
WebSphere MQ Telemetry Java Classes
Version 1.0

27 February, 2003

SupportPac author
Ian Harwood

Jonathan Woodford

ian_harwood@uk.ibm.com

jonathanw@uk.ibm.com

IA92

 ii

Property of IBM

IA92

 iii

Take Note!

Before using this report be sure to read the general information under "Notices".

First Edition, February 2003

IA92

 iv

This edition applies to Version 1.0 of IA92 and to all subsequent releases and modifications unless
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2001. All rights reserved. Note to US
Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

IA92

 v

Table of Contents

Table of Contents ... v

Notices ..vii

Trademarks and service marks..vii

Summary of Amendments ..viii

Preface.. ix

Bibliography ... x

Chapter 1. Introduction... 1

Chapter 2. ClientMQIsdp Java class and the programming model ... 2

Programming model.. 2

Chapter 3. Com.ibm.MQIsdp.ClientMQIsdp.java.. 3

Constructor ... 3

Publish / Subscribe methods .. 3

Connect... 3

Disconnect .. 4

Ping... 4

Publish .. 4

Subscribe .. 4

Unsubscribe .. 5

Callback methods ... 5

Registering a callback interface... 5

Connection .. 5

Publications... 6

Session methods .. 6

Session status... 6

Session timing... 6

Message status ... 7

Diagnostics ... 7

Exceptions... 7

IA92

 vi

Trace... 7

Chapter 4. Using the sample applications .. 8

J2SE sample... 8

Compiling and packaging .. 8

Navigating the user interface... 8

J2ME MIDP-2.0 .. 9

Connection .. 9

Subscriptions... 10

Publications... 10

IA92

 vii

Notices

The following paragraph does not apply in any country where such provisions are inconsistent with
local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to
state or imply that only IBM's program or other product may be used. Any functionally equivalent
program that does not infringe any of the intellectual property rights may be used instead of the IBM
product.

Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is
distributed AS-IS. The use of the information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item has been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both:

 IBM

 MQSeries

 MQSeries Integrator

 MQSI

The following terms are trademarks of other companies:

• Java, Sun Microsystems

IA92

 viii

Summary of Amendments

Date Changes

27 February 2003 Initial release

IA92

 ix

Preface

This SupportPac provides a set of Java classes that implement the WebSphere MQ Telemetry
transport protocol (formerly known as MQIsdp). The classes provide a clean API that can be used to
quickly WebSphere MQ Telemetry transport enable Java applications.

IA92

 x

Bibliography

• WebSphere MQ Event Broker 2.1 Programming Guide, IBM Corporation, SC34-6095-00

• WebSphere MQ Event Broker 2.1 Introduction and Planning, IBM Corporation , GC34-6088-00

IA92

 1

Chapter 1. Introduction

This SupportPac provides a Java implementation of the client side of the WebSphere MQ Telemetry
transport publish/subscribe protocol. The API is encapsulated in one class, which contains verbs such
as connect, publish, subscribe and unsubscribe for communicating with WebSphere MQ Integrator.

The code with this SupportPac is packaged in three different ways to suit different operating
environments. The SupportPac contains three subdirectories called J2SE, OSGi and J2ME_MIDP-
2.0, which contain code as follows:

• J2SE
MQIsdp.jar contains the API implementation as documented below packaged for the J2SE
environment.
MQIsdpTraceFormat.jar contains trace formatting utilities. This jar file does not need to be
present at runtime. It is only required on the machine on which the trace is to be formatted.
MQIsdpSample.jar contains a sample WebSphere MQ Telemetry transport application which
has a Swing user interface. The source code for this application is supplied in package
com.ibm.MQIsdp.utility

• J2ME_MIDP-2.0
MQIsdp.jar contains the API implementation as documented below for the J2ME MIDP-2.0
environment.
MQIsdpSample.jar contains a sample MIDlet application that provides a J2ME user interface.
The source code for this MIDlet is supplied in package com.ibm.MQIsdp.midpapp

• OSGi
This contains the J2SE classes packaged with a manifest file that enables the code to be
deployed onto the OSGi Service Platform. . The OSGi bundle does not implement any
services. It simply repackages the J2SE classes. See http://www.osgi.org for more
information about OSGi.

IA92

 2

Chapter 2. ClientMQIsdp Java class and the programming
model

The WebSphere MQ Telemetry transport protocol is accessible via a single class called
com.ibm.MQIsdp.ClientMQIsdp.class, which is in the MQIsdp jar file. This class provides methods for
interfacing to WebSphere MQ Integrator such as publish, subscribe and unsubscribe. There are also
methods for setting attributes of the WebSphere MQ Telemetry transport connection, such as
timeouts and retries. There is also a callback interface so that an application can be notified when
events occur such as a publication arriving or a publication send completing.

The ClientMQIsdp class provides a default set of methods for the callback interface, which do nothing.
An application can extend this class and override the default callback methods to provide functionality
as appropriate.

Any references to WebSphere MQ Integrator broker include the following products:

WebSphere MQ Event Broker V2.1

WebSphere MQ Integrator Broker V2.1

WebSphere MQ Integrator V2.1

Programming model

After instantiating the ClientMQIsdp class the application can set any session parameters as
described in section ‘Session methods’. The application should then call one of the connect methods
to establish a connection with the WebSphere MQ Integrator broker.

There is no limit on the number of times an application may connect and disconnect, but each
instance of the class can only have one connection at a time.

When an application has finished using the ClientMQIsdp class it should call the terminate() method
to shut down all threads started by the class. After the terminate method has been called no API
methods may be used. A new instance of the class must be instantiated before a new connection can
be established.

Callback methods may be invoked whilst the application is running. A complete list is defined in
section ‘Callback methods’Error! Reference source not found.. Two important methods that should
be implemented are publishArrived and connectionLost.

• publishArrived must be implemented if the application needs to receive publications.
• connectionLost must be implemented to handle the MQIsdp connection breaking. Typically

the connectionLost method should invoke the connect method to reconnect. If the cleanstart
flag is true then the connectionLost method should resubscribe for any topics the application
is interested in.

To implement the callback methods a class may extend the ClientMQIsdp class and override the
default methods, or it may implement one of the callback interfaces and register itself as the class that
will handle the callback events.

IA92

 3

Chapter 3. Com.ibm.MQIsdp.ClientMQIsdp.java

Constructor

public ClientMQIsdp(String server, int port);

Instantiate the ClientMQIsdp class with an IP address and port number.

server - IP address or hostname of the WebSphere MQ Integrator broker e.g. 127.0.0.1

port - IP port number for the SCADAInput node

Publish / Subscribe methods

Connect

public int connect(String clientid,
 boolean cleanstart,
 short keepalive) throws Exception

public int connect(String clientid,
 boolean cleanstart,
 short keepalive,
 String willtopic,
 int willQoS,
 String willmsg,
 boolean willretain) throws Exception

Two connect methods are provided. The second one allows a Last Will and Testament message to be
specified, which will be delivered in the event of the connection unexpectedly terminating.

Parameters are:

clientid – A string of up to 23 characters that uniquely identifies the application to the WebSphere MQ
Integrator broker.
cleanstart – A boolean indicating if the broker should delete subscriptions and outstanding
publications if the application terminates unexpectedly.
keepalive – An interval in seconds. If the application does not communication with the broker within
this interval, then the broker assumes the application has terminated. This class automatically keeps
the connection alive whilst it is running.
willtopic – Topic on which a will message will be published in the event of the MQIsdp connection
application terminating unexpectedly.
willQoS – The quality of service at which the will message should be published in the event of the
MQIsdp connection terminating unexpectedly.
willmsg – Message that will be published on the will topic in the event of the MQIsdp connection
terminating unexpectedly.
willretain – A boolean indicating whether the will message should be published as a retained
publication or not.

Returns:

 -1 : A socket error
0 : Successful connect
1 : Unacceptable protocol version
2 : Client identifier rejected

IA92

 4

3 : Broker unavailable

Disconnect

public void disconnect() throws Exception

Disconnect from the WebSphere MQ Integrator broker. Publications can no longer be sent or
received.

Ping

public void ping() throws Exception

Send a ping message to the WebSphere MQ Integrator broker. An application does not need to call
this method. Pinging the connection to keep it alive is automatically handled by the underlying Java
classes.

Publish

public int publish(String topic,
 byte[] message,
 int QoS,
 boolean retained) throws Exception

Publish data on a specified topic to the WebSphere MQ Integrator broker.

Parameters are:

topic – A hierarchical topic.
message – Application specific data
QoS – The quality of service the MQIsdp protocol should use to deliver the message.
 0 – At most once
 1 – At least once
 2 – Exactly once
retained - A boolean flag indicating whether the publication should be retained by the broker or not.

Returns:

The message identifier of the published message.

Subscribe

public byte[] subscribe(String[] topics,
 int[] reqQoS) throws Exception

Register an interest in receiving publications on particular topics.

Parameters are:

topics – An array of topics to subscribe to. Wildcard characters may be used in the topic names.
reqQoS – An array indicating the quality of service that publications should be delivered at to the
application. A different quality of service may be specified for each topic.

Returns:

IA92

 5

An array indicating the Quality of Service that publications will be delivered at for each topic. Each
quality of service granted will be less than or equal to the quality requested for each topic.

Unsubscribe

public void unsubscribe(String[] topics) throws Exception

Deregister an interest in receiving publications on particular topics.

Parameters are:

topics – An array of topics to unsubscribe from. Wildcard characters may be used in the topic names.

Callback methods

Callback methods are invoked when particular events occur. Default callback methods are supplied in
the ClientMQIsdp class, which do nothing.

 If applications want to be more sophisticated and react to events occurring in the underlying protocol
then there are a number of ways of doing this:

• The ClientMQIsdp class can be extended and a subset or all of the default callback methods
can be overridden.

• A class can implement the MQIsdpSimpleCallback interface and register itself using the
registerSimpleHandler method

• A class can implement the MQIsdpAdvancedCallback interface and register itself using the
registerAdvancedHandler method

The methods in the MQIsdpSimpleCallback interface are connectionLost and publishArrived as
defined below.

The methods in the MQIsdpAdvancedCallback interface ‘published’ plus the methods in the
MQIsdpSimpleCallback interface.

Registering a callback interface

If you choose not to extend the ClientMQIsdp class then you can register another class to be notified
of callback events. There is a simple and advanced callback interface. The class which implements
one of these callback interfaces must include ‘implements MQIsdpSimpleCallback’ or ‘implements
MQIsdpAdvancedCallback’ as part of the class declaration.

public void registerSimpleHandler(MQIsdpSimpleCallback simpleCallback)

public void registerAdvancedHandler(MQIsdpAdvancedCallback advCallback)

Connection

public void connectionLost() throws Exception

The connectionLost() method is invoked whenever the MQIsdp connection or the underlying TCP/IP
connection is broken. An application should reconnect using the one of the connect methods. If
cleanstart is being used, then topics should also be resubscribed to in this method.

IA92

 6

Publications

public void publishArrived(String topic,
 byte[] message,
 int QoS,
 Boolean retained)

The publishArrived method is invoked whenever a publication is received from the WebSphere MQ
Integrator broker.

Parameters are:

topic – The topic associated with the published data.
message – The published data.
QoS – The Quality of Service at which the publication was delivered.
retained – Was this a retained publication?

NOTE: If this method is overridden, then an application should NOT call any of the other API methods
in this method as this will cause a deadlock. Blocking for a significant amount of time is also not
advised. If API calls or blocking are required in this method, then the method should start up a new
thread to do the work.

public void published(int msgId)

The published method is invoked when a Quality of Service 1 or 2 message has been successfully
published to the WebSphere MQ Integrator broker. That is when all the MQIsdp protocol flows have
successfully completed for the particular Quality of Service.

Parameters are:

msgId – The message identifier of the message that was successfully published.

Session methods

Session status

public String getServerAddress ()
Return the TCP/IP address or hostname to which the protocol is connected.

public int getPortNumber()
Return the TCP/IP port to which the protocol is connected.

public boolean isConnected()
A boolean indicating the current state of the connection to the WebSphere MQ Integrator broker.

public void terminate()
The terminate method should be called when the application has finished using the ClientMQIsdp
class. The terminate method stops all threads started by the class. Once terminate has been called no
further API calls can be made. A new instance of the class is required if a new connection is required.

Session timing

public void setBlockingTimeout(int timeout)
public int getBlockingTimeout()

IA92

 7

The timeout value controls how long the subscribe or unsubscribe methods wait for a subscribe or
unsubscribe to complete. Default is 30 seconds. With a retry interval of 10 seconds (see setRetry
below) then up to three attempts will be made to deliver a subscribe or unsubscribe message to the
broker.

public void setRetry(int retryNum)
public int getRetry()

Set and get methods for the retry interval in seconds. If a response has not been received in this time
from the broker indicating that the message has been received then the message will be retried.
Default is 10 seconds.

Message status

public boolean outstanding(int msgId)

The status of any QoS 1 or 2 publication can be established by using the message identifier return by
the publish method. Outstanding will return true if the message has not yet been successfully
delivered.

Diagnostics

Exceptions

Exceptions will be thrown for both user error and runtime exceptions. For user error exceptions the
exception getMessage() method of the exception should yield some useful text.

Trace

public void startTrace()
public void stopTrace()

The startTrace() and stopTrace() methods control the collection of trace if required. A binary trace file
called mqe0.trc is generated in the current directory. This trace file may be moved to another system,
or formatted in situ using the MQIsdpTraceFormat jar file.

To format the trace execute:
 java – jar MQIsdpTraceFormat.jar mqe0.trc

Or place MQIsdpTraceFormat.jar in the classpath and execute:
 java com.ibm.MQIsdp.trace.MQeTraceFromBinaryFile mqe0.trc

Formatted trace will be written to stdout.

NOTE: Tracing is only available in the J2SE implementation. The startTrace() and stopTrace()
methods will have no effect in the J2ME MIDP-2.0 environment.

IA92

 8

Chapter 4. Using the sample applications

J2SE sample

The jar file J2SE\MQIsdpSample.jar contains a sample swing user interface for publish/subscribe,
which uses the MQIsdp Java classes supplied in this SupportPac. The source code for this user
interface is supplied for reference purposes in package com.ibm.MQIsdp.utility.

To run the user interface: Make sure MQIsdpSample.jar and MQIsdp.jar are in the same directory.
Then execute: java –jar MQIsdpSample.jar

Or

Place MQIsdpSample.jar and MQIsdp.jar in the classpath. Then execute Java
com.ibm.MQIsdp.utility.MQIsdpFrame

Compiling and packaging

The source code is for the sample is provided in com\ibm\MQIsdp\utility Use the following java utilities
to compile and package the sample application:

• Compile the code using the following javac command line:

javac -d <build output directory> com\ibm\MQIsdp\utility*.java

• To package the code as a jar file execute the following jar command line. The manifest file
specifies that the com.ibm.MQIsdp.utility.MQIsdpFrame class contains the main method for
the jar file.

jar cvfm MQIsdpSample.jar com\ibm\MQIsdp\utility\MANIFEST.MF <build output
directory>\com\ibm\MQIsdp\utility*.class

Navigating the user interface

Connection

Specify the TCP/IP address and port number of the SCADAInput node of your WebSphere MQ
Integrator broker. Prior to connecting the following options can be set by clicking the options button:

Trace Start/Stop – Trace may be started and stopped at any time. A binary trace file will be produced
in the current directory. See the section on Diagnostics.

Client Identifier – The application identifier that the MQIsdp protocol uses to connect

Clean Session – In the event of the MQIsdp connection unexpectedly terminating, should the
WebSphere MQ Integrator broker remove all subscriptions and publications for the previously
connected client.

Keep Alive - If the WebSphere MQ Integrator broker does not receive any data within this interval
it will assume the client application has stopped functioning. The MQIsdp Java classes automatically
manage keeping the connection alive, providing the TCP/IP connection is alive, by sending a MQIsdp
ping message.

Last Will and Testament – Specify a topic and data that should be published by the broker in the
event of the MQIsdp connection being terminated unexpectedly.

IA92

 9

Subscriptions

Subscribe Topic and Request QoS – Specify a topic to subscribe to or unsubscribe from and the
Quality of Service at which the application wants publications delivered to it for this topic.

Received Topic – When the application receives a publication from the broker it displays the topic in
this field.

Publications

Topic, QoS and retained – Publish a message on this topic, at the request Quality of Service. Also
specify whether the publication should be retained by the broker.

J2ME MIDP-2.0

The jar file J2ME_MIDP-2.0\MQIsdpSample.jar contains a sample lcdui user interface for
publish/subscribe, which uses the MQIsdp Java classes supplied in this SupportPac. The source code
for this user interface is supplied for reference purposes in package com.ibm.MQIsdp.midpapp.

To run the user interface: Copy MQIsdpSample.jar and MQIsdpSample.jad onto the MIDP-2.0 device.

For IBM’s j9 embedded java on PocketPC the shortcut syntax to launch the MIDlet is below. This
assumes the jar and jad file are installed in \MQIsdp.

180#j9.exe -jcl:mpng:loadlibrary=ivempng20 -
Xbootclasspath:\ive\lib\jclMidpNG\classes.zip;\MQIsdp\MQIsdpSample.jar
javax.microedition.lcdui.AppManager \MQIsdp\MQIsdpSample.jad

Compiling and packaging

To compile the application you need the J2ME Wireless Toolkit 2.0 which is available from
http://java.sun.com.

Create a project called MQIsdpSample and copy the J2ME_MIDP2.0\MQIsdp.jar file into the lib
subdirectory of the project. Copy the java source in com\ibm\MQIsdp\midpapp into the src directory of
the project. The resulting directory structure should be src\com\ibm\MQIsdp\midpapp*.java.

You can then build the J2ME application using the KToolbar user interface. Selecting package from
the project menu will create a jar and jad file that can be used on MIDP-2.0 compliant device.

Navigating the user interface

Before running the MIDlet make sure that the MIDP-2.0 device is able to make a TCP/IP connection
to a WebSphere MQ Integrator broker.

The MIDlet exposes the raw publish/subscribe API, allowing topics and Quality of Service to be
explicitly expressed.

Connection

Specify the TCP/IP address and port number of the SCADAInput node of your WebSphere MQ
Integrator broker. Optionally you can change the Client Identifier by which the MIDlet will use to
identify itself to the broker.

IA92

 10

Subscriptions

To receive data from the broker specify a topic to subscribe for.

 This may be a topic another application is publishing on, a topic on which you will be publishing data
from this MIDlet (so all data sent by the MIDlet is also received by it), or wildcard topic #, which will
cause the MIDlet to receive all data published to the broker by all applications.

Publications are received in the Inbox and the associated topics are displayed. You then have options
to read the publication or delete it.

Publications

 To send data from the MIDlet specify a topic on which data will be sent.

This may be to a topic for which this MIDlet is already subscribed or a topic that another application is
subscribed to. Specify some textual data and select a Quality of Service at which the message should
be published – 0, 1 or 2.

-- End of Document --

