another application until the current one it just triggered
ends. So if there is only one trigger monitor running, performance on triggered queues
will suffer if messages arrive at different triggered queues in quick succession. Start a
trigger monitor for every such queue to solve this problem.

4. You don’t need persistence as often as you may believe

After careful analysis, you may find that guaranteeing your messages never get lost is a much
more expensive endeavor than making your application handle the case when a message does get
lost. Actually, under most circumstances, this can fit easily into your application logic. Overuse
of persistent messages can easily bring your system to its knees. Non-persistent messages
typically have 20 times the throughput and respond much quicker.

5. Absolute separation of message-flow from message processing applications

Let MQSeries take care of message flow, and let your applications take care of message
processing. This is the rule and ideal case. Unfortunately, you may encounter situations when
other parties do not follow these rules.

• You specify a ReplyToQ in the message header of your request message. But the other
party may not use it; instead, it puts all the messages into the queue you have specified
for request only.

• Other party’s application may not even mark its reply message as of type REPLY in the
message header, thus forcing you to look at the message body to decide what it is.

If this happens to your system (we have encountered both), don't compromise the rule by letting
your message processing application get involved with message flow. Just define a few internal
queues and write a separate application to redistribute such messages. This way, you not only
preserve the integrity of your application, but also make it possible to switch back to the ideal
setting if the rule-offenders conform later.

Figure 4 illustrates the use of a simple application redistributor in the case mentioned above.

INPUT

REPLY.TRADE

INPUT.INTERNAL
1. trigger

Is it a REPLY ?

2. G E T

NO

Incom ing M sg
R edistributor

3.PU T

REPLY.O THER

Is it a T rade Reply ?

YES

3.PU T

NO

Q M G R 3.PU T

Yes

Figure 4. the use of redistributor

Please send your feedback to: bfzhou@netscape.net

mailto:bfzhou@netscape.net

	Benjamin F. Zhou
	Financial Sciences Corp., USA

