
IBM MQSeries Workflow

Programming Guide

Version 3.3

SH12-6291-06

���

IBM MQSeries Workflow

Programming Guide

Version 3.3

SH12-6291-06

���

Note!
Before using this information and the product it supports, be sure to read the general information under
“Appendix B. Notices” on page 839.

Seventh Edition (March 2001)

This edition applies to version 3, release 3 of IBM MQSeries Workflow (product number 5697-FM3) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SH12-6291-05.

© Copyright International Business Machines Corporation 1993, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book xi
Who should read this book xi
How to get additional information xi
How to send your comments xi
How this book is organized. xii
How to read the syntax diagrams xiii

Summary of Changes xv

Summary of deprecated API calls xix

Part 1. Programming concepts . . . 1

Chapter 1. Understanding the programming
concept 3
The role of the programmer in modeling a
process 3

Chapter 2. Programming interfaces 5

Chapter 3. Prerequisites for programming
language API. 7

Chapter 4. Building an MQ Workflow
application 9
Overview 9

Concepts of the programming language API 9
Concepts of the XML message interface . . 10

Handling errors 10
List of return codes 11
List of ActiveX GUI Control exceptions . . 14

Debugging considerations 15
Prerequisites 15
Creating a test database 15
Debugging a client application 15
Debugging an activity implementation or
support tool 16

Chapter 5. Client/server communication
and data access models 19
Synchronous client/server communication . . 19
Asynchronous client/server communication 19
The push data access model. 20
Receiving information. 21

Chapter 6. An MQ Workflow session . . . 25

Chapter 7. Using an authentication exit . . 27
Coding an authentication exit 27
Activating an authentication exit 30
Error handling 31

Chapter 8. Querying data 33
Persistent lists 33
Using filters, sort criteria, and thresholds . . 33
Handling collections 34
C-language vectors. 35

Return codes 35
FmcjXxxVectorDeallocate 35
FmcjXxxVectorFirstElement 36
FmcjXxxVectorNextElement 36
FmcjXxxVectorSize 37
C-language examples 37

ActiveX arrays 40
Exceptions 40
Add. 40
GetAt 41
GetSize 41
RemoveAll 42
RemoveAt 42
SetAt 42
Events 43

Java arrays 43

Chapter 9. Handling containers 45
Data structure/container type 45
Data member/container element 45

The XML message interface 47
Predefined data members 47

Fixed data members 48
Process information data members . . . 49
Activity information data members . . . 50

Determining the structure of an unknown
container 54

Determining the leaves 54
Determining the structural members . . . 55
Determining the type 56
Analyzing a container element 57
Determining the name or type of a
container element 57

© Copyright IBM Corp. 1993, 2001 iii

Determining the structural properties of a
container element 58
Determining the leaves of a container
element 59
Determining the structural members of a
container element 60
Determining the elements of an array . . 61

Accessing a known container element . . . 63
Accessing a value of a container 64
Accessing a value of a container element . . 69
Setting a value of a container 72
Return codes/FmcException 77

Chapter 10. Monitoring a process instance 79
Obtaining an process instance monitor . . . 79
Ownership of monitors 81

Chapter 11. Authorization considerations 83

Chapter 12. Stateless server support . . . 87

Chapter 13. Types of API calls 93
Basic API calls 93

Return codes 93
Allocation. 94
Assignment 97
Comparison/equality 97
Conversion 98
Copy 99
Deallocation 99
IsComplete() 100
IsEmpty() 101
Kind() 101
C-language Example: using basic
functions. 102
C++ Example: using basic methods . . . 104

Accessor/mutator API calls 106
Primary/secondary properties 107
Return codes 107
Accessing a value of type bool 109
Accessing a value of type date/time . . 110
Accessing an enumerated value 111
Accessing a value of type integer . . . 136
Accessing a value of type string 137
Accessing a multi-valued property . . . 138
Accessing an object valued property . . 139
Accessing a pointer valued property . . 140
Determining whether an optional
property is set 142
Setting a value of type integer 142

Setting a value of type string 144
Setting an object valued property . . . 145
Updating an object 145

Action API calls 150
Activity implementation API calls 151

Accessing general information 152
Dynamic link libraries 154

Program execution management API calls 155

Part 2. The C and C++ APIs . . . 157

Chapter 14. An MQ Workflow client
application 159

Chapter 15. An MQ Workflow activity
implementation or support tool 161

Chapter 16. Compiling and linking . . . 163
Supported compilers 165
C++ prerequisite header files 165
Sample compile statements 165

Chapter 17. Memory management . . . 167

Chapter 18. The result object 169

Part 3. ActiveX controls 173

Chapter 19. Component overview. . . . 175
Functional overview 176
Workflow Control overview 176
How to work with an ExecutionService . . 177
How to work with lists 177
ProcessTemplateList Control overview . . . 177
ProcessInstanceList Control overview . . . 177
Worklist Control overview 178
Monitor Control overview 178

Chapter 20. An MQ Workflow client
application 179

Chapter 21. An MQ Workflow activity
implementation or support tool 181

Part 4. The JAVA API 183

Chapter 22. Threading considerations for
the Java CORBA Agent 185

iv Programming Guide

JNDI locator policy 186
OSA, IOR, and COS locator policies. . . . 186
RMI locator policy 187
Microsoft JVM/Internet Explorer V4/V5 and
RMI 187

Chapter 23. An MQ Workflow client
application 189

Chapter 24. An MQ Workflow activity
implementation 191
The Java High Performance Bridge 192

Setup on Windows platforms 193
Setup on UNIX 195
Programming considerations 196

Chapter 25. Compiling 199
JNDI locator policy 199

Chapter 26. How to use the MQ Workflow
Java API from within IBM VisualAge for
Java 201
Running the MQ Workflow Java CORBA
Agent inside the WebSphere Test
Environment 201

Chapter 27. Troubleshooting 203

Chapter 28. Object management 205
Garbage Collection when using Java API
classes 206

Part 5. The XML message
interface 207

Chapter 29. The MQ Workflow XML
message 209
Relevant MQSeries Message Descriptor
(MQMD) fields 209
The application data 210

The MQ Workflow XML message header 211
Container data 211
Execute process instance example . . . 213

Code page support 214

Chapter 30. Sending requests to MQ
Workflow 215
Supported functions 215
XML input queue 216

Authentication and authorization 216
Create and start a process instance example 216

Chapter 31. Invoking an activity
implementation 219
User-defined program execution server
(UPES) 220

Messages sent to a UPES 221
Authorization 224
Synchronous invocation example. 224
UPES response example. 225

Chapter 32. Error Handling 227
MQ Workflow XML message life cycle . . . 227
General error processing 227

Sending a response 230
Detailed error processing 230

Wrong message format in the MQMD . . 231
Wrong message name or XML document
not well formed 232
Message processing errors 232
Errors when returning a response . . . 233
Backout count exceeded. 234
The GeneralError message 234

Chapter 33. The MQ Workflow XML
message format 237

Part 6. Using the MQ Workflow
APIs 245

Chapter 34. Using the MQ Workflow
Runtime API 247
Overview of the Runtime API. 247

API classes 251
API calls per class 255

ActivityInstance 255
ActivityInstanceArray 260
ActivityInstanceNotification 260
ActivityInstanceNotificationArray . . . 263
ActivityInstanceNotificationVector . . . 263
ActivityInstanceVector 263
Agent 264
Container 266
ContainerArray 270
ContainerElement 270
ContainerElementArray 274
ContainerElementVector. 274
ControlConnectorArray 274

Contents v

ControlConnectorInstance 275
ControlConnectorInstanceVector 276
DateAndTime/ FmcjDateTime/
FmcjCDateTime 276
DllOptions 278
ExecutionAgent/FmcjPEA 279
ExecutionData 280
ExecutionService 281
ExecutionServiceArray 286
ExeOptions 287
ExternalOptions 288
FmcError/FmcjError 291
FmcException 291
Global 292
ImplementationData 293
ImplementationDataVector 294
InstanceMonitor 294
Item 296
ItemVector 299
Message 299
PersistentList 300
Person 301
Point 306
PointArray 306
PointVector 307
ProcessInstance 307
ProcessInstanceList 312
ProcessInstanceListArray 312
ProcessInstanceListVector 313
ProcessInstanceNotification 313
ProcessInstanceNotificationArray . . . 314
ProcessInstanceNotificationVector . . . 315
ProcessInstanceVector 315
ProcessTemplate 315
ProcessTemplateList 318
ProcessTemplateListArray 319
ProcessTemplateListVector 319
ProcessTemplateVector 320
ProgramData 320
ProgramTemplate 322
ReadOnlyContainer 324
ReadOnlyContainerHolder 325
ReadWriteContainer 325
Result. 327
Service 328
StringArray 329
StringVector. 330
SymbolLayout 331
Workitem 332
WorkitemArray 335

WorkitemVector 335
Worklist 335
WorklistArray 336
WorklistVector 337

Part 7. API action and activity
implementation calls 339

Chapter 35. Activity instance actions . . 341
ForceFinish() 341
ForceRestart() 344
InContainer() 347
ObtainProcessMonitor()/ObtainInstanceMonitor349
OutContainer(). 352
Refresh() 354
SubProcessInstance() 356
Terminate() 359

Chapter 36. Activity instance notification
actions 363
ActivityInstance() 363
StartTool() 366

Chapter 37. Container activity
implementation API calls. 369
InContainer() 369
OutContainer(). 371
RemoteInContainer() 373
RemoteOutContainer() 376
SetOutContainer(). 378
SetRemoteOutContainer() 380

Chapter 38. Execution service actions 383
CreateProcessInstanceList(). 384
CreateProcessTemplateList() 391
CreateWorklist() 398
Logoff() 407
Logon() 409
Passthrough() 416
PEAShutDown() 418
PEAStartUp() 420
QueryActivityInstanceNotifications() . . . 423
QueryItems() 431
QueryProcessInstanceLists() 437
QueryProcessInstanceNotifications(). . . . 440
QueryProcessInstances() 446
QueryProcessTemplateLists() 451
QueryProcessTemplates() 454
QueryWorkitems() 459

vi Programming Guide

QueryWorklists() 466
Receive() 469
RemotePassthrough() 472
SetPersonAbsent(). 475
TerminateReceive() 477

Chapter 39. Instance monitor actions . . 481
ObtainInstanceMonitor()/
ObtainBlockMonitor()/
ObtainProcessMonitor() 481
Refresh() 484

Chapter 40. Item actions 489
Delete() 489
ObtainProcessMonitor()/ObtainInstanceMonitor492
ProcessInstance() 495
Refresh() 498
SetDescription() 500
SetName() 503
Transfer() 505

Chapter 41. Persistent list actions . . . 509
Delete() 509
Refresh 512
SetDescription() 514
SetFilter() 517
SetSortCriteria() 520
SetThreshold() 522

Chapter 42. Person actions 527
Refresh() 527
SetAbsence() 529
SetSubstitute() 531

Chapter 43. Process instance actions . . 535
Delete() 535
InContainer() 538
ObtainProcessMonitor() 540
OutContainer(). 543
Refresh() 545
Restart() 548
Resume() 550
SetDescription() 552
SetName() 555
Start() 557
Suspend() 560
Terminate() 563

Chapter 44. Process instance list actions 567
QueryProcessInstances() 567

Chapter 45. Process template actions . . 571
CreateAndStartInstance() 571
CreateInstance() 579
Delete() 582
ExecuteProcessInstance() 585
InitialInContainer() 595
ProgramTemplate() 597
Refresh() 600

Chapter 46. Process template list actions 603
QueryProcessTemplates() 603

Chapter 47. Program template actions 607
Execute(). 607

Chapter 48. Service actions. 613
Refresh() 613
SetPassword() 615
UserSettings() 617

Chapter 49. Work item actions 621
ActivityInstance() 624
CancelCheckOut(). 627
CheckIn() 629
CheckOut() 632
Finish() 638
ForceFinish() 640
ForceRestart() 643
InContainer() 646
OutContainer(). 648
Restart() 650
Start() 652
StartTool() 655
Terminate() 657

Chapter 50. Work listactions 661
QueryActivityInstanceNotifications() . . . 661
QueryItems() 665
QueryProcessInstanceNotifications(). . . . 668
QueryWorkitems() 671

Part 8. Working with ActiveX
controls 675

Chapter 51. The ExecutionService Control 677

Chapter 52. The list controls 679

Chapter 53. The Monitor Control 681

Contents vii

Chapter 54. Typical scenario of ActiveX
Control methods 683

Chapter 55. MQWorkflowCtrl 685
Methods 685

ConfigurationID 685
Connect 685
ContainerArray 685
CurrentDateAndTime 685
DateAndTime 686
Disconnect 686
ExecutionServiceArray 686
NewActivityInstance 687
NewActivityInstanceNotification 687
NewContainer 687
NewExecutionService 687
NewInstanceMonitor. 688
NewPerson 688
NewProcessInstance 688
NewProcessInstanceList 688
NewProcessInstanceNotification 689
NewProcessTemplate. 689
NewProcessTemplateList 689
NewProgramData. 689
NewProgramTemplate 690
NewWorkitem 690
NewWorklist 690
ProgramID 690
RemoteUserID 691
SetConfigurationID 691
StringArray 691
UserID 691

Chapter 56. ContainerCtrl 693
Properties 693
Methods 693

Container 693
ProgramID 693
RemoteUserID 693
UserID 694

Events 694
Error 694

Chapter 57. Methods supported by all GUI
controls 695
AboutBox 695
ReadUserSettings 695
RemoveGUI. 695
SetHelpFile 696
ShowContextMenu 696

WriteUserSettings 696

Chapter 58. Methods supported by all list
controls 699
ConnectGUI 699
ContextMenuDelete 699
ContextMenuListProperties 699
ContextMenuListSettings 700
ContextMenuListRefresh 700
ContextMenuProperties 700
ContextMenuViewIcon 701
ContextMenuViewList 701
ContextMenuViewReport 701
ContextMenuViewSmallIcon 701
FindFirst 701
FindNext. 702
GetItemAt 703
GetItemCount 703

Chapter 59. Events triggered by all GUI
controls 705
Click 705
DblClick 705
KeyPress 705

Chapter 60. Events triggered by all
non-monitor GUI controls 707
Error 707
KeyDown 707
KeyUp 708
MouseDown 708
MouseMove 709
MouseUp 709

Chapter 61. Events triggered by all list
controls. 711
ViewChanged 711

Chapter 62. ExecutionServiceCtrl 713
Properties 713
Methods 713

ConnectGUI 713
ContextMenuDeleteProcInstList 714
ContextMenuDeleteProcTempList . . . 714
ContextMenuDeleteWorklist 714
ContextMenuLogoff 715
ContextMenuLogon 715
ContextMenuLogonDialog 716
ContextMenuNewProcInstList. 716
ContextMenuNewProcTempList 716

viii Programming Guide

ContextMenuNewWorklist 717
ContextMenuProperties 717
ContextMenuRefresh. 717
ContextMenuRefreshProcInstLists . . . 717
ContextMenuRefreshProcInstances . . . 717
ContextMenuRefreshProcTempLists . . . 718
ContextMenuRefreshProcTemplates . . . 718
ContextMenuRefreshWorkitems 718
ContextMenuRefreshWorklists 718
ContextMenuUserInformation. 719

Events 719
ItemCollapsed 719
ItemCollapsing. 719
ItemExpanded 720
ItemExpanding 720
SelChanged 721
SelChanging 721

Chapter 63. ProcessTemplateListCtrl . . 723
Properties 723
Methods 725

ContextMenuCreateInstance 725
RefreshProcessTemplateList 725

Events 725

Chapter 64. ProcessInstanceListCtrl. . . 727
Properties 727
Methods 729

ContextMenuRestart 729
ContextMenuResume 730
ContextMenuResumeDeep 730
ContextMenuStart. 730
ContextMenuSuspend 731
ContextMenuSuspendDeep 731
ContextMenuTerminate 731
RefreshProcessInstanceList 731

Events 732

Chapter 65. WorklistCtrl 733
Properties 733
Methods 736

ContextMenuFinish 736
ContextMenuForceFinish 736
ContextMenuForceRestart 737
ContextMenuRestart 737
ContextMenuSelectAll 737
ContextMenuStart. 737
ContextMenuStartTool 738
ContextMenuTransfer 738
PushOption 738

RefreshWorklist 739
SetPushOption 739

Events 740
ActivityInstanceNotificationChanged . . 740
ProcessInstanceNotificationChanged . . 740
WorkitemChanged 741
Starting 741

Chapter 66. MonitorCtrl 743
Properties 743
Methods 743

ActivityProperties() 743
ConnectGUI 743
ControlConnectorProperties 744
OpenMonitor 744
Refresh 744

Events 745
AfterRefreshing 745
BeforeRefreshing 745
BlockActivityClick 745
BlockActivityDoubleClick 746
ControlConnectorClick 746
ControlConnectorDoubleClick. 746
DoActivityEnter 747
DoControlConnectorEnter 747
DoRefresh 748
DoShowContextMenu 748
Error 748
MonitorOpen 749
ProcessActivityClick 749
ProcessActivityDoubleClick 749
ProgramActivityClick 750
ProgramActivityDoubleClick 750

Part 9. Examples and scenarios 753

Chapter 67. Scenarios. 755

Chapter 68. Examples 757

Chapter 69. How to create persistent lists 759
Create a process instance list (ActiveX). . . 759
Create a process instance list (C-language) 760
Create a process instance list (C++) 762
Create a process instance list (Java) 764

Chapter 70. How to query persistent lists 769
Query worklists (ActiveX) 770
Query worklists (C-language) 771

Contents ix

Query worklists (C++) 774
Query worklists (Java) 776

Chapter 71. How to query a set of objects 781
Query process instances from a process
instance list (ActiveX) 782
Query process instances (C-language) . . . 783
Query process instances (C++) 784
Query process instances (Java) 786
Query work items from a worklist (ActiveX) 791
Query work items from a worklist
(C-language) 792
Query work items from a worklist (C++) . . 794
Query work items from a worklist (Java) . . 796

Chapter 72. An activity implementation 801
Programming an executable (C-language) 801
Programming an executable (C++) 802
Programming an executable (Java) 804

Part 10. Appendixes 825

Appendix A. FlowMark Version 2
compatibility mode. 827
Deviations from FlowMark Version 2 . . . 828
FlowMark Version 2 C-language programs 831

Running an existing application program 831
FlowMark Version 2 Visual Basic programs 832

Running an existing application program 832
FlowMark Version 2 C++ programs 832

Running an existing application program 832
Using MQ Workflow Version 3 methods 832

Appendix B. Notices 839
Trademarks 841

Glossary 843

Bibliography 849
MQSeries Workflow publications. 849
Related publications 849

Index 851

x Programming Guide

About this book

This book describes how to use the IBM MQSeries Workflow Runtime
Application Programming Interfaces (hereafter called MQ Workflow APIs) and
also how to invoke API requests by passing messages in Extensible Markup
Language (XML). The first part of the book describes the concepts underlying
the APIs while the remainder of the book provides a reference for the API
action calls. The book also describes the MQ Workflow predefined data
structures and how to debug applications running under the control of MQ
Workflow.

Who should read this book

This book is intended for programmers who design and implement programs
using an MQ Workflow API and who may participate in designing a
workflow model with IBM MQSeries Workflow. It assumes that readers are
experienced programmers and that they understand the concepts of modeling
processes.

How to get additional information

Visit the MQSeries Workflow home page at
http://www.software.ibm.com/ts/mqseries/workflow

For a list of additional publications, refer to “MQSeries Workflow
publications” on page 849.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any
other MQSeries Workflow documentation, choose one of the following
methods:
v Send your comments by e-mail to: swsdid@de.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of MQSeries Workflow, and, if applicable, the specific location of
the text you are commenting on (for example, a page number or table
number).

v Fill out one of the forms at the back of this book and return it by mail, by
fax, or by giving it to an IBM representative.

© Copyright IBM Corp. 1993, 2001 xi

http://www.software.ibm.com/ts/mqseries/workflow

How this book is organized

The first part of this book gives an overview of the various MQ Workflow
APIs. It describes all concepts common to the Version 3 APIs and introduces
the APIs supported.
v “Part 1. Programming concepts” on page 1 describes the concepts

underlying all MQ Workflow APIs. It groups the API calls according to
their behavior and describes basic and accessor methods in a generic way.

v “Part 2. The C and C++ APIs” on page 157 describes the concepts specific to
the C and C++ APIs and states how application programs can be compiled
and linked.

v “Part 3. ActiveX controls” on page 173 provides for an overview on the
ActiveX Controls.

v “Part 4. The JAVA API” on page 183 provides for an overview on the Java
API.

v “Part 5. The XML message interface” on page 207 describes the concepts in
order to use XML to request an action from the MQ Workflow execution
server. It furthermore describes how a program is invoked by the execution
server by means of XML.

“Part 6. Using the MQ Workflow APIs” on page 245 provides for an overview
on the functionality supported by the MQ Workflow Runtime. All API calls
supported by the MQ Workflow APIs are summarized on a per-object basis.

The next part of this book provides for a reference manual.
v “Part 7. API action and activity implementation calls” on page 339 describes

the MQ Workflow APIs that enable applications to manipulate worklists
and work items, to work with process instances and container data, and to
log on to and log off from an MQ Workflow execution service. All action,
activity implementation, and program execution management API calls are
described on a per-object basis. See “Chapter 13. Types of API calls” on
page 93 for the description of the basic and accessor methods.

v “Part 8. Working with ActiveX controls” on page 675 describes the methods
and events supported by the ActiveX Controls.

“Part 9. Examples and scenarios” on page 753 provides some examples
showing how to use the APIs.

“Appendix A. FlowMark Version 2 compatibility mode” on page 827 describes
how to run a FlowMark Version 2 program and states MQ Workflow Version
3 deviations from Version 2. It describes how to change a Version 2 C++
program in order to become a Version 3 program.

Note: The FlowMark Version 2 interface will no longer be supported with the
next release or version.

xii Programming Guide

The back of the book includes a glossary that defines terms as they are used
in this book, a bibliography, and an index.

How to read the syntax diagrams

Throughout this book, syntax is described the following way; all spaces and
other characters are significant:
v Read the syntax diagrams from left to right, from top to bottom, following

the main path of the line.
The ��— symbol indicates the beginning of a statement.
The —� symbol indicates that the statement syntax is continued on the next
line.
The �— symbol indicates that a statement is continued from the previous
line.
The —�� symbol indicates the end of a statement.

v Diagrams can be broken into fragments. A fragment is indicated by vertical
bars with the name of the fragment between the bars. The fragment itself
follows the same syntactical rules as the main diagram.

�� a-fragment ��

v Required items appear on the horizontal line, the main path.

�� required-item ��

v Optional items appear below (or above) the main path.

�� required-item
optional-item

��

v If you can choose from one or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the
main path.

�� required-item required-choice1
required-choice2

��

If choosing one of the items is optional, the entire stack appears below the
main path.

About this book xiii

�� required-item
optional-choice1
optional-choice2

��

v An arrow returning to the left, above the main path, indicates an item that
can be repeated.

�� required-item � repeatable-item ��

If the repeat arrow contains a comma, you must separate repeated items
with a comma.

�� required-item �

,

repeatable-item ��

v Keywords appear in uppercase, for example, NAME. They must be spelled
exactly as shown. Variables appear in lowercase italic letters, for example,
string. They represent user-supplied values.

xiv Programming Guide

Summary of Changes

Changes to this document for IBM MQSeries Workflow Version 3.3 are:
v API extensions are added to support stateless server implementations, that

is:
– The execution service exposes new API calls to retrieve a session

representation and to recreate sessions, that is, SessionID() and
SetSessionContext() are added.

– New API calls are added so that all major objects can be externally
represented by some string, that is, ProcessInstanceListPersistentOid(),
ProcessTemplateListPersistentOid(), WorklistPersistentOid(),
InstanceMonitorPersistentOid(), ReadOnlyContainerAsStream(),
ReadWriteContainerAsStream(), ProgramDataAsStream(), and
ProgramTemplateAsStream() are added.

– The execution service exposes new API calls to recreate objects from their
OID or from a stream, that is, PersistentActivityInstance(),
PersistentActivityInstanceNotification(), PersistentInstanceMonitor(),
PersistentPerson(), PersistentProcessInstance(),
PersistentProcessInstanceList(), PersistentProcessInstanceNotification(),
PersistentProcessTemplate(), PersistentProcessTemplateList(),
PersistentWorkitem(), PersistentWorklist(), ProgramDataFromStream(),
ProgramTemplateFromStream(), ReadOnlyContainerFromStream(), and
ReadWriteContainerFromStream() are added.

v A new instance monitor is added. The instance monitor state can be passed
between applications - see above - and nested monitors can be deleted
without caring for the nesting level. Appropriate API calls are added to
access the new monitor. Using the existing monitor is deprecated, that is,
support will be removed in a later release or version.

v API extensions are added to support process repair actions, that is,
ActivityInstanceForceFinish() and ActivityInstanceForceRestart() are added.
These API calls allow to pass containers. The appropriate work item actions
now allow to pass containers.

v The execution service supports a new way to log on with user credentials,
which are passed to a user-provided authentication exit.

v A new activity instance and work item state Expired is supported, which
can be used in queries for work items. The ExpirationTime() can be queried.

v The activity instance exposes a new API call Refresh().
v The process instance exposes a new API call to retrieve the OID of the

associated process template, PersistentOidOfProcessTemplate().
v The container size can be 4 MB.

© Copyright IBM Corp. 1993, 2001 xv

v Conversion between read/write and read-only containers is added.
v The Java API supports the ExecuteProcessInstance() method.
v Beside performance, the distinction between primary and secondary

attributes is removed. That is, an object is automatically refreshed from the
server when an attribute not yet available in the API is read.

v The audit mode can be more detailed, which is expressed by the Filter
enumeration.

v An audit record can be sent to a user-defined MQSeries application. The
XML DTD is extended appropriately.

v When a work item is terminated or expires, an XML message is sent to a
UPES. The UPES must at least have version 3.3.0.

v Support for Windows Me is added.
v Support for OS/2(R) is removed.
v Support for Windows 95 is removed.

Changes to this document for IBM MQSeries Workflow Version 3.2.2 are:
v The execution service API calls to query work items or to create a worklist

allow for the specification of a new filter criterion CREATION_TIME.
v The execution service exposes a new API call SetPersonAbsent().
v The container exposes a new API call SetStringCcsid().
v The activity instance exposes new API calls InContainer(), OutContainer(),

PersistentObject(), and Terminate().
v The process instance exposes a new API call OutContainer().
v The work item and notifications expose new API calls

PersistentOidOfProcessInstance().
v The work item and activity instance notification expose new API calls

PersistentOidOfActivityInstance() and ActivityInstance().
v An activity implementation allows for the retrieval of the associated activity

instance object identifier, that is, the program execution agent exposes new
API calls PersistentOidOfActivityInstance() and
RemotePersistentOidOfActivityInstance().

v The maximum priority of an activity instance and thus the maximum
priority of a work item or activity instance notification can be 999.

v Support for Windows 2000 is added.

Changes to this document for IBM MQSeries Workflow Version 3.2.1 are:
v XML message interface support is added to create and start respectively

execute a process instance. Additionally, an activity implementation can be
started by the MQ Workflow execution server on a user-defined program
execution server.

xvi Programming Guide

v The process template InContainer() API call has been renamed to
InitialInContainer(). The usage of InContainer() is deprecated.

v The process template exposes a new API call ProgramTemplate().
v A new class respectively new functions are added to describe a program

template. A program template supports a API call Execute() in a
synchronous and an asynchronous flavor.

v Program data exposes new accessor API calls ExecutionMode(),
ExecutionUser(), ProgramTrusted().

v The execution service provides for new allocation means which allow to
specifiy the system group only. This is to exploit the IBM MQSeries
clustering capabilities.

v The execution service API calls to query process instances or to create a
process instance list allow for the specification of a new filter attribute
START_TIME.

Changes to this document for IBM MQSeries Workflow Version 3.2 are:
v Support for HP-UX and Sun Solaris is now included.
v JAVA support is added.
v ActiveX supports process instance monitoring.
v The specification of a configuration identifier is supported.
v The execution service exposes a new action API call Refresh().
v The process template exposes a new action API call

ExecuteProcessInstance() in a synchronous and an asynchronous flavour.
This also means that an asynchronous communication protocol is added.

v The process instance exposes a new action API call Restart().
v The work item and the activity instance notification expose new action API

calls StartTool(). The work item exposes a new API call CancelCheckOut().
v Restrictions are removed from the work item Restart(), ForceFinish(), and

ForceRestart() API calls; a work item implemented by a process can now also
be restarted or finished.

Changes to this document for IBM MQSeries Workflow Version 3.1.2 are:
v The item object exposes a new action API call Delete().
v Item changes are pushed to a present client. This function applies to work

items, activity instance notifications, and process instance notifications, and
is supported in the C-language and C++ APIs.

v Process instance monitor support is added in the C-language and C++ APIs.

Changes to this document for IBM MQSeries Workflow Version 3.1.1 are:
v Support for OS/2(R) is now included.

Summary of Changes xvii

v The person object exposes new action API calls Refresh(), SetAbsence(), and
SetSubstitute().

v The process template exposes a new action API call Delete().
v The IsTerminatedOnError() accessor API call on the process template as

well as on the process instance is removed.
v A new object FmcjError is added to describe the reason why a work item is

in state InError. The work item as well as an activity instance notification
return the error reason.

v FmcjWorkitem::Checkout() returns a new program definition, the definition
of an external service. A new object FmcjExternalOptions is added to allow
querying the properties of an external service.

v The work item exposes a new action API call Terminate().
v ActiveX support is added.
v Version 2 REXX support for OS/2 is added.
v Version 2 Lotus Notes support is added.
v Version 2 C++ Logon() now offers as an option to consider using the

Version 3 session mode. Refer to “Deviations from FlowMark Version 2” on
page 828 for more information.

xviii Programming Guide

Summary of deprecated API calls
v Using the FmcjBlockInstanceMonitor and the FmcjProcessInstanceMonitor

respectively functions starting with FmcjBlockInstanceMonitor or
FmcjProcessInstanceMonitor is deprecated. Use the FmcjInstanceMonitor
instead.

v Using the COS, OSA, RMI, and IOR policies in the Java API is deprecated.

The following table states the API calls, which are deprecated, and the new
API calls to be used instead. Deprecated API calls should not be used; they
will be removed in a future release or version of the API.

Deprecated API call
Class/Function::method/function

API call to be used
Class/Function::method/function

ActivityInstance:: ObtainProcessInstanceMonitor() ActivityInstance::ObtainProcessMonitor()

ActivityInstance::PersistentObject() ExecutionService::PersistentActivityInstance()

ActivityInstanceNotification::Expired() There is a notification and the work item state is
not Ready

ActivityInstanceNotification:: PersistentObject() ExecutionService::
PersistentActivityInstanceNotification()

ActivityInstanceNotification:: StartOverdue() There is a notification and the work item state is
Ready

ActivityInstanceNotification::
ObtainProcessInstanceMonitor()

ActivityInstanceNotification::
ObtainProcessMonitor()

Item::ObtainProcessInstanceMonitor() Item::ObtainProcessMonitor()

ProcessInstance::ObtainMonitor() ProcessInstance::ObtainProcessMonitor()

ProcessInstance::PersistentObject() ExecutionService::PersistentProcessInstance

ProcessInstanceNotification::
ObtainProcessInstanceMonitor()

ProcessInstanceNotification::
ObtainProcessMonitor()

ProcessInstanceNotification:: PersistentObject() ExecutionService::
PersistentProcessInstanceNotification()

ProcessTemplate::InContainer() ProcessTemplate::InitialInContainer()

ProcessTemplate::PersistentObject() ExecutionService:: PersistentProcessTemplate()

Workitem:: ObtainProcessInstanceMonitor() Workitem::ObtainProcessMonitor()

Workitem::PersistentObject() ExecutionService::PersistentWorkitem()

© Copyright IBM Corp. 1993, 2001 xix

xx Programming Guide

Part 1. Programming concepts

This part provides you with a general introduction to the programming
concepts of MQ Workflow.

© Copyright IBM Corp. 1993, 2001 1

2 Programming Guide

Chapter 1. Understanding the programming concept

This chapter introduces the concept of workflow modeling as it relates to the
design of application programs for use with IBM MQSeries Workflow,
hereafter referred to as MQ Workflow.

MQ Workflow provides a way to model a process and assign applications to
activities in the resulting workflow model. This enables the workflow
manager to automate the control of activities and the flow of data.

Work can be routed to the person who performs the activity instance. An
application program required to perform an activity instance can be designed
to start when a user starts an activity instance.

The role of the programmer in modeling a process

As workflow models are defined, the applications and data structures needed
to support program activities are identified. Programmers can create new
applications, integrate existing applications, or reengineer existing applications
to support these program activities.

To reengineer existing applications with the workflow model, programmers
must determine if the applications used by the enterprise can be functionally
decomposed. The control and flow logic are separated from the application,
the start and exit conditions are moved into the workflow model, and the
program is divided into modules to be invoked by the workflow manager at
the appropriate points. The resulting modules are applications that are
assigned to perform the program activities defined in the workflow model.

Most applications include many diverse functions, and many can support
several different activities in different stages of a process. Output produced by
one function of a program can be used as input by another function of the
same program. Therefore, the same application can be used to support many
different program activities in a workflow model.

Your enterprise might also use Enterprise Resource Planning (ERP) or
packaged applications like word-processing or spreadsheet applications.

Decomposition of such applications may not be possible. However, a
programmer could write shell procedures that query the contents of
containers, pass data from an input container to the program when the
activity instance is started, and direct data into an output container when it
finishes.

© Copyright IBM Corp. 1993, 2001 3

Return codes, provided by the assigned program, can then be used to
evaluate exit and transition conditions.

4 Programming Guide

Chapter 2. Programming interfaces

MQ Workflow provides application program interface (API) and Extensible
Markup Language (XML) message interface support, as well as a set of
predefined data structure members, to assist programmers who develop
applications for use with workflow models. In addition, several programming
samples are provided.

In a programming-language-based programming model, the client application
issues an API call in order to execute a request. In a message-based
programming model, the request and information needed to execute the
request are contained in a message that is interchanged through a message
queuing system between the client application and some server.

The MQ Workflow predefined data structure members provide information
about the current process, activity, or block, and are associated with the
operating characteristics of a process instance or activity instance.

API interfaces in the following languages are described in this book:
v MQ Workflow C-language API
v MQ Workflow C++ language API
v MQ Workflow ActiveX Controls and OLE Objects
v MQ Workflow Java API
v MQ Workflow XML message interface

The basic interfaces for requesting Runtime services from MQ Workflow are a
C-language API and an XML message interface. Access can be gained to the
C-language functions from all languages that support C calls - see
“Chapter 16. Compiling and linking” on page 163 for more information. A
C++ language API is provided on top of the C-language API. Since the C++
API is a small layer of inline methods, that is, delivered as source code, access

Figure 1. MQ Workflow Client APIs

© Copyright IBM Corp. 1993, 2001 5

can be gained from all popular C++ compilers. The ActiveX and Java APIs are
implemented on top of the C++ layer. MQ Workflow uses the XML 1.0
standard as document description language. Besides the Version 3 APIs,
FlowMark Version 2 C-language, C++, VisualBasic, and REXX APIs are
supported.

Note: The FlowMark Version 2 API is no longer supported in the next release.

The MQ Workflow APIs provide API calls:
v To execute process models, that is, to work with process instances and

container data and to manipulate worklists and work items
v To monitor the progress of execution
v To issue process administrator functions
v To receive information sent by an MQ Workflow server
v To process container data associated with an activity implementation

6 Programming Guide

Chapter 3. Prerequisites for programming language API

MQ Workflow application development assumes that the appropriate
environment is established. This means that:
v The MQ Workflow Development Kit must be installed on the machine

where you are developing your applications.
v A compiler of one of the supported languages is installed and configured.

Refer “Part 2. The C and C++ APIs” on page 157, “Part 3. ActiveX controls” on
page 173, and “Part 4. The JAVA API” on page 183 for more information.

© Copyright IBM Corp. 1993, 2001 7

8 Programming Guide

Chapter 4. Building an MQ Workflow application

Overview

There are essentially two different tasks which you can address by using the
MQ Workflow application programming interface (API):
v You can write your own client application instead of using the MQ

Workflow provided GUIs (Graphical User Interfaces) or command line
interfaces. For example, you may want to:
– Control the MQ Workflow functionality provided to your user.
– Present the MQ Workflow functionality in a way that your user is

accustomed to.
– Run selected MQ Workflow tasks without user intervention.

v You can write a program that implements an activity or support tool in
your workflow process model.

These two kinds of programs usually contain specific parts which are
discussed in chapters “An MQ Workflow client application” and “An MQ
Workflow activity implementation or support tool”. See the respective
chapters per language.

The concepts underlying the MQ Workflow API are common to all programs
using the MQ Workflow APIs. They are summarized here and discussed in
more detail in the following chapters.

Concepts of the programming language API
All persistent objects such as work items and process instances are accessed
through transient objects which represent their state at the time when they
were queried from a server. In the C-language API, a so-called handle
represents a pointer to such a transient object.

In order to request an action on an object, a session must have been
established with an appropriate MQ Workflow server. The action itself can
then be executed synchronously. Some actions can also be executed
asynchronously.

Only objects for which you are authorized are returned from the server to the
client.

Separate API calls (termed functions, methods, or subprograms, depending on
the programming language) are available for each action on an object or for

© Copyright IBM Corp. 1993, 2001 9

accessing each property of an object. This approach allows API call
parameters to be checked by the compiler and best represents the object-action
paradigm supported by MQ Workflow.

In C and C++, detailed error information is provided by a so-called result
object. This object is available in addition to the return code set by action API
calls. See chapter “Chapter 18. The result object” on page 169 for detailed
information on the result object.

Objects are managed by the application programmer but object memory is
owned by the MQ Workflow API. The application programmer determines the
lifetime of transient objects by using allocate, or query, and deallocate
mechanisms. The MQ Workflow API hides the internal structure of transient
objects.

Concepts of the XML message interface
All persistent objects are accessed by their unique name, that is, the actual
name may need to be padded with the printable version of the object’s
identifier in order to achieve uniqueness.

In order to request an action, a session need not be established as in the
programming language API. You must, however, be authorized for the action
itself.

All actions are executed asynchronously. Correlation data is part of the
message so that the application can correlate the request sent to MQ
Workflow and the execution server response.

Handling errors

All action, activity implementation, program execution management API calls,
or messages show whether or not the call has been successfully executed by
returning a so-called return code as their return value. Java throws an
appropriate FmcException when the method has not been executed
successfully. The XML message interface provides the return code in the
response message. The return code is one of a set of predefined codes (see
“List of return codes” on page 11). The exact return codes or exceptions for
each of those API calls are listed with the description of each call.

You should design your programs to handle all return codes or exceptions
that can arise now or in future. That is, if you are not only asking whether the
return code is different from FMC_OK, but, if you are checking return codes
explicitly, then you should always care for unexpected errors. For example, if
you are coding an if statement, then you should also code an else statement. If
you are coding a switch statement, then you should also code the default case.

10 Programming Guide

In addition to the return code, a so-called result object can be accessed in C
and C++ which describes the result of the call in more detail - see
“Chapter 18. The result object” on page 169.

Although the result object is set by each API call, querying its contents can be
of special importance for basic and accessor API calls. Basic and accessor API
calls do not return any value or return the value queried as their return value.
It can happen during application development that a wrong handle or a
buffer too small to hold a character value is specified. Additional errors can
occur when a not yet available attribute is automatically read from the server.
To look for such erroneous situations, the result object can be queried (besides
checking the trace).

List of return codes
The following list shows the numeric values of the return codes or exceptions
that are issued by the MQ Workflow APIs; it is strongly adviced to use the
symbolic names instead of the integer values.

Note: When the result object states an FMC_ERROR_COMMUNICATION,
that error is accompanied by three parameters: the failing action, the
reason code for the failure, and the failing object.

Table 1. List of return codes
Numeric value Symbolic value

0 FMC_OK
1 FMC_ERROR
10 FMC_ERROR_USERID_UNKNOWN
11 FMC_ERROR_ALREADY_LOGGED_ON
12 FMC_ERROR_PASSWORD
13 FMC_ERROR_COMMUNICATION
14 FMC_ERROR_TIMEOUT
15 FMC_ERROR_INVALID_CODE_PAGE
16 FMC_ERROR_INVALID_CHAR
100 FMC_ERROR_INTERNAL
101 FMC_ERROR_SERVER
102 FMC_ERROR_UNKNOWN
103 FMC_ERROR_MESSAGE_FORMAT
104 FMC_ERROR_MESSAGE_DATA
105 FMC_ERROR_RESOURCE
106 FMC_ERROR_NOT_LOGGED_ON
107 FMC_ERROR_NEW_OWNER_NOT_FOUND
108 FMC_ERROR_NO_OLD_OWNER
109 FMC_ERROR_OLD_OWNER_ABSENT
110 FMC_ERROR_NEW_OWNER_ABSENT
111 FMC_ERROR_ALREADY_STARTED
112 FMC_ERROR_MEMBER_NOT_FOUND

Chapter 4. Building an MQ Workflow application 11

Table 1. List of return codes (continued)
Numeric value Symbolic value

113 FMC_ERROR_MEMBER_NOT_SET
114 FMC_ERROR_WRONG_TYPE
115 FMC_ERROR_MEMBER_CANNOT_BE_SET
116 FMC_ERROR_MEMBER_INVALID
117 FMC_ERROR_FORMAT
118 FMC_ERROR_DOES_NOT_EXIST
119 FMC_ERROR_NOT_AUTHORIZED
120 FMC_ERROR_WRONG_STATE
121 FMC_ERROR_NOT_UNIQUE
122 FMC_ERROR_EMPTY
123 FMC_ERROR_NO_MANUAL_EXIT
124 FMC_ERROR_PROFILE
125 FMC_ERROR_INVALID_FILTER
126 FMC_ERROR_PROGRAM_EXECUTION
127 FMC_ERROR_PROTOCOL
128 FMC_ERROR_TOOL_FUNCTION
129 FMC_ERROR_INVALID_TOOL
130 FMC_ERROR_INVALID_HANDLE
131 FMC_ERROR_NOT_EMPTY
132 FMC_ERROR_INVALID_USER
133 FMC_ERROR_OWNER_ALREADY_ASSIGNED
134 FMC_ERROR_INVALID_NAME
135 FMC_ERROR_INVALID_PROGRAMID
136 FMC_ERROR_SIZE_EXCEEDED
137 FMC_ERROR_INVALID_TEMPLATE_NAME
138 FMC_ERROR_INFINITE_RECURSION
139 FMC_ERROR_SUB_PROC_MEMBER_NOT_SET
140 FMC_ERROR_PROCESS_TEMPLATE_NOT_FOUND
406 FMC_ERROR_WRONG_ACT_IMPL_KIND
500 FMC_ERROR_NON_LOCAL_USER
501 FMC_ERROR_WRONG_KIND
502 FMC_ERROR_INVALID_ACTIVITY
503 FMC_ERROR_CHECKOUT_NOT_POSSIBLE
504 FMC_ERROR_BACK_LEVEL_VERSION
505 FMC_ERROR_NEWER_VERSION
506 FMC_ERROR_INVALID_CORRELATION_ID
507 FMC_ERROR_NOT_ALLOWED
508 FMC_ERROR_BACK_LEVEL_OBJECT
509 FMC_ERROR_INVALID_CONTAINER
510 FMC_ERROR_UNEXPECTED_CONTAINER
511 FMC_ERROR_NO_PROGRAM_FOR_PLATFORM
512 FMC_ERROR_LOGON_DENIED
513 FMC_ERROR_AUTHENTICATION

12 Programming Guide

Table 1. List of return codes (continued)
Numeric value Symbolic value

800 FMC_ERROR_BUFFER
801 FMC_ERROR_INVALID_SESSION
802 FMC_ERROR_INVALID_TIME
804 FMC_ERROR_NO_MORE_DATA
805 FMC_ERROR_INVALID_OID
807 FMC_ERROR_INVALID_THRESHOLD
808 FMC_ERROR_INVALID_SORT
810 FMC_ERROR_INVALID_DESCRIPTION
811 FMC_ERROR_INVALID_INVOCATION_TYPE
812 FMC_ERROR_OWNER_NOT_FOUND
813 FMC_ERROR_INVALID_LIST_TYPE
814 FMC_ERROR_INVALID_RESULT_HANDLE
815 FMC_ERROR_MESSAGE_CATALOG
816 FMC_ERROR_INVALID_SPECIFICATION
817 FMC_ERROR_QRY_RESULT_TOO_LARGE
818 FMC_ERROR_NO_VERSION_2_FILTER
819 FMC_ERROR_INVALID_USER_CONTEXT
820 FMC_ERROR_MESSAGE_STRING
821 FMC_ERROR_MESSAGE_SIZE_EXCEEDED
822 FMC_ERROR_INVALID_STREAM
900 FMC_ERROR_NO_SYS_ADMIN
901 FMC_ERROR_INVALID_SESSION_MODE
902 FMC_ERROR_PROGRAM_UNDEFINED
904 FMC_ERROR_PEA_NOT_LOCAL
905 FMC_ERROR_INVALID_ABSENCE_SPEC
1000 FMC_ERROR_NOT_SUPPORTED
1012 FMC_ERROR_PROGRAM_NOT_DEFINED
1014 FMC_ERROR_PEA_NOT_REACHABLE
1015 FMC_ERROR_INVALID_PEA_FROM_CTNR
1016 FMC_ERROR_INVALID_PEA_FROM_MODEL
1017 FMC_ERROR_INVALID_SYSTEM_FROM_CTNR
1018 FMC_ERROR_INVALID_SYSTEM_FROM_MODEL
1019 FMC_ERROR_SUB_PROC_TERMINATED_BY_ERROR
1020 FMC_ERROR_NO_PEA_FOUND_FOR_AUTO_START
1021 FMC_ERROR_NO_CTNR_ACCESS
1022 FMC_ERROR_INVALID_CONFIGURATION_ID
1023 FMC_ERROR_MIGRATION_OF_RUNNING_PROGRAM
1024 FMC_ERROR_MIGRATION_OF_CHECKEDOUT_SUSPENDED
1025 FMC_ERROR_MIGRATION_NO_SUBPROCESS
1100 FMC_ERROR_XML_DOCUMENT_INVALID
1101 FMC_ERROR_NO_MQSWF_DOCUMENT
1102 FMC_ERROR_XML_MESSAGE_NOT_SUPPORTED
1103 FMC_ERROR_XML_WRONG_DATA_STRUCTURE

Chapter 4. Building an MQ Workflow application 13

Table 1. List of return codes (continued)
Numeric value Symbolic value

1104 FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND
1105 FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE
1106 FMC_ERROR_XML_BACKOUT_COUNT_EXCEEDED
1107 FMC_ERROR_XML_DOCUMENT_FORMAT
1108 FMC_ERROR_XML_PARAMETER_INCORRECT
1109 FMC_ERROR_XML_PARAMETER_SIGNATURE_INCORRECT
1110 FMC_ERROR_XML_INVALID_ELEMENT
1111 FMC_ERROR_XML_INCORRECT_PARAMETER
1150 FMC_ERROR_XML_PARSER_NOT_INSTALLED
2000 FMC_ERROR_INVALID_QUEUE_SCOPE
32013 FMC_ERROR_USER_SUPPORT_MISMATCH
32014 FMC_ERROR_SUPPORT_MODE_MISMATCH
32015 FMC_ERROR_IMPLEMENTATION_SUPPORT_MISMATCH
32202 FMC_ERROR_USER_NOT_AUTHORIZED
32203 FMC_ERROR_LOCAL_USER_REQUIRED
32204 FMC_ERROR_EXIT_ERROR

List of ActiveX GUI Control exceptions
The following list shows the numeric values of exceptions that are issued by
the MQ Workflow ActiveX GUI Controls; it is strongly adviced to use the
symbolic names instead of the integer values:

Table 2. List of ActiveX exceptions
Numeric value Symbolic value

1500 FMC_METHOD_EXCEPTION
1501 FMC_WRONG_INDEX
1502 FMC_MEMORY_EXCEPTION
1503 FMC_ERROR_PARAMETER
1504 FMC_OLE_EXCEPTION
1505 FMC_OLE_DISPATCH_EXCEPTION
1506 FMC_USER_EXCEPTION
1507 FMC_OBJECT_NOT_VALID
1508 FMC_OBJECT_STILL_VALID
1509 FMC_GUI_ALREADY_CONNECTED
1510 FMC_GUI_NOT_CONNECTED
1511 FMC_WRONG_CONTAINER_TYPE
1512 FMC_UNKNOWN_ITEM
1513 FMC_SET_CONTAINER_VALUE
1514 FMC_RECURSION_ERROR

14 Programming Guide

Debugging considerations

Prerequisites
Debugging an MQ Workflow application that uses the programming language
interface assumes that the appropriate environment is established. This means
that:
v MQ Workflow DLLs are accessible. This is automatically guaranteed by a

standard MQ Workflow installation.
v A test database has been created that reflects your debugging requirements

(see “Creating a test database”).
v The MQ Workflow servers are running on the server machine so that tests

can be executed.
v You are able to connect to the required server. This can be checked with the

MQ Workflow provided configuration checker fmczchk (refer to IBM
MQSeries Workflow: Installation Guide).

v If you want to debug activity implementations, then the MQ Workflow
Program Execution Agent must have been started for the user who gets
assigned the work item.

Note: Programs that implement activities of a process model must be
registered for use with the MQ Workflow workflow manager. Ensure
that the program you want to debug is registered for the selected
operating system and that it can be found with the registered name
and path information.

Creating a test database
In order to create a test database, you do not only need to create the database
as such but you also need to:
v Add topology data (see the IBM MQSeries Workflow: Installation Guide on

how to bootstrap your database).
v Add test data (see the IBM MQSeries Workflow: Getting Started with Buildtime

and the chapter ″Using the Runtime export and import utility″).

Debugging a client application
To test your client application, start it under the control of your favorite
debugger. If your application is multi-threaded, it is your responsibility to
synchronize the threads properly.

Note: You can also consider to use MQ Workflow’s tracing facility to get
detailed information on MQ Workflow actions or the configuration
checker tool for problem determination.

Chapter 4. Building an MQ Workflow application 15

Debugging an activity implementation or support tool
Activity implementations and support tools run under the control of the MQ
Workflow program execution agent and therefore need some special attention
so that debugging becomes possible.

As with FlowMark Version 2, there is the option to change your FDL and
register your debugger as the program implementation. This is the option you
can use for Java.

For C, C++, and ActiveX, MQ Workflow supports using an unchanged FDL. It
provides for two environment variables to enable debugging.
FMC_PEA_DEBUGGER_NAME serves to specify the name of your debugger.
You can either specify the full path and file name of your debugger or make
the debugger accessible through your PATH statement. If you then set
FMC_PEA_DEBUG_ACT_IMPL to ″YES″, the program execution agent starts
the named debugger instead of the activity implementation. For example:

FMC_PEA_DEBUGGER_NAME = IDEBUG.EXE

FMC_PEA_DEBUG_ACT_IMPL = YES

The program execution agent starts your debugger in a separate operating
system process with an appropriate environment. Since the process
environment of the debugger process is set by the program execution agent
and inherited by the activity implementation, your activity implementation is
still known to the program execution agent and authorized to issue API
requests.

When an executable is to be debugged, the program execution agent provides
the name of the activity implementation and its parameters to the called
debugger.

When a dynamic link library is to be debugged, the program execution agent
provides the name of a program that loads your DLL and the activity
implementation parameters to the called debugger.

Note: Your DLL must have been registered to run in fenced mode.

The MQ Workflow program that loads your DLL in fenced mode is
FMCXDLL.EXE. It provides you with two functions, FmcDebugDllV2 and
FmcDebugDllV3. FmcDebugDllV3 serves to debug MQ Workflow Version 3
DLLs and FmcDebugDllV2 serves to debug FlowMark Version 2 compatible
DLLs.

16 Programming Guide

They call the entry point of your Version 2 or Version 3 DLL. If you set a
breakpoint on these functions, the debugger stops before the entry point of
your DLL is called and you can step into your activity implementation.

Note: The Microsoft debugger msdev.exe cannot process these entry points.
Nevertheless, if you must debug your DLL, add the following to your
code
#if defined(_MSC_VER) && defined(_DEBUG)
DebugBreak();
#endif

When the program execution agent starts msdev.exe, then run
FMCXDLL.EXE in the msdev window. The DebugBreak() statement in
your code enables the debugger to start debugging your DLL. Note
that DebugBreak() only works under the control of msdev.exe and
creates an unhandled exception otherwise.

When debugging a fenced DLL, be aware of the following:
1. There can exist specific problems that only apply to unfenced DLLs and

that do not show up during debugging of fenced DLLs. For instance,
consider the case that you run multiple instances of your (reentrant) DLL
in parallel. In unfenced mode, your DLL is loaded only once and runs in
the context of the program execution agent in multiple threads. In fenced
mode, your DLL runs in the context of multiple FMCXDLL processes. As
the data segment of a DLL is unique per process but shared between
threads of a single process, you may not encounter effects seen without
debugger.

2. If your DLL or the entry point in your DLL cannot be found, the debugger
window will not show up and the state of your activity implementation
will become InError. You can use MQ Workflow’s trace facility to
determine such problems.

3. Ensure that your DLL uses the supported (standard) calling convention
and signature; MQ Workflow has defined the FMC_APIENTRY calling
convention (see file fmcjcglo.h). If your DLL is registered as a FLowMark
Version 2 compatible DLL, it gets passed two parameters, the execution
session identification (called program identification in Version 3) and a
pointer to additional parameters. MQ Workflow Version 3 DLLs only
receive the additional parameters argument since the Version 3 program
execution agent can determine the program identification on its own.

Chapter 4. Building an MQ Workflow application 17

18 Programming Guide

Chapter 5. Client/server communication and data access
models

When you request actions from an MQ Workflow server or when you want to
observe the result of actions, you can:
v Use a synchronous protocol to ask for an action and to view changes of the

object which you used to call the action.
v Use a synchronous protocol to pull for data created or changed.
v Receive unsolicited information on created or changed objects pushed by

the server.
v Use an asynchronous protocol to ask for an action and to view the result at

a later point in time.

For example, when you ask a process instance object to be started:
v As an immediate result, the state of the process instance is updated.
v You can query work items in order to view (pull for) new objects created.
v You can automatically receive new work items sent (pushed) to you.

Synchronous client/server communication

Applying a synchronous protocol means that you issue a request to an MQ
Workflow server and then wait until you receive a response. All action API
calls operate this way; your application (thread) is blocked until the response
arrives or until your timeout set on the execution service object exceeds.

Note: The synchronous way of communication is not supported for the XML
message interface.

Asynchronous client/server communication

Applying an asynchronous protocol means that you issue a request to an MQ
Workflow server but you do not wait until you receive a response. The
ExecuteProcessInstanceAsync() API call operates this way; your application
(thread) is not blocked and you can receive the response at a later time.

When you asynchronously issue an action, then you do, however, receive an
acknowledgement telling whether MQ Workflow accepted the request or not.
You can also receive a correlation identification which you can use in order to
receive a specific response. You can specifiy a user context in order to
correlate a response received.

© Copyright IBM Corp. 1993, 2001 19

For example, when you ask a process instance to be executed asynchronously:
v As an immediate result, you get informed whether the request is accepted.
v When you specified a buffer to hold a correlation ID, you get an ID which

you can use in the Receive() call to wait for that specific response.
v When you specify a user context, that context is returned to you as part of

the response. You can use it for user- specific correlation.

Note: The asynchronous way of communication is only supported in C++ and
the C-language. All message-based requests are executed
asynchronously.

The push data access model

Receiving unsolicited information pushed by an MQ Workflow server means
that you set up communication in a way that you are automatically informed
about new or changed objects.

Note: The push data access model is not supported in Java and the XML
message interface.

In order to obtain information pushed by an MQ Workflow server:
1. The server must be asked for sending data. This means that:

v The settings of the considered process instance must specify
REFRESH_POLICY PUSH. This setting is inherited from the domain
level, through the system group to the system and down to the process
template. Each specification can be overwritten on a lower level.

v The users must be logged on with a Present or PresentHere session mode,
that is, they are enabled to receive information.

2. The application must use API calls in order to receive data pushed.

Provided that these prerequisites are fulfilled, the MQ Workflow execution
server pushes changes on work items or notifications to the owner of the
item:
1. On creation of the item.
2. On deletion of the item.
3. Whenever a primary property of the item changes - see

“Accessor/mutator API calls” on page 106 for a definition of primary
properties.

The caller of the action will, however, not receive such information because, as
a result of the action, the transient object has already been updated with
relevant data.

20 Programming Guide

Changes on disabled work items are not pushed. Only the deletion of such
work items is pushed.

Examples:

When a process instance is suspended and when its refresh policy is push, the
MQ Workflow execution server sends informations to all owners of
non-disabled items which are currently logged on as present.

When the description of a process instance is changed and when the refresh
policy is push, the MQ Workflow execution server sends informations to all
owners of process instance notifications which are currently logged on as
present.

When a work item is transferred to user N by the owner of the work item and
when the refresh policy of the associated process instance is push, the MQ
Workflow execution server sends an information to user N when he/she is
currently logged on as present. The owner of the work item as the requester
of the action does not get any additional information.

Notes:

1. Filtering and sorting is left to the application. No indication about affected
worklists is pushed to the client.

2. The ActiveX API provides for a worklist Push processing option that
controls whether pushed information is to be placed on that list. If set, any
item information is put on the list whether it respects filtering or not. It is
put at the begin of the list, that is, does not respect sorting.

Receiving information

In C and C++, the execution service object provides for a means to receive
information (execution data) pushed by an MQ Workflow execution server at
any time wanted. The Receive() call blocks the calling application until some
information is received or until the specified timeout value has been reached.
That is why an application typically starts a separate thread or process for
receiving data in order to prevent blocking the entire application.

Note: Receiving any asynchronous response, that is, not waiting for a specific
response identified by its correlation ID, or receiving pushed data,
becomes possible in a different application process when you retrieve
the session ID and attach to that session in the other process
(SetSessionContext()).

A timeout value of -1 specifies an indefinite wait time interval. Note that in
this case you must ensure that you stop receiving data before your application

Chapter 5. Client/server communication and data access models 21

ends. There is a TerminateReceive() API call which can be used to send a
terminate indication to the receiving part of the application in order to inform
that receiving data may end.

Notes:

1. A Receive() call survives a Logoff() call which ends your session with an
execution server. The execution server stops, however, pushing
information when logoff has been executed. When you did not send a
TerminateReceive() to the receiving application thread, then you have to
end that thread because of other knowledge. TerminateReceive() can only
be called as long as a session exists.

2. If information is not received and therefore stays in the client input queue,
the MQSeries(R) expiration mechanism applies in order to get rid of such
"dead" messages. The expiration time of client messages can be configured
for MQ Workflow.

When receiving data, a correlation identification can be specified to indicate
which information is to be read. If it is not specified or pointing to
FMCJ_NO_CORRELID, then any asynchronous response or pushed data
arriving for the session is received; note that the correlation identification is
set as the result of a successful asynchronous request.

Execution
Data

Execution
Service

Receive

FromData

Update

From Data

...

Workitem

Process
Instance

ReadOnly
Container

Item

Activity
Instance

Notification

Process
Instance

Notification

Figure 2. Handling data sent by an MQ Workflow server. Legend: --� Inheritance (C++); —�
provides for access

22 Programming Guide

Once execution data has been received, its type can be determined and the
appropriate action can be called. For example, when a work item creation is
indicated, a conversion from the execution data to a work item can be
requested. When a work item change is indicated, the persistent object ID of
the work item can be requested so that the appropriate work item can be
updated.

When the response to an ExecuteProcessInstanceAsync() request is received,
the process instance created and executed can be analyzed. For example, its
state can be used to determine whether the process instance executed
successfully. Its output container can then be read. If an error occurrs, the
error description can be examined.

Note: ActiveX uses the event mechanism in order to inform an application
that data has been changed. See “Events” on page 740.

Chapter 5. Client/server communication and data access models 23

24 Programming Guide

Chapter 6. An MQ Workflow session

In order to communicate with an MQ Workflow server, a session must have
been established between the user and that server. The server is either
identified explicitly (system group or system at system group) or taken from
the user’s profile. If the information is not found in the user’s profile, the
configuration profile is read.

Note: Authentication is not required in order to use the XML message
interface, that is, a session need not be established.

The session is established by logging on. From then on services can be
requested from the server; the service object which represents the session
between the user logging on and the server, is set up accordingly.

Logon requires that the administration server is up and running on the
selected system because the administration server manages sessions and
checks the authentication of the user. It additionally cares for any severe
errors to be written to the error log.

Any objects which are retrieved or created belong to the session where they
have been queried or created. They carry the session identification so that
further actions on those objects are executed in the same session with the
authorization of the logged-on user.

Although threads are not explicitly supported by MQ Workflow (objects are
not threadsafe), MQ Workflow does not prevent you from using threads. A
session can span multiple threads. You have to care, however, for object
synchronization. And, in all languages except Java, you should use the
Connect() and Disconnect() API calls on each thread so that API resources are
managed correctly.

A single application program or multiple application programs can allocate
multiple service objects and log on with different users or the same user in
parallel. Sessions are kept separate by the service objects. A single service
object thus represents a single session. A second request to log on via a
service object will be rejected if it comes from a different user. Otherwise, it is
accepted but not repeated; the logon request has already been executed
successfully.

A session can run in default mode or in present mode. When you are operating
in a present session mode, activity instances which are started automatically

© Copyright IBM Corp. 1993, 2001 25

can be scheduled on your behalf and you can receive information pushed by
an MQ Workflow server. There can only be a single present session per user.

The service object provides for a timeout value to be set. This is the time the
application waits for the answer from a server. The application is thus blocked
during this time at a maximum. The timeout is specified in milliseconds. A
value of -1 denotes an indefinite timeout value. The timeout value can be
changed at any time.

Note: MQ Workflow uses the communication mechanisms of IBM MQSeries.
If your application sets up its own signal handler, then you should
refer to the MQSeries Application Programming Guide, especially the
chapter UNIX signal handling, for restrictions imposed by MQSeries.

26 Programming Guide

Chapter 7. Using an authentication exit

Especially in Web-based environments, product-independent infrastructures
handling authentication and authorization of users become more
common-place. Not only user directories like LDAP are exploited but also
public-key infrastructures are used more widely. Especially in EJB
environments credential-based authentication is the rule, not the exception.

To support such environments, MQ Workflow provides a means to
authenticate users by some third-party authentication scheme instead of by
MQ Workflow itself. Third-party authentication is supported by a so-called
authentication exit, which has to be provided by the user and called by MQ
Workflow. An authentication exit can use any authentication service like a
simple file, a database, directory services, and so on.

An MQ Workflow client initiates third-party authentication by calling a
variant of the Logon() API that allows to specify credentials and optionally a
user name. When called, the MQ Workflow administration server invokes the
authentication exit passing the information received. It is then the
responsibility of the authentication exit to verify authentication based on the
information passed, and to map the information to an MQ Workflow user ID.
The MQ Workflow user ID has to be returned to the administration server,
which checks whether the user ID is a registered MQ Workflow user ID; any
other user ID will be rejected. If the user ID is valid, the administration server
grants a session for that user without any further verification. The
authentication exit and the MQ Workflow administration server form a
trusted environment.

By implementing an authentication exit, you are able to use your existing user
authentication service. You can use your established user IDs for
authentication and map them to MQ Workflow user IDs.

Check the MQ Workflow API Programming Examples for authentication exit
examples.

Coding an authentication exit

Authentication exits are supported in Java and the C-language environments.

Note: HP-UX supports authentication exits written in the C-language only.

© Copyright IBM Corp. 1993, 2001 27

An authentication exit has a defined interface, to which every user-written
exit must conform. For the C-language, the interface is described by the
header file fmcaexit.h installed in the Api subdirectory of your MQ Workflow
installation.

The C-language authentication exit must provide an Init() function, which is
called when the exit is needed the first time, that is, during MQ Workflow
administration server startup and a DeInit() function, which is called when
the exit is unloaded, that is, when the administration server is shut down.

Usually the Init() function does all the initialization needed for the exit. When
initialization is not needed, provide an empty implementation, that is, return
FMC_EXIT_OK, that is, 0.

DeInit() normally deallocates and frees resources allocated during Init(). If
DeInit() is not needed, provide an empty implementation, that is, return
FMC_EXIT_OK, that is, 0.

Actual authentication is done by the C-language Authenticate() function or
Java authenticate() method, which have to be implemented to make logging
on based on user credentials possible. Consider that user authentication can
be performance critical since there can be phases when many users log on in
parallel, for example, in the morning or after lunch. The MQ Workflow
administration server handles one logon request at a time.

Notes:

1. Whenever you modify your authentication exit, you must shut down and
restart the administration server in order to make your changes effective.

2. An authentication exit is called in the context of an MQ Workflow
transaction. Consequently, commit and rollback calls must never be issued
to prevent prematurely ending that transaction.

28 Programming Guide

C-language signatures
long FMC_APIENTRY Init(void ** exitHandle,

char * initializationParameter,
long initializationParameterLength,
char * errorIdBuffer,
long * errorIdBufferLength,
char * descriptionBuffer,
long * descriptionBufferLength)

long FMC_APIENTRY DeInit(void ** exitHandle,
char * errorIdBuffer,
long * errorIdBufferLength,
char * descriptionBuffer,
long * descriptionBufferLength)

long FMC_APIENTRY Authenticate(
FmcjServerAuthExitAuthenticate * exitParms)

Java signatures
public abstract int authenticate(Hashtable exitParms)

Parameters

All parameters but the exitParms are reserved for future use. The exitParms
specify information exchanged between the MQ Workflow administration
server and the authentication exit. See the fmcaexit.h header file or the Java
authentication exit example for more detailed descriptions.

exitParameterListEyecatcher
Input. An eyecatcher (FMCAXHRP) to identify the list of
parameters.

exitParameterListVersion
Input. The version of the parameter list.

exitParameterListLength
Input. In the C-language, denotes the size of the parameter list
structure.

version Input. The version number of the MQ Workflow client.

release Input. The release number of the MQ Workflow client.

modlevel Input. The modification level of the MQ Workflow client.

userCredentials
Input/Output. The buffer containing the user credentials.

Chapter 7. Using an authentication exit 29

userCredentialsSize
Input/Output. In the C-language, denotes the size of the user
credentials contained in the user credentials buffer.

userCredentialsBufferSize
Input. In the C-language, denotes the size of the buffer
containing the user credentials.

exitCorrelID Input/Output. A correlation ID which must be returned but
not changed.

phaseNumber Input/Output. A number maintained by the MQ Workflow
administration server; must be returned but not changed.
Reserved for future use.

exitResult Output. The result of authentication: either LogonAccepted,
LogonDenied, or Error. Other values are reserved for future
use.

reasonCode Output. Specifies a user-defined reason of an Error result.

userName Input/Output. A user name known by the authentication exit.

mqwfUserID Output. The MQ Workflow user ID returned by a successful
authentication. Remember that an MQ Workflow user ID must
contain only uppercase characters.

Return type
long/int The result of calling this API call.

v FMC_EXIT_OK, that is, 0, signals that the function executed
successfully.

v FMC_EXIT_RECOVERABLE_ERROR, that is, a 1, signals
that the function executed unsuccessfully but recoverable.
The logon request returns
FMC_ERROR_NOT_AUTHORIZED.

v FMC_EXIT_NONRECOVERABLE_ERROR, that is, a 2,
signals that the function executed unsuccessfully and
nonrecoverable. When the C-language Authenticate() or the
Java authenticate() returns that error, the adminstration
server shuts down. A C-language Init() or DeInit() returning
that error is treated similar to a recoverable error.

Activating an authentication exit

Set the RTAuthenticationExitTypeServer variable in the configuration profile of
the server to either ″C″ or ″JAVA″, according to your implementation.

For example, if you want to set in your configuration FMC that an
authentication exit written in the C-language is to be loaded, issue:

30 Programming Guide

fmczchk -c inst:m,RTAuthenticationExitTypeServer,C -y FMC

For example, if you want to set in your configuration FMC that an
authentication exit written in Java is to be loaded, issue:
fmczchk -c inst:m,RTAuthenticationExitTypeServer,JAVA -y FMC

Depending on the RTAuthenticationExitTypeServer setting, the appropriate
authentication exit is loaded when the MQ Workflow administration server
starts. In the C-language, the authentication exit Init() function is called.

The authentication exit is called by the administration server whenever you
issue a logon with credentials. Note that a logon request specifying an MQ
Workflow user ID (and a password) is executed by the administration server
without involving the authentication exit.

When the MQ Workflow administration server shuts down, the authentication
exit is unloaded. In the C-language, the authentication exit DeInit() function is
called before the authentication exit is unloaded.

To ensure adequate performance, the C-language authentication exit must be a
load library so that it can be loaded into the address space of the
administration server. Depending on your operating system environment, it
has to be named fmcaexit.dll or libfmcaexit.so and to be placed in the
PATH/LIBPATH visible by the MQ Workflow administration server.

To adequately support Java, a Java Virtual Machine (JVM) is instantiated in
the address space of the administration server, which is then reused for all
logon requests passing credentials. The Java class implementing the
authentication exit has to be named
com.ibm.workflow.java.exit.Authentication and to be placed into the
CLASSPATH visible by the MQ Workflow administration server.

Take special care that no broken load library DLL or Java class is put into the
administration server’s path or CLASSPATH. A broken authentication exit can
cause a shutdown of the administration server and a wrong authentication
exit can undermine your security concept.

Error handling

Logging on with user credentials can be rejected because:

Chapter 7. Using an authentication exit 31

v The authentication exit is not found; the required functions (entry points in
the DLL) are not found; the called functions do not return FMC_EXIT_OK1.
In all these situations, FMC_ERROR_NOT_AUTHORIZED is returned by
the logon with credentials request.

v The user ID returned by the authentication exit is not a registered MQ
Workflow user ID; results in FMC_ERROR_USERID_UNKNOWN.

v The authentication exit denies authentication; results in
FMC_ERROR_LOGON_DENIED.

v The authentication exit reports an error because of the stated reason; results
in FMC_ERROR_AUTHENTICATION and the first parameter (of the result
object) set to the reason code.

1. FMC_EXIT_NONRECEOVERABLE_ERROR shuts down the administration server.

32 Programming Guide

Chapter 8. Querying data

There are essentially three means of querying data from an MQ Workflow
server:
v A query via a service object, which returns all objects authorized for. The

number of objects returned to the client can be restricted by a filter and a
threshold. (Not supported in ActiveX.)

v A query using a persistent list definition, which returns all objects
qualifying through the list definition.

v A specific request, like the request for user settings or a refresh request for
a specific object.

Note: Querying data is not supported by the XML message interface.

Persistent lists

A persistent list represents a set of objects of the same type. Moreover, all
objects which are accessible through the list have the same characteristics. A
list can be for public usage, that is, it is visible by all users, or for private
usage, that is, it has an owner and is only visible by that owner.

The characteristics of the objects contained in the list are given by so-called
filter criteria. The filter criteria specified and the authorization of the user
issuing the query determine the contents of the list. This means that the
contents itself is not stored persistently but determined when a query request
is issued. This especially means that a public list can deliver different results
depending on the user who applies the query.

The number of objects transferred from the server to the client as the result of
the query can be restricted by specifying a threshold. The threshold is used
after sort criteria have been applied.

A list can be a process template list, a process instance list, or a worklist.

Using filters, sort criteria, and thresholds

A filter is a character string specifying criteria which must follow the rules
stated by the filter syntax diagrams. Refer to the appropriate API calls for the
exact syntax. Some sample criteria are shown here:

© Copyright IBM Corp. 1993, 2001 33

A sort criterion is a character string specifying criteria which must follow the
rules stated by the sort criteria syntax diagrams. Refer to the appropriate API
calls for the exact syntax. Some sample criteria are shown here:

Note that objects are sorted on the server, that is, the code page of the server
determines the sort sequence.

A threshold specifies the maximum number of objects to be returned to the
client. That threshold is applied after the objects have been sorted.

Handling collections

The result of a query for a set of objects is a so-called vector of objects in the
C or C++ language or an array of objects in the ActiveX and Java language.

A vector is provided by the caller and filled by the MQ Workflow API. The
ownership of the vector elements, the objects, stays with the vector. They are
automatically deleted when the vector is deleted.

Any objects returned are appended to the supplied vector. If you want to read
the current objects only, you have to clear the vector before you call the query
method. This means that you should erase all elements of the vector in the
C++ API. This means that you should set the vector handle to 0 in the
C-language API.2 If the vector handle is not initialized to 0, it must point to a
vector of objects of the appropriate kind so that newly queried objects can be
appended. In other words, any nonzero handle is used by the C-language in
order to access a vector assumed to already exist.

In the C-language, the result of the query is the vector handle initialized to
the set of objects, if a 0 handle had been passed, respectively the existing
vector extended by new objects. Special vector accessor functions are provided
to access the objects (see below). When a vector element is read, it becomes an
object of its own and thus has to be deleted when no longer used. Any
operations on that object refer to the object only and do not have any impacts
on the vector element from which the object was copied. For example, a

2. Declare a new vector handle or deallocate an existing vector object before reuse.

"NAME = 'MyProcessInstance'"
"NAME LIKE 'My*Ins?ance'"
"LAST_MODIFICATION_TIME > '1998-2-19 11:38:0'"
"STATE IN (READY,RUNNING)"

"NAME ASC"
"NAME ASC, LAST_MODIFICATION_TIME DESC"

34 Programming Guide

Refresh() changes the object only but not its original copy within the vector.
This means that a further iteration through the vector finds any elements
unchanged.

In the C++ language, the result of the query is an instance of vector<class T>.
Access to the objects is gained via appropriate vector methods; refer to the
STL documentation. When a vector element is read, a (const or non-const)
reference to the object is returned. This means that a change of the object does
actually change the vector element. A further iteration through the vector
finds the elements changed.

An array is provided and filled by the MQ Workflow API. The ownership of
the array elements, the objects, stays with the array.

C-language vectors

Vector accessor functions are described below. This is because all these
functions are similar looking and have similar requirements, even for different
objects. They are all handled locally by the API, that is, they do not
communicate with the server. Neither a connection to a server nor specific
authorizations are required to execute.

Return codes
The C-language functions or the result object can return the following codes,
the number in parentheses shows their integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NO_MORE_DATA(804)
The vector contains no or no more element.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Vector accessor functions allow for the operations listed below; ’Xxx’ denotes
some scope, for example, FmcjXxxVectorFirstElement() can stand for
FmcjProcessInstanceVectorFirstElement().

FmcjXxxVectorDeallocate
Allows the application to deallocate the storage reserved for the specified
transient vector object. All elements contained are also deallocated.

Chapter 8. Querying data 35

The C-language handle is set to 0 so that it can no longer be used.

C-language signature
APIRET FMC_APIENTRY FmcjXxxVectorDeallocate(

FmcjXxxVectorHandle * hdlVector)

Parameters
hdlVector Input/Output. The address of the handle to the vector to be

deallocated.

FmcjXxxVectorFirstElement
Returns the first element of the vector. That element becomes an object on its
own and has to be deallocated if no longer used. The vector is positioned to
the next element.

If the vector is empty or if an error occurred, 0 (zero) is returned.

C-language signature
FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorFirstElement(

FmcjXxxVectorHandle hdlVector)

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
FmcjXxxHandle

The handle of the first element of the vector or 0.

FmcjXxxVectorNextElement
Returns the vector element at the current vector position; the initial vector
position is the first element. That element becomes an object on its own and
has to be deallocated if no longer used. The vector is positioned to the next
element.

If the vector is empty, if there are no more elements in the vector, or if an
error occurred, 0 (zero) is returned.

C-language signature
FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorNextElement(

FmcjXxxVectorHandle hdlVector)

36 Programming Guide

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
FmcjXxxHandle

The handle of the vector element at the current position or 0.

FmcjXxxVectorSize
Returns the number of elements in the vector.

C-language signature
unsigned long FMC_APIENTRY FmcjXxxVectorSize(

FmcjXxxVectorHandle hdlVector)

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
unsigned long

The number of elements in the vector.

C-language examples
In the following, some C-language examples on how to read a vector are
shown; note that you can start with a first element call as well as with a next
element call.

Using First/NextElement() calls

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
unsigned long i = 0;
unsigned long numElements = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

Figure 3. Reading a vector in C (using First/NextElement() calls) (Part 1 of 5)

Chapter 8. Querying data 37

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset
);

if (rc != FMC_OK)
return rc;

printf("Logged on\n");

Figure 3. Reading a vector in C (using First/NextElement() calls) (Part 2 of 5)

rc= FmcjExecutionServiceQueryProcessInstances(
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hdlVector);

if (rc != FMC_OK)
return rc;

printf("Queried process instances\n");

Figure 3. Reading a vector in C (using First/NextElement() calls) (Part 3 of 5)

hdlInstance= FmcjProcessInstanceVectorFirstElement(hdlVector);
numElements= FmcjProcessInstanceVectorSize(hdlVector);

printf("Instances in the vector:\n");
for(i=0; i< numElements; i++)
{
printf("- name: %s\n",

FmcjProcessInstanceName(hdlInstance,tInfo,
FMC_PROCESS_INSTANCE_NAME_LENGTH));

FmcjProcessInstanceDeallocate(&hdlInstance);
hdlInstance= FmcjProcessInstanceVectorNextElement(hdlVector) ;
}

FmcjProcessInstanceVectorDeallocate(&hdlVecor);

Figure 3. Reading a vector in C (using First/NextElement() calls) (Part 4 of 5)

38 Programming Guide

Using NextElement() call only

FmcjExecutionServiceLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

Figure 3. Reading a vector in C (using First/NextElement() calls) (Part 5 of 5)

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

Figure 4. Reading a vector in C (using NextElement() only) (Part 1 of 5)

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset

);
if (rc != FMC_OK)

return rc;
printf("Logged on\n");

Figure 4. Reading a vector in C (using NextElement() only) (Part 2 of 5)

rc= FmcjExecutionServiceQueryProcessInstances(
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hdlVector);

if (rc != FMC_OK)
return rc;

printf("Queried process instances\n");

Figure 4. Reading a vector in C (using NextElement() only) (Part 3 of 5)

Chapter 8. Querying data 39

ActiveX arrays

In ActiveX, the result of a query for a set of objects is stored in arrays. The
arrays are provided by the respective ActiveX Controls. You cannot allocate or
delete an array.

With each new query, all existing objects in the array are deleted and the new
objects are added.

All arrays provide for the same methods to query the number of objects
contained and the objects themselves.

All array indexes start with 0 (zero). That is, valid index numbers are 0 to
GetSize()-1. Note that you should not remember the index number of an
object because the object can have a different index after each query,
depending on the sort criteria and the number of objects returned.

Exceptions
Following exceptions can be thrown:
FMC_WRONG_INDEX(1501)

The index is out of the range of the array.

Add
Adds a new object to the ContainerArray or to the ContainerElementArray.

printf("Instances in the vector:\n");
while (0 != (hdlInstance=FmcjProcessInstanceVectorNextElement(hdlVector)))
{

printf("- name: %s\n",
FmcjProcessInstanceName(hdlInstance,tInfo,

FMC_PROCESS_INSTANCE_NAME_LENGTH));
FmcjProcessInstanceDeallocate(&hdlInstance));

}
FmcjProcessInstanceVectorDeallocate(&hdlVector));

Figure 4. Reading a vector in C (using NextElement() only) (Part 4 of 5)

FmcjExecutionServiceLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

Figure 4. Reading a vector in C (using NextElement() only) (Part 5 of 5)

40 Programming Guide

Signature
long Add()

Adds a new execution service to the ExecutionServiceArray.

Signature
long Add (BSTR system, BSTR systemGroup)
long AddDefault ()
long AddSystemGroup(BSTR systemGroup)

Adds the specified string to the StringArray.

Signature
long Add (BSTR string)

Parameters

string Input. The string to be added to the StringArray.

system Input. The system where the execution server runs.

systemGroup Input. The system group where the system resides.

Return type

long The index of the added object in the array.

GetAt
Returns the object at the specified index.

Signature
Object GetAt (long index)

Parameters

index Input. The index of the object to be retrieved.

Return type

Object An object of the type contained in the array.

GetSize
Returns the number of elements in the array.

Chapter 8. Querying data 41

ActiveX signature
long GetSize()

Return type

long The cardinality of the array.

RemoveAll
Removes all objects from the StringArray.

Signature
void RemoveAll ()

RemoveAt
Removes the object at the specified index; can be called on the
ExecutionServiceArray, ContainerArray, ContainerElementArray, and
StringArray.

Signature
void RemoveAt (long index)

Parameters

index Index. The index of the object to be removed.

SetAt
Sets the value of a StringArray element at the specified index.

Signature
void SetAt(long index, BSTR string)

Parameters

index Input. The index of the array value to be set.

string Input. The value to be set.

42 Programming Guide

Events

NewObject
Indicates that a new execution service has been added to the
ExecutionServiceArray or that a new list object has been added to the
ProcessInstanceListArray, the ProcessTemplateListArray, or the Worklist array.

Signature
void NewObject(long index)

Parameters

index Input. The index of new element in the array.

ObjectRemove
Indicates that an execution service has been removed from the
ExecutionServiceArray or that a list object has been removed from the
ProcessInstanceListArray, the ProcessTemplateListArray, or the Worklist array.

Signature
void ObjectRemove(long index)

Parameters

index Input. The index of new element in the array.

Java arrays

In Java, the result of a query for a set of objects is stored in arrays. The arrays
are declared by you as a variable of the respective type, for example:
ProcessInstance[] processInstances;

With each new query, all existing objects in the array are deleted and the new
objects are added.

The number of objects contained in an array is determined by accessing its
length variable, for example:
processInstances.length

All array indexes start with 0 (zero). That is, valid index numbers are 0 to
length-1. You access an object by providing its index number, for example,
processInstances[0]. Note that you should not remember the index number of
an object because the object can have a different index after each query,
depending on the sort criteria and the number of objects returned.

Chapter 8. Querying data 43

44 Programming Guide

Chapter 9. Handling containers

A container represents input or output data of a process template, process
instance, work item, activity implementation, or support tool at Runtime. Each
container is defined by a data structure which declares the container to be of
the type of that data structure.

Data structure/container type

A data structure is uniquely identified by its name and contains an ordered
list of data members. At Runtime, it can become a stream of 4 MB passed
between the client and the server.

The data structures and their usage as input containers or output containers
are defined during modeling. A special data structure called
DEFAULT_DATA_STRUCTURE is provided by MQ Workflow and contains no
user-defined data members when installed. The
DEFAULT_DATA_STRUCTURE cannot be deleted, but it can be extended
during modeling.

Data member/container element

A data member of a data structure has a name and a data type. Data types are
either basic and then STRING, LONG, BINARY, or FLOAT,or another data
structure. Using a data structure as the data type of a data member (nesting)
allows for recursive definitions of data members.

A data member can represent a one-dimensional array. If a data member
represents an array, the number of elements in that array is shown in
parentheses ().

A data structure can have up to 512 user-defined data members. A data
member that represents an array of data members counts with as many data
members as it has elements.

Data members are specified using their fully qualified name within the
container. The fully qualified name3 of a data member is a name in dot
notation where the hierarchy of nested data members is presented from left to
right, and their names are separated by a dot.

3. A fully qualified name in XML is represented by the nesting hierarchy.

© Copyright IBM Corp. 1993, 2001 45

If a data member actually specifies an array of data members, the index
number of a specific data member is specified in brackets ([n]) or parentheses
((n)).

When a data structure denotes the type of a container, then its data members
(first level of any hierarchy) are also called container elements. They define the
structural members of the container. When the data type of a container element
(n-th level of any hierarchy) is a data structure (nesting), then that container
element again has container elements or structural members.

Container elements of a basic data type are also called the leaves of the
container. These are the members which can hold a value, that is, which can
be asked for a value and which can be set to a new value.

For example, assume that the data structure PERSON describes an input
container or output container and that PERSON has been defined as:

PERSON has two structural data members named Name and Addr. Name is
of basic data type STRING and Addr is of data type ADDRESS. That is the
data structure ADDRESS is nested within the data structure PERSON.

The input or output container described by PERSON then has two container
elements or structural members named Name and Addr, where Addr defines
a structure by itself. The container elements or structural members of the
container element Addr are Street and POBOX.

The leaves of the container, that is, the container elements which can carry a
value, and their fully qualified names within the container are:

Note that since the size of the POBOX array is 2, the valid index numbers are
0 and 1. This is because all array indexes start with 0 (zero).

Also note that the fully qualified names are not prefixed with the name of the
data structure PERSON. That data structure denotes the type of the container.

For detailed examples see “Part 9. Examples and scenarios” on page 753.

Name STRING
Addr ADDRESS

Street STRING
POBOX LONG(2)

Name
Addr.Street
Addr.POBOX[0]
Addr.POBOX[1]

46 Programming Guide

The XML message interface
In the XML message interface, data members (container elements) are
represented as follows:
v The data member name is represented by an XML element name.
v Nested data structures are decomposed into XML child elements according

to their structure, that is, there is no dot notation for fully qualified names.
v Arrays are depicted as a sequence of elements.
v The data member type is not part of the XML element content.

For example:
<Name>

<Addr>
<Street></Street>
<POBOX></POBOX>
<POBOX></POBOX>

</Addr>
</Name>

For more information refer to “Container data” on page 211.

Predefined data members

All containers automatically specify data members predefined by MQ
Workflow. They can hold values associated with the operational characteristics
of an activity or process. Predefined data members are data members that
need not be defined by the modeler but are automatically available. They can
be accessed by the container API. Their names start with the reserved
character "_".

Predefined data member values can be:
v Used to evaluate activity exit criteria.
v Accessed by activity implementations or support tools.
v Dynamically set to change the operational characteristics of subsequent

activities.

Predefined data members provide for the flexibility of modelers. The decision
on operational characteristics of a process or activity is taken at Runtime.
They also provide activity implementations and support tools a means to
access the operational characteristics through the use of API API calls.

There are the following sets of predefined data members:
v Fixed data members
v Process information data members
v Activity information data members

Chapter 9. Handling containers 47

Fixed data members provide information about the current activity instance.
They cannot be set using an API API call. An exception is the _RC data
member which should be set only if the program cannot otherwise specify a
return code (see the following).

Process information and activity information data members are associated
with the operational characteristics of a process or activity. They operate the
same way as any user-defined data members. This means that the values for
specific operational characteristics of a process instance or activity instance
can be accessed or changed just like the values for any other user-defined
data member.

The following provides the fully qualified name and a brief description of
each of the predefined data members.

There are no arrays of any predefined data member.

Fixed data members
Fixed data members _ACTIVITY, _PROCESS, and _PROCESS_MODEL cannot
be set using API API calls. Their values can be read using API container API
calls. Fixed data member _RC is available in output containers but should
only be set when your compiler does not support a program exit code.

_ACTIVITY
This data member contains the fully-qualified name of the considered
activity instance. The value of this data member is automatically set
when the activity instance or an associated work item is started.

Data type: STRING

_PROCESS
This data member contains the name of the associated process
instance. The value of this data member is automatically set when the
activity instance or an associated work item is started.

Data type: STRING

_PROCESS_MODEL
This data member contains the name of the associated process model.
The value of this data member is automatically set when the activity
instance or an associated work item is started.

Data type: STRING

_RC This data member contains the return code of the activity
implementation when the implementation is a program. Typically it is
used to evaluate exit and transition conditions. It cannot be read from
input containers and, unless it has not been set explicitly, it is
automatically set to the exit code of the activity implementation when
that program ends. If set explicitly, then that value stays.

48 Programming Guide

In cases where your compiler does not support an exit code, you can
use the Container API to set its value.

Data type: LONG

Process information data members
Process information data members serve to dynamically specify properties of
a process instance. In general, the process modeler can choose where values
for process instance properties are to be obtained.
v Values can be inherited from a top-level process instance.
v Values can be obtained from the process information data members in the

input container. They are then either set as default values or provided in
the input container when the process instance is started.

If specified via the DATA_FROM_INPUT_CONTAINER indicator, the values of
the process information data members are read by MQ Workflow when the
process instance is started. If a value for a process information data member is
not set, then a default value is used (see the detailed descriptions below).

_PROCESS_INFO.Role
A role that people assigned to an activity instance of the process
instance must fulfill.

Any role set becomes an additional criterion to roles set for the
activity instance. Only people who are members of all the specified
roles are eligible.

If no role is set and no roles are specified for the activity instance,
then no role criteria are applied.

Data type: STRING

_PROCESS_INFO.Organization
The organization to which people must belong to receive work items
of the process instance. This setting is only used if no organization is
specified for the activity instance.

If no organization is set and no organization is specified for the
activity instance, the default is the organization of the person who
starts the process instance.

Data type: STRING

_PROCESS_INFO.ProcessAdministrator
The user ID of the person notified if:
v The process instance is expired.
v No person meets the criteria to perform an activity instance.
v No valid person has been specified for notification.

Chapter 9. Handling containers 49

v The person notified that an activity instance is overdue has
exceeded the time allowed for an action, that is, the second
notification is sent.

If not set, the default process administrator is the person who starts
the process instance.

Data type: STRING

_PROCESS_INFO.Duration
Specifies how long the process instance is allowed to take. The value
is expressed in seconds.

If not set, the default is "Endless".

Data type: LONG

Activity information data members
Activity information data members serve to dynamically specify properties of
an activity instance. In general, the process modeler can choose where values
for activity instance properties are to be obtained.
v Values can be obtained from the activity information data members in the

input container. They are then either set as default values or provided in
the input container when an activity instance or associated work item is
started.

If specified, the values of the activity information data members are read by
MQ Workflow when the activity instance is scheduled. If a value is not set,
then a default value is used (see the detailed descriptions below).

The following indicators specify that activity information data members are to
be read:
v DONE_BY STAFF DEFINED_IN INPUT_CONTAINER
v NOTIFICATION DEFINED_IN INPUT_CONTAINER
v PRIORITY DEFINED_IN INPUT_CONTAINER

_ACTIVITY_INFO.Priority
The numeric value assigned as the priority of an activity instance. MQ
Workflow does not deduce any meaning from this value; it is just
used for client purposes. Any integer value between 0 and 999 can be
specified. If the value specified is invalid or the data member is not
set, a default of 0 (zero) is used.

Data type: LONG

_ACTIVITY_INFO.MembersOfRoles
The role or roles a person must fulfill to receive a work item for the
activity instance. Multiple roles may be specified and are then to be
separated by a semicolon (;).

50 Programming Guide

Any role or roles set for this data member become an additional
criterion to the role set for the process instance. Only people who are
members of all the specified roles are eligible.

If not set, the role specified for the process instance is used. If no role
is set for the process instance and no roles are specified for the
activity instance, then no role criteria are applied.

Note: This specification is ignored if any specific people are set using
the _ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.CoordinatorOfRole
The role or roles a person must coordinate to receive a work item for
the activity instance. Multiple roles to coordinate may be specified
and are then to be separated by a semicolon (;).

To receive a work item, the eligible person must be assigned as
coordinator of all the specified roles in addition to being a member of
all roles specified for the process instance and for the activity instance.

If not set, the roles specified by the process instance and the activity
instance are solely used. If no roles to be member of nor roles to
coordinate have been specified, no role criteria are applied.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.Organization
The organization to which people must belong to receive work items
of the activity instance.

If an organization is set using this data member, any organization set
for the process instance is ignored.

If not set, the organization specified by the process instance is used. If
no organization is set and no organization is specified for the process
instance properties, the default is the organization of the person who
starts the process instance.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

Chapter 9. Handling containers 51

_ACTIVITY_INFO. OrganizationType
This data member is used to indicate if a work item for the activity
instance should be assigned to persons in a child organization.

To make all persons in the specified organization and all of its child
organizations eligible, set the value of this data member to 0.

To limit the persons who are eligible to the members of the specified
organization and the managers of the first level of child organizations,
set this data member to any nonzero value.

If not set, the default is 0. If no organization is set for the
_ACTIVITY_INFO.Organization data member, any value set here is
ignored.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: long

_ACTIVITY_INFO.LowerLevel
The minimum level persons must have to receive work items of the
activity instance. A value between 0 and 9 can be set. The default
value is 0 (zero).

If the level specified here is greater than the value specified for the
upper level, or if the level is not set, the default value of 0 (zero) is
used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.UpperLevel
The maximum level for persons to receive work items of the activity
instance. A value between 0 and 9 can be set. The default value is 9.

If the level specified here is less than the value specified for the lower
level, or the level is not set, the default value of 9 is used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.People
This data member is used to specifically identify the people who
should receive a work item of the activity instance. Multiple entries
are possible and are then to be separated by a semicolon (;).

52 Programming Guide

If any people are identified using this data member, any values set for
data members _ACTIVITY_INFO.MembersOfRoles,
_ACTIVITY_INFO.CoordinatorOfRole, _ACTIVITY_INFO.Organization,
_ACTIVITY_INFO.OrganizationType, _ACTIVITY_INFO.LowerLevel, and
_ACTIVITY_INFO.UpperLevel are ignored.

If no value is set, any values set for the above data members are used.
If no values have been set for those, the values set for staff definition
for the process instance are used.

If no values have been set for the process instance, the people in the
organization and all child organizations of the process starter receive a
work item for the activity instance.

Data type: STRING

_ACTIVITY_INFO.PersonToNotify
Used to identify the person to notify if the specified duration to
complete the activity instance expires before the activity instance is
complete.

If the user ID specified by the data member is invalid or the data
member is not set, the process administrator is notified.

Data type: STRING

_ACTIVITY_INFO.Duration
Used to specify the maximum number of seconds allowed to complete
the activity.

If the activity is not completed before the specified duration, the
defined person is notified.

If the value specified by the data member is invalid or the data
member is not set, no notification occurs.

Data type: LONG

_ACTIVITY_INFO.Duration2
Used to specify the maximum number of seconds allowed to act on
an activity instance notification.

If the notification is not acted on before the specified number of
seconds expires, the process administrator is notified.

If the value specified by the data member is invalid or the data
member is not set, no notification occurs.

Data type: LONG

Chapter 9. Handling containers 53

Determining the structure of an unknown container

There are various API calls in order to determine the structure of an unknown
container and/or its leaves. Applied to a container, they return a collection of
container elements. Once the collection of container elements is available,
similar API calls can be recursively applied in order to step down through a
nested structure.

Notes:

1. ActiveX signatures are provided in the Object Definition Language (ODL).
For example, type BSTR is used for strings where the VisualBasic type is
actually String.

2. In the XML message interface, a container is always completely described
in the message. An application can thus determine the structure of a
container by analyzing the container in the message.

Determining the leaves
The following API calls allow to determine the number of leaves in a
container or to retrieve the leaves themselves. When all leaves are requested,
then not only the user-defined leaves or their leaf count are provided, but also
the MQ Workflow predefined data members.

ActiveX signatures
long LeafCount()

void Leaves(ContainerElementArray * leaves)

long AllLeafCount()

void AllLeaves(ContainerElementArray * leaves)

C-language signatures
unsigned long FmcjContainerLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerLeaves(FmcjContainerHandle handle)

unsigned long FmcjContainerAllLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerAllLeaves(FmcjContainerHandle handle)

54 Programming Guide

C++ language signatures
unsigned long LeafCount()

void Leaves(vector<FmcjContainerElement> const & leaves) const

unsigned long AllLeafCount()

void AllLeaves(vector<FmcjContainerElement> const & leaves) const

Java signatures
public abstract int leafCount() throws FmcException

public abstract ContainerElement[] leaves() throws FmcException

public abstract int allLeafCount() throws FmcException

public abstract ContainerElement[] allLeaves() throws FmcException

Parameters
handle Input. The handle of the container to be queried.
leaves Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are leaves.
long/unsigned long/int

The number of user-defined leaves or the number of all
leaves, user-defined and predefined.

Determining the structural members
The following API calls allow to determine the number of structural members
in a container or to retrieve the structural members themselves.

ActiveX signatures
long MemberCount()

void StructMembers(ContainerElementArray * members)

Chapter 9. Handling containers 55

C-language signatures
unsigned long FmcjContainerMemberCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerStructMembers(FmcjContainerHandle handle)

C++ language signatures
unsigned long MemberCount()

void StructMembers(vector<FmcjContainerElement> const & members) const

Java signatures
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

Parameters
handle Input. The handle of the container to be queried.
members Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are part of the container.
long/unsigned long/int

The number of structural members in the container.

Determining the type
The following API calls provide the type of a container, that is, the name of
the associated data structure.

ActiveX signature
BSTR Type()

56 Programming Guide

C-language signature
char * FmcjContainerType(FmcjContainerHandle handle,

char * containerTypeBuffer,
unsigned long bufferLength)

C++ language signature
string Type()

Java signature
public abstract String type() throws FmcException

Parameters
bufferLength Input. The length of the buffer to contain the container type;

must be at least FMC_CONTAINER_TYPE_LENGTH bytes.
containerTypeBuffer

Input/Output. The buffer to contain the container type.
handle Input. The handle of the container to be queried.

Return type
BSTR/char*/string/String

The type of the container.

Analyzing a container element
Once a container element has been accessed, it can be asked for its properties,
its name, whether it is a leaf and an array, or a structure itself.
Functions/methods you have seen on the container can then be applied
recursively in order to step down through a nested structure.

Determining the name or type of a container element
The following API calls allow to determine the name of a container element or
its type.

ActiveX signatures
BSTR Name()

BSTR FullName()

BSTR Type()

Chapter 9. Handling containers 57

C-language signatures
char* FmcjContainerElementName (FmcjContainerElementHandle handle,

char * buffer,
unsigned long bufferLength)

char* FmcjContainerElementFullName(FmcjContainerElementHandle handle,
char * buffer,
unsigned long bufferLength)

char* FmcjContainerElementType (FmcjContainerElementHandle handle,
char * buffer,
unsigned long bufferLength)

C++ language signatures
string Name() const

string FullName() const

string Type() const

Java signatures
public abstract String name() throws FmcException

public abstract String fullName() throws FmcException

public abstract String type() throws FmcException

Parameters
bufferLength Input. The length of the buffer to be filled.
buffer Input/Output. The buffer to contain the container element

name or type.
handle Input. The handle of the container element to be queried.

Return type
BSTR/char*/string/String

The name or type of the container element.

Determining the structural properties of a container element
The following API calls allow to determine whether the considered container
element is a leaf or a structure by itself and whether it is denoted to be an
array.

58 Programming Guide

ActiveX signatures
boolean IsArray()

boolean IsLeaf()

boolean IsStruct()

C-language signatures
bool FmcjContainerElementIsArray (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsLeaf (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsStruct(FmcjContainerElementHandle handle)

C++ language signatures
bool IsArray () const

bool IsLeaf () const

bool IsStruct() const

Java signatures
public abstract boolean isArray () throws FmcException

public abstract boolean isLeaf () throws FmcException

public abstract boolean isStruct() throws FmcException

Parameters
handle Input. The handle of the container element to be queried.

Return type
boolean/bool An indicator whether the container element is an array, a leaf,

or a structure.

Determining the leaves of a container element
The following API calls allow to determine the number of leaves of a
container element or to retrieve the leaves themselves.

Chapter 9. Handling containers 59

Note: When these API calls are called on a leaf itself, the LeafCount() returns
1 because the container element obviously is a leaf, but no further
leaves are returned when Leaves() are queried.

ActiveX signatures
long LeafCount()

void Leaves(ContainerElementArray * leaves)

C-language signatures
unsigned long
FmcjContainerElementLeafCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementLeaves(FmcjContainerElementHandle handle)

C++ language signatures
unsigned long LeafCount()

void Leaves(vector<FmcjContainerElement> const & leaves) const

Java signatures
public abstract int leafCount() throws FmcException

public abstract ContainerElement[] leaves() throws FmcException

Parameters
handle Input. The handle of the container to be queried.
leaves Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are leaves.
long/unsigned long/int

The number of user-defined leaves.

Determining the structural members of a container element
The following API calls allow to determine the number of structural members
of a container element or to retrieve the structural members themselves.

60 Programming Guide

ActiveX signatures
long MemberCount()

void StructMembers(ContainerElementArray * members)

C-language signatures
unsigned long
FmcjContainerElementMemberCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementStructMembers(FmcjContainerElementHandle handle)

C++ language signatures
unsigned long MemberCount()

void StructMembers(vector<FmcjContainerElement> const & members) const

Java signatures
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

Parameters
handle Input. The handle of the container element to be queried.
members Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are structural members.
long/unsigned long/int

The number of structural members.

Determining the elements of an array
The following API calls allow to determine the number of elements in an
array or to retrieve the elements themselves.

Chapter 9. Handling containers 61

ActiveX signatures
long Cardinality()

void ArrayElements(ContainerElementArray * elements)

C-language signatures
unsigned long
FmcjContainerElementCardinality(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementArrayElements(FmcjContainerElementHandle handle)

C++ language signatures
unsigned long Cardinality() const

void ArrayMembers(vector<FmcjContainerElement> const & elements) const

Java signatures
public abstract int cardinality() throws FmcException

public abstract ContainerElement[] arrayElements() throws FmcException

Parameters
handle Input. The handle of the container element to be queried.
elements Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are part of the queried array
container element.

long/unsigned long
The cardinality of the array described by the container
element.

62 Programming Guide

Accessing a known container element

When you know the (dotted) name of a container element, that name can be
used in order to directly access the container element without iterating and
searching through the whole container or container element structure.

Notes:

1. A qualified name must start with a letter and cannot start with brackets or
parentheses. In other words, if you want to access an element of a
container element which is an array, then you need to call the
ArrayElements() API call.

2. ActiveX signatures are provided in the Object Definition Language (ODL).
For example, type BSTR is used for strings where the VisualBasic type is
actually String.

ActiveX signature
long GetElement(BSTR qualifiedName,

ContainerElement * element)

C-language signature
APIRET FMC_APIENTRY FmcjContainerGetElement(

FmcjContainerHandle handle,
char const * qualifiedName,
FmcjContainerElementHandle * element)

APIRET FMC_APIENTRY FmcjContainerElementGetElement(
FmcjContainerElementHandle handle,
char const * qualifiedName,
FmcjContainerElementHandle * element)

C++ language signature
APIRET GetElement(string const & qualifiedName,

FmcjContainerElement & element) const

Java signature
public abstract
ContainerElement getElement(String qualifiedName) throws FmcException

Parameters
element Output. The container element.

Chapter 9. Handling containers 63

handle Input. The handle of the container or container element to be
queried.

qualifiedName
Input. The fully qualified name of the container element.

Return type
long/APIRET The return code of calling this API call - see return codes.

Accessing a value of a container

The following API calls return the value of a container leaf.
FMC_ERROR_MEMBER_NOT_SET is returned if no information is available.

When the leaf is an array of values, an index must be specified. Since an
index is to be specified, the fully qualified name must be given without the
index and its parentheses.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

ActiveX signatures
long GetValueDbl(BSTR qualifiedName,

double * value,
boolean isArray,
long index)

long GetValueLng(BSTR qualifiedName,
long * value,
boolean isArray,
long index)

long GetValueStr(BSTR qualifiedName,
BSTR * value,
boolean isArray,
long index)

64 Programming Guide

C-language signatures
unsigned long

FMC_APIENTRY FmcjContainerArrayBinaryLength(
FmcjContainerHandle handle,
char const * qualified name,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerArrayBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
FmcjBinary * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerBinaryLength(

FmcjContainerHandle handle,
char const * qualified name)

APIRET FMC_APIENTRY FmcjContainerBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
FmcjBinary * value,
unsigned long bufferLength)

C-language signatures
APIRET FMC_APIENTRY FmcjContainerArrayFloatValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
double * value)

APIRET FMC_APIENTRY FmcjContainerFloatValue(
FmcjContainerHandle handle,
char const * qualifiedName,
double * value)
unsigned long bufferLength)

Chapter 9. Handling containers 65

C-language signatures
APIRET FMC_APIENTRY FmcjContainerArrayLongValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
long * value)

APIRET FMC_APIENTRY FmcjContainerLongValue(
FmcjContainerHandle handle,
long * value)

C-language signatures
unsigned long

FMC_APIENTRY FmcjContainerArrayStringLength(
FmcjContainerHandle handle,
char const * qualified name,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerArrayStringValue(
FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
char * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerArrayStringLength(

FmcjContainerHandle handle,
char const * qualified name)

APIRET FMC_APIENTRY FmcjContainerStringValue(
FmcjContainerHandle handle,
char const * qualifiedName,
char * value,
unsigned long bufferLength)

C++ language signatures
unsigned long BinaryLength(unsigned long index)

APIRET Value(string const & qualifiedName,
unsigned long index,
FmcjBinary * value,
unsigned long bufferLength) const

unsigned long BinaryLength()

66 Programming Guide

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
long & value) const

APIRET Value(string const a qualifiedName,
long & value) const

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
double & value) const

APIRET Value(string const a qualifiedName,
double & value) const

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
string & value) const

APIRET Value(string const a qualifiedName,
string & value) const

Java signatures
public abstract
byte[] getBuffer2(String qualifiedName,

int index) throws FmcException

public abstract
byte[] getBuffer(String qualifiedName) throws FmcException

Java signatures
public abstract
double getDouble2(String qualifiedName,

int index) throws FmcException

public abstract
double getDouble(String qualifiedName) throws FmcException

Chapter 9. Handling containers 67

Java signatures
public abstract
int getLong2(String qualifiedName,

int index) throws FmcException

public abstract
int getLong(String qualifiedName) throws FmcException

Java signatures
public abstract
String getString2(String qualifiedName,

int index) throws FmcException
public abstract
String getString(String qualifiedName) throws FmcException

Parameters
bufferLength Input. The length of the buffer available for passing the value;

must be greater than or equal to the actual length. Use the
appropriate Length() API calls to determine the actual length.

handle Input. The handle of the container to be queried.
index Input. When the leaf is an array, the index of the array

element to be queried.
isArray Input. If set to True, an array is to be queried and the index is

used.
qualifiedName

Input. The fully qualified name of the leaf within the
container.

value Output. The value of the leaf.

Return type
byte[]/double/int/String

The leaf value.
unsigned long

The minimum required buffer length for reading the value.
long/APIRET The return code of calling this API call - see return codes.

68 Programming Guide

Accessing a value of a container element

The following API calls return the value of a container element leaf. When the
leaf is an array of values, an index must be specified.
FMC_ERROR_MEMBER_NOT_SET is returned if no information is available.
Note that, in contrast to querying container leaves, the name of the leaf need
not be specified because the container element itself is the leaf queried.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

ActiveX signatures
long GetValueDbl(double * value,

long index)

long GetValueLng(long * value,
long index)

long GetValueStr(BSTR * value,
long index)

C-language signatures
unsigned long

FMC_APIENTRY FmcjContainerElementArrayBinaryLength(
FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayBinaryValue(
unsigned long index,
FmcjBinary * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerElementBinaryLength(

FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementBinaryValue(
FmcjContainerElementHandle handle,
FmcjBinary * value,
unsigned long bufferLength)

Chapter 9. Handling containers 69

C-language signatures
APIRET FMC_APIENTRY FmcjContainerElementArrayFloatValue(

FmcjContainerElementHandle handle,
unsigned long index,
double * value)

APIRET FMC_APIENTRY FmcjContainerElementFloatValue(
FmcjContainerElementHandle handle,
double * value)

C-language signatures
APIRET FMC_APIENTRY FmcjContainerElementArrayLongValue(

FmcjContainerElementHandle handle,
unsigned long index,
long * value)

APIRET FMC_APIENTRY FmcjContainerElementLongValue(
FmcjContainerElementHandle handle,
long * value)

C-language signatures
unsigned long

FMC_APIENTRY FmcjContainerElementArrayStringLength(
FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayStringValue(
FmcjContainerElementHandle handle,
unsigned long index,
char * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerElementArrayStringLength(

FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementStringValue(
FmcjContainerElementHandle handle,
char * value,
unsigned long bufferLength)

70 Programming Guide

C++ language signatures
unsigned long BinaryLength(unsigned long index)

APIRET Value(unsigned long index,
FmcjBinary * value,
unsigned long bufferLength) const

unsigned long BinaryLength()

APIRET Value(FmcjBinary * value,
unsigned long bufferLength) const

C++ language signatures
APIRET Value(unsigned long index,

long & value) const

APIRET Value(long & value) const

APIRET Value(unsigned long index,
double & value) const

APIRET Value(double & value) const

APIRET Value(unsigned long index,
string & value) const

APIRET Value(string & value) const

Chapter 9. Handling containers 71

Java signatures
public abstract
byte[] getBuffer2(int index) throws FmcException

public abstract
byte[] getBuffer() throws FmcException

public abstract
double getDouble2(int index) throws FmcException

public abstract
double getDouble() throws FmcException

public abstract
int getLong2(int index) throws FmcException

public abstract
int getLong() throws FmcException

public abstract
String getString2(int index) throws FmcException

public abstract
String getString() throws FmcException

Parameters
bufferLength Input. The length of the buffer available for passing the value;

must be greater than or equal to the actual length. Use the
appropriate Length() API calls to determine the actual length.

handle Input. The handle of the container element to be queried.
index Input. When the leaf is an array, the index of the array

element to be queried. In ActiveX, the index is ignored for a
container element which is no array.

value Output. The value of the leaf.

Return type
byte[]/double/int/String

The leaf value.
unsigned long

The minimum required buffer length for reading the value.
long/APIRET The return code of calling this API call - see return codes.

Setting a value of a container

The following API calls allow to set the value of a container leaf in a
read/write container.

72 Programming Guide

When the leaf is an array of values, an index must be specified. Since an
index is to be specified, the fully qualified name must be given without the
index and its parentheses.

Setting a container value changes the value in the API cache only; the
execution server is not contacted. The container can then be used as the input
container for a process instance (Start(), CreateAndStart(), Execute()), as the
output container of a work item (CheckIn(), SetOutContainer()), or as a
corrective container when calling ForceFinish() or ForceRestart().

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

ActiveX signatures
long SetValueDbl(BSTR qualifiedName,

double value,
boolean isArray,
long index)

long SetValueLng(BSTR qualifiedName,
long value,
boolean isArray,
long index)

long SetValueStr(BSTR qualifiedName,
BSTR value,
boolean isArray,
long index)

C-language signatures
APIRET FMC_APIENTRY FmcjContainerSetArrayBinaryValue(

FmcjReadWriteContainerHandle handle,
char const * qualifiedName,
unsigned long index,
FmcjBinary const * value,
unsigned long dataLength)

APIRET FMC_APIENTRY FmcjContainerSetBinaryValue(
FmcjReadWriteContainerHandle handle,
char const * qualifiedName,
FmcjBinary const * value,
unsigned long dataLength)

Chapter 9. Handling containers 73

C-language signatures
APIRET FMC_APIENTRY FmcjContainerSetArrayFloatValue(

FmcjReadWriteContainerHandle handle,
char const * qualifiedName,
unsigned long index,
double value)

APIRET FMC_APIENTRY FmcjContainerSetFloatValue(
FmcjReadWriteContainerHandle handle,
char const * qualifiedName,
double value)

C-language signatures
APIRET FMC_APIENTRY FmcjContainerSetArrayLongValue(

FmcjReadWriteContainerHandle handle,
char const * qualifiedName,
unsigned long index,
long value)

APIRET FMC_APIENTRY FmcjContainerSetLongValue(
FmcjReadWriteContainerHandle handle,
long value)

C-language signatures
APIRET FMC_APIENTRY FmcjContainerSetArrayStringValue(

FmcjReadWriteContainerHandle handle,
char const * qualifiedName,
unsigned long index,
char const * value)

APIRET FMC_APIENTRY FmcjContainerSetStringValue(
FmcjReadWriteContainerHandle handle,
char const * qualifiedName,
char const * value)

74 Programming Guide

C++ language signatures
APIRET SetValue(string const & qualifiedName,

unsigned long index,
FmcjBinary const * value,
unsigned long dataLength) const

APIRET SetValue(string const & qualifiedName,
FmcjBinary const * value,
unsigned long dataLength) const

C++ language signatures
APIRET SetValue(string const & qualifiedName,

unsigned long index,
long value) const

APIRET SetValue(string const a qualifiedName,
long value) const

C++ language signatures
APIRET SetValue(string const & qualifiedName,

unsigned long index,
double value) const

APIRET SetValue(string const a qualifiedName,
double value) const

C++ language signatures
APIRET SetValue(string const & qualifiedName,

unsigned long index,
string const & value) const

APIRET SetValue(string const & qualifiedName,
string const & value) const

Chapter 9. Handling containers 75

Java signatures
public abstract
void setBuffer2(String qualifiedName,

int index,
byte value []) throws FmcException

public abstract
void setBuffer(String qualifiedName,

byte value[]) throws FmcException

Java signatures
public abstract
void setDouble2(String qualifiedName,

int index,
double value) throws FmcException

public abstract
void setDouble(String qualifiedName,

double value) throws FmcException

Java signatures
public abstract
void setLong2(String qualifiedName,

int index,
long value) throws FmcException

public abstract
void setLong(String qualifiedName,

long value) throws FmcException

Java signatures
public abstract
void setString2(String qualifiedName,

int index,
String value) throws FmcException

public abstract
void setString(String qualifiedName,

String value) throws FmcException

Parameters
dataLength Input. The length of the binary value.
handle Input. The handle of the container to be set.

76 Programming Guide

index Input. When the leaf is an array, the index of the array
element to be set.

isArray Input. If set to True, an array element is to be set and the
index is used.

qualifiedName
Input. The fully qualified name of the leaf within the
container.

value Input. The value of the leaf. Note that values for leaves of
type BINARY must be specified as a sequence of two-digit
hexadecimal numbers. For example, the string ’abc<cr><lf>’’
would be represented as ’6162630d0a’ (where <cr> denotes the
ASCII ’carriage return’ character and <lf> denotes the ASCII
line-feed character).

Return type
long/APIRET The return code of calling this API call - see return codes.

Return codes/FmcException

The following return codes can be returned or can be described by the result
object or following exceptions can be thrown, the number in parentheses
shows their integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR_BUFFER(800)

The provided buffer is too small.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the server.

FMC_ERROR_FORMAT(117)
The qualified name does not conform to the syntax rules.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_MEMBER_CANNOT_BE_SET(115)
The specified member is an MQ Workflow predefined fixed
data member; it is for information only.

FMC_ERROR_MEMBER_NOT_FOUND(112)
The specified member is not part of the container or container
element.

FMC_ERROR_MEMBER_NOT_SET(113)
The specified member has no value.

Chapter 9. Handling containers 77

78 Programming Guide

Chapter 10. Monitoring a process instance

MQ Workflow allows for obtaining a monitor for a specified process instance.
A process instance monitor typically allows for:
v Observing the progress of a process instance execution.
v Determining the state of execution, that is, to determine which activity

instance is currently in progress, is waiting to be executed by whom, is
InError and waiting for some action. It allows to determine whether
notifications occurred because the maximum work time was exceeded.

v Viewing the history of execution, that is, what path has been taken through
the process instance and why. It allows to determine where the bottlenecks
of execution are or where the most time-consuming parts are.

Note: Monitoring a process instance is not supported in the XML message
interface.

Obtaining an process instance monitor

Once a process instance4 has been accessed, an instance monitor for a process
instance can be obtained (ObtainProcessMonitor()). The transient instance
monitor object then represents all information about activity instances directly
contained in the described process instance as well as all information on
control connector instances connecting those activity instances.

4. or activity instance or a (work) item

© Copyright IBM Corp. 1993, 2001 79

For example, the illustrated instance monitor describes three program
activities, Program Activity 1, Program Activity 2, and Program Activity 9, and an
activity of type Block, Block Activity 3. There are three control connectors
between these activities.

The instance monitor object can then be asked for the activity instances and
the control connector instances described, and their properties can be
determined, for example, the state of the activity and its graphical layout, or
the result of control connector instance evaluation and activities to connect or
bend points to be drawn.

When an activity instance of type Block is encountered, it is possible to obtain
its instance monitor (ObtainBlockMonitor()). Similar to an process instance
monitor, an instance monitor for an activity instance of type Block represents
all information about activity instances directly contained in the described
block activity instance as well as all information on control connector
instances connecting those activity instances. For example, the instance
monitor of Block Activity 3 describes Block Activity 4, Program Activity 5, and
Process Activity 6. There is a control connector between Block Activity 4 and
Process Activity 6.

Figure 5. Instance monitors for process instances and activity instances of type Block

80 Programming Guide

When an activity instance of type Process is encountered, it is possible to
obtain its instance monitor, either via the embracing instance monitor object
(ObtainProcessMonitor()) or by retrieving the implementing (sub)process
instance of the activity instance and then obtaining the associated instance
monitor.

When obtaining an process instance monitor, it is possible to use the deep
option in order to specify that all monitors for activities of type Block are to be
returned from the MQ Workflow execution server in the same step. The
instance monitors for the block activity instances then all show the state of the
process instance at this retrieval time. This means, when an block monitor is
obtained via an API call, the API finds this monitor in its cache and provides
it to the caller. When the deep option is not used, it can happen that an block
monitor is not available. The API then automatically fetches the requested
monitor from the execution server; it then represents a newer state than the
ones previously retrieved.

Note: The deep option is currently ignored.

Ownership of monitors

As any other transient object, an instance monitor for a process instance or
activity instance is owned by the caller of the API. When an instance monitor
is no longer needed, you should delete/deallocate the object.

Chapter 10. Monitoring a process instance 81

82 Programming Guide

Chapter 11. Authorization considerations

In general, authorization is granted to persons, either explicitly or implicitly.
Implicitly means that the authority has been given as the result of performing
some MQ Workflow action; performing that action can itself request some
specific authority.

Special authority is granted to a person playing the role of a system
administrator. The system administrator has all privileges except on (work)
items. Only the owner of a (work) item can issue any actions; the system
administrator can, however, transfer the (work) item to himself. The system
administrator role must be assigned to a single person at any time.

When a process instance is started, its process administrator is determined. The
person determined to be the process administrator receives process
administration rights for that process instance.

The person who is to become the process administrator of a process instance
is specified when the process model is defined. Identification of the process
administrator can be done in the following ways:
v Specification of a user identification for the PROCESS_ADMINISTRATOR

keyword. In this case, the process administrator is already known when the
process model is defined.

v Specification of a member in the process input container via the
PROCESS_ADMINISTRATOR TAKEN_FROM specification.

v Specification of DATA FROM INPUT_CONTAINER. The process
administrator is then taken from the process information member
_PROCESS_INFO.ProcessAdministrator field in the input container (see
“Process information data members” on page 49 for details).

The following table shows the authorizations and the MQ Workflow functions
which can be called when that authority has been granted. The E/I
(Explicit/Implicit) column indicates how the authorization is granted to
persons.

Note: For the programming language APIs, once a user has authenticated
himself to MQ Workflow (logged on), he can retrieve all objects he is
authorized to see without any further special authorization. These are
all objects he has created and all objects which are not specially secured
or which are for public usage.

© Copyright IBM Corp. 1993, 2001 83

Table 3. Authorization for persons

Name E/I Authorized Functions

Authorization
definition
authorization

E Create, update, and delete authorization information.

Retrieve and update passwords.

The appropriate FDL authorization keyword is
AUTHORIZATION.

Operation
administration
authorization

E Can perform all operation administration functions.
The appropriate FDL authorization keyword is
OPERATION.

Staff definition
authorization

E Create, retrieve, update, and delete staff information.
As such, it includes authorization definition
authorization.

Create, retrieve, update, and delete public and
private process instance lists, process template lists,
and worklists.

The appropriate FDL authorization keyword is
STAFF.

Topology
definition
authorization

E Create, retrieve, update, and delete topology
information. The appropriate FDL authorization
keyword is TOPOLOGY.

Process modeling
authorization

E Create, retrieve, update, and delete process models
and process templates. The appropriate FDL
authorization keyword is PROCESS_MODELING.

84 Programming Guide

Table 3. Authorization for persons (continued)

Name E/I Authorized Functions

Process
authorization

E Can perform the following process instance
functions if the process instance does not belong to
any category. If the process instance does belong to a
category, you must be authorized for all categories
or for that specific category:
v Create
v Start
v Create and start
v Set process instance name
v Query
v Refresh

Can perform the following process template
functions if the process template does not belong to
any category. If the process template does belong to
a category, you must be authorized for all categories
or for that specific category:
v Query
v Refresh

The appropriate FDL authorization keyword is
PROCESS_CATEGORY.

Process
administration
authorization

E Has process authorization and can perform the
following additional process instance functions if the
process instance does not belong to any category. If
the process instance does belong to a category, you
must be authorized with administration rights for all
categories or for that specific category:
v Delete
v Restart
v Resume
v Suspend
v Terminate

Can perform the following work item functions on
the assigned work item for all process instances if
the process instance does not belong to any category.
If the process instance does belong to a category, you
must be authorized for all categories or for that
specific category:
v Force-finish
v Force-restart

The appropriate FDL authorization keyword is
PROCESS_CATEGORY AS ADMINISTRATOR.

Chapter 11. Authorization considerations 85

Table 3. Authorization for persons (continued)

Name E/I Authorized Functions

Process
administrator

I Has process administration authority for the
appropriate process instance.

Process creator I Can perform the following process instance
functions:
v Set process instance name
v Delete, if not yet started
v Query
v Refresh
v Start

Work item
authority

E Can perform the following functions on (work)
items for all persons if you are authorized for all
persons or for selected persons:
v Query
v Refresh
v Transfer

The appropriate FDL authorization keyword is
WORKITEMS_OF.

Workitem owner I Can perform all functions on the assigned (work)
item except:
v Force Finish
v Force Restart

86 Programming Guide

Chapter 12. Stateless server support

In clustered application server environments, like Web server farms, client
requests are sent for scalability and fail-over to a number of different Web
servers via routing components. Routing is done fully dynamically so that
there exists no 1-1 client/server affinity.

From a Web server point of view, client requests arrive independently of each
other. The Web server has no prior knowledge of the client. Such a server
configuration is called ”stateless”.

Implementation of stateless servers is supported by the MQ Workflow APIs.

Since the applications using the MQ Workflow API, for example, the Web
servers, have no knowledge beside the client request itself, the MQ Workflow
API allows to pass all state from one application process to the other. The MQ
Workflow objects are serializable.
v All identity-based objects allow for the retrieval of their unique object ID

(OID) and support creation from an OID.

Figure 6. Stateless server support

© Copyright IBM Corp. 1993, 2001 87

v All value-based objects allow for being streamed and support creation from
a stream.

Identity-based objects are:
v Sessions, that is, execution service objects
v Process templates
v Process instances
v Activity instances
v Work items
v Activity instance notifications and process instance notifications
v Process template lists, process instance lists, and worklists
v Instance monitors
v Persons (identified by their user ID)

These objects expose API calls:
v PersistentOID() to retrieve a string representation of their OIDs.

A session’s OID is retrieved by the SessionID() API call.
v PersistentObject() to recreate the object.

(Object in PersistentObject() stands for the object created, for example,
PersistentWorkitem() creates a work item from its OID).
The session is recreated by the SetSessionContext() API call.

Recreation means that the object is created in the API cache, that is, a transient
object representing the persistent object identified by the OID is created. An
MQ Workflow server is not contacted. As with other objects, the caller
becomes responsible for the object, that is, the caller needs to deallocate the
object when no longer needed.

Value-based objects are:
v Containers
v Program data
v Program templates

These objects expose API calls:
v AsStream() to retrieve a serialized representation of the object.
v FromStream() API calls to recreate the object from the stream.

Again, recreation means that the object is created in the API cache. An MQ
Workflow server is not contacted.

88 Programming Guide

For example, consider the following simple scenario, which concentrates on
the extensions for the stateless server support only; code snippets are sketched
in C++:
1. Application process A receives an MQ Workflow logon request for user

JIM. It allocates an execution service object and logs on to MQ Workflow
specifying the user ID JIM.
Application process A retrieves the ID of the session established and
returns. Note that the session exists until Logoff() is called or until the
session expires. The session is not removed from the MQ Workflow server
when the application program ends.
//
// Establish a session
//

FmcjExecutionService service;
APIRET rc = service.Logon("JIM", "password");
if (rc != FMC_OK)
{

cout << "Logon failed, - rc: " << rc << endl;
return;

}

// retrieve session relevant information
string sessionID= service.SessionID();

2. Application process B receives the request for a process template and its
container together with the information on the already existing session, the
session ID, and the user ID for whom the session has been established.
It allocates an execution service object and attaches itself to the specified
session.
//
// Attach to an existing session
//

FmcjExecutionService service;
APIRET rc = service.SetSessionContext(userID,sessionID);
if (rc != FMC_OK)
{

cout << "Reestablish session failed, - rc: " << rc << endl;
return;

}
...

Application process B queries the requested process template and its
associated input container from the MQ Workflow server. It then retrieves
the OID of the process template
//
// Retrieve the OID of an object identified by obj
//
string oid= obj.PersistentOID();

Chapter 12. Stateless server support 89

and the stream format of the container.
//
// Retrieve a value-based object in stream format, for example,
// a read/write container identified by container
//
unsigned long bufferLength = container.StreamLength();
char containerBuffer= new char[bufferLength];

if (0 == container.AsStream(containerBuffer, bufferLength))
{

cout << "Retrieval of stream failed" << endl;
return;

}
...

Since the process template and its container are the objects which are
potentially acted on by the next client request, application B returns the
process template OID and the container stream to the caller so that the
next request can be handled by a different application process; even on a
different operating system platform.

3. Application process C receives a request to create and start a process
instance together with all information needed, the session ID, the user ID
for whom the session has been established, the process template OID, and
the container stream.
It allocates an execution service object and attaches itself to the specified
session - see 2 on page 89.
It recreates the process template from its OID
//
// Recreate an object from an OID, for example, a process template
// The object constructed needs to be deleted/deallocated when no longer needed
//
FmcjProcessTemplate *pProcess= service.PersistentProcessTemplate(ptOid);

if (0 == pProcess)
{

cout << "Creation of process template failed" << endl;
// determine reason of failure from result object
return;

}
...

and the container from the stream passed.
//
// Recreate an object from a stream, for example, a read/write container
// The object constructed needs to be deleted/deallocated when no longer needed
//
FmcjReadWriteContainer *pContainer=

service.ReadWriteContainerFromStream(containerBuffer,bufferLength);

if (0 == pContainer)

90 Programming Guide

{
cout << "Creation of container failed" << endl;
// determine reason of failure from result object
return;

}
...

Application process C issues the CreateAndStartProcessInstance() action
method. On successful return from the MQ Workflow server, it retrieves
the OID of the process instance created and returns that information to the
caller - see 2 on page 89.

4. Application process D receives a request to terminate the process instance
together with all information needed, the session ID, the user ID for whom
the session has been established, and the process instance OID.
It allocates an execution service object and attaches itself to the specified
session - see 2 on page 89.
It recreates the process instance from its OID - see 3 on page 90.
It issues the Terminate() action method.

5. Depending on the client request, issue MQ Workflow API calls similar to
steps 2 on page 89, 3 on page 90, or 4.

Chapter 12. Stateless server support 91

92 Programming Guide

Chapter 13. Types of API calls

MQ Workflow API calls can be divided into several categories which
characterize the kind and behavior of the request to be executed.

Basic Manage transient objects

Accessor/mutator Read and update properties of transient objects

Action Read or manipulate persistent objects

Activity implementation Deal with containers from within an activity
implementation or support tool

Program execution
management

Handle program execution agents

Basic and accessor API calls are described in more detail, but still generally, in
the following paragraphs. This is because all these API calls are similar in
appearance and have similar requirements, even for different objects. They are
all handled locally by the API, that is, they do not communicate with the
server. The API calls of the other categories are described separately in
“Part 7. API action and activity implementation calls” on page 339. These API
calls require client/server communication or communication with the program
execution agent.

Basic API calls

Basic API calls are essentially provided so that transient objects can be
allocated or constructed and deallocated or destructed. They allow for the
construction of supporting objects like service objects. They allow for the
destruction of such objects as well as for the destruction of transient
representations of persistent objects allocated implicitly by the MQ Workflow
API. Refer also to “Chapter 17. Memory management” on page 167.

Basic API calls are only provided in the various APIs as far as needed. For
example, the Java language does only support IsComplete(), IsEmpty(), and
the Agent constructor.

Because of the nature of transient objects, neither a connection to a server nor
some specific authorization is required to execute.

Return codes
The C-language calls and the MQ Workflow result object can return the
following codes, the number in parentheses shows their integer value:

© Copyright IBM Corp. 1993, 2001 93

FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_NAME(134)
The name provided is invalid; it is a 0-pointer or it does not
conform to the syntax rules.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative. Also, check the MQ Workflow trace for
any exceptions encountered.

Basic API calls allow for the basic operations listed below; Xxx denotes some
class or scope, for example, FmcjXxxEqual() can stand for
FmcjProcessInstanceEqual().

Allocation
Following API calls allow the application to set up the respective object. This
is needed for supporting objects like string vectors or, in ActiveX, for objects
to be initialized by a persistent one. Transient objects representing persistent
objects are allocated implicitly by the MQ Workflow API when persistent
objects are created or queried from an MQ Workflow server.

In the C++ API, constructors are made public for all classes so that their
instances can be put into collections. When they are called by the application,
empty objects of the appropriate class are created; they do not yet represent a
persistent object.

All constructed objects are transient.

Types of API calls

94 Programming Guide

ActiveX signatures
ActivityInstance * NewActivityInstance()
ActivityInstanceNotification * NewActivityInstanceNotification()
Container * NewContainer()
ExecutionService * NewExecutionService()
InstanceMonitor * NewInstanceMonitor()
Person * NewPerson()
ProcessInstance * NewProcessInstance()
ProcessInstanceList * NewProcessInstanceList()
ProcessInstanceNotification * NewProcessInstanceNotification()
ProcessTemplate * NewProcessTemplate()
ProcessTemplateList * NewProcessTemplateList()
ProgramData * NewProgramData()
ProgramTemplate * NewProgramTemplate()
Workitem * NewWorkitem()
Worklist * NewWorklist()

C-language signatures
APIRET FMC_APIENTRY
FmcjExecutionServiceAllocate(FmcjExecutionServiceHandle * service)

APIRET FMC_APIENTRY FmcjExecutionServiceAllocateForGroup(
char const * systemGroup,
FmcjExecutionServiceHandle * service)

APIRET FMC_APIENTRY FmcjExecutionServiceAllocateForSystem(
char const * system,
char const * systemGroup,
FmcjExecutionServiceHandle * service)

APIRET FMC_APIENTRY
FmcjStringVectorAllocate(FmcjStringVectorHandle * hdlVector)

Types of API calls

Chapter 13. Types of API calls 95

C++ language signature
FmcjXxx()

FmcjDateTime(bool initWithCurrentDateTime= false)

FmcjDateTime(unsigned short year, unsigned short month,
unsigned short day, unsigned short hour,
unsigned short minute, unsigned short second)

FmcjExecutionService(string const & systemGroup)

FmcjExecutionService(string const & system,
string const & systemGroup)

Java signatures
Agent()

ReadOnlyContainerHolder()
ReadOnlyContainerHolder(ReadOnlyContainer value)

Parameters
service

Input/Output. The address of the handle to the object to be set when
the object has been constructed. Care that the handle passed is not
pointing to a still valid object since that object is not automatically
deallocated before the new object’s handle is set.

initWithCurrentTime
Input. An indicator whether the date/time should be initialized with
the current date/time.

system
Input. The specific system where the execution server runs.

systemGroup
Input. The system group where the execution server resides. Only
specifying the system group allows for exploiting the MQSeries
clustering capabilities.

year/month/day
Input. The date part of the date/time.

hour/minute/second
Input. The time part of the date/time.

value Input. A read-only container which initializes the holder object.

Return type

Types of API calls

96 Programming Guide

APIRET
The return code set by the allocation.

Object*
The newly constructed object.

Assignment
In the C++ API, the assignment operator allows the application to assign the
contents of the specified object to the target object, and returns the target
object. The assignment is achieved by deleting the target object before the
contents are assigned from the specified object.

C++ language signature
FmcjXxx & operator=(FmcjXxx const & anObject)

Parameters
anObject Input. The object from which the contents is to be assigned.

Comparison/equality
Following API calls allow an application to compare two transient objects in
order to determine whether they represent the same persistent or API object.

Normally, comparison is done on the basis of the object identifiers. True is
returned if both transient objects represent the same persistent object. The
contents of the transient objects to be compared are not further checked, that
is, it is not checked whether both transient objects carry the same states of the
persistent object.

Exceptions:
v Service objects are equal when they represent the same session.
v Error objects are equal when they report the same error, that is, when they

contain the same return code and the same parameters.
v Program data objects are equal when they belong to the same work item.
v Control connector instance objects are equal when they have the same

source and target activity instances.
v Point and symbol layout objects are equal when their properties are equal.

In the C-language, the return code of the result object is set to invalid handle, if
one of the handles passed is invalid. True is returned, if both are invalid, else
false.

Types of API calls

Chapter 13. Types of API calls 97

ActiveX signature
boolean IsEqual(IDispatch * anObject)

C-language signature
bool FMC_APIENTRY FmcjXxxEqual(FmcjXxxHandle handle1,

FmcjXxxHandle handle2)

C++ language signature
bool operator==(FmcjXxx const & anObject) const

Parameters
anObject Input. The object to be compared with this one.
handle1 Input. The first object to be compared.
handle2 Input. The other object to be compared.

Conversion
Following API calls allow the application to convert a read-only container into
a read/write container and vice versa. Note that a copy of the original
container is created in Java and the C-language.

C-language signatures
FmcjReadWriteContainerHandle FMC_APIENTRY

FmcjReadOnlyContainerAsReadWriteContainer(
FmcjReadOnlyContainerHandle handle)

FmcjReadOnlyContainerHandle FMC_APIENTRY
FmcjReadWriteContainerAsReadOnlyContainer(

FmcjReadWriteContainerHandle handle)

C++ language signatures
operator FmcjReadWriteContainer();

operator FmcjReadOnlyContainer();

Types of API calls

98 Programming Guide

Java signatures
public abstract
ReadWriteContainer asReadWriteContainer() throws FmcException

public abstract
ReadOnlyContainer asReadOnlyContainer () throws FmcException

Parameters
handle Input. The handle of the read/write or read-only container to

be converted.

Copy
Following API calls allow the application to make a copy of a particular
transient object. That copy becomes a separate object and thus carries its own
state.

An exception is the execution service where a copy points to the same session
established by the original object. This especially means, when you request to
log off on either object, then the (common) session is closed.

C-language signature
APIRET FMC_APIENTRY FmcjXxxCopy(FmcjXxxHandle handle,

FmcjXxxHandle * newHandle)

C++ language signature
FmcjXxx(FmcjXxx const & anObject)

Parameters
anObject Input. The object to be copied.
handle Input. The handle of the object to be copied.
newHandle Input/Output. The address of a handle to be set when the

object has been constructed. Care that the handle passed is not
pointing to a still valid object since that object is not
automatically deallocated before the new object’s handle is set.

Deallocation
Following API calls allow the application to delete the specified transient
object. Deletion of a transient object has no impact on the represented
persistent object, if any.

Types of API calls

Chapter 13. Types of API calls 99

The C-language handle is set to 0 so that it can no longer be used. The C++
destructor is automatically called when an instance of FmcjXxx is deleted. In
ActiveX, setting the object to Nothing decreases its use count so that it can
become available for destruction.

C-language signature
APIRET FMC_APIENTRY FmcjXxxDeallocate(FmcjXxxHandle * handle)

C++ language signature
virtual ¬FmcjXxx()

Parameters
handle

Input/Output. The address of the handle to the object to be
deallocated.

IsComplete()
Returns true when the object has been completely read from an MQ Workflow
server, that is, both primary and secondary properties are available (see also
“Accessor/mutator API calls” on page 106).

ActiveX signature
boolean IsComplete()

C-language signature
bool FMC_APIENTRY FmcjXxxIsComplete(FmcjXxxHandle handle)

C++ language signature
bool IsComplete()

Java signature
public abstract boolean IsComplete() throws FmcException

Parameters

Types of API calls

100 Programming Guide

handle
Input. The handle of the object to be queried.

Return type
bool/boolean

True if the object has been completely read from the server, otherwise
false.

IsEmpty()
Returns whether the transient object contains no actual data values yet. The
transient object has just been created and still contains default values. It does
not yet reflect a persistent object.

ActiveX signature
boolean IsEmpty()

C++ language signature
bool IsEmpty()

Java signature
public abstract boolean IsEmpty() throws FmcException

Return type
bool/boolean

True if the object has not yet been read from the server, otherwise
false.

Kind()
Returns the kind of the queried object.

ActiveX signature
Enum Kind()

C-language signature
enum FmcjXxxEnum FMC_APIENTRY FmcjXxxKind(FmcjXxxHandle handle)

Types of API calls

Chapter 13. Types of API calls 101

C++ language signature
FmcjXxx::Enum Kind() const

Java signature
public abstract Enum kind() throws FmcException

Parameters
handle Input. The handle of the object to be queried.

Return type
FmcjXxxEnum/Enum

The kind of the object; some element of an enumeration - see
also “Accessing an enumerated value” on page 111.

C-language Example: using basic functions

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjWorkitemVectorHandle wList = 0;
FmcjWorkitemHandle workitem1 = 0;
FmcjWorkitemHandle workitem2 = 0;
FmcjWorkitemHandle workitem3 = 0;

Figure 7. C example using basic functions (Part 1 of 8)

FmcjGlobalConnect();

/* logon */
FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_Reset

);

Figure 7. C example using basic functions (Part 2 of 8)

Types of API calls

102 Programming Guide

/* Query Workitems */
rc= FmcjExecutionServiceQueryWorkitems(service,

FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&wList);

printf("\nQuery workitems returns rc : %u\n", rc);
fflush(stdout);

Figure 7. C example using basic functions (Part 3 of 8)

if (rc == FMC_OK && FmcjWorkitemVectorSize(wList) >= 2)
{ /* access first element */

workitem1= FmcjWorkitemVectorFirstElement(wList);
if (FmcjWorkitemIsComplete(workitem1))

printf("Surprise - more than primary data available\n");
else

printf("Primary data of first workitem available\n");
fflush(stdout);

Figure 7. C example using basic functions (Part 4 of 8)

/* access next element */
workitem2= FmcjWorkitemVectorNextElement(wList) ;
if (FmcjWorkitemEqual(workitem1,workitem2))

printf("Surprise - workitems are equal\n");
else

printf("Workitems represent different objects\n");
fflush(stdout);

Figure 7. C example using basic functions (Part 5 of 8)

/* copy workitem */
FmcjWorkitemCopy(workitem1,&workitem3);
if (FmcjWorkitemEqual(workitem1,workitem3))

printf("Workitems represent same persistent object\n");
else

printf("Surprise - workitems are not equal\n");
fflush(stdout);

Figure 7. C example using basic functions (Part 6 of 8)

Types of API calls

Chapter 13. Types of API calls 103

C++ Example: using basic methods

/* cleanup */
FmcjWorkitemDeallocate(&workitem1);
FmcjWorkitemDeallocate(&workitem2);
FmcjWorkitemDeallocate(&workitem3);

}
FmcjWorkitemVectorDeallocate(&wList);

Figure 7. C example using basic functions (Part 7 of 8)

/* logoff */
FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

Figure 7. C example using basic functions (Part 8 of 8)

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{

FmcjGlobal::Connect();
// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");

Figure 8. C++ example using basic methods (Part 1 of 7)

FmcjWorkitem workitem1;
if (workitem1.IsEmpty())

cout << "Transient workitem object has been created" << endl;
else

cout << "Surprise - workitem contains actual data" << endl;

Figure 8. C++ example using basic methods (Part 2 of 7)

Types of API calls

104 Programming Guide

// Query Workitems
vector<FmcjWorkitem> wList;
rc= service.QueryWorkitems(FmcjNoFilter,

FmcjNoSortCriteria,
FmcjNoThreshold,
wList);

cout << "Query workitems returns rc : " << rc << endl ;

Figure 8. C++ example using basic methods (Part 3 of 7)

if (rc == FMC_OK && wList.size() >= 2)
{

workitem1= wList[0]; // assign first element
if (workitem1.IsComplete())

cout << "Surprise - more than primary data available" << endl;
else

cout << "Primary data of first workitem available" << endl;

Figure 8. C++ example using basic methods (Part 4 of 7)

FmcjWorkitem workitem2= wList[1]; // access next element
if (workitem1 == workitem2)

cout << "Surprise - workitems are equal" << endl;
else

cout << "Workitems represent different objects" << endl;

Figure 8. C++ example using basic methods (Part 5 of 7)

// copy workitem
FmcjWorkitem workitem3(workitem1);
if (workitem1 == workitem3)

cout << "Workitems represent same persistent object" << endl;
else

cout << "Surprise - workitems are not equal" << endl;
} // destructors called automatically

Figure 8. C++ example using basic methods (Part 6 of 7)

Types of API calls

Chapter 13. Types of API calls 105

Accessor/mutator API calls

Accessor/mutator API calls are provided so that properties of transient objects
can be read or changed. If the transient object represents a persistent one, then
the values that are returned reflect the state of the persistent object when it
was retrieved and used to set the transient object or when it was created or
updated. Retrieval is automatically done from an MQ Workflow server when
the property is accessed and not yet available in the API cache or explicitly
done by using the appropriate create, query, or refresh API calls. Creation or
update can be done on the client when the MQ Workflow server sends new
information (pushes information).

Default values are provided to you as long as the transient object is empty or
when the accessed property is optional and not set.

Default values are: an empty string or buffer for character-valued properties, 0
(zero) for integer-valued properties, false for boolean-valued properties, a
timestamp with all members set to 0 (zero) for time-valued properties,
"NotSet" for enumeration-valued properties, and an empty vector for
multi-valued properties.

A transient object just constructed in C++, ActiveX, or Java is called empty
because it does not yet reflect any persistent object. You can use the IsEmpty()
method to determine whether the transient object still contains the default
values only. Note that no action API call can be executed on an empty object.

Properties of a persistent object can be optional. This means that they can
carry a value or not. When a default value is returned to you, you can use the
IsNull() API call to determine whether that value is a value explicitly set or
whether that value actually denotes that no value has been set. For example,
when Threshold() returns 0 (zero), the threshold can have been set to zero,
that is, no object is returned to you, or the threshold cannot have been set to a
value, that is, all qualifying objects are returned to you. Java is able to return
null objects so that an IsNull() method is not needed.

// logoff
rc = service.Logoff();

FmcjGlobal::Disconnect();
return FMC_OK;

} // destructors called automatically

Figure 8. C++ example using basic methods (Part 7 of 7)

Types of API calls

106 Programming Guide

Data values are accessible as long as the transient objects exist, regardless of
the state of the persistent objects or of the current logon or logoff state. In
general, you decide about the lifetime of your transient objects.

Primary/secondary properties
By default, the MQ Workflow API provides for two views on persistent
objects. They divide the persistent object into so-called primary properties and
so-called secondary properties. Primary properties are considered “more
important” from an access point of view. They are immediately provided by
the server when objects are queried and can be used in filter expressions.
Secondary properties, and a refresh of the primary properties, are only
provided when the secondary property is accessed (the API automatically
refreshes the object when a property is queried and not yet available) or on an
explicit Refresh() request; on a per-object basis. You can use the IsComplete()
API call to determine whether both primary and secondary object values have
been read from the server.

This means for an API program that there is no general need to distinguish
between primary and secondary properties from an access point of view. You
might, however, want to consider that an object is automatically refreshed
when a not yet available property is read. Or, from a performance point of
view, you might want to prevent unnecessarily accessing properties not yet
available.

Return codes
Accessor/mutator API calls provide the value asked for as their return value.
Default values are returned when an error occurred during the execution of
the accessor API call. In the C++ or C-language, you can query the MQ
Workflow result object for any errors encountered. Java throws an
FmcException. The following codes can occur, the number in parentheses
shows their integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
default values are returned.

FMC_ERROR_BUFFER(800)
The buffer provided is too small to hold the largest possible
value. See file fmcmxcon.h for required lengths.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile; can be returned when the API automatically refreshes
the object.

Types of API calls

Chapter 13. Types of API calls 107

FMC_ERROR_DOES_NOT_EXIST(118)
The object does not or no longer exist. For example, the
message is not found in the message catalog.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative. Also, check the MQ Workflow trace for
any exceptions encountered.

FMC_ERROR_INVALID_CONFIGURATION_ID(1022)
The configuration provided is invalid; it is 0 or it does not
conform to its syntax rules.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_RESULT_HANDLE(814)
The handle of the result object provided is invalid; it is 0 or it
is not pointing to a result object.

FMC_ERROR_INVALID_TIME(802)
The time passed is invalid.

FMC_ERROR_MESSAGE_CATALOG(815)
The message catalog cannot be found.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error; can be returned when the
API automatically refreshes the object. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain; can be returned when
the API automatically refreshes the object.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call; can be returned when the
API automatically refreshes the object.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on; can be returned when the API automatically
refreshes the object.

FMC_ERROR_PROFILE(124)
The profile cannot be found or opened.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call cannot be called from within an activity
implementation, for example, SetConfiguration().

FMC_ERROR_TIMEOUT(14)
Timeout has occurred; can be returned when the API
automatically refreshes the object.

Types of API calls

108 Programming Guide

FMC_ERROR_WRONG_STATE(120)
The API call cannot be executed because the object is in a
wrong state. For example, the configuration cannot be
changed after logon.

Accessor API calls allow for the operations listed below; Xxx denotes some
class or scope and ″Property″ denotes the property queried. For example,
FmcjXxxProperty() can stand for FmcjItemDescription().

Accessing a value of type bool
Returns the value of a property of type bool. A default of false is returned if no
information is available.

ActiveX signature
boolean Property()

C-language signature
bool FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
bool Property() const

Java signature
public abstract boolean property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.

Return type
bool/ boolean The property value.

Declaration examples

ActiveX boolean ManualStartMode();

C-language bool FMC_APIENTRY FmcjWorkitemManualStartMode(
FmcjWorkitemHandle handle);

C++ bool ManualStartMode() const;

Types of API calls

Chapter 13. Types of API calls 109

Java public abstract boolean manualStartMode() throws
FmcException;

Accessing a value of type date/time
Returns the value of a date/time property. A zero timestamp is returned if no
information is available. Date/time values are expressed in local time.

ActiveX signature
void Property(DateAndTime * time)

C-language signature
FmcjCDateTime FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
FmcjDateTime Property() const

Java signature
public abstract Calendar property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.
time Input/Output. The date/time object to be set.

Return type
FmcjCDateTime/ FmcjDateTime/Calendar

The property value.

Declaration examples

ActiveX void EndTime(DateAndTime * time);

C-language FmcjCDateTime FMC_APIENTRY FmcjWorkitemEndTime(
FmcjWorkitemHandle handle);

C++ FmcjDateTime EndTime() const;

Java public abstract Calendar endTime() throws FmcException;

Types of API calls

110 Programming Guide

Accessing an enumerated value
Returns an enumerating value of a property. It is strongly advised to use the
symbolic names in order to determine the actual value instead of the
corresponding integer values. It is not guaranteed that integer values always
stay the same.

"NotSet" or a similar indicator is returned if no information is available.

Note: The Java language does not support enumeration types. For that
reason, enumerations are implemented by final classes with constants.

ActiveX signature
Enum Property()

C-language signature
enum FmcjXxxEnum FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
FmcjXxx::Enum Property() const

Java signature
public abstract Enum property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.

Return type
FmcjXxxEnum/Enum

The property value, some element of an enumeration.

Declaration examples

ActiveX AssignReason ReceivedAs();

C-language FmcjItemAssignReason FMC_APIENTRY
FmcjWorkitemReceivedAs(FmcjWorkitemHandle handle);

C++ FmcjItem::AssignReason ReceivedAs() const;

Types of API calls

Chapter 13. Types of API calls 111

Java public abstract AssignReason receivedAs() throws
FmcException;

Following enumeration types and constants are defined; types are listed in the
order ActiveX, C-language, C++, Java. Numbers in parantheses are the
corresponding integer values. You are stronlgy adviced to use the symbolic
names only.

Assign reason
This enumeration is named AssignReason in ActiveX, FmcjItemAssignReason
in the C-language, FmcjItem::AssignReason in C++ and
com.ibm.workflow.api.ItemPackage.AssignReason in Java. Possible values are:

NotSet(0) Indicates that nothing is known about the assign reason.

ActiveX AssignReason_NotSpecified

C-language Fmc_IR_NotSet

C++ FmcjItem::NotSpecified

Java AssignReason.NOT_SPECIFIED

Normal(1) Indicates that the work item or notification has been assigned
to the user because the user qualified to receive the item.

ActiveX AssignReason_Normal

C-language Fmc_IR_Normal

C++ FmcjItem::Normal

Java AssignReason.NORMAL

Substitute(2) Indicates that the work item or notification has been assigned
because the user is the substitute for the person who should
have received the item.

ActiveX AssignReason_Substitute

C-language Fmc_IR_Substitute

C++ FmcjItem::Substitute

Java AssignReason.Substitute

ProcessAdministrator(3)
Indicates that the work item or notification has been assigned
because the user is the process administrator.

ActiveX AssignReason_ProcessAdministrator

C-language Fmc_IR_ProcessAdministrator

C++ FmcjItem::ProcessAdministrator

Types of API calls

112 Programming Guide

Java AssignReason.PROCESS_ADMINISTRATOR

SystemAdministrator(4)
Indicates that the work item or notification has been assigned
because the user is the system administrator.

ActiveX AssignReason_SystemAdministrator

C-language Fmc_IR_SystemAdministrator

C++ FmcjItem::SystemAdministrator

Java AssignReason.SYSTEM_ADMINISTRATOR

ByTransfer(5) Indicates that the work item or notification has been
transferred to the user.

ActiveX AssignReason_ByTransfer

C-language Fmc_IR_ByTransfer

C++ FmcjItem::ByTransfer

Java AssignReason.BY_TRANSFER

Audit setting
This enumeration is named AuditSetting in ActiveX,
FmcjProcessTemplateAuditSetting in the C-language,
FmcjProcessTemplate::AuditSetting in C++ and
com.ibm.workflow.api.ProcessTemplatePackage.AuditSetting in Java. Possible
values are:

NotSet(0) Indicates that nothing is known about the audit setting.

ActiveX Audit_NotSet

C-language Fmc_TA_NotSet

C++ FmcjProcessTemplate::NotSet

Java AuditSetting.NOT_SET

NoAudit(1) Indicates that auditing is not to be performed.

ActiveX Audit_NoAudit

C-language Fmc_TA_NoAudit

C++ FmcjProcessTemplate::NoAudit

Java AuditSetting.NO_AUDIT

Condensed(2) Indicates that condensed auditing is to be performed.

ActiveX Audit_Condensed

C-language Fmc_TA_Condensed

Types of API calls

Chapter 13. Types of API calls 113

C++ FmcjProcessTemplate::Condensed

Java AuditSetting.CONDENSED

Full(3) Indicates that full auditing is to be performed.

ActiveX Audit_Full

C-language Fmc_TA_Full

C++ FmcjProcessTemplate::Full

Java AuditSetting.FULL

Filter(4) Indicates that fine-grained, filtered auditing is to be
performed.

ActiveX Audit_Filter

C-language Fmc_TA_Filter

C++ FmcjProcessTemplate::Filter

Java AuditSetting.FILTER

Activity instance escalation
This enumeration is named AIEscalation in ActiveX,
FmcjActivityInstanceEscalation in the C-language,
FmcjActivityInstance::Escalation in C++ and
com.ibm.workflow.api.ActivityInstancePackage.Escalation in Java. Possible
values are:

NotSet(0) Indicates that it is not known whether there is a notification
on the activity instance.

ActiveX AIEscalation_NotSpecified

C-language Fmc_AE_NotSet

C++ FmcjActivityInstance::NotSpecified

Java Escalation.NOT_SPECIFIED

NoNotification(1)
Indicates that no notification occurred so far on the activity
instance.

ActiveX AIEscalation_NoNotification

C-language Fmc_AE_NoNotification

C++ FmcjActivityInstance::NoNotification

Java Escalation.NO_NOTIFICATION

FirstNotification
Indicates that the first notification occurred.

Types of API calls

114 Programming Guide

ActiveX(4) AIEscalation_FirstNotification

C-language(4) Fmc_AE_FirstNotification

C++(4) FmcjActivityInstance::FirstNotification

Java(2) Escalation.FIRST_NOTIFICATION

SecondNotification
Indicates that the second notification occurred.

ActiveX(5) AIEscalation_SecondNotification

C-language(5) Fmc_AE_SecondNotification

C++(5) FmcjActivityInstance::SecondNotification

Java(3) Escalation.SECOND_NOTIFICATION

Activity instance state
This enumeration is named ActivityInstanceState in ActiveX,
FmcjActivityInstanceStateValue in the C-language, FmcjActivityInstance::state
in C++ and com.ibm.workflow.api.ActivityInstancePackage.ExecutionState in
Java. Possible values are:

NotSet(0) Indicates that nothing is known about the state of the activity
instance.

ActiveX AIState_Undefined

C-language Fmc_AS_NotSet

C++ FmcjActivityInstance::undefined

Java ExecutionState.UNDEFINED

Ready(1) Indicates that the activity instance is in the ready state.

ActiveX AIState_Ready

C-language Fmc_AS_Ready

C++ FmcjActivityInstance::ready

Java ExecutionState.READY

Running(2) Indicates that the activity instance is in the running state.

ActiveX AIState_Running

C-language Fmc_AS_Running

C++ FmcjActivityInstance::running

Java ExecutionState.RUNNING

Finished Indicates that the activity instance is in the finished state.

ActiveX(4) AIState_Finished

Types of API calls

Chapter 13. Types of API calls 115

C-language(4) Fmc_AS_Finished

C++(4) FmcjActivityInstance::finished

Java(3) ExecutionState.FINISHED

Terminated Indicates that the activity instance is in the terminated state.

ActiveX(8) AIState_Terminated

C-language(8) Fmc_AS_Terminated

C++(8) FmcjActivityInstance::terminated

Java(4) ExecutionState.TERMINATED

Suspended Indicates that the activity instance is in the suspended state.

ActiveX(16) AIState_Suspended

C-language(16)
Fmc_AS_Suspended

C++(16) FmcjActivityInstance::suspended

Java(5) ExecutionState.SUSPENDED

Inactive Indicates that the activity instance is still inactive.

ActiveX(32) AIState_Inactive

C-language(32)
Fmc_AS_Inactive

C++(32) FmcjActivityInstance::inactive

Java(6) ExecutionState.INACTIVE

CheckedOut Indicates that the activity instance has been checked out.

ActiveX(64) AIState_CheckedOut

C-language(64)
Fmc_AS_CheckedOut

C++(64) FmcjActivityInstance::checkedOut

Java(7) ExecutionState.CHECKED_OUT

InError Indicates that the activity instance has not been executed
successfully.

ActiveX(128) AIState_InError

C-language(128)
Fmc_AS_InError

C++(128) FmcjActivityInstance::inError

Types of API calls

116 Programming Guide

Java(8) ExecutionState.IN_ERROR

Executed Indicates that the activity instance has been executed.

ActiveX(256) AIState_Executed

C-language(256)
Fmc_AS_Executed

C++(256) FmcjActivityInstance::executed

Java(9) ExecutionState.EXECUTED

Planning Indicates that the activity instance is in the planning state.

ActiveX(512) AIState_Planning

C-language(512)
Fmc_AS_Planning

C++(512) FmcjActivityInstance::planning

Java(10) ExecutionState.PLANNING

ForceFinished Indicates that the activity instance is in the force-finished
state.

ActiveX(1024) AIState_ForceFinished

C-language(1024)
Fmc_AS_ForceFinished

C++(1024) FmcjActivityInstance::forceFinished

Java(11) ExecutionState.FORCE_FINISHED

Skipped Indicates that the activity instance has not been executed but
skipped.

ActiveX(2048) AIState_Skipped

C-language(2048)
Fmc_AS_Skipped

C++(2048) FmcjActivityInstance::skipped

Java(12) ExecutionState.SKIPPED

Deleted Indicates that the activity instance has been deleted.

ActiveX(4096) AIState_Deleted

C-language(4096)
Fmc_AS_Deleted

C++(4096) FmcjActivityInstance::deleted

Java(13) ExecutionState.DELETED

Types of API calls

Chapter 13. Types of API calls 117

Terminating Indicates that the activity instance is in the terminating state.

ActiveX(8192) AIState_Teminating

C-language(8192)
Fmc_AS_Terminating

C++(8192) FmcjActivityInstance::terminating

Java(14) ExecutionState.TERMINATING

Suspending Indicates that the activity instance is in the suspending state.

ActiveX(16384)
AIState_Suspending

C-language(16384)
Fmc_AS_Suspending

C++(16384) FmcjActivityInstance::suspending

Java(15) ExecutionState.SUSPENDING

Expired Indicates that the activity instance is in the expired state.

ActiveX(32768)
AIState_Expired

C-language(32768)
Fmc_AS_Expired

C++(32768) FmcjActivityInstance::expired

Java(16) ExecutionState.EXPIRED

Activity instance type
This enumeration is named ActivityInstanceType in ActiveX,
FmcjActivityInstanceType in the C-language, FmcjActivityInstance::Type in
C++ and com.ibm.workflow.api.ActivityInstancePackage.Type in Java. Possible
values are:

NotSet(0) Indicates that nothing is known about the type of the activity
instance.

ActiveX AIType_NotSet

C-language Fmc_AT_NotSet

C++ FmcjActivityInstance::NotSet

Java Type.NOT_SET

Process(1) Indicates that the activity instance is implemented by a
process.

ActiveX AIType_Process

Types of API calls

118 Programming Guide

C-language Fmc_AT_Process

C++ FmcjActivityInstance::Process

Java Type.PROCESS

Program(2) Indicates that the activity instance is implemented by a
program.

ActiveX AIType_Program

C-language Fmc_AT_Program

C++ FmcjActivityInstance::Program

Java Type.PROGRAM

Block Indicates that the activity instance is implemented by a block.

ActiveX(16) AIType_Block

C-language(16)
Fmc_AT_Block

C++(16) FmcjActivityInstance::Block

Java(3) Type.BLOCK

Connector state
This enumeration is named ConnectorState in ActiveX,
FmcjControlConnectorInstanceStateValue in the C-language,
FmcjControlConnectorInstance::state in C++ and
com.ibm.workflow.api.ControlConnectorInstancePackage.EvaluationState in
Java. Possible values are:

False(0) Indicates that evaluation of the control connector resulted in
False.

ActiveX ConnectorState_False

C-language Fmc_CS_False

C++ FmcjControlConnectorInstance::False

Java EvaluationState.IS_FALSE

True(1) Indicates that evaluation of the control connector resulted in
True.

ActiveX ConnectorState_True

C-language Fmc_CS_True

C++ FmcjControlConnectorInstance::True

Java EvaluationState.IS_TRUE

Types of API calls

Chapter 13. Types of API calls 119

NotEvaluated(2)
Indicates that the control connector has not yet been
evaluated.

ActiveX ConnectorState_NotEvaluated

C-language Fmc_CS_NotEvaluated

C++ FmcjControlConnectorInstance::NotEvaluated

Java EvaluationState.NOT_EVALUATED

NotSet(3) Indicates that nothing is known about the evaluation of the
control connector.

ActiveX ConnectorState_NotSet

C-language Fmc_CS_NotSet

C++ FmcjControlConnectorInstance::NotSet

Java EvaluationState.NOT_SET

Connector type
This enumeration is named ConnectorType in ActiveX,
FmcjControlConnectorInstanceType in the C-language,
FmcjControlConnectorInstance::Type in C++ and
com.ibm.workflow.api.ControlConnectorInstancePackage.Type in Java. Possible
values are:

NotSet(0) Indicates that nothing is known about the type of the control
connector instance.

ActiveX ConnectorType_Undefined

C-language Fmc_CT_NotSet

C++ FmcjControlConnectorInstance::Undefined

Java Type.UNDEFINED

Condition(1) Indicates that the control connector instance is a connector
which can have a transition condition.

ActiveX ConnectorType_Condition

C-language Fmc_CT_Condition

C++ FmcjControlConnectorInstance::Condition

Java Type.CONDITION

Otherwise(2) Indicates that the control connector instance is the “otherwise”
connector.

ActiveX ConnectorType_Otherwise

Types of API calls

120 Programming Guide

C-language Fmc_CT_Otherwise

C++ FmcjControlConnectorInstance::Otherwise

Java Type.OTHERWISE

Execution data kind
This enumeration is called FmcjExecutionDataKindEnum in the C-language
and FmcjExecutionData::KindEnum in C++. Possible values are:

NotSet(0) Indicates that nothing is known about the type of the
execution data.

ActiveX not applicable

C-language Fmc_DART_NotSet

C++ FmcjExecutionData::NotSet

Java not supported

Terminate(2) Indicates that receiving execution data can end.

ActiveX not applicable

C-language Fmc_DART_Terminate

C++ FmcjExecutionData::Terminate

Java not supported

ItemDeleted(1000)
Indicates that the execution data describes the deletion of a
work item or notification.

ActiveX not applicable

C-language Fmc_DART_ItemDeleted

C++ FmcjExecutionData::ItemDeleted

Java not supported

Workitem(1002)
Indicates that the execution data describes the creation or
update of a work item.

ActiveX not applicable

C-language Fmc_DART_Workitem

C++ FmcjExecutionData::Workitem

Java not supported

ActivityInstanceNotification(1003)
Indicates that the execution data describes the creation or
update of an activity instance notification.

Types of API calls

Chapter 13. Types of API calls 121

ActiveX not applicable

C-language Fmc_DART_ActivityInstanceNotification

C++ FmcjExecutionData::ActivityInstanceNotification

Java not supported

ProcessInstanceNotification(1004)
Indicates that the execution data describes the creation or
update of a process instance notification.

ActiveX not applicable

C-language Fmc_DART_ProcessInstanceNotification

C++ FmcjExecutionData::ProcessInstanceNotification

Java not supported

ExecuteInstanceResponse(1100)
Indicates that the execution data describes the answer to an
asynchronous request which asked for the creation and
execution of a process instance.

ActiveX not applicable

C-language Fmc_DART_ExecuteInstanceResponse

C++ FmcjExecutionData::ExecuteInstanceResponse

Java not supported

ExecuteProgramResponse(1101)
Indicates that the execution data describes the answer to an
asynchronous request which asked for the execution of a
program.

ActiveX not applicable

C-language Fmc_DART_ExecuteProgramResponse

C++ FmcjExecutionData::ExecuteProgramResponse

Java not supported

Execution mode
This enumeration is named ExeMode in ActiveX,
FmcjProgramTemplateExeMode in the C-language and
FmcjProgramTemplate::ExeMode in C++.

NotSet(0) Indicates that nothing is known about the execution mode.

ActiveX ExeMode_NotSet

C-language Fmc_GM_NotSet

Types of API calls

122 Programming Guide

C++ FmcjProgramTemplate::NotSet

Normal(1) Indicates that the program does not participate in global
transactions.

ActiveX ExeMode_Normal

C-language Fmc_GM_Normal

C++ FmcjProgramTemplate::Normal

Safe(2) Indicates that the program participates in global transactions.

ActiveX ExeMode_Safe

C-language Fmc_GM_Safe

C++ FmcjProgramTemplate::Safe

Execution user
This enumeration is named ExeUser in ActiveX,
FmcjProgramTemplateExeUser in the C-language and
FmcjProgramTemplate::ExeUser in C++. Possible values are:

NotSet(0) Indicates that nothing is known about the execution user.

ActiveX ExeUser_NotSet

C-language Fmc_GU_NotSet

C++ FmcjProgramTemplate::NotSpecified

Agent(1) Indicates that the program executes under the identifier of the
program execution agent.

ActiveX ExeUser_Agent

C-language Fmc_GU_Agent

C++ FmcjProgramTemplate::Agent

Starter(2) Indicates that the program executes under the user ID of the
starter of the program.

ActiveX ExeUser_Starter

C-language Fmc_GU_Starter

C++ FmcjProgramTemplate::Starter

EXE options style
This enumeration is named ExeOptionsStyle in ActiveX, FmcjExeOptionsStyle
in the C-language, FmcjExeOptions::Style in C++ and
com.ibm.workflow.api.ProgramDataPackage.Style in Java. Possible values are:

NotSet(0) Indicates that nothing is known about the style of the EXE.

Types of API calls

Chapter 13. Types of API calls 123

ActiveX EOStyle_NotSet

C-language Fmc_EO_NotSet

C++ FmcjExeOptions::NotSet

Java Style.NOT_SET

Visible(1) Indicates that the EXE should start visibly.

ActiveX EOStyle_Visible

C-language Fmc_EO_Visible

C++ FmcjExeOptions::Visible

Java Style.VISIBLE

Invisible(2) Indicates that the EXE should start invisibly.

ActiveX EOStyle_Invisible

C-language Fmc_EO_Invisible

C++ FmcjExeOptions::Invisible

Java Style.INVISIBLE

Minimized(3) Indicates that the EXE should start minimized.

ActiveX EOStyle_Minimized

C-language Fmc_EO_Minimized

C++ FmcjExeOptions::Minimized

Java Style.MINIMIZED

Maximized(4) Indicates that the EXE should start maximized.

ActiveX EOStyle_Maximized

C-language Fmc_EO_Maximized

C++ FmcjExeOptions::Maximized

Java Style.MAXIMIZED

External service options time period
This enumeration is named ExternalOptionsTimePeriod in ActiveX,
FmcjExternalOptionsTimePeriod in the C-language,
FmcjExternalOptions::TimePeriod in C++ and
com.ibm.workflow.api.ProgramDataPackage.TimePeriod in Java. Possible
values are:

NotSet(0) Indicates that nothing is known about an external service
timeout.

ActiveX TimePeriod_NotSet

Types of API calls

124 Programming Guide

C-language Fmc_EX_NotSet

C++ FmcjExternalOptions::NotSet

Java TimePeriod.NOT_SET

TimeInterval(1)
Indicates that the program execution agent should wait a
specified time interval for the answer of the started external
service.

ActiveX TimePeriod_TimeInterval

C-language Fmc_EX_TimeInterval

C++ FmcjExternalOptions::TimeInterval

Java TimePeriod.TIME_INTERVAL

Forever(2) Indicates that the program execution agent should wait
forever for the answer of the started external service, that is,
whatever time it takes.

ActiveX TimePeriod_Forever

C-language Fmc_EX_Forever

C++ FmcjExternalOptions::Forever

Java TimePeriod.FOREVER

Never(3) Indicates that the program execution agent should not wait
for an answer of the started external service.

ActiveX TimePeriod_Never

C-language Fmc_EX_Never

C++ FmcjExternalOptions::Never

Java TimePeriod.NEVER

Implementation data basis
This enumeration is called ImplementationDataBasis in ActiveX,
FmcjImplementationDataBasis in the C-language,
FmcjImplementationData::Basis in C++ and
com.ibm.workflow.api.ProgramDataPackage.Basis in Java. Possible values are:

NotSet(0) Indicates that nothing is known about the operating system
platform of the implementing program.

ActiveX Basis_NotSpecified

C-language Fmc_DP_NotSet

C++ FmcjImplementationData::NotSpecified

Types of API calls

Chapter 13. Types of API calls 125

Java Basis.NOT_SET

OS2(1) Indicates that the program is an OS/2 program.

ActiveX Basis_OS2

C-language Fmc_DP_OS2

C++ FmcjImplementationData::OS2

Java Basis.OS2

AIX(2) Indicates that the program is an AIX program.

ActiveX Basis_AIX

C-language Fmc_DP_AIX

C++ FmcjImplementationData::AIX

Java Basis.AIX

HPUX(3) Indicates that the program is an HP-UX program.

ActiveX Basis_HPUX

C-language Fmc_DP_HPUX

C++ FmcjImplementationData::HPUX

Java Basis.HPUX

Windows95(4) Indicates that the program is a Windows 95, Windows 98, or
Windows Me program.

ActiveX Basis_Windows95

C-language Fmc_DP_Windows95

C++ FmcjImplementationData::Windows95

Java Basis.WINDOWS_95

WindowsNT(5)
Indicates that the program is a Windows NT or Windows 2000
program.

ActiveX Basis_WindowsNT

C-language Fmc_DP_WindowsNT

C++ FmcjImplementationData::WindowsNT

Java Basis.WINDOWS_NT

OS/390(6) Indicates that the program is an OS/390 (R) program.

ActiveX Basis_OS390

C-language Fmc_DP_OS390

Types of API calls

126 Programming Guide

C++ FmcjImplementationData::OS390

Java Basis.OS390

Solaris(7) Indicates that the program is a Solaris program.

ActiveX Basis_Solaris

C-language Fmc_DP_Solaris

C++ FmcjImplementationData::Solaris

Java Basis.SOLARIS

Implementation data type
This enumeration is called ImplementationDataProgramType in ActiveX,
FmcjImplementationDataType in the C-language,
FmcjImplementationData::Type in C++ and
com.ibm.workflow.api.ProgramDataPackage.Type in Java. Possible values are:

NotSet(0) Indicates that nothing is known about the implementation.

ActiveX IOProgramType_NotSet

C-language Fmc_DT_NotSet

C++ FmcjImplementationData::NotSet

Java ImplementationData.NOT_SET

EXE(1) Indicates that the program is an executable.

ActiveX IOProgramType_EXE

C-language Fmc_DT_EXE

C++ FmcjImplementationData::EXE

Java ImplementationData.EXE

DLL(2) Indicates that the program is implemented by a dynamic link
library.

ActiveX IOProgramType_DLL

C-language Fmc_DT_DLL

C++ FmcjImplementationData::DLL

Java ImplementationData.DLL

External Indicates that the program is some external service.

ActiveX(4) IOProgramType_External

C-language(4) Fmc_DT_External

C++(4) FmcjImplementationData::External

Types of API calls

Chapter 13. Types of API calls 127

Java(3) ImplementationData.EXTERNAL

Item state
This enumeration is called State in ActiveX, FmcjItemStateValue in the
C-language, FmcjItem::state in C++ and
com.ibm.workflow.api.ItemPackage.ExecutionState in Java. Possible values are:

NotSet(0) Indicates that nothing is known about the state of the item.

ActiveX ItemState_Undefined

C-language Fmc_IS_NotSet

C++ FmcjItem::undefined

Java ExecutionState.UNDEFINED

Ready(1) Indicates that the item is in the ready state.

ActiveX ItemState_Ready

C-language Fmc_IS_Ready

C++ FmcjItem::ready

Java ExecutionState.READY

Running(2) Indicates that the item is in the running state.

ActiveX ItemState_Running

C-language Fmc_IS_Running

C++ FmcjItem::running

Java ExecutionState.RUNNING

Finished Indicates that the item is in the finished state.

ActiveX(4) ItemState_Finished

C-language(4) Fmc_IS_Finished

C++(4) FmcjItem::finished

Java(3) ExecutionState.FINISHED

Terminated Indicates that the item is in the terminated state.

ActiveX(8) ItemState_Terminated

C-language(8) Fmc_IS_Terminated

C++(8) FmcjItem::terminated

Java(4) ExecutionState.TERMINATED

Suspended Indicates that the item is in the suspended state.

ActiveX(16) ItemState_Suspended

Types of API calls

128 Programming Guide

C-language(16)
Fmc_IS_Suspended

C++(16) FmcjItem::suspended

Java(5) ExecutionState.SUSPENDED

Disabled Indicates that the item is disabled.

ActiveX(32) ItemState_Disabled

C-language(32)
Fmc_IS_Disabled

C++(32) FmcjItem::disabled

Java(6) ExecutionState.DISABLED

CheckedOut Indicates that the item is checked out.

ActiveX(64) ItemState_CheckedOut

C-language(64)
Fmc_IS_CheckedOut

C++(64) FmcjItem::checkedOut

Java(7) ExecutionState.CHECKED_OUT

InError Indicates that the item is in the InError state.

ActiveX(128) ItemState_InError

C-language(128)
Fmc_IS_InError

C++(128) FmcjItem::inError

Java(8) ExecutionState.IN_ERROR

Executed Indicates that the item has been executed.

ActiveX(256) ItemState_Executed

C-language(256)
Fmc_IS_Executed

C++(256) FmcjItem::Executed

Java(9) ExecutionState.EXECUTED

Planning Indicates that the item is in the planning state.

ActiveX(512) ItemState_Planning

C-language(512)
Fmc_IS_Planning

C++(512) FmcjItem::Planning

Types of API calls

Chapter 13. Types of API calls 129

Java(10) ExecutionState.PLANNING

ForceFinished Indicates that the item has been force-finished.

ActiveX(1024) ItemState_ForceFinished

C-language(1024)
Fmc_IS_ForceFinished

C++(1024) FmcjItem::ForceFinished

Java(11) ExecutionState.FORCE_FINISHED

Deleted Indicates that the item has been deleted.

ActiveX(4096) ItemState_Deleted

C-language(4096)
Fmc_IS_Deleted

C++(4096) FmcjItem::Deleted

Java(12) ExecutionState.DELETED

Terminating Indicates that the item is in the terminating state.

ActiveX(8192) ItemState_Terminating

C-language(8192)
Fmc_IS_Terminating

C++(8192) FmcjItem::Terminating

Java(13) ExecutionState.TERMINATING

Suspending Indicates that the item is in the suspending state.

ActiveX(16384)
ItemState_Suspending

C-language(16384)
Fmc_IS_Suspending

C++(16384) FmcjItem::Suspending

Java(14) ExecutionState.SUSPENDING

Expired Indicates that the item is in the expired state.

ActiveX(32768)
ItemState_Expired

C-language(32768)
Fmc_IS_Expired

C++(32768) FmcjItem::Expired

Java(15) ExecutionState.EXPIRED

Types of API calls

130 Programming Guide

Item type
This enumeration is called Kind in ActiveX, FmcjItemType in the C-language,
FmcjItem::ItemType in C++ and com.ibm.workflow.api.ItemPackage.ItemType
in Java. Possible values are:

NotSet(0) Indicates that nothing is known about the item type.

ActiveX Kind_Unknown

C-language Fmc_IT_NotSet

C++ FmcjItem::unknown

Java ItemType.UNKNOWN

Workitem(1) Indicates that the item is a work item.

ActiveX Kind_Workitem

C-language Fmc_IT_Workitem

C++ FmcjItem::Workitem

Java ItemType.WORK_ITEM

ProcessInstanceNotification
Indicates that the item is a process instance notification.

ActiveX(3) Kind_ProcessInstanceNotification

C-language(3) Fmc_IT_ProcessInstanceNotification

C++(3) FmcjItem::ProcessInstanceNotification

Java(2) ItemType.PROCESS_INSTANCE_NOTIFICATION

FirstActivityInstanceNotification
Indicates that the item is the first activity instance notification.

ActiveX(4) Kind_FirstActivityInstanceNotification

C-language(4) Fmc_IT_FirstActivityInstanceNotification

C++(4) FmcjItem::FirstActivityInstanceNotification

Java(3) ItemType.FIRST_ACTIVITY_INSTANCE_
NOTIFICATION

SecondActivityInstanceNotification
Indicates that the item is the second activity instance
notification.

ActiveX(5) Kind_SecondActivityInstanceNotification

C-language(5) Fmc_IT_SecondActivityInstanceNotification

C++(45) FmcjItem::SecondActivityInstanceNotification

Types of API calls

Chapter 13. Types of API calls 131

Java(4) ItemType.SECOND_ACTIVITY_INSTANCE_
NOTIFICATION

Persistent list type
This enumeration is named TypeOfList in ActiveX,
FmcjPersistentListTypeOfList in the C-language, FmcjPersistentList::TypeOfList
in C++ and com.ibm.workflow.api.PersistentListPackage.TypeOfList in Java.
Possible values are:

NotSet(0) Indicates that nothing is known about the list type.

ActiveX TypeOfList_NotSet

C-language Fmc_LT_NotSet

C++ FmcjPersistentList::NotSet

Java TypeOfList.NOT_SET

Public(1) Indicates that the list definition is for public usage.

ActiveX TypeOfList_Public

C-language Fmc_LT_Public

C++ FmcjPersistentList::Public

Java TypeOfList.PUBLIC

Private Indicates that the list definition is for private usage.

ActiveX(3) TypeOfList_Private

C-language(3) Fmc_LT_Private

C++(3) FmcjPersistentList::Private

Java(2) TypeOfList.PRIVATE

Process instance escalation
This enumeration is called PIEscalation in ActiveX,
FmcjProcessInstanceEscalation in the C-language,
FmcjProcessInstance::Escalation in C++ and
com.ibm.workflow.api.ProcessInstancePackage.Escalation in Java. Possible
values are:

NotSet(0) Indicates that it is not known whether there is a notification
on the process instance.

ActiveX PIEscalation_NotSet

C-language Fmc_PE_NotSet

C++ FmcjProcessInstance::NotSet

Java Escalation.NOT_SET

Types of API calls

132 Programming Guide

NoNotification(1)
Indicates that no notification occurred so far on the process
instance.

ActiveX PIEscalation_NoNotification

C-language Fmc_PE_NoNotification

C++ FmcjProcessInstance::NoNotification

Java Escalation.NO_NOTIFICATION

ProcessInstanceNotification
Indicates that a process instance notification occurred.

ActiveX(3) PIEscalation_ProcessNotification

C-language(3) Fmc_PE_ProcessNotification

C++(3) FmcjProcessInstance::ProcessNotification

Java(2) Escalation.PROCESS_NOTIFICATION

Process instance state
This enumeration is called ProcInstanceState in ActiveX,
FmcjProcessInstanceStateValue in the C-language, FmcjProcessInstance::state in
C++ and com.ibm.workflow.api.ProcessInstancePackage.ExecutionState in
Java. Possible values are:

NotSet(0) Indicates that nothing is known about the state of the process
instance.

ActiveX State_Undefined

C-language Fmc_PS_NotSet

C++ FmcjProcessInstance::undefined

Java ExecutionState.UNDEFINED

Ready(1) Indicates that the process instance is in the ready state.

ActiveX State_Ready

C-language Fmc_PS_Ready

C++ FmcjProcessInstance::ready

Java ExecutionState.READY

Running(2) Indicates that the process instance is in the running state.

ActiveX State_Running

C-language Fmc_PS_Running

C++ FmcjProcessInstance::running

Types of API calls

Chapter 13. Types of API calls 133

Java ExecutionState.RUNNING

Finished Indicates that the process instance is in the finished state.

ActiveX(4) State_Finished

C-language(4) Fmc_PS_Finished

C++(4) FmcjProcessInstance::finished

Java(3) ExecutionState.FINISHED

Terminated Indicates that the process instance is in the terminated state.

ActiveX(8) State_Terminated

C-language(8) Fmc_PS_Terminated

C++(8) FmcjProcessInstance::terminated

Java(4) ExecutionState.TERMINATED

Suspended Indicates that the process instance is in the suspended state.

ActiveX(16) State_Suspended

C-language(16)
Fmc_PS_Suspended

C++(16) FmcjProcessInstance::suspended

Java(5) ExecutionState.SUSPENDED

Terminating Indicates that the process instance is in the terminating state.

ActiveX(32) State_Terminating

C-language(32)
Fmc_PS_Terminating

C++(32) FmcjProcessInstance::terminating

Java(6) ExecutionState.TERMINATING

Suspending Indicates that the process instance is in the suspending state.

ActiveX(64) State_Suspending

C-language(64)
Fmc_PS_Suspending

C++(64) FmcjProcessInstance::suspending

Java(7) ExecutionState.SUSPENDING

Deleted Indicates that the process instance is in the deleted state.

ActiveX(128) State_Deleted

Types of API calls

134 Programming Guide

C-language(128)
Fmc_PS_Deleted

C++(128) FmcjProcessInstance::deleted

Java(8) ExecutionState.DELETED

Work item program retrieval
This enumeration is named WorkitemProgramRetrieval in ActiveX,
FmcjWorkitemProgramRetrieval in the C-language,
FmcjWorkitem::ProgramRetrieval in C++ and
com.ibm.workflow.api.WorkItemPackage.ProgramRetrieval in Java. Possible
values are:

NotSet(0) Indicates that nothing is said about which program definitions
to retrieve.

ActiveX WIProgramRetrieval_NotSet

C-language Fmc_WS_NotSet

C++ FmcjWorkitem::NotSet

Java ProgramRetrieval.NOT_SET

CommonDataOnly(1)
Indicates that the common parts of program definitions are to
be retrieved.

ActiveX WIProgramRetrieval_CommonDataOnly

C-language Fmc_WS_CommonDataOnly

C++ FmcjWorkitem::CommonDataOnly

Java ProgramRetrieval.COMMON_DATA_ONLY

SpecifiedDefinitions(2)
Indicates that the specified program definitions are to be
retrieved.

ActiveX WIProgramRetrieval_SpecifiedDefinitions

C-language Fmc_WS_SpecifiedDefinitions

C++ FmcjWorkitem::SpecifiedDefinitions

Java ProgramRetrieval.SPECIFIED_DEFINITIONS

AllDefinitions
Indicates that all program definitions are to be retrieved.

ActiveX(4) WIProgramRetrieval_AllDefinitions

C-language(4) Fmc_WS_AllDefinitions

C++(4) FmcjWorkitem::AllDefinitions

Types of API calls

Chapter 13. Types of API calls 135

Java(3) ProgramRetrieval.ALL_DEFINITIONS

Accessing a value of type integer
Returns the value of a property of type long, unsigned long, or int. Zero (0) is
returned if no information is available. In the Java language, an Integer object
is returned for optional integer values.

ActiveX signature
long Property()

C-language signature
long FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

unsigned long FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
long Property() const

unsigned long Property() const

Java signature
public abstract int property() throws FmcException

public abstract Integer property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.

Return type
long/unsigned long/int

The property value.

Declaration examples

ActiveX long Priority();

C-language unsigned long FMC_APIENTRY FmcjWorkitemPriority(
FmcjWorkitemHandle handle);

C++ unsigned long Priority() const;

Types of API calls

136 Programming Guide

Java public int priority() throws FmcException;

public java.lang.Integer threshold() throws FmcException;

Accessing a value of type string
Returns the value of a property of type string. An empty string or buffer is
returned if no information is available.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

ActiveX signature
BSTR Property()

C-language signature
char * FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle,

char * buffer,
unsigned long bufferLength)

C++ language signature
string Property() const

Java signature
public abstract String property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.
buffer Input/Output. A pointer to a buffer to contain the property

value.
bufferLength Input. The length of the buffer; must be big enough to hold

the largest possible value (see file fmcmxcon.h for the
minimum required lengths). You can use a single buffer for
retrieving all your character values.

Return type
BSTR/char*/string/String

The property value.

Types of API calls

Chapter 13. Types of API calls 137

Declaration examples

ActiveX BSTR Description();

C-language char* FMC_APIENTRY FmcjWorkitemDescription(
FmcjWorkitemHandle handle);

C++ string Description() const;

Java public abstract String Description() throws FmcException;

Accessing a multi-valued property
Returns the value of a multi-valued property by providing a collection of
values. The collection is represented as a vector in the C++ and C-language,
and as an array in ActiveX and Java. In C++, the collection object to be filled
has to be provided by the caller. Use the appropriate accessor API calls to
read a single value (refer to “C-language vectors” on page 35).

An unchanged vector or an empty array is returned if no information is
available.

Any already existing array elements are overwritten. Vector elements in C++
are, however, appended to the supplied vector. If you want to read the actual
values only, you have to erase all elements of the vector.

ActiveX signature
void Property(ValueTypeArray * value)

C-language signature
FmcjValueTypeVectorHandle
FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
void Property(vector<ValueType> & value) const

Java signature
public abstract ValueType[] property() throws FmcException

Parameters

Types of API calls

138 Programming Guide

handle
Input. The handle of the object to be queried.

value Input/Output. The vector or array to contain the values of the
property.

Return type
FmcjValueTypeVectorHandle/ValueType[]

The vector or array of values of the property.

Declaration examples

ActiveX void Staff(StringArray * staff);

C-language FmcjStringVectorHandle FMC_APIENTRY FmcjWorkitemStaff(
FmcjWorkitemHandle handle);

C++ void Staff(vector<string> & staff) const;

Java public abstract String[] staff() throws FmcException;

Accessing an object valued property
Returns the value of a property which is itself described by an object.

ActiveX signature
Object Property()

C-language signature
FmcjObjectHandle
FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
FmcjObject Property() const

Types of API calls

Chapter 13. Types of API calls 139

Java signature
public abstract Object property() throws FmcException

public abstract ExecutionService
locate(String systemGroup, String system) throws FmcException

public abstract
ExecutionAgent getExecutionAgent() throws FmcException

public
ReadOnlyContainer value() throws FmcException

Parameters
handle

Input. The handle of the object to be queried.
system

Input. The system where the execution server runs.
systemGroup

Input. The system group where the execution server runs.

Return type
ExecutionAgent

The program execution agent which provides for the context of an
activity implementation.

ExecutionService
The execution service which provides for the interface to the execution
server.

Object/Handle/FmcjObject
The property value.

ReadOnlyContainer
The read-only container described by the holder object.

Declaration examples

ActiveX fmcError ErrorReason();

C-language FmcjErrorHandle FMC_APIENTRY
FmcjWorkitemErrorReason(FmcjWorkitemHandle handle);

C++ FmcjError ErrorReason() const;

Java public abstract FmcError errorReason() throws FmcException;

Accessing a pointer valued property
Returns the value of a property which is a pointer to some object.

Types of API calls

140 Programming Guide

ActiveX signature
Object * Property()

C-language signature
FmcjObjectHandle
FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
FmcjObject * Property() const

Java signature
public abstract Object property() throws FmcException

Parameters
handle

Input. The handle of the object to be queried.

Return type
Object*/Handle/FmcjObject*

A pointer or handle to the object respectively the object itself.

Declaration examples

ActiveX Container * InContainer();

C-language FmcjReadOnlyContainerHandle FMC_APIENTRY
FmcjProgramDataInContainer(FmcjProgramDataHandle
handle);

FmcjProcessInstanceHandle FMC_APIENTRY
FmcjExecutionServicePersistentProcessInstance(
FmcjExecutionService service, char const * oid);

C++ FmcjReadOnlyContainer * InContainer() const;

FmcjProcessInstance * PersistentProcessInstance(string const
& oid) const;

Java public abstract ReadOnlyContainer inContainer() throws
FmcException;

Types of API calls

Chapter 13. Types of API calls 141

public abstract ProcessInstance persistentProcessInstance(
String oid) throws FmcException;

Determining whether an optional property is set
This API call states whether an optional property is set.

When the property is a secondary property and the object queried is not yet
completely read, it is unknown whether the property is set or not so that a
default value of true is returned.

Note: Java does not expose IsNull() methods since it is able to return null
objects.

ActiveX signature
boolean PropertyIsNull()

C-language signature
bool FMC_APIENTRY FmcjXxxPropertyIsNull(FmcjXxxHandle handle)

C++ language signature
bool PropertyIsNull() const

Parameters
handle Input. The handle of the object to be queried.

Return type
bool/boolean True if the property is not set, otherwise false.

Declaration examples

ActiveX boolean DescriptionIsNull();

C-language bool FMC_APIENTRY FmcjWorkitemDescriptionIsNull(
FmcjWorkitemHandle handle);

C++ bool DescriptionIsNull() const;

Setting a value of type integer
This API call sets the specified property to the specified value. In the Java
language, an Integer object is to be passed for optional integer values.

Types of API calls

142 Programming Guide

ActiveX signature
void SetProperty(long newValue)

C-language signature
void FMC_APIENTRY FmcjXxxSetProperty(FmcjXxxHandle handle,

long newValue);

C++ language signature
void SetProperty(long newValue);

Java signature
public abstract void setProperty(int newValue) throws FmcException

public abstract void setProperty(Integer newValue) throws FmcException

Parameters
handle Input. The handle of the object to be changed.
newValue Input. The new value of the property.

Declaration examples

ActiveX void SetTimeout(long newValue);

C-language void FMC_APIENTRY FmcjExecutionServiceSetTimeout(
FmcjExecutionServiceHandle handle, long newValue);

C++ void SetTimeout(long newValue) const;

Java public void SetTimeout(int newValue) throws FmcException;

public void setThreshold(Integer threshold) throws
FmcException;

An example is the FmcjService::SetTimeout API call which sets the timeout
value for requests issued by the client to an MQ Workflow server via this
FmcjService object. In other words, it sets the time the client is willing to wait
for an answer.

When set, the new timeout value is used for all API calls requiring
communication between the client and the server. It can be set (changed) as

Types of API calls

Chapter 13. Types of API calls 143

often as wanted. It is to be provided as milliseconds. A negative value is
interpreted as -1, that is, an indefinite timeout.

The default timeout value is taken from the user’s profile, from the
APITimeOut value; if not found, from the configuration profile. If it is also not
found there, the default is 180000 ms.

Note: It is possible that, even though FMC_ERROR_TIMEOUT is returned
when you issue a client-server call, the MQ Workflow server has
successfully processed the request. However, the server could not send
back FMC_OK because communication reported a timeout in the
meantime. If the request has not been processed, increase the value set
for the timeout and retry the call.

Setting a value of type string
This API call sets the specified property to the specified value.

ActiveX signature
long SetProperty(BSTR newValue)

C-language signature
APIRET FMC_APIENTRY FmcjXxxSetProperty(FmcjXxxHandle handle,

char const * newValue);

C++ language signature
APIRET SetProperty(string const & newValue);

Java signature
public abstract void setProperty(String newValue) throws FmcException

Parameters
handle Input. The handle of the object to be changed.
newValue Input. The new value of the property.

Declaration examples

ActiveX long SetSessionContext(BSTR userID, BSTR sessionID);

C-language

Types of API calls

144 Programming Guide

APIRET FMC_APIENTRY FmcjExecutionServiceSetSessionContext(
FmcjExecutionServiceHandle handle,
char const * userID,
char const * sessionID);

C++ APIRET SetSessionContext(string const & userID, string const
& sessionID);

Java public void setSessionContext(String userID, String sessionID
) throws FmcException;

Setting an object valued property
This API call sets the specified property to the specified object.

Java signature
public abstract void addProperty(Object value)

public abstract
void setContext(String args[], Properties properties)

public abstract
void setContext(Applet applet, Properties properties)

Parameters
applet Input. The applet which instantiated the agent. If IIOP is used

as communication protocol, providing this information is
necessary.

args Input. The command line arguments passed to the application
which instantiated the agent bean.

properties Input. The environmental properties passed to the application
or applet when it was instantiated.

value Input. The value of the property.

Declaration examples

Java public abstract void addPropertyChangeListener(
PropertyChangeListener value);

Updating an object
This API call updates the specified object with information sent from an MQ
Workflow server. The update information must have been provided for the
specified object.

The server pushes update information for work items - as long as they are not
disabled -, activity instance notifications, and process instance notifications.
The process setting of the associated process instance must specify

Types of API calls

Chapter 13. Types of API calls 145

REFRESH_POLICY PUSH for that process instance itself or as a process
default. Logon must have been performed with a present session mode.

C-language signature
APIRET FMC_APIENTRY FmcjXxxUpdate(FmcjXxxHandle handle,

FmcjExecutionDataHandle data);

C++ language signature
APIRET Update(FmcjExecutionData const & data);

Parameters
handle Input. The handle of the object to be updated.
data Input. The data which is to be used for the update.

Return codes

The C-language functions and the MQ Workflow result object can return the
following codes, the number in parentheses shows their integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, it
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_OID(805)
The execution data is no data to update the specified object; it
does not belong to the specified object.

FMC_ERROR_WRONG_KIND(501)
The execution data is no data to update the specified object; it
is no update data.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Types of API calls

146 Programming Guide

C-language example: accessing values

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjWorkitemHandle workitem = 0;
FmcjStringVectorHandle sList = 0;
char category[FMC_CATEGORY_NAME_LENGTH+1];
char generalBuffer[200];
unsigned long priority = 0;
int enumValue = 0;
FmcjCDateTime startTime;
unsigned long i = 0;

Figure 9. Accessing values in C (Part 1 of 9)

FmcjGlobalConnect();

Figure 9. Accessing values in C (Part 2 of 9)

/* logon */
FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_Reset

);

Figure 9. Accessing values in C (Part 3 of 9)

/* set the timeout for requests */
FmcjExecutionServiceSetTimeout(service, 60000);

Figure 9. Accessing values in C (Part 4 of 9)

Types of API calls

Chapter 13. Types of API calls 147

/* assumption: workitem has been queried from the server */
/* access a value of type bool */

if (FmcjWorkitemCategoryIsNull(workitem))
printf("Category is not set\n");

else /* access a value of type char */
{ /* use a buffer which fits */

FmcjWorkitemCategory(workitem, category, FMC_CATEGORY_NAME_LENGTH+1);
printf("Category : %s\n", category);

}

Figure 9. Accessing values in C (Part 5 of 9)

/* access a date/time value */
startTime= FmcjWorkitemStartTime(workitem);
printf("Start time : %s\n",

FmcjDateTimeAsString(&startTime, generalBuffer, 200));

Figure 9. Accessing values in C (Part 6 of 9)

/* access a value of type long */
priority = FmcjWorkitemPriority(workitem);
printf("Priority : %u\n", priority);

Figure 9. Accessing values in C (Part 7 of 9)

/* access an enumerated value */
enumValue= FmcjWorkitemReceivedAs(workitem);
if (enumValue == Fmc_IR_Normal)

printf("Received as: %s\n","qualified user");
...

/* access a multi-valued field */
sList= FmcjWorkitemSupportTools(workitem);
printf("Support tools: ");
for(i=0; i< FmcjStringVectorSize(sList); i++)
{ /* use a large buffer */

printf("%s ", FmcjStringVectorNextElement(sList, generalBuffer, 200));
}

Figure 9. Accessing values in C (Part 8 of 9)

Types of API calls

148 Programming Guide

C++ example: accessing values

/* logoff */
FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);
FmcjGlobalDisconnect();
return FMC_OK;

}

Figure 9. Accessing values in C (Part 9 of 9)

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{

FmcjGlobal::Connect();
// logon
FmcjExecutionService service; APIRET rc = service.Logon("USERID", "password");

// set the timeout for requests
service.SetTimeout(60000);

Figure 10. Accessing values in C++ (Part 1 of 6)

// assumption: workitem has been queried from the server
// access a value of type bool

if (workitem.CategoryIsNull())
cout << "Category is not set" << endl;

else // access a value of type char
{ // use a buffer which fits

cout << "Category : " << workitem.Category()<< endl;
}

Figure 10. Accessing values in C++ (Part 2 of 6)

// access a value of type date/time
cout << "Start time : " << workitem.StartTime()<< endl;

Figure 10. Accessing values in C++ (Part 3 of 6)

Types of API calls

Chapter 13. Types of API calls 149

Action API calls

Action API calls are client-server calls, involving communication with an MQ
Workflow server. As such, they require to be logged on.

Action API calls can be issued on service objects and on transient objects
representing persistent ones. These objects remember the context of a user
session so that a communication path to an MQ Workflow server can be
established. As a consequence, empty objects cannot be used in order to issue
action calls.

Action API calls are either synchronous requests waiting for the server’s reply,
asynchronous requests expecting the server’s reply at some other point in
time, or API calls receiving information from an MQ Workflow server.

All action API calls are described separately in “Part 7. API action and activity
implementation calls” on page 339. You can find examples in “Part 9.
Examples and scenarios” on page 753.

// access a value of type long
cout << "Priority : " << workitem.Priority()<< endl;

Figure 10. Accessing values in C++ (Part 4 of 6)

// access an enumerated value
FmcjItem::AssignReason reason= workitem.ReceivedAs();
cout << "Received as: " <<

((reason == FmcjItem::Normal) ? "normal user" : "...")
<< endl;

Figure 10. Accessing values in C++ (Part 5 of 6)

vector<string> tools; int j; // access a multi-valued field
workitem.SupportTools(tools);
cout << "Support tools: " ;
while (j < tools.size())

cout << tools[j++] << " ";
// logoff
rc = service.Logoff();
FmcjGlobal::Disconnect();
return FMC_OK;

} // destructors called automatically

Figure 10. Accessing values in C++ (Part 6 of 6)

Types of API calls

150 Programming Guide

Activity implementation API calls

An activity or support tool can be implemented by a program which uses the
MQ Workflow API. In this case, the activity implementation API calls provide
access to information like the program identification by which the running
program is known to the program execution agent or to the input and output
containers of the activity instance or work item or of the input container of
the support tool. They also allow the program implementing an activity to
return the updated output container to MQ Workflow so that navigation can
continue on the basis of those values.

A program implementing an activity or support tool is usually executed under
the control of an MQ Workflow program execution agent on request from
some MQ Workflow execution server. When an MQ Workflow execution
server receives a request to start a work item or support tool, it determines
the implementing program to be started and sends an appropriate request
together with the input and output containers, if needed, to the logged-on
user’s MQ Workflow program execution agent. Since containers are sent to the
program execution agent, input and output containers are requested from and
returned to an MQ Workflow program execution agent by the implementing
program. You do not have to create an execution service object and log on to
an MQ Workflow execution server to handle containers from within an
activity implementation or support tool.

However, if you want to access not only containers, for example, if you want
to query information about the process instance the work item is a part of,
you have to log on to the MQ Workflow execution server that requested to
start your program. You can use the Passthrough() API call of the execution
service to begin a session with the execution server from within the activity
implementation program. This way, you can use the environment of the work
item, that is, you do not need any other user ID, password, system group, or
system information.

An MQ Workflow program execution agent can run more than one program
at a time. When a container is requested, it determines the calling program
and provides the container sent by the server for this program’s usage.

If the activity implementation does not handle all work by itself but
distributes work by starting subprograms that run as separate operating
system processes, and when those subprograms request containers, then the
program execution agent cannot know the calling program. For that purpose,
the program calling the program execution agent must provide the program
identification of the actual activity implementation, that is, it must use the
remote container or passthrough calls. This requires that the activity
implementation has retrieved its program identification and passed it to the

Types of API calls

Chapter 13. Types of API calls 151

started program. Note that the program execution agent only provides the
program identification to trusted programs.

Accessing general information
As said, an activity implementation or support tool can retrieve the program
identification by which it is known to the program execution agent (class
name FmcjPEA or ExecutionAgent in Java). Furthermore, an activity
implementation or a program who knows the program identification can
query the user on whose behalf the activity implementation was started or the
persistent object identification of the associated activity instance.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

ActiveX signatures
BSTR ProgramID()

BSTR PersistentOidOfActivityInstance()
BSTR RemotePersistentOidOfActivityInstance(BSTR programID)

BSTR RemoteUserID(BSTR programID)
BSTR UserID()

C-language signatures
char * FMC_APIENTRY FmcjPEAProgramID(

char * buffer,
unsigned long bufferLength)

char * FMC_APIENTRY FmcjPEAPersistentOidOfActivityInstance(
char * buffer,
unsigned long bufferLength)

char * FMC_APIENTRY FmcjPEARemotePersistentOidOfActivityInstance(
char const * programID,
char * buffer,
unsigned long bufferLength)

char * FMC_APIENTRY FmcjPEAUserID(
char * buffer,
unsigned long bufferLength)

char * FMC_APIENTRY FmcjPEARemoteUserID(
char const * programID,
char * buffer,
unsigned long bufferLength)

Types of API calls

152 Programming Guide

C++ language signatures
static string ProgramID()

static string PersistentOidOfActivityInstance()
static string RemotePersistentOidOfActivityInstance(

string const & programID)

static string RemoteUserID(string const & programID)
static string UserID()

Java signatures
public abstract
String programID() throws FmcException

public abstract
String persistentOidOfActivityInstance() throws FmcException

public abstract
String remotePersistentOidOfActivityInstance(String programID)
throws FmcException

public abstract
String userID() throws FmcException

public abstract
String remoteUserID(String programID) throws FmcException

Parameters
buffer Input/Output. A pointer to a buffer to contain the value to be

retrieved.
bufferLength Input. The length of the buffer; must be big enough to hold

the largest possible value (see file fmcmxcon.h for the
minimum required lengths). You can use a single buffer for
retrieving all your character values.

programID Input. The program ID by which the activity implementation
is known to the program execution agent.

Return type
BSTR/char*/string/String

The value.

Return codes
FMC_OK(0) The API call completed successfully.

Types of API calls

Chapter 13. Types of API calls 153

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a buffer is expected, but 0 is passed.

FMC_ERROR_BUFFER(800)
The buffer provided is too small to hold the largest possible
value. See file fmcmxcon.h for required lengths.

FMC_ERROR_COMMUNICATION(13)
The program execution agent cannot be contacted.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative. Also, check the MQ Workflow trace for
any exceptions encountered.

FMC_ERROR_INVALID_PROGRAMID(135)
The specified program ID is invalid or unknown.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call is not called from within an activity
implementation or support tool.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call. For example, the activity
implementation is not trusted and thus cannot retrieve its
program ID.

FMC_ERROR_TOOL_FUNCTION(128)
The API call is not supported from within a support tool.

Dynamic link libraries
Beside being an Executable, the activity implementation or support tool
program can also be a dynamic link library (DLL) or shared library, named
DLL in the following discussion.

If it is a DLL, it can execute in fenced or non-fenced mode. If fenced, the DLL
is executed in an operating system process different from the program
execution agent process. If non-fenced, the DLL is executed in the program
execution agent’s own operating system process.

A DLL signature looks as follows; in C++ use the extern ″C″ construct:

C-language signature
int FMC_APIENTRY entryPoint(char const * arguments)

Parameters
arguments

Input. The arguments to be passed to the program.

Types of API calls

154 Programming Guide

In the FlowMark Version 2 compatibility mode, a DLL signature looks as
follows:

C-language signature
int FMC_APIENTRY entryPoint(char const * programID,

char const * arguments)

Parameters
programID

Input. The program ID (formerly called session ID) by which the
program is known to the program execution agent.

arguments
Input. The arguments to be passed to the program.

A DLL can also specify a DLL initialization and/or a DLL termination routine.
Immediately after the program execution agent loads a DLL, it calls the DLL
initialization entry point, if available. And immediately before the program
execution agent unloads a DLL, it calls the DLL termination entry point, if
available.

C-language Signature
void FmcDllInit()

C-language Signature
void FmcDllTerm()

For example, consider a non-fenced DLL which is kept loaded. Then
initialization could acquire resources which are held through the life time of
the DLL until they are freed by the termination routine. Examples of objects
you might want to acquire only once are sessions to resource managers or
open file handles.

See “Chapter 72. An activity implementation” on page 801 or the ″API
Programming Examples″ support pack for activity implementation examples.

Program execution management API calls

Program execution management API calls provide for the management of MQ
Workflow program execution agents. They allow for a user-associated
program execution agent to be started and to be stopped (shutdown).

Types of API calls

Chapter 13. Types of API calls 155

156 Programming Guide

Part 2. The C and C++ APIs

This part provides an overview of the concepts which are specific for the MQ
Workflow C-language and C++ APIs.

© Copyright IBM Corp. 1993, 2001 157

158 Programming Guide

Chapter 14. An MQ Workflow client application

An MQ Workflow C or C++ client application typically contains the following
parts (which may not be delimited this clearly, however):

To set up your program, you typically declare the program variables or
objects you are going to use and you include the MQ Workflow API header
files you need for your actions. When using the C++ API, definitions of bool,
string, and vector are needed. Include the respective files before the MQ
Workflow API headers.

You should then initialize the MQ Workflow API by calling the Connect() API
call so that resources held by the API are allocated correctly. Connect() - and
Disconnect() - are to be called at the begin respectively end of each thread.

You then need to allocate a service object which represents the server you are
going to ask services from. Once the service object is allocated, you can log
on. Logon establishes a session between the user logging on and the server
represented by your service object. All subsequent calls requiring client/server
communication run through this session.

After a successful logon, you can issue action or program execution
management API calls in order to query or manage MQ Workflow objects you
are authorized for.

© Copyright IBM Corp. 1993, 2001 159

At the end of your program, you log off in order to close the session to the
server and you deallocate any resources held by your program, especially the
service object.

As a last step, you disconnect from the MQ Workflow API so that resources
held by the API are deallocated correctly.

160 Programming Guide

Chapter 15. An MQ Workflow activity implementation or
support tool

An MQ Workflow C or C++ activity implementation or support tool
implementation typically contains the following parts.

To set up your program, you typically declare the program variables or
objects you are going to use and you include the MQ Workflow API header
files you need for your actions. When using the C++ API, definitions of bool,
string, and vector are needed. Include the respective files before the MQ
Workflow API headers.

You should then initialize the MQ Workflow API by calling the Connect() API
call so that resources held by the API are allocated correctly. Connect() - and
Disconnect() - are to be called at the begin respectively end of each thread.

An activity implementation can then retrieve the activity’s input and output
containers from the MQ Workflow program execution agent that started this
program. A support tool can retrieve the activity’s input container only.

Having access to the containers, you can read and set values according to
your programming logic.

© Copyright IBM Corp. 1993, 2001 161

At the end of your program, the activity implementation returns the final
output container to the MQ Workflow program execution agent. Any
resources held by your program are deallocated. The return value of your
program tells the program execution agent about the overall outcome of your
program.

The output container as well as the return code of your program are passed
back to the MQ Workflow server which requested the execution of the activity
implementation. The return code (_RC) can be used in exit or transition
conditions in order to guide MQ Workflow navigation. 5

As a last step, you disconnect from the MQ Workflow API so that resources
held by the API are deallocated correctly.

Your activity implementation can as well behave like a client application (see
“Chapter 14. An MQ Workflow client application” on page 159) and request
services from an MQ Workflow server, normally the server from where its
execution had been triggered. The Passthrough() API call is then used instead
of the Logon() API call in order to log on to the server which caused the
program execution with the user identification and authority known to the
server from the work item start request.

5. For compilers which do not support an exit code of an application, it is possible to set the _RC data member of the
output container.

162 Programming Guide

Chapter 16. Compiling and linking

All C++ and C-language programs developed for use with MQ Workflow
must include header files provided by MQ Workflow and link the
corresponding library files. These files have been installed on your system, if
you selected to install the MQ Workflow Development Kit. They are installed
by default:
v For AIX(R), the header files in the /usr/lpp/fmc/api directory; the shared

library files in the /usr/lpp/fmc/lib directory.
v For HP-UX, the header files in the /opt/fmc/api directory; the shared

library files in the /opt/fmc/lib directory. The shared libraries are linked to
/usr/lib.

v For Solaris, the header files in the /opt/fmc/api directory; the shared
library files in the /opt/fmc/lib directory. The shared libraries are linked to
/usr/lib.

v For the Windows platforms, in the \Program Files\MQSeries
Workflow\Api directory on your selected drive.

When using the MQ Workflow C++ API, definitions for bool, string, and
vector must be provided. If your compiler supports these definitions, use the
definitions of your compiler. Include the appropriate files before the MQ
Workflow C++ API headers. In case that your compiler does not support any
of these definitions, MQ Workflow delivers some files to be included in the stl
subdirectory of the API: bool.h which provides for the bool definition and
must be included first, fmcjstr.hxx which provides for the string definition, and
vector.h which provides for the vector definition. See “C++ prerequisite header
files” on page 165 which definitions must be included for the supported
compilers.

Note that bool.h and vector.h are part of the Standard Template Library
delivered with MQ Workflow and copyrighted6 by the Hewlett-Packard
Company. Documentation of this library is provided on the MQ Workflow
CD-ROM (non-390 version) in a file named STLDOC.PS. It is installed in the
stl subdirectory of the API.

6. Copyright (c) 1994

Hewlett-Packard Company

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation. Hewlett-Packard Company makes no
representations about the suitability of this software for any purpose. It is provided ″as is″ without express or
implied warranty.

© Copyright IBM Corp. 1993, 2001 163

Note: In the Windows environments, MQ Workflow interprets any input in
the ANSI code page.This means that there can be differences when MQ
Workflow tests for a printable character and, for example, when an
application uses a function like isprint() to test for a printable character.

The MQ Workflow features you use determine which header files to include
and the compilers you use which library files to link with. Depending on the
feature used, the following header files must be included:

Feature C-API Header C++ Header

Runtime client fmcjcrun.h fmcjprun.hxx
Runtime activity implementation:
- container access only fmcjccon.h fmcjpcon.hxx
- container and server access fmcjcrun.h fmcjprun.hxx
Runtime support tool
- container access only fmcjccon.h fmcjpcon.hxx
- container and server access fmcjcrun.h fmcjprun.hxx

The MQ Workflow dynamic link libraries have been split accordingly.
fmcjdcom contains common functionality and must always be linked
fmcjdcbr contains templates and persistent lists
fmcjdcon contains container functionality
fmcjdrun contains Runtime functionality only, that is, deals with process

instances, work items, notifications, and instance monitors

Such, the following libraries must be linked.

Feature fmcjdcom fmcjdcbr fmcjdcon fmcjdrun

Runtime client x x x x
Runtime activity implementation:
- container access only x x
- container and server access x x x x
Runtime support tool:
- container access only x x
- container and server access x x x x

All popular compilers can be used to compile and link your applications
accessing the C++ and C-language MQ Workflow APIs. Your compile and link
options must ensure that the MQ Workflow APIs are called with the calling
convention that is defined in the FMC_APIENTRY macro (see file fmcjcglo.h).
FMC_APIENTRY has been defined to the standard C calling convention and
should automatically be applied when you use the header files provided by
MQ Workflow. You must use the multi-threaded libraries.

164 Programming Guide

Access can be gained to C-language functions using calls from all languages
that support C calls. Access can be gained to the C++ API from all popular
C++ compilers since the C++ API is delivered as source code (inline methods).

Supported compilers

Supported in terms of maintenance are, however, only those compilers and
environments listed below.
v For AIX:

– IBM VisualAge C++ Professional for AIX, Version 5.0
– IBM C for AIX, Version 5.0

v For HP-UX, HP aC++ Compiler S700 Version A.01.15.01
v For Solaris:

– Sun WorkShop Compiler, Versions 4.2 and 5.0
– For C++ only, Kuck&Associates Inc. KAI C++ Version 3.3

v For the Windows platforms:
– IBM VisualAge for C++, Versions 3.5 and 4.0
– Microsoft Visual C++, Versions 5.0 and 6.0

C++ prerequisite header files

The following table indicates for the C++ API whether definitions for bool,
string, and vector are supplied by the supported compilers (compiler type or
compiler provided include) or whether the MQ Workflow provided
definitions have to be used:

Platform bool vector/string

AIX IBM VA 5.0 compiler type compiler include
HP-UX compiler type compiler include
Solaris 4.2 compiler type MQ Workflow
Solaris 5.0/KAI compiler type compiler include
Windows IBM VA 3.5 MQ Workflow MQ Workflow
Windows IBM VA 4.0 compiler type compiler include
Windows MSVC compiler type compiler include

Sample compile statements

Sample compile statements are:
v For AIX and IBM VisualAge C++ Professional for AIX 5.0:

xlC_r -o <executable> -I/usr/lpp/fmc/api -L/usr/lpp/fmc/lib
-l<MQ Workflow libs> <source file>

v For AIX and IBM C for AIX, Version 5.0:

Chapter 16. Compiling and linking 165

Compile your program:
xlc_r -c -O -I/usr/lpp/fmc/api <source file>

Link your program using the shell script linkxlC_r provided in /usr/lpp/fmc/api/Csupport:
linkxlC_r -o <executable> <object file> -L/usr/lpp/fmc/lib

-l<MQ Workflow libs> -L/usr/lpp/xlC/lib -lC_r

v For HP-UX:
aCC -D_THREAD_SAFE -DRWSTD_MULTI_THREAD -D_REENTRANT

-o <executable> -I /opt/fmc/api -l<MQ Workflow libs> <source file>

v For Solaris and the C-language:
cc -o <executable> -I /opt/fmc/api -l<MQ Workflow libs> <source file>

v For Solaris and the Sun Workshop C++ Compilers:
CC -mt -o <executable> -I /opt/fmc/api -l<MQ Workflow libs> <source file>

v For Solaris and the KAI C++ Compiler:
KCC --thread_safe

-o <executable> -I /opt/fmc/api -l<MQ Workflow libs> <source file>

v For the Windows platforms and Microsoft Visual C++ 5.0 or 6.0:
cl -MD <optional parameters> <source file>

v For the Windows platforms and IBM VisualAge for C++ 3.5:
icc /GM+ /Su4 <optional parameters> <source file>

v For the IBM VisualAge for C++ 4.0 compiler, care that the multi-thread
libraries are used and that an enum size of 4 bytes is specified.

166 Programming Guide

Chapter 17. Memory management

Workflow process models, their instances, and resulting work items are all
objects persistently stored in an MQ Workflow database. This means that they
exist independently from an application program.

When persistent objects are queried by an application program, they are
represented by transient objects which carry the states of the persistent objects
at the time of the query. When multiple queries are issued, there can be
multiple transient objects representing the same persistent object, even
representing different states of that object.

The lifetime of transient objects and their memory is fully managed by you,
because you know best when those objects are no longer needed, that is,
when objects are to be deallocated (C-language) or destructed (C++). Transient
objects are, however, no longer available when your application program
ends.

Some transient objects are explicitly allocated by you. These are supporting
objects, which do not reflect persistent ones. Examples are the
FmcjStringVector when you specify a set of persons to stand in for
(C-language) or the ExecutionService object, which allows services to be
requested from an execution server.

Transient objects, which do reflect persistent objects, are implicitly allocated by
you when you create or retrieve persistent objects, for example, by querying.

Although the life time of transient objects is fully managed by you, their
actual internal object structure is encapsulated by the MQ Workflow API. The
MQ Workflow API provides a handle (C-language) to you so that you can
issue requests against the object. In the C++ API, that handle is the only data
member of your class. Therefore, you are independent of internal changes. It
further allows MQ Workflow to lazy read a collection of objects passed from
the server and thus increases performance.

The MQ Workflow API follows the programming by contract concept. This
means that any handle passed to it which is not 0 (NULL) is assumed to be a
valid handle which can be used to access an object. This is especially
important to be considered for queries. Any nonzero vector handle is assumed
to point to an already existing vector of objects and is used in order to add
newly qualifying objects. In other words, you should initialize any new
handle to 0.

© Copyright IBM Corp. 1993, 2001 167

As all resource memory is finally owned by the application process itself, you
can access all objects from different threads within that process. MQ Workflow
does not hinder you from using threads; it is coded reentrantly. On the other
hand, MQ Workflow does not explicitly support threads. If you want to access
the same transient object from within different threads, you have to
synchronize the access on that object. Objects are not thread-safe.

168 Programming Guide

Chapter 18. The result object

In general, a result object states the result of the last MQ Workflow API
request (in the considered thread). It especially allows for analyzing an
erroneous situation in more detail and contains the following information:
v The return code.
v The origin of the result, that is, the file that caused the result to be written,

and the line and function where the error or the completion of the request
occurred.

v Parameters (up to five) which describe the objects involved.

The result can be retrieved as a formatted message text with all parameters
added to the text. The current locale is considered when building that
message text so that the message is provided in your selected language.

Although MQ Workflow does not explicitly support threads in that it
manages the synchronization of objects (you have to care for that), MQ
Workflow does not prohibit to use threads. That is why it provides for result
objects on a per thread basis.

All results of API calls are written into the result object associated with the
thread the request executes in. It is sufficient to access the result object just
once per-thread using the FmcjResultObjectOfCurrentThread() function
respectively the FmcjResult::ObjectOfCurrentThread() method. The result
object is automatically updated with each request.

A result object is automatically allocated by MQ Workflow when the first MQ
Workflow API call is issued in that thread. It can be accessed at any time and
as often as needed.

For example, in the C-language, you can access and use a result object in the
following way:

© Copyright IBM Corp. 1993, 2001 169

Note: The NextResultParmElement() function is used on the string vector so
that the result object is not changed while reading the parameters.

For example, in the C++ language, you can access and use a result object the
following way:

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

FmcjResultHandle result = 0;
FmcjStringVectorHandle parms = 0;
char buffer[2000]= "";

result= FmcjResultObjectOfCurrentThread();
printf("Accessed result object of current thread\n");

printf("Return code: %i\n", FmcjResultRc(result));
printf("Text : %s\n", FmcjResultMessageText(result,buffer,2000));
printf("Origin : %s\n", FmcjResultOrigin(result,buffer,2000));
parms= FmcjResultParameters(result);
while (0 != FmcjStringVectorNextResultParmElement(parms, buffer, 2000))

printf("Parameter : %s\n", buffer);

return 0;
}

Figure 11. Accessing a result object in the C-language

170 Programming Guide

Note: The transient C++ representation of your result object is destructed like
any other object. Each retrieval of the result object constructs a separate
representation.

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{

vector<string> parms;
FmcjResult *pResult = FmcjResult::ObjectOfCurrentThread();

cout << "Accessed result object of current thread" << endl;
cout << "Return code: " << pResult->Rc() << endl;
cout << "Text : " << pResult->MessageText() ;
cout << "Origin : " << pResult->Origin() << endl;
pResult->Parameters(parms);
cout << "Parameter : ";

for (int i=0; i<parms.size(); i++)
{

cout << parms[i] << " ";
}

cout << endl;

delete pResult; // cleanup object from heap
return 0;

}

Figure 12. Accessing a result object in C++

Chapter 18. The result object 171

172 Programming Guide

Part 3. ActiveX controls

This part provides for an overview on the MQ Workflow ActiveX controls.

© Copyright IBM Corp. 1993, 2001 173

ActiveX controls

174 Programming Guide

Chapter 19. Component overview

MQ Workflow delivers several ActiveX controls which can be used to write
client application programs or activity implementations and support tools.
Following controls are provided:
v IBM MQSeries Workflow Control 3.1
v IBM MQSeries ExecutionService Control 3.1
v IBM MQSeries ProcessTemplateList Control 3.1
v IBM MQSeries ProcessInstanceList Control 3.1
v IBM MQSeries Worklist Control 3.1
v IBM MQSeries ProcessMonitor Control 3.1
v IBM MQSeries Container Control 3.1

The ActiveX API is implemented on top of the C++ API and serves as an
access layer for the ActiveX controls to an execution server. The Workflow
Control and the Container Control are the OLE interface to the C++ API layer.
On top of the Workflow Control, you find all controls except the Container
Control. All controls except the Container Control contain a Design-time GUI
as well as a Runtime GUI. The Container control can be used by activity
implementations and support tools just accessing containers. Note that the
MQ Workflow Standard Runtime Client itself is implemented using the
provided ActiveX controls - see also “Part 9. Examples and scenarios” on
page 753.

© Copyright IBM Corp. 1993, 2001 175

Functional overview

The Workflow Control operates within a Visual Basic user application as
follows:
v The Visual Basic user application usually contains one (non-visual)

Workflow Control.
v The Workflow Control contains one ExecutionServiceArray.
v The ExecutionServiceArray can contain multiple ExecutionServices, and

each ExecutionService is connected to one MQ Workflow execution server.
v Each ExecutionService contains one array for each of the following list

types: ProcessTemplateList, ProcessInstanceList, and Worklist.
v Each of these arrays can contain multiple objects, that is, the WorklistArray

can contain multiple worklists, each of which can be connected to a
Worklist Control.

v You can have one or more (visual) ExecutionService Controls, connected to
the Workflow Control, showing specific information of available execution
services.

v You can have one or more (visual) controls, connected to the Workflow
Control, showing the objects of specific lists.

Workflow Control overview

The Workflow Control contains several unique objects. The objects are directly
maintained by the control. The ExecutionServiceArray object can create and
maintain any number of ExecutionService objects. Each ExecutionService
object handles a reference to an MQ Workflow execution server.

Each ExecutionService contains a ProcessTemplateListArray, a
ProcessInstanceListArray, and a WorklistArray. For each of the arrays there
are methods for adding, retrieving, and deleting array elements as well as
determining the number of entries in the array.

Furthermore, a StringArray object is maintained by the Workflow Control.
Objects maintained herein are to be used, for example, when support tools are
queried for a workitem as in Workitem::SupportTools or when a list of
Person IDs is queried as within Workitem::Staff.

There are also several enumeration types: AssignReason, Kind, or State. For
example, State contains entries that correspond to the current state of an item
(for example, Ready, Running, Disabled, or Suspended).

176 Programming Guide

How to work with an ExecutionService

To work with an ExecutionService object, your program must have access to
the WorkFlow Control OCX. In a Visual Basic programming environment this
is accomplished by imbedding the specific OCX into one of the available
forms. The Workflow Control allows you to access the ExecutionServiceArray.
By using the methods Add or AddDefault you can create a new
ExecutionService. You get access to the newly created ExecutionService object
via the GetAt method.

Having access to a new ExecutionService object you can issue all methods
provided by this object. There is no GUI involved in this process.

How to work with lists

To work with a list control, you must have created an ExecutionService object.
To access, for example, all worklists you are authorized to see, you must fill
the WorklistArray managed by the ExecutionService object. This is
accomplished by the calling the QueryWorklists() method. Having done this,
you must use the WorklistArray() method to get access to the object that
contains the Worklist objects. To get access to an individual worklist object
you can use the GetAt() method of the WorklistArray. All other lists are
handled in the same way. See “ActiveX arrays” on page 40 for detailed
information. There is no GUI involved in this process.

ProcessTemplateList Control overview

The ProcessTemplateList Control maintains the ProcessTemplate objects which
can be viewed through the particular list. You can fill the array by using the
QueryProcessTemplates() method of the ProcessTemplateList class. Using
GetSize(), you can obtain the number of items within the list and to work
with a particular ProcessTemplate object, you can use the GetAt() method.

ProcessInstanceList Control overview

The ProcessInstanceList Control maintains the ProcessInstance objects which
can be viewed through the particular list. You can fill the array by using the
QueryProcessInstances() method of the ProcessInstanceList class. Using
GetSize(), you can obtain the number of items within the list and to work
with a particular ProcessInstance object, you can use the GetAt() method.

Chapter 19. Component overview 177

Worklist Control overview

The Worklist Control maintains objects which can be viewed through the
particular list, namely work items, activity instance notifications, or process
instance notifications. It maintains an ActivityInstanceNotifArray, a
ProcessInstanceNotifArray, and a WorkitemArray.

The WorkitemArray object, for example, can create and maintain any number
of Workitem objects. There are methods for adding, retrieving, and deleting
array elements as well as determining the number of entries in the array.

Monitor Control overview

The Monitor Control represents the monitor for a process instance or an
activity instance. You can use the ObtainMonitor() methods in order to access
a monitor.

178 Programming Guide

Chapter 20. An MQ Workflow client application

An MQ Workflow ActiveX client application typically contains the following
parts, not necessarily divided that clearly.

To set up your program, your MQ Workflow Control must be on the
VisualBasic form. You then typically declare the program variables or objects
you are going to use.

You should then initialize the MQ Workflow API by calling the Connect()
method so that resources held by the API are allocated correctly. Connect()
and Disconnect() are to be called at the begin respectively end of each thread.

You then need to allocate a service object which represents the server you are
going to ask services from. You do this by adding the object to the execution
service array provided for that purpose. Once the service object is allocated,
you can log on. Logon establishes a session between the user logging on and
the server represented by your service object. All subsequent calls requiring
client/server communication run through this session.

After a successful logon, you can issue action or program execution
management methods in order to query or manage MQ Workflow objects you
are authorized for.

At the end of your program, you log off in order to close the session to the
server.

© Copyright IBM Corp. 1993, 2001 179

As a last step, you disconnect from the MQ Workflow API so that resources
held by the API are deallocated correctly.

180 Programming Guide

Chapter 21. An MQ Workflow activity implementation or
support tool

An MQ Workflow ActiveX activity implementation or support tool
implementation typically contains the following parts.

To set up your program, the Container Control must be on the VisualBasic
form. You then typically declare the program variables or objects you are
going to use.

You should then initialize the MQ Workflow API by calling the Connect()
method so that resources held by the API are allocated correctly. Connect() -
and Disconnect() - are to be called at the begin respectively end of each
thread.

An activity implementation can then retrieve the activity’s input and output
containers from the MQ Workflow program execution agent that started this
program. A support tool can retrieve the activity’s input container only.

Having access to the containers, you can read and set values according to
your programming logic.

At the end of your program, the activity implementation returns the final
output container to the MQ Workflow program execution agent. The _RC
value of your output container tells the execution server about the overall
outcome of your program.

© Copyright IBM Corp. 1993, 2001 181

The output container is passed back to the MQ Workflow server which
requested the execution of the activity implementation. The return code (_RC)
can be used in exit or transition conditions in order to guide MQ Workflow
navigation.

As a last step, you disconnect from the MQ Workflow API so that resources
held by the API are deallocated correctly.

Your activity implementation can as well behave like a client application (see
“Chapter 14. An MQ Workflow client application” on page 159) and request
services from an MQ Workflow server, normally the server from where its
execution had been triggered. The Passthrough() method is then used instead
of the Logon() method in order to log on to the server which caused the
program execution with the user identification and authority known to the
server from the work item start request.

182 Programming Guide

Part 4. The JAVA API

The MQ Workflow Java API consists of:
v A set of API classes that provide MQSeries Workflow API functionality to

Java based applications.
v An agent that connects an MQSeries Workflow domain to the Java world.

For a detailed overview of the Java API Classes and the Java CORBA Agent,
refer to the IBM MQSeries Workflow: Installation Guide.

© Copyright IBM Corp. 1993, 2001 183

Java interface

184 Programming Guide

Chapter 22. Threading considerations for the Java CORBA
Agent

The MQ Workflow C and C++ programming languages offer API calls
FmcjGlobalConnect()/FmcjGlobal::Connect() and
FmcjGlobalDisconnect()/FmcjGlobal::Disconnect() which are to be called
whenever the application starts or ends a thread. Framing a thread with these
calls guarantees that communication with the MQ Workflow execution server
can be handled properly by the API. There are, however, no such calls in the
MQ Workflow Java API.

Communication between the MQ Workflow APIs and the MQ Workflow
servers requires one MQSeries connection per thread. For performance
reasons, these connections are cached in the C-language layer of the MQ
Workflow API, which is part of the JNI code. MQSeries connections are
managed through handles which are owned by the thread that opened the
connection. That is, each thread has to acquire its own connection handle; it
cannot use the handles of other threads. When a thread ends, the connection
has to be closed for the MQSeries resources to be freed. If an application fails
to close the connections, MQSeries has built-in mechanisms to nevertheless
reclaim the resources after some time. But this mechanism is not always fast
enough to free the resources in time. There are even configurations where this
is not possible at all.

When the MQ Workflow Java API is used in thread-pooling environments (for
example, when it is running as an RMI-IIOP Agent or in a Servlet container),
not freeing resources can cause the MQSeries Listener to run out of resources
and you will receive error messages like ″Maximum number of channels
reached″ or ″Channel program terminated abnormally″. The problem
encountered here is that the thread pool is managed outside of MQ Workflow
(for example, by a Servlet or EJB container) and usually provides no hooks for
thread creation or thread destruction. The MQ Workflow APIs can detect if
they are invoked from a new worker thread. When the API is invoked from a
new worker thread, there is no connection handle and a new handle is
created. But there is no mechanism to get informed when a worker thread
ends.

Although it is possible to periodically check if the thread associated with a
connection handle ended, it is too late to issue a Disconnect() since MQSeries
connection handles are thread specific and the thread already ended. Also,
since none of the thread-pool owners maintains an affinity between a client

© Copyright IBM Corp. 1993, 2001 185

and a worker thread, offering the Connect() and Disconnect() methods in the
MQ Workflow Java API does not help to control communication from within
threads.

Running out of channels can be avoided by using the MQSeries server
interface (MQI) instead of the client interface (MQIC) in such configurations.
This setup allows MQSeries to reclaim its resources without the application
having to specifically call disconnect. Using MQI requires a local Queue
Manager to be configured on the same machine which is a so-called client
concentrator setup. The MQ Workflow Configuration automatically uses a
client concentrator setup for these types of configurations. Details about the
client concentrator setup can be found in the IBM MQSeries Workflow:
Installation Guide.

JNDI locator policy

The JNDI locator policy normally uses the built in ORB of the Java 2 runtime
environment. This ORB, as most other ORBs, manages a pool of worker
threads and offers no mechanisms to hook the thread control methods. Thus,
using the JNDI locator policy requires an MQSeries server installation and a
client concentrator setup on the machine where the Java CORBA Agent is
running. Details about the client concentrator setup can be found in the IBM
MQSeries Workflow: Installation Guide.

OSA, IOR, and COS locator policies

Note: Using the OSA, IOR, and COS locator policies is deprecated.

If you use the OSA, IOR, or COS locator policies, you can specify the number
of threads in the thread pool.

The Visibroker ORB uses a thread pool as the default threading policy when
accessing the Java CORBA Agent via one of the CORBA locator policies, that
is, via a Visibroker Smart Agent (OSA), an Interoperable Object Reference
(IOR), or a COS Naming Service (COS). To overcome running out of channels
you should set the maximum number of threads, OAthreadMax, and the
minimum number of threads, OAthreadMin, to the same value so that no
worker threads are dynamically created or ended depending on the workload.
This applies to all operating system platforms.

Note that this kind of setup may constantly require a lot of system resources.
It can also be challenging to determine the optimum number of threads to
handle the workload. Thus, the recommendation is to have a client
concentrator setup.

186 Programming Guide

To specify the number of threads opened, edit the Java CORBA Agent startup
script (batch file) for a specific configuration and add the following statements
to the end of the line containing ″com.ibm.workflow.agent.Main″:
-OAthreadMin xxx -OAthreadMax xxx where xxx denotes the number of threads

For example, on Windows NT for configuration TTT:
java -Xbootclasspath: ... -classpath ... com.ibm.workflow.agent.Main -yTTT

should be changed to
java -Xbootclasspath: ... -classpath ... com.ibm.workflow.agent.Main -yTTT

-OAthreadMin xxx -OAthreadMax xxx 7

For further details on the Visibroker ORB command line parameters see the
documentation that comes with the Visibroker for Java.

RMI locator policy

Using the RMI locator policy is adequate for applications that do not handle a
large number of concurrent users, like test and prototyping environments. The
RMI specification does not define a specific thread-dispatching policy so that
each RMI implementation shows different runtime characteristics.

For example, the standard implementation suffers from several shortcomings:
v There is no configurable upper limit on the number of server (agent)

threads to handle client requests. Thus the server (agent) could be
overwhelmed with requests and thereby exhaust its resources. Developing a
solution to this problem is difficult at best because RMI does not provide a
hook for implementing custom threading policies as it does for custom
sockets.

v Threads are not reused so that resources are wasted.

Note: Using the RMI locator policy is deprecated.

Microsoft JVM/Internet Explorer V4/V5 and RMI

Although Microsoft does not officially support RMI, a file named rmi.zip’ can
be found on Microsoft’s ftp site
(ftp://ftp.microsoft.com/developr/MSDN/UnSup-ed/rmi.zip). Note that
’UnSup-ed’ means ’unsupported’.

For Windows NT, this file must be extracted into the \Winnt\Java\Trustlib
directory, for Windows 95 or Windows 98 into \Windows\Java\Trustlib. Add
rmi.zip to the TrustedClasspath in the registry:

7. The line is split for printing purposes only.

Chapter 22. Threading considerations for the Java CORBA Agent 187

REGEDIT4 [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Java VM]
"TrustedClasspath"="c:\winnt\java\trustlib\rmi.zip;..."

188 Programming Guide

Chapter 23. An MQ Workflow client application

An MQ Workflow Java client application typically contains the following
parts, not necessarily divided that clearly.

To set up your program, you typically declare the program variables or
objects you are going to use and you import the MQ Workflow Java API
packages you need for your actions.

You then need to access a service object which represents the server you are
going to ask services from. You do this by locating it via an appropriate agent.
Once the service object is allocated, you can log on. Logon establishes a
session between the user logging on and the server represented by your
service object. All subsequent calls requiring client/server communication run
through this session.

After a successful logon, you can issue action or program execution
management methods in order to query or manage MQ Workflow objects you
are authorized for.

At the end of your program, you log off in order to close the session to the
server.

© Copyright IBM Corp. 1993, 2001 189

190 Programming Guide

Chapter 24. An MQ Workflow activity implementation

An MQ Workflow Java activity implementation or support tool
implementation typically contains the following parts.

To set up your program, you typically declare the program variables or
objects you are going to use and you import the MQ Workflow Java API
packages you need for your actions.

You then need to locate your execution agent object. You do this by allocating
and asking the appropriate agent.

An activity implementation can then retrieve the activity’s input and output
containers from the MQ Workflow program execution agent that started this
program. A support tool can retrieve the activity’s input container only.

Having access to the containers, you can read and set values according to
your programming logic.

At the end of your program, the activity implementation returns the final
output container to the MQ Workflow program execution agent. The return
value of your program or the _RC value in the output container tells the
program execution agent about the overall outcome of your program.

© Copyright IBM Corp. 1993, 2001 191

The output container is passed back to the MQ Workflow server which
requested the execution of the activity implementation. The return code (_RC)
can be used in exit or transition conditions in order to guide MQ Workflow
navigation.

Your activity implementation can as well behave like a client application (see
“Chapter 14. An MQ Workflow client application” on page 159) and request
services from an MQ Workflow server, normally the server from where its
execution had been triggered. The Passthrough() method is then used instead
of the Logon() method in order to log on to the server which caused the
program execution with the user identification and authority known to the
server from the work item start request.

Note: An activity implementation currently supports the LOC_LOCATOR
policy only.

Refer also to
<MQ Workflow installation directory>\smp\java\actimpl\ActImpl.java

for an example of an activity implementation in Java.

The Java High Performance Bridge

The Java High Performance Bridge serves to eliminate the overhead of
creating a new Java Virtual Machine (JVM) for each invocation of an activity
implementation written in Java. The Java High Performance Bridge
instantiates a JVM in the address space of a program execution agent which
can then be used for all invocations of Java-based activity implementations.

192 Programming Guide

Furthermore, Java classes providing the activity implementations are loaded
upon initial invocation and are cached thereafter. Consequently, subsequent
invocations reuse the already loaded class definitions reducing loading time
even further.

Similarly, static variables are cached along with the main methods of the
classes. This means that invoked services can maintain state between
invocations. This feature can, for example, be exploited by activity
implementations in order to cache resources which are frequently used but
expensive to obtain. For example, JDBC connections or EJB Home references
can be created once and then used by subsequent program executions.

The biggest performance gain using the Java High Performance Bridge can be
achieved in scenarios where multiple activity instances using the same activity
implementations are started over time.

Setup on Windows platforms
To use the Java High Performance Bridge on the Windows platforms, the
program settings of a Java-based implementation must be adapted.

Figure 13. Overview

Chapter 24. An MQ Workflow activity implementation 193

1. The Path and file name has to be set to fmcoxjvm.dll.
2. The Command line parameters have to specify the class name and the

arguments implementing the activity.

Note: The used class files must be stored in a location which is part of the
classpath that the PEA uses for the invocation of activity
implementations.

3. Implementation type must be PC DLL. The Entry Point is service.
4. To gain the benefits of the Java High Performance Bridge, the checkbox

Keep DLLs loaded must be checked. To be able to do so, you must first
uncheck the corresponding Inherited checkbox.

5. Further it must be ensured that the Dll is not run in fenced mode. This is
done by unchecking the Inherited checkbox and keeping the DLLs should be
executed in fenced mode checkbox unchecked.

The following example shows an FDL that describes an activity
implementation which uses the Java High Performance Bridge:
PROGRAM 'GetStartTimeJHPB' ('TimeContainer', 'TimeContainer')

WINNT DLL PATH_AND_FILENAME "fmcoxjvm.dll"
ENTRY_POINT "service"

Figure 14. Configuration of the Java High Performance Bridge for Windows

194 Programming Guide

PARAMETER "RecordTimeApplication StartTimeJHPB"
KEEP_LOADED
NO FENCED_MODE

END 'GetStartTimeJHPB'

Setup on UNIX
To use the Java High Performance Bridge on the AIX and Sun Solaris
platforms, the program settings of a Java-based implementation must be
adapted.

Note: HP-UX is not supported.

1. The Path and file name has to be set to libfmcoxjvm.so.
2. The Command line parameters have to specify the class name and the

arguments implementing the activity.

Note: The used class files must be stored in a location which is part of the
classpath that the PEA uses for the invocation of activity
implementations.

3. Implementation type must be Shared library. The Entry Point is service.

Figure 15. Configuration of the Java High Performance Bridge for Windows

Chapter 24. An MQ Workflow activity implementation 195

4. To gain the benefits of the Java High Performance Bridge, the checkbox
Keep Shared libraries loaded must be checked. To be able to do so, you must
first uncheck the corresponding Inherited checkbox.

5. Further it must be ensured that the Dll is not run in fenced mode. This is
done by unchecking the Inherited checkbox and keeping the Shared libraries
should be executed in fenced mode checkbox unchecked.

The following example shows an FDL that describes an activity
implementation which uses the Java High Performance Bridge:
PROGRAM 'GetStartTimeJHPB' ('TimeContainer', 'TimeContainer')

AIX DLL PATH_AND_FILENAME "libfmcoxjvm.so"
ENTRY_POINT "service"
PARAMETER "RecordTimeApplication StartTimeJHPB"
KEEP_LOADED
NO FENCED_MODE

END 'GetStartTimeJHPB'

Programming considerations

Maintaining state between invocations
The state of a service implemented as an activity callable by the Java High
Performance Bridge can be maintained by using static variables in the
implementation classes. Because static variables are cached with the main
methods, the values of these variables can be read by succeeding invocations.

Static variables can also be used for caching resources expensive to retrieve.
They must be created only once and remain cached for subsequent executions
of the same program.

Since the Java High Performance Bridge and thus the activity implementations
are running in unfenced mode, it is important to consider the following
aspects:

Program termination
Because running unfenced, a system exit call in the activity implementation
causes the program execution agent to exit. Instead of calling System.exit(rc),
you need to pass back the return code of your program as part of the output
container (_RC).

Threading considerations
Because the activity implementation is kept loaded, only one instance of the
appropriate class is instantiated for multiple invocations. All static variables
are kept loaded until the class is reloaded, for example, when the program
execution agent is restarted. To avoid inconsistencies due to concurrent
execution, the activity implementation needs to care for its thread-safeness.
This means that the activity implementations are to be coded reentrantly and
need to care for necessary synchronizations.

196 Programming Guide

Output to standard out
Programs generating output to standard out are not suitable for execution via
the Java High Performance Bridge. Each output generated is sent to the
program execution agent, which displays it in its own window. This
procedure is significantly slower than passing data to the window of a JVM.

Chapter 24. An MQ Workflow activity implementation 197

198 Programming Guide

Chapter 25. Compiling

All programs developed for use with the MQ Workflow Java API Classes
must import the packages provided by MQ Workflow. These files have been
installed on your system if you selected to install the MQ Workflow
Development Kit. They are installed by default in the \bin\java3300
subdirectory of the installation directory.

JDK 1.2.y (y=2 or higher) or JDK 1.3 can be used to compile and run your
applications accessing the MQ Workflow Java API. A sample compile
statement is:
javac <java file>.java

The CLASSPATH must include either fmcojagt.jar or fmcojapi.jar. Make sure
that only one of the jar files is included in the CLASSPATH since fmcojagt.jar
is a strict superset of fmcojapi.jar. fmcojapi.jar contains all client side stubs for
the JNDI, RMI, OSA, COS, and IOR locator policies. fmcojagt.jar additionally
contains the corresponding skeletons and the LOC locator policy.

JNDI locator policy

When using the JNDI locator policy, the naming context factory class and the
URL of the JNDI Naming Service have to be specified. The IBM MQSeries
Workflow: Installation Guide describes how these parameters are set on the
command line. Alternatively, the parameters can also be set in the application.
For example:
public static void main (String[] args)
{
...
Agent agent= new Agent();
Properties prop = System.getProperties();

prop.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.cosnaming.CNCtx.Factory") ;

prop.put(javax.naming.Context.PROVIDER_URL,
"iiop://<Hostname of JNDI Name Server>:<JNDI Name Server Ports"");

agent.setContext(args, prop);
agent.setLocator(Agent.JNDI_LOCATOR);
agent.setName("<AgentName>");
...
}

© Copyright IBM Corp. 1993, 2001 199

The previous example shows a COS Naming implementation of the JNDI
specification. Other JNDI service providers, for example, an LDAP server, can
require the specification of additional or different properties to perform a
lookup for objects.

200 Programming Guide

Chapter 26. How to use the MQ Workflow Java API from
within IBM VisualAge for Java

1. If you are using the Inprise VisiBroker for Java ORB, you need to create it
first:
v In the Workbench, add a project for the ORB, for example, “VisiBroker

ORB”.
v Import the files vbjorb.jar and vbjcosnm.jar into the newly created

project. You can ignore any problems concerning the package
’com.visigenic.vbroker.CORBA’.

2. Create a project for the MQ Workflow JAVA API, for example, “MQWF
Java API”, and import the file fmcojagt.jar into that project. If you did not
import the VisiBroker ORB first because you are using local, JNDI, or RMI
bindings, you will encounter several problems in the
com.ibm.workflow.corba package which you can ignore.
Note that importing the MQ Workflow Java API into VisualAge for Java is
necessary. It is not sufficient to enter fmcojagt.jar in the “Window” -
“Options...” - “Resources” - “Workspace class path:” field.

3. Create your actual project which will use the MQ Workflow Java APIs, for
example, ’MyProject’. Write your program as usual, for example, a class
HelloWorld which contains the public ’main’ method.

4. Before running your program, select ’Properties’ on your HelloWorld class.
Open the “Classpath” page and select “Project path”. Select “Edit”, then
select the “VisiBroker ORB”, if necessary, and “MQWF Java API” packages
to be included in your project classpath. Now you are ready to run your
application.

Running the MQ Workflow Java CORBA Agent inside the WebSphere Test
Environment

If you want to start the MQ Workflow Java CORBA Agent inside the
WebSphere Test Environment of Visual Age for Java, you have to perform the
following steps:
1. Install and configure the Java CORBA Agent as usual.
2. Create a project for the Java CORBA Agent as described above.
3. In the ″Projects″ tab, select your Java CORBA Agent project. Select the

package ″com.ibm.workflow.agent″ and then the class ″Main″. Right-click
on the ″Main″ class and select ″Properties″ from the context menu.

4. In the ″Program″ tab go to the ″Command line arguments″ field and enter
″-y <name of your configuration>. For example, ″-y FMC1″.

© Copyright IBM Corp. 1993, 2001 201

5. In the ″Class Path″ tab, click on the ″Edit″ button of the Project path and
select ″IBM WebSphere Test Environment″. If required by your application,
select additional projects. Click ″OK″ to continue.

6. Click on the ″Edit″ button of the Extra directories path. Click on the ″Add
Jar/Zip″ button and select the file ″fmcojagt.jar″ located in the directory
″<MQ Workflow installation directory>\bin\java330\″. Click on ″Open″
and then ″OK″ to continue.

7. Make sure that ″Save in repository (as default)″ is checked and click on
″OK″ to finish.

8. To start the Java CORBA Agent you have to start the WebSphere Test
Environment first. If you configured the Java CORBA Agent for the JNDI
locator policy, you also have to start the Persistent Name Server. Start the
Java CORBA Agent by right-clicking the class ″Main″ in the package
″com.ibm.workflow.agent″ and then clicking ″Run″ followed by ″Run
main″ in the context menu.

9. You can stop the Java CORBA Agent by selecting it and clicking
″Terminate″ in the WebSphere Test Environment Console.

202 Programming Guide

Chapter 27. Troubleshooting

As a general rule of thumb: Whenever you experience problems with the MQ
Workflow Java API:
v Turn off the JIT (Just in Time) compiler.
v Make sure you are using the most recent service level of the Java

Development Kit.
v Consult your JDK/JRE Application Server documentation for detailed

guidelines.

Following these recommendations is especially important when you
experience exceptions providing a stack trace. Stack traces can be inaccurate
when used with the JIT Compiler; the JIT Compiler may have optimized your
code in a way that method calls no longer appear in the stack trace. Therefore,
when you contact the MQ Workflow support team, provide only stack traces
with the JIT Compiler turned off.

© Copyright IBM Corp. 1993, 2001 203

204 Programming Guide

Chapter 28. Object management

Workflow process models, their instances, and resulting work items are all
objects persistently stored in an MQ Workflow database. This means that they
exist independently from an application program.

When persistent objects are queried by an application program, they are
represented by transient objects which carry the states of the persistent objects
at the time of the query. When multiple queries are issued, there can be
multiple transient objects representing the same persistent object, even
representing different states of that object.

The lifetime of transient objects is fully managed by you, because you know
best when those objects are no longer needed, that is, when objects are
unreferenced. Transient objects are, however, no longer available when your
application program ends.

Some transient objects are explicitly allocated by you. These are supporting
objects, which do not reflect persistent ones. An example is the Agent object,
which allows to obtain a reference to an ExecutionService object.

Transient objects, which do reflect persistent objects, are implicitly allocated by
you when you create or retrieve persistent objects, for example, by querying.

Although the life time of transient objects is fully managed by you, their
actual internal object structure is encapsulated by the MQ Workflow API.

As all resource memory is finally owned by the application process itself, you
can access all objects from different threads within that process. MQ Workflow
does not hinder you from using threads; it is coded reentrantly. On the other
hand, the MQ Workflow Java API explicitly supports threads for action
methods only. That is, all action methods are synchronized. Accessor methods
are not synchronized because they normally read values only. When, however,
the accessed value is not yet available in the API cache, the object is
automatically refreshed from the server so that you need to synchronize
parallel accesses on that object. Refer also to the discussions on
“Accessor/mutator API calls” on page 106 and “Chapter 12. Stateless server
support” on page 87.

© Copyright IBM Corp. 1993, 2001 205

Garbage Collection when using Java API classes

Garbage collection is normally running in the background without
intervention by the Java programmer. This is also true in a distributed Java
environment when objects communicate via the RMI transmission protocol.
However, for other protocols, like CORBA’s IIOP, provisions to remove
nonreferenced objects on the agent side have to be made. When CORBA is
used, then the memory management implicitly run by a Java Virtual Machine
does not synchronize object removal on a client and the agent. Agent-side
pendants of not referenced client objects are not automatically marked for
removal. The Object Request Broker (ORB) cannot determine if any client is
holding or not holding references to objects that it has registered (some ORBs,
in fact, can do that, however, they are using proprietary CORBA extensions to
achieve this). Agent-side pendants of client objects registered with an ORB by
using a connect method have to be disconnected explicitly. When using MQ
Workflow Java API classes, the user is provided with a build-in garbage
collection mechanism, the MQ Workflow Java API Classes Reaper, that does
housekeeping when the transmission of data is done by a CORBA Object
Request Broker (ORB). Before starting the MQ Workflow Java API CORBA
Agent a set of parameters controlling the reaper have to be set. These control
parameters are:
v The reaper cycle time value, defined in milliseconds, is valid for both the

client’s reaper and the server’s reaper. Default value is 300000 msec.
v The reaper threshold value is set to determine a maximum count for

accumulated objects that are no longer referenced. The threshold takes
precedence over the cycle time. Default value is 1000.

v The reaper ratio defines the relation between cycle times of both, client side
reaper and server side reaper. The ratio is used as a multiplier for the
server’s reaper cycle, to calculate the cycle time for the client’s reaper. The
default value is 90, that means in fact 90% of the server’s reaper cycle time.
This ensures that the client side reaper actions always precede the server’s
side reaper actions.

The parameters are initially set at configuration time.

206 Programming Guide

Part 5. The XML message interface

The following chapters provide a description of the MQ Workflow XML
message-based interface. It explains the format of a message and how XML
can be used:
v Sending requests to MQ Workflow

An action can be started on an MQ Workflow server by sending a message
to the MQ Workflow XML input queue.
This allows any application that supports the MQ Workflow XML message
format to request an action from MQ Workflow.

v Invoking an activity implementation
An activity implementation is invoked by MQ Workflow by sending an
appropriate message to a user-defined MQSeries queue.
This allows you to start any application listening on an MQSeries queue.
The queue can be input to any MQSeries application that can handle XML
messages. This can be your own in-house application, or a standard
program, such as MQSeries Integrator V2.

© Copyright IBM Corp. 1993, 2001 207

XML interface

208 Programming Guide

Chapter 29. The MQ Workflow XML message

MQ Workflow uses MQSeries to exchange messages. An MQSeries message
consists of two parts:
1. The MQSeries message descriptor (MQMD), which contains structured

data describing the message
2. The application data, which contains the MQ Workflow XML message

itself

For more information about the MQMD, the application data, and how to
send and receive messages in an MQSeries network, refer to the IBM
MQSeries Application Programming Guide, chapter “MQSeries messages”.

Relevant MQSeries Message Descriptor (MQMD) fields

The following fields of the MQSeries message descriptor are used by MQ
Workflow:
v UserIdentifier

The user who sent the message. For request messages sent to MQ Workflow
this information is used as the MQ Workflow user on whose behalf the
request is performed. Also, authorization checks are performed using this
user ID. For invoke messages sent by MQ Workflow this field contains the
user on whose behalf the activity implementation is to be started.

v Format
A fixed string indicating that this message contains an MQ Workflow XML
message. Its value is defined by the MQSeries constant MQFMT_STRING
(MQSTR). For compatibility reasons, the format FMCXML is also supported;
its usage is, however, deprecated.

v ReplyToQ/ReplyToQMgr
Specifies the queue and queue manager the response should be sent to.

v Persistence
Specifies whether the message is persistent or transient. For requests sent to
MQ Workflow, the MQ Workflow response has the same persistence as the

© Copyright IBM Corp. 1993, 2001 209

request. XML requests sent by MQ Workflow are persistent and responses
sent by invoked activity implementations should also be persistent.

v Expiry
Can be set to a period of time expressed in tenths of a second for transient
messages; should be set to unlimited (MQEI_UNLIMITED) for persistent
messages. For requests sent to MQ Workflow, the expiry of the MQ
Workflow response is set to the expiration value in the request minus the
time spent on execution. XML requests sent by MQ Workflow have an
unlimited expiration time.

v CorrelID
Data that can be used to relate a response message to a request message.
For requests sent to MQ Workflow, the MQ Workflow response contains the
same correlation ID as the request. XML requests sent by MQ Workflow
contain a correlation ID and responses sent by an application should return
that correlation ID.

v BackoutCount
A count of the number of times the message has been returned to the input
queue because the transaction failed and was rolled back. In other words,
the backout count denotes the number of times processing of the message
was not successful.

For detailed information, refer to the IBM MQSeries Application Programming
Guide, chapter “MQSeries Messages”.

The application data

MQ Workflow uses the XML 1.0 standard for message description. Refer to
http://www.w3.org/TR/REC-xml for the XML Reference.

In general, an MQ Workflow XML message contains the following
information:
v An MQ Workflow XML message header, that is, information that is

common for all messages, for example, the user context
v An MQ Workflow message name which specifies the request or response

contained in the message, for example, a ″ProcessTemplateExecute″ request
v The parameters that are needed to execute the request or to analyze the

response, for example, an input container

When processing an MQ Workflow XML message, MQ Workflow checks if the
message has the correct format - see “Chapter 32. Error Handling” on
page 227.

210 Programming Guide

The MQ Workflow XML message header
The MQ Workflow XML message header contains the following information:
v If a response should be sent.

With a message-based interface, both synchronous and asynchronous
request/response scenarios can occur. That is why the creation of a
response to a given request is made optional. However, even if responses
are generally not desired, an exceptional response to report an error can still
be required. Such options are provided to request:
– No (″No″)
– Only error (″IfError″)
– All (″Yes″)

responses which are sent to the reply queue specified in the MQMD of the
request message. If ResponseRequired is not set, then the default value
assumed by MQ Workflow for requests is ″Yes″, while the default value for
responses is ″No″.

v The user context
In this field, you can specify up to 254 bytes of context data that can be
used for correlating a request and a response. The user context data
specified in a request to MQ Workflow is returned in the associated
response.
Therefore, the necessity to keep state information in the component sending
the message is avoided. For example, when a message is routed through an
intermediary like MQSeries Integrator V2, it can be desirable to route the
response back through the intermediary, which then in turn will send the
message back to the original requester. The user context data can contain
information in order to keep the original requester, or even an entire route,
without requiring the intermediary to maintain state information.

Container data
For a general introduction on containers refer to “Chapter 9. Handling
containers” on page 45. The following example shows a container of type
CreditData containing three container elements of a basic type, Amount of basic
type LONG and Currency and Risk of basic type STRING, and a nested
container element Customer of type CustomerData. CustomerData contains a
container element Name of basic type STRING and an array Account with two
elements of basic type LONG.
<CreditData>

<Customer>
<Name>User1</Name>
<Account>4711</Account>
<Account>1100</Account>

</Customer>

Chapter 29. The MQ Workflow XML message 211

<Amount>100000</Amount>
<Currency>CurrencyX</Currency>
<Risk>high</Risk>

</CreditData>

The following rules apply to containers in the message-based interface:
v A container, actually the user-defined part of the container without the

pre-defined data members, is identified by its type, that is, the name of the
associated data structure. In other words, the name of the XML element
describing the container is the name of the data structure specifying the
type of the container; CreditData in the example above.

v Container elements are specified by their name; their type is not part of the
XML message.

v Container elements can be of a basic type or denote another data structure
as their type. Basic container elements are mapped to PCDATA elements,
while container elements of a non-basic type are decomposed into XML
subelements according to their structure.

v The structure of XML elements representing a container or container
element of a non-basic type reflects the structure of the associated data
structure. Therefore, data member names are not prefixed; there is no
dotted name representation.
Note that the context-free nature of XML does not allow for data structures
having the same names as data members. Also, two data members with the
same name must be of the same type even if they are contained in different
data structures. When the MQ Workflow Buildtime Verification encounters
one of these situations, it issues a warning.

v XML tags must not contain blanks. It follows that data structure, and data
member names must not contain blanks. If such a name containing blanks
is to be referred to in an XML message, then the name without blanks is to
be used. For example, the ″Default Data Structure″ is to be referred to as
<DefaultDataStructure>.

Note: Ambiguities arise when a model contains data structures with names
differing only by blanks. The data modeler has to prevent that
situation.

v Data structure and data member names must not contain reserved XML
characters as there are ’<’, ’>’, and ’/’. If such a name is used in an XML
message, the generated XML is not well formed and cannot be parsed.

v The specification of container elements (data structure members) in the
XML message is optional. If a data member is not specified in the XML
message, MQ Workflow sets its value to Null (not set).

Data type encoding rules:

v The values of container elements of basic types STRING, LONG, and
FLOAT can be coded directly.

212 Programming Guide

v For boolean parameters, values ″false″ and ″true″ (case insensitive) should
be used. Values 0 and 1 are also supported.

v Binary data has to be encoded into its printable version. MQ Workflow uses
base64 encoding to represent binary data in XML messages. Note that this
encoding preserves length information. Refer to http://www.cis.ohio-
state.edu/htbin/rfc/rfc2045.html for base64 encoding rules.

v Leading blanks, trailing blanks, new line characters, and tab characters are
removed from values of LONG, FLOAT, and boolean types. Such characters
are allowed to support you in formatting your XML message. They are,
however, not removed from values of types STRING or BINARY so that the
value specified remains unchanged.

Representation of arrays:

v Arrays are specified as a sequence of elements.
v Since arrays are to be specified as a sequence of elements, arrays with one

element only are not supported because they cannot be distinguished from
non-array elements.

v The <null/> element can be used to specify that an array element is Null
(not set). For example, anticipate a container of type Error. Error contains an
ID and three reason codes (an array of reason codes). Assumed that the
second reason code is not set, this can be specified as:
<Error>

<ID>111</ID>
<ReasonCode>12</ReasonCode>
<ReasonCode><null/></ReasonCode>
<ReasonCode>5050</ReasonCode>

</Error>

Pre-defined data members:

v Pre-defined data members are specified in the same way as user-defined
data members. They are to be defined right after the XML container
element, for example, after <ProcInstInputData>. Again, they have to be
decomposed according to their data structure. For example:
<_ACTIVITY_INFO>

<Priority>1</Priority>
</_ACTIVITY_INFO>

Execute process instance example
The following example shows an XML message that requests the execution of
a process instance:
<?xml version="1.0" standalone="yes"?>
<WfMessage>

<WfMessageHeader>
<ResponseRequired>Yes</ResponseRequired>
<UserContext>This data is sent back in the response</UserContext>

</WfMessageHeader>
<ProcessTemplateExecute>

<ProcTemplName>OnlineCreditRequest</ProcTemplName>

Chapter 29. The MQ Workflow XML message 213

<ProcInstName>Credit_Request#658321</ProcInstName>
<KeepName>true</KeepName>
<ProcInstInputData>

<_ACTIVITY_INFO>
<Priority>1</Priority>

</_ACTIVITY_INFO>
<CreditData>

<Customer>
<Name>User1</Name>
<Account>4711</Account>
<Account>1100</Account>

</Customer>
<Amount>100000</Amount>
<Currency>CurrencyX</Currency>
<Risk>high<Risk>

</CreditData>
</ProcInstInputData>

</ProcessTemplateExecute>
</WfMessage

Code page support

XML allows for the specification of messages in Unicode, as well as in
ISO-defined character sets. XML messages sent to MQ Workflow are
converted from their format as specified in the encoding keyword to the MQ
Workflow code page as necessary. XML messages sent by MQ Workflow
(responses and activity implementation invocation requests) are always
encoded in UTF-8.

Refer to the readme.1st, chapter “XML code page support”, for a list of code
pages supported by the MQ Workflow XML parser.

214 Programming Guide

Chapter 30. Sending requests to MQ Workflow

The MQ Workflow message-based interface can be used to request services
from MQ Workflow. This is depicted in the following figure:

1. An application creates an MQ Workflow XML message and puts it into the
MQ Workflow XML input queue.

2. MQ Workflow reads the XML message out of the XML input queue and
processes the request.

3. MQ Workflow creates a response MQ Workflow XML message and puts it
into the reply queue. Note that the reply queue information is part of the
MQSeries Message Descriptor (MQMD) of the incoming XML message.
For more information about the MQMD, the application data, and how to
send and receive messages in an MQSeries network, refer to the IBM
MQSeries Application Programming Guide, chapter “MQSeries messages”.

4. The application reads the incoming message and processes the response.

Supported functions

The following requests are supported by the XML message interface:
v “CreateAndStartInstance()” on page 571.
v “ExecuteProcessInstance()” on page 585.

Figure 16. Sending requests to MQ Workflow

© Copyright IBM Corp. 1993, 2001 215

XML input queue

The XML input queue
<prefix>.<SystemGroupName>.<SystemName>.EXE.XML respectively
<prefix>.<SystemGroupName>.EXE.XML is an MQSeries queue to which MQ
Workflow is listening.

Only XML messages are accepted as input to this queue. The XML message
has to conform to the MQ Workflow XML message format. If it does not
conform, then a GeneralError XML message is put into the reply queue.

For more information refer to chapters “Relevant MQSeries Message
Descriptor (MQMD) fields” on page 209 and “The application data” on
page 210. For more information on error handling refer to “Chapter 32. Error
Handling” on page 227.

Authentication and authorization

For authentication MQ Workflow’s message-based interface relies on
MQSeries. MQ Workflow does not perform any additional authentication. For
setting up MQSeries security, refer to IBM MQSeries System Administration,
chapter “Protecting MQSeries Objects”.

The value of the UserIdentifier field in the MQMD of the incoming message is
used as the MQ Workflow user on whose behalf the request is to be
performed. Authorization checks for that user are performed as usual.

Note: MQSeries UserIdentifier constraints differ from the ones defined for the
MQ Workflow system. Since authorization is checked by MQ Workflow,
the UserIdentifier in the MQMD of an XML message must be a valid
MQ Workflow user. This has to be ensured by the application
programmer and MQ Workflow administrator.

Create and start a process instance example

The following example shows an XML message that requests the creation and
start of a process instance. Assumed that the process input data is described
by data structure Application:
STRUCTURE 'Application'

'InsuredID' : LONG;
'Type' : LONG;
'SpecialRisk' : Long;
'Accident' : Long;
'Ammount' : FLOAT;
'StartDate' : STRING;
'Term' : Long;
'Payment' : Long;
'Doctor' : STRING;

216 Programming Guide

'Weight' : Long;
'Height' : STRING;
'Smoker' : Long;
'Illness' : STRING;
'Hospitalization': STRING;
'Risks' : STRING;

END 'Application'

then the XML message can look like following:

<?xml version="1.0" standalone="yes"?>
<WfMessage>

<WfMessageHeader>
<ResponseRequired>Yes</ResponseRequired>
<UserContext>This data is sent back in the response</UserContext>

</WfMessageHeader>
<ProcessTemplateCreateAndStartInstance>

<ProcTemplName>Medical_Opinion</ProcTemplName>
<ProcInstName>Medical_Opinion#448</ProcInstName>
<KeepName>false</KeepName>
<ProcInstInputData>

<Application>
<InsuredID>A</InsuredID>
<Type>4711</Type>
<StartDate>12.01.2000</StartDate>
<Doctor>DoctorX</Doctor>
<Weight>200</Weight>
<Smoker>1<Smoker>

</Application>
</ProcInstInputData>

</ProcessTemplateCreateAndStartInstance>
</WfMessage>

Chapter 30. Sending requests to MQ Workflow 217

218 Programming Guide

Chapter 31. Invoking an activity implementation

Activity implementations are usually started by MQ Workflow by sending an
internal invocation request message to a program execution agent or program
execution server. They, in turn, invoke the program that was modeled to
implement the activity. Using the message-based interface, it is also possible
that MQ Workflow sends that invocation request message in XML format to a
user-defined MQSeries queue.

From the point of view of MQ Workflow, the MQSeries application listening
on that queue has to invoke the program that is modeled as the
implementation of the activity. For doing so, all the necessary information is
passed to the MQSeries application by means of an XML message. The
MQSeries application must return with an appropriate XML response, if
requested by MQ Workflow.

Therefore, such an application is called a user-defined program execution
server (UPES). A user-defined program execution server can be any
application you write or a program such as MQSeries Integrator, provided it
can deal with the MQ Workflow XML message format.

A UPES and a program activity to be performed by that UPES are modeled in
the MQ Workflow Buildtime. The program activity is modeled using the
activity property sheet.

Two invocation modes for the activity implementation can also be modeled:
v Synchronous invocation (the standard case), where MQ Workflow waits for

a completion message containing result data from the UPES before the
activity instance is considered to be complete.

v Asynchronous invocation, where no completion message is required and
the activity instance is considered to be complete right after the invocation
message has been sent. No result data is expected by MQ Workflow and
process navigation continues.

The following figure depicts the synchronous invocation of an activity
implementation:

© Copyright IBM Corp. 1993, 2001 219

1. A UPES must have been defined using MQ Workflow Buildtime.
2. When an activity implementation is to be started, MQ Workflow sends a

program invocation message to the UPES.
3. An application listening to the UPES queue reads the XML message and

performs the appropriate action. Possible actions are:
v Transform the message into another format and route it to another

recipient, for example, send an EDI message to another company.
v Perform a transaction that involves the get of the request from the

queue, the update of one or more DBMS or other resource managers,
and the put of the response, in a single unit of work.

v Invoke the specified activity implementation, for example, call a
program on a platform not yet supported by MQ Workflow.

4. When the activity implementation has finished, the application creates a
response MQ Workflow XML message, if required, and puts it into the
reply queue. Note that the reply queue information is part of the MQMD
of the incoming XML invocation message.

5. MQ Workflow reads the response message, processes it, and changes the
state of the activity accordingly.

User-defined program execution server (UPES)

A UPES is defined and configured for an MQ Workflow system by modeling
it in MQ Workflow Buildtime. Essential attributes are the name, the version,
and the queue it represents.

The UPES version denotes the MQ Workflow API version that is supported by
the UPES. MQ Workflow only sends messages to the UPES that are
supported. When modeled in the MQ Workflow Buildtime, it becomes a tag in

Figure 17. Starting an activity implementation

220 Programming Guide

the FDL when the UPES is exported. If no UPES version is specified when
imported into the MQ Workflow Runtime, the FDL version becomes also the
UPES version.

Note: You need to upgrade the UPES version in order to receive new
messages that become available with new MQ Workflow versions or
releases.

For more information on UPES attributes refer to the online help of MQ
Workflow Buildtime.

The application that is listening to the UPES queue is not managed by MQ
Workflow. A system administrator is responsible for administering the
application. From an MQ Workflow point of view, the invocation of an
activity implementation was successful when the invocation message is
successfully put into the UPES queue.

For more information on how to create and administer MQSeries queues, refer
to the IBM MQSeries System Administration.

Messages sent to a UPES
Following messages are sent to a UPES by MQ Workflow, depending on the
version of the UPES:

Message UPES Version Remarks

ActivityImplInvoke Version 3.2.2 and
higher

Message to invoke an activity
implementation. A response is
required in case of a synchronous
invocation.

ActivityExpired Version 3.3.0 and
higher

Message to inform about the
expiration of an activity. No response
is expected.

TerminateProgram Version 3.3.0 and
higher

Message to inform about the
termination of an activity. No response
is expected.

In general, when a message has been placed into a UPES input queue, it
becomes the responsibility of the UPES to get that message from the queue,
process the message, and to put a response message into the reply queue if
requested. The UPES can use MQSeries transactional capabilities to bring get
and put messages into a transactional context.

Chapter 31. Invoking an activity implementation 221

ActivityImplInvoke message
When the UPES receives an ActivityImplInvoke message, the UPES is asked to
invoke the program specified in the ImplementationData8 XML element.

It is up to the UPES how, when, and where to invoke that program. Note that
the UPES has to remember the ActImplCorrelID of an incoming
ActivityImplInvoke message so that it can be returned to MQ Workflow in the
ActivityImplInvokeResponse and to correlate ActivityExpired or
TerminateProgram messages to an invocation.

Depending on the nature of the activity instance, the activity implementation,
that is, the specified program, may only need to be triggered and then runs
asynchronously to the MQ Workflow process instance, or the process instance
navigation has to be synchronized with its completion. In the latter case, a
completion message has to be sent to MQ Workflow to inform it about the
result of execution. In the former case, the activity instance is considered
finished as soon as the invocation request is successfully sent. The information
whether an implementation is to be started synchronously or asynchronously
is modeled in Buildtime:
v Synchronous

The activity implementation is started and the activity instance put into
state Running. When the activity implementation ends and MQ Workflow
receives a completion message, the activity instance is set into the
appropriate state, for example, Finished.
Correlation between the request and the response is done by means of the
activity implementation correlation ID (XML element ActImplCorrelID),
which is passed in the invocation request by MQ Workflow, and has to be
passed back in the response.
The ResponseRequired element in the MQ Workflow ActivityImplInvoke
message is set to ’Yes’ to specify that the invocation is synchronous and that
MQ Workflow expects a response.

v Asynchronous
The activity implementation is started and the activity instance is put into
the appropriate state, for example, Finished. No information on the
completion of the activity implementation is expected. If a completion
message is received, it is ignored.
The ResponseRequired element in the MQ Workflow ActivityImplInvoke
message is set to ’No’ to specify that the invocation is asynchronous and
that MQ Workflow does not expect a response.

8. It is recommended to use the information from the ImplementationData XML element and to not misuse
information from other elements.

222 Programming Guide

The ActivityImplInvoke message provides the input container data as well as
initial values set in the output container of the program to be invoked. The
input container data is part of the ProgramInputData XML element; the initial
values of the output container are part of the ProgramOutputDataDefaults XML
element.

The UPES is responsible for processing of the container data, that is, to:
1. Pass the input container values to the activity implementation.
2. Copy the initial values of the output container into the output container

(ProgramOutputData XML element) that is passed back to MQ Workflow.
MQ Workflow only takes the values passed back in the
ActivityImplInvokeResponse as output data; this allows values to be unset
(to be set to null).

3. Copy the output values of the activity implementation into the output
container (ProgramOutputData XML element) that is passed back to MQ
Workflow.

Completion message: If the activity implementation is specified to run
asynchronously, no completion message is expected. In that case, the
successful put of the outgoing start activity implementation message is
considered to be the complete invocation.

If the activity implementation is specified to run synchronously, a completion
message ActivityImplInvokeResponse is expected by the MQ Workflow
execution server. This message has to provide:
v The ActImplCorrelID of the associated ActivityImplInvoke message so that

the MQ Workflow execution server can correlate the response with the
Invoke request.

v For a successful execution, the return code and output container.
v For an unsuccessful execution, an exception passing the error code. The

error code must be understood by MQ Workflow. See the file fmcmretc.h for
a list of valid codes.

ActivityExpired message
This message informs the UPES about the expiration of an activity. It can only
be sent after an ActivityImplInvoke message has been placed into the UPES
input queue. If an ActivityImplInvokeResponse is expected, it informs the
UPES that the response is not expected anymore. If the UPES sends a
response, that response is ignored; the activity already expired. As a
consequence, the UPES may interrupt program execution.

Correlation between the ActivityExpired message and the ActivityImplInvoke
message can be done by means of the ActImplCorrelID.

Chapter 31. Invoking an activity implementation 223

TerminateProgram message
This message informs the UPES about the termination of an activity or work
item. It can only be sent after an ActivityImplInvoke message has been placed
into the UPES input queue. If an ActivityImplInvokeResponse is expected, it
informs the UPES that the response is not expected anymore. If the UPES
sends a response, that response is ignored; the activity is already terminated.
As a consequence, the UPES may terminate program execution and perform
compensation actions.

Correlation between the TerminateProgram message and the
ActivityImplInvoke message can be done by means of the ActImplCorrelID.

Authorization

For invocation messages sent by MQ Workflow, the UserIdentifier field in the
MQMD is set to the user ID of the user on whose behalf the activity instance
has been started. Additionally, the <Starter> element in the invocation
message itself is set to that user ID. The UPES applications can use this
information to implement their own authorization schemes.

Note: The CorrelID in the MQMD is also set to the user ID. This information
can be used by a UPES to listen to XML messages for specific users
only.

Synchronous invocation example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- This document is generated by a MQSeries Workflow Version 3.2.2 server -->
<WfMessage>

<WfMessageHeader>
<ResponseRequired>Yes</ResponseRequired>

</WfMessageHeader>
<ActivityImplInvoke>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<Starter>user1</Starter>
<ProgramID>

<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProgramName>PerformOrder</ProgramName>

</ProgramID>
<ImplementationData>

<ImplementationPlatform>AIX</ImplementationPlatform>
<ProgramParameters>custNo=1234</ProgramParameters>
<ExeOptions>

<PathAndFileName>/usr/local/bin/perforder</PathAndFileName>
<WorkingDirectoryName>/usr/local/data</WorkingDirectoryName>
<InheritEnvironment>true</InheritEnvironment>
<StartInForeGround>true</StartInForeGround>
<AutomaticClose>true</AutomaticClose>
<WindowStyleVisible>true</Visible>
<RunInXTerm>true</RunInXTerm>

224 Programming Guide

</ExeOptions>
</ImplementationData>
<ImplementationData>

<ImplementationPlatform>OS390</ImplementationPlatform>
<ExternalOptions>

<ServiceName>CICS42</ServiceName>
<ServiceType>CICS</ServiceType>
<InvocationType>EXCI</InvocationType>
<ExecutableName>ORDR</ExecutableName>
<ExecutableType>REG1</ExecutableType>
<IsLocalUser>true</IsLocalUser>
<IsSecurityRoutineCall>true</IsSecurityRoutineCall>
<CodePage>850</CodePage>
<TimeoutPeriod>TimeInterval</TimeoutPeriod>
<TimeoutInterval>60</TimeoutInterval>
<IsMappingRoutineCall>false</IsMappingRoutineCall>

</ExternalOptions>
</ImplementationData>
<ProgramInputData>

<_ACTIVITY>AssessRisk_SubProcess</_ACTIVITY>
<_PROCESS>CreditRequest#123</_PROCESS>
<_PROCESS_MODEL>CreditRequest</_PROCESS_MODEL>
<CreditData>

<Customer>
<Name>User1</Name>

</Customer>
<Amount>1000</Amount>
<Currency>CurrencyX</Currency>

</CreditData>
</ProgramInputData>
<ProgramOutputDataDefaults>

<_ACTIVITY>AssessRisk_SubProcess</_ACTIVITY>
<_PROCESS>CreditRequest#123</_PROCESS>
<_PROCESS_MODEL>CreditRequest</_PROCESS_MODEL>
<CreditData>

<Risk>high</Risk>
</CreditData>

</ProgramOutputDataDefaults>
</ActivityImplInvoke>

<WfMessage>

UPES response example
<WfMessage>

<WfMessageHeader>
<ResponseRequired>No</ResponseRequired>

</WfMessageHeader>
<ActivityImplInvokeResponse>

<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<ProgramRC>0</ProgramRC>
<ProgramOutputData>

<CreditData>
<Customer>

<Name>User1</Name>
</Customer>

Chapter 31. Invoking an activity implementation 225

<Amount>1000</Amount>
<Currency>CurrencyX</Currency>
<Risk>low</Risk>

</CreditData>
</ProgramOutputData>

</ActivityImplInvokeResponse>
</WfMessage>

226 Programming Guide

Chapter 32. Error Handling

This chapter describes how MQ Workflow handles errors which can occur
during the processing of an incoming XML message.

MQ Workflow XML message life cycle

Each message that is received by MQ Workflow goes through a certain chain
of processing steps. During each of these processing steps, errors can occur.

In general, the life cycle of an XML message within MQ Workflow can be
described as follows:
1. Get the XML message from the MQ Workflow XML input queue
2. Parse the message
3. Determine the message name, for example, ProcessTemplateExecute
4. Check the validity of the application data parameters

v Whether mandatory parameters are provided
v Whether parameter values are syntactically correct
v Whether semantical interdependencies are fulfilled
v Whether container values fit to the container schema
v Whether container values are syntactically correct

5. Process the message
6. Put the XML response message into the reply queue
7. Commit the transaction

When an error occurs, a response describing the error is created and put into
the reply queue identified by the Reply2q and ReplyToQMgr fields in the
MQMD fields of the input message. The reply queue address is abbreviated to
REPLY2Q in the rest of this chapter.

General error processing

The following flowchart describes in more detail the life cycle of an MQ
Workflow XML message and the errors which can occur and how they are
handled.

© Copyright IBM Corp. 1993, 2001 227

1. When a message has been received from the XML input queue, then its
backout count, that is, the number of times it has already been tried to
process, is checked. If the backout count is exceeded, a GeneralError
response message is returned. See “Sending a response” on page 230 for
more information.

228 Programming Guide

Note: The backout count is increased when the transaction is rolled back -
see 5.

2. The MQMD Format field is checked for a correct value, namely, whether it
is set to the MQSeries constant FMTMQ_STRING (MQSTR). If not, a
GeneralError response is returned.

Note: For compatibility reasons, the format FMCXML is also supported;
its usage is, however, deprecated.

3. The XML message is checked for being well formed. Additionally, the
message name must specify a function supported in the XML interface. If
the XML message is not well formed or if the message name is not
supported, a GeneralError response is returned.

4. The XML message is processed. If processing has been successful, the
transaction is committed and a response denoting the successful
processing is returned. If an error occurs, continuation depends on the
kind of the error.

5. If the error is caused by internal reasons, for example, by a database lock,
then MQ Workflow tries to newly process the message because such an
error is usually only temporarily encountered.
The message is rolled back so that it can be processed again. Backing out
the message increases the backout count.

Note: Depending on the severity of the error, rolling back a message can
cause the MQ Workflow server to shut down.

6. If the error is caused by external reasons, for example, because a
parameter is syntactically incorrect, then the response, if any, for the
function requested describes the error.

7. A response describing an error is returned if the ResponseRequired element
of the incoming message is set to ’Yes’ or to ’IfError’.

8. Otherwise, an error notification which describes the error encountered is
sent to the MQ Workflow administration server.

Chapter 32. Error Handling 229

Sending a response

When a response is to be returned to the sender of an XML message
1. It is checked whether the REPLY2Q is set. If not, an error notification is

sent to the MQ Workflow administration server.
The administration server logs the error into a database. It can then be
queried using the administration client. For more information refer to the
IBM MQSeries Workflow Administration Guide, chapter “The error log”.

2. If the REPLY2Q is set, the response is put into the specified reply queue.
3. If the ’Put’ failed, an error log entry is written.
4. In either case, whether the ’Put’ was successful or not, the transaction and

thus the message read is committed so that the next message can be
processed.

Detailed error processing

This chapter discusses some errors in more detail.

230 Programming Guide

Wrong message format in the MQMD
The first time an error can occur is when the XML incoming message specifies
an invalid Format field in the MQMD. Valid formats are MQFMT_STRING
(MQSTR). For compatibility reasons, the format FMCXML is also supported;
its usage is, however, deprecated.

If the Format field is wrong, a GeneralError XML response message is sent to
the REPLY2Q. Refer to “The GeneralError message” on page 234 for the
specification of a GeneralError message.

When putting the response into the reply queue fails, an error notification is
sent to the MQ Workflow administration server. The original XML message is
committed and thus removed from the input queue.

The error returned is:

The following XML message is returned:

:msgID. FMC_ERROR_XML_DOCUMENT_FORMAT
:msgNum. 1107
:severity. Error
:msgText. "The MQMD format field value '%1$s' of the XML document is

incorrect.\\n"
$1: The value of the MQMD format field

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- This document is generated by a MQSeries Workflow Version 3.2.2 server -->
<WfMessage>

<WfMessageHeader>
<ResponseRequired>No</ResponseRequired>

</WfMessageHeader>
<GeneralError>

<Exception>
<RC>1107</RC>
<Parameters>

<Parameter>ABC </Parameter>
</Parameters>
<MessageText>

FMC01107E The MQMD format field value 'ABC ' of the XML document
is incorrect.\n

</MessageText>
<Origin>p:\v322\src\fmcmmsg.cxx(113)</Origin>

</Exception>
</GeneralError>

</WfMessage>

Chapter 32. Error Handling 231

Wrong message name or XML document not well formed
The next time to detect an error is during parsing of the XML message. The
XML message is checked for being well formed9 and the message name is
investigated.

When the XML message is not well formed or when the message name is
unknown, a GeneralError response is sent to the REPLY2Q. When putting the
response into the reply queue fails, an error notification is sent to the MQ
Workflow administration server, that is, put into the ADMINPUTQ. The
original XML message is committed and thus removed from the input queue.

Note that, at this stage, any setting of the ResponseRequired tag is ignored
because its determination is not always possible.

Possible errors returned are:

Message processing errors
When processing the incoming XML message, the validity of the application
data is checked. It is checked whether:
v The ResponseRequired tag in the XML message header is set correctly
v The ’UserContext’ obeys its rules, that is, obeys its length constraints (<=

254 bytes)
v All parameters are correct:

– Whether mandatory parameters are provided
– Whether parameter values are syntactically correct
– Whether semantical interdependencies are fulfilled

9. A well formed XML document is defined by the XML standard and guarantees a certain level of syntactical
correctness. A valid MQ Workflow document additionally requires that the root element name is ’WfMessage’ with
an optional nested element ’WfMessageHeader’ followed by the message name.

:msgID. FMC_ERROR_XML_DOCUMENT_INVALID
:msgNum. 1100
:severity. Error
"Incorrect XML document. The message that is returned by the XML parser is %1$s\\n"
$1: The error message that occurred during parsing of the XML message

:msgID. FMC_ERROR_NO_MQSWF_DOCUMENT
:msgNum. 1101
:severity. Error
"The XML document is not a valid MQSeries Workflow XML document.\\n"

:msgID. FMC_ERROR_XML_MESSAGE_NOT_SUPPORTED
:msgNum. 1102
:severity. Error
"MQSeries Workflow message '%1$s' is not XML enabled.\\n"
$1: The XML MQSeries Workflow message name, for example, ProcessTemplateDelete

232 Programming Guide

– Whether container values fit to the container schema
– Whether container values are syntactically correct

If an error occurs, the response message for the requested function is used to
describe the error, for example, a
ProcessTemplateCreateAndStartInstanceResponse. A GeneralError response is
not sent.

If an error occurs and ResponseRequired is set to:

Yes A response is sent in any case.

IfError Only error responses are sent.

No No response is sent.

Note: Errors of incoming XML responses, for example, an
ActivityImplInvokeResponse, are treated the same way as incoming
requests. The only difference is that, in case of an error, a GeneralError
is sent instead of a specific error response message.

XML processing error response example:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- This document is generated by a MQSeries Workflow Version 3.2.2 server -->
<WfMessage>

<WfMessageHeader>
<ResponseRequired>No</ResponseRequired>

</WfMessageheader>
<ProcessTemplateCreateAndStartInstanceResponse>
<Exception>

<RC>1105</RC>
<Parameters>

<Parameter>InsuredID</Parameter>
<Parameter>Application</Parameter>

</Parameters>
<MessageText>FMC01105E Data member 'InsuredID' value of data structure
'Application' has the wrong type.\n</MessageText>
<Origin>d:\v32_67\src\fmcmctnm.cxx(340)</Origin>

</Exception>
</ProcessTemplateCreateAndStartInstanceResponse>

<WfMessage>

Errors when returning a response
When an XML response message is put into an MQSeries queue, an error can
occur, for example, when the specified queue is undefined or when that queue
is full.

Note: A similar error can occur when the UPES queue into which an
ActivityImplInvoke message is to be put is not part of the MQ
Workflow topology data.

Chapter 32. Error Handling 233

When putting the response into the reply queue fails, the error and the first
500 bytes of the response are logged into an error log. The original XML
message is committed and thus removed from the input queue. All put errors
are assumed to be permanent, that is, it is assumed that all subsequent puts
will also fail. Therefore, processing of the incoming message is not retried.

Example of an error log entry:
MQSeries Workflow 3.2 Error Report

Report creation = 09.05.00 17:29:11

Error location = File=e:\v322\src\fmccdxmm.cxx, Line=565,
Function=
FmcXMLMQDevice::Put(FmcDeviceCtxRef&,FmcDevDataRef&,FmcDeviceControler&)
Error data= FmcMQPUTException, MQ queue manager name=FMCQM, MQ queue name=DDDD,

MQ completion code=2, MQ reason code=2085,
Application data (frist 500 bytes)=

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- This document is generated by a MQSeries Workflow Version 3.2.2 server -->
<WfMessage>

<WfMessageHeader>
<ResponseRequired>No</ResponseRequired>

</WfMessageHeader>
<UserContext>This data is sent back in response</UserContext>
<ProcessTemplateCreateAndStartInstanceResponse>
<Exception>

<RC>1108</RC>
<Parameters>

<Parameter>ResponseRequired</Parameter>

Backout count exceeded
In general, the incoming XML message is committed after error handling is
completed.

For internal errors like a database lock, the open transaction is, however,
rolled back and the backout count is increased. When the backout count
reaches a limit set in the runtime database, a GeneralError response message
is put into the REPLY2Q and the incoming message is committed.

The error returned is:
:msgID. FMC_ERROR_XML_BACKOUT_COUNT_EXCEEDED
:msgNum. 1106
:severity. Error
:msgText. "The backout count of the XML document is exceeded.

The XML document cannot be processed.\\n"

The GeneralError message
A GeneralError response message is sent to inform the receiver that an error
occurred and that a manual intervention might be required. No response is
expected.

234 Programming Guide

Following is an excerpt of the DTD describing the GeneralError XML
message:
<!ELEMENT WfMessage

WfMessageHeader?,
GeneralError >

<!ELEMENT WfMessageHeader (ResponseRequired?, UserContext?) >
<!ELEMENT UserContext (#PCDATA) >
<!ELEMENT ResponseRequired (#PCDATA) >

<!-- Expected values: {No,IfError,Yes} -->
<!ELEMENT GeneralError (Exception) >
<!ELEMENT Exception (Rc?,Parameters?,MessageText,Origin)>
<!ELEMENT Parameters (Parameter*) >
<!ELEMENT Parameter (#PCDATA) >
<!ELEMENT Origin (#PCDATA) >

For example,

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- This document is generated by a MQSeries Workflow Version 3.2.2 server -->
<WfMessage>

<WfMessageHeader>
<ResponseRequired>No</ResponseRequired>

</WfMessageHeader>
<GeneralError>

<Exception>
<RC>1107</RC>
<Parameters>

<Parameter>ABC </Parameter>
</Parameters>
<MessageText>

FMC01107E The MQMD format field value 'ABC ' of the XML document is
incorrect.\n

</MessageText>
<Origin>p:\v322\src\fmcmmsg.cxx(113)</Origin>

</Exception>
</GeneralError>

</WfMessage>

Chapter 32. Error Handling 235

236 Programming Guide

Chapter 33. The MQ Workflow XML message format

The following XML syntax is used to describe the format of MQ Workflow
messages. Note that the following format of a container only contains a
suggestion, because the format can vary depending on your setup. Therefore,
you cannot use this DTD description to validate your XML message without
adding the appropriate specifications for the data structures you use.

Note that you do not have to specify your containers. You are, however,
encouraged to do so for future use or to validate them by any other XML
application.
<!-- FmcXMLIF.dtd == DTD for MQSeries Workflow messages -->
<!-- Message == -->
<!ELEMENT WfMessage

(WfMessageHeader?,
(ProcessTemplateCreateAndStartInstance
| ProcessTemplateCreateAndStartInstanceResponse
| ProcessTemplateExecute
| ProcessTemplateExecuteResponse
| ActivityExpired
| ActivityImplInvoke
| ActivityImplInvokeResponse
| AuditTrailRecord
| TerminateProgram
| GeneralError)) >

<!-- ==
Workflow Message Header

== -->
<!ELEMENT WfMessageHeader (ResponseRequired?,UserContext?)>
<!-- Opaque -->
<!ELEMENT UserContext (#PCDATA)> <!-- Length<=254 bytes -->
<!-- Enumerated type -->
<!ELEMENT ResponseRequired (#PCDATA)>

<!-- Expected values: {No,IfError,Yes} -->

<!-- ==
Specific Messages

== -->
<!-- ProcessTemplateCreateAndStart =================== -->
<!ELEMENT ProcessTemplateCreateAndStartInstance

(ProcTemplName,
ProcInstName?,
KeepName?,
ProcInstInputData?) >

<!ELEMENT ProcessTemplateCreateAndStartInstanceResponse
(ProcessInstance
| Exception) >

© Copyright IBM Corp. 1993, 2001 237

<!-- ProcessTemplateExecute ========================== -->
<!ELEMENT ProcessTemplateExecute

(ProcTemplName,
ProcInstName?,
KeepName?,
ProcInstInputData?) >

<!ELEMENT ProcessTemplateExecuteResponse
((ProcessInstance,

ProcInstOutputData?)
| Exception) >

<!-- ActivityExpired ================================= -->
<!ELEMENT ActivityExpired

(ActImplCorrelID) >

<!-- ActivityImplInvoke ============================== -->
<!ELEMENT ActivityImplInvoke

(ActImplCorrelID,
Starter,
ProgramID,
(ImplementationData)*,
ProgramInputData,
ProgramOutputDataDefaults) >

<!ELEMENT ActivityImplInvokeResponse
(ActImplCorrelID,

((ProgramRC,
ProgramOutputData)

| Exception)) >

<!-- AuditTrailRecord ================================ -->
<!ELEMENT AuditTrailRecord

(Timestamp,
AuditEvent,
ProcInstName,
ProcInstID,
ProcInstTopLevelName,
ProcInstTopLevelID,
ProcInstParentName?,
ProcInstParentID?,
ProcTemplName,
ProcTemplValidFromDate?,
BlockNames?,
UserID?,
SecondUserID?,
ActivityName?,
ActivityType?,
ActivityState?,
SecondActivityName?,
CommandParameters?,
AssociatedObject?,
ObjectDescription?,
ProgramName?,
ProgramRC?) >

<!-- TerminateProgram ================================ -->
<!ELEMENT TerminateProgram

(ActImplCorrelID) >

238 Programming Guide

<!-- GeneralError ===================================== -->
<!ELEMENT GeneralError (Exception) >

<!-- ==
Data Structures

== -->
<!ENTITY %STRING "(#PCDATA)">
<!ENTITY %LONG "(#PCDATA)">
<!ELEMENT null EMPTY>

<!ELEMENT _PROCESS_INFO
(Role?, Organization?, ProcessAdministrator?, Duration?)>

<!ELEMENT _ACTIVITY_INFO
(PRIORITY?, MembersOfRoles?, CoordinatorOfRole?,

Organization?, OrganizationType?,
LowerLevel?, UpperLevel?,
People?, PersonToNotify?,
Duration?, Duration2?)>

<!ELEMENT _ACTIVITY %STRING;>
<!ELEMENT _PROCESS %STRING;>
<!ELEMENT _PROCESS_MODEL %STRING;>
<!ELEMENT _RC %LONG;>
<!ELEMENT ROLE %STRING;>
<!ELEMENT Organization %STRING;>
<!ELEMENT ProcessAdministrator %STRING;>
<!ELEMENT Priority %STRING;>
<!ELEMENT MembersOfRoles %STRING;>
<!ELEMENT CoordinatorOfRole %STRING;>
<!ELEMENT OrganizationType %LONG;>
<!ELEMENT LowerLevel %LONG;>
<!ELEMENT UpperLevel %LONG;>
<!ELEMENT People %STRING;>
<!ELEMENT PersonToNotify %STRING;>
<!ELEMENT Duration %LONG;>
<!ELEMENT Duration2 %LONG;>

<!ENTITY %_CONTAINER_INFO
"_RC?, _PROCESS?, _PROCESS_MODEL?, _ACTIVITY?,
_PROCESS_INFO?, _ACTIVITY_INFO?" >

<!-- ==
Sample Data Structure CreditData

=== -->
<!ELEMENT CreditData

(Customer, Amount?, Currency?, Risk?) >
<!ELEMENT Risk %LONG;>
<!ELEMENT Currency %STRING;>
<!ELEMENT Amount %LONG;>
<!ELEMENT Customer %STRING;>

<!-- ==
Sample Entity Container
any used data structure must be included, for example,
<!ENTITY %CONTAINER "(%_CONTAINER_INFO;,(CreditData|abcd|smart))">

=== -->
<!ENTITY %CONTAINER "(%_CONTAINER_INFO;,CreditData)">

<!ELEMENT ProcInstInputData %CONTAINER;>

Chapter 33. The MQ Workflow XML message format 239

<!ELEMENT ProcInstOutputData %CONTAINER;>
<!ELEMENT ProgramInputData %CONTAINER;>
<!ELEMENT ProgramOutputData %CONTAINER;>
<!ELEMENT ProgramOutputDataDefaults %CONTAINER;>

<!-- Process Instance ================================= -->
<!ELEMENT ProcessInstance

(ProcInstID,
ProcInstName,
ProcInstParentName?,
ProcInstTopLevelName,
ProcInstDescription?,
ProcInstState,
LastStateChangeTime,
LastModificationTime,
ProcTemplID,
ProcTemplName,
Icon,
Category?) >

<!-- Program ID ======================================= -->
<!ELEMENT ProgramID

(ProcTemplID,
ProgramName) >

<!-- Implementation Data ============================== -->
<!ELEMENT ImplementationData

(ImplementationPlatform ,
ProgramParameters,
(ExeOptions
| DllOptions
| ExternalOptions)) >

<!ELEMENT ExeOptions
(PathAndFileName,

WorkingDirectoryName?,
Environment?,
InheritEnvironment,
StartInForeGround?,
AutomaticClose?,
WindowStyle?,
RunInXTerm?) >

<!ELEMENT DllOptions
(PathAndFileName,

EntryPointName,
ExecuteFenced?,
KeepLoaded?)

<!ELEMENT ExternalOptions
(ServiceName,

ServiceType,
InvocationType,
ExecutableName,
ExecutableType,
IsLocalUser,
IsSecurityRoutineCall,
CodePage?,

240 Programming Guide

TimeoutPeriod,
TimeoutInterval?,
IsMappingRoutineCall,
MappingType?,
ForwardMappingFormat?,
ForwardMappingParameters?,
BackwardMappingFormat?,
BackwardMappingParameters?) >

<!-- Exception == -->
<!ELEMENT Exception

(Rc?, Parameters?, MessageText, Origin?) >
<!ELEMENT Parameters

(Parameter*) >

<!-- Data Elements ==================================== -->
<!-- Booleans -->
<!ELEMENT AutomaticClose (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT DllV2Compatible (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT ExecuteFenced (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT InheritEnvironment (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT IsLocalUser (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT IsMappingRoutineCall (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT IsSecurityRoutineCall (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT KeepLoaded (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT KeepName (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT RunInXTerm (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT StartInForeGround (#PCDATA) > <!-- Expected values: {true, false} -->

<!-- Strings -->
<!ELEMENT ActivityName (#PCDATA) >
<!ELEMENT AssociatedObject (#PCDATA) >
<!ELEMENT BackwardMappingFormat (#PCDATA) >
<!ELEMENT BackwardMappingParameters (#PCDATA) >
<!ELEMENT BlockNames (#PCDATA) >
<!ELEMENT Category (#PCDATA) >
<!ELEMENT CommandParameters (#PCDATA) >
<!ELEMENT EntryPointName (#PCDATA) >
<!ELEMENT Environment (#PCDATA) >
<!ELEMENT ExecutableName (#PCDATA) >
<!ELEMENT ExecutableType (#PCDATA) >
<!ELEMENT ForwardMappingFormat (#PCDATA) >
<!ELEMENT ForwardMappingParameters (#PCDATA) >
<!ELEMENT Icon (#PCDATA) >
<!ELEMENT InvocationType (#PCDATA) >
<!ELEMENT MappingType (#PCDATA) >
<!ELEMENT MessageText (#PCDATA) >
<!ELEMENT ObjectDescription (#PCDATA) >
<!ELEMENT Origin (#PCDATA) >
<!ELEMENT Parameter (#PCDATA) >
<!ELEMENT PathAndFileName (#PCDATA) >
<!ELEMENT ProcInstDescription (#PCDATA) >
<!ELEMENT ProcInstName (#PCDATA) >
<!ELEMENT ProcInstParentName (#PCDATA) >
<!ELEMENT ProcInstTopLevelName (#PCDATA) >
<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT ProgramName (#PCDATA) >

Chapter 33. The MQ Workflow XML message format 241

<!ELEMENT ProgramParameters (#PCDATA) >
<!ELEMENT SecondActivityName (#PCDATA) >
<!ELEMENT SecondUserID (#PCDATA) >
<!ELEMENT ServiceName (#PCDATA) >
<!ELEMENT ServiceType (#PCDATA) >
<!ELEMENT Starter (#PCDATA) >
<!ELEMENT WorkingDirectoryName (#PCDATA) >

<!-- Opaque -->
<!ELEMENT ActImplCorrelID (#PCDATA) > <!-- Length = 80 bytes -->
<!ELEMENT ProcInstID (#PCDATA) > <!-- Length <= 64 bytes -->
<!ELEMENT ProcInstParentID (#PCDATA) > <!-- Length <= 64 bytes -->
<!ELEMENT ProcInstTopLevelID (#PCDATA) > <!-- Length <= 64 bytes -->
<!ELEMENT ProcTemplID (#PCDATA) > <!-- Length <= 64 bytes -->

<!-- Numbers -->
<!ELEMENT CodePage (#PCDATA) >
<!ELEMENT ProgramRC (#PCDATA) >
<!ELEMENT Rc (#PCDATA) >
<!ELEMENT TimeoutInterval (#PCDATA) >

<!-- Timestamps YYYY-MM-DD-hh.mm.ss.000000 (000000 milliseconds) -->
<!ELEMENT LastModificationTime (#PCDATA) >
<!ELEMENT LastStateChangeTime (#PCDATA) >
<!ELEMENT ProcTemplValidFromDate (#PCDATA) >
<!ELEMENT Timestamp (#PCDATA) >

<!-- Enumerated types -->
<!ELEMENT ImplementationPlatform (#PCDATA) > <!-- Expected values:

{ OS2, AIX,
HPUX, Windows95,
WindowsNT, OS390,
Solaris } -->

<!ELEMENT ProcInstState (#PCDATA) > <!-- Expected values:
{ Ready, Running,

Finished, Terminated,
Suspended, Terminating,
Suspending,Deleted } -->

<!ELEMENT WindowStyle (#PCDATA) > <!-- Expected values:
{ Visible, Invisible,

Minimized, Maximized } -->

<!ELEMENT TimeoutPeriod (#PCDATA) > <!-- Expected values:
{ TimeInterval

Forever Never } -->

<!ELEMENT AuditEvent (#PCDATA) > <!-- Expected values:
{ 21000, 21001, 21002

see Administration Guide } -->

<!ELEMENT ActivityType (#PCDATA) > <!-- Expected values:
{ Program Activity,

Process Activity,
Block Activity } -->

<!ELEMENT ActivityState (#PCDATA) > <!-- Expected values:
{ 21200 (Ready),

21201 (Running),

242 Programming Guide

21202 (Finished),
21203 (CheckedOut),
21204 (Force-Finished),
21205 (Terminated),
21206 (Suspended),
21207 (InError),
21208 (Executed),
21209 (Skipped),
21210 (Deleted),
21211 (Suspending),
21212 (Terminating),
21213 (Expired) } -->

Chapter 33. The MQ Workflow XML message format 243

244 Programming Guide

Part 6. Using the MQ Workflow APIs

© Copyright IBM Corp. 1993, 2001 245

246 Programming Guide

Chapter 34. Using the MQ Workflow Runtime API

Overview of the Runtime API

There are various tasks which you typically want to address by writing an
MQ Workflow application program:
v You can write a client application to:

– Manage process instances
– Handle worklists and/or work items
– Administrate process instances or work items
– Monitor the progress of execution

v You can write a program that implements an activity or support tool in
your workflow process.

These programs typically use only a subset of the MQ Workflow API. For
example, an activity implementation typically only accesses its containers, that
is, only uses the so-called “Container API”. The MQ Workflow API, that is, its
header files and library structures or its ActiveX Controls or its import
packages take this fact into account.

In order to ask for Runtime services, a communication must be established
between the client application and an MQ Workflow execution server.

As a first step, an ExecutionService object must be obtained
(constructed/allocated/located). An ExecutionService object represents a
session between a user and an MQ Workflow execution server. It essentially

Figure 18. Setting up client/server communication. Legend: --� Inheritance (C++); —� provides for
access; — —� sends messages to

© Copyright IBM Corp. 1993, 2001 247

provides the basic API calls to set up a communication path to the specified
MQ Workflow execution server and to establish the user session (Logon()
respectively Passthrough()), and finish it (Logoff()). To log on, not only the
execution server but also the administration server must be up and running
so that authentication can be done. This is, however, transparent to you.

When the session to an execution server has been established, you can:
v Query objects for which you are authorized: process templates, process

instances, items (work items, activity instance notifications, process instance
notifications), or lists containing such objects.

v Create persistent lists, that is, persistent views on objects contained in the
MQ Workflow database.

v Query information about the logged-on user or change that user’s
password.

v Start up respectively shut down a program execution agent associated to
the logged-on user. This becomes necessary when work items are to be
executed by MQ Workflow specific means.

In C and C++, all API call calls update a so-called result object. Detailed
information about an erroneous request can be obtained from there. See
“Handling errors” on page 10 for more information.

When the session to an execution server has been established, you can create
or query persistent lists (process template lists, process instance lists,
worklists) or query other objects for which you are authorized. Note that in

Figure 19. Querying objects. Legend: --� Inheritance (C++); —� provides for access

API overview

248 Programming Guide

Runtime you can retrieve the currently valid version of a process template
only; you cannot see any future or past versions.

A persistent list represents a set of objects the user is authorized for. It is a
view on those objects. All objects which are accessible through the list have
the same characteristics. These characteristics are specified by a filter. For
example, depending on the filter specified, a worklist can contain a set of
work items only. No activity instance notifications or process instance
notifications are accessible through that list. The worklist content, the work
items, can be queried and their attributes can be accessed. As soon as a work
item has been read from the execution server, further actions can be called, for
example, starting a work item.

When (a valid version of) a process template has been retrieved, a process
instance can be created and started. Starting a process instance can require
input data. You can use the container API calls for reading and wrting values.
See “Chapter 9. Handling containers” on page 45 for more information.

Starting a process instance triggers the scheduling of activity instances and, as
a result of that, the creation of a set of work items and possibly activity
instance notifications or process instance notifications when they are not
worked on in time. A work item implemented by a program can then be
executed either by MQ Workflow-specific means or by user-specific means.

Figure 20. Dealing with process instances and (work) items. Legend: --� Inheritance (C++); —�
provides for access; — —� data is passed to or results in

API overview

Chapter 34. Using the MQ Workflow Runtime API 249

When executed by user-specific means, the work item is to be checked out.
Checking out provides for all information needed to execute the underlying
program, the program data and its description of the implementing options
and the input container data.

When executed by MQ Workflow-specific means, that program data is
automatically sent to the program execution agent which starts the
appropriate activity implementation. The activity implementation can then
access its input and output containers via an appropriate request to the
program execution agent. The same container accessor API calls are applicable
whether called from a client application program or from an activity
implementation program.

When a work item and thus the associated activity instance has not been
executed successfully, the FmcjError or FmcError object provides for analyzing
the cause of the state InError.

When a process instance or item, that is, a work item, an activity instance
notification, or a process instance notification, has been retrieved, you can
obtain the associated process instance monitor. The process instance monitor
then allows for analyzing the states of activity instances and control connector
instances. The path taken through the process instance can thus be
determined. In case you want to present this information graphically, the
activity instance symbol layout and the control connector instance positions
and bend points offer support.

Figure 21. Monitoring a process instance. Legend: --� Inheritance (C++); —� provides for access

API overview

250 Programming Guide

Once a process instance monitor has been obtained, you can iterate into the
process model by obtaining block monitors for activities of type Block or
process instance monitors for activities of type Process, that is, for subprocess
instances. See “Chapter 10. Monitoring a process instance” on page 79 for
more information.

When the process setting specifies a push refresh policy, then the MQ Workflow
execution server pushes changes on work items or notifications to a present
client. In this case, or when the application issued an asynchronous request,
the client application should set up a means in order to receive data or
responses sent by the server. Once received, the appropriate object can be
updated, created, or deleted depending on the information sent. See
“Chapter 5. Client/server communication and data access models” on page 19
for more information.

API classes
An alphabetical list of API classes or function prefixes follows. Unless
otherwise stated, all indicated names are valid ActiveX orJava classes. To
become valid C++ classes, a prefix of Fmcj has to be added. To become valid
C-language calls, the class name must be prefixed with Fmcj and extended by
the actual function name. For example, if your Java class is Workitem, then
your C++ class is named FmcjWorkitem and all your functions in the
C-language start with FmcjWorkitem; FmcjWorkitemStart, for example, is a

Execution
Data

Execution
Service

Receive

FromData

Update

From Data

...

Workitem

Process
Instance

ReadOnly
Container

Item

Activity
Instance

Notification

Process
Instance

Notification

Figure 22. Handling data sent by an MQ Workflow server. Legend: --� Inheritance (C++); —�
provides for access

API overview

Chapter 34. Using the MQ Workflow Runtime API 251

valid C-language function.

Class/Object Description

ActivityInstance An instance of a workflow process template
activity.

ActivityInstanceArray The ActiveX result of a query for activity
instances.

ActivityInstanceNotifArray The ActiveX result of a query for activity instance
notifications.

ActivityInstanceNotification A notification associated with an activity instance.

ActivityInstanceNotificationVector The C-language result of a query for activity
instance notifications.

ActivityInstanceVector The C-language result of a query for activity
instances.

Agent An agent in the Java API to access an MQ
Workflow domain.

Container The data container of a work item or a process
instance.

ContainerArray The ActiveX means of holding a container.

ContainerElement An element of a data container.

ContainerElementArray The ActiveX result of a query for container
elements.

ContainerElementVector The C-language result of a query for container
elements.

ControlConnectorArray The ActiveX result of a query for control connector
instances.

ControlConnectorInstance The instance of a control connector between two
activity instances.

ControlConnectorInstanceVector The C-language result of a query for control
connector instances.

DateAndTime Representation of date and time values.
FmcjCDateTime is the C-language equivalent
structure. The C++ class is called FmcjDateTime.
Java uses the Calendar object.

DllOptions The program implementation definitions for a
dynamic link library.

ExecutionData Information pushed by an MQ Workflow
execution server or the response to an
asynchronous request.

API classes

252 Programming Guide

Class/Object Description

ExecutionAgent The Java representation of an MQ Workflow
program execution agent. The C++ class is called
FmcjPea.

ExecutionService The representation of a session between a user and
an MQ Workflow execution server so that services
can be requested.

ExecutionServiceArray The ActiveX means of holding an execution
service.

ExeOptions The program implementation definitions for an
executable.

ExternalOptions The program implementation definitions for an
external service.

FmcError Describes the cause of a state InError in Java. The
C++ class is called FmcjError; the ActiveX class
fmcError.

FmcException The Java representation of an exception.

Global A means to group API calls which are global API
API calls in C and C++.

ImplementationData The program implementation definitions.

InstanceMonitor The monitor for a process instance or an activity
instance of type Block or Process.

Item An item associated to a user; can be a work item
or notification; not available in ActiveX.

ItemVector The C-language result of a query for items.

Message A means to request an NLS regarding formatted
message for a known message ID; only
C-language and C++.

PersistentList A list definition stored persistently; not available
in ActiveX.

Person User-specific settings for the user logged on to an
MQ Workflow execution server.

Point Describes the bend points of a control connector
instance.

PointArray The ActiveX result of a query for control connector
instance bend points.

PointVector The C-language result of a query for bend points.

ProcessInstance An instance of a workflow process template.

ProcessInstanceList A list to group process instances.

API classes

Chapter 34. Using the MQ Workflow Runtime API 253

Class/Object Description

ProcessInstanceListArray The ActiveX result of a query for process instance
lists.

ProcessInstanceListVector The C-language result of a query for process
instance lists.

ProcessInstanceNotifArray The ActiveX result of a query for process instance
notifications.

ProcessInstanceNotification A notification associated with a process instance.

ProcessInstanceNotificationVector The C-language result of a query for process
instance notifications.

ProcessInstanceVector The C-language result of a query for process
instances.

ProcessTemplate A workflow process template consisting of
activities and containers and their control and data
flow.

ProcessTemplateList A list to group process templates.

ProcessTemplateListArray The ActiveX result of a query for process template
lists.

ProcessTemplateListVector The C-language result of a query for process
template lists.

ProcessTemplateVector The C-language result of a query for process
templates.

ProgramData The program definitions of an activity
implementation.

ProgramTemplate A program definition contained in a process
template.

ReadOnlyContainer A data container that can only be read; not
available in ActiveX.

ReadOnlyContainerHolder In Java, a data container that contains the output
container of a process instance; returned by
executeProcessInstance().

ReadWriteContainer A data container that can be read and written to;
not available in ActiveX.

Result The detailed result of a request; only C-language
and C++.

Service Provides for common aspects of MQ Workflow
services; not available in ActiveX.

StringArray The ActiveX result of a query resulting in a list of
strings or the ActiveX means of providing a list of
strings.

API classes

254 Programming Guide

Class/Object Description

StringVector The C-language result of a query resulting in a list
of strings or the C-language means of providing a
list of strings.

SymbolLayout Describes the graphical layout of an activity
instance.

Workitem A user-assigned activity instance to be worked on.

WorkitemArray The ActiveX result of a query for work items.

WorkitemVector The C-language result of a query for work items.

Worklist A list to group work items or notifications.

WorklistArray The ActiveX result of a query for worklists.

WorklistVector The C-language result of a query for worklists.

API calls per class

Note: In the following descriptions, the basic methods listed are not
differentiated by programming language. Not all of these methods are
available in each language.

ActivityInstance
An activity instance represents an instance of a process template activity. It is
part of a process instance.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs an activity instance object. 94

Copy() Allocates and initializes the storage for an activity instance
object by copying.

99

Deallocate() Deallocates the storage for an activity instance object. 99

destructor() Destructs an activity instance object. 99

Equal() Compares two activity instances. 97

IsComplete() Indicates whether the complete activity instance information
is available.

100

IsEmpty() Indicates whether no activity instance information is
available.

101

Kind() States the kind of the activity instance, whether it is a
program, a process, or a block.

101, 118

API classes

Chapter 34. Using the MQ Workflow Runtime API 255

Basic methods Description Page

operator=() Assigns an activity instance to this one. 97

operator==() Compares two activity instances. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when activity instances are queried or
if this attribute is a secondary attribute (S) and set only after the refresh
of a specific activity instance. Refreshing can be done explicitly by
issuing the Refresh() API call but is also done automatically when a
secondary (or primary) attribute is accessed and not yet available in the
API cache. Note that the activity instances returned by an instance
monitor fetched from the server contain both primary and secondary
values.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The API call
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

ActivationTime() P/D Returns the activation time of the
activity instance.

110

ActivationTimeIsNull() P/B Indicates whether an activation
time is set.

142

Category() P/C Returns the process category of the
activity instance.

137

CategoryIsNull() P/B Indicates whether a category is set. 142

Description() P/C Returns the description of the
activity instance.

137

DescriptionIsNull() P/B Indicates whether a description is
set.

142

Documentation() S/C Returns the documentation of the
activity instance.

137

DocumentationIsNull() S/B Indicates whether a documentation
is set.

142

EndTime() S/D Returns the ending time of the
activity instance.

110

Activity instance

256 Programming Guide

Accessor methods Set/
Type

Description Page

EndTimeIsNull() S/B Indicates whether an end time is
set.

142

ErrorReason() S/O Returns an error object describing
the reason why the activity
instance is in state InError.

139

ErrorReasonIsNull() S/B Indicates whether an error reason
is set.

142

ExitCondition() S/C Returns the exit condition of the
activity instance.

137

ExpirationTime() S/D Returns the expiration time of the
activity instance.

110

ExpirationTimeIsNull() S/B Indicates whether an expiration
time is set.

142

FirstNotificationTime() S/D Returns the time the first
notification for the activity instance
is to occur or has occurred.

110

FirstNotificationTimeIsNull() S/B Indicates whether a first
notification time is set.

142

FirstNotifiedPersons() S/M Returns the persons who received
a first notification for the activity
instance.

138

FullName() P/C Returns the fully qualified name of
the activity instance (dot notation).

137

Icon() P/C Returns the icon associated with
the activity instance.

137

Implementation() P/C Returns the name of the
implementing program of the
activity instance.

137

ImplementationIsNull() P/B Indicates whether an
implementation is set.

142

InContainerName() S/C Returns the name of the input
container of the activity instance.

137

LastModificationTime() P/D Returns the last time a primary
attribute of the activity instance
was changed.

110

LastStateChangeTime() P/D Returns the last time the state of
the activity instance changed.

110

ManualExitMode() S/B Returns whether the exit mode of
the activity instance is manual.

109

Activity instance

Chapter 34. Using the MQ Workflow Runtime API 257

Accessor methods Set/
Type

Description Page

ManualStartMode() S/B Returns whether the start mode of
the activity instance is manual.

109

Name() P/C Returns the name of the activity
instance.

137

OutContainerName() S/C Returns the name of the output
container of the activity instance.

137

PersistentOid() P/C Returns a representation of the
object identification of the activity
instance.

137

Priority() P/I Returns the priority of the activity
instance.

136

PriorityIsNull() P/B Indicates whether a priority is set. 142

ProcessAdmin() S/C Returns the process administrator
of the activity instance.

137

ProcessAdminIsNull() S/B Indicates whether a process
administrator is set.

142

ProcessInstanceName() P/C Returns the name of the process
instance the activity instance is
part of.

137

ProcessInstanceState() P/E Returns the state of the process
instance the activity instance is
part of.

111, 133

ProcessInstanceSystemGroupName() S/C Returns the name of the system
group of the process instance the
item is part of.

137

ProcessInstanceSystemName() S/C Returns the name of the system of
the process instance the activity
instance is part of.

137

SecondNotificationTime() S/D Returns the time the second
notification for the activity instance
is to occur or has occurred.

110

SecondNotificationTimeIsNull() S/B Indicates whether a second
notification time is set.

142

SecondNotifiedPersons() S/M Returns the persons who received
a second notification for the
activity instance.

138

Staff() S/M Returns all persons a work item
for the activity instance is assigned
to.

138

Activity instance

258 Programming Guide

Accessor methods Set/
Type

Description Page

StartCondition() S/C Returns the start condition of the
activity instance.

137

Starter() P/C Returns the starter of the activity
instance or the requestor of a
ForceFinish action.

137

StarterIsNull() P/B Indicates whether a starter is set. 142

StartTime() P/D Returns the start time of the
activity instance.

110

StartTimeIsNull() P/B Indicates whether a start time is
set.

142

State P/E Returns the state of the activity
instance.

111, 115

StateOfNotification() S/E Returns the notification state of the
activity instance.

111, 114

SupportTools() P/M Returns the support tools
associated with the activity
instance.

138

SymbolLayout() S/O Returns the symbol layout of the
activity instance.

139

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

ForceFinish() Force finishes the activity instance. 341

ForceFinishWithContainer() In ActiveX, force finishes the activity
instance and passes a container.

341

ForceFinish2() In Java, force finishes the activity instance
and passes a container.

341

ForceRestart() Forces the restart of the activity instance. 344

ForceRestartWithContainer() In ActiveX, force restarts the activity
instance and passes a container.

344

ForceRestart2() In Java, force restarts the activity instance
and passes a container.

344

InContainer() Retrieves the input container of the activity
instance.

347

ObtainInstanceMonitor() Retrieves the instance monitor for the
process instance the activity instance is part
of in ActiveX.

492

Activity instance

Chapter 34. Using the MQ Workflow Runtime API 259

Action methods Description Page

ObtainProcessMonitor() Retrieves the instance monitor for the
process instance the activity instance is part
of; all languages but ActiveX.

349

OutContainer() Retrieves the output container of the
activity instance.

352

Refresh() Refreshes the specified activity instance
from the server.

354

SubProcessInstance() Retrieves the process instance implementing
the activity instance of type Process.

356

Terminate() Terminates the specified activity instance. 359

ActivityInstanceArray
An activity instance array represents the result of a query for activity
instances in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the activity instance array. 41

ActivityInstanceNotification
An activity instance notification represents a notification for an activity
instance. All API calls of FmcjItem are also applicable to activity instance
notifications.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs an activity instance notification object. 94

Copy() Allocates and initializes the storage for an activity instance
notification ocopybject by copying.

99

Deallocate() Deallocates the storage for an activity instance notification
object.

99

destructor() Destructs an activity instance notification object. 99

Kind() In the C++ language, states that the object is an activity
instance notification.

101, 131

Activity instance

260 Programming Guide

Basic methods Description Page

operator=() Assigns an activity instance notification to this one. 97

operator==() Compares two activity instance notifications. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when activity instance notifications
are queried or if this attribute is a secondary attribute (S) and set only
after the refresh of a specific activity instance notification. Refreshing
can be done explicitly by issuing the Refresh() API call but is also done
automatically when a secondary (or primary) attribute is accessed and
not yet available in the API cache.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The API call
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

ActivityKind() P/E Returns the kind of the associated
activity instance, whether it is a
program or process and so on.

101, 118

ErrorReason() S/O Returns an error object describing
the reason why the associated
activity instance is in state InError.

139

ErrorReasonIsNull() S/B Indicates whether an error reason
is set.

142

ExitCondition() S/C Returns the exit condition of the
associated activity instance.

137

ExpirationTime() S/D Returns the expiration time of the
associated activity instance.

110

ExpirationTimeIsNull() S/B Indicates whether an expiration
time is set.

142

FirstNotificationTime() S/D Returns the first notification time
of the activity instance, that is, the
time when this notification has
been created.

110

Activity instance notification

Chapter 34. Using the MQ Workflow Runtime API 261

Accessor methods Set/
Type

Description Page

Implementation() P/C Returns the implementing program
or process name of the associated
activity instance.

137

ImplementationIsNull() P/B Indicates whether an
implementation is set.

142

ManualExitMode() S/B Returns whether the exit mode of
the associated activity instance is
manual.

109

ManualStartMode() S/B Returns whether the start mode of
the associated activity instance is
manual.

109

PersistentOidOfActivityInstance() P/C Returns the object ID of the
associated activity instance.

137

Priority() P/I Returns the priority of the
associated activity instance.

136

SecondNotificationTime() S/D Returns the second notification
time of the associated activity
instance.

110

SecondNotificationTimeIsNull() S/B Indicates whether a second
notification time is set.

142

Staff() S/M Returns all persons owning a work
item for the associated activity
instance.

138

StartCondition() S/C Returns the start condition of the
associated activity instance.

137

State P/E Returns the state of the associated
activity instance.

111, 115

StateOfNotification() S/E Returns the notification state of the
associated activity instance.

111, 114

SupportTools() P/M Returns the support tools
associated with the activity
instance.

138

SupportToolsIsNull() P/B Indicates whether support tools are
set.

142

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

ActivityInstance() Retrieves the associated activity instance. 363

Activity instance notification

262 Programming Guide

Action methods Description Page

StartTool() Starts the specified support tool. 366

ObtainInstanceMonitor() Returns the instance monitor for the associated
process instance in ActiveX.

492

ObtainProcessMonitor() Returns the instance monitor for the associated
process instance; all languages but ActiveX.

492

ActivityInstanceNotificationArray
An activity instance notification array represents the result of a query for
activity instance notifications in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

ActivityInstanceNotificationVector
An activity instance notification vector represents the result of a query for
activity instance notifications in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
functions.

Vector methods Description

Deallocate() Deallocates an activity instance notification vector
object.

FirstElement() Returns the first element of the activity instance
notification vector.

NextElement() Returns the next element of the activity instance
notification vector.

Size() Returns the number of elements in the activity
instance notification vector.

ActivityInstanceVector
An activity instance vector represents the result of a query for activity
instances in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Activity instance notification

Chapter 34. Using the MQ Workflow Runtime API 263

Accessor methods Description

Deallocate() Deallocates an activity instance vector object.

FirstElement() Returns the first element of the activity instance vector.

NextElement() Returns the next element of the activity instance vector.

Size() Returns the number of elements in the activity instance
vector.

Agent
An agent object represents an MQ Workflow instance in Java.

Refer to “Basic API calls” on page 93 for detailed descriptions of basicAPI
calls.

Basic methods Description Page

constructor() Constructs an agent object. Initially an agent has no context,
locator policy, or name.

94

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

addPropertyChangeListener() O Adds the specified listener to the
set of listeners to be notified of
property changes.

145

addVetoableChangeListener() O Adds the specified listener to the
set of listeners to be notified of
vetoable property changes.

145

getConfigurationID() C Returns the configuration to be
used for profile accesses.

137

getExecutionAgent() O Returns a program execution agent
to the calling activity
implementation provided that the
LOC_LOCATOR policy was used.
Otherwise, null is returned.

139

Activity instance vector

264 Programming Guide

Accessor methods Type Description Page

getLocator() I Returns the locator policy; can be
COS_LOCATOR, IOR_LOCATOR,
LOC_LOCATOR, OSA_LOCATOR,
RMI_LOCATOR.

136

getName() C Returns the name of the agent. If
the agent is not bound, an empty
string is returned.

137

isBound() B Indicates whether the agent bean is
bound to a Java CORBA agent.

109

locate() O Locates the execution service in the
provided system group and
system.

139

removePropertyChangeListener() O Removes the specified listener
from the set of listeners.

145

removeVetoableChangeListener() O Removes the specified listener
from the set of listeners.

145

setConfigurationID() C Sets the configuration ID to be
used for profile access by the
agent. A locator policy of
LOC_LOCATOR is automatically
set. Such, a
java.beans.PropertyVetoException
is thrown when the policy has
already been set using the
setLocator() method. Only one
configuration can be used per
application process. Configuration
IDs for other than the
LOC_LOCATOR policies are to be
passed as command line
parameters to the agent program.

137

setContext() O Sets the context of the agent. This
call must precede a setName() call.
An applet must set the context by
issuing an
agent.setContext(this,null);

139

Agent

Chapter 34. Using the MQ Workflow Runtime API 265

Accessor methods Type Description Page

setLocator() I Sets the locator policy; can be
COS_LOCATOR, IOR_LOCATOR,
LOC_LOCATOR, OSA_LOCATOR,
RMI_LOCATOR. If
LOC_LOCATOR is set, the default
configuration ID for profile access
is automatically used. Such, a
java.beans.PropertyVetoException
is thrown when the policy has
already been set using the
setConfigurationID() method.
Configuration IDs for other than
the LOC_LOCATOR policies are to
be passed as command line
parameters to the agent program.

This call must precede a setName()
call.
Note: Java RMI agents should
only be used for prototyping. They
are currently not suited for
production purposes.

142

setName() C Sets the name of the agent to be
contacted as the result of this call.

137

toString() C Returns the name of the agent. 137

versionInfo() C Returns the version of the agent,
that is, only useful formation is
returned when the agent is bound.

137

Container
A container represents an input or output data container of a process instance
or work item. All accessor API calls of a container are applicable to
read-only and read/write containers.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

IsEmpty() Indicates whether no container information is available. 101

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

Agent

266 Programming Guide

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

AllLeafCount() I Returns the number of leaf elements of the
container including the MQ Workflow
predefined members.

54

AllLeaves() M Returns all leaf elements of the container
including the MQ Workflow predefined
members.

54

ArrayBinaryLength() I Returns the length of the value of the
specified container leaf element in the
C-language. The leaf is part of an array and
of type BINARY.

65

ArrayBinaryValue() C Returns the value of the specified container
leaf element in the C-language. The leaf is
part of an array and of type BINARY.

65

ArrayFloatValue() F Returns the value of the specified container
leaf element in the C-language. The leaf is
part of an array and of type FLOAT.

65

ArrayLongValue() I Returns the value of the specified container
leaf element in the C-language. The leaf is
part of an array and of type LONG.

66

ArrayStringLength() I Returns the length of the value of the
specified container leaf element in the
C-language. The leaf is part of an array and
of type STRING.

66

ArrayStringValue() C Returns the value of the specified container
leaf element in the C-language. The leaf is
part of an array and of type STRING.

66

AsStream() C Returns the container as a binary stream of
data.

137

BinaryLength() I Returns the length of the value of the
specified container leaf element. The leaf is
of type BINARY. Binaries are not supported
in ActiveX.

65,66

BinaryValue() C Returns the value of the specified container
leaf element in the C-language. The leaf is
of type BINARY. Binaries are not supported
in ActiveX.

65

Container

Chapter 34. Using the MQ Workflow Runtime API 267

Accessor methods Type Description Page

FloatValue() F Returns the value of the specified container
leaf element in the C-language. The leaf is
of type FLOAT.

65

FromStream() P In ActiveX, constructs a transient container
object from the stream passed.

140

getBuffer() C Returns the value of the specified container
leaf element in Java. The leaf is of type
BINARY.

67

getBuffer2() C Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type BINARY.

67

getDouble() F Returns the value of the specified container
leaf element in Java. The leaf is of type
FLOAT.

67

getDouble2() F Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type FLOAT.

67

GetElement() O Provides access to a container element. 63

getLong() I Returns the value of the specified container
leaf element in Java. The leaf is of type
LONG.

68

getLong2() C Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type LONG.

68

getString() C Returns the value of the specified container
leaf element in Java. The leaf is of type
STRING.

68

getString2() C Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type STRING.

68

GetValueDbl() F Returns the value of the specified container
leaf element in ActiveX. The leaf is of type
FLOAT.

64

GetValueLng() I Returns the value of the specified container
leaf element in ActiveX. The leaf is of type
LONG.

64

GetValueStr() C Returns the value of the specified container
leaf element in ActiveX. The leaf is of type
STRING.

64

LeafCount() I Returns the number of user-defined leaf
elements of the container.

54

Container

268 Programming Guide

Accessor methods Type Description Page

Leaves() M Returns all user-defined leaf elements of the
container.

54

LongValue() I Returns the value of the specified container
leaf element in the C-language. The leaf is
of type LONG.

66

MemberCount() I Returns the number of structural members
in the container.

55

SetStringCcsid() C Sets the CCSID to be used for reading or
writing strings in the container.

137

SetValue() F/C/I Sets the value of the specified container
element in ActiveX.

75

SetValueDbl() F Sets the value of the specified container leaf
element in ActiveX. The leaf element is of
type FLOAT.

73

SetValueLng() F Sets the value of the specified container leaf
element in ActiveX. The leaf element is of
type LONG.

73

SetValueStr() F Sets the value of the specified container leaf
element in ActiveX. The leaf element is of
type STRING.

73

StreamLength() I In the C and C++ languages, returns the
length of the buffer needed to hold the
container in stream format.

136

StringLength() I Returns the length of the value of the
specified container leaf element in the
C-language. The leaf is of type STRING.

66

StringValue() C Returns the value of the specified container
leaf element in the C-language. The leaf is
of type STRING.

66

StructMembers() M Returns the structural members of the
container.

55

Type() C Returns the type of the container, that is,
the data structure name.

56

Value() C/I/F/N Returns the value of the specified container
leaf element in the C++ language.

66

Refer to “Activity implementation API calls” on page 151 for detailed
descriptions of activity implementation API calls.

Container

Chapter 34. Using the MQ Workflow Runtime API 269

Activity implementation methods Description Page

InContainer() Accesses the input container from within an
activity implementation; for Java see the
ExecutionAgent.

369

OutContainer() Accesses the output container from within
an activity implementation; for Java see the
ExecutionAgent.

371

RemoteInContainer() Accesses the input container from within a
program started by an activity
implementation; for Java see the
ExecutionAgent.

373

RemoteOutContainer() Accesses the output container from within a
program started by an activity
implementation; for Java see the
ExecutionAgent.

376

SetOutContainer() Sets the output container from within an
activity implementation; for Java see the
ExecutionAgent.

378

SetRemoteOutContainer() Sets the output container from within a
program started by an activity
implementation; for Java see the
ExecutionAgent.

380

ContainerArray
A container array represents an array of containers in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

Add() Adds the element to the array. 40

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

RemoveAt() Removes the element at the indicated position. 42

ContainerElement
A container element represents an arbitrary element of a container.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Container

270 Programming Guide

Basic methods Description Page

constructor() Constructs a container element object. 94

Copy() Allocates and initializes the storage for a container element
object by copying.

99

Deallocate() Deallocates the storage for a container element object. 99

destructor() Destructs a container element object. 99

Equal() Compares two container elements. 97

operator=() Assigns a container element to another one. 97

operator==() Compares two container elements. 97

IsEmpty() Indicates whether no container element information is
available.

101

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties because a container
element describes a part of a container.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

ArrayBinaryLength() I Returns the length of the value of the
specified container element leaf element in
the C-language. The leaf is part of an array
and of type BINARY.

69

ArrayBinaryValue() C Returns the value of the specified container
element leaf element in the C-language. The
leaf is part of an array and of type BINARY.

69

ArrayElements() M Returns the array elements of the container
element.

62

ArrayFloatValue() F Returns the value of the specified container
element leaf element in the C-language. The
leaf is part of an array and of type FLOAT.

70

ArrayLongValue() I Returns the value of the specified container
element leaf element in the C-language. The
leaf is part of an array and of type LONG.

70

Container element

Chapter 34. Using the MQ Workflow Runtime API 271

Accessor methods Type Description Page

ArrayStringLength() I Returns the length of the value of the
specified container element leaf element in
the C-language. The leaf is part of an array
and of type STRING.

70

ArrayStringValue() C Returns the value of the specified container
element leaf element in the C-language. The
leaf is part of an array and of type STRING.

70

BinaryLength() I Returns the length of the value of the
specified container element leaf element.
The leaf is of type BINARY. Binaries are not
supported in ActiveX.

69,71

BinaryValue() C Returns the value of the specified container
element leaf element in the C-language. The
leaf is of type BINARY. Binaries are not
supported in ActiveX.

69

Cardinality() I Returns the number of array elements of
the container element.

62

FloatValue() F Returns the value of the specified container
element leaf element in the C-language. The
leaf is of type FLOAT.

70

FullName() C Returns the fully-qualified dotted name of
the container element.

57

getBuffer() C Returns the value of the specified container
element leaf element in Java. The leaf is of
type BINARY.

72

getBuffer2() C Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type BINARY.

72

getDouble() F Returns the value of the specified container
element leaf element in Java. The leaf is of
type FLOAT.

72

getDouble2() F Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type FLOAT.

72

GetElement() O Provides access to an element of the
container element.

63

getLong() I Returns the value of the specified container
element leaf element in Java. The leaf is of
type LONG.

72

getLong2() I Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type LONG.

72

Container element

272 Programming Guide

Accessor methods Type Description Page

getString() C Returns the value of the specified container
element leaf element in Java. The leaf is of
type STRING.

72

getString2() C Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type STRING.

72

GetValueDbl() F Returns the value of the specified container
leaf element in ActiveX. The leaf is of type
FLOAT.

69

GetValueLng() I Returns the value of the specified container
leaf element in ActiveX. The leaf is of type
LONG.

69

GetValueStr() C Returns the value of the specified container
leaf element in ActiveX. The leaf is of type
STRING.

69

IsArray() B Indicates whether the container element is
an array.

58

IsLeaf() B Indicates whether the container element is a
leaf.

58

IsStruct() B Indicates whether the container element is a
structure itself.

58

LeafCount() I Returns the number of leaf elements of the
container element.

59

Leaves() M Returns all leaf elements of the container
element.

59

LongValue() I Returns the value of the specified container
element leaf element in the C-language. The
leaf is of type LONG.

70

MemberCount() I Returns the number of structural members
in the container element.

60

Name() C Returns the name of the container element. 57

StringLength() I Returns the length of the value of the
specified container element leaf element in
the C-language. The leaf is of type STRING.

70

StringValue() C Returns the value of the specified container
element leaf element in the C-language. The
leaf is of type STRING..

70

StructMembers() M Returns the structural members of the
container element.

60

Type() C Returns the type of the container element,
that is, the data structure name.

57

Container element

Chapter 34. Using the MQ Workflow Runtime API 273

Accessor methods Type Description Page

Value() C/I/F/N Returns the value of the specified container
element leaf element in the C++ language.

71

ContainerElementArray
A container element array represents the result of a query for container
elements in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

Add() Adds the element to the array. 40

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

RemoveAt() Removes the element at the indicated position. 42

ContainerElementVector
A container element vector represents the result of a query for container
elements in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
functions.

Vector methods Description

Deallocate() Deallocates a container element vector object.

FirstElement() Returns the first element of the container element
vector.

NextElement() Returns the next element of the container element
vector.

Size() Returns the number of elements in the container
element vector.

ControlConnectorArray
A control connector array represents the result of a query for control
connector instances in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Container element

274 Programming Guide

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

ControlConnectorInstance
A control connector instance object represents a control connector between
two activity instances and its state.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a control connector instance object. 94

Copy() Allocates and initializes the storage for a control connector
instance object by copying.

99

Deallocate() Deallocates the storage for a control connector instance object. 99

destructor() Destructs a control connector instance object. 99

Equal() Compares two control connector instance objects on the basis
of their source and target activity instances.

97

IsEmpty() Indicates whether no control connector instance information
is available.

101

Kind() States the kind of the control connector instance, whether it is
a transition condition or the "otherwise" connector.

101, 120

operator=() Assigns a control connector instance object to this one. 97

operator==() Compares two control connector instance objects on the basis
of their source and target activity instances.

97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

BendPoints() M Returns the bend points of the control
connector instance.

138

Control connector array

Chapter 34. Using the MQ Workflow Runtime API 275

Accessor methods Type Description Page

Name() C Returns the name associated with the
control connector instance.

137

NameIsNull() B Indicates whether a name is set. 142

PersistentOidOfSourceActivity() C Returns the object ID of the activity
instance which is the source of this
control connector instance.

137

PersistentOidOfTargetActivity() C Returns the object ID of the activity
instance which is the target of this
control connector instance.

137

State() E Returns the state of the control
connector instance, whether it is
evaluated, and the result of
evaluation.

111, 119

TransitionCondition() C Returns the transition condition of the
control connector instance.

137

TransitionConditionIsNull() B Indicates whether a transition
condition is set.

142

ControlConnectorInstanceVector
A control connector instance vector represents the result of a query for control
connector instances in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a control connector instance vector object.

FirstElement() Returns the first element of the control connector
instance vector.

NextElement() Returns the next element of the control connector
instance vector.

Size() Returns the number of elements in the control
connector instance vector.

DateAndTime/ FmcjDateTime/ FmcjCDateTime
A DateAndTime object represents date and time values in the ActiveX
language. An FmcjDateTime object represents date and time values in the C++
language. An FmcjCDateTime structure represents date and time values in the
C-language.

Date/time values are expressed in local time.

Control connector instance

276 Programming Guide

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls. Following methods are only available in the C++ language.

Basic methods Description Page

constructor() Constructs a date/time object. 94

destructor() Destructs a date/time object. 99

operator=() Assigns a date/time object to another one. 97

operator==() Compares two date/time objects. 97

operator string() Returns the string representation of the date/time object. 137

IsEmpty() Indicates whether no date/time information is available. 101

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. Because a date/time object represents a supporting object
on the client only, the distinction between primary and secondary attributes is
not applicable.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Following methods are only available in the C++ and ActiveX language.

Accessor methods Type Description Page

Day() I Returns the day of the date/time object. 136

Hour() I Returns the hours of the date/time object. 136

Minute() I Returns the minutes of the date/time object. 136

Month() I Returns the month of the date/time object. 136

Second() I Returns the sceonds of the date/time object. 136

Year() I Returns the year of the date/time object. 136

Following methods are only available in the C-language.

Accessor functions Type Description Page

FmcjDateTimeAsString C Returns the string representation of the
date/time structure.

137

FmcjDateTimeCurrentTime D Returns the current date/time. 110

Date/time

Chapter 34. Using the MQ Workflow Runtime API 277

Accessor functions Type Description Page

FmcjDateTimeIsValid B Indicates whether the passed date/time is a
valid date/time; must be greater or equal
1970-1-1 12:00 (yyyy-mm-dd hh:mm).

109

DllOptions
A DllOptions object represents the program implementation definitions for a
dynamic link library.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a DLL options object. 94

Copy() Allocates and initializes the storage for a DLL options object
by copying.

99

Deallocate() Deallocates the storage for a DLL options object. 99

destructor() Destructs a DLL options object. 99

IsEmpty() Indicates whether no DLL options information is available. 101

operator=() Assigns a DLL options object to this one. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

EntryPointName() C Returns the name of the entry point of the
DLL.

137

ExecuteFenced() B States whether the DLL should run in a
separate address space.

109

ExecuteFencedIsNull() B Indicates whether execute fended is set. 142

KeepLoaded() B States whether the DLL should stay loaded. 109

KeepLoadedIsNull() B Indicates whether keep loaded is set. 142

PathAndFileName() C Returns the path and file name of the DLL. 137

Date/time

278 Programming Guide

ExecutionAgent/FmcjPEA
A PEA or ExecutionAgent object represents an MQ Workflow program
execution agent.

Refer to “Activity implementation API calls” on page 151 for detailed
descriptions of activity implementation API calls.

Activity implementation methods Description Page

InContainer() Accesses the input container from within an
activity implementation in Java; for
non-Java see the Container.

369

OutContainer() Accesses the output container from within
an activity implementation in Java; for
non-Java see the Container.

371

PersistentOidOfActivityInstance() Returns the object ID of the associated
activity instance.

152

ProgramID() Returns the program identification by
which the invoked activity implementation
or support tool is known to the program
execution agent.

152

RemoteInContainer() Accesses the input container from within a
program started by an activity
implementation in Java; for non-Java see
the Container.

373

RemoteOutContainer() Accesses the output container from within a
program started by an activity
implementation in Java; for non-Java see
the Container.

376

RemotePersistentOid
OfActivityInstance()

Returns the object ID of the activity
instance on whose behalf the activity
implementation who started this program
was originally started.

152

RemoteUserID() Returns the user identification on whose
behalf the activity implementation who
started this program was originally started.

152

UserID() Returns the user identification on whose
behalf the activity implementation was
started.

152

SetOutContainer() Sets the output container from within an
activity implementation in Java; for
non-Java see the Container.

378

Execution agent/ FmcjPea

Chapter 34. Using the MQ Workflow Runtime API 279

Activity implementation methods Description Page

SetRemoteOutContainer() Sets the output container from within a
program started by an activity
implementation in Java; for non-Java see
the Container.

380

ExecutionData
An execution data object represents data sent from an MQ Workflow
execution server.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs an execution data object. 94

Copy() Allocates and initializes the storage for an execution data
object by copying.

99

Deallocate() Deallocates the storage for an execution data object. 99

destructor() Destructs an execution data object. 99

IsEmpty() Indicates whether no execution data information is available. 101

Kind() Returns the kind of the data, whether it is describing a work
item creation, deletion, and so on.

101, 121

operator=() Assigns an execution data object to this one. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

ActivityInstanceNotificationFromData() P Creates an activity instance
notification from the execution
data.

140

ErrorFromData() P Creates an error description
object from the execution data.

140

IsError() B States whether the execution
data describes an erroneous
situation.

109

Execution agent/ FmcjPea

280 Programming Guide

Accessor methods Type Description Page

PersistentOid() C Returns a representation of the
object ID of the object
described by the execution
data.

137

ProcessInstanceFromData() P Creates a process instance from
the execution data.

140

ProcessInstanceNotificationFromData() P Creates a process instance
notificationfrom the execution
data.

140

ReadOnlyContainerFromData() P Creates a container object from
the execution data.

140

WorkitemFromData() P Creates a work item from the
execution data.

140

UserContext() C Returns the user context. 137

UserContextIsNull() B States whether a user context
had been specified.

142

ExecutionService
An execution service object represents a user session to an execution server.
All API calls provided by FmcjService are also applicable.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

Allocate() Allocates the storage for an execution service
object. The execution server to connect to is
taken from the MQ Workflow user’s or
configuration profile in the currently set
configuration.

94

AllocateForSystem() Allocates the storage for the specified execution
service object. The execution server to connect
to is taken from the specified parameters in the
currently set configuration.

94

AllocateForGroup() Allocates the storage for the specified execution
service object. The execution server to connect
to can be any system within the specified
system group in the currently set configuration.

94

constructor() Constructs an execution service object. 94

Copy() Allocates and initializes the storage for an
execution service object by copying.

99

Execution data

Chapter 34. Using the MQ Workflow Runtime API 281

Basic methods Description Page

Deallocate() Deallocates the storage for an execution service
object.

99

destructor() Destructs an execution service object. 99

Equal() Compares two execution service objects if they
represent the same session.

97

operator=() Assigns an execution service object to this one. 97

operator==() Compares two execution service objects if they
represent the same session.

97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessorAPI calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

PersistentActivityInstance() P Constructs a transient activity
instance object representing the
persistent object identified by the
passed object identification; does
not contact the server.

140

PersistentActivityInstanceNotification() P Constructs a transient activity
instance notification object
representing the persistent object
identified by the passed object
identification; does not contact the
server.

140

PersistentInstanceMonitor() P Constructs a transient instance
monitor object representing the
persistent object identified by the
passed object identification; does
not contact the server.

140

PersistentPerson() P Constructs a transient person
object representing the persistent
object identified by the passed user
identification; does not contact the
server.

140

Execution service

282 Programming Guide

Accessor methods Type Description Page

PersistentProcessInstance() P Constructs a transient process
instance object representing the
persistent object identified by the
passed object identification; does
not contact the server.

140

PersistentProcessInstanceList() P Constructs a transient process
instance list object representing the
persistent object identified by the
passed object identification; does
not contact the server.

140

PersistentProcessInstanceNotification() P Constructs a transient process
instance notification object
representing the persistent object
identified by the passed object
identification; does not contact the
server.

140

PersistentProcessTemplate() P Constructs a transient process
template object representing the
persistent object identified by the
passed object identification; does
not contact the server.

140

PersistentProcessTemplateList() P Constructs a transient process
template list object representing
the persistent object identified by
the passed object identification;
does not contact the server.

140

PersistentWorkitem() P Constructs a transient work item
object representing the persistent
object identified by the passed
object identification; does not
contact the server.

140

PersistentWorklist() P Constructs a transient worklist
object representing the persistent
object identified by the passed
object identification; does not
contact the server.

140

ProgramDataFromStream() P Constructs a transient program
data object from the stream passed.
The specified stream length must
be equal or greater to the length
returned by the StreamLength()
API call when the stream was
retrieved. Otherwise, the result of
calling this method is
undetermined.

140

Execution service

Chapter 34. Using the MQ Workflow Runtime API 283

Accessor methods Type Description Page

ProgramTemplateFromStream() P Constructs a transient program
template object from the stream
passed. The specified stream
length must be equal or greater to
the length returned by the
StreamLength() API call when the
stream was retrieved. Otherwise,
the result of calling this method is
undetermined.

140

ReadOnlyContainerFromStream() P Constructs a transient read-only
container object from the stream
passed. The specified stream
length must be equal or greater to
the length returned by the
StreamLength() API call when the
stream was retrieved. Otherwise,
the result of calling this method is
undetermined.

140

ReadWriteContainerFromStream() P Constructs a transient read/write
container object from the stream
passed. The specified stream
length must be equal or greater to
the length returned by the
StreamLength() API call when the
stream was retrieved. Otherwise,
the result of calling this method is
undetermined.

140

SessionID() C Returns a string representation of
the session.

137

SetSessionContext() C Associates the execution service
object with the session identified
by the passed session
identification.

144

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

CreateProcessInstanceList() Creates a new process instance list on
the execution server.

384

CreateProcessTemplateList() Creates a new process template list on
the execution server.

391

CreateWorklist() Creates a new worklist on the execution
server.

398

Execution service

284 Programming Guide

Action methods Description Page

Logoff() Logs off from the connected execution
server.

407

Logon(), logon() Logs on to the execution server. 409

LogonWithCredentials() Logs on to the execution server in C
and ActiveX by passing user credentials.

409

LogonWithOptions() Logs on to the execution server in
ActiveX and provides additional
parameters.

409

logon2() Logs on to the execution server in Java
and provides additional parameters.

409

logon3() Logs on to the execution server in Java
by passing user credentials.

409

logon4() Logs on to the execution server in Java
by passing user credentials and
additional parameters.

409

QueryActivityInstanceNotifications() Retrieves the activity instance
notifications the logged-on user has
access to.

423

QueryItems() Retrieves the work items or notifications
the logged-on user has access to.

431

QueryProcessInstanceLists() Retrieves the process instance lists the
logged-on user has access to.

437

QueryProcessInstanceNotifications() Retrieves the process instance
notifications the logged-on user has
access to.

440

QueryProcessInstances() Retrieves the process instances the
logged-on user has access to.

446

QueryProcessTemplateLists() Retrieves the process template lists the
logged-on user has access to.

451

QueryProcessTemplates() Retrieves the process templates the
logged-on user has access to.

454

QueryWorkitems() Retrieves the work items the logged-on
user has access to.

459

QueryWorklists() Retrieves the worklists the logged-on
user has access to.

466

Receive() Receives execution data sent by an MQ
Workflow execution server.

469

SetPersonAbsent() Sets the specified person absent or not
absent.

475

Execution service

Chapter 34. Using the MQ Workflow Runtime API 285

Action methods Description Page

TerminateReceive() Places information in the client input
queue to indicate that receiving
execution data sent by an MQ Workflow
execution server can end.

477

Refer to “Activity implementation API calls” on page 151 for detailed
descriptions of activity implementation API calls.

Activity implementation methods Description Page

Passthrough() Establishes a session between an activity
implementation and an execution server.

416

RemotePassthrough() Establishes a session between a program
started by an activity implementation and
an execution server.

472

Refer to “Program execution management API calls” on page 155 for detailed
descriptions of program execution management API calls.

Management methods Description Page

PEAShutDown() Requests to shut down the user-associated
program execution agent.

418

PEAStartUp() Starts the user-associated program
execution agent.

420

ExecutionServiceArray
An execution service array is an ActiveX means of holding an execution
service.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor methods Description Page

Add() Adds the element to the array; the MQ Workflow
user or configuration profile in the currently set
configuration is searched for the specified system
and system group.

40

AddDefault() Adds the execution service to the array; system and
system group are taken from the MQ Workflow user
or configuration profile in the currently set
configuration.

40

Execution service

286 Programming Guide

Accessor methods Description Page

AddSystemGroup() Adds the execution service to the array; any system
within the specified system group can be taken. It is
taken from the MQ Workflow user or configuration
profile in the currently set configuration.

40

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

RemoveAt() Removes the element at the indicated position. 42

Events Description Page

ExecutionServiceRemove() Removes the execution service from the array. 43

NewExecutionService() Adds a new execution service to the array. 43

ExeOptions
An ExeOptions object represents the program implementation definitions for
an executable.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs an EXE options object. 94

Copy() Allocates and initializes the storage for an EXE options object
by copying.

99

Deallocate() Deallocates the storage for an EXE options object. 99

destructor() Destructs an EXE options object. 99

operator=() Assigns an EXE options object to this one. 97

IsEmpty() Indicates whether no EXE options information is available. 101

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Execution servicearray

Chapter 34. Using the MQ Workflow Runtime API 287

Accessor methods Type Description Page

AutomaticClose() B States whether the window in which
the EXE starts should close when the
EXE ends.

109

AutomaticCloseIsNull() B Indicates whether automatic close is
set.

142

Environment() C States the environment settings for the
EXE.

137

EnvironmentIsNull() B Indicates whether an environment is
set.

142

InheritEnvironment() B States whether the environment
settings should be merged with the
operating system environment
settings.

109

PathAndFileName() C Returns the path and file name of the
EXE.

137

RunInXTerm() B States whether the EXE should start in
a separate xterm.

109

RunInXTermIsNull() B Indicates whether run in xterm is set. 142

StartInForeGround() B States whether the EXE should start in
the foreground.

109

StartInForeGroundIsNull() B Indicates whether start in foreground
is set.

142

WindowStyle() E States the initial window style. 111, 123

WindowStyleIsNull() B Indicates whether a window style is
set.

142

WorkingDirectoryName() C States the working directory for the
EXE.

137

WorkingDirectoryNameIsNull() B Indicates whether a working directory
is set.

142

ExternalOptions
An ExternalOptions object represents the program implementation definitions
for an external service.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs an External options object. 94

Exe options

288 Programming Guide

Basic methods Description Page

Copy() Allocates and initializes the storage for an External options
object by copying.

99

Deallocate() Deallocates the storage for an External options object. 99

destructor() Destructs an External options object. 99

operator=() Assigns an External options object to this one. 97

IsEmpty() Indicates whether no External options information is
available.

101

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

BackwardMappingFormat() C Specifies the format of the
mapping from the structure the
executable uses to an MQ
Workflow container.

137

BackwardMappingFormatIsNull() B Indicates whether a backward
mapping format is set.

142

BackwardMappingParameters() M Returns backward mapping
parameters, if any.

138

BackwardMappingParametersIsNull() B Indicates whether backward
mapping parameters are set.

142

CodePage() I Specifies the code page of the
service.

136

CodePageIsNull() B Indicates whether a code page
is set.

142

ExecutableName() C Specifies the executable to be
invoked by the invocation type
and service.

137

ExecutableType() C Identifes the type of the
executable.

137

External options

Chapter 34. Using the MQ Workflow Runtime API 289

Accessor methods Type Description Page

ForwardMappingFormat() C Specifies the format for the
mapping from an MQ
Workflow container to the
structure the executable uses.

137

ForwardMappingFormatIsNull() B Indicates whether a forward
mapping format is set.

142

ForwardMappingParameters() M Returns forward mapping
parameters, if any.

138

ForwardMappingParametersIsNull() B Indicates whether forward
mapping parameters are set.

142

InvocationType() C Specifies the invocation
mechanism to invoke the
executable on the service.

137

IsLocalUser() B Returns whether a local user is
to be resolved instead of using
the MQ Workflow user ID.

109

IsMappingRoutineCall() B Specifies whether forward and
backward mapping routines are
to be called.

109

IsSecurityRoutineCall() B Specifies whether a security
routine is to be called.

109

MappingType() C Identifies the type of mapping
that should occur.

137

MappingTypeIsNull() B Indicates whether a mapping
type is set.

142

ServiceName() C Identifies the service that is to
be called.

137

ServiceType() C Identifies the type of service to
be called, for example, CICS(R)
or IMS(TM).

137

TimeoutPeriod() E Specifies how long the program
execution agent should wait for
a response from the started
service, forever, a time period,
or never.

111, 124

TimeoutInterval() I Specifies the timeout interval in
seconds.

136

TimeoutIntervalIsNull() B Indicates whether a timeout
interval is set.

142

External options

290 Programming Guide

FmcError/FmcjError
An FmcError or FmcjError object represents a description of the reason why a
work item or activity instance is in state InError. It also describes an error
returned as an asynchronous response.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs an Error object. 94

Copy() Allocates and initializes the storage for an Error object by
copying.

99

Deallocate() Deallocates the storage for an Error object. 99

destructor() Destructs an Error object. 99

Equal() Compares two Error objects on the basis of their return codes
and parameters.

97

IsEmpty() Indicates whether no Error information is available. 101

operator=() Assigns an Error object to this one. 97

operator==() Compares two Error objects on the basis of their return codes
and parameters.

97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

MessageText() C Returns the error as an NLS regarding
formatted message.

137

Parameters() M Returns the parameters of the error; these
are to be incorporated into the message
text.

138

Rc() I Returns the return code remembered in the
error object.

136

FmcException
An FmcException object represents a description of an exception thrown by
Java.

FmcError/FmcjError

Chapter 34. Using the MQ Workflow Runtime API 291

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor
methods

Type Description Page

MessageText() C Returns the exception as an NLS regarding
formatted message.

137

nestedException() - Returns an exception thrown by the communication
layer.
Note: The nested exception can be inspected by
(down-)casting to either
org.omg.CORBA.SystemException or to
java.rmi.RemoteException depending on the used
communication protocol. However, doing so will
make the client code protocol-dependent (unless it
deals with both cases). When using local bindings
the nested exception will always be null.

137

origin() C Returns the module that threw the exception. 137

Parameters() M Returns the parameters of the error; these are
already incorporated into the message text.

138

Rc() I Returns the return code remembered in the error
object.

136

Global
An API global object serves to group global MQ Workflow API API calls.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description

Connect() Initializes the API in the current thread; not supported
in Java.

Disconnect() Deinitializes the API in the current thread; not
supported in Java.

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

FmcException

292 Programming Guide

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

ConfigurationID() C Returns the configuration ID to be
used for profile access.

137

SetConfigurationID() C Sets the configuration ID to be used
for profile access. Can only be set
before the first profile usage; normally
the Logon(). Only one configuration
can be used per application process.

137

ImplementationData
An implementation data object represents the program implementation
definitions.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs an implementation data object. 94

Copy() Allocates and initializes the storage for an implementation
data object by copying.

99

Deallocate() Deallocates the storage for an implementation data object. 99

destructor() Destructs an implementation data object. 99

operator=() Assigns an implementation data object to this one. 97

IsEmpty() Indicates whether no implementation data information is
available.

101

Kind() States the actual kind of the implementation data, whether it
is a DLL or an EXE.

101, 127

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Global

Chapter 34. Using the MQ Workflow Runtime API 293

Accessor methods Type Description Page

CommandLineParameters() C Returns the command line
parameters to be passed to the
invoked program.

137

CommandLineParametersIsNull() B Indicates whether command line
parameters are set.

142

DllOptions() P Returns the description of a DLL,
if the implementation is a DLL.

140

ExeOptions() P Returns the description of an EXE,
if the implementation is an EXE.

140

ExternalOptions() P Returns the description of external
options, if the implementation is
an external service.

140

options() P Returns the description of an EXE,
a DLL, or an external service in
Java.

140

Platform() E Returns the operating system
platform this implementation data
describes.

111, 125

ImplementationDataVector
An implementation data vector represents the result of a query for
implementation data in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates an implementation data vector object.

FirstElement() Returns the first element of the implementation data
vector.

NextElement() Returns the next element of the implementation data
vector.

Size() Returns the number of elements in the implementation
data vector.

InstanceMonitor
An instance monitor object represents a monitor in the API. It can be the
monitor of a process instance, a monitor of an activity instance of type Block,
or a monitor of an activity instance of type Process.

Implementation data

294 Programming Guide

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs an instance monitor object. 94

Copy() Allocates and initializes the storage for an instance monitor
object by copying.

99

Deallocate() Deallocates the storage for an instance monitor object. 99

destructor() Destructs an instance monitor object. 99

Equal() Compares two instance monitor objects. 97

operator=() Assigns an instance monitor object to this one. 97

operator==() Compares two instance monitor objects. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

ActivityInstances() M Returns the activity instances which are
represented by the instance monitor. The
activity instances contain both primary and
secondary values.

138

ControlConnectorInstances() M Returns the control connector instances
which are represented by the instance
monitor.

138

PersistentOid() P/C Returns a representation of the object
identification of the instance monitor.

137

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

ObtainBlockMonitor() Returns the instance monitor for an activity
instance of type Block; all languages but
ActiveX. The activity instance is part of the
set of activity instances represented by the
instance monitor.

481

Instance monitor

Chapter 34. Using the MQ Workflow Runtime API 295

Action methods Description Page

ObtainInstanceMonitor() Returns the instance monitor for an activity
instance of type Block or Process in ActiveX.
The activity instance is part of the set of
activity instances represented by the
instance monitor.

481

ObtainProcessMonitor() Returns the instance monitor for an activity
instance of type Process; all languages but
ActiveX. The activity instance is part of the
set of activity instances represented by the
instance monitor.

481

Refresh() Refreshes the instance monitor from the
MQ Workflow execution server.

484

Item
An item represents a work item, an activity instance notification, or a process
instance notification. This means that all API calls of an item are also
applicable to work items, activity instance notifications, and process
instance notifications.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs an item object. 94

Copy() Allocates and initializes the storage for an item object by
copying.

99

Deallocate() Deallocates the storage for an item object. 99

destructor() Destructs an item object. 99

Equal() Compares two items. 97

IsComplete() Indicates whether the complete item information is available. 100

IsEmpty() Indicates whether no item information is available. 101

Kind() States the actual kind of the item, whether it is a work item
or some kind of notification.

101, 131

operator=() Assigns an item to this one. 97

operator==() Compares two items. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor and mutator API calls.

Instance monitor

296 Programming Guide

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when items are queried or if this
attribute is a secondary attribute (S) and set only after the refresh of a
specific item. Refreshing can be done explicitly by issuing the Refresh()
API call but is also done automatically when a secondary (or primary)
attribute is accessed and not yet available in the API cache.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The API call
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

Category() P/C Returns the process category of the
item.

137

CategoryIsNull() P/B Indicates whether a category is set. 142

CreationTime() P/D Returns the creation time of the
item.

110

Description() P/C Returns the description of the item. 137

DescriptionIsNull() P/B Indicates whether a description is
set.

142

Documentation() S/C Returns the documentation of the
item.

137

DocumentationIsNull() S/B Indicates whether a documentation
is set.

142

EndTime() S/D Returns the ending time of the
item.

110

EndTimeIsNull() S/B Indicates whether an end time is
set.

142

Icon() P/C Returns the icon associated with
the item.

137

InContainerName() S/C Returns the name of the input
container of the item.

137

LastModificationTime() P/D Returns the last time a primary
attribute of the item was changed.

110

Item

Chapter 34. Using the MQ Workflow Runtime API 297

Accessor methods Set/
Type

Description Page

Name() P/C Returns the name of the item. In
the C-language, a work item or
activity instance notification
requires a buffer of at least 33
bytes, a process instance
notification a buffer of at least 64
bytes.

137

OutContainerName() S/C Returns the name of the output
container of the item.

137

Owner() P/C Returns the user ID of the owner
of the item.

137

PersistentOid() P/C Returns a representation of the
object identification of the item.

137

PersistentOidOfProcessInstance() P/C Returns the object ID of the
associated process instance.

137

ProcessAdmin() S/C Returns the user ID of the process
administrator of the item.

137

ProcessInstanceName() P/C Returns the name of the process
instance the item is part of.

137

ProcessInstanceState() P/E Returns the state of the process
instance the item is part of.

111, 133

ProcessInstanceSystemGroupName() S/C Returns the name of the system
group of the process instance the
item is part of.

137

ProcessInstanceSystemName() S/C Returns the name of the system of
the process instance the item is
part of.

137

ReceivedAs() P/E Returns the reason why the item
was received.

111, 112

ReceivedTime() P/D Returns the time when the item
was received by the current owner.

110

StartTime() S/D Returns the start time of the item. 110

StartTimeIsNull() S/B Indicates whether a start time is
set.

142

Mutator methods Description Page

Update() Updates the item with the execution data sent by an
MQ Workflow execution server. The object IDs of the
item and of the object described by the execution
data must match.

145

Item

298 Programming Guide

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

Delete() Deletes an item. 489

ObtainProcessMonitor() Retrieves the instance monitor for the
process instance the item is part of.

492

ProcessInstance() Retrieves the process instance the item is
part of.

495

Refresh() Retrieves the complete information of the
item.

498

SetDescription() Sets the description of the item. 500

SetName() Sets the name of the item. 503

Transfer() Transfers an item to the specified user. 505

ItemVector
An item vector represents the result of a query for items in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates an item vector object.

FirstElement() Returns the first element of the item vector.

NextElement() Returns the next element of the item vector.

Size() Returns the number of elements in the item vector.

Message
A message object serves to access the MQ Workflow provided message
catalog.

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself. The API call declaration can be found in a
general format at the indicated page.

Item

Chapter 34. Using the MQ Workflow Runtime API 299

Accessor methods Type Description Page

MessageText() C Returns an NLS regarding formatted message
based on the message ID. Any parameters
passed will be incorporated.

137

PersistentList
A persistent list represents a persistent list definition. All API calls of a
persistent list are also applicable to process instance lists, process template
lists, and worklists.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

IsEmpty() Indicates whether no persistent list information is available. 101

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessorAPI calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

Description() C Returns the description of the persistent list. 137

DescriptionIsNull() B Indicates whether a description is set. 142

Filter() C Returns the filter of the persistent list. 137

FilterIsNull() B Indicates whether a filter is set. 142

Name() C Returns the name of the persistent list. 137

OwnerOfList() C Returns the user ID of the owner of the
persistent list.

137

OwnerOfListIsNull() B Indicates whether an owner is set; a public
list does not have an owner.

142

PersistentOid() C Returns a representation of the object
identification of the persistent list.

137

SortCriteria() C Returns the sort criteria of the persistent
list.

137

SortCriteriaIsNull() B Indicates whether sort criteria are set. 142

Threshold() I Returns the threshold of the persistent list. 136

Message

300 Programming Guide

Accessor methods Type Description Page

ThresholdIsNull() B Indicates whether a threshold is set. 142

Type() E Returns the type of the persistent list,
whether it is a public or private list.

111, 132

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

Delete() Deletes the persistent list. 509

Refresh() Refreshes the persistent list. 512

SetDescription() Sets the description of the persistent list. 514

SetFilter() Sets the filter of the persistent list. 517

SetSortCriteria() Sets the sort criteria of the persistent list. 520

SetThreshold() Sets the threshold of the persistent list. 522

Person
A person object represents the settings of the logged-on user.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a person object. 94

Copy() Allocates and initializes the storage for a person object by
copying.

99

Deallocate() Deallocates the storage for a person object. 99

destructor() Destructs a person object. 99

Equal() Compares two persons. 97

operator=() Assigns a person to this one. 97

operator==() Compares two persons. 97

IsComplete() Indicates whether the complete person information is
available.

100

IsEmpty() Indicates whether no person information is available. 101

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

Persistent list

Chapter 34. Using the MQ Workflow Runtime API 301

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when persons are queried or if this
attribute is a secondary attribute (S) and set only after the refresh of a
specific person. Refreshing can be done explicitly by issuing the
Refresh() API call but is also done automatically when a secondary (or
primary) attribute is accessed and not yet available in the API cache.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object (O). The API call declaration can
be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

CategoriesAuthorizedFor() P/M Returns the categories the
person is authorized for
with basic or with
administration rights. If the
person is authorized for all
categories as administrator,
no category is returned
here. If the person is
authorized for all categories
with basic rights, categories
authorized with
administration rights are
returned here.

138

CategoriesAuthorizedForAsAdmin() P/M Returns the categories the
person is authorized for
with administration rights.
If the person is authorized
for all categories with
administration rights, no
category is returned here.

138

Description() P/C Returns the description of
the person.

137

DescriptionIsNull() P/B Indicates whether a
description is set.

142

FirstName() P/C Returns the first name of
the person.

137

FirstNameIsNull() P/B Indicates whether a first
name is set.

142

IsAbsent() P/B Indicates whether the
person is absent.

109

Person

302 Programming Guide

Accessor methods Set/
Type

Description Page

IsAdminForCategory() P/B Indicates whether the
person has administrator
rights for the specified
category. Returns false if the
category does not exist. If
the person is authorized for
all categories as
administrator, then true is
returned independent of the
category existence.

109

IsAdministrator() S/B Indicates whether the
person is an administrator.

109

IsAuthorizedForAllCategories() P/B Indicates whether the
person is said to be
authorized for all categories
either with basic and/or
administration rights.

109

IsAuthorizedForAllCategoriesAsAdmin() P/B Indicates whether the
person is said to be
authorized for all categories
as administrator.

109

IsAuthorizedForAllPersons() P/B Indicates whether the
person is authorized to see
the items of all persons.

109

IsAuthorizedForAuthorizationDefinition() P/B Indicates whether the
person is authorized to
define authorizations.

109

IsAuthorizedForOperationAdministration() P/B Indicates whether the
person is authorized for
operational administrations.

109

IsAuthorizedForProcessDefinition() P/B Indicates whether the
person is authorized to
define process models.

109

IsAuthorizedForStaffDefinition() P/B Indicates whether the
person is authorized to
define persons.

109

IsAuthorizedForTopologyDefinition() P/B Indicates whether the
person is authorized to
define topological data.

109

IsManager() S/B Indicates whether the
person is a manager.

109

Person

Chapter 34. Using the MQ Workflow Runtime API 303

Accessor methods Set/
Type

Description Page

IsResetAbsence() P/B Indicates whether the
absence flag should be reset
when the person logs on.

109

LastName() P/C Returns the last name of the
person.

137

LastNameIsNull() P/B Indicates whether a last
name is set.

142

Level() P/I Returns the level of the
person.

136

Manager() S/C Returns the user
identification of the
person’s manager.

137

ManagerIsNull() S/B Indicates whether the
person’s manager is set.

142

MiddleName() P/C Returns the middle name of
the person.

137

MiddleNameIsNull() P/B Indicates whether a middle
name is set.

142

NamesOfManagedOrganizations() S/M Returns the names of
organizations the person
manages.

138

NamesOfRoles() P/M Returns the names of roles
the person belongs to.

138

NamesOfRolesToCoordinate() S/M Returns the names of roles
the person can coordinate.

138

OrganizationName() P/C Returns the name of the
organization the person
belongs to.

137

OrganizationNameIsNull() P/B Indicates whether an
organization name is set.

142

PersonID() P/C Returns the person ID of
the person.

137

PersonIDIsNull() P/B Indicates whether a person
ID is set.

142

Person

304 Programming Guide

Accessor methods Set/
Type

Description Page

PersonsAuthorizedFor() P/M Returns the persons for
whom this person is
authorized either explicitly
or by being a substitute. If
the person is authorized for
all other persons, then no
person is returned here.

138

PersonsAuthorizedForMe() S/M Returns the persons who
are authorized for this
person.

138

PersonsToStandInFor() S/M Returns the persons for
whom this person stands in.

138

Phone() P/C Returns the phone number
of the person.

137

PhoneIsNull() P/B Indicates whether a phone
is set.

142

SecondPhone() P/C Returns the alternate phone
number of the person.

137

SecondPhoneIsNull() P/B Indicates whether an
alternate phone is set.

142

Substitute() P/C Returns the substitute of the
person.

137

SubstituteIsNull() P/B Indicates whether a
substitute is set.

142

SystemName() P/C Returns the home system of
the person.

137

UserID() P/C Returns the user
identification of the person.

137

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

Refresh() Retrieves the complete person information
from the server.

527

SetAbsence() Sets the absent flag of the logged-on user to
the specified value.

529

SetSubstitute() Sets the substitute of the logged-on user to
the specified value.

531

Person

Chapter 34. Using the MQ Workflow Runtime API 305

Point
A point object represents a bend point of a control connector.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a point object. 94

Copy() Allocates and initializes the storage for a point object by
copying.

99

Deallocate() Deallocates the storage for a point object. 99

destructor() Destructs a point object. 99

Equal() Compares two point objects on the basis of their contents. 97

IsEmpty() Indicates whether no point information is available. 101

operator=() Assigns a point object to this one. 97

operator==() Compares two point objects on the basis of their contents. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

XPosition() I Returns the x-coordinate of the point. 136

YPosition() I Returns the y-coordinate of the point. 136

PointArray
A point array represents the result of a query for bend points in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

Point

306 Programming Guide

PointVector
A point vector represents the result of a query for points in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a point vector object.

FirstElement() Returns the first element of the point vector.

NextElement() Returns the next element of the point vector.

Size() Returns the number of elements in the point vector.

ProcessInstance
A process instance object represents an instance of a workflow process
template.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a process instance object. 94

Copy() Allocates and initializes the storage for a process instance
object by copying.

99

Deallocate() Deallocates the storage for a process instance object. 99

destructor() Destructs a process instance object. 99

Equal() Compares two process instances. 97

IsComplete() Indicates whether the complete process instance information
is available.

100

IsEmpty() Indicates whether no process instance information is
available.

101

operator=() Assigns a process instance to this one. 97

operator==() Compares two process instances. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when process instances are queried or
if this attribute is a secondary attribute (S) and set only after the refresh
of a specific process instance. Refreshing can be done explicitly by

Point vector

Chapter 34. Using the MQ Workflow Runtime API 307

issuing the Refresh() API call but is also done automatically when a
secondary (or primary) attribute is accessed and not yet available in the
API cache.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The API call
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

AuditMode() S/E Returns the audit mode of the
process instance.

111, 113

Category() P/C Returns the category of the process
instance.

137

CategoryIsNull() P/B Indicates whether a category is set. 142

CreationTime() S/D Returns the creation time of the
process instance.

110

Creator() S/C Returns the creator of the process
instance.

137

Description() P/C Returns the description of the
process instance.

137

DescriptionIsNull() P/B Indicates whether a description is
set.

142

Documentation() S/C Returns the documentation of the
process instance.

137

DocumentationIsNull() S/B Indicates whether a documentation
is set.

142

EndTime() S/D Returns the end time of the
process instance.

110

EndTimeIsNull() S/B Indicates whether an end time is
set.

142

Icon() P/C Returns the icon associated with
the process instance.

137

InContainerName() S/C Returns the name of the input
container of the process instance.

137

Process instance

308 Programming Guide

Accessor methods Set/
Type

Description Page

InContainerNeeded() P/B Indicates whether an input
container is needed to start the
process instance. An input
container is needed when

v There is a mapping to some
other container.

v Staff assignment data is taken
from it.

v Notification related data is taken
from it.

v A transition or exit condition
refers to a container element.

v A description refers to a
container element.

v Prompt for data at process start is
set for the process model.

109

LastModificationTime() P/D Returns the last time a primary
attribute of the process instance
was changed.

110

LastStateChangeTime() P/D Returns the last time the state of
the process instance was changed.

110

Name() P/C Returns the name of the process
instance.

137

NotificationTime() S/D Returns the notification time of the
process instance.

110

NotificationTimeIsNull() S/B Indicates whether a notification
time is set.

142

NotifiedPerson() S/C Returns the person who received
the notification.

137

NotifiedPersonIsNull() S/B Indicates whether a notified person
is set.

142

OrganizationName() S/C Returns the name of the
organization of the process
instance.

137

OrganizationNameIsNull() S/B Indicates whether an organization
name is set.

142

OutContainerName() S/C Returns the name of the output
container of the process instance.

137

Process instance

Chapter 34. Using the MQ Workflow Runtime API 309

Accessor methods Set/
Type

Description Page

ParentName() P/C Returns the name of the parent
process instance of this process
instance.

137

ParentNameIsNull() P/B Indicates whether a parent name is
set.

142

PersistentOid() P/C Returns a representation of the
object identification of the process
instance.

137

PersistentOidOfProcessTemplate() P/C Returns a representation of the
object identification of the process
template the process instance is
derived from.

137

ProcessAdmin() S/C Returns the user ID of the process
administrator of the process
instance.

137

ProcessAdminIsNull() S/B Indicates whether a process
administrator is set.

142

ProcessTemplateName() P/C Returns the name of the process
template the process instance is
derived from.

137

RoleName() S/C Returns the name of the role of the
process instance.

137

RoleNameIsNull() S/B Indicates whether a role is set. 142

Starter() S/C Returns the starter of the process
instance.

137

StarterIsNull() S/B Indicates whether a starter is set. 142

StartTime() S/D Returns the start time of the
process instance.

110

StartTimeIsNull() S/B Indicates whether a start time is
set.

142

State() P/E Returns the state of the process
instance.

111, 133

StateOfNotification() S/E Returns the notification state of the
process instance.

111, 132

SuspensionExpirationTime() P/D Returns the suspension expiration
time of the process instance.

110

SuspensionExpirationTimeIsNull() P/B Indicates whether the suspension
expiration time is set.

142

Process instance

310 Programming Guide

Accessor methods Set/
Type

Description Page

SuspensionTime() P/D Returns the time the process
instance was suspended.

110

SuspensionTimeIsNull() P/B Indicates whether the suspension
time is set.

142

SystemGroupName() P/C Returns the name of the system
group where the process instance
runs.

137

SystemName() P/C Returns the name of the system
where the process instance runs.

137

TopLevelName() P/C Returns the name of the top level
process instance of this process
instance.

137

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

Delete() Deletes the process instance. 535

InContainer() Retrieves the input container of the process
instance.

538

ObtainMonitor() Retrieves the instance monitor for the
process instance in ActiveX.

540

ObtainProcessMonitor() Retrieves the instance monitor for the
process instance; all languages but ActiveX.

540

OutContainer() Retrieves the output container of the
process instance.

543

Refresh() Retrieves the complete information of the
process instance.

545

Restart() Restarts the process instance. 548

Resume() Resumes the execution of a suspended
process instance.

550

SetDescription() Sets the description of the process instance. 552

SetName() Sets the name of the process instance. 555

Start() Starts the process instance. 557

Start2() Starts the process instance in Java and
provides an input container.

557

Suspend() Suspends the process instance. 560

Process instance

Chapter 34. Using the MQ Workflow Runtime API 311

Action methods Description Page

Suspend2() Suspends the process instance in Java until
the specified calendar date.

560

SuspendUntil() Suspends the process instance until the
specified time.

560

Terminate() Terminates the process instance. 563

ProcessInstanceList
A process instance list represents a group of process instances. All API calls
of a persistent list are also applicable to process instance lists.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a process instance list object. 94

Copy() Allocates and initializes the storage for a process instance list
object by copying.

99

Deallocate() Deallocates the storage for a process instance list object. 99

destructor() Destructs a process instance list object. 99

Equal() Compares two process instance lists. 97

operator=() Assigns a process instance list to this one. 97

operator==() Compares two process instance lists. 97

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

QueryProcessInstances() Retrieves the process instances qualifying
via the process instance list.

567

ProcessInstanceListArray
A process instance list array represents the result of a query for process
instance lists in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 41

Process instance

312 Programming Guide

Accessor
methods

Description Page

GetSize() Returns the number of elements in the array. 41

Events Description Page

NewProcessInstanceList() Adds a new process instance list to the array. 43

ProcessInstanceListRemove() Removes the process instance list from the array. 43

ProcessInstanceListVector
A process instance list vector represents the result of a query for process
instance lists in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a process instance list vector object.

FirstElement() Returns the first element of the process instance list
vector.

NextElement() Returns the next element of the process instance list
vector.

Size() Returns the number of elements in the process instance
list vector.

ProcessInstanceNotification
A process instance notification represents a notification raised for a process
instance. All API calls of an FmcjItem are also applicable to process instance
notifications.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a process instance notification object. 94

Copy() Allocates and initializes the storage for a process instance
notification object by copying.

99

Deallocate() Deallocates the storage for a process instance notification
object.

99

destructor() Destructs a process instance notification object. 99

Kind() In the C++ language, states that the object is a process
instance notification.

101, 131

Process instance list array

Chapter 34. Using the MQ Workflow Runtime API 313

Basic methods Description Page

operator=() Assigns a process instance notification to this one. 97

operator==() Compares two process instance notifications. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when process instances are queried or
if this attribute is a secondary attribute (S) and set only after the refresh
of a specific process instance. Refreshing can be done explicitly by
issuing the Refresh() API call but is also done automatically when a
secondary (or primary) attribute is accessed and not yet available in the
API cache.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The API call
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

NotificationTime() S/D Returns the notification time of the
process instance.

110

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

ObtainInstanceMonitor() Returns the instance monitor for the
associated process instance in ActiveX.

492

ProcessInstanceNotificationArray
A process instance notification array represents the result of a query for
process instance notifications in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 41

Process instance notification

314 Programming Guide

Accessor
methods

Description Page

GetSize() Returns the number of elements in the array. 41

ProcessInstanceNotificationVector
A process instance notification vector represents the result of a query for
process instance notifications in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a process instance notification vector
object.

FirstElement() Returns the first element of the process instance
notification vector.

NextElement() Returns the next element of the process instance
notification vector.

Size() Returns the number of elements in the process
instance notification vector.

ProcessInstanceVector
A process instance vector represents the result of a query for process instances
in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates the storage for a process instance vector
object.

FirstElement() Returns the first element of the process instance
vector.

NextElement() Returns the next element of the process instance
vector.

Size() Returns the number of elements in the process
instance vector.

ProcessTemplate
A process template object represents the Runtime equivalent of a Buildtime
workflow process model.

Process instance notification array

Chapter 34. Using the MQ Workflow Runtime API 315

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a process template object. 94

Copy() Allocates and initializes the storage for a process template
object by copying.

99

Deallocate() Deallocates the storage for a process template object. 99

destructor() Destructs a process template object. 99

Equal() Compares two process templates. 97

IsComplete() Indicates whether the complete process template information
is available.

100

IsEmpty() Indicates whether no process template information is
available.

101

operator=() Assigns a process template to this one. 97

operator==() Compares two process templates. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when process templates are queried
or if this attribute is a secondary attribute (S) and set only after the
refresh of a specific process template. Refreshing can be done explicitly
by issuing the Refresh() API call but is also done automatically when a
secondary (or primary) attribute is accessed and not yet available in the
API cache.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The API call
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

AuditMode() S/E Returns the audit mode of the process
template.

111, 113

Category() P/C Returns the category of the process
template.

137

CategoryIsNull() P/B Indicates whether a category is set. 142

Process template

316 Programming Guide

Accessor methods Set/
Type

Description Page

CreationTime() P/D Returns the creation time of the process
template.

110

Description() P/C Returns the description of the process
template.

137

DescriptionIsNull() P/B Indicates whether a description is set. 142

Documentation() S/C Returns the documentation of the process
template.

137

DocumentationIsNull() S/B Indicates whether a documentation is set. 142

Icon() P/C Returns the icon associated with the process
template.

137

InContainerName() S/C Returns the name of the input container of
the process template.

137

InContainerNeeded() P/B Indicates whether an input container is
needed to start an instance of the process
template. An input container is needed
when

v There is a mapping to some other
container.

v Staff assignment data is taken from it.

v Notification related data is taken from it.

v A transaction or exit condition refers to a
container element.

v A description refers to a container
element.

v Prompt for data at process start is set for
the process model.

109

LastModificationTime() P/D Returns the last time a primary attribute of
the process template was changed.

110

Name() P/C Returns the name of the process template. 137

OrganizationName() S/C Returns the name of the organization of the
process template.

137

OrganizationNameIsNull() S/B Indicates whether an organization name is
set.

142

OutContainerName() S/C Returns the name of the output container of
the process template.

137

PersistentOid() P/C Returns a representation of the object
identification of the process template.

137

Process template

Chapter 34. Using the MQ Workflow Runtime API 317

Accessor methods Set/
Type

Description Page

ProcessAdmin() S/C Returns the user ID of the process
administrator of an instance of the process
template.

137

ProcessAdminIsNull() S/B Indicates whether a process administrator is
set.

142

RoleName() S/C Returns the name of the role of the process
template.

137

RoleNameIsNull() S/B Indicates whether a role is set. 142

ValidFromTime() P/D Returns the time when the process template
becomes valid.

110

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

CreateAndStartInstance() Creates and starts an instance of the process
template.

571

CreateAndStartInstance2() Creates and starts an instance of the process
template in Java and provides an input
container.

571

CreateInstance() Creates an instance of the process template. 579

Delete() Deletes the specified process template. 582

Delete2() Deletes the specified process template
versions in Java.

582

ExecuteProcessInstance() Creates and executes an instance from the
specified process template.

585

ExecuteProcessInstanceAsync() Creates and executes an instance from the
specified process template; an answer is not
waited for.

585

InitialInContainer() Retrieves the initially defined input
container of the process template.

595

ProgramTemplate() Retrieves the program template specified by
the passed name.

597

Refresh() Retrieves the complete information of the
process template.

600

ProcessTemplateList
A process template list represents a group of process templates. All API calls
of a persistent list are also applicable to process template lists.

Process template

318 Programming Guide

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a process template list object. 94

Copy() Allocates and initializes the storage for a process template list
object by copying.

99

Deallocate() Deallocates the storage for a process template list object. 99

Equal() Compares two process template lists. 97

destructor() Destructs a process template list object. 99

operator=() Assigns a process template list to this one. 97

operator==() Compares two process template lists. 97

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

QueryProcessTemplates() Retrieves the process templates qualifying
via the process template list.

603

ProcessTemplateListArray
A process template list array represents the result of a query for process
template lists in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

Events Description Page

NewProcessTemplateList() Adds a new process template list to the array. 43

ProcessTemplateListRemove() Removes the specified process template list from
the array.

43

ProcessTemplateListVector
A process template list vector represents the result of a query for process
template lists in the C-language.

Process template list

Chapter 34. Using the MQ Workflow Runtime API 319

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a process template list vector object.

FirstElement() Returns the first element of the process template list
vector.

NextElement() Returns the next element of the process template list
vector.

Size() Returns the number of elements in the process
template list vector.

ProcessTemplateVector
A process template vector represents the result of a query for process
templates in the C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates the storage for a process template vector
object.

FirstElement() Returns the first element of the process template
vector.

NextElement() Returns the next element of the process template
vector.

Size() Returns the number of elements in the process
template vector.

ProgramData
A program data object represents the program implementation definitions. In
C++, it privately inherits from program template.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a program data object. 94

Copy() Allocates and initializes the storage for a program data object
by copying.

99

Deallocate() Deallocates the storage for a program data object. 99

destructor() Destructs a program data object. 99

Process template list vector

320 Programming Guide

Basic methods Description Page

Equal() Compares two program data objects if they belong to the
same work item.

97

IsEmpty() Indicates whether no program data information is available
yet.

101

operator=() Assigns a program data object to this one. 97

operator==() Compares two program data objects if they belong to the
same work item.

97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

AsStream() C Returns the program data as a binary
stream.

137

Description() C Returns the description of the implementing
program.

137

DescriptionIsNull() B Indicates whether a description is set. 142

ExecutionMode() E States whether the program can participate
in global transactions or not.

111, 122

ExecutionUser() E Returns the user on whose behalf the
program is to be executed.

111, 123

FromStream() P In ActiveX, constructs a transient program
data object from the stream passed.

140

Icon() C Returns the icon associated with the
implementing program.

137

Implementations() M Returns the implementation definitions of
the program.

138

InContainer() P Returns the input container of the program. 140

IsUnattended() B States whether the program can run
unattended.

109

OutContainer() P Returns the output container of the
program.

140

Program data

Chapter 34. Using the MQ Workflow Runtime API 321

Accessor methods Type Description Page

ProgramTrusted() B States whether the program can be trusted.
Only a trusted program can receive its
program ID.

109

StreamLength() C In the C and C++ languages, returns the
length of the buffer needed to hold the
program data in stream format.

137

ProgramTemplate
A program template object represents the program implementation definitions.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a program template object. 94

Copy() Allocates and initializes the storage for a program template
object by copying.

99

Deallocate() Deallocates the storage for a program template object. 99

destructor() Destructs a program template object. 99

Equal() Compares two program template objects on the basis of their
names and the process template they belong to.

97

IsEmpty() Indicates whether no program template information is
available yet.

101

operator=() Assigns a program template object to this one. 97

operator==() Compares two program template objects on the basis of their
names and the process template they belong to.

97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

AsStream() C Returns the program template as a binary
stream.

137

Program data

322 Programming Guide

Accessor methods Type Description Page

Description() C Returns the description of the implementing
program.

137

DescriptionIsNull() B Indicates whether a description is set. 142

ExecutionMode() E States whether the program can participate
in global transactions or not.

111, 122

ExecutionUser() E Returns the user on whose behalf the
program is to be executed.

137, 123

FromStream() P In ActiveX, constructs a transient program
template object from the stream passed.

140

Icon() C Returns the icon associated with the
implementing program.

137

Implementations() M Returns the implementation definitions of
the program.

138

InitialInContainer() P Returns the initially defined input container
of the program.

140

InContainerAccess() B States whether the input container is
accessed by the program.

109

IsUnattended() B States whether the program can run
unattended.

109

InitialOutContainer() P Returns the initially defined output
container of the program.

140

OutContainerAccess() B States whether the output container is
accessed by the program.

109

ProgramTrusted() B States whether the program can be trusted.
Only a trusted program can receive its
program ID.

109

StreamLength() C In the C and C++ languages, returns the
length of the buffer needed to hold the
program template in stream format.

137

StructuresFromActivity() B States whether the program can handle any
container passed to it.

109

ValidFromTime() P/D Returns the time when the process template
and thus the program template becomes
valid.

110

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Program template

Chapter 34. Using the MQ Workflow Runtime API 323

Action methods Description Page

Execute() Requests the execution of the program by
the system’s program execution server.

607

Execute2() Requests the execution of the program by
the system’s program execution server.

607

ExecuteAsync() Requests the execution of the program by
the system’s program execution server; an
answer is not waited for.

607

ExecuteAsync2() Requests the execution of the program by
the system’s program execution server; an
answer is not waited for.

607

ExecuteAsyncWithOptions() Requests the execution of the program by
the system’s program execution server; an
answer is not waited for. The priority of the
program can be specified.

607

ExecuteWithOptions() Requests the execution of the program by
the system’s program execution server. The
priority of the program can be specified.

607

ReadOnlyContainer
A read-only container represents a container that can only be read, for
example, an input data container of a work item or an output container of a
process instance; all languages but ActiveX. All API calls of a container are
applicable to read-only containers.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

AsReadWriteContainer() In the C-language and Java, converts the
read-only container into a read/write
container.

98

constructor() Constructs a read-only container object. 94

Copy() Allocates and initializes the storage for a
read-only container object by copying.

99

Deallocate() Deallocates the storage for a read-only
container object.

99

Equal() Compares two read-only containers. 97

destructor() Destructs a read-only container object. 99

operator=() Assigns a read-only container to this one. 97

operator==() Compares two read-only containers. 97

Program template

324 Programming Guide

Basic methods Description Page

operator FmcjReadWriteContainer() In C++, converts the read-only container
into a read/write container.

98

ReadOnlyContainerHolder
A read-only container holder represents an object in Java that can contain a
read-only container, for example, an output container of an executed process
instance.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a read-only container holder
object. Optionally, an already existing
read-only container can be passed.

94

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

value() O Returns the read-only container contained
in the holder object.

139

ReadWriteContainer
A read/write container represents a container that can be read and written,
for example, an input container of a process instance or an output container of
a work item; all languages but ActiveX. All API calls of a container are
applicable to read/write containers.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

AsReadOnlyContainer() In the C-language and Java, converts the
read/write container into a read-only
container.

98

Read-only container

Chapter 34. Using the MQ Workflow Runtime API 325

Basic methods Description Page

constructor() Constructs a read/write container object. 94

Copy() Allocates and initializes the storage for a
read/write container object by copying.

99

Deallocate() Deallocates the storage for a read/write
container object.

99

Equal() Compares two read/write containers. 97

destructor() Destructs a read/write container object. 99

operator=() Assigns a read/write container to another
one.

97

operator==() Compares two read/write containers. 97

operator FmcjReadOnlyContainer() In C++, converts the read/write container
into a read-only container.

98

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

The value in the Type column states the type of the property set, whether it is
a binary (N), a character string (C), a float (F), or an integer (I). The API call
declaration can be found at the indicated page.

Accessor methods Type Description Page

SetArrayBinaryValue() N Sets the value of the specified container leaf
element in the C-language. The leaf element
is part of an array and of type BINARY.

73

SetArrayFloatValue() F Sets the value of the specified container leaf
element in the C-language. The leaf element
is part of an array and of type FLOAT.

74

SetArrayLongValue() I Sets the value of the specified container leaf
element in the C-language. The leaf element
is part of an array and of type LONG.

74

SetArrayStringValue() C Sets the value of the specified container leaf
element in the C-language. The leaf element
is part of an array and of type STRING.

74

SetBinaryValue() N Sets the value of the specified container leaf
element in the C-language. The leaf element
is of type BINARY.

73

SetBuffer() N Sets the value of the specified container leaf
element in Java. The leaf element is of type
BINARY.

76

Read/write container

326 Programming Guide

Accessor methods Type Description Page

SetBuffer2() N Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type BINARY.

76

SetDouble() F Sets the value of the specified container leaf
element in Java. The leaf element is of type
FLOAT.

76

SetDouble2() F Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type FLOAT.

76

SetFloatValue() F Sets the value of the specified container leaf
element in the C-language. The leaf element
is of type FLOAT.

74

SetLong() I Sets the value of the specified container leaf
element in Java. The leaf element is of type
LONG.

76

SetLong2() I Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type LONG.

76

SetLongValue() I Sets the value of the specified container leaf
element in the C-language. The leaf element
is of type LONG.

74

SetString() N Sets the value of the specified container leaf
element in Java. The leaf element is of type
STRING.

76

SetString2() N Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type STRING.

76

SetStringValue() C Sets the value of the specified container leaf
element in the C-language. The leaf element
is of type STRING.

74

SetValue() N/F/C/I Sets the value of the specified container leaf
element in the C++ language.

75

Result
A result object represents the result of a API call call in the C++ and
C-language.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

destructor Destructs the C++ representation of the result object. 99

Read/write container

Chapter 34. Using the MQ Workflow Runtime API 327

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. Because a result object represents a supporting object on
the client only, the distinction between primary and secondary attributes is
not applicable.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

MessageText() C Returns the result as an NLS regarding
formatted message.

137

ObjectOfCurrentThread() P Returns the result object associated with the
thread from where this API call is called.

139

Origin() C Returns the origin of the result, that is, file,
line, function.

137

Parameters() M Returns the parameters of the result; these
are already incorporated in the message
text.

138

Rc() I Returns the return code remembered in the
result object.

136

Service
A service object represents common aspects of MQ Workflow service objects.
All API calls of a service are also applicable to execution services.

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. Because a service object represents a supporting object on
the client only, the distinction between primary and secondary attributes is
not applicable.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Result

328 Programming Guide

Accessor methods Type Description Page

IsLoggedOn() B Indicates whether a user logged on via this
service object. This API call tells you the
logon status known by the client. When
issuing an action call, the session may,
however, be not found because it expired or
because you reconstructed a session from a
different system group.

109

SetTimeout() I Sets the time the client will wait for a
server to answer. The time is to be specified
in milliseconds.

142

SystemGroupName() C Returns the name of the system group
where the server resides.

137

SystemName() C Returns the name of the system where the
server resides.

137

Timeout() I Returns the time the client will wait for a
server to answer.

136

UserID() C Returns the user identification of the
logged-on user.

137

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

Refresh() Refreshes information from the server,
especially the logged-on status.

613

SetPassword() Sets the password of the logged-on user. 615

UserSettings() Retrieves the user settings of the logged-on
user.

617

StringArray
A string array represents a list of strings in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

Add() Adds the element to the array. 40

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

Service

Chapter 34. Using the MQ Workflow Runtime API 329

Accessor
methods

Description Page

RemoveAll() Removes all elements. 42

RemoveAt() Removes the element at the indicated position. 42

SetAt() Sets the element at the indicated position. 42

StringVector
In the C-language, a string vector serves to represents a set of string
information. For example, a string vector is returned to show the categories
the logged-on user is authorized for. Or, a string vector must be used to
specify the persons to stand in for.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

AddElement() Adds a string to the string vector.

Allocate() Allocates the storage for a string vector.

Deallocate() Deallocates the storage for a string vector.

FirstElement() Returns the first element of the string
vector.

FirstResultParmElement() Returns the first element of a string vector
representing the parameters of a result
object; calling this function does not change
the result object and thus allows for a
consistent read.

NextElement() Returns the next element of the string
vector.

NextResultParmElement() Returns the next element of a string vector
representing the parameters of a result
object; calling this function does not change
the result object and thus allows for a
consistent read.

RemoveElement() Removes a string from the string vector.

ResultParmDeallocate() Deallocates the storage for a string vector
representing the parameters of a result
object; calling this function does not change
the result object and thus allows for a
consistent read.

String array

330 Programming Guide

Accessor methods Description

ResultParmSize() Returns the number of elements in a string
vector representing the parameters of a
result object; calling this function does not
change the result object and thus allows for
a consistent read.

Size() Returns the number of elements in the
string vector.

SymbolLayout
A symbol layout object represents graphical information of a named icon.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a symbol layout object. 94

Copy() Allocates and initializes the storage for a symbol layout
object by copying.

99

Deallocate() Deallocates the storage for a symbol layout object. 99

destructor() Destructs a symbol layout object. 99

Equal() Compares two symbol layout objects on the basis of their
contents.

97

IsEmpty() Indicates whether no symbol layout information is available. 101

operator=() Assigns a symbol layout object to this one. 97

operator==() Compares two symbol layout objects on the basis of their
contents.

97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

XPosition() I Returns the x-coordinate of the named icon. 136

XPositionOfName() I Returns the x-coordinate of the name
associated to the icon.

136

String vector

Chapter 34. Using the MQ Workflow Runtime API 331

Accessor methods Type Description Page

YPosition() I Returns the y-coordinate of the named icon. 136

YPositionOfName() I Returns the y-coordinate of the name
associated to the icon.

136

Workitem
A work item represents an activity instance assigned to a user in order to be
worked on. All API calls of an Item are also applicable to work items.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a work item object. 94

Copy() Allocates and initializes the storage for a work item object by
copying.

99

Deallocate() Deallocates the storage for a work item object. 99

destructor() Destructs a work item object. 99

Kind() In the C++ language, states that the object is a work item. 101, 131

operator=() Assigns a work item to this one. 97

operator==() Compares two work items. 97

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when work items are queried or if
this attribute is a secondary attribute (S) and set only after the refresh
of a specific work item. Refreshing can be done explicitly by issuing the
Refresh() API call but is also done automatically when a secondary (or
primary) attribute is accessed and not yet available in the API cache.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), multi-valued property (M), a
pointer to some object (P), or an object itself (O). The API call
declaration can be found in a general format at the indicated page.

Symbol layout

332 Programming Guide

Accessor methods Set/
Type

Description Page

ActivityKind() P/E Returns the kind of the associated
activity instance, whether it is a
program or process and so on.

101, 118

ErrorReason() S/O Returns an error object describing
the reason why the associated
activity instance is in state InError.

139

ErrorReasonIsNull() S/B Indicates whether an error reason
is set.

142

ExitCondition() S/C Returns the exit condition of the
work item.

137

ExpirationTime() S/D Returns the expiration time of the
work item.

110

ExpirationTimeIsNull() S/B Indicates whether an expiration
time is set.

142

FirstNotificationTime() S/D Returns the time the first
notification for the work item is to
occur or has occurred.

110

FirstNotificationTimeIsNull() S/B Indicates whether a first
notification time is set.

142

Implementation() P/C Returns the name of the
implementing program of the
associated activity instance.

137

ImplementationIsNull() P/B Indicates whether an
implementation is set.

142

ManualExitMode() S/B Returns whether the exit mode of
the work item is manual.

109

ManualStartMode() S/B Returns whether the start mode of
the work item is manual.

109

PersistentOidOfActivityInstance() P/C Returns the object ID of the
associated activity instance.

137

Priority() P/I Returns the priority of the work
item.

136

SecondNotificationTime() S/D Returns the time the second
notification for the work item is to
occur or has occurred.

110

SecondNotificationTimeIsNull() S/B Indicates whether a second
notification time is set.

142

Staff() S/M Returns all persons owning a work
item for the associated activity
instance.

138

Work item

Chapter 34. Using the MQ Workflow Runtime API 333

Accessor methods Set/
Type

Description Page

StartCondition() S/C Returns the start condition of the
work item.

137

State P/E Returns the state of the work item. 111, 128

StateOfNotification() S/E Returns the notification state of the
work item.

111, 114

SupportTools() P/M Returns the support tools
associated with the work item.

138

SupportToolsIsNull() P/B Indicates whether support tools are
set.

142

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

ActivityInstance() Retrieves the associated activity instance. 624

CancelCheckOut() Cancels the check out of the work item. 627

CheckIn() Checks in the work item. 629

CheckOut() Checks out the work item. 632

Finish() Finishes a manual exit work item. 638

ForceFinish() Force finishes the work item. 640

ForceFinishWithContainer() Force finishes the work item and passes a container. 341

ForceFinish2() In Java, force finishes the work item and passes a
container.

341

ForceRestart() Force restarts the work item. 643

ForceRestartWithContainer()Force restarts the work item and passes a container. 344

ForceRestart2() In Java, force restarts the work item and passes a
container.

344

InContainer() Retrieves the input container of the work item. 646

ObtainInstanceMonitor() Returns the instance monitor for the associated
process instance in ActiveX.

492

OutContainer() Retrieves the output container of the work item. 648

Restart() Restarts the work item. 650

Start() Starts the work item. 652

StartTool() Starts the specified support tool. 655

Terminate() Terminates the work item. 657

Work item

334 Programming Guide

WorkitemArray
A work item array represents the result of a query for work items in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

WorkitemVector
A workitem vector represents the result of a query for work items in the
C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates the storage for a workitem vector object.

FirstElement() Returns the first element of the workitem vector.

NextElement() Returns the next element of the workitem vector.

Size() Returns the number of elements in the workitem
vector.

Worklist
A worklist represents a group of items. All API calls of a persistent list are
also applicable to worklists.

Refer to “Basic API calls” on page 93 for detailed descriptions of basic API
calls.

Basic methods Description Page

constructor() Constructs a worklist object. 94

Copy() Allocates and initializes the storage for a worklist object by
copying.

99

Deallocate() Deallocates the storage for a worklist object. 99

destructor() Destructs a worklist object. 99

Equal() Compares two worklists. 97

operator=() Assigns a worklist to another one. 97

operator==() Compares two worklists. 97

Work item array

Chapter 34. Using the MQ Workflow Runtime API 335

Refer to “Accessor/mutator API calls” on page 106 for detailed descriptions of
accessor API calls. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself. The API call declaration can be found in a
general format at the indicated page.

Accessor methods Type Description Page

BeepOption() B Indicates whether a beep should sound
when the contents of the worklist changes.

109

Refer to “Action API calls” on page 150 for detailed descriptions of action API
calls.

Action methods Description Page

QueryActivityInstanceNotifications() Retrieves the activity instance notifications
qualifying via the worklist.

661

QueryItems() Retrieves all items qualifying via the
worklist.

665

QueryProcessInstanceNotifications() Retrieves the process instance notifications
qualifying via the worklist.

668

QueryWorkitems() Retrieves the work items qualifying via the
worklist.

671

WorklistArray
A worklist array represents the result of a query for worklists in ActiveX.

Refer to “ActiveX arrays” on page 40 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 41

GetSize() Returns the number of elements in the array. 41

Events Description Page

NewWorklist() Adds a new worklist to the array. 43

WorklistRemove() Removes the specified worklist from the array. 43

Work list

336 Programming Guide

WorklistVector
A worklist vector represents the result of a query for worklists in the
C-language.

Refer to “C-language vectors” on page 35 for detailed descriptions of vector
access functions.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), or a multi-valued property (M), a pointer to
some object (P), or an object itself(O). The API call declaration can be found in
a general format at the indicated page.

Accessor methods Description

Deallocate() Deallocates a worklist vector object.

FirstElement() Returns the first element of the worklist vector.

NextElement() Returns the next element of the worklist vector.

Size() Returns the number of elements in the worklist
vector.

Work list array

Chapter 34. Using the MQ Workflow Runtime API 337

Work list vector

338 Programming Guide

Part 7. API action and activity implementation calls

The following chapters describe the MQ Workflow application programming
interfaces for action or activity implementation API calls in alphabetical order.

Each entry contains a functional description of the API API call followed by
subsections:
Usage notes Points to general information about the nature of this call.
Authorization States the authority required to have the API call executed.
Required connection

States the MQ Workflow server a session must have been
established with.

API interface declaration
Shows the required file declarations.

ActiveX signature
Shows the ActiveX syntax of the API call.

Note: ActiveX signatures are provided in the Object
Definition Language (ODL). For example, type BSTR is
used for strings where the VisualBasic type is actually
String.

C-language signature
Shows the C-language syntax of the API call.

C++ language signature
Shows the C++ language syntax of the API call.

Java signature Shows the Java syntax of the API call.
Parameters Describes each of the parameters together with an indicator

whether the parameter is an input or output parameter.
Return type Describes the value returned by the call.
Return codes/ FmcException

Lists all possible return codes which may be raised by this
call.

Examples Points to an example of the call.

© Copyright IBM Corp. 1993, 2001 339

340 Programming Guide

Chapter 35. Activity instance actions

An FmcjActivityInstance or an ActivityInstance object represents an instance
of an activity of a process instance. An activity instance is uniquely identified
by its object identifier or by its fully qualified name within the process
instance. The fully qualified name of an activity instance is a name in dot
notation where the hierarchy of nested activities of type Block is presented
from left to right, and their names are separated by a dot.

The following sections describe the actions which can be applied on an
activity instance. See “ActivityInstance” on page 255 for a complete list of API
calls.

ForceFinish()

This API call ends the execution of the specified activity instance because it is
known to have completed (action call).

An activity instance implemented by a program must be in the states Ready,
Running, Executed, CheckedOut, InError, Terminating, or Terminated. An activity
instance implemented by a process must be in the states Ready, Executed,
InError, or Terminated. The associated process instance must be in the states
Running, Suspending, Suspended, or Terminating.

Optionally, an output container can be specified to denote the result of
processing. If none is specified, the output container available at the execution
server is taken. For example, the output container defined with initial values.

The activity instance and, if it exists, the single non-disabled work item are
then put into the ForceFinished state. The starter is set to the logged-on user.
The exit condition is considered to be true and navigation proceeds.

Depending on the “delete finished items” option, associated work items are
deleted.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization
v Process administration authorization
v Be the process administrator
v Be the system administrator

© Copyright IBM Corp. 1993, 2001 341

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

ActiveX signature
long ForceFinish()

long ForceFinishWithContainer(Container * outputContainer)

C-language signature
APIRET FMC_APIENTRY
FmcjActivityInstanceForceFinish(FmcjActivityInstanceHandle hdlInstance,

FmcjContainerHandle outputContainer)

C++ language signatures
APIRET ForceFinish()

APIRET ForceFinish(FmcjContainer const & outputContainer)

Java signature
public abstract
void forceFinish() throws FmcException

public abstract
void forceFinish2(Container outputContainer) throws FmcException

Parameters
hdlInstance Input. The handle of the activity instance to be dealt with.

342 Programming Guide

outputContainer
Input. The output container to become the result of the
activity instance execution. A 0 handle can be passed in the
C-language.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_ACT_IMPL_KIND(406)
The activity instance is not implemented by a program or
process.

FMC_ERROR_WRONG_STATE(120)
The activity instance or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

Chapter 35. Activity instance actions 343

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ForceRestart()

This API call forces MQ Workflow to enable the restart of the specified
activity instance (action call).

An activity instance implemented by a program must be in the states Ready,
Running, Executed, CheckedOut, InError, Terminating, or Terminated. An activity
instance implemented by a process must be in the states Ready, Executed,
InError, or Terminated. The associated process instance must be in states
Running, Suspending, or Suspended.

Optionally, an input container can be specified to denote the input to be used
when the activity instance or its associated work item is (re)started. If none is
specified, the input container available at the execution server is taken.

The activity instance and the logged-on user’s work item are then reset into
the Ready state. If there is no work item for the logged-on user, it is created.
All other work items associated with the activity instance are set into the
Disabled state. Note that an automatic activity instance must now be started
manually.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

344 Programming Guide

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

ActiveX signature
long ForceRestart()

long ForceRestartWithContainer(Container * inputContainer)

C-language signature
APIRET FMC_APIENTRY FmcjActivityInstanceForceRestart(

FmcjActivityInstanceHandle hdlInstance,
FmcjContainerHandle inputContainer)

C++ language signature
APIRET ForceRestart()

APIRET ForceRestart(FmcjContainer const & inputContainer)

Java signature
public abstract
void forceRestart() throws FmcException

public abstract
void forceRestart2(Container inputContainer) throws FmcException

Parameters
hdlInstance Input. The handle of the activity instance to be dealt with.
inputContainer

Input. The input container to be used for restarting the
activity instance. A 0 handle can be passed in the C-language.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.

Chapter 35. Activity instance actions 345

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_ACT_IMPL_KIND(406)
The activity instance is not implemented by a program or
process.

FMC_ERROR_WRONG_STATE(120)
The activity instance or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

346 Programming Guide

InContainer()

This API call retrieves the input container associated with the activity instance
from the MQ Workflow execution server (action call).

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

ActiveX signature
long InContainer(Container * input)

C-language signature
APIRET FMC_APIENTRY
FmcjActivityInstanceInContainer(FmcjActivityInstanceHandle hdlInstance

FmcjReadOnlyContainerHandle * input)

C++ language signature
APIRET InContainer(FmcjReadOnlyContainer & input) const

Chapter 35. Activity instance actions 347

Java signature
public abstract
ReadOnlyContainer inContainer() throws FmcException

Parameters
hdlInstance Input. The handle of the activity instance to be dealt with.
input Input/Output. The input container.

Return type
long/ APIRET The return code of calling this method - see below.
ReadOnlyContainer

The input container.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

348 Programming Guide

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ObtainProcessMonitor()/ObtainInstanceMonitor

This API call retrieves a monitor for the process instance the activity instance
is part of from the MQ Workflow execution server (action call).

When the deep option is specified, all activity instances of type Block are
resolved, that is, their monitors are also fetched from the server.

Note: Deep is currently not supported.

In C++, when the instance monitor object to be initialized is not empty, that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the instance monitor handle already points to some object.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

Chapter 35. Activity instance actions 349

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

ActiveX signature
InstanceMonitor*
ObtainInstanceMonitor(boolean deep, long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjActivityInstanceObtainProcessMonitor(

FmcjActivityInstanceHandle hdlInstance,
bool deep,
FmcjInstanceMonitorHandle * monitor)

C++ language signature
APIRET ObtainProcessMonitor(FmcjInstanceMonitor & monitor,

bool deep= false) const

Java signature
public abstract
InstanceMonitor obtainProcessMonitor(boolean deep)
throws FmcException

Parameters
deep Input. An indicator whether activity instances of type Block

are to be resolved, that is, their monitor is also to be provided.
Note, deep is currently ignored.

hdlInstance Input. The activity instance whose instance monitor for the
containing process instance is to be retrieved.

monitor Input/Output. The address of the handle to the instance
monitor respectively the instance monitor object to be set.

returnCode Input/Output. The result of calling this method - see return
codes below.

Return type
APIRET The result of calling this method - see return codes below.

350 Programming Guide

InstanceMonitor*/InstanceMonitor
A pointer to the instance monitor respectively the instance
monitor for the process instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 35. Activity instance actions 351

OutContainer()

This API call retrieves the output container associated with the activity
instance from the MQ Workflow execution server (action call).

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

ActiveX signature
long OutContainer(Container * output)

C-language signature
APIRET FMC_APIENTRY
FmcjActivityInstanceOutContainer(FmcjActivityInstanceHandle hdlInstance,

FmcjReadOnlyContainerHandle * output)

C++ language signature
APIRET OutContainer(FmcjReadOnlyContainer & output) const

352 Programming Guide

Java signature
public abstract
ReadOnlyContainer outContainer() throws FmcException

Parameters
hdlInstance Input. The handle of the activity instance to be dealt with.
output Input/Output. The output container.

Return type
long/ APIRET The return code of calling this method - see below.
ReadOnlyContainer

The output container.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

Chapter 35. Activity instance actions 353

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()

This API call refreshes the activity instance from the MQ Workflow execution
server (action call).

All information about the activity instance, primary and secondary, is
retrieved.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

354 Programming Guide

ActiveX signature
long Refresh()

C-language signature
APIRET FMC_APIENTRY
FmcjActivityInstanceRefresh(FmcjActivityInstanceHandle hdlInstance)

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlInstance Input. The handle of the activity instance object to be

refreshed.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

Chapter 35. Activity instance actions 355

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SubProcessInstance()

This API call retrieves the process instance which is implementing the activity
instance from the MQ Workflow execution server (action call).

All information about the process instance, primary and secondary, is
retrieved.

In C++, when the process instance object to be initialized is not empty, then
that object is destructed before the new one is assigned. In C, the application
is completely responsible for the ownership of objects, that is, it is not checked
whether the process instance handle already points to some object.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization

356 Programming Guide

v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

ActiveX signature
ProcessInstance* SubProcessInstance(long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjActivityInstanceSubProcessInstance(

FmcjActivityInstanceHandle hdlInstance,
FmcjProcessInstanceHandle * instance)

C++ language signature
APIRET SubProcessInstance(FmcjProcessInstance & instance) const

Java signature
public abstract
ProcessInstance subProcessInstance() throws FmcException

Parameters
hdlInstance Input. The handle of the activity instance object to be queried.
instance Input/Output. The subprocess instance object to be retrieved

(initialized).
returnCode Input/Output. The result of calling this method - see return

codes below.

Chapter 35. Activity instance actions 357

Return type
APIRET

The result of calling this method - see return codes below.
ProcessInstance*/ ProcessInstance

A pointer to the subprocess instance respectively the subprocess
instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

358 Programming Guide

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Terminate()

This API call terminates an activity instance implemented by a program or
process (action call).

If the activity instance is implemented by a program, it must be in the states
CheckedOut or Running and the process instance must be in the states Running,
Suspending, Suspended, or Terminating. If the activity instance is implemented
by a process, it must be in the states Running, Suspending, or Suspended and
the process instance must be in the states Running, Suspending, Suspended, or
Terminating.

When the activity instance is implemented by a program and processed under
the control of a program execution agent or user-defined program execution
server, a message is sent to inform about the termination request. The
program execution agent tries to kill fenced activity implementations.

An activity instance implemented by a process is terminated together with all
its non-autonomous subprocesses with respect to control autonomy.

The activity instance is then put into the Terminating or Terminated state.

When the Terminated state has been reached, the exit condition is considered to
be false, the output container and especially the return code (_RC) are not set,
and navigation ends. Navigation can be explicitly continued by a user with
process administration rights, that is, ForceFinish() or ForceRestart() repair
actions can be called.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process administration authorization
v Be the starter of the associated work item
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

Chapter 35. Activity instance actions 359

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

ActiveX signature
long Terminate()

C-language signature
APIRET FMC_APIENTRY
FmcjActivityInstanceTerminate(FmcjActivityInstanceHandle hdlInstance)

C++ language signature
APIRET Terminate()

Java signature
public abstract
void terminate() throws FmcException

Parameters
hdlInstance Input. The handle of the activity instance to be terminated.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

360 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_ACT_IMPL_KIND(406)
The activity instance is not implemented by a program or
process.

FMC_ERROR_WRONG_STATE(120)
The activity instance or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 35. Activity instance actions 361

362 Programming Guide

Chapter 36. Activity instance notification actions

An FmcjActivityInstanceNotification or an ActivityInstanceNotification object
represents a notification on an activity instance assigned to a user.

Other items assigned to users are process instance notifications and work
items. FmcjItem or Item represents the common properties of all items.

In the C++ language, FmcjActivityInstanceNotification is thus a subclass of
the FmcjItem class and inherits all properties and methods. In the Java
language, ActivityInstanceNotification is thus a subclass of the Item class and
inherits all properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjItem. That is, common
functions start with the prefix FmcjItem; they are also defined starting with
the prefix FmcjActivityInstanceNotification. In ActiveX, inheritance is not
supported so that all functions are explicitly defined on
ActivityInstanceNotification. Note, however, that they are described as Item
actions.

An activity instance notification is uniquely identified by its object identifier.

The following sections describe the actions which can be applied on an
activity instance notification. See “ActivityInstanceNotification” on page 260
for a complete list of API calls.

ActivityInstance()

This API call retrieves the activity instance the activity instance notification is
associated to from the MQ Workflow execution server (action call).

All information about the activity instance, primary and secondary, is
retrieved.

In C++, when the activity instance object to be initialized is not empty, that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the activity instance handle already points to some object.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

© Copyright IBM Corp. 1993, 2001 363

One of:
v Process authorization
v Process administration authorization
v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstanceNotification

ActiveX signature
ActivityInstance* ActivityInstance(long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjActivityInstanceNotificationActivityInstance(

FmcjActivityInstanceNotificationHandle hdlItem,
FmcjActivityInstanceHandle * instance)

C++ language signature
APIRET ActivityInstance(FmcjActivityInstance & instance) const

Java signature
public abstract
ActivityInstance activityInstance() throws FmcException

Parameters
hdlItem Input. The handle of the activity instance notification object to

be queried.

364 Programming Guide

instance Input/Output. The activity instance object to be retrieved
(initialized).

returnCode Input/Output. The return code of calling this method - see
return codes below.

Return type
APIRET The return code of calling this API call - see return codes

below.
ActivityInstance*/ ActivityInstance

A pointer to the activity instance or the activity instance the
activity instance notification is associated to.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance notification does no longer exist. Or, the
transient activity instance notification object recreated from its
OID is not an activity instance notification; it is a process
instance notification.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

Chapter 36. Activity instance notification actions 365

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

StartTool()

This API call starts the specified support tool (action call).

The support tool must be one of the tools associated to the activity instance
the notification has been created for. It is then started on the program
execution agent associated to the logged-on user.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the activity instance notification owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstanceNotification

ActiveX signature
long StartTool(BSTR toolName)

366 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjActivityInstanceNotificationStartTool(

FmcjActivityInstanceNotificationHandle hdlItem,
char const * toolName)

C++ language signature
APIRET StartTool(string const & toolName) const

Java signature
public abstract
void startTool(String toolName) throws FmcException

Parameters
hdlItem Input. The handle of the activity instance notification to be

dealt with.
toolName Input. The support tool to be started.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_INVALID_TOOL(129)
No tool name is provided or the specified tool is not defined
for the activity instance notification.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

Chapter 36. Activity instance notification actions 367

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient activity instance notification object recreated
from its OID is not an activity instance notification; it is a
process instance notification.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

368 Programming Guide

Chapter 37. Container activity implementation API calls

An FmcjContainer or Container object represents a data container of a process
template, process instance, work item, activity implementation, or support
tool. A container can be a read-only input container or a read/write input or
output container.

The API calls defined on the container allow to access the values of data
members of a basic type (container leaves), or to get a substructure of a
container, a container element.

An FmcjContainer or Container object represents the common aspects of
read-only or read/write containers. In the C++ language, FmcjContainer is
thus the superclass of the FmcjReadOnlyContainer and
FmcjReadWriteContainer classes and provides for all common properties and
methods. In the Java language, Container is thus a superclass of the
ReadOnlyContainer and ReadWriteContainer classes and provides for all
common properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjContainer. That is, common
functions start with the prefix FmcjContainer; they are also defined starting
with the prefixes FmcjReadOnlyContainer and FmcjReadWriteContainer. In
ActiveX, inheritance is not supported. All methods are available on the
Container class.

The following sections describe the activity implementation functions which
are used for communication between an activity implementation or support
tool and a program execution agent. See “Container” on page 266 for a
complete list of API calls on containers.

InContainer()

This API call retrieves the input container from the MQ Workflow program
execution agent (activity implementation call).

It can be used from within an activity implementation or support tool.

Usage note
v See “Activity implementation API calls” on page 151 for general

information.

Authorization

Be an activity implementation or support tool

© Copyright IBM Corp. 1993, 2001 369

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx resepctively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long InContainer()

C-language signature
APIRET FMC_APIENTRY FmcjContainerInContainer(

FmcjReadOnlyContainerHandle * input)

C++ language signature
static APIRET InContainer(FmcjReadOnlyContainer & input)

Java signature
public abstract

ReadOnlyContainer ExecutionAgent.inContainer()
throws FmcException

Parameters
input Input/Output. The address of the input container handle respectively

the input container of the activity implementation or support tool to
be set.

Return type
long/ APIRET

The return code of calling this API call - see return codes below.
ReadOnlyContainer

The input container of the activity implementation or support tool.

370 Programming Guide

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an input container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not called from within an activity
implementation or support tool or the program execution
agent is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Examples
v For a C-language example see “Programming an executable (C-language)”

on page 801
v For a C++ example see “Programming an executable (C++)” on page 802

OutContainer()

This API call retrieves the output container from the MQ Workflow program
execution agent (activity implementation call).

It can be used from within an activity implementation.

Usage note
v See “Activity implementation API calls” on page 151 for general

information.

Authorization

Chapter 37. Container activity implementation API calls 371

Be an activity implementation

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long OutContainer()

C-language signature
APIRET FMC_APIENTRY FmcjContainerOutContainer(

FmcjReadWriteContainerHandle * output)

C++ language signature
static APIRET OutContainer(FmcjReadWriteContainer & output)

Java signature
public abstract

ReadWriteContainer ExecutionAgent.outContainer()
throws FmcException

Parameters
output Input/Output. The address of the output container handle

respectively the output container of the activity
implementation to be set.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

372 Programming Guide

ReadWriteContainer
The output container of the activity implementation.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
A support tool cannot access an output container.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Examples
v For a C-language example see “Programming an executable (C-language)”

on page 801
v For a C++ example see “Programming an executable (C++)” on page 802

RemoteInContainer()

This API call retrieves the input container from the MQ Workflow program
execution agent (activity implementation call).

It can be used from within a program started by an activity implementation
or support tool.

Chapter 37. Container activity implementation API calls 373

Usage note
v See “Activity implementation API calls” on page 151 for general

information.

Authorization

Valid program identification

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long RemoteInContainer(BSTR programID)

C-language signature
APIRET FMC_APIENTRY FmcjContainerRemoteInContainer(

char const * programID,
FmcjReadOnlyContainerHandle * input)

C++ language signature
static APIRET RemoteInContainer(

string const & programID,
FmcjReadOnlyContainer & input)

Java signature
public abstract

ReadOnlyContainer ExecutionAgent.remoteInContainer(String programID)
throws FmcException

Parameters

374 Programming Guide

input Input/Output. The address of the input container handle
respectively the input container of the activity implementation
or support tool to be set.

programID Input. The program identification by which the activity
implementation or support tool is known to the program
execution agent.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.
ReadOnlyContainer

The input container of the activity implementation or support
tool.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an input container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Chapter 37. Container activity implementation API calls 375

RemoteOutContainer()

This API call retrieves the output container from the MQ Workflow program
execution agent (activity implementation call).

It can be used from within a program started by an activity implementation.

Usage note
v See “Activity implementation API calls” on page 151 for general

information.

Authorization

Valid program identification

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long RemoteOutContainer(BSTR programID)

C-language signature
APIRET FMC_APIENTRY FmcjContainerRemoteOutContainer(

char const * programID,
FmcjReadWriteContainerHandle * output)

C++ language signature
static APIRET RemoteOutContainer(

string const & programID,
FmcjReadWriteContainer & output)

376 Programming Guide

Java signature
public abstract

ReadWriteContainer ExecutionAgent.remoteOutContainer(String programID)
throws FmcException

Parameters
output Input/Output. The address of the output container handle

respectively the output container of the activity
implementation to be set.

programID Input. The program identification by which the activity
implementation is known to the program execution agent.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.
ReadWriteContainer

The output container of the activity implementation.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
A support tool cannot access an output container.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

Chapter 37. Container activity implementation API calls 377

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

SetOutContainer()

This API call returns the output container to the MQ Workflow program
execution agent (activity implementation call).

It can be used from within an activity implementation as often as required.
Note, however, that the output container is not returned to the MQ Workflow
execution server until the activity implementation ends. It is kept transiently
by the program execution agent.

Usage note
v See “Activity implementation API calls” on page 151 for general

information.

Authorization

Be an activity implementation

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long SetOutContainer()

378 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjContainerSetOutContainer(

FmcjReadWriteContainerHandle const output)

C++ language signature
static APIRET SetOutContainer(FmcjReadWriteContainer const & output)

Java signature
public abstract

void ExecutionAgent.setOutContainer(ReadWriteContainer output)
throws FmcException

Parameters
output Input. The output container handle respectively the output

container of the activity implementation to be passed.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_CONTAINER(509)
The container passed is not a valid output container for the
activity implementation; wrong schema or version.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

Chapter 37. Container activity implementation API calls 379

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
A support tool cannot set the output container.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Examples
v For a C-language example see “Programming an executable (C-language)”

on page 801
v For a C++ example see “Programming an executable (C++)” on page 802

SetRemoteOutContainer()

This API call returns the output container to the MQ Workflow program
execution agent (activity implementation call).

It can be used from within a program started by an activity implementation as
often as required. Note, however, that the output container is not returned to
the MQ Workflow execution server until the activity implementation ends. It
is kept transiently by the program execution agent.

Usage note
v See “Activity implementation API calls” on page 151 for general

information.

Authorization

Valid program identification

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

380 Programming Guide

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long SetRemoteOutContainer(BSTR programID)

C-language signature
APIRET FMC_APIENTRY FmcjContainerSetRemoteOutContainer(

char const * programID,
FmcjReadWriteContainerHandle const output)

C++ language signature
static APIRET SetRemoteOutContainer(

string const & programID,
FmcjReadWriteContainer const & output)

Java signature
public abstract
void ExecutionAgent.setRemoteOutContainer(String programID,

ReadWriteContainer output)
throws FmcException

Parameters
output Input. The output container handle respectively the output

container of the activity implementation to be passed.
programID Input. The program identification by which the activity

implementation is known to the program execution agent.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

Chapter 37. Container activity implementation API calls 381

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_CONTAINER(509)
The container passed is not a valid output container for the
activity implementation; wrong schema or version.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
A support tool cannot set the output container.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

382 Programming Guide

Chapter 38. Execution service actions

An FmcjExecutionService or ExecutionService object represents a session
between a user and an MQ Workflow execution server so that Runtime
services may be asked for.

The execution service object essentially provides for the basic API calls to set
up a communication path to the specified MQ Workflow execution server and
to establish the user session (log on), and finish it (log off).

At FmcjExecutionService or ExecutionService construction or allocation time
the name of the MQ Workflow system and system group where the execution
server resides can be specified. Default values are taken from the current
user’s profile or from the configuration profile, in this sequence, when logging
on. The configuration where to search for the profiles can also be specified.

When the session to an execution server has been established, you can query
objects for which you are authorized; for example, you can query process
templates, process instances, or work items. The attributes of the queried
objects can then be read and further actions can be requested. For example,
once a process template has been queried, creation of a process instance can
be asked for.

When the execution service object is destructed or deallocated and still
represents an active session, logoff is automatically called (provided that there
is no other object referencing this session). It is, however, recommended that
logon and logoff calls are paired before the execution service object is
deallocated.

FmcjService or Service represents common properties of services.

In the C++ language, FmcjExecutionService is thus a subclass of the
FmcjService class and inherits all properties and methods. In the Java
language, ExecutionService is thus a subclass of the Service class and inherits
all properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjService. That is, common
functions start with the prefix FmcjService; they are also defined starting with
the prefix FmcjExecutionService. In ActiveX, inheritance is not supported so
that all functions are explicitly defined on ExecutionService. Note, however,
that they are described as Service actions.

© Copyright IBM Corp. 1993, 2001 383

The following sections describe the actions which can be applied on an
execution service. See “ExecutionService” on page 281 for a complete list of
API calls.

CreateProcessInstanceList()

This API call creates a process instance list on the MQ Workflow execution
server so that process instances can be grouped to one’s own taste or for a
group of users (action call).

A process instance list is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

If the list is for public usage, any owner specification is ignored. If the list is
for private usage and no owner is provided, then the list is created for the
logged-on user.

When the process instance list is to be created for public usage or for the
private usage of another user, that is, not the logged-on user itself, then the
logged-on user needs to have staff definition authorization.

A process instance list groups a set of process instances which have the same
characteristics. These characteristics are defined via search filters. The number
of process instances in the list can be restricted via a threshold which specifies
the maximum number of process instances to be returned to the client. That
threshold is applied after the process instance list has been sorted according to
sort criteria specified. Note that process instances are sorted on the server, that
is, the code page of the server determines the sort sequence.

The following rules apply for specifying a process instance list name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

384 Programming Guide

A process instance list filter is specified as a character string containing a filter
on process instances (refer to “How to read the syntax diagrams” on
page xiii).

Notes:

1. A string constant is to be enclosed in single quotes (’).
2. A single quote within a string constant is to be doubled (’’).
3. A pattern is a string constant in which the asterisk and the question mark

have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks. An actual
backslash is to be doubled (\\).

4. A TimeStamp is a string constant, 24 hours based in local time.
5. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
6. It is not allowed to specify a percent sign (%) or an underscore (_) within

a pattern for the LIKE operand, if this pattern contains mixed data. The
usage of one of these letters results in an SQL error.

PILFilter

��
NOT

PIPredicate
(PILFilter)

�

�

�

AND PIPredicate
OR NOT

(PILFilter)

��

PIPredicate

Chapter 38. Execution service actions 385

��

�

�

�

PIString BasicPredicate string
PIString BETWEEN string AND string

NOT
PIString IN string

NOT ,

(string)
PIString LIKE pattern

NOT
PIString IS NULL

NOT
PITimeStamp BasicPredicate TimeStamp
PITimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PITimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PITimeStamp IS NULL

NOT
STATE BasicPredicate PIState
STATE IN PIState

NOT ,

(PIState)
NAME BasicPredicate TOP_LEVEL_PROCESS_NAME

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

386 Programming Guide

PIString

�� ADMINISTRATOR
CATEGORY
DESCRIPTION
NAME
PARENT_PROCESS_NAME
TOP_LEVEL_PROCESS_NAME

��

PITimeStamp

�� LAST_MODIFICATION_TIME
LAST_STATE_CHANGE_TIME
START_TIME

��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

A process instance list sort criterion is specified as a character string.

Note: The default sort order is ascending.

States are sorted according to the sequence shown in the PIState
diagram.

PILOrderBy

�� �

,

PIString
PITimeStamp ASC

STATE DESC

��

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None or staff definition or be the system administrator

Chapter 38. Execution service actions 387

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long CreateProcessInstanceList(

BSTR name,
long type,
BSTR owner,
boolean ownerIsNull,
BSTR description,
boolean descriptionIsNull,
BSTR filter,
boolean filterIsNull,
BSTR sortCriteria,
boolean sortCriteriaIsNull,
long threshold,
boolean thresholdIsNull)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateProcessInstanceList(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjProcessInstanceListHandle * newList)

388 Programming Guide

C++ language signature
APIRET CreateProcessInstanceList(

string const & name,
FmcjPersistentList::TypeOfList type,
string const * owner,
string const * description,
string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceList & newList) const

Java signature
public abstract
ProcessInstanceList createProcessInstanceList(

String name,
TypeOfList type,
String owner,
String description,
String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
description Input. A user-defined description of the process instance list.
descriptionIsNull

Input. Indicates whether a description is provided for the list.
filter Input. The filter criteria which characterize the process

instances to be contained in the process instance list.
filterIsNull Input. Indicates whether a filter is provided for the list.
name Input. A user-defined name for the process instance list.
newList Input/Output. The newly created process instance list.
owner Input. The owner of the list when the type is private. Ignored

for public lists.
ownerIsNull Input. Indicates whether a list owner is provided. No owner is

needed for public lists.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process instances

in the process instance list.
sortCriteriaIsNull

Input. Indicates whether sort criteria are provided for the list.
threshold Input. The threshold which defines the maximum number of

process instances in the process instance list to be passed to
the client.

Chapter 38. Execution service actions 389

thresholdIsNull
Input. Indicates whether a threshold is provided for the list.

type Input. An indication whether a private or a public list is to be
created.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.
ProcessInstanceList

The newly created process instance list.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance list name does not comply with
the syntax rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not
conform to the syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum
possible value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the process instance list is
not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance list is not unique within the
specified type.

390 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For an ActiveX example see “Create a process instance list (ActiveX)” on

page 759.
v For a C-language example see “Create a process instance list (C-language)”

on page 760.
v For a C++ example see “Create a process instance list (C++)” on page 762.
v For a Java example see “Create a process instance list (Java)” on page 764.

CreateProcessTemplateList()

This API call creates a process template list on the MQ Workflow execution
server so that process templates can be grouped to one’s own taste or for a
group of users (action call).

A process template list is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

If the list is for public usage, any owner specification is ignored. If the list is
for private usage and no owner is provided, then the list is created for the
logged-on user.

Chapter 38. Execution service actions 391

When the process template list is to be created for public usage or for the
private usage of another user, that is, not the logged-on user itself, then the
logged-on user needs to have staff definition authorization.

A process template list groups a set of process templates which have the same
characteristics. These characteristics are defined via filters. The number of
process templates in the list can be restricted via a threshold which specifies
the maximum number of process templates to be returned to the client. That
threshold is applied after the process template list has been sorted according
to sort criteria specified. Process templates are sorted on the server, that is, the
code page of the server determines the sort sequence.

The following rules apply for specifying a process template list name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

A process template list filter is specified as a character string containing a
filter on process templates (refer to “How to read the syntax diagrams” on
page xiii).

Notes:

1. A string constant is to be enclosed in single quotes (’).
2. A single quote within a string constant is to be doubled (’’).
3. A pattern is a string constant in which the asterisk and the question mark

have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks. An actual
backslash is to be doubled (\\).

4. A TimeStamp is a string constant, 24 hours based in local time.
5. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
6. It is not allowed to specify a percent sign (%) or an underscore (_) within

a pattern for the LIKE operand, if this pattern contains mixed data. The
usage of one of these letters results in an SQL error.

392 Programming Guide

PTLFilter

��
NOT

PTPredicate
(PTLFilter)

�

�

�

AND PTPredicate
OR NOT

(PTLFilter)

��

PTPredicate

��

�

�

PTString BasicPredicate string
PTString BETWEEN string AND string

NOT
PTString IN string

NOT ,

(string)
PTString LIKE pattern

NOT
PIString IS NULL

NOT
PTTimeStamp BasicPredicate TimeStamp
PTTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PTTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PTTimeStamp IS NULL

NOT

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

Chapter 38. Execution service actions 393

PTString

�� CATEGORY
DESCRIPTION
NAME

��

PTTimeStamp

�� LAST_MODIFICATION_TIME ��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

A process template list sort criterion is specified as a character string.

Note: The default sort order is ascending.

PTLOrderBy

�� �

,

PTString
PTTimeStamp ASC

DESC

��

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None or staff definition or be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

394 Programming Guide

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long CreateProcessTemplateList(

BSTR name,
long type,
BSTR owner,
boolean ownerIsNull,
BSTR description,
boolean descriptionIsNull,
BSTR filter,
boolean filterIsNull,
BSTR sortCriteria,
boolean sortCriteriaIsNull,
long threshold,
boolean thresholdIsNull)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateProcessTemplateList(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjProcessTemplateListHandle * newList)

C++ language signature
APIRET CreateProcessTemplateList(

string const & name,
FmcjPersistentList::TypeOfList type,
string const * owner,
string const * description,
string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
FmcjProcessTemplateList & newList) const

Chapter 38. Execution service actions 395

Java signature
public abstract
ProcessTemplateList createProcessTemplateList(

String name,
TypeOfList type,
String owner,
String description,
String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
description Input. A user-defined description of the process template list.
descriptionIsNull

Input. Indicates whether a description is provided for the list.
filter Input. The filter criteria which characterize the process

templates in the process template list.
filterIsNull Input. Indicates whether a filter is provided for the list.
name Input. A user-defined name for the process template list.
newList Input/Output. The newly created process template list.
owner Input. The owner of the list when the type is private. Ignored

for public lists.
ownerIsNull Input. Indicates whether a list owner is provided. No owner is

needed for public lists.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process templates

in the process template list.
sortCriteriaIsNull

Input. Indicates whether sort criteria are provided for the list.
threshold Input. The threshold which defines the maximum number of

process templates in the process template list.
thresholdIsNull

Input. Indicates whether a threshold is provided for the list.
type Input. An indication whether a private or a public list is to be

created.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.
ProcessTemplateList

The newly created process template list.

Return codes/ FmcException

396 Programming Guide

FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified process template list name does not comply
with the syntax rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not
conform to the syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum
possible value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the process template list is
not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process template list is not unique within the
specified type.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

Chapter 38. Execution service actions 397

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For an ActiveX example see “Create a process instance list (ActiveX)” on

page 759.
v For a C-language example see “Create a process instance list (C-language)”

on page 760.
v For a C++ example see “Create a process instance list (C++)” on page 762.
v For a Java example see “Create a process instance list (Java)” on page 764.

CreateWorklist()

This API call creates a worklist on the MQ Workflow execution server so that
work items or notifications can be grouped to one’s own taste or for a group
of users (action call).

A worklist is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

If the list is for public usage, any owner specification is ignored. If the list is
for private usage and no owner is provided, then the list is created for the
logged-on user.

When the worklist is to be created for public usage or for the private usage of
another user, that is, not the logged-on user itself, then the logged-on user
needs to have staff definition authorization.

A worklist groups a set of work items or notifications which have the same
characteristics. These characteristics are defined via filters. The number of
items in the worklist can be restricted via a threshold which specifies the
maximum number of items to be returned to the client. That threshold is

398 Programming Guide

applied after the worklist has been sorted according to sort criteria specified.
Items are sorted on the server, that is, the code page of the server determines
the sort sequence.

The following rules apply for specifying a worklist name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

A worklist filter is specified as a character string containing a filter on the
items in the worklist (refer to “How to read the syntax diagrams” on
page xiii).

Notes:

1. A string constant is to be enclosed in single quotes (’).
2. A single quote within a string constant is to be doubled (’’).
3. A pattern is a string constant in which the asterisk and the question mark

have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks. An actual
backslash is to be doubled (\\).

4. A TimeStamp is a string constant, 24 hours based in local time.
5. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
6. It is not allowed to specify a percent sign (%) or an underscore (_) within

a pattern for the LIKE operand, if this pattern contains mixed data. The
usage of one of these letters results in an SQL error.

WLFilter

��
NOT

WLPredicate-1
WLPredicate-2

(WLFilter)

�

Chapter 38. Execution service actions 399

�

�

AND WLPredicate-1
OR NOT WLPredicate-2

(WLFilter)

��

WLPredicate-1

��

�

�

TYPE IN ITType
NOT ,

(ITType)
OWNER BasicPredicate string

CURRENT_USER
OWNER BETWEEN string AND string

NOT CURRENT_USER CURRENT_USER
OWNER IN string

NOT CURRENT_USER
,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

��

WLPredicate-2

400 Programming Guide

��

�

�

�

�

�

�

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

AIType

�� PROCESS_ACTIVITY
PROGRAM_ACTIVITY

��

BasicPredicate

Chapter 38. Execution service actions 401

�� =
>
>=
<
<=
<>

��

ITState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING
EXPIRED

��

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� CREATION_TIME
LAST_MODIFICATION_TIME
RECEIVED_TIME

��

ITType

�� WORK_ITEM
PROCESS_NOTIFICATION
FIRST_NOTIFICATION
SECOND_NOTIFICATION

��

402 Programming Guide

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

A worklist sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

Item types are sorted according to the sequence shown in the ITType
diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

WLOrderBy

�� �

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE
TYPE

��

Usage note
v See “Action API calls” on page 150 for general information.

Chapter 38. Execution service actions 403

Authorization

None or staff definition or be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long CreateWorklist(

BSTR name,
long type,
BSTR owner,
boolean ownerIsNull,
BSTR description,
boolean descriptionIsNull,
BSTR filter,
boolean filterIsNull,
BSTR sortCriteria,
boolean sortCriteriaIsNull,
long threshold,
boolean thresholdIsNull)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateWorklist(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjWorklistHandle * newList)

404 Programming Guide

C++ language signature
APIRET CreateWorklist(

string const & name,
FmcjPersistentList::TypeOfList type,
string const * owner,
string const * description,
string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
FmcjWorklist & newList) const

Java signature
public abstract
WorkList createWorkList(

String name,
TypeOfList type,
String owner,
String description,
String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
description Input. A user-defined description of the worklist.
descriptionIsNull

Input. Indicates whether a description is provided for the list.
filter Input. The filter criteria which characterize the items in the

worklist.
filterIsNull Input. Indicates whether a filter is provided for the list.
name Input. A user-defined name for the worklist.
newList Input/Output. The newly created worklist.
owner Input. The owner of the list when the type is private. Ignored

for public lists.
ownerIsNull Input. Indicates whether a list owner is provided. No owner is

needed for public lists.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the items in the

worklist.
sortCriteriaIsNull

Input. Indicates whether sort criteria are provided for the list.
threshold Input. The threshold which defines the maximum number of

items in the worklist.

Chapter 38. Execution service actions 405

thresholdIsNull
Input. Indicates whether a threshold is provided for the list.

type Input. An indication whether a private or a public list is to be
created.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.
WorkList The newly created worklist.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified worklist name does not comply with the syntax
rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not
conform to the syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum
possible value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the worklist is not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the worklist is not unique within the specified
type.

406 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For an ActiveX example see “Create a process instance list (ActiveX)” on

page 759.
v For a C-language example see “Create a process instance list (C-language)”

on page 760.
v For a C++ example see “Create a process instance list (C++)” on page 762.
v For a Java example see “Create a process instance list (Java)” on page 764.

Logoff()

This API call allows the application to finish the specified user session with an
MQ Workflow execution server (action call).

When logoff has been successfully executed, no further client/server calls are
accepted using this execution service object.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Chapter 38. Execution service actions 407

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long Logoff()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceLogoff(

FmcjExecutionServiceHandle service)

C++ language signature
APIRET Logoff()

Java signature
public abstract
void logoff() throws FmcException

Parameters
service Input. A handle to the service object representing the session

with the execution server.

Return type
long/ APIRET

The return code of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.

408 Programming Guide

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

For examples see “Part 9. Examples and scenarios” on page 753.

Logon()

This API call allows an application to establish a user session with an MQ
Workflow execution server (action call).

A successful Logon() is the prerequisite for using all other action and program
execution management API calls of the MQ Workflow API.

You either log on by specifying a user ID and a password or you log on by
specifying user credentials which are then verified by your authentication exit.

Chapter 38. Execution service actions 409

The user ID to log on with, respectively the user ID returned by your
authentication exit, must be a registered MQ Workflow user.

When the execution server supports unified logon and when you log on with a
user ID and password, an empty password and user ID can be provided. The
user ID to log on with is then retrieved from the operating system, that is,
logon must have been performed at the client. The client is trusted and the
execution server performs no password checking.

After a successful logon, the execution service object represents that single
user session. A further request to log on with a different user ID will be
rejected. You can, however, establish as many sessions as needed, even for the
same user, using different execution service objects, one for each session.

At logon time, you can specify your mode of operation. When you are
operating in a present session mode, the execution server can assume that you
are able to react to requests from activity implementations which might ask,
for example, for container data. Thus, activity instances that are started
automatically may be scheduled on your behalf - provided that you also
started a program execution agent.

Furthermore, the present mode indicates to MQ Workflow that the session can
handle unsolicitedmessages pushed by the execution server - see “The push
data access model” on page 20 for additional prerequisites.

There can only be a single present session for one user. The present here option
can be used, to force that other present session logoff and to newly establish a
present session here. Note that using a present here session mode also
requests to shut down the program execution agent.

When you are operating in a default session mode, the execution server does
not assume that you are able to react. Activity instances are not automatically
started on your behalf and messages are not pushed to you. There can be
multiple sessions for one user with the default session mode.

The following enumeration types can be used to specify the session mode:

ActiveX SessionMode

C-language FmcjServiceSessionMode

C++ FmcjService::SessionMode

JAVA com.ibm.workflow.api.ServicePackage.SessionMode

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.

410 Programming Guide

Default Indicates that you want to operate in a default, nonpresent,
session mode.

ActiveX SessionMode_Default

C-language Fmc_SM_Default

C++ FmcjService::Default respectively
FmcjExecutionService::Default

JAVA SessionMode.DEFAULT
Present Indicates that you want to operate in a present session mode.

ActiveX SessionMode_Present

C-language Fmc_SM_Present

C++ FmcjService::Present respectively
FmcjExecutionService::Present

JAVA SessionMode.PRESENT
PresentHere Indicates that you want to operate in a present session mode.

If a session with the present session mode already exists, then
it should be logged off.

ActiveX SessionMode_PresentHere

C-language Fmc_SM_PresentHere

C++ FmcjService::PresentHere respectively
FmcjExecutionService::PresentHere

JAVA SessionMode.PRESENT_HERE

At logon time, you can also specify whether you are back in case you are set
to be absent. When you are not absent you participate in work assignment;
otherwise no work items are assigned to you.

The following enumeration types can be used to deal with your absence:

ActiveX AbsenceIndicator

C-language FmcjServiceAbsenceIndicator

C++ FmcjService::AbsenceIndicator

JAVA com.ibm.workflow.api.ServicePackage.AbsenceIndicator

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.
NotSet Indicates that no value is specified. This means that the

definition in your person record applies. Your absence is reset
or not according to the definition found there.

Chapter 38. Execution service actions 411

ActiveX AbsenceIndicator_NotSet

C-language Fmc_SA_NotSet

C++ FmcjService::NotSet respectively
FmcjExecutionService::NotSet

JAVA AbsenceIndicator.NOT_SET
Reset Indicates that your absence setting is to be reset; you are back.

ActiveX AbsenceIndicator_Reset

C-language Fmc_SA_Reset

C++ FmcjService::Reset respectively
FmcjExecutionService::Reset

JAVA AbsenceIndicator.RESET
Leave Indicates that your absence setting should stay as is; you are

either absent or not.

ActiveX AbsenceIndicator_Leave

C-language Fmc_SA_Leave

C++ FmcjService::Leave respectively
FmcjExecutionService::Leave

JAVA AbsenceIndicator.LEAVE

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be a registered MQ Workflow user

Required connection

None

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

412 Programming Guide

ActiveX signature
long Logon (BSTR userID, BSTR password)

long LogonWithOptions (BSTR userID,
BSTR password,
SessionMode sessionMode,
AbsenceIndicator absenceIndicator)

long LogonWithCredentials (VARIANT * userCredentials,
SessionMode sessionMode,
AbsenceIndicator absenceIndicator
BSTR userName)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceLogon (

FmcjExecutionServiceHandle service,
char const * userID,
char const * password,
enum FmcjServiceSessionMode sessionMode,
enum FmcjServiceAbsenceIndicator absenceIndicator)

APIRET FMC_APIENTRY FmcjExecutionServiceLogonWithCredentials(
FmcjExecutionServiceHandle service,
FmcjBinary const * userCredentials,
unsigned long userCredentialsLength,
enum FmcjServiceSessionMode sessionMode,
enum FmcjServiceAbsenceIndicator absenceIndicator,
char const * userName)

C++ language signature
APIRET Logon(

string const & userID,
string const & password,
SessionMode sessionMode = Present,
AbsenceIndicator absenceIndicator = NotSet)

APIRET Logon(
FmcjBinary const * userCredentials,
unsigned long userCredentialsLength,
SessionMode sessionMode = Present,
AbsenceIndicator absenceIndicator = NotSet,
string const * userName = 0)

Chapter 38. Execution service actions 413

Java signature
public abstract
void logon (String userID, String password)

public abstract
void logon2(String userID,

String password,
SessionMode sessionMode,
AbsenceIndicator absenceIndicator) throws FmcException

public abstract
void logon3(Byte[] userCredentials) throws FmcException

public abstract
void logon4(Byte[] userCredentials,

SessionMode sessionMode,
AbsenceIndicator absenceIndicator,
String userName) throws FmcException

Parameters
absenceIndicator

Input. An indicator to state how to handle any absence set.
password Input. The password of the user. Can be empty for unified

logon.
service Input. A handle to the service object representing the session

to be established with the execution server.
sessionMode Input. The mode of the session to be established.
userCredentials

Input. The user credentials to be passed to a user-provided
authentication exit.

userCredentialsLength
Input. The length of the binary user credentials string.

userID Input. The user ID of the user on whose behalf a logon is to
be made. Can be empty for unified logon.

userName Input. An optional user name to be passed to a user-provided
authentication exit.

Return type
long/ APIRET

The return code of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

414 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_ALREADY_LOGGED_ON(11)
The user is already logged on with present mode or the
execution service object already represents a different user
session.

FMC_ERROR_AUTHENTICATION(513)
Your authentication exit rejected the logon request. See the
first parameter in the result object for the error reason.

FMC_ERROR_BACK_LEVEL_VERSION(504)
The version of the client is out-of-date, that is, not supported
by this server.

FMC_ERROR_INVALID_ABSENCE_SPEC(905)
An unknown absence setting has been specified.

FMC_ERROR_INVALID_SESSION_MODE(901)
An unknown session mode has been specified.

FMC_ERROR_LOGON_DENIED(512)
The logon request has been denied by your authentication
exit.

FMC_ERROR_NEWER_VERSION(505)
The version of the client is newer than the server version, that
is, not supported.

FMC_ERROR_NOT_AUTHORIZED(119)
A user-provided authentication exit or entry points in the DLL
to pass the credentials to are not found. Or, the authentication
exit returns a recoverable error.

FMC_ERROR_PASSWORD(12)
Incorrect password.

FMC_ERROR_PROFILE(124)
The configuration profile or profile entries (system group,
system) cannot be found.

FMC_ERROR_USERID_UNKNOWN(10)
No user ID registered with MQ Workflow has been provided.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

Chapter 38. Execution service actions 415

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

For examples see “Part 9. Examples and scenarios” on page 753.

Passthrough()

This API call can be used by an activity implementation to establish a user
session with an MQ Workflow execution server from within this program
(activity-implementation call).

When successfully executed, a session to the same execution server is set up
from where the work item implemented by this program was started; the user
on whose behalf the session is set up is the same one on whose behalf the
work item was started.

Usage note
v See “Activity implementation API calls” on page 151 for general

information.

Authorization

Activity implementation started by MQ Workflow

Required connection

None but active MQ Workflow program execution agent

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

416 Programming Guide

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long Passthrough()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServicePassthrough(

FmcjExecutionServiceHandle service)

C++ language signature
APIRET Passthrough()

Java signature
public abstract
void passthrough() throws FmcException

Parameters
service Input. A handle to the service object which is to represent the

session to be established with the execution server.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_PROGRAM_EXECUTION(126)
Passthrough was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
Passthrough cannot be called from a support tool or from a
program started by the program execution server.

Chapter 38. Execution service actions 417

FMC_ERROR_USERID_UNKNOWN(10)
The user who started the work item does no longer exist.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C-language example see “Programming an executable (C-language)”

on page 801.
v For a C++ example see “Programming an executable (C++)” on page 802.

PEAShutDown()

This API call allows to shutdown the program execution agent associated to
the logged on user (program execution management API call call).

The program execution agent is then shut down whether activity
implementations are still running or not. Be careful to wait for any running
activity implementations so that their result is correctly passed to the
execution server.

Usage note
v See “Program execution management API calls” on page 155 for general

information.

Authorization

418 Programming Guide

Logon required

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long PEAShutDown()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServicePEAShutDown(

FmcjExecutionServiceHandle service)

C++ language signature
APIRET PEAShutDown()

Java signature
public abstract
void programExecutionAgentShutDown() throws FmcException

Parameters
service Input. The handle of the execution service object to identify

the user and the program execution agent to be shutdown.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.

Chapter 38. Execution service actions 419

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
A program execution agent for the logged-on user is not
running.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to issue this call from within an activity
implementation or support tool.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

PEAStartUp()

This API call is used to start a program execution agent associated to the
logged-on user (program-execution-management call).

The program execution agent is then started on the same node where this
calling application runs. A single program execution agent per user is
supported. All user’s work, whether from this session or from others, is send
to this program execution agent.

420 Programming Guide

The program execution agent is not automatically shut down when the user
session(s) ends; it must be possible for the program execution agent to wait
for activity implementations to complete.

If you are told that the program execution agent already runs on a different
node, you can issue a shutdown and try again. Be careful to wait for any
running activity implementations.

Usage note
v See “Program execution management API calls” on page 155 for general

information.

Authorization

Valid user session

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long PEAStartUp()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServicePEAStartUp(

FmcjExecutionServiceHandle service)

C++ language signature
APIRET PEAStartUp()

Chapter 38. Execution service actions 421

ActiveX signature
public abstract
void programExecutionAgentStartUp() throws FmcException

Parameters
service Input. A handle to the service object representing the session

with the execution server.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_ALREADY_STARTED(111)
A program execution agent for the logged-on user is already
running.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to issue this call from within an activity
implementation or support tool.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

422 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

QueryActivityInstanceNotifications()

This API call retrieves the activity instance notifications the user has access to
from the MQ Workflow execution server (action call).

In C and C++, any activity instance notifications retrieved are appended to
the supplied vector. If you want to read the current activity instance
notifications only, you have to clear the vector before you call this API call.
This means that you should set the vector handle to 0 in the C-language,
respectively erase all elements of the vector in the C++ API.

The activity instance notifications to be retrieved can be characterized by a
filter. An activity instance notification filter is specified as a character string:

Notes:

1. A string constant is to be enclosed in single quotes (’).
2. A single quote within a string constant is to be doubled (’’).
3. A pattern is a string constant in which the asterisk and the question mark

have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks. An actual
backslash is to be doubled (\\).

4. A TimeStamp is a string constant, 24 hours based in local time.
5. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
6. It is not allowed to specify a percent sign (%) or an underscore (_) within

a pattern for the LIKE operand, if this pattern contains mixed data. The
usage of one of these letters results in an SQL error.

AINFilter

��
NOT

ITPredicate
(AINFilter)

�

Chapter 38. Execution service actions 423

�

�

AND ITPredicate
OR NOT

(AINFilter)

��

ITPredicate

424 Programming Guide

��

�

�

�

�

�

�

�

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

Chapter 38. Execution service actions 425

AIType

�� PROCESS_ACTIVITY
PROGRAM_ACTIVITY

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

ITState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING
EXPIRED

��

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� CREATION_TIME
LAST_MODIFICATION_TIME
RECEIVED_TIME

��

426 Programming Guide

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Activity instance notifications can be sorted. An activity instance notification
sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

AINOrderBy

�� �

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

��

The number of activity instance notifications to be retrieved can be restricted
via a threshold which specifies the maximum number of activity instance
notifications to be returned to the client. That threshold is applied after the
activity instance notifications have been sorted according to the sort criteria
specified. Note that the activity instance notifications are sorted on the server,
that is, the code page of the server determines the sort sequence.

Chapter 38. Execution service actions 427

The primary information that is retrieved for each activity instance
notification is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

428 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryActivityInstanceNotifications(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjActivityInstanceNotificationVectorHandle * notifications)

C++ language signature
APIRET QueryActivityInstanceNotifications(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjActivityInstanceNotification> & notifications) const

Java signature
public abstract
ActivityInstanceNotification[] queryActivityInstanceNotifications(

String filter,
String sortCriteria,
Integer threshold)

throws FmcException

Parameters
filter Input. The filter criteria which characterize the activity

instance notifications to be retrieved.
notifications Input/Output. The qualifying vector of activity instance

notifications.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the activity instance

notifications found.
threshold Input. The threshold which defines the maximum number of

activity instance notifications to be returned to the client.

Return type
APIRET The return code of calling this API call - see return codes

below.
ActivityInstanceNotification[]

The qualifying activity instance notifications.

Chapter 38. Execution service actions 429

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of activity instance notifications to be returned
exceeds the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C-language example see “Query process instances (C-language)” on

page 783.
v For a C++ example see “Query process instances (C++)” on page 784.
v For a Java example see “Query process instances (Java)” on page 786.

430 Programming Guide

QueryItems()

This API call retrieves the work items or notifications the user has access to
from the MQ Workflow execution server (action call).

In C and C++, any items retrieved are appended to the supplied vector. If you
want to read the current items only, you have to clear the vector before you
call this API call. This means that you should set the handle to 0 in the
C-language respectively erase all elements of the vector in the C++ API.

The items to be retrieved can be characterized by a filter. An item filter is
specified as a character string.

Notes:

1. A string constant is to be enclosed in single quotes (’).
2. A single quote within a string constant is to be doubled (’’).
3. A pattern is a string constant in which the asterisk and the question mark

have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks. An actual
backslash is to be doubled (\\).

4. A TimeStamp is a string constant, 24 hours based in local time.
5. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
6. It is not allowed to specify a percent sign (%) or an underscore (_) within

a pattern for the LIKE operand, if this pattern contains mixed data. The
usage of one of these letters results in an SQL error.

ItemFilter

��
NOT

ITPredicate
(ItemFilter)

�

�

�

AND ITPredicate
OR NOT

(ItemFilter)

��

ITPredicate

Chapter 38. Execution service actions 431

��

�

�

�

�

�

�

�

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

432 Programming Guide

AIType

�� PROCESS_ACTIVITY
PROGRAM_ACTIVITY

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

ITState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING
EXPIRED

��

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� CREATION_TIME
LAST_MODIFICATION_TIME
RECEIVED_TIME

��

Chapter 38. Execution service actions 433

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Items can be sorted. An item sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

ItemOrderBy

�� �

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

��

The number of items to be retrieved can be restricted via a threshold which
specifies the maximum number of items to be returned to the client. That
threshold is applied after the items have been sorted according to the sort
criteria specified. Note that the items are sorted on the server, that is, the code
page of the server determines the sort sequence.

The primary information that is retrieved for each item is:

434 Programming Guide

v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryItems(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjItemHandle * items)

Chapter 38. Execution service actions 435

C++ language signature
APIRET QueryItems(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjItem> & items) const

Java signature
public abstract
Item[] queryItems(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the items to be

retrieved.
items Input/Output. The qualifying vector of items.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the items found.
threshold Input. The threshold which defines the maximum number of

items to be returned to the client.

Return type
APIRET The return code of calling this API call - see return codes

below.
Item[] The qualifying items.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

436 Programming Guide

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of items to be returned exceeds the maximum
size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C-language example see “Query process instances (C-language)” on

page 783.
v For a C++ example see “Query process instances (C++)” on page 784.
v For a Java example see “Query process instances (Java)” on page 786.

QueryProcessInstanceLists()

This API call retrieves the process instance lists the user has access to from the
MQ Workflow execution server (action call).

In C and C++, any process instance lists retrieved are appended to the
supplied vector. If you want to read the current process instance lists only,
you have to clear the vector before you call this API call. This means that you
should set the vector handle to 0 in the C-language, respectively erase all
elements of the vector in the C++ API. In ActiveX, the process instance list
array on the ExecutionService is updated.

Usage note
v See “Action API calls” on page 150 for general information.

Chapter 38. Execution service actions 437

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long QueryProcessInstanceLists()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstanceLists(

FmcjExecutionServiceHandle service,
FmcjProcessInstanceListVectorHandle * lists)

C++ language signature
APIRET QueryProcessInstanceLists(

vector<FmcjProcessInstanceList> & lists) const

Java signature
public abstract
ProcessInstanceList[] queryProcessInstanceLists() throws FmcException

Parameters
lists Input/Output. The vector of process instance lists.
service Input. A handle to the service object representing the session

with the execution server.

Return type

438 Programming Guide

long/ APIRET The return code of calling this API call - see return codes
below.

ProcessInstanceList[]
The qualifying process instance lists.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instance lists to be returned exceeds
the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For an ActiveX example see “Query worklists (ActiveX)” on page 770.
v For a C-language example see “Query worklists (C-language)” on page 771.
v For a C++ example see “Query worklists (C++)” on page 774.
v For a Java example see “Query worklists (Java)” on page 776.

Chapter 38. Execution service actions 439

QueryProcessInstanceNotifications()

This API call retrieves the process instance notifications the user has access to
from the MQ Workflow execution server (action call).

In C and C++, any process instance notifications retrieved are appended to
the supplied vector. If you want to read the current process instance
notifications only, you have to clear the vector before you call this API call.
This means that you should set the vector handle to 0 in the C-language
respectively erase all elements of the vector in the C++ API.

The process instance notifications to be retrieved can be characterized by a
filter. A process instance notification filter is specified as a character string.

Notes:

1. A string constant is to be enclosed in single quotes (’).
2. A single quote within a string constant is to be doubled (’’).
3. A pattern is a string constant in which the asterisk and the question mark

have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks. An actual
backslash is to be doubled (\\).

4. A TimeStamp is a string constant, 24 hours based in local time.
5. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
6. It is not allowed to specify a percent sign (%) or an underscore (_) within

a pattern for the LIKE operand, if this pattern contains mixed data. The
usage of one of these letters results in an SQL error.

PINFilter

��
NOT

ITPredicate
(PINFilter)

�

�

�

AND ITPredicate
OR NOT

(PINFilter)

��

ITPredicate

440 Programming Guide

��

�

�

�

�

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

Chapter 38. Execution service actions 441

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� CREATION_TIME
LAST_MODIFICATION_TIME
RECEIVED_TIME

��

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Process instance notifications can be sorted. A process instance notification
sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

PINOrderBy

442 Programming Guide

�� �

,

ITString
ITTimeStamp ASC

OWNER DESC
PROCESS_STATE

��

The number of process instance notifications to be retrieved can be restricted
via a threshold which specifies the maximum number of process instance
notifications to be returned to the client. That threshold is applied after the
activity instance notifications have been sorted according to the sort criteria
specified. Note that the process instance notifications are sorted on the server,
that is, the code page of the server determines the sort sequence.

The primary information that is retrieved for each process instance
notification is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

Chapter 38. Execution service actions 443

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstanceNotifications(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceNotificationVectorHandle * notifications)

C++ language signature
APIRET QueryProcessInstanceNotifications(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjProcessInstanceNotification> & notifications) const

Java signature
public abstract
ProcessInstanceNotification[] queryProcessInstanceNotifications(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the process

instance notifications to be retrieved.
items Input/Output. The qualifying vector of process instance

notifications.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process instance

notifications found.
threshold Input. The threshold which defines the maximum number of

process instance notifications to be returned to the client.

Return type
APIRET The return code of calling this API call - see return codes

below.
ProcessInstanceNotification[]

The qualifying process instance notifications.

444 Programming Guide

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process instance
notifications.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process
instance notifications.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instance notifications to be returned
exceeds the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C-language example see “Query process instances (C-language)” on

page 783.
v For a C++ example see “Query process instances (C++)” on page 784.
v For a Java example see “Query process instances (Java)” on page 786.

Chapter 38. Execution service actions 445

QueryProcessInstances()

This API call retrieves the current process instances the user has access to
from the MQ Workflow execution server (action call).

In C and C++ any process instances retrieved are appended to the supplied
vector. If you want to read the current process instances only, you have to
clear the vector before you call this API call. This means that you should set
the vector handle to 0 in the C-language respectively erase all elements of the
vector in the C++ API.

A filter on process instances is specified as a character string containing a
filter predicate:

Notes:

1. A string constant is to be enclosed in single quotes (’).
2. A single quote within a string constant is to be doubled (’’).
3. A pattern is a string constant in which the asterisk and the question mark

have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks. An actual
backslash is to be doubled (\\).

4. A TimeStamp is a string constant, 24 hours based in local time.
5. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
6. It is not allowed to specify a percent sign (%) or an underscore (_) within

a pattern for the LIKE operand, if this pattern contains mixed data. The
usage of one of these letters results in an SQL error.

PIFilter

��
NOT

PIPredicate
(PIFilter)

�

�

�

AND PIPredicate
OR NOT

(PIFilter)

��

PIPredicate

446 Programming Guide

��

�

�

�

PIString BasicPredicate string
PIString BETWEEN string AND string

NOT
PIString IN string

NOT ,

(string)
PIString LIKE pattern

NOT
PIString IS NULL

NOT
PITimeStamp BasicPredicate TimeStamp
PITimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PITimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PITimeStamp IS NULL

NOT
STATE BasicPredicate PIState
STATE IN PIState

NOT ,

(PIState)
NAME BasicPredicate TOP_LEVEL_PROCESS_NAME

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

Chapter 38. Execution service actions 447

PIString

�� ADMINISTRATOR
CATEGORY
DESCRIPTION
NAME
PARENT_PROCESS_NAME
TOP_LEVEL_PROCESS_NAME

��

PITimeStamp

�� LAST_MODIFICATION_TIME
LAST_STATE_CHANGE_TIME
START_TIME

��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Process instances can be sorted. A process instance sort criterion is specified as
a character string.

Note: The default sort order is ascending.

States are sorted according to the sequence shown in the PIState
diagram.

PIOrderBy

�� �

,

PIString
PITimeStamp ASC

STATE DESC

��

The number of process instances to be retrieved can be restricted via a
threshold which specifies the maximum number of process instances to be
returned to the client. That threshold is applied after the process instances
have been sorted according to the sort criteria specified. Note that the process
instances are sorted on the server, that is, the code page of the server
determines the sort sequence.

448 Programming Guide

The primary information that is retrieved for each process instance is:
v Category
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v LastStateChangeTime
v Name
v ParentName
v ProcessTemplateName
v State
v SuspensionTime
v SystemName
v SystemGroupName
v TopLevelName

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstances(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceVectorHandle * instances)

Chapter 38. Execution service actions 449

C++ language signature
APIRET QueryProcessInstances(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjProcessInstance> & instances) const

Java signature
public abstract
ProcessInstance[] queryProcessInstances(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the process

instances to be retrieved.
instances Input/Output. The qualifying vector of process instances.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process instances

found.
threshold Input. The threshold which defines the maximum number of

process instances to be returned to the client.

Return type
APIRET The return code of calling this API call - see return codes

below.
ProcessInstance[]

The qualifying process instances.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process instances.

450 Programming Guide

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process
instances.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instances to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C-language example see “Query process instances (C-language)” on

page 783.
v For a C++ example see “Query process instances (C++)” on page 784.
v For a Java example see “Query process instances (Java)” on page 786.

QueryProcessTemplateLists()

This API call retrieves the current process template lists the user has access to
from the MQ Workflow execution server (action call).

In C and C++, any process template lists retrieved are appended to the
supplied vector. If you want to read the current process template lists only,
you have to clear the vector before you call this API call. This means that you
should set the vector handle to 0 in the C-language respectively erase all
elements of the vector in the C++ API. In ActiveX, the process template list
array on the ExecutionService is updated.

Chapter 38. Execution service actions 451

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long QueryProcessTemplateLists()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessTemplateLists(

FmcjExecutionServiceHandle service,
FmcjProcessTemplateListVectorHandle * lists)

C++ language signature
APIRET QueryProcessTemplateLists(

vector<FmcjProcessTemplateList> & lists) const

Java signature
public abstract
ProcessTemplateList[] queryProcessTemplateLists() throws FmcException

Parameters
lists Input/Output. The vector of process template lists.

452 Programming Guide

service Input. A handle to the service object representing the session
with the execution server.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.
ProcessTemplateList[]

The qualifying process template lists.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process template lists to be returned exceeds
the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For an ActiveX example see “Query worklists (ActiveX)” on page 770.
v For a C-language example see “Query worklists (C-language)” on page 771.
v For a C++ example see “Query worklists (C++)” on page 774.
v For a Java example see “Query worklists (Java)” on page 776.

Chapter 38. Execution service actions 453

QueryProcessTemplates()

This API call retrieves the current process templates from the MQ Workflow
execution server (action call).

In C and C++, any process templates retrieved are appended to the supplied
vector. If you want to read the current process templates only, you have to
clear the vector before you call this API call. This means that you should set
the vector handle to 0 in the C-language respectively erase all elements of the
vector in the C++ API.

A filter on process templates is specified as a character string containing a
filter predicate:

Notes:

1. A string constant is to be enclosed in single quotes (’).
2. A single quote within a string constant is to be doubled (’’).
3. A pattern is a string constant in which the asterisk and the question mark

have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks. An actual
backslash is to be doubled (\\).

4. A TimeStamp is a string constant, 24 hours based in local time.
5. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
6. It is not allowed to specify a percent sign (%) or an underscore (_) within

a pattern for the LIKE operand, if this pattern contains mixed data. The
usage of one of these letters results in an SQL error.

PTFilter

��
NOT

PTPredicate
(PTFilter)

�

�

�

AND PTPredicate
OR NOT

(PTFilter)

��

PTPredicate

454 Programming Guide

��

�

�

PTString BasicPredicate string
PTString BETWEEN string AND string

NOT
PTString IN string

NOT ,

(string)
PTString LIKE pattern

NOT
PIString IS NULL

NOT
PTTimeStamp BasicPredicate TimeStamp
PTTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PTTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PTTimeStamp IS NULL

NOT

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

PTString

�� CATEGORY
DESCRIPTION
NAME

��

PTTimeStamp

�� LAST_MODIFICATION_TIME ��

Chapter 38. Execution service actions 455

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Process templates can be sorted. A process template sort criterion is specified
as a character string.

Note: The default sort order is ascending.

PTOrderBy

�� �

,

PTString
PTTimeStamp ASC

DESC

��

The number of process templates to be retrieved can be restricted via a
threshold which specifies the maximum number of process templates to be
returned to the client. That threshold is applied after the process templates
have been sorted according to the sort criteria specified. Note that the process
templates are sorted on the server, that is, the code page of the server
determines the sort sequence.

The primary information that is retrieved for each process template is:
v Category
v CreationTime
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v Name

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

456 Programming Guide

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessTemplates(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessTemplateVectorHandle * templates)

C++ language signature
APIRET QueryProcessTemplates(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjProcessTemplate> & templates) const

Java signature
public abstract
ProcessTemplates[] queryProcessTemplates(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the process

templates to be retrieved.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process templates

found.
templates Input/Output. The qualifying vector of process templates.
threshold Input. The threshold which defines the maximum number of

process templates to be returned to the client.

Return type

Chapter 38. Execution service actions 457

APIRET
The return code of calling this API call - see return codes below.

ProcessTemplate[]
The qualifying process templates.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process templates.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process
templates.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process templates to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

458 Programming Guide

v For a C-language example see “Query process instances (C-language)” on
page 783 .

v For a C++ example see “Query process instances (C++)” on page 784.
v For a Java example see “Query process instances (Java)” on page 786.

QueryWorkitems()

This API call retrieves the work items the user has access to from the MQ
Workflow execution server (action call).

In C and C++, any work items retrieved are appended to the supplied vector.
If you want to read the current work items only, you have to clear the vector
before you call this API call. This means that you should set the vector handle
to 0 in the C-language respectively erase all elements of the vector in the C++
API.

The work items to be retrieved can be characterized by a filter. A work item
filter is specified as a character string:

Notes:

1. A string constant is to be enclosed in single quotes (’).
2. A single quote within a string constant is to be doubled (’’).
3. A pattern is a string constant in which the asterisk and the question mark

have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks. An actual
backslash is to be doubled (\\).

4. A TimeStamp is a string constant, 24 hours based in local time.
5. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
6. It is not allowed to specify a percent sign (%) or an underscore (_) within

a pattern for the LIKE operand, if this pattern contains mixed data. The
usage of one of these letters results in an SQL error.

WIFilter

��
NOT

ITPredicate
(WIFilter)

�

Chapter 38. Execution service actions 459

�

�

AND ITPredicate
OR NOT

(WIFilter)

��

ITPredicate

460 Programming Guide

��

�

�

�

�

�

�

�

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

Chapter 38. Execution service actions 461

AIType

�� PROCESS_ACTIVITY
PROGRAM_ACTIVITY

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

ITState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING
EXPIRED

��

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� CREATION_TIME
LAST_MODIFICATION_TIME
RECEIVED_TIME

��

462 Programming Guide

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Work items can be sorted. A work item sort criterion is specified as a
character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

WIOrderBy

�� �

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

��

The number of work items to be retrieved can be restricted via a threshold
which specifies the maximum number of work items to be returned to the
client. That threshold is applied after the items have been sorted according to
the sort criteria specified. Note that the items are sorted on the server, that is,
the code page of the server determines the sort sequence.

Chapter 38. Execution service actions 463

The primary information that is retrieved for each work item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryWorkitems(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjWorkitemVectorHandle * workitems)

464 Programming Guide

C++ language signature
APIRET QueryWorkitems(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjWorkitem> & workitems) const

Java signature
public abstract
WorkItem[] queryWorkItems(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the work items to

be retrieved.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the work items found.
threshold Input. The threshold which defines the maximum number of

work items to be returned to the client.
workitems Input/Output. The qualifying vector of work items.

Return type
APIRET The return code of calling this API call - see return codes

below.
WorkItem[] The qualifying work items.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to work items.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to work items.

Chapter 38. Execution service actions 465

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of work items to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C-language example see “Query process instances (C-language)” on

page 783.
v For a C++ example see “Query process instances (C++)” on page 784.
v For a Java example see “Query process instances (Java)” on page 786.

You query work items similar to querying process instances.

QueryWorklists()

This API call retrieves the worklists the user has access to from the MQ
Workflow execution server (action call).

In C and C++, any worklists retrieved are appended to the supplied vector. If
you want to read the current worklists only, you have to clear the vector
before you call this API call. This means that you should set the vector handle
to 0 in the C-language respectively erase all elements of the vector in the C++
API. In ActiveX, the worklist array on the ExecutionService array is updated.

Usage note

466 Programming Guide

v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long QueryWorklists()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryWorklists(

FmcjExecutionServiceHandle service,
FmcjWorklistVectorHandle * lists)

C++ language signature
APIRET QueryWorklists(vector<FmcjWorklist> & lists) const

Java signature
public abstract
WorkList[] queryWorkLists() throws FmcException

Parameters
lists Input/Output. The vector of worklists.
service Input. A handle to the service object representing the session

with the execution server.

Chapter 38. Execution service actions 467

Return type
long/ APIRET The return code of calling this API call - see return codes

below.
WorkList[] The qualifying worklists.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of worklists to be returned exceeds the maximum
size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For an ActiveX example see “Query worklists (ActiveX)” on page 770.
v For a C-language example see “Query worklists (C-language)” on page 771.
v For a C++ example see “Query worklists (C++)” on page 774.
v For a Java example see “Query worklists (Java)” on page 776.

468 Programming Guide

Receive()

This API call allows for receiving data pushed by an MQ Workflow execution
server or for receiving a response on an asynchronous request.

A correlation ID can be used to receive a specific response. To receive any
data sent, it must be a 0 (NULL) pointer or specify FMCJ_NO_CORRELID,
that is, point to a buffer that contains all zeros (0x00). Note that the correlation
ID is set on return provided that no 0 pointer is passed. This means that it has
to be reset for each request.

The timeout value specifies how long the application should wait at a
maximum for some data to arrive. If no data arrives, a timeout error is
indicated. A timeout value of -1 indicates an indefinite wait time.

If data is successfully received, the execution data contains the data sent and
can be used for updating objects or for creating new objects. See
“ExecutionData” on page 280 for API calls supported by the execution data
object.

The following enumeration types can be used to determine the contents of the
execution data received:

ActiveX not supported

C-language FmcjExecutionDataKindEnum

C++ FmcjExecutionData::KindEnum

JAVA not supported

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.
NotSet(0) Indicates that nothing is known about the content of the

execution data.

C-language Fmc_DART_NotSet

C++ FmcjExecutionData::NotSet
Terminate(2) Indicates that receiving data can end.

C-language Fmc_DART_Terminate

C++ FmcjExecutionData::Terminate
ItemDeleted(1000)

Indicates that a work item, an activity instance notification, or
a process instance notification has been deleted.

C-language Fmc_DART_ItemDeleted

C++ FmcjExecutionData::ItemDeleted

Chapter 38. Execution service actions 469

Workitem(1002)
Indicates that a work item has been created or updated.

C-language Fmc_DART_Workitem

C++ FmcjExecutionData::Workitem
ActivityInstanceNotification(1003)

Indicates that an activity instance notification has been created
or updated.

C-language Fmc_DART_ActivityInstanceNotification

C++ FmcjExecutionData::ActivityInstanceNotification
ProcessInstanceNotification(1004)

Indicates that a process instance notification has been created
or updated.

C-language Fmc_DART_ProcessInstanceNotification

C++ FmcjExecutionData::ProcessInstanceNotification
ExecuteInstanceResponse(1100)

Indicates that the execution data contains the response on an
ExecuteProcessInstance() request.

C-language Fmc_DART_ExecuteInstanceResponse

C++ FmcjExecutionData::ExecuteInstanceResponse
ExecuteProgramResponse(1101)

Indicates that the execution data contains the response on an
ExecuteProgram() request.

C-language Fmc_DART_ExecuteProgramResponse

C++ FmcjExecutionData::ExecuteProgramResponse

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server (present session mode)

API interface declarations

ActiveX not applicable

C-language fmcjcrun.h

470 Programming Guide

C++ fmcjprun.hxx

JAVA not supported

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceReceive(

FmcjExecutionServiceHandle service,
FmcjCorrelID * correlID,
FmcjExecutionDataHandle * data,
signed long timeout)

C++ language signature
APIRET Receive(FmcjCorrelID * correlID,

FmcjExecutionData & data,
signed long timeout) const

Parameters
correlID Input/Output. The correlation ID by which this data can be

correlated to a previous request. Must be a NULL (0) pointer
or point to Fmcj_No_CorrelID if you want to receive any data.

data Output. The data sent by an MQ Workflow execution server.
service Input. A handle to the service object representing the present

session with the execution server.
timeout Input. The maximum time period in milliseconds to wait for

some data to arrive.

Return type
APIRET The return code of calling this API call - see return codes

below.

Return codes
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_MESSAGE_DATA(104)
The client received an unknown message.

Chapter 38. Execution service actions 471

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

RemotePassthrough()

This API call can be used by an application program to establish a user
session with an MQ Workflow execution server from within this program
(activity-implementation call).

An activity implementation started by an MQ Workflow program execution
agent can request services from that program execution agent without further
identification. It is known by the program execution agent.

When the activity implementation decides to distribute work among other
programs and starts those programs as separate operating system processes,
then those processes are unknown by the program execution agent and cannot
request services. The activity implementation can, however, ask the program
execution agent for its program identification and pass that identification to
the programs started. That is, the programs started receive the authorization
to talk to the program execution agent as long as the actual activity
implementation is alive.

The started programs can then request services from the program execution
agent by themselves by specifying this program identification.

472 Programming Guide

When successfully executed, a session to the same execution server is set up
from where the original work item was started; the user on whose behalf the
session is set up is the same one on whose behalf the original work item was
started.

Usage note
v See “Activity implementation API calls” on page 151 for general

information.

Authorization

Valid program identification

Required connection

None but MQ Workflow program execution agent must be active

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long RemotePassthrough(BSTR programID)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceRemotePassthrough(

FmcjExecutionServiceHandle service)
char const * programID)

C++ language signature
APIRET RemotePassthrough(string const & programID)

Chapter 38. Execution service actions 473

Java signature
public abstract
void remotePassthrough(String programID) throws FmcException

Parameters
programID Input. The program identification by which the actually

started activity implementation is known to the program
execution agent.

service Input. A handle to the service object representing the session
to be established with the execution server.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_PROGRAM_EXECUTION(126)
Passthrough was not called from a program started by an
activity implementation or the program execution agent is not
active.

FMC_ERROR_TOOL_FUNCTION(128)
Passthrough cannot be called from a program started by a
support tool or from a program started by the program
execution server.

FMC_ERROR_USERID_UNKNOWN(10)
The user who started the work item does no longer exist.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

474 Programming Guide

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetPersonAbsent()

This API call sets the absence indication of the specified user to the specified
value (action call).

When a person is absent, this person does not participate in staff resolution,
that is, this person does not get assigned any work items.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the same user, that is, request to change the own absence
v Staff authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

Chapter 38. Execution service actions 475

ActiveX signature
long SetPersonAbsent(BSTR userID, boolean newValue)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceSetPersonAbsent(

FmcjExecutionServiceHandle service,
char const * userID,
bool newValue)

C++ language signature
APIRET SetPersonAbsent(string const * userID = 0,

bool newValue = true)

Java signature
public abstract
void setPersonAbsent() throws FmcException

public abstract
void setPersonAbsent2(String userID, boolean newValue)
throws FmcException

Parameters
service Input. The handle of the service object where a person’s

absence is to be set.
newValue Input. True, if the person is denoted as absent, else false.
userID Input. The user ID of the person whose absence is to be set.

When no user ID is provided in C++, the absence of the
logged-on user is set.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

476 Programming Guide

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_USERID_UNKNOWN(10)
The specified user ID is not known.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

TerminateReceive()

This API call causes information to be placed into the client input queue to
tell that receiving data from an MQ Workflow execution server can end.

In this way, the receiving part of the application gets to know that receiving
data can end. Any resulting actions are up to the application.

Chapter 38. Execution service actions 477

When the correlID parameter points to some buffer initialized to
FMCJ_NO_CORRELID, that is, points to a buffer that contains all zeros (0x00),
then a correlation ID is returned which can be used to explicitly receive this
data.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

None

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA not supported

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceTerminateReceive(

FmcjExecutionServiceHandle service,
FmcjCorrelID * correlID)

C++ language signature
APIRET TerminateReceive(FmcjCorrelID * correlID = 0)

Parameters
correlID Input/Output. The correlation ID by which this request can be

correlated.
service Input. A handle to the service object.

Return type
APIRET The return code of calling this API call - see return codes

below.

Return codes

478 Programming Guide

FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_CORRELATION_ID(506)
The correlation ID passed is not FMCJ_NO_CORRELID.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 38. Execution service actions 479

480 Programming Guide

Chapter 39. Instance monitor actions

An InstanceMonitor object represents a monitor for a process instance, an
activity instance of type Block, or an activity instance of type Process.

The following sections describe the actions which can be applied on an
instance monitor. See “InstanceMonitor” on page 294 for a complete list of API
calls.

ObtainInstanceMonitor()/ ObtainBlockMonitor()/ ObtainProcessMonitor()

This API call retrieves the instance monitor for the specified activity instance
from the MQ Workflow execution server (action call). If the requested instance
monitor has already been retrieved from the server, the monitor found in the
API cache is returned to the caller.

When the monitor for a process instance is retrieved, the specified activity
instance must be of type Process and be part of this instance monitor.

When the monitor for a block is retrieved, the specified activity instance must
be of type Block and be part of this instance monitor.

When the deep option is specified, nested activity instances of type Block are
resolved, that is, their instance monitors are also read from the server.

Note: Deep is currently not supported.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

© Copyright IBM Corp. 1993, 2001 481

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.InstanceMonitor

ActiveX signature
InstanceMonitor *
ObtainInstanceMonitor(long * returnCode,

ActivityInstance * activity,
boolean deep)

C-language signature
FmcjInstanceMonitorHandle FMC_APIENTRY

FmcjInstanceMonitorObtainBlockMonitor(
FmcjInstanceMonitorHandle hdlMonitor,
FmcjActivityInstanceHandle activity)

FmcjInstanceMonitorHandle FMC_APIENTRY
FmcjInstanceMonitorObtainProcessMonitor(

FmcjInstanceMonitorHandle hdlMonitor,
FmcjActivityInstanceHandle activity,
bool deep)

C++ language signature
FmcjInstanceMonitor *

ObtainBlockMonitor (FmcjActivityInstance const & activity) const

APIRET ObtainBlockMonitor (FmcjActivityInstance const & activity,
FmcjInstanceMonitor & monitor) const

FmcjInstanceMonitor *
ObtainProcessMonitor(FmcjActivityInstance const & activity,

bool deep = false) const

APIRET ObtainProcessMonitor(FmcjActivityInstance const & activity,
FmcjInstanceMonitor & monitor,
bool deep = false) const

482 Programming Guide

Java signature
public abstract
InstanceMonitor obtainBlockMonitor (ActivityInstance activity)

throws FmcException

public abstract
InstanceMonitor obtainProcesskMonitor(ActivityInstance activity,

boolean deep)
throws FmcException

Parameters
activity Input. The activity instance of type Block or Process whose

instance monitor is to be retrieved.
deep Input. An indicator whether monitors of activity instances of

type Block are to be resolved, that is, their monitors are also to
be retrieved. Note that deep is currently not supported.

hdlMonitor Input. The instance monitor containing the activity instance of
type Block or Process.

monitor Input/Output. The instance monitor retrieved.
returnCode Input/Output. The result of calling this API call - see return

codes below.

Return type
APIRET The result of calling this API call - see return codes below.
FmcjInstanceMonitor*/Handle/InstanceMonitor

The instance monitor respectively a pointer of handle to the
instance monitor.

Return codes
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The specified activity instance is not described by the instance
monitor or does no longer exist.

Chapter 39. Instance monitor actions 483

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The specified activity instance is not of type Block or Process.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()

This API call refreshes the instance monitor from the MQ Workflow execution
server (action call).

All information about the instance monitor is retrieved.

When the deep option is specified, then activity instances of type Block are
resolved, that is, their instance monitors are also refreshed from the server.

Note: Deep is currently not supported.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

484 Programming Guide

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.InstanceMonitor

ActiveX signature
long Refresh (boolean deep)

C-language signature
APIRET FMC_APIENTRY FmcjInstanceMonitorRefresh(

FmcjInstanceMonitorHandle hdlMonitor,
bool deep)

C++ language signature
APIRET Refresh(bool deep = false)

Java signature
public abstract
void Refresh(boolean deep) throws FmcException

Parameters
deep Input. An indicator whether activity instances of type Block

Chapter 39. Instance monitor actions 485

are to be resolved, that is, their monitors are also to be
provided. Note, deep is currently ignored.

hdlMonitor Input. The instance monitor to be refreshed.

Return type
long The result of calling this API call - see return codes below.

Return codes
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

486 Programming Guide

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 39. Instance monitor actions 487

488 Programming Guide

Chapter 40. Item actions

An FmcjItem or Item object represents a work item or an activity instance
notification or a process instance notification.

An FmcjItem or Item object represents the common aspects of work items and
notifications. In the C++ language, FmcjItem is thus the superclass of the
FmcjWorkitem, FmcjActivityInstanceNotification, and
FmcjProcessInstanceNotification classes and provides for all common
properties and methods. In the Java language, Item is thus a superclass of the
WorkItem, ActivityInstanceNotification, and ProcessInstanceNotification
classes and provides for all common properties and methods. Similarly, in the
C-language, common implementations of functions are taken from FmcjItem.
That is, common functions start with the prefix FmcjItem; they are also
defined starting with the prefixes FmcjWorkitem,
FmcjActivityInstanceNotification, and FmcjProcessInstanceNotification. In
ActiveX, inheritance is not supported so that all methods are explicitly
defined on the appropriate classes. Note, however, that they are described
here as Item actions.

An item is uniquely identified by its object identifier.

The following sections describe the actions which can be applied on an item.
See “Item” on page 296 for a complete list of API calls.

Delete()

This API call deletes the specified item from the MQ Workflow execution
server (action call).

A notification can always be deleted. A work item must be in states Ready,
Finished, ForceFinished, or Disabled. If the work item is in the Ready state and
represents the only work associated with the activity instance and when the
associated process instance is not Terminating or Terminated, then deletion is
rejected.

There are no impacts on the transient representation of your item; in C and
C++, you have to destruct or deallocate the transient object when it is no
longer needed.

Usage note
v See “Action API calls” on page 150 for general information.

© Copyright IBM Corp. 1993, 2001 489

Authorization

One of:
v Be the item owner
v Work item authorization for the item owner
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

ActiveX signature
long ActivityInstanceNotification.Delete()

long ProcessInstanceNotification.Delete()

long Workitem.Delete()

C-language signature
APIRET FMC_APIENTRY FmcjItemDelete(FmcjItemHandle hdlItem)

#define FmcjActivityInstanceNotificationDelete FmcjItemDelete
#define FmcjProcessInstanceNotificationDelete FmcjItemDelete
#define FmcjWorkitemDelete FmcjItemDelete

C++ language signature
APIRET Delete()

Java signature
public abstract
void delete() throws FmcException

490 Programming Guide

Parameters
hdlItem Input. The handle of the item to be deleted.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_ALLOWED(507)
The item represents the only work associated with the activity
instance.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Chapter 40. Item actions 491

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ObtainProcessMonitor()/ObtainInstanceMonitor

This API call retrieves the instance monitor for the process instance the item is
part of from the MQ Workflow execution server (action call).

When the deep option is specified, then activity instances of type Block are
resolved, that is, their monitors are also fetched from the server.

Note: Deep is currently not supported.

In C++, when the instance monitor object to be initialized is not empty, that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the instance monitor handle already points to some object.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

492 Programming Guide

ActiveX signature
InstanceMonitor*
ActivityInstanceNotification.ObtainInstanceMonitor(

long * returnCode,
boolean deep)

InstanceMonitor*
ProcessInstanceNotification.ObtainInstanceMonitor(

long * returnCode,
boolean deep)

InstanceMonitor*
Workitem.ObtainInstanceMonitor(

long * returnCode,
boolean deep)

C-language signature
APIRET FMC_APIENTRY FmcjItemObtainProcessMonitor(

FmcjItemHandle hdlItem,
bool deep,
FmcjInstanceMonitorHandle * monitor)

#define FmcjActivityInstanceNotificationObtainProcessMonitor
FmcjItemObtainProcessMonitor

#define FmcjProcessInstanceNotificationObtainProcessMonitor
FmcjItemObtainProcessMonitor

#define FmcjWorkitemObtainProcessMonitor
FmcjItemObtainProcessMonitor

C++ language signature
APIRET ObtainProcessMonitor(FmcjInstanceMonitor & monitor,

bool deep= false) const

Java signature
public abstract
InstanceMonitor obtainProcesseMonitor(boolean deep)
throws FmcException

Parameters
deep Input. An indicator whether activity instances of type Block

Chapter 40. Item actions 493

are to be resolved, that is, their monitor is also to be provided.
Note, deep is currently ignored.

hdlItem Input. The item whoseinstance monitor is to be retrieved.
monitor Input/Output. The address of the handle to the monitor

respectively the monitor object to be set.
returnCode Input/Output. The return code of calling this method - see

return codes below.

Return type
APIRET The return code of calling this API call - see return codes

below.
InstanceMonitorHandle*/ InstanceMonitor

A pointer to the instance monitor or the instance monitor the
item is a part of.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

494 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ProcessInstance()

This API call retrieves the process instance the item is a part of from the MQ
Workflow execution server (action call).

All information about the process instance, primary and secondary, is
retrieved.

In C++, when the process instance object to be initialized is not empty, that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the process instance handle already points to some object.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

Chapter 40. Item actions 495

ActiveX signature
ProcessInstance*
ActivityInstanceNotification.ProcessInstance(long * returnCode)

ProcessInstancer*
ProcessInstanceNotification.ProcessInstance(long * returnCode)

ProcessInstance*
Workitem.ProcessInstance(long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjItemProcessInstance(

FmcjItemHandle hdlItem,
FmcjProcessInstanceHandle * instance)

#define FmcjActivityInstanceNotificationProcessInstance
FmcjItemProcessInstance

#define FmcjProcessInstanceNotificationProcessInstance
FmcjItemProcessInstance

#define FmcjWorkitemProcessInstance
FmcjItemProcessInstance

C++ language signature
APIRET ProcessInstance(FmcjProcessInstance & instance) const

Java signature
public abstract
ProcessInstance processInstance() throws FmcException

Parameters
hdlItem Input. The handle of the item object to be queried.
instance Input/Output. The process instance object to be retrieved

(initialized).
returnCode Input/Output. The return code of calling this method - see

return codes below.

Return type
APIRET The return code of calling this API call - see return codes

below.

496 Programming Guide

ProcessInstance*/ ProcessInstance
A pointer to the process instance or the process instance the
item is a part of.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 40. Item actions 497

Refresh()

This API call refreshes the item from the MQ Workflow execution server
(action call).

All information about the item, primary and secondary, is retrieved.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the item owner
v Work item authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

ActiveX signature
long ActivityInstanceNotification.Refresh()

long ProcessInstanceNotification.Refresh()

long Workitem.Refresh()

C-language signature
APIRET FMC_APIENTRY FmcjItemRefresh(FmcjItemHandle hdlItem)

#define FmcjActivityInstanceNotificationRefresh FmcjItemRefresh
#define FmcjProcessInstanceNotificationRefresh FmcjItemRefresh
#define FmcjWorkitemRefresh FmcjItemRefresh

498 Programming Guide

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlItem Input. The handle of the item object to be refreshed.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Chapter 40. Item actions 499

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetDescription()

This API call sets the description of the item to the specified value (action
call).

If no description is provided, the description of the item is reset to the
description of the associated activity instance or process instance.

The following rules apply for specifying an item description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

500 Programming Guide

JAVA com.ibm.workflow.api.Item

ActiveX signature
long ActivityInstanceNotification.SetDescription(

BSTR description,
boolean isNull)

long ProcessInstanceNotification.SetDescription(
BSTR description,
boolean isNull)

long Workitem.SetDescription(BSTR description,
boolean isNull)

C-language signature
APIRET FMC_APIENTRY FmcjItemSetDescription(

FmcjItemHandle hdlItem,
char const * description)

#define FmcjActivityInstanceNotificationSetDescription
FmcjItemSetDescription

#define FmcjProcessInstanceNotificationSetDescription
FmcjItemSetDescription

#define FmcjWorkitemSetDescription
FmcjItemSetDescription

C++ language signature
APIRET SetDescription(string const * description)

Java signature
public abstract
void setDescription(String description) throws FmcException

Parameters
description Input. The description or a pointer to the description to be set;

can be a NULL (0) pointer or null object (Java).
hdlItem Input. The handle of the item object whose description is to be

set.
isNull Input. If set to True, indicates that any description of the item

is to be reset.

Chapter 40. Item actions 501

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

502 Programming Guide

SetName()

This API call sets the name of the item (action call).

If no name is provided, the name of the item is reset to its default, the activity
instance respectively the process instance name.

The following rules apply for specifying a work item or activity instance
notification name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale,

except the following:
! " ' () * + , - . / : ; < = > [\] |

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

v You cannot use leading digits.
v You cannot use keywords AND, OR, NOT, IS, NULL, MOD, LOWER,

UPPER, VALUE, SUBSTR, _BLOCK

The following rules apply for specifying a process instance notification name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

Chapter 40. Item actions 503

JAVA com.ibm.workflow.api.Item

ActiveX signature
long ActivityInstanceNotification.SetName(BSTR name)

long ProcessInstanceNotification.SetName(BSTR name)

long Workitem.SetName(BSTR name)

C-language signature
APIRET FMC_APIENTRY FmcjItemSetName(FmcjItemHandle hdlItem,

char const * name)

#define FmcjActivityInstanceNotificationSetName FmcjItemSetName
#define FmcjProcessInstanceNotificationSetName FmcjItemSetName
#define FmcjWorkitemSetName FmcjItemSetName

C++ language signature
APIRET SetName(string const * name)

Java signature
public abstract
void setName(String name) throws FmcException

Parameters
hdlItem Input. The handle of the item to be dealt with.
name Input. The new name of the item; can be a NULL (0) pointer

or null object (Java).

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

504 Programming Guide

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_INVALID_NAME(134)
The name does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Transfer()

This API call transfers an item to the specified user (action call).

Chapter 40. Item actions 505

Notifications can always be transferred. A work item must be in states Ready,
InError, Executed, Suspending, Suspended, or Terminated and the associated
process instance in states Running, Suspending, or Suspended. Work items in
states InError or Terminated can only be transferred to the process
administrator.

The user who transfers the item must be the owner of the item or have work
item authorization for the owner of the item and have work item
authorization for the new owner.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Workitem authority for the persons to transfer from/to
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

ActiveX signature
long ActivityInstanceNotification.Transfer(BSTR userID)

long ProcessInstanceNotification.Transfer(BSTR userID)

long Workitem.Transfer(BSTR userID)

506 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjItemTransfer(FmcjItemHandle hdlItem,

char const * userID)

#define FmcjActivityInstanceNotificationTransfer FmcjItemTransfer
#define FmcjProcessInstanceNotificationTransfer FmcjItemTransfer
#define FmcjWorkitemTransfer FmcjItemTransfer

C++ language signature
APIRET Transfer(string const & userID)

Java signature
public abstract
void transfer(String userID) throws FmcException

Parameters
hdlItem Input. The handle of the item object to be transferred.
userID Input. The ID of the user to whom the item is to be

transferred.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

Chapter 40. Item actions 507

FMC_ERROR_NEW_OWNER_ABSENT(110)
The user to whom the item is to be transferred is absent, that
is, the item is not transferred.

FMC_ERROR_NEW_OWNER_NOT_FOUND(107)
The user to whom the item is to be transferred is unknown.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_OWNER_ALREADY_ASSIGNED(133)
The user to whom the item is to be transferred does already
have that item.

FMC_ERROR_WRONG_STATE(120)
The item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

508 Programming Guide

Chapter 41. Persistent list actions

An FmcjPersistentList or PersistentList object represents a set of objects of the
same type the user is authorized for. Moreover, all objects which are accessible
through this list have the same characteristics. These characteristics are
specified by a filter. Additionally, sort criteria can be applied and, after that, a
threshold to restrict the number of objects to be transferred from a server to
the client.

As the name indicates, the list definition is stored persistently. The objects
contained in the list are, however, assembled dynamically when they are
queried.

A persistent list can be a process template list, a process instance list, or a
worklist.

An FmcjPersistentList or PersistentList object represents the common aspects
of lists. In the C++ language, FmcjPersistentList is thus the superclass of the
FmcjProcessInstanceList, FmcjProcessTemplateList, and FmcjWorklist classes
and provides for all common properties and methods. In the Java language,
PersistentList is thus a superclass of the ProcessInstanceList,
ProcessTemplateList, and Worklist classes and provides for all common
properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjPersistentList. That is,
common functions start with the prefix FmcjPersistentList; they are also
defined starting with the prefixes FmcjProcessInstanceList,
FmcjProcessTemplateList, and FmcjWorklist. In ActiveX, inheritance is not
supported so that all methods are explicitly defined on the appropriate
classes. Note, however, that they are described here as PersistentList actions.

A persistent list is uniquely identified by its name, type, and owner. It can be
defined for general access purposes; it is then of a public type. Or, it can be
defined for some specific user; it is then of a private type.

The following sections describe the actions which can be applied on a
persistent list. See “PersistentList” on page 300 for a complete list of API calls.

Delete()

This API call deletes the specified persistent list from the MQ Workflow
execution server (action call).

© Copyright IBM Corp. 1993, 2001 509

The transient representation of the persistent list is not impacted; in C and
C++, you have to destruct or deallocate the transient object when it is no
longer needed.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.Delete()

long ProcessTemplateList.Delete()

long Worklist.Delete()

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListDelete(FmcjPersistentListHandle hdlList)

#define FmcjProcessInstanceListDelete FmcjPersistentListDelete
#define FmcjProcessTemplateListDelete FmcjPersistentListDelete
#define FmcjWorklistDelete FmcjPersistentListDelete

510 Programming Guide

C++ language signature
APIRET Delete()

Java signature
public abstract
void delete() throws FmcException

Parameters
hdlList Input. The handle of the persistent list to be deleted.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Chapter 41. Persistent list actions 511

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh

This API call refreshes the persistent list from the MQ Workflow execution
server (action call).

All information about the persistent list is retrieved, for example, its
description, its filter, or its sort criteria.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

512 Programming Guide

ActiveX signature
long ProcessInstanceList.Refresh()

long ProcessTemplateList.Refresh()

long Worklist.Refresh()

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListRefresh(FmcjPersistentListHandle hdlList)

#define FmcjProcessInstanceListRefresh FmcjPersistentListRefresh
#define FmcjProcessTemplateListRefresh FmcjPersistentListRefresh
#define FmcjWorklistRefresh FmcjPersistentListRefresh

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlList Input. The handle of the persistent list to be refreshed.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

Chapter 41. Persistent list actions 513

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetDescription()

This API call sets the description of the persistent list to the specified value
(action call).

If no description is provided, the description of the persistent list is erased.

The following rules apply for specifying a persistent list description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Usage note

514 Programming Guide

v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.SetDescription(

BSTR description,
boolean isNull)

long ProcessTemplateList.SetDescription(
BSTR description,
boolean isNull)

long Worklist.SetDescription(
BSTR description,
boolean isNull)

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListSetDescription(FmcjPersistentListHandle hdlList,

char const * description)

#define FmcjProcessInstanceListSetDescription
FmcjPersistentListSetDescription

#define FmcjProcessTemplateListSetDescription
FmcjPersistentListSetDescription

#define FmcjWorklistSetDescription
FmcjPersistentListSetDescription

Chapter 41. Persistent list actions 515

C++ language signature
APIRET SetDescription(string const * description)

Java signature
public abstract
void setDescription(String description) throws FmcException

Parameters
description Input. The description or a pointer to the description to be set;

can be a NULL (0) pointer or null object (Java).
hdlList Input. The handle of the persistent list object whose

description is to be set.
isNull Input. If set to True, indicates that any description is to be

removed.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

516 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetFilter()

This API call sets the filter of the persistent list to the specified value (action
call).

If no filter is provided, the current filter of the persistent list is erased. This
means that all objects authorized for will be selected via this list.

Refer to the appropriate list creation for a description of a valid filter syntax.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

Chapter 41. Persistent list actions 517

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.SetFilter(

BSTR filter,
boolean isNull)

long ProcessTemplateList.SetFilter(
BSTR filter,
boolean isNull)

long Worklist.SetFilter(BSTR filter,
boolean isNull)

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListSetFilter(FmcjPersistentListHandle hdlList,

char const * filter)

#define FmcjProcessInstanceListSetFilter FmcjPersistentListSetFilter
#define FmcjProcessTemplateListSetFilter FmcjPersistentListSetFilter
#define FmcjWorklistSetFilter FmcjPersistentListSetFilter

C++ language signature
APIRET SetFilter(string const * filter)

Java signature
public abstract
void setFilter(String filter) throws FmcException

Parameters
filter Input. The filter or a pointer to the filter to be set; can be a

NULL (0) pointer or null object (Java).
hdlList Input. The handle of the persistent list object whose filter is to

be set.
isNull Input. If set to True, indicates that any filter is to be removed.

518 Programming Guide

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 41. Persistent list actions 519

SetSortCriteria()

This API call sets the sort criteria of the persistent list to the specified value
(action call).

If no sort criteria are provided, the current sort criteria of the persistent list
are erased. This means that objects selected via this list will not be sorted.

Refer to the appropriate list creation for a description of a valid sort criteria
syntax.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.SetSortCriteria(

BSTR sortCriteria,
boolean isNull)

long ProcessTemplateList.SetSortCriteria(
BSTR sortCriteria,
boolean isNull)

long Worklist.SetSortCriteria(
BSTR sortCriteria,
boolean isNull)

520 Programming Guide

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListSetSortCriteria(FmcjPersistentListHandle hdlList,

char const * sortCriteria)

#define FmcjProcessInstanceListSetSortCriteria
FmcjPersistentListSetSortCriteria

#define FmcjProcessTemplateListSetSortCriteria
FmcjPersistentListSetSortCriteria

#define FmcjWorklistSetSortCriteria
FmcjPersistentListSetSortCriteria

C++ language signature
APIRET SetSortCriteria(string const * sortCriteria)

Java signature
public abstract
void setSortCriteria(String sortCriteria) throws FmcException

Parameters
hdlList Input. The handle of the persistent list object whose sort

criteria are to be set.
sortCriteria Input. The sort criteria or a pointer to the sort criteria to be

set; can be a NULL (0) pointer or null object (Java).
isNull Input. If set to True, indicates that any sort criteria are to be

removed.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

Chapter 41. Persistent list actions 521

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetThreshold()

This API call sets the threshold of the persistent list to the specified value
(action call).

If no threshold is provided, the threshold of the persistent list is erased. This
means that all objects contained in the list will be provided when queried.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:

522 Programming Guide

v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.SetThreshold(

long threshold,
boolean isNull)

long ProcessTemplateList.SetThreshold(
long threshold,
boolean isNull)

long Worklist.SetThreshold(
long threshold,
boolean isNull)

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListSetThreshold(FmcjPersistentListHandle hdlList,

unsigned long const * threshold)

#define FmcjProcessInstanceListSetThreshold FmcjPersistentListSetThreshold
#define FmcjProcessITemplateListSetThreshold FmcjPersistentListSetThreshold
#define FmcjWorklistSetThreshold FmcjPersistentListSetThreshold

C++ language signature
APIRET SetThreshold(unsigned long const * threshold)

Chapter 41. Persistent list actions 523

Java signature
public abstract
void setThreshold(Integer threshold) throws FmcException

Parameters
hdlList Input. The handle of the persistent list object whose threshold

is to be set.
threshold Input. The threshold or a pointer to the threshold to be set;

can be a NULL (0) pointer or null object (Java).
isNull Input. If set to True, indicates that any threshold is to be

erased.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_THRESHOLD(807)
The threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

524 Programming Guide

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 41. Persistent list actions 525

526 Programming Guide

Chapter 42. Person actions

An FmcjPerson or a Person object represents an MQ Workflow user. A person
is uniquely identified by its user identification.

The following sections describe the actions which can be applied on a person.
See “Person” on page 301 for a complete list of API calls.

Refresh()

This API call refreshes the person from the MQ Workflow execution server
(action call).

All information about the person, primary and secondary, is retrieved.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Person

ActiveX signature
long Refresh()

C-language signature
APIRET FMC_APIENTRY FmcjPersonRefresh(FmcjPersonHandle hdlPerson)

© Copyright IBM Corp. 1993, 2001 527

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlPerson Input. The handle of the person to be refreshed.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

528 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetAbsence()

This API call sets the absence indication of the logged-on user to the specified
value (action call).

When a person is absent, this person does not participate in staff resolution,
that is, this person does not get assigned any work items.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the same user, that is, request to change the own absence
v Staff authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Person

ActiveX signature
long SetAbsence(boolean newValue)

Chapter 42. Person actions 529

C-language signature
APIRET FMC_APIENTRY FmcjPersonSetAbsence(

FmcjPersonHandle hdlPerson,
bool newValue)

C++ language signature
APIRET SetAbsence(bool newValue)

Java signature
public abstract
void setAbsence(boolean newValue) throws FmcException

Parameters
hdlPerson Input. The handle of the person object whose absence is to be

set.
newValue Input. True, if the person is denoted as absent, else false.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

530 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetSubstitute()

This API call sets the substitute of the logged-on user (action call).

The substitute must be a registered MQ Workflow user ID other than the
logged-on user. If no substitute is provided, the substitute of the logged-on
user is erased.

Note: Changing the substitute can result in changes of persons who are
authorized to access the (work) items of the logged-on user. You must
refresh the person object to read the updated definitions.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the same user, that is, request to change the own absence
v Staff authorization
v Be the system administrator

Required connection

MQ Workflow execution server

Chapter 42. Person actions 531

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Person

ActiveX signature
long SetSubstitute(BSTR substitute, boolean isNull)

C-language signature
APIRET FMC_APIENTRY FmcjPersonSetSubstitute(

FmcjPersonHandle hdlPerson,
char const * substitute)

C++ language signature
APIRET SetSubstitute(string const * substitute)

Java signature
public abstract
void setSubstitute(String substitute) throws FmcException

Parameters
hdlPerson Input. The handle of the person object whose substitute is to

be set.
isNull Input. If set to True, any substitute specification is removed.
substitute Input. The substitute or a pointer to the substitute to be set;

can be a NULL (0) pointer or null object (Java).

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

532 Programming Guide

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_USER(132)
The specified user ID does not correspond to the syntax rules
or the user cannot be logged on and be the substitute at the
same time.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_USERID_UNKNOWN(10)
The specified user ID is not a registered MQ Workflow user
ID.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 42. Person actions 533

534 Programming Guide

Chapter 43. Process instance actions

An FmcjProcessInstance or a ProcessInstance object represents an instance of a
process template. A process instance is uniquely identified by its object
identifier or by its name. Depending on the keep option when the process
instance was created, the unique process instance name has been supplied by
the user or has been generated by MQ Workflow.

The following diagram provides an overview on the possible process instance
states and the actions which are allowed in those states, provided that the
appropriate authority has been granted and that more specific requirements
stated in the API calls descriptions have been fulfilled.

The following sections describe the actions which can be applied on a process
instance. See “ProcessInstance” on page 307 for a complete list of API calls.

Delete()

This API call deletes the specified process instance from the MQ Workflow
execution server (action call).

Figure 23. Process instance states

© Copyright IBM Corp. 1993, 2001 535

The process instance must be a top-level process and in states Ready, Finished,
or Terminated. The creator can delete the process instance as long as it has not
been started.

There are no impacts on your transient representation of the process instance;
in C and C++, you have to destruct or deallocate the transient object when it
is no longer needed.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Delete()

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceDelete(FmcjProcessInstanceHandle hdlInstance)

C++ language signature
APIRET Delete()

536 Programming Guide

Java signature
public abstract
void delete() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance to be deleted.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

Chapter 43. Process instance actions 537

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

InContainer()

This API call retrieves the input container associated with the process instance
from the MQ Workflow execution server (action call).

In C++, when the container object to be initialized is not empty, that object is
destructed before the new one is assigned. In C, the application is completely
responsible for the ownership of objects, that is, it is not checked whether the
container handle already points to some object.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

538 Programming Guide

ActiveX signature
long InContainer(Container * input)

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceInContainer(

FmcjProcessInstanceHandle hdlInstance,
FmcjReadWriteContainerHandle * input)

C++ language signature
APIRET InContainer(FmcjReadWriteContainer & input)

Java signature
public abstract
ReadWriteContainer inContainer() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object whose input

container is to be retrieved.
input Input/Output. The address of the input container or of its

handle respectively the input container of the process instance
to be set.

Return type
long/ APIRET The result of calling this API call - see return codes below.
ReadWriteContainer

The input container of the process instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

Chapter 43. Process instance actions 539

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ObtainProcessMonitor()

This API call obtains a monitor for the process instance from the MQ
Workflow execution server (action call).

When the deep option is specified, then activity instances of type Block are
resolved, that is, their monitors are also fetched from the server.

Note: Deep is currently not supported.

In C++, when the instance monitor object to be initialized is not empty, that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the instance monitor handle already points to some object.

540 Programming Guide

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
InstanceMonitor* ObtainMonitor(long * returnCode,

boolean deep)

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceObtainProcessMonitor(

FmcjProcessInstanceHandle hdlInstance,
bool deep,
FmcjInstanceMonitorHandle * monitor)

C++ language signature
APIRET ObtainProcessMonitor(FmcjInstanceMonitor & monitor,

bool deep= false)

Chapter 43. Process instance actions 541

Java signature
public abstract
InstanceMonitor obtainProcessMonitor(boolean deep) throws FmcException

Parameters
deep Input. An indicator whether activity instances of type Block

are to be resolved, that is, their monitor is also to be provided.
Note, deep is currently ignored.

hdlInstance Input. The handle of the process instance object whose
monitor is to be retrieved.

monitor Input/Output. The address of the monitor handle respectively
the monitor of the process instance to be set.

returnCode Input/Output. A pointer to the result of the method call - see
return codes below.

Return type
APIRET The return code of calling this API call - see return codes

below.
InstanceMonitor*/ProcessInstanceMonitor

A pointer to the instance monitor respectively the instance
monitor.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

542 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

OutContainer()

This API call retrieves the output container associated with the process
instance from the MQ Workflow execution server (action call).

In C++, when the container object to be initialized is not empty, that object is
destructed before the new one is assigned. In C, the application is completely
responsible for the ownership of objects, that is, it is not checked whether the
container handle already points to some object.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

Chapter 43. Process instance actions 543

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long OutContainer(Container * output)

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceOutContainer(

FmcjProcessInstanceHandle hdlInstance,
FmcjReadOnlyContainerHandle * output)

C++ language signature
APIRET OutContainer(FmcjReadOnlyContainer & output) const

Java signature
public abstract
ReadOnlyContainer outContainer() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object whose output

container is to be retrieved.
output Input/Output. The address of the output container or of its

handle respectively the output container of the process
instance to be set.

Return type
long/ APIRET The result of calling this API call - see return codes below.
ReadOnlyContainer

The output container of the process instance.

Return codes/ FmcException

544 Programming Guide

FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()

This API call refreshes the process instance from the MQ Workflow execution
server (action call).

Chapter 43. Process instance actions 545

All information about the process instance, primary and secondary, is
retrieved.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Refresh()

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceRefresh(FmcjProcessInstanceHandle hdlInstance)

C++ language signature
APIRET Refresh()

546 Programming Guide

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object to be

refreshed.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

Chapter 43. Process instance actions 547

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Restart()

This API call restarts the process instance on the MQ Workflow execution
server (action call).

Only finished or terminated top-level process instances can be restarted. The
process administrator does not change. The process starter is set to the
requester of this API call.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Restart()

548 Programming Guide

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceRestart(FmcjProcessInstanceHandle hdlInstance)

C++ language signature
APIRET Restart()

Java signature
public abstract
void restart() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object to be

restarted.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The process instance is no top-level process instance.

Chapter 43. Process instance actions 549

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Resume()

This API call resumes processing of a suspended or suspending process
instance (action call).

All non-autonomous subprocesses with respect to control autonomy are also
resumed, if the deep option is true.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

550 Programming Guide

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Resume(boolean deep)

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceResume(FmcjProcessInstanceHandle hdlInstance,

bool deep)

C++ language signature
APIRET Resume(bool deep)

Java signature
public abstract
void resume(boolean deep) throws FmcException

Parameters
deep Input. If deep is true, processing of all non-autonomous

subprocesses is also resumed.
hdlInstance Input. The handle of the process instance to be resumed.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

Chapter 43. Process instance actions 551

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetDescription()

This API call sets the description of the process instance to the specified value
(action call).

If no description is provided, the description of the process instance is erased.

The following rules apply for specifying a process instance description:

552 Programming Guide

v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long SetDescription(BSTR description, boolean isNull)

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceSetDescription(

FmcjProcessInstanceHandle hdlInstance,
char const * description)

C++ language signature
APIRET SetDescription(string const * description)

Chapter 43. Process instance actions 553

Java signature
public abstract
void setDescription(String description) throws FmcException

Parameters
description Input. The description or a pointer to the description to be set;

can be a NULL (0) pointer or null object (Java).
hdlInstance Input. The handle of the process instance object whose

description is to be set.
isNull Input. If set to True, any description is removed.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

554 Programming Guide

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetName()

This API call sets the name of the process instance to the specified value
(action call).

The process instance must still be in the Ready state.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

Chapter 43. Process instance actions 555

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long SetName(BSTR name)

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceSetName(FmcjProcessInstanceHandle hdlInstance,

char const * name)

C++ language signature
APIRET SetName(string const & name)

Java signature
public abstract
void setName(String name) throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object whose name

is to be set.
name Input. The name to be set.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

556 Programming Guide

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_INVALID_NAME(134)
The name does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The process instance name is not unique.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Start()

This API call starts a ready process instance (action call).

Chapter 43. Process instance actions 557

When successfully executed, the starter is set to the requestor of this action
and the process administrator is determined.

When initial values are to be passed to the process instance to be started, an
input container can be provided (see also FmcjProcessInstance:: InContainer()).
When the process instance requires input and is started without specifying an
input container, the input-container values are not set. So, when, for example,
input-container values are queried from within an activity implementation,
FMC_ERROR_MEMBER_NOT_SET is returned.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Start()

long StartWithContainer(Container * input)

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceStart(FmcjProcessInstanceHandle hdlInstance,

FmcjReadWriteContainerHandle input)

558 Programming Guide

C++ language signatures
APIRET Start()

APIRET Start(FmcjReadWriteContainer const & input)

Java signature
public abstract
void start() throws FmcException

public abstract
void start2(ReadWriteContainer input) throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object to be started.
input Input. The input container of the process instance.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_INVALID_CONTAINER(509)
The passed container is invalid for the process instance;
wrong schema or version.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

Chapter 43. Process instance actions 559

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Suspend()

This API call suspends (temporarily stops) the process instance (action call).

The process instance must be in state Running. All non-autonomous
subprocesses with respect to control autonomy are also suspended if the deep
option is true. Autonomous subprocesses are not considered.

The process instance remains in state Suspending as long as there are running
program activity implementations, suspending non-autonomous subprocesses,
or checked-out work items. When the activity implementations completed
their executions and the non-autonomous subprocesses reached the Suspended
state, and when the checked-out work items are checked in, the process
instance is put into the Suspended state.

Optionally, a date may be specified up to when the process instance is
suspended. The date is to be specified in local time. The process instance is
then automatically resumed, together with the non-autonomous subprocesses,
if the deep option had been specified.

Usage note
v See “Action API calls” on page 150 for general information.

560 Programming Guide

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Suspend(boolean deep)

long SuspendUntilDateTime(DateAndTime * time,
boolean deep)

C-language signatures
APIRET FMC_APIENTRY FmcjProcessInstanceSuspend(

FmcjProcessInstanceHandle hdlInstance,
bool deep)

APIRET FMC_APIENTRY FmcjProcessInstanceSuspendUntil(
FmcjProcessInstanceHandle hdlInstance,
FmcjCDateTime const * time,
bool deep)

C++ language signatures
APIRET Suspend(bool deep)

APIRET Suspend(FmcjDateTime const & time, bool deep)

Chapter 43. Process instance actions 561

Java signature
public abstract
void suspend(boolean deep) throws FmcException

public abstract
void suspend2(Calendar time, boolean deep) throws FmcException

Parameters
deep Input. An indicator whether also non-autonomous

subprocesses are to be suspended.
hdlInstance Input. The handle of the process instance object to be

suspended.
time Input. The date/time respectively a pointer to the date/time

up to when the process instance is to be suspended.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

562 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Terminate()

This API call terminates a process instance and all of its non-autonomous
subprocesses (action call).

The process instance must be in states Running, Suspended, or Suspending.

The process instance is put into state terminating as long as there are
terminating non-autonomous subprocesses. When the non-autonomous
subprocesses terminated, the process instance is put into the Terminated state.
When the process instance has reached the Terminated state, it is deleted
depending on the setting of the “delete finished items” option.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

Chapter 43. Process instance actions 563

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Terminate()

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceTerminate(FmcjProcessInstanceHandle hdlInstance)

C++ language signature
APIRET Terminate()

Java signature
public abstract
void terminate() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object to be

terminated.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

564 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 43. Process instance actions 565

566 Programming Guide

Chapter 44. Process instance list actions

A process instance list represents a set of process instances. All process
instances which are accessible through this list have the same characteristics.
These characteristics are specified by a filter. Additionally, sort criteria can be
applied and, after that, a threshold to restrict the number of process instances
to be transferred from the execution server to the client.

The process instance list definition is stored persistently.

A process instance list is uniquely identified by its name, type, and owner. It
can be defined for general access purposes; it is then of a public type. Or, it
can be defined for some specific user; it is then of a private type.

Other lists that can be defined are process template lists or worklists.
FmcjPersistentList or PersistentList represents the common properties of all
lists.

In the C++ language, FmcjProcessInstanceList is a subclass of the
FmcjPersistentList class and inherits all properties and methods. In the Java
language, ProcessInstanceList is thus a subclass of the PersistentList class and
inherits all properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjPersistentList. That is,
common functions start with the prefix FmcjPersistentList; they are also
defined starting with the prefix FmcjProcessInstanceList. In ActiveX,
inheritance is not supported so that all methods are explicitly defined on
ProcessInstanceList. Note, however, that they are described as PersistentList
actions.

The following sections describe the actions which can be applied on a process
instance list. See “ProcessInstanceList” on page 312 for a complete list of API
calls.

QueryProcessInstances()

This API call retrieves the primary information for all process instances
characterized by the specified process instance list from the MQ Workflow
execution server (action call).

From the set of qualifying process instances, only those are retrieved the user
is authorized for. The user is authorized for a process instance if the process
instance:
v Does not belong to any category

© Copyright IBM Corp. 1993, 2001 567

v Does belong to a category and the user has global process authorization or
global process administration authorization or selected process
authorization or selected process administration authorization for that
category

The primary information that is retrieved for each process instance is:
v Category
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v LastStateChangeTime
v Name
v ParentName
v ProcessTemplateName
v StartTime
v State
v SuspensionExpirationTime
v SuspensionTime
v SystemName
v SystemGroupName
v TopLevelName

In C and C++, any process instances retrieved are appended to the supplied
vector of process instances. If you want to read those process instances only
which are currently included in the process instance list, you have to clear the
vector before you call this API call.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstanceList

568 Programming Guide

ActiveX signature
long QueryProcessInstances()

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceListQueryProcessInstances(

FmcjProcessInstanceListHandle hdlList,
FmcjProcessInstanceVectorHandle * instances)

C++ language signature
APIRET QueryProcessInstances(

vector<FmcjProcessInstance> & instances) const

Java signature
public abstract
ProcessInstance[] queryProcessInstances() throws FmcException

Parameters
hdlList Input. The handle of the process instance list to be queried.
instances Input/Output. The vector of qualifying process instances.

Return type
long/ APIRET The result of calling this API call - see return codes below.
ProcessInstance[]

The qualifying process instances.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

Chapter 44. Process instance list actions 569

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instances to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C-language example see “Query worklists (C-language)” on page 771
v For a C++ example see “Query worklists (C++)” on page 774

570 Programming Guide

Chapter 45. Process template actions

An FmcjProcessTemplate or a ProcessTemplate object is the frozen state of a
process model from which it is created via translation. All program definitions
and data structures referenced by the process model are copied into the
process template (early binding). Subprocesses are bound lately. Their
definitions are only located during execution.

A process template is uniquely identified by its object identifier or by its name
and a valid-from date. This valid-from date determines since when the process
template can be used to create process instances.

When process templates are queried from the execution server, then only
currently valid process templates are returned.

The following sections describe the actions which can be applied on a process
template. See “ProcessTemplate” on page 315 for a complete list of API calls.

CreateAndStartInstance()

This API call creates a process instance from the specified process template
and starts the resulting process instance (action call).

Depending on the keepName option, a process instance name must be
provided. If the process instance name is to be kept as is, you cannot provide
an empty string.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

If a unique name may be generated by MQ Workflow, the following applies:
v If no or an empty process instance name is provided, an instance is created

with a default name ProcessTemplateName$Oid, where Oid is a printable
version of the process instance object identifier. Since the process instance
name cannot be longer than 63 characters, the process template name can
be shortened.

© Copyright IBM Corp. 1993, 2001 571

v If a process instance name is provided, that name is kept as long as it is
unique. If the provided process instance name is already used for another
instance, an instance is created with the name name$Oid, where Oid is a
printable version of the process instance object identifier. Since the process
instance name cannot be longer than 63 characters, the name can be
shortened.

The passed name parameter value remains unchanged;
FmcjProcessInstance::Name() returns the actual name of the process instance
created. The newly created process instance contains the primary attribute
values only.

When initial values are to be passed to the process instance to be created and
started, an input container can be provided - see also
FmcjProcessTemplate::InContainer(). When a process instance that requires
input is started without specifying an input container, the input-container
values are not set. When, for example, input-container values are queried
from within an activity implementation, FMC_ERROR_MEMBER_NOT_SET is
returned.

Pass a NULL (0) pointer or an empty string for the reserved parameters.

See createAndStartInstance; additionally allows to pass an input container.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

572 Programming Guide

ActiveX signature
ProcessInstance* CreateAndStartInstance(

BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
boolean keepName,
long * returnCode)

ProcessInstance* CreateAndStartInstanceWithCnr(
BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
Container * input,
boolean keepName,
long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplateCreateAndStartInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjProcessInstanceHandle * newInstance)

C++ language signatures
APIRET CreateAndStartInstance(

string const * name,
string const * reserved1,
string const * reserved2,
FmcjProcessInstance & newInstance,
bool keepName = false) const;

APIRET CreateAndStartInstance(
string const * name,
string const * reserved1,
string const * reserved2,
FmcjReadWriteContainer const & input,
FmcjProcessInstance & newInstance,
bool keepName = false) const;

Chapter 45. Process template actions 573

Java signature
public abstract
ProcessInstance createAndStartInstance(

String name,
String reserved1,
String reserved2,
boolean keepName) throws FmcException

public abstract
ProcessInstance createAndStartInstance2(

String name,
String reserved1,
String reserved2,
ReadWriteContainer input,
boolean keepName) throws FmcException

XML message
<!-- ProcessTemplateCreateAndStart =================== -->
<!ELEMENT ProcessTemplateCreateAndStartInstance

(ProcTemplName,
ProcInstName?,
KeepName?,
ProcInstInputData?) >

<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT ProgInstName (#PCDATA) >
<!ELEMENT KeepName (#PCDATA) >

<!-- Expected values: {true, false} -->
<!ELEMENT ProcInstInputData (%CONTAINER;) >

574 Programming Guide

XML message continued
<!ELEMENT ProcessTemplateCreateAndStartInstanceResponse

(ProcessInstance
| Exception) >

<!ELEMENT ProcessInstance
(ProcInstID,

ProcInstName,
ProcInstParentName?,
ProcInstTopLevelName,
ProcInstDescription?,
ProcInstState,
LastStateChangeTime,
LastModificationTime,
ProcTemplID,
ProcTemplName,
Icon,
Category?) >

XML message continued
<!ELEMENT ProcInstID (#PCDATA) >
<!ELEMENT ProcInstDescription (#PCDATA) >
<!ELEMENT ProcInstName (#PCDATA) >
<!ELEMENT ProcInstParentName (#PCDATA) >
<!ELEMENT ProcInstTopLevelName (#PCDATA) >
<!ELEMENT ProcInstState (#PCDATA) >

<!-- Expected values: {Ready,Running,Finished,Terminated,
Suspended, Terminating,
Suspending,Deleted} -->

<!ELEMENT LastModificationTime (#PCDATA) >
<!ELEMENT LastStateChangeTime (#PCDATA) >
<!ELEMENT ProcTemplID (#PCDATA) >
<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT Icon (#PCDATA) >
<!ELEMENT Category (#PCDATA) >
<!ELEMENT Exception

(Rc?, Parameters?, MessageText, Origin?) >
<!-- Message text is optional, as it will be ignored

in messages being sent *to* the Wf server. -->
<!ELEMENT Parameters

(Parameter*) >
<!ELEMENT Parameter (#PCDATA) >
<!ELEMENT Rc (#PCDATA) >
<!ELEMENT MessageText (#PCDATA) >
<!ELEMENT Origin (#PCDATA) >

Chapter 45. Process template actions 575

XML message continued
<!--===

Sample Entity Container
Any used data structure must be included here, for example,
<!ENTITY %CONTAINER "(%_CONTAINER_INFO;,(CreditData|abcd|smart))">

===-->
<!ENTITY %CONTAINER "(%_CONTAINER_INFO;,CreditData)">

Parameters
hdlTemplate Input. The handle of the process template object to be used.
input Input. The input container of the process instance.
keepName Input. True, if only the specified name can be used for the

process instance. False, if a unique name can be generated.
name Input. The name of the process instance to be created and

started.
nameIsNull Input. Indicates whether a name is specified for the process

instance to be created and started.
newInstance Input/Output. The newly created and started process

instance.
returnCode Input/Output. The result of calling this method - see below.
reserved1/reserved2

Input. Pass a 0 (NULL) pointer or an empty string.

Return type
APIRET The return code of calling this API call - see return codes

below.
ProcessInstance*/ ProcessInstance

A pointer to the newly created and started process instance
respectively the newly created and started process instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

576 Programming Guide

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_INVALID_CONTAINER(509)
The passed container is invalid for the process instance to be
started; wrong schema or version.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the
syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FMC_ERROR_XML_BACKOUT_COUNT_EXCEEDED(1106)
The maximum allowed backout count is exceeded.

FMC_ERROR_XML_DOCUMENT_FORMAT(1107)
The value of the MQMD format field is incorrect.

FMC_ERROR_XML_DOCUMENT_INVALID(1100)
The document is not a valid XML document.

FMC_ERROR_XML_INVALID_ELEMENT(1110)
There is an invalid element in the XML message.

Chapter 45. Process template actions 577

FMC_ERROR_XML_NO_MQSWF_DOCUMENT(1101)
The document is not a valid MQ Workflow XML document.

FMC_ERROR_XML_PARAMETER_INCORRECT(1108)
There is an invalid parameter in the XML message.

FMC_ERROR_XML_PARAMETER_SIGNATURE_CORRECT(1109)
There is an invalid parameter combination in the XML
message.

FMC_ERROR_XML_WRONG_DATA_STRUCTURE(1103)
The type of the container is incorrect.

FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND(1104)
The specified data member is not part of the container.

FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE(1105)
The type of the data member value passed is incorrect.

XML example - MQ Workflow XML request sent to MQ Workflow:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WfMessage>
<WfMessageHeader>

<ResponseRequired>Yes</ResponseRequired>
<UserContext>This data is sent back in the response</UserContext>

</WfMessageHeader>
<ProcessTemplateCreateAndStartInstance>

<ProcTemplName>OnlineCreditRequest</ProcTemplName>
<ProgInstName>Credit Request #658321<ProgInstName>
<KeepName>true</KeepName>
<ProcInstInputData>

<CreditData>
<Customer>
<Name>User1</Name>
</Customer>
<Amount>1000</Amount>
<Currency>CurrencyX</Currency>

</CreditData>
</ProcInstInputData>

</ProcessTemplateCreateAndStartInstance>
</WfMessage>

XML example - MQ Workflow response sent from MQ Workflow to the
reply queue:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WfMessage>
<WfMessageHeader>

<ResponseRequired>No</ResponseRequired>
<UserContext>This data is sent back in the response</UserContext>

</WfMessageHeader>
<ProcessTemplateCreateAndStartInstanceResponse>

<ProcessInstance>
<ProcInstID>42424242EFEFEFEF</ProcInstID>
<ProcInstName>Credit Request#658321</ProcInstName>
<ProcInstTopLevelName>Credit Request#658321</ProcInstTopLevelName>
<ProcInstDescription>Sample description</ProcInstDescription>

578 Programming Guide

<ProcInstState>Finished</ProcInstState>
<LastStateChangeTime>1999-05-18 14:35:00</LastStateChgTime>
<LastModificationTime>1999-05-19 23:40:00</LastModTime>
<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProcTemplName>OnlineCreditRequest</ProcTemplName>
<Icon>fmcpcred</Icon>
<Category>Finance</Category>

</ProcessInstance>
</ProcessTemplateCreateAndStartInstanceResponse>
</WfMessage>

CreateInstance()

This API call creates a process instance from the specified process template
(action call).

Depending on the keepName option, a process instance name must be
provided. If the process instance name is to be kept as is, you cannot provide
an empty string.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

If a unique name may be generated by MQ Workflow, the following applies:
v If no name or an empty process instance name is provided, an instance is

created with a default name ProcessTemplateName$Oid, where Oid is a
printable version of the process instance object identifier. Since the process
instance name cannot be longer than 63 characters, the process template
name can be shortened.

v If a process instance name is provided, that name is kept as long as it is
unique. If the provided process instance name is already used for another
instance, an instance is created with the name name$Oid, where Oid is a
printable version of the process instance object identifier. Since the process
instance name cannot be longer than 63 characters, the name can be
shortened.

The passed name parameter value remains unchanged;
FmcjProcessInstance::Name() returns the actual name of the process instance
created. The newly created process instance contains the primary attribute
values only.

Chapter 45. Process template actions 579

Pass a NULL (0) pointer or an empty string for the reserved parameters.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
ProcessInstance* CreateInstance(

BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
boolean keepName,
long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplateCreateInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
bool keepName,
FmcjProcessInstanceHandle * newInstance)

580 Programming Guide

C++ language signature
APIRET CreateInstance(

string const * name,
string const * reserved1,
string const * reserved2,
FmcjProcessInstance & newInstance,
bool keepName = false) const

Java signature
public abstract
ProcessInstance createInstance(

String name,
String reserved1,
String reserved2,
boolean keepName) throws FmcException

Parameters
hdlTemplate Input. The handle of the process template object to be used.
keepName Input. True, if only the specified name can be used for the

process instance. False, if a unique name can be generated.
name Input. The name of the process instance to be created.
nameIsNull Input. Indicates whether a name is specified for the process

instance to be created.
newInstance Input/Output. The newly created process instance.
reserved1/reserved2

Input. Pass a 0 (NULL) pointer or an empty string.
returnCode Input/Output. The result of calling this method - see below.

Return type
APIRET The return code of calling this API call - see return codes

below.
ProcessInstance*/ ProcessInstance

A pointer to the newly created process instance respectively
the newly created process instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

Chapter 45. Process template actions 581

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the
syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Delete()

This API call deletes the specified process template(s) from the execution
server (action call).

582 Programming Guide

Since process templates are versioned, you can specify whether you want to
delete the currently valid process template, the past versions of the process
template, or the future versions of the process template. When all options are
specified, all versions of the process template are deleted. Deletion always
applies to the currently exisiting process templates only.

There are no impacts on your transient representation of the process template;
in C and C++, you have to destruct or deallocate the transient object when it
is no longer needed.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process modeling authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
long Delete(boolean pastVersions,

boolean currentVersion,
boolean futureVersions)

C-language signature
APIRET FMC_APIENTRY
FmcjProcessTemplateDelete(FmcjProcessTemplateHandle hdlTemplate,

bool pastVersions,
bool currentVersion,
bool futureVersions)

Chapter 45. Process template actions 583

C++ language signature
APIRET Delete(bool pastVersions = true,

bool currentVersion= true,
bool futureVersions= true)

Java signature
public abstract
void delete() throws FmcException

public abstract
void delete2(boolean pastVersions,

boolean currentVersion,
boolean futureVersions) throws FmcException

Parameters
currentVersion

Input. An indication whether the current version of this
process template is to be deleted.

futureVersions
Input. An indication whether future versions of this process
template are to be deleted.

hdlTemplate Input. The handle of the process template to be deleted.
pastVersions Input. An indication whether past versions of this process

template are to be deleted.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

584 Programming Guide

FMC_ERROR_DOES_NOT_EXIST(118)
The process template or its specified versions do no longer
exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ExecuteProcessInstance()

This API call creates a process instance from the specified process template
and executes the resulting process instance (action call).

Note that the program execution agent(s) must have been started so that the
activity implementations are executed.

This API call can be called synchronously and asynchronously. When called
synchronously, the process instance should be short running enough to
complete within the application wait time.When called asynchronously, a user
context can be specified to correlate the response received later. Additionally, a
correlation ID can be received which can be used to wait for the specific
response. If a buffer to hold the correlation ID is specified, then it must
initially point to FMCJ_NO_CORRELID, that is, contain all zeros (0x00).

Chapter 45. Process template actions 585

Depending on the keepName option, a process instance name must be
provided. If the process instance name is to be kept as is, you cannot provide
an empty string.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

If a unique name may be generated by MQ Workflow, the following applies:
v If no or an empty process instance name is provided, an instance is created

with a default name ProcessTemplateName$Oid, where Oid is a printable
version of the process instance object identifier. Since the process instance
name cannot be longer than 63 characters, the process template name can
be shortened.

v If a process instance name is provided, that name is kept as long as it is
unique. If the provided process instance name is already used for another
instance, an instance is created with the name name$Oid, where Oid is a
printable version of the process instance object identifier. Since the process
instance name cannot be longer than 63 characters, the name can be
shortened.

The passed name parameter value remains unchanged;
FmcjProcessInstance::Name() returns the actual name of the process instance
created. The newly created process instance contains all attributes, primary
and secondary.

When initial values are to be passed to the process instance to be created and
started, an input container can be provided - see also
FmcjProcessTemplate::InContainer(). When a process instance that requires
input is started without specifying an input container, the input-container
values are not set. When, for example, input-container values are queried
from within an activity implementation, FMC_ERROR_MEMBER_NOT_SET is
returned.

Pass a NULL (0) pointer or an empty string for the reserved parameters.

On completion, the executed process instance and its output container are
returned. The process instance contains values for the primary attributes only.
In case of process instance termination, a container is not returned, that is, a
0-pointer respectively an empty container is returned.

586 Programming Guide

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
ProcessInstance* ExecuteProcessInstance(

Container * output,
BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
boolean keepName,
long * returnCode)

ProcessInstance* ExecuteProcessInstanceWithCnr(
Container * input,
Container * output,
BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
boolean keepName,
long * returnCode)

Chapter 45. Process template actions 587

C-language signatures
APIRET FMC_APIENTRY FmcjProcessTemplateExecuteProcessInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjProcessInstanceHandle * newInstance,
FmcjReadOnlyContainerHandle * output)

APIRET FMC_APIENTRY FmcjProcessTemplateExecuteProcessInstanceAsync(
FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjCorrelID * correlID,
char const * userContext)

588 Programming Guide

C++ language signatures
APIRET ExecuteProcessInstance(

FmcjProcessInstance & newInstance,
FmcjReadOnlyContainer & output,
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false) const

APIRET ExecuteProcessInstance(
FmcjReadWriteContainer const & input,
FmcjProcessInstance & newInstance,
FmcjReadOnlyContainer & output,
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false) const

APIRET ExecuteProcessInstanceAsync(
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false,
FmcjCorrelID * correlID = 0,
string const * userContext = 0)

APIRET ExecuteProcessInstanceAsync(
FmcjReadWriteContainer const & input,
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false,
FmcjCorrelID * correlID = 0,
string const * userContext = 0)

Chapter 45. Process template actions 589

Java signature
public abstract
ProcessInstance executeProcessInstance(ReadOnlyContainerHolder output,

String name,
String reserved1,
String reserved2,
Boolean keepName

) throws FmcException

public abstract
ProcessInstance executeProcessInstance2(ReadWriteContainer input,

ReadOnlyContainerHolder output,
String name,
String reserved1,
String reserved2,
Boolean keepName

) throws FmcException

XML message
<!-- ProcessTemplateExecute ========================== -->
<!ELEMENT ProcessTemplateExecute

(ProcTemplName,
ProcInstName?,
KeepName?,
ProcInstInputData?) >

<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT ProgramName (#PCDATA) >
<!ELEMENT KeepName (#PCDATA) >

<!-- Expected values: {true, false} -->
<!ELEMENT ProcInstInputData (%CONTAINER;) >
<!ELEMENT ProcessTemplateExecuteResponse

((ProcessInstance,
ProcInstOutputData?)

| Exception) >
<!ELEMENT ProcessInstance

(ProcInstID,
ProcInstName,
ProcInstParentName?,
ProcInstTopLevelName,
ProcInstDescription?,
ProcInstState,
LastStateChangeTime,
LastModificationTime,
ProcTemplID,
ProcTemplName,
Icon,
Category?) >

590 Programming Guide

XML message continued
<!ELEMENT ProcInstID (#PCDATA) >
<!ELEMENT ProcInstDescription (#PCDATA) >
<!ELEMENT ProcInstName (#PCDATA) >
<!ELEMENT ProcInstParentName (#PCDATA) >
<!ELEMENT ProcInstTopLevelName (#PCDATA) >
<!ELEMENT ProcInstState (#PCDATA) >

<!-- Expected values: { Ready, Running,
Finished, Terminated,
Suspended, Terminating,
Suspending, Deleted } -->

<!ELEMENT LastModificationTime (#PCDATA) >
<!ELEMENT LastStateChangeTime (#PCDATA) >
<!ELEMENT ProcTemplID (#PCDATA) >
<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT Icon (#PCDATA) >
<!ELEMENT Category (#PCDATA) >
<!ELEMENT ProcInstOutputData (%CONTAINER;) >
<!ELEMENT Exception

(Rc?, Parameters?, MessageText, Origin?) >
<!-- Message text is optional, as it will be ignored

in messages being sent *to* the Wf server. -->
<!ELEMENT Parameters

(Parameter*) >
<!ELEMENT Parameter (#PCDATA) >
<!ELEMENT Rc (#PCDATA) >
<!ELEMENT MessageText (#PCDATA) >
<!ELEMENT Origin (#PCDATA) >

XML message continued
<!--===

Sample Entity Container
Any used data structure must be included here, for example,
<!ENTITY %CONTAINER "(%_CONTAINER_INFO;,(CreditData|abcd|smart))">

===-->
<!ENTITY %CONTAINER "(%_CONTAINER_INFO;,CreditData)">

Parameters
correlID Input/Output. If specified, contains the correlation ID by

which this request can be correlated to a later response.
hdlTemplate Input. The handle of the process template object to be used.
input Input. The input container of the process instance.
keepName Input. True, if only the specified name can be used for the

process instance. False, if a unique name can be generated.
name Input. The name of the process instance to be executed.

Chapter 45. Process template actions 591

nameIsNull Input. Indicates whether a name is specified for the process
instance to be executed.

newInstance Input/Output. The executed process instance.
output Output. A pointer or an object to contain the output container

of the process instance.
returnCode Input/Output. The result of calling this method - see below.
reserved1/reserved2

Input. Pass a 0 (NULL) pointer or an empty string.
userContext Input. A user-defined context which can be used for

correlation.

Return type
APIRET The return code of calling this API call - see return codes

below.
ProcessInstance*

A pointer to the newly created and executed process instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_INVALID_CONTAINER(509)
The specified container is invalid for process instance
execution; wrong schema or version.

FMC_ERROR_INVALID_CORRELATION_ID(506)
The specified correlation ID does not point to
FMCJ_NO_CORRELID.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the
syntax rules.

FMC_ERROR_INVALID_USER_CONTEXT(819)
The specified user context is longer than 254 characters.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

592 Programming Guide

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FMC_ERROR_XML_BACKOUT_COUNT_EXCEEDED(1106)
The maximum allowed backout count is exceeded.

FMC_ERROR_XML_DOCUMENT_FORMAT(1107)
The value of the MQMD format field is incorrect.

FMC_ERROR_XML_DOCUMENT_INVALID(1100)
The document is not a valid XML document.

FMC_ERROR_XML_INVALID_ELEMENT(1110)
There is an invalid element in the XML message.

FMC_ERROR_XML_NO_MQSWF_DOCUMENT(1101)
The document is not a valid MQ Workflow XML document.

FMC_ERROR_XML_PARAMETER_INCORRECT(1108)
There is an invalid parameter in the XML message.

FMC_ERROR_XML_PARAMETER_SIGNATURE_CORRECT(1109)
There is an invalid parameter combination in the XML
message.

FMC_ERROR_XML_WRONG_DATA_STRUCTURE(1103)
The type of the container is incorrect.

FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND(1104)
The specified data member is not part of the container.

Chapter 45. Process template actions 593

FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE(1105)
The type of the data member value passed is incorrect.

XML example - MQ Workflow XML request sent to MQ Workflow:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WfMessage>
<WfMessageHeader>

<ResponseRequired>Yes</ResponseRequired>
<UserContext>This data is sent back in the response</UserContext>

</WfMessageHeader>
<ProcessTemplateExecute>

<ProcTemplName>OnlineCreditRequest</ProcTemplName>
<ProcInstName>Credit Request #658321</ProcInstName>
<KeepName>true</KeepName>
<ProcInstInputData>

</CreditData>
<Customer>
<Name>User1</Name>
</Customer>
<Amount>1000</Amount>
<Currency>CurrencyX</Currency>

</CreditData>
</ProcInstInputData>

</ProcessTemplateExecute>
</WfMessage>

XML example - MQ Workflow XML response sent from MQ Workflow to
the reply queue:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WfMessage>
<WfMessageHeader>

<ResponseRequired>No</ResponseRequired>
<UserContext>This data is sent back in the response</UserContext>

</WfMessageHeader>
<ProcessTemplateExecuteResponse>

<ProcessInstance>
<ProcInstID>42424242EFEFEFEF</ProcInstID>
<ProcInstName>Credit Request #658321</ProcInstName>
<ProcInstTopLevelName>Credit Request #658321</ProcInstTopLevelName>
<ProcInstDescription>Sample description</ProcInstDescription>
<ProcInstState>Finished</ProcInstState>
<LastStateChangeTime>1999-05-18 14:35:00</LastStateChgTime>
<LastModificationTime>1999-05-19 23:40:00</LastModTime>
<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProcTemplName>OnlineCreditRequest</ProcTemplName>
<Icon>fmcpcred</Icon>
<Category>Finance</Category>

</ProcessInstance>
<ProcInstOutputData>

<CreditData>
<Customer>
<Name>User1</Name>
</Customer>

594 Programming Guide

<Amount>1000</Amount>
<Currency>CurrencyX</Currency>

</CreditData>
</ProcInstOutputData>

</ProcessTemplateExecuteResponse>
</WfMessageHeader>

InitialInContainer()

This API call retrieves the input container associated with the process
template from the MQ Workflow execution server (action call).

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
long InitialInContainer(Container * input)

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplateInitialInContainer(

FmcjProcessTemplateHandle hdlTemplate,
FmcjReadWriteContainerHandle * input)

Chapter 45. Process template actions 595

C++ language signature
APIRET InitialInContainer(FmcjReadWriteContainer & input)

Java signature
public abstract
ReadWriteContainer initialInContainer() throws FmcException

Parameters
hdlTemplate Input. The handle of the process template object whose input

container is to be retrieved.
input Input/Output. The address of the input container handle

respectively the input container of the process template to be
set.

Return type
long/ APIRET The result of calling this API call - see return codes below.
ReadWriteContainer

The input container of the process template.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

596 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ProgramTemplate()

This API call retrieves the program template identified by the passed name
from the MQ Workflow execution server (action call).

A program template comprises data about its associated input and output
containers, implementation data for all specified platforms and various other
properties. In case structures from activity was specified for the program during
Buildtime, no input or output container information is available; any container
can be passed to the program when executed.

When containers are provided for a program template, then they are initial
containers. Such, no default values are set for data members. Also predefined
data members are not set.

The result of calling this API call is dependent on the system where the
request is executed because there are values returned that can be inherited
from the system.

The program template is versioned within the context of the corresponding
process template.

Usage note

Chapter 45. Process template actions 597

v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
ProgramTemplate * ProgramTemplate(BSTR programName, long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplateProgramTemplate(

FmcjProcessTemplateHandle hdlTemplate,
char const * programName,
FmcjProgramTemplateHandle * program)

C++ language signature
APIRET ProgramTemplate(string const & programName,

FmcjProgramTemplate & program) const

Java signature
public abstract
ProgramTemplate programTemplate(String programName)
throws FmcException

598 Programming Guide

Parameters
hdlTemplate Input. The handle of the process template where a program

template is to be retrieved.
program Input/Output. The program template retrieved.
programName Input. The name of the program template to be retrieved.
returnCode Input/Output. The result of calling this method - see below.

Return type
APIRET/long* The result of calling this API call - see return codes below.
ProgramTemplate/ProgramTemplate*

The program template respectively a pointer to the program
template retrieved.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_BACK_LEVEL_OBJECT
The request can only be executed on process templates
translated after MQ Workflow 3.2.1 has been installed.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid or the program template does not exist within the
process template.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

Chapter 45. Process template actions 599

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()

This API call refreshes the process template from the MQ Workflow execution
server (action call).

All information about the process template - primary and secondary - is
retrieved.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
long Refresh()

600 Programming Guide

C-language signature
APIRET FMC_APIENTRY
FmcjProcessTemplateRefresh(FmcjProcessTemplateHandle hdlTemplate)

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlTemplate Input. The handle of the process template object to be

refreshed.

Return type
long/ APIRET The result of calling this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 45. Process template actions 601

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

602 Programming Guide

Chapter 46. Process template list actions

A process template list represents a set of process templates. All process
templates which are accessible through this list have the same characteristics.
These characteristics are specified by a filter. Additionally, sort criteria can be
applied and, after that, a threshold to restrict the number of process templates
to be transferred from the execution server to the client.

The process template list definition is stored persistently.

A process template list is uniquely identified by its name, type, and owner. It
can be defined for general access purposes; it is then of a public type. Or, it
can be defined for some specific user; it is then of a private type.

Other lists that can be defined are process instance lists or worklists.
FmcjPersistentList or PersistentList represents the common properties of all
lists.

In the C++ language, FmcjProcessTemplateList is thus a subclass of the
FmcjPersistentList class and inherits all properties and methods. In the Java
language, ProcessTemplateList is thus a subclass of the PersistentList class and
inherits all properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjPersistentList. That is,
common functions start with the prefix FmcjPersistentList; they are also
defined starting with the prefix FmcjProcessTemplateList. In ActiveX,
inheritance is not supported so that all functions are explicitly defined on
ProcessTemplateList. Note, however, that they are described as PersistentList
actions.

The following sections describe the actions which can be applied on a process
template list. See “ProcessTemplateList” on page 318 for a complete list of API
calls.

QueryProcessTemplates()

This API call retrieves the primary information for all process templates
characterized by the specified process template list from the MQ Workflow
execution server (action call).

From the set of qualifying process templates, only those are retrieved, the user
is authorized for. The user is authorized for a process template if the process
template:
v Does not belong to any category

© Copyright IBM Corp. 1993, 2001 603

v Does belong to a category and the user has global process authorization or
global process administration authorization or selected process
authorization or selected process administration authorization for that
category

The primary information that is retrieved for each process template is:
v Category
v CreationTime
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v Name
v ValidFromTime

In C and C++, any process templates retrieved are appended to the supplied
vector of process templates. If you want to read those process templates only
which are currently included in the process template list, you have to clear the
vector before you call this API call.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplateList

ActiveX signature
long QueryProcessTemplates()

604 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplateListQueryProcessTemplates(

FmcjProcessTemplateListHandle hdlList,
FmcjProcessTemplateVectorHandle * templates)

C++ language signature
APIRET QueryProcessTemplates(

vector<FmcjProcessTemplate> & templates) const;

Java signature
public abstract
ProcessTemplate[] queryProcessTemplates() throws FmcException

Parameters
hdlList Input. The handle of the process template list to be queried.
templates Input/Output. The vector of qualifying process templates.

Return type
long/ APIRET The result of calling this API call - see return codes below.
ProcessTemplate[]

The qualifying process templates.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 46. Process template list actions 605

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process templates to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C-language example see “Query worklists (C-language)” on page 771
v For a C++ example see “Query worklists (C++)” on page 774

606 Programming Guide

Chapter 47. Program template actions

An FmcjProgramTemplate or a ProgramTemplate object represents the
definition of a program within a process template.

A program template is uniquely identified by its name and the process
template wherin it is contained. This means that it is versioned via the
containing process template.

The following sections describe the actions which can be applied on a
program template. See “ProgramTemplate” on page 322 for a complete list of
API calls.

Execute()

This API call requests the execution of the specified program template on the
program execution server (PES) of the system where the user is logged on.

This API call can be called synchronously and asynchronously. When called
synchronously, the program should be short running enough to complete
within the application wait time. When called asynchronously, a user context
can be specified to correlate the response received later. Additionally, a
correlation ID can be received which can be used to wait for the specific
response. If a buffer to hold the correlation ID is specified, then it must
initially point to FMCJ_NO_CORRELID, that is, contain all zeros (0x00).

Depending on the input container access definition of the program template, an
input container must be specified for execution. Depending on the output
container access definition, an output container can be specified to hold the
values returned by program execution. If an output container is accessed by
the program but none is provided, then the output container defined for the
program is used. When structures from activity is defined, containers passed
can be of any type since the program thus states that it is able to handle any
container. When structures from activity is not defined, any containers passed
must conform to the type defined in the program settings.

Initial containers returned by FmcjProcessTemplate::ProgramTemplate() do not
contain any default values. When initial values are to be passed to the
program, they can be set in the input or output container before calling this
API call.

The output container, if any, is returned on completion. The _RC data member
of the output container denotes the program return code.

© Copyright IBM Corp. 1993, 2001 607

Specification of a priority influences OS/390 Workload management. The
priority must be a value between 0 and 999.

Notes:

1. Passthrough() cannot be called from a program executed on the PES.
2. The output container is an input/output parameter. This means for Java,

that it is passed as an input parameter and that it is returned as the return
value of the execute method; the input parameter is not changed.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be logged on

Required connection

MQ Workflow program execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProgramTemplate

COBOL fmcjvars.cpy, fmcjperf.cpy

ActiveX signature
long Execute()

long ExecuteWithOptions(Container * input,
Container * output
long priority)

608 Programming Guide

C-language signatures
APIRET FMC_APIENTRY FmcjProgramTemplateExecute(

FmcjProcessTemplateHandle hdlTemplate,
FmcjReadWriteContainerHandle input,
FmcjReadWriteContainerHandle output)

APIRET FMC_APIENTRY FmcjProgramTemplateExecuteWithOptions(
FmcjProcessTemplateHandle hdlTemplate,
unsigned long priority,
FmcjReadWriteContainerHandle input,
FmcjReadWriteContainerHandle output)

APIRET FMC_APIENTRY FmcjProgramTemplateExecuteAsync(
FmcjProcessTemplateHandle hdlTemplate,
FmcjReadWriteContainerHandle input,
FmcjReadWriteContainerHandle output,
FmcjCorrelID * correlID,
char const * userContext)

APIRET FMC_APIENTRY FmcjProgramTemplateExecuteWithOptionsAsync(
FmcjProcessTemplateHandle hdlTemplate,
unsigned long priority,
FmcjReadWriteContainerHandle input,
FmcjReadWriteContainerHandle output,
FmcjCorrelID * correlID,
char const * userContext)

C++ language signatures
APIRET Execute(FmcjReadWriteContainer const * input = 0,

FmcjReadWriteContainer * output = 0,
unsigned long priority = 0) const

APIRET ExecuteAsync(FmcjReadWriteContainer const * input = 0,
FmcjReadWriteContainer const * output = 0,
FmcjCorrelID * correlID = 0,
string const * userContext = 0,
unsigned long priority = 0) const

Chapter 47. Program template actions 609

Java signatures
public abstract
ReadWriteContainer execute() throws FmcException

public abstract
ReadWriteContainer execute2(ReadWriteContainer input,

ReadWriteContainer output,
long priority)

throws FmcException

Parameters
correlID Input/Output. If specified, contains the correlation ID by

which this request can be correlated to a later response.
hdlTemplate Input. The handle of the program template object to be

executed.
input Input. The input container of the program.
output Input/Output. The output container of the program.
priority Input. The priority of the program to be executed.
userContext Input. A user-defined context which can be used for

correlation.

Return type
long/APIRET The return code of calling this API call - see return codes

below.
ReadWriteContainer

The output container of the program.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_EXIT_ERROR(32204)
A program execution server exit reported an error.

FMC_ERROR_IMPLEMENTATION_SUPPORT_MISMATCH(32015)
The program definition for the operating system platform the
PES is running on is not found.

610 Programming Guide

FMC_ERROR_INVALID_CONTAINER(509)
The type or version of the container is incorrect or a container
is expected but not passed.

FMC_ERROR_INVALID_CORRELATION_ID(506)
The specified correlation ID does not point to
FMCJ_NO_CORRELID.

FMC_ERROR_INVALID_SPECIFICATION(816)
The specified priority must be in the range 0<=priority<=999.

FMC_ERROR_INVALID_USER_CONTEXT(819)
The specified user context is longer than 254 characters.

FMC_ERROR_LOCAL_USER_REQUIRED(32203)
The program must be executed by a local user.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_SUPPORT_MODE_MISMATCH(32014)
The execution mode of the program and the execution mode
of the PES do not match.

FMC_ERROR_UNEXPECTED_CONTAINER(510)
A container is passed but not expected by the program.

FMC_ERROR_USER_NOT_AUTHORIZED(32202)
The user is not authorized to execute the program.

FMC_ERROR_USER_SUPPORT_MISMATCH(32013)
The execution user of the program and the execution user of
the PES do not match.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FMC_ERROR_XML_BACKOUT_COUNT_EXCEEDED(1106)
The maximum allowed backout count is exceeded.

FMC_ERROR_XML_DOCUMENT_FORMAT(1107)
The value of the MQMD format field is incorrect.

FMC_ERROR_XML_DOCUMENT_INVALID(1100)
The document is not a valid XML document.

FMC_ERROR_XML_INVALID_ELEMENT(1110)
There is an invalid element in the XML message.

FMC_ERROR_XML_NO_MQSWF_DOCUMENT(1101)
The document is not a valid MQ Workflow XML document.

FMC_ERROR_XML_PARAMETER_INCORRECT(1108)
There is an invalid parameter in the XML message.

Chapter 47. Program template actions 611

FMC_ERROR_XML_PARAMETER_SIGNATURE_CORRECT(1109)
There is an invalid parameter combination in the XML
message.

FMC_ERROR_XML_WRONG_DATA_STRUCTURE(1103)
The type of the container is incorrect.

FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND(1104)
The specified data member is not part of the container.

FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE(1105)
The type of the data member value passed is incorrect.

612 Programming Guide

Chapter 48. Service actions

An FmcjService or Service object represents the common aspects of MQ
Workflow service objects.

In the C++ language, FmcjService is the superclass of the
FmcjExecutionService class and provides for all common properties and
methods. In the Java language, Service is thus a superclass of the
ExecutionService class and provides for all common properties and methods.
Similarly, in the C-language, common implementations of functions are taken
from FmcjService. That is, common functions start with the prefix FmcjService;
they are also defined starting with the prefix FmcjExecutionService. In
ActiveX, inheritance is not supported so that all methods are explicitly
defined on ExecutionService. Note, however, that they are described here as
Service actions.

The following sections describe the actions which can be applied on a service.
See “Service” on page 328 for a complete list of API calls.

Refresh()

This API call refreshes the logon status from the server (action call).

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Logon required

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Service

© Copyright IBM Corp. 1993, 2001 613

ActiveX signature
long ExecutionService.Refresh()

C-language signature
APIRET FMC_FMC_APIENTRY

FmcjServiceRefresh(FmcjServiceHandle service)

#define FmcjExecutionServiceRefresh FmcjServiceRefresh

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
service Input. A handle to the service object representing the session

with an MQ Workflow server.

Return type
APIRET/long The return code of calling this API call - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

614 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetPassword()

This API call allows a user’s password to be changed (action call).

Note: The password is case-sensitive.

The following rules apply for specifying a password:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale.
v Do not use DBCS characters.

Note: If you intend to work in a multi-platform environment or switch
between codepages, it is recommended that you use alphabetic
characters, digits, and blanks only. This is because it cannot be
guaranteed that special characters are available in all codepages.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Logon required

Chapter 48. Service actions 615

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Service

ActiveX signature
long ExecutionService.SetPassword(BSTR newPassword)

C-language signature
APIRET FMC_FMC_APIENTRY

FmcjServiceSetPassword(FmcjServiceHandle service,
char const * newPassword)

#define FmcjExecutionServiceSetPassword FmcjServiceSetPassword

C++ language signature
APIRET SetPassword(string const & newPassword) const

Java signature
public abstract
void setPassword(String newPassword) throws FmcException

Parameters
newPassword Input. The new password to be used.
service Input. A handle to the service object representing the session

with an MQ Workflow server.

Return type
long/ APIRET The return code of calling this API call - see return codes

below.

Return codes/ FmcException

616 Programming Guide

FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_USERID_UNKNOWN(10)
The user does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_PASSWORD(12)
The password does not comply with the MQ Workflow syntax
rules.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

UserSettings()

This API call returns all settings of the logged on user (action call).

An empty object respectivly a null pointer is returned if no user has logged
on yet via this service object.

Usage note
v See “Action API calls” on page 150 for general information.

Chapter 48. Service actions 617

Authorization

Logon required

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Service

ActiveX signature
IDispatch* ExecutionService.UserSettings(long * returnCode)

C-language signature
APIRET FMC_FMC_APIENTRY

FmcjServiceUserSettings(FmcjServiceHandle service,
FmcjPersonHandle * user)

#define FmcjExecutionServiceUserSettings FmcjServiceUserSettings

C++ language signature
APIRET UserSettings(FmcjPerson & user) const

Java signature
public abstract
Person userSettings() throws FmcException

Parameters
returnCode Input/Output. The return code of calling this method - see

return codes below.
service Input. A handle to the service object representing the session

with an MQ Workflow server.

618 Programming Guide

user Input/Output. The person object to contain respectively the
address of the person handle to point to the settings of the
logged on user.

Return type
APIRET The return code of calling this API call - see return codes

below.
IDispatch*/ Person

A pointer to the person settings or the person settings of the
logged on user.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 48. Service actions 619

620 Programming Guide

Chapter 49. Work item actions

An FmcjWorkitem or Workitem object represents an activity instance assigned
to a user in order to be worked on.

Other items assigned to users are process instance notifications and activity
instance notifications. FmcjItem or Item represents the common properties of
all items.

In the C++ language, FmcjWorkitem is thus a subclass of the FmcjItem class
and inherits all properties and methods. In the Java language, WorkItem is
thus a subclass of the Item class and inherits all properties and methods.
Similarly, in the C-language, common implementations of functions are taken
from FmcjItem. That is, common functions start with the prefix FmcjItem; they
are also defined starting with the prefix FmcjWorkitem. In ActiveX,
inheritance is not supported so that all functions are explicitly defined on
Workitem. Note, however, that common methods are described as Item
actions.

A work item is uniquely identified by its object identifier.

The following diagrams provide an overview on the possible work item states
and the actions which are allowed in those states, provided that the
appropriate authority has been granted and that more specific requirements
stated in the API calls descriptions have been fulfilled. Note that the actions
and possible states are dependent on the process instance state, the work item
is a part of.

© Copyright IBM Corp. 1993, 2001 621

Figure 24. Work item states - process instance state running

622 Programming Guide

Figure 25. Work item states - process instance state suspending or suspended

Chapter 49. Work item actions 623

The following sections describe the actions which can be applied on a work
item. See “Workitem” on page 332 for a complete list of API calls.

ActivityInstance()

This API call retrieves the activity instance the work item is associated to from
the MQ Workflow execution server (action call).

All information about the activity instance, primary and secondary, is
retrieved.

In C++, when the activity instance object to be initialized is not empty, that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the activity instance handle already points to some object.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Figure 26. Work item states - process instance state terminating or terminated

624 Programming Guide

One of:
v Process authorization
v Process administration authorization
v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
ActivityInstance* ActivityInstance(long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjWorkitemActivityInstance(

FmcjWorkitemHandle hdlWorkitem,
FmcjActivityInstanceHandle * instance)

C++ language signature
APIRET ActivityInstance(FmcjActivityInstance & instance) const

Java signature
public abstract
ActivityInstance activityInstance() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item object to be queried.
instance Input/Output. The activity instance object to be retrieved

(initialized).

Chapter 49. Work item actions 625

returnCode Input/Output. The return code of calling this method - see
return codes below.

Return type
APIRET The return code of calling this API call - see return codes

below.
ActivityInstance*/ ActivityInstance

A pointer to the activity instance or the activity instance the
work item is associated to.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item or activity instance does not exist. The activity
instance may not exist when the transient work item object
has been recreated from its OID and when it is not a work
item but a process instance notification.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

626 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

CancelCheckOut()

This API call cancels the checkout of the work item (action call).

The work item must have been checked out and is put into the Ready state.
The associated process instance must be in the Running, Suspending, Suspended,
or Terminating state.

Note that all sibling work items set into the Disabled state by the previous
Checkout() request are also reset into the Ready state.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long CancelCheckOut()

Chapter 49. Work item actions 627

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemCancelCheckOut(FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET CancelCheckOut()

Java signature
public abstract
void cancelCheckOut() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

628 Programming Guide

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is not in a required state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

CheckIn()

This API call allows for the check in of a work item that was previously
checked out for user processing (action call).

The work item must be in the CheckedOut state and the associated process
instance must be in the Running or Suspending state.

Checking in a work item tells MQ Workflow that user processing has finished
and workflow processing under the control of MQ Workflow can continue.
The return code of the user processing and, optionally, the output container
values are passed back to MQ Workflow. As usual, these container values and
the return code can be used in exit conditions to let navigation continue
depending on the success of the processing and in transition conditions to
indicate how to proceed. The return code is automatically set into the _RC
data member of the output container if this field has not been set explicitly.

When an output container is specified, then that container must be a valid
container for the work item, that is, it must contain the correct schema and

Chapter 49. Work item actions 629

version definitions. In other words, it must be the (updated) output container
retrieved with the CheckOut() request or the output container retrieved for the
work item, and so on.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long CheckIn(Container * output, long returnCode)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemCheckIn(FmcjWorkitemHandle hdlWorkitem,

FmcjReadWriteContainerHandle output,
long returnCode)

C++ language signature
APIRET CheckIn(FmcjReadWriteContainer const * output,

long returnCode)

630 Programming Guide

Java signature
public abstract
void checkIn(ReadWriteContainer output,

int returnCode) throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
output Input. A handle or pointer to the output container; can be a

NULL pointer.
returnCode Input. The return code of user processing.

Return type
long/ APIRET

The return code of calling this API call- see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_INVALID_CONTAINER(509)
The specified output container is invalid; wrong schema or
version.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_WRONG_STATE(120)
The work item is not checked out.

Chapter 49. Work item actions 631

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

CheckOut()

This API call checks out a ready work item for user processing (action call).

The work item must be implemented as a program and be in the Ready state.
The associated process instance must be in the Running state.

Checkout then means that processing is not done by MQ Workflow’s inherent
program-invocation mechanism. MQ Workflow assumes that processing is
done by user-specific means and changes the state of the work item to
CheckedOut.

The caller can request program definitions for specific operating system
platforms. The following enumeration types can be used to specify the
requested program data.

ActiveX WorkitemProgramRetrieval

C-language FmcjWorkitemProgramRetrieval

C++ FmcjWorkitem::ProgramRetrieval

JAVA com.ibm.workflow.api.WorkItemPackage.ProgramRetrieval

632 Programming Guide

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.
NotSet indicates that no value is set.

ActiveX WIProgramRetrieval_NotSet

C-language Fmc_WS_NotSet

C++ FmcjWorkitem::NotSet

JAVA ProgramRetrieval.NOT_SET
CommonDataOnly

returns only data common to all platforms, the description,
the icon, the unattended indicator, and the input and output
containers. Any platform specification is ignored.

ActiveX WIProgramRetrieval_CommonDataOnly

C-language Fmc_WS_CommonDataOnly

C++ FmcjWorkitem::CommonDataOnly

JAVA ProgramRetrieval.COMMON_DATA_ONLY
SpecifiedDefinitions

returns the program definition for the specified platform. A
platform must be specified.

ActiveX WIProgramRetrieval_SpecifiedDefinitions

C-language Fmc_WS_SpecifiedDefinitions

C++ FmcjWorkitem::SpecifiedDefinitions

JAVA ProgramRetrieval.SPECIFIED_DEFINITIONS
AllDefinitions

returns all available program definitions. Any platform
specification is ignored.

ActiveX WIProgramRetrieval_AllDefinitions

C-language Fmc_WS_AllDefinitions

C++ FmcjWorkitem::AllDefinitions

JAVA ProgramRetrieval.ALL_DEFINITIONS

The following enumeration types can be used to specify the platform for
which program definitions are to be retrieved.

ActiveX ImplementationDataBasis

C-language FmcjImplementationDataBasis

C++ FmcjImplementationData::Basis

JAVA com.ibm.workflow.api.ProgramDataPackage.Basis

Chapter 49. Work item actions 633

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.
NotSet indicates that no value is set.

ActiveX Basis_NotSpecified

C-language Fmc_DP_NotSet

C++ FmcjImplementationData::NotSpecified

JAVA Basis.NOT_SPECIFIED
OS2 indicates that the program definition for the OS/2 platform is

requested.

ActiveX Basis_OS2

C-language Fmc_DP_OS2

C++ FmcjImplementationData::OS2

JAVA Basis.OS2
AIX indicates that the program definition for the AIX platform is

requested.

ActiveX Basis_AIX

C-language Fmc_DP_AIX

C++ FmcjImplementationData::AIX

JAVA Basis.AIX
HPUX indicates that the program definition for the HP-UX platform

is requested.

ActiveX Basis_HPUX

C-language Fmc_DP_HPUX

C++ FmcjImplementationData::HPUX

JAVA Basis.HPUX
Windows95 indicates that the program definition for the Windows 95, 98,

or Me platform is requested.

ActiveX Basis_Windows95

C-language Fmc_DP_Windows95

C++ FmcjImplementationData::Windows95

JAVA Basis.WINDOWS_95
WindowsNT indicates that the program definition for the Windows NT or

Windows 2000 platform is requested.

ActiveX Basis_WindowsNT

C-language Fmc_DP_WindowsNT

634 Programming Guide

C++ FmcjImplementationData::WindowsNT

JAVA Basis.WINDOWS_NT
OS390 indicates that the program definition for the OS/390(R)

platform is requested.

ActiveX Basis_OS390

C-language Fmc_DP_OS390

C++ FmcjImplementationData::OS390

JAVA Basis.OS390
Solaris indicates that the program definition for the Solaris platform

is requested.

ActiveX Basis_Solaris

C-language Fmc_DP_Solaris

C++ FmcjImplementationData::Solaris

JAVA Basis.Solaris

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
ProgramData CheckOut(WorkitemProgramRetrieval requestedData,

ImplementationDataBasis platform,
long * returnCode)

Chapter 49. Work item actions 635

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemCheckOut(FmcjWorkitemHandle hdlWorkitem,

enum FmcjWorkitemProgramRetrieval requestedData,
enum FmcjImplementationDataBasis platform,
FmcjProgramDataHandle * programData)

C++ language signature
APIRET CheckOut(ProgramRetrieval requestedData,

FmcjImplementationData::Basis platform,
FmcjProgramData & programData)

Java signature
public abstract
ReadOnlyContainer checkOut() throws FmcException

public abstract
ProgramData checkOut2(

ProgramRetrieval requestedData,
Basis platform) throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
platform Input. The platform for which the program definition is to be

returned.
programData Input/Output. The address of a handle to the program

definition respectively the program definition object to be set.
requestedData

Input. An indicator which program definitions are to be
returned.

returnCode Input/Output. The return code of calling this method - see
below.

Return type
APIRET The return code of calling this method - see below.
ProgramData The program definition.
ReadOnlyContainer

The input container of the work item; the container is part of
the program definition. Returned for Version 2 compatibility
reasons.

636 Programming Guide

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_CHECKOUT_NOT_POSSIBLE(503)
The work item cannot be checked out.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_INVALID_SPECIFICATION(816)
Invalid combination of checkout parameters.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_PROGRAM_NOT_DEFINED(1012)
No program defined for the requested platform.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Chapter 49. Work item actions 637

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Finish()

This API call ends the execution of a manual-exit work item (action call).

The work item must be in state Executed, that is, must have run at least once.
The work item is then put into the Finished state. Depending on the “delete
finished items” option, it is deleted.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long Finish()

C-language signature
APIRET FMC_APIENTRY FmcjWorkitemFinish(FmcjWorkitemHandle hdlWorkitem)

638 Programming Guide

C++ language signature
APIRET Finish()

Java signature
public abstract
void finish() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

Chapter 49. Work item actions 639

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ForceFinish()

This API call ends the execution of a work item which is known to have
completed (action call).

A work item implemented by a program must be in the states Ready, Running,
Executed, CheckedOut, InError, Terminating, or Terminated. A work item
implemented by a process must be in the states Ready, Executed, InError, or
Terminated. The associated process instance must be in the states Running,
Suspending, Suspended, or Terminating.

Optionally, an output container can be specified to denote the result of
processing. If none is specified, the output container available at the execution
server is taken. For example, the output container defined with initial values.

The work item is then put into the ForceFinished state. The exit condition is
considered to be true and navigation proceeds.

Depending on the “delete finished items” option, the work item is deleted.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner and one of
v Process administration authorization

640 Programming Guide

v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long ForceFinish()

long ForceFinishWithContainer(Container * outputContainer)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemForceFinish(FmcjWorkitemHandle hdlWorkitem)

APIRET FMC_APIENTRY
FmcjWorkitemForceFinishWithContainer(FmcjWorkitemHandle hdlWorkitem,

FmcjContainerHandle outputContainer)

C++ language signature
APIRET ForceFinish()

APIRET ForceFinish(FmcjContainer const & outputContainer)

Java signature
public abstract
void forceFinish() throws FmcException

public abstract
void forceFinish2(Container outputContainer) throws FmcException

Chapter 49. Work item actions 641

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
outputContainer

Input. The output container to be set as the result of the call;
can be a read/write or read-only container.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

642 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ForceRestart()

This API call forces MQ Workflow to enable the restart of a work item (action
call).

A work item implemented by a program must be in states Ready, Running,
Executed, CheckedOut, InError, Terminating, or Terminated. A work item
implemented by a process must be in states Ready, Executed, InError, or
Terminated. The associated process instance must be in states Running,
Suspending, or Suspended.

Optionally, an input container can be specified to denote the input to be used
for restarting the work item. If none is specified, the input container available
at the execution server is taken.

The work item is then reset into the Ready state. Note that automatic activity
instances must now be started manually.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner and one of
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

Chapter 49. Work item actions 643

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long ForceRestart()

long ForceRestartWithContainer(Container * inputContainer)

C-language signature
APIRET FMC_APIENTRY FmcjWorkitemForceRestart(

FmcjWorkitemHandle hdlWorkitem)

APIRET FMC_APIENTRY FmcjWorkitemForceRestartWithContainer(
FmcjWorkitemHandle hdlWorkitem,
FmcjContainerHandle inputContainer)

C++ language signature
APIRET ForceRestart()

APIRET ForceRestart(FmcjContainer const & inputContainer)

Java signature
public abstract
void forceRestart() throws FmcException

public abstract
void forceRestart2(Container inputContainer) throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
inputContainer

Input. The input container to be used when restarting the
work item.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.

644 Programming Guide

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 49. Work item actions 645

InContainer()

This API call retrieves the input container associated with the work item from
the MQ Workflow execution server (action call).

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the work item owner
v Work item authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long InContainer(Container * input)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemInContainer(FmcjWorkitemHandle hdlWorkitem,

FmcjReadOnlyContainerHandle * input)

C++ language signature
APIRET InContainer(FmcjReadOnlyContainer & input) const

646 Programming Guide

Java signature
public abstract
ReadOnlyContainer inContainer() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
input Input/Output. The input container.

Return type
long/ APIRET The return code of calling this method - see below.
ReadOnlyContainer

The input container.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Chapter 49. Work item actions 647

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

OutContainer()

This API call retrieves the output container associated with the work item
from the MQ Workflow execution server (action call).

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

One of:
v Be the work item owner
v Work item authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

648 Programming Guide

ActiveX signature
long OutContainer(Container * output)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemOutContainer(FmcjWorkitemHandle hdlWorkitem,

FmcjReadWriteContainerHandle * output)

C++ language signature
APIRET OutContainer(FmcjReadWriteContainer & output) const

Java signature
public abstract
ReadWriteContainer outContainer() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
output Input/Output. The output container.

Return type
long/ APIRET The return code of calling this method - see below.
ReadWriteContainer

The output container.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

Chapter 49. Work item actions 649

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Restart()

This API call asks MQ Workflow to enable the restart of a work item (action
call).

The work item must be in state Executed. It is then reset into the Ready state.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner

650 Programming Guide

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long Restart()

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemRestart(FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET Restart()

Java signature
public abstract
void restart() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

Chapter 49. Work item actions 651

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Start()

This API call starts a ready work item (action call).

The associated process instance must be in the Running state.

652 Programming Guide

If the associated activity instance is implemented by a program, the program
is started on the program execution agent associated to the logged-on user.

The work item is put into the Running state. If the activity implementation or
an associated process activity cannot be started, the work item is put into the
InError state.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long Start()

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemStart(FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET Start()

Chapter 49. Work item actions 653

Java signature
public abstract
void start() throws FmcException

COBOL
FmcjWIStart.

CALL "FmcjWorkitemStart"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

654 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

StartTool()

This API call starts the specified support tool (action call).

The support tool must be one of the tools associated to the activity instance
the work item is derived from. It is then started on the program execution
agent associated to the logged-on user.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

Chapter 49. Work item actions 655

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long StartTool(BSTR toolName)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemStartTool(FmcjWorkitemHandle hdlWorkitem,

char const * toolName)

C++ language signature
APIRET StartTool(string const & toolName) const

Java signature
public abstract
void startTool(String toolName) throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
toolName Input. The support tool to be started.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

656 Programming Guide

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_INVALID_TOOL(129)
No tool name is provided or the specified tool is not defined
for the work item.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Terminate()

This API call terminates a work item implemented by a program or process
(action call).

If the work item is implemented by a program, it must be in the states
CheckedOut or Running and the process instance must be in the states Running,
Suspending, or Suspended. If the work item is implemented by a process, it
must be in the states Running, Suspending, or Suspended and the process
instance must be in the states Running, Suspending, Suspended, or Terminating.

Chapter 49. Work item actions 657

When the work item is implemented by a program and processed under the
control of a program execution agent or user-defined program execution
server, a message is sent to inform about the termination request. The
program execution agent tries to kill fenced activity implementations.

A work item implemented by a process is terminated together with all its
non-autonomous subprocesses with respect to control autonomy.

The work item is then put into the Terminating or Terminated state.

When the Terminated state has been reached, the exit condition is considered to
be false, the output container and especially the return code (_RC) are not set,
and navigation ends. Navigation can be explicitly continued by a user with
process administration rights, that is, ForceFinish() or ForceRestart() repair
actions can be called.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long Terminate()

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemTerminate(FmcjWorkitemHandle hdlWorkitem)

658 Programming Guide

C++ language signature
APIRET Terminate()

Java signature
public abstract
void terminate() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be terminated.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The transient work item object recreated from its OID is not a
work item; it is a notification.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

Chapter 49. Work item actions 659

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

660 Programming Guide

Chapter 50. Work listactions

An FmcjWorklist or a Worklist object represents a set of items, that is, a set of
work items or notifications. All items which are accessible through this list
have the same characteristics. These characteristics are specified by a filter.
Additionally, sort criteria can be applied and, after that, a threshold to restrict
the number of items to be transferred from the execution server to the client.

The worklist definition is stored persistently. The items contained in the
worklist are, however, assembled dynamically when they are queried.

A worklist is uniquely identified by its name, type, and owner. It can be
defined for general access purposes; it is then of a public type. Or, it can be
defined for some specific user; it is then of a private type.

Other lists that can be defined are process template lists or process instance
lists. FmcjPersistentList or PersistentList represents the common properties of
all lists.

In the C++ language, FmcjWorklist is thus a subclass of the FmcjPersistentList
class and inherits all properties and methods. In the Java language, WorkList
is thus a subclass of the PersistentList class and inherits all properties and
methods. Similarly, in the C-language, common implementations of functions
are taken from FmcjPersistentList. That is, common functions start with the
prefix FmcjPersistentList; they are also defined starting with the prefix
FmcjWorklist. In ActiveX, inheritance is not supported so that all functions are
explicitly defined on Worklist. Note, however, that common methods are
described as PersistentList actions.

The following sections describe the actions which can be applied on a
worklist. See “Worklist” on page 335 for a complete list of API calls.

QueryActivityInstanceNotifications()

This API call retrieves the primary information for all activity instance
notifications characterized by the specified worklist from the MQ Workflow
execution server (action call).

From the set of qualifying activity instance notifications, only those are
retrieved, the user is authorized for. The user is authorized for an activity
instance notification if
v He is the owner of the activity instance notification
v He has workitem authority

© Copyright IBM Corp. 1993, 2001 661

v He is the system administrator

The primary information that is retrieved for each activity instance
notification is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

In C and C++, any activity instance notifications retrieved are appended to
the supplied vector of activity instance notifications. If you want to read those
activity instance notifications only which are currently included in the
worklist, you have to clear the vector before you call this API call. This means
that you should set the handle to 0 in the C-language respectively erase all
elements of the vector in the C++ API.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

662 Programming Guide

JAVA com.ibm.workflow.api.WorkList

ActiveX signature
long QueryActivityInstanceNotifs()

C-language signature
APIRET FMC_APIENTRY FmcjWorklistQueryActivityInstanceNotifications(

FmcjWorklistHandle hdlList,
FmcjActivityInstanceNotificationVectorHandle * notifications)

C++ language signature
APIRET QueryActivityInstanceNotifications(

vector<FmcjActivityInstanceNotification> & notifications) const

Java signature
public abstract
ActivityInstanceNotification[] queryActivityInstanceNotifications()
throws FmcException

Parameters
hdlList Input. The handle of the worklist to be queried.
notifications Input/Output. The vector of qualifying activity instance

notifications.

Return type
long/ APIRET The return code of calling this method - see below.
ActivityInstanceNotification[]

The qualifying activity instance notifications.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

Chapter 50. Work listactions 663

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of activity instance notifications to be returned
exceeds the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For an ActiveX example see “Query work items from a worklist (ActiveX)”

on page 791
v For a C-language example see “Query work items from a worklist

(C-language)” on page 792
v For a C++ example see “Query work items from a worklist (C++)” on

page 794
v For a Java example see “Query work items from a worklist (Java)” on

page 796

664 Programming Guide

QueryItems()

This API call retrieves the primary information for all items characterized by
the specified worklist from the MQ Workflow execution server (action call).

From the set of qualifying items, only those are retrieved, the user is
authorized for. The user is authorized for an item if
v He is the owner of the item
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each item is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

If the item is an actual work item or an activity instance notification, then
additional primary information is retrieved:
v ActivityType
v Implementation
v Priority
v SupportTools

In C and C++, any items retrieved are appended to the supplied vector of
items. If you want to read those items only which are currently included in
the worklist, you have to clear the vector before you call this API call. This
means that you should set the handle to 0 in the C-language respectively
erase all elements of the vector in the C++ API.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Chapter 50. Work listactions 665

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not applicable

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkList

C-language signature
APIRET FMC_APIENTRY
FmcjWorklistQueryItems(FmcjWorklistHandle hdlList,

FmcjItemVectorHandle * items)

C++ language signature
APIRET QueryItems(vector<FmcjItem> & items) const

Java signature
public abstract Item[] queryItems() throws FmcException

Parameters
hdlList Input. The handle of the worklist to be queried.
items Input/Output. The vector of qualifying items.

Return type
APIRET The return code of calling this method - see below.
Item[] The qualifying items.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

666 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of items to be returned exceeds the maximum
size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C-language example see “Query work items from a worklist

(C-language)” on page 792
v For a C++ example see “Query work items from a worklist (C++)” on

page 794
v For a Java example see “Query work items from a worklist (Java)” on

page 796

Chapter 50. Work listactions 667

QueryProcessInstanceNotifications()

This API call retrieves the primary information for all process instance
notifications characterized by the specified worklist from the MQ Workflow
execution server (action call).

From the set of qualifying process instance notifications, only those are
retrieved, the user is authorized for. The user is authorized for a process
instance notification if
v He is the owner of the process instance notification
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each process instance
notification is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

In C and C++, any process instance notifications retrieved are appended to
the supplied vector of process instance notifications. If you want to read those
process instance notifications only which are currently included in the
worklist, you have to clear the vector before you call this API call. This means
that you should set the handle to 0 in the C-language respectively erase all
elements of the vector in the C++ API.

Usage note
v See “Action API calls” on page 150 for general information.

Authorization

None

Required connection

MQ Workflow execution server

668 Programming Guide

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkList

ActiveX signature
long QueryProcessInstanceNotifs()

C-language signature
APIRET FMC_APIENTRY FmcjWorklistQueryProcessInstanceNotifications(

FmcjWorklistHandle hdlList,
FmcjProcessInstanceNotificationVectorHandle * notifications)

C++ language signature
APIRET QueryProcessInstanceNotifications(

vector<FmcjProcessInstanceNotification> & notifications) const

Java signature
public abstract
ProcessInstanceNotification[] queryProcessInstanceNotifications()
throws FmcException

Parameters
hdlList Input. The handle of the worklist to be queried.
notifications Input/Output. The vector of qualifying process instance

notifications.

Return type
long/ APIRET The return code of calling this method - see below.
ProcessInstanceNotification[]

The qualifying process instance notifications.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.

Chapter 50. Work listactions 669

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instance notifications to be returned
exceeds the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For an ActiveX example see “Query work items from a worklist (ActiveX)”

on page 791

670 Programming Guide

v For a C-language example see “Query work items from a worklist
(C-language)” on page 792

v For a C++ example see “Query work items from a worklist (C++)” on
page 794

v For a Java example see “Query work items from a worklist (Java)” on
page 796

QueryWorkitems()

This API call retrieves the primary information for all work items
characterized by the specified worklist from the MQ Workflow execution
server (action call).

From the set of qualifying work items, only those are retrieved, the user is
authorized for. The user is authorized for a work item if
v He is the owner of the work item
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each work item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

In C and C++, any work items retrieved are appended to the supplied vector
of work items. If you want to read those work items only which are currently
included in the worklist, you have to clear the vector before you call this API
call. This means that you should set the handle to 0 in the C-language
respectively erase all elements of the vector in the C++ API.

Usage note
v See “Action API calls” on page 150 for general information.

Chapter 50. Work listactions 671

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkList

ActiveX signature
long QueryWorkitems()

C-language signature
APIRET FMC_APIENTRY FmcjWorklistQueryWorkitems(

FmcjWorklistHandle hdlList,
FmcjWorkitemVectorHandle * workitems)

C++ language signature
APIRET QueryWorkitems(vector<FmcjWorkitem> & workitems) const

Java signature
public abstract
WorkItem[] queryWorkItems() throws FmcException

Parameters
hdlList Input. The handle of the worklist to be queried.
workitems Input/Output. The vector of qualifying work items.

Return type
long/ APIRET The return code of calling this method - see below.
WorkItem[] The qualifying work items.

672 Programming Guide

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object does not yet represent a persistent object, that is, it
has not yet been read from the database or it has not been
created from its OID.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of work items to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CHAR(16)
A string contains an incorrect character; probably a code page
problem.

FMC_ERROR_INVALID_CODE_PAGE(15)
Code page conversion from the client code page into the
server’s code page is not supported.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_MESSAGE_SIZE_EXCEEDED(821)
The message to be returned exceeds the maximum size
allowed - see the MAXIMUM_MESSAGE_SIZE definition in
your system, system group, or domain.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

Chapter 50. Work listactions 673

v For an ActiveX example see “Query work items from a worklist (ActiveX)”
on page 791

v For a C-language example see “Query work items from a worklist
(C-language)” on page 792

v For a C++ example see “Query work items from a worklist (C++)” on
page 794

v For a Java example see “Query work items from a worklist (Java)” on
page 796

674 Programming Guide

Part 8. Working with ActiveX controls

The following chapters describe the ActiveX controls.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

© Copyright IBM Corp. 1993, 2001 675

676 Programming Guide

Chapter 51. The ExecutionService Control

To access an ExecutionService in the ExecutionServiceArray, the
ExecutionService Control must be connected to the Workflow Control. The
connection is established by the ConnectGUI() method of the ExecutionService
Control class. When the connection has been established, the user has full
access to the ExecutionService shown within the tree view of the
ExecutionService Control window.

© Copyright IBM Corp. 1993, 2001 677

678 Programming Guide

Chapter 52. The list controls

To access, for example, the worklists in the WorklistArray, each worklist must
be connected to a Worklist Control. This connection is established via the
ConnectGUI() method of the Worklist Control class. When the connection has
been established, the user has access to the Worklist object in the Worklist
Control. The same mechanism is used to connect all other List types to be
used within a GUI.

© Copyright IBM Corp. 1993, 2001 679

680 Programming Guide

Chapter 53. The Monitor Control

The Monitor Control OCX is the ActiveX component that implements the
Process Monitor GUI. To access a monitor, the Monitor Control must be
connected to the Workflow Control. The connection is established by the
ConnectGUI() method of the Monitor Control class. When the connection has
been established, the user has full access to the instance monitor object.

The Monitor Control can be used to display one process model graph. A
Refresh() method is provided in order to display changed activity instance
states. The OCX is not intended to be used for different process models
graphs. You must use separate Monitor OCX instances in order to view
different process models.

© Copyright IBM Corp. 1993, 2001 681

682 Programming Guide

Chapter 54. Typical scenario of ActiveX Control methods

If you want to look at a typical scenario to get, for example, the name of a
specific worklist, the sequence of steps to establish the prerequisites is as
follows:
1. The ExecutionService Control accessor method ExecutionServiceArray

provides access to the local Control object ExecutionServiceArray.
2. The ExecutionServiceArray action method Add provides the

ExecutionService index and the accessor method GetAt provides the
transient ExecutionService object.

3. The ExecutionService action method QueryWorklists provides transient
Worklist objects.

4. The ExecutionService accessor method WorklistArray provides access to
the local Control object WorklistArray.

5. The WorklistArray accessor method GetAt provides access to a specific
Worklist object with the WorklistArray.

6. The Worklist accessor method Name provides the name of the specific
Worklist.

© Copyright IBM Corp. 1993, 2001 683

684 Programming Guide

Chapter 55. MQWorkflowCtrl

Methods

The MQWorkflow Control supports the following methods:

ConfigurationID
Returns the configuration ID to be used for profile access.

Signature
BSTR ConfigurationID()

Return type
BSTR The configuration ID.

Connect
This method initializes MQ Workflow API processing for a particular thread.

Signature
long Connect()

Return type
long If processing completes successfully, FMC_OK is returned.

ContainerArray
Provides access to the ContainerArray object.

Signature
ContainerArray * ContainerArray()

Return type
ContainerArray*

A pointer to the ContainerArray object.

CurrentDateAndTime
Creates a new DateAndTime object initialized with the current date and time
values.

© Copyright IBM Corp. 1993, 2001 685

Signature
DateAndTime * CurrentDateAndTime()

Return type
DateAndTime*

A pointer to the DateAndTime object.

DateAndTime
Creates a new (uninitialized) DateAndTime object.

Signature
DateAndTime * DateAndTime()

Return type
DateAndTime*

A pointer to the DateAndTime object.

Disconnect
This method uninitializes MQ Workflow API processing for a particular
thread.

Signature
long Disconnect()

Return type
long If processing completes successfully, FMC_OK is returned.

ExecutionServiceArray
Provides access to the ExecutionServiceArray object.

Signature
ExecutionServiceArray * ExecutionServiceArray()

Return type
ExecutionServiceArray*

A pointer to the ExecutionServiceArray object.

686 Programming Guide

NewActivityInstance
Creates an empty activity instance object.

Signature
ActivityInstance * NewActivityInstance()

Return type
ActivityInstance*

A pointer to the activity instance created.

NewActivityInstanceNotification
Creates an empty activity instance notification object.

Signature
ActivityInstanceNotification * NewActivityInstanceNotification()

Return type
ActivityInstanceNotification*

A pointer to the activity instance notification created.

NewContainer
Creates an empty container object.

Signature
Container * NewContainer()

Return type
Container* A pointer to the container created.

NewExecutionService
Creates an empty execution service object.

Signature
ExecutionService * NewExecutionService()

Return type
ExecutionService*

A pointer to the execution service created.

Chapter 55. MQWorkflowCtrl 687

NewInstanceMonitor
Creates an empty instance monitor object.

Signature
InstanceMonitor * NewInstanceMonitor()

Return type
InstanceMonitor*

A pointer to the instance monitor created.

NewPerson
Creates an empty person object.

Signature
Person * NewPerson()

Return type
Person* A pointer to the person created.

NewProcessInstance
Creates an empty process instance object.

Signature
ProcessInstance * NewProcessInstance()

Return type
ProcessInstance*

A pointer to the process instance object created.

NewProcessInstanceList
Creates an empty process instance list object.

Signature
ProcessInstanceList * NewProcessInstanceList()

Return type
ProcessInstanceList*

A pointer to the process instance list created.

688 Programming Guide

NewProcessInstanceNotification
Creates an empty process instance notification object.

Signature
ProcessInstanceNotification * NewProcessInstanceNotification()

Return type
ProcessInstanceNotification*

A pointer to the process instance notification object created.

NewProcessTemplate
Creates an empty process template object.

Signature
ProcessTemplate * NewProcessTemplate()

Return type
ProcessTemplate*

A pointer to the process template object created.

NewProcessTemplateList
Creates an empty process template list object.

Signature
ProcessTemplateList * NewProcessTemplateList()

Return type
ProcessTemplateList*

A pointer to the process template list created.

NewProgramData
Creates an empty program data object.

Signature
ProgramData * NewProgramData()

Return type
ProgramData* A pointer to the program data created.

Chapter 55. MQWorkflowCtrl 689

NewProgramTemplate
Creates an empty program template object.

Signature
ProgramTemplate * NewProgramTemplate()

Return type
ProgramTemplate*

A pointer to the program template created.

NewWorkitem
Creates an empty work item object.

Signature
Workitem * NewWorkitem()

Return type
Workitem* A pointer to the work item object created.

NewWorklist
Creates an empty worklist object.

Signature
Worklist * NewWorklist()

Return type
Worklist* A pointer to the worklist created.

ProgramID
Returns the program ID by which an activity implementation is known to the
program execution agent.

Signature
BSTR ProgramID()

Return type
BSTR The program ID.

690 Programming Guide

RemoteUserID
Returns the user ID for whom the original activity implementation has been
started by the program execution agent.

Signature
BSTR RemoteUserID()

Return type
BSTR The user ID.

SetConfigurationID
This method sets the configuration ID to be used for profile access.

Signature
long SetConfigurationID(BSTR configID)

Parameters
configID Input. The configuration ID to be set; must be a configuration

already defined.

Return type
long If processing completes successfully, FMC_OK is returned.

StringArray
Provides access to the StringArray object.

Signature
StringArray * StringArray()

Return type
StringArray* A pointer to the StringArray object.

UserID
Returns the user ID for whom an activity implementation has been started by
the program execution agent.

Signature
BSTR UserID()

Chapter 55. MQWorkflowCtrl 691

Return type
BSTR The user ID.

692 Programming Guide

Chapter 56. ContainerCtrl

Properties

The Container Control has the following property, which can be modified:
Visible

Methods

The Container Control supports the following methods:

Container
This method provides access to an MQ Workflow Container object.

Signature
Container * Container()

Return type
Container* The pointer to the Container object.

ProgramID
Returns the program ID by which an activity implementation is known to the
program execution agent.

Signature
BSTR ProgramID()

Return type
BSTR The program ID.

RemoteUserID
Returns the user ID for whom the original activity implementation has been
started by the program execution agent.

Signature
BSTR RemoteUserID()

Return type

© Copyright IBM Corp. 1993, 2001 693

BSTR The user ID.

UserID
Returns the user ID for whom an activity implementation has been started by
the program execution agent.

Signature
BSTR UserID()

Return type
BSTR The user ID.

Events

The Container Control triggers the following events:

Error
Occurs only as the result of an error that takes place when no Visual Basic
code is being executed.

Signature
void Error(short number,

BSTR * description,
SCODE scode,
BSTR source,
BSTR helpFile,
long helpContext,
boolean *cancel)

Parameters
number Output. The error number as an integer.
description Output. The description of the error.
scode Output. The scode error as a long integer.
source Output. The source of the error.
helpFile Output. The name of the help file.
helpContext Output. The help context identifier.
cancel Input. If set to True, the message is not sent to the next layer.

694 Programming Guide

Chapter 57. Methods supported by all GUI controls

Following methods are supported by the ExecutionService Control, the
ProcessTemplateList Control, the ProcessInstanceList Control, the Worklist
Control, and the Monitor Control.

AboutBox

Opens the about box of the Control.

Signature
void AboutBox()

ReadUserSettings

Restores user settings from the registry.

This restores values for the columns to be shown in the report view.

Signature
boolean ReadUserSettings(BSTR name)

Parameters
name Input. The string denoting the name of the registry key, the

values of which are restored.

Return type
boolean If processing completes successfully, True is returned.

RemoveGUI

Removes the connection between the ExecutionService Control and the
MQWorkflow Control.

Signature
long RemoveGUI()

© Copyright IBM Corp. 1993, 2001 695

Return type
long If processing completes successfully, FMC_OK is returned.

SetHelpFile

Defines the path and filename of the help file to be used in Runtime mode.

Signature
void SetHelpFile(BSTR name)

Parameters
name Input. The string denoting the fully qualified pathname of the

help file.

ShowContextMenu

Enables or disables the context menu.

Signature
void ShowContextMenu(boolean toggle)

Parameters
toggle Input. If True is specified, a right mouse click shows the

context menu. The specification of False disables the context
menu.

WriteUserSettings

Saves the user settings within the registry.

This saves the current columns sizes as well as the columns that are selected
to be shown in report view.

Signature
boolean WriteUserSettings(BSTR name)

Parameters
name Input. The string denoting the name of the registry key where

the current values are stored.

696 Programming Guide

Return type
boolean If processing completes successfully, True is returned.

Chapter 57. Methods supported by all GUI controls 697

698 Programming Guide

Chapter 58. Methods supported by all list controls

Following methods are supported by all list controls, the ProcessTemplateList
Control, the ProcessInstanceList Control, and the Worklist Control.

ConnectGUI

Connects the specified process template list, the specified process instance list,
or the specified worklist to the GUI.

Signature
long ConnectGUI(IDispatch * list, IDispatch * es, IDispatch * wfc)

Parameters
es Input. The pointer to the execution service object.
list Input. The pointer to the list object.
wfc Input. The pointer to the MQWorkflowCtrl object.

Return type
long If processing completes successfully, FMC_OK is returned.

ContextMenuDelete

Calls the context menu item ’Delete’.

Signature
long ContextMenuDelete()

Return type
long Return code of FmcjProcessTemplate::Delete(), or

FmcjProcessInstanceListDelete(), or FmcjWorklist::Delete().

ContextMenuListProperties

Calls the context menu item ’Properties’.

This method shows a dialog which provides property information of the
process template list, process instance list, or worklist.

© Copyright IBM Corp. 1993, 2001 699

Signature
void ContextMenuListProperties()

ContextMenuListSettings

Calls the context menu item ’Processlist settings’.

This method shows a dialog which provides information on name, type, filter,
and sort criteria of the process template list, process instance list, or worklist.

Signature
void ContextMenuListSettings ()

ContextMenuListRefresh

Calls the context menu item ’Refresh ProcessTemplateList’, or ’Refresh
ProcessInstanceList’, or ’Refresh Worklist’.

Signature
long ContextMenuListRefresh()

Return type
long If processing completes successfully, FMC_OK is returned.

ContextMenuProperties

Calls the context menu item ’Show Properties’.

This method shows the properties of the selected objects within the
ProcessTemplateList, the ProcessInstanceList, or the Worklist Control.

Signature
void ContextMenuProperties()

700 Programming Guide

ContextMenuViewIcon

Displays the ProcessTemplateList, or ProcessInstanceList, or Worklist Control
grid in icon mode.

Signature
void ContextMenuViewIcon()

ContextMenuViewList

Displays the ProcessTemplateList, the ProcessInstanceList, or Worklist Control
grid in list mode.

Signature
void ContextMenuViewList()

ContextMenuViewReport

Displays the ProcessTemplateList, the ProcessInstanceList, or Worklist Control
grid in report mode.

Signature
void ContextMenuViewReport()

ContextMenuViewSmallIcon

Displays the ProcessTemplateList, the ProcessInstanceList, or Worklist Control
grid in small icon mode.

Signature
void ContextMenuViewSmallIcon()

FindFirst

Returns the first object of the process template list, the process instance list, or
the worklist.

Chapter 58. Methods supported by all list controls 701

Signature for process template or process instance lists
IDispatch * FindFirst(long * index)

Signature for worklists
IDispatch * FindFirst(long * objecttype, long * index)

Parameters
index Output. A pointer to a long field where the returned index is

to be stored. If no selected object is found, 1 is returned.
objecttype Output. An indication whether an actual work item, an

activity instance notification, or a process instance notification
is returned.

Return type
IDispatch* The object pointer. NULL (0) is returned if the selected object

is not found.

FindNext

Returns the next object of the process template list, the process instance list, or
the worklist. FindFirst() must have been called before.

Signature for process template or process instance lists
IDispatch * FindNext(long * index)

Signature for worklists
IDispatch * FindNext(long * objecttype, long * index)

Parameters
index Output. A pointer to a long field where the returned index is

to be stored. If no selected object is found, 1 is returned.
objecttype Output. An indication whether an actual work item, an

activity instance notification, or a process instance notification
is returned.

Return type

702 Programming Guide

IDispatch* The object pointer. NULL (0) is returned if the selected object
is not found.

Return Value

IDispatch* The ProcessTemplate object pointer. 0 (null) is returned if no
selected object is found.

Parameters

index Output. A pointer to a long field where the returned index is stored. If
no selected object is found, 1 is returned.

GetItemAt

Returns the object of the process template list, the process instance list, or the
worklist at the given index.

Signature
IDispatch * GetItemAt(long index)

Parameters
index Input. The array index of the object to be returned.

Return type
IDispatch* The object pointer.

GetItemCount

Returns the number of objects in the process template list array, the process
instance list array, or the worklist array.

Signature
long GetItemCount()

Return type
long The number of objects in the array.

Chapter 58. Methods supported by all list controls 703

704 Programming Guide

Chapter 59. Events triggered by all GUI controls

Following events are triggered by the ExecutionService Control, the
ProcessTemplateList Control, the ProcessInstanceList Control, the Worklist
Control, and the Monitor Control.

Click

Occurs when the user presses a mouse button over this control.

Signature
void Click()

DblClick

Occurs when the user presses and releases a mouse button and then presses
and releases it again over this control.

Signature
void DblClick()

KeyPress

Occurs when the user presses and releases an ANSI key.

Signature
void KeyPress(short keyAscii)

Parameters
keyAscii Output. An integer that returns a standard numeric ANSI

keycode.

© Copyright IBM Corp. 1993, 2001 705

706 Programming Guide

Chapter 60. Events triggered by all non-monitor GUI
controls

Following events are triggered by the ExecutionService Control, the
ProcessTemplateList Control, the ProcessInstanceList Control, and the Worklist
Control.

Error

Occurs only as the result of an error that takes place when no Visual Basic
code is being executed.

Signature
void Error(short number,

BSTR * description,
SCODE scode,
BSTR source,
BSTR helpFile,
long helpContext,
boolean cancel)

Parameters
number Output. The error number as an integer.
description Output. The description of the error.
scode Output. The scode error as a long integer.
source Output. The source of the error.
helpFile Output. The name of the help file.
helpContext Output. The help context identifier.
cancel Input. If set to True, the message is not sent to the next layer.

KeyDown

Occurs when the user pressed a key while an object has this control as the
focus.

Signature
void KeyDown(short * keyCode, short shift)

Parameters

© Copyright IBM Corp. 1993, 2001 707

keyCode Output. A key code, such as vbKeyF1 (the F1 key) or
vbKeyHome (the HOME key).

shift Output. An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event.

KeyUp

Occurs when the user releases a key while an object has this control as the
focus.

Signature
void KeyUp(short * keyCode, short shift)

Parameters
keyCode Output. A key code, such as vbKeyF1 (the F1 key) or

vbKeyHome (the HOME key).
shift Output. An integer that corresponds to the state of the SHIFT,

CTRL, and ALT keys at the time of the event.

MouseDown

Occurs when the user presses the mouse button over the ProcessInstanceList
Control window.

Signature
void MouseDown(short button ,

short shift ,
OLE_XPOS_PIXELS x ,
OLE_YPOS_PIXELS y)

Parameters
button Output. Returns an integer that identifies the button that was

pressed.
shift Output. An integer that corresponds to the state of the SHIFT,

CTRL, and ALT keys at the time of the event.
x Output. Returns an integer that specifies the current location

(abscissa) of the mouse pointer.
y Output. Returns an integer that specifies the current location

(ordinate) of the mouse pointer.

708 Programming Guide

MouseMove

Occurs when the user moves the mouse.

Signature
void MouseMove(short button ,

short shift ,
OLE_XPOS_PIXELS x ,
OLE_YPOS_PIXELS y)

Parameters
button Output. Returns an integer that identifies the button that was

pressed.
shift Output. An integer that corresponds to the state of the SHIFT,

CTRL, and ALT keys at the time of the event.
x Output. Returns an integer that specifies the current location

(abscissa) of the mouse pointer.
y Output. Returns an integer that specifies the current location

(ordinate) of the mouse pointer.

MouseUp

Occurs when the user releases a mouse button over the ProcessInstanceList
Control window.

Signature
void MouseUp(short button ,

short shift ,
OLE_XPOS_PIXELS x ,
OLE_YPOS_PIXELS y)

Parameters
button Output. Returns an integer that identifies the button that was

pressed.
shift Output. An integer that corresponds to the state of the SHIFT,

CTRL, and ALT keys at the time of the event.
x Output. Returns an integer that specifies the current location

(abscissa) of the mouse pointer.
y Output. Returns an integer that specifies the current location

(ordinate) of the mouse pointer.

Chapter 60. Events triggered by all non-monitor GUI controls 709

710 Programming Guide

Chapter 61. Events triggered by all list controls

Following events are triggered by all lists, the ProcessTemplateList Control,
the ProcessInstanceList Control, and the Worklist Control.

ViewChanged

Occurs when the list grid view has changed.

Signature
void ViewChanged()

© Copyright IBM Corp. 1993, 2001 711

712 Programming Guide

Chapter 62. ExecutionServiceCtrl

Properties

In design mode, the properties for the ExecutionService Control can be
viewed by placing the mouse pointer within the Control’s grid area, clicking
the right mouse button and selecting Properties.

The property dialog contains two tabs: Fonts and Pictures.

All tabs are available in design mode and run mode.

The Fonts tab displays a standard font dialog. The font, its size, style, and the
effects used to display the text in the ExecutionService Control can be
manipulated here.

The Pictures tab provides the ability to associate icons with the various
elements of the ExecutionService Control’s display.

To view the icon currently associated with a given item, select the item from
the Property Name drop-down list. The associated icon is displayed in the
Preview area.

To change the icon for the currently selected item, click on the Browse button.
A standard browse dialog will be displayed. Any icon chosen through the
browser replaces the icon currently associated with the given item. Clicking
on the Clear button removes the icon currently associated with the given
item, leaving the item without an icon.

Following properties can be modified: Appearance, BorderStyle, Font,
IconMQWorkflow, IconOneProcessInstanceList,
IconOneProcessTemplateList, IconOneWorklist, IconProcessInstanceLists,
IconProcessTemplateLists, IconSystem, IconWorklists.

Methods

The ExecutionService Control supports the following methods besides the
methods supported by all controls - see “Chapter 57. Methods supported by
all GUI controls” on page 695:

ConnectGUI
Connects the ExecutionServiceCtrl object with the MQWorkflowCtrl object.

© Copyright IBM Corp. 1993, 2001 713

Signature
long ConnectGUI(IDispatch * wfc)

Parameters
wfc Input. The pointer to the MQWorkflowCtrl object.

Return type
long If processing completes successfully, FMC_OK is returned.

ContextMenuDeleteProcInstList
Calls the context menu item ’Delete Process Instance List’.

Signature
long ContextMenuDeleteProcInstList(long index1, long index2)

Parameters
index1 Input. The index within the ExecutionServiceArray.
index2 Input. The index within the ProcessInstanceListArray.

Return type
long Return code of FmcjProcessInstanceList::Delete().

ContextMenuDeleteProcTempList
Calls the context menu item ’Delete Process Template List’.

Signature
long ContextMenuDeleteProcTempList(long index1, long index2)

Parameters
index1 Input. The index within the ExecutionServiceArray.
index2 Input. The index within the ProcessTemplateListArray.

Return type
long Return code of FmcjProcessTemplateList::Delete().

ContextMenuDeleteWorklist
Calls the context menu item ’Delete Worklist’.

714 Programming Guide

Signature
long ContextMenuDeleteWorklist(long index1, long index2)

Parameters
index1 Input. The index within the ExecutionServiceArray.
index2 Input. The index within the WorklistListArray.

Return type
long Return code of FmcjWorklistList::Delete().

ContextMenuLogoff
Calls the context menu item ’Logoff’.

Signature
long ContextMenuLogoff(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

Return type
long Return code of FmcjExecutionService::Logoff().

ContextMenuLogon
Calls the context menu item ’Logon’.

Signature
long ContextMenuLogon(long index,

BSTR userID,
BSTR password)

Parameters
index Input. The index within the ExecutionServiceArray.
userID Input. The user identification to logon with.
password Input. The password.

Return type
long Return code of FmcjExecutionService::Logon().

Chapter 62. ExecutionServiceCtrl 715

ContextMenuLogonDialog
Calls the context menu item ’Logon’. Calling this method displays a separate
logon dialog where the user must specify detailed logon parameters, such as
user ID and password.

Signature
long ContextMenuLogonDialog()

Return type
long Return code of FmcjExecutionService::Logon().

ContextMenuNewProcInstList
Calls the context menu item ’Create New Process Instance List’.

A dialog is shown where the user must specify detailed list creation
parameters.

Signature
long ContextMenuNewProcInstList(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

Return type
long Return code of FmcjExecutionService::CreateProcessInstanceList().

ContextMenuNewProcTempList
Calls the context menu item ’Create New Process Template List’.

A dialog is shown where the user must specify detailed list creation
parameters.

Signature
long ContextMenuNewProcTempList(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

Return type
long Return code of FmcjExecutionService::CreateProcessTemplateList().

716 Programming Guide

ContextMenuNewWorklist
Calls the context menu item ’Create New Work List’.

A dialog is shown where the user must specify detailed list creation
parameters.

Signature
long ContextMenuNewWorklist(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

Return type
long Return code of FmcjExecutionService::CreateWorklist().

ContextMenuProperties
Calls the context menu item ’Properties’.

Signature
void ContextMenuProperties()

ContextMenuRefresh
Calls the context menu item ’Refresh’.

Signature
void ContextMenuRefresh()

ContextMenuRefreshProcInstLists
Calls the context menu item ’Refresh Process Instance Lists’.

Signature
void ContextMenuRefreshProcInstLists(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuRefreshProcInstances
Calls the context menu item ’Refresh Process Instances’.

Chapter 62. ExecutionServiceCtrl 717

Signature
void ContextMenuRefreshProcInstances(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuRefreshProcTempLists
Calls the context menu item ’Refresh Process Template Lists’.

Signature
void ContextMenuRefreshProcTempLists(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuRefreshProcTemplates
Calls the context menu item ’Refresh Process Templates’.

Signature
void ContextMenuRefreshProcTemplates(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuRefreshWorkitems
Calls the context menu item ’Refresh Work Items’.

Signature
void ContextMenuRefreshWorkitems(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuRefreshWorklists
Calls the context menu item ’Refresh Worklists’.

718 Programming Guide

Signature
void ContextMenuRefreshWorklists(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuUserInformation
Calls the context menu item ’User Information’.

Signature
void ContextMenuUserInformation(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

Events

The ExecutionService Control triggers the following events besides the events
triggered by all non-monitor controls - see “Chapter 59. Events triggered by
all GUI controls” on page 705 and “Chapter 60. Events triggered by all
non-monitor GUI controls” on page 707:

ItemCollapsed
Occurs when the item has collapsed.

Signature
void ItemCollapsed(BSTR name, long type, long index)

Parameters
name Output. The item name.
type Output. The type of the item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.

ItemCollapsing
Occurs when the item is collapsing.

Chapter 62. ExecutionServiceCtrl 719

Signature
void ItemCollapsing (BSTR name,

long type,
long index,
boolean * cancel)

Parameters
name Output. The item name.
type Output. The type of the item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.
cancel Input/Output. A pointer to a boolean variable. If True is

returned, the item is not collapsed.

ItemExpanded
Occurs when the item has expanded.

Signature
void ItemExpanded(BSTR name, long type, long index)

Parameters
name Output. The item name.
type Output. The type of the item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.

ItemExpanding
Occurs when the item is expanding.

Signature
void ItemExpanding(BSTR name,

long type,
long index,
boolean * cancel)

Parameters
name Output. The item name.
type Output. The type of the item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.

720 Programming Guide

cancel Input/Output. A pointer to a boolean variable. If True is
returned, the item is not collapsed.

SelChanged
Occurs when the selection has changed.

Signature
void SelChanged(BSTR name, long type, long index)

Parameters
name Output. The item name of the newly selected item.
type Output. The type of the newly selected item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.

SelChanging
Occurs when the item is changing.

Signature
void SelChanging(BSTR name, long type, long index, boolean * cancel)

Parameters
name Output. The item name of the newly selected item.
type Output. The type of the newly selected item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.
cancel Input. A pointer to a boolean variable. If set to True, the item

is not changed.

Chapter 62. ExecutionServiceCtrl 721

722 Programming Guide

Chapter 63. ProcessTemplateListCtrl

For GUI processing, a process template list must be connected to a
ProcessTemplateList Control. This connection is established via the method
ConnectGUI() from the ProcessTemplateListCtrl class. When this connection
has been established, the user has full access to the ProcessTemplateList object
in the ProcessTemplateList Control.

Properties

In design mode, the properties for the Process TemplateListControl can be
viewed and adjusted by placing the mouse pointer within the Control’s grid
area, clicking the right mouse button and selecting Properties.

The property dialog contains four tabs: Fonts, Colors, Column Selection, and
Column Attribute.

All of the tabs are available in design mode and runtime mode.

The display of the Control can be configured in a number of ways via this
dialog. There are four options for the View; namely Report, List, Small Icon,
and Icon.

The Fonts tab displays a standard font dialog. The font, its size, style, and the
effects used to display the text in the Control’s window can be manipulated in
this dialog.

The Colors tab provides a mechanism to manipulate the color scheme of the
Control’s window.

The foreground and background colors of the Control can be set and altered.
Select ForeColor or BackColor, click on one of the sixteen color buttons. Then
click on the Apply button.

The Column Selection tab allows columns or information to be added to or to
be removed from the Control’s display. To add columns, highlight items in the
right pane and click the Add button. To remove columns, highlight items in
the left pane and click the Delete button.

The Column Attribute tab provides a mechanism to manipulate certain
aspects of how the Control displays its items. They are as follows:

© Copyright IBM Corp. 1993, 2001 723

1. The Icon view check box is used to indicate which columns of information
(the names of which are shown in the list box on the left) are to be
included when the Icon display style is in effect. The columns that are
selected at any given time are shown below the icon on the right.

2. The Column width is used to indicate the number of pixels a column item
will occupy. It only pertains to the Report format of thedisplay. To adjust
the width of a column, highlight the desired item in the list box on the
left, enter a numeric value in the Column width entry box, and click the
Apply button.

3. The Alignment is used to justify the text of a column either to the left or
to the right. It only pertains to the Report format of the display.

In Runtime mode, if the mouse pointer is placed on a given item and the
right mouse button is clicked, the context menu for that item is displayed. If
the Properties option is selected, a tabbed dialog appears.

The property dialog contains four tabs: General, Data and Staff, History, and
Documentation. The General tab displays the following pieces of information
belonging to the process template list.

The Data and Staff tab displays information belonging to the administration
of the listitem object. They are:
v Input and output container names of the process instance.
v The process administrator of the process instance.
v The user who started the process instance.
v The role and organization criteria for the activities assigned to the users for

the process instance.

The History tab displays the template information. They are:
v TimeStamps:

The date and time when the process template was created, started, and the
validfrom-time.

The Documentation tab displays any annotations added for the listitem
object.

Note: In the Client, or any application created with the ProcessTemplateList
Control, which utilizes a menu bar, the process item properties dialog
(and all other context menu items) can also be accessed via the menu
bar’s Process option.

ProcessTemplateList Settings

724 Programming Guide

The settings for the process template list can be viewed and adjusted by
placing the mouse pointer within an unused portion of the Control’s window
area, clicking the right mouse button, and selecting ProcessTemplateList
settings.

Following properties can be modified: Appearance, Arrange, BackColor,
BorderStyle, CtrlColumnOrder, CtrlColumnWidth, Font, ForeColor, View.

Methods

The ProcessTemplateList Control supports the following methods besides the
methods supported by all list controls - see “Chapter 57. Methods supported
by all GUI controls” on page 695 and “Chapter 58. Methods supported by all
list controls” on page 699:

ContextMenuCreateInstance
Calls the context menu item ’Create Instance’.

Signature
long ContextMenuCreateInstance()

Return type
long Return code of FmcjProcessTemplate::CreateInstance().

RefreshProcessTemplateList
Refreshes the ProcessTemplateList Control.

Signature
long RefreshProcessTemplateList()

Return type
long If processing completes successfully, FMC_OK is returned.

Events

See “Chapter 59. Events triggered by all GUI controls” on page 705,
“Chapter 60. Events triggered by all non-monitor GUI controls” on page 707,
and “Chapter 61. Events triggered by all list controls” on page 711.

Chapter 63. ProcessTemplateListCtrl 725

726 Programming Guide

Chapter 64. ProcessInstanceListCtrl

To access the process instance list, the ProcessInstanceList object must be
connected to a ProcessInstanceList Control. This connection is established via
the function ConnectGUI() from the ProcessInstanceListCtrl class. When this
connection has been established, the user has full access to the
ProcessInstanceList object in the ProcessInstanceList Control.

Properties

In design mode, the properties for the ProcessInstanceList Control can be
viewed and adjusted by placing the mouse pointer within the Control’s grid
area, clicking the right mouse button and selecting Properties.

The property dialog contains four tabs: Fonts, Colors, Column Selection and
Column Attribute.

All of the tabs are available in design mode and run mode.

The display of the Control can be configured in a number of ways via this
dialog. There are four options for the View; namely Report, List, Small Icon,
and Icon.

The Fonts tab displays a standard font dialog. The font, its size, style, and the
effects used to display the text in the Control’s window can be manipulated
here.

The Colors tab provides a mechanism to manipulate the color scheme of the
Control’s window.

The foreground and background colors of the Control can be set or altered.
Select ForeColor or BackColor, click on one of the sixteen color buttons, and
click on the Apply button.

The Column Selection tab allows columns or information to be added to or to
be removed from the Control’s display. To add columns, highlight items in the
right pane, and click the Add button. To remove columns, highlight items in
the left pane, and click the Delete button.

The Column Attribute tab provides a mechanism to manipulate certain
aspects of how the Control displays its items. They are as follows:

© Copyright IBM Corp. 1993, 2001 727

1. The Icon view check box is used to indicate which columns of information
(the names of which are shown in the list box on the left) are to be
included when the Icon display style is in effect. The columns that are
selected at any given time are shown below the icon on the right.

2. The Column width is used to indicate the number of pixels a column item
will occupy. It only pertains to the Report format of the display. To adjust
the width of a column, highlight the desired item in the list box at the left,
enter a numeric value in the Column width entry box, and click the
Apply button.

3. The Alignment is used to justify the text of a column either to the left or
to the right. It only pertains to the Report format of the display.

In Runtime mode, if the mouse pointer is placed on a given item and the
right mouse button is clicked, the context menu for that item is displayed. If
the Properties option is selected, a tabbed dialog appears.

The property dialog contains four tabs: General, Data and Staff, History, and
Documentation. The General tab displays the following pieces of information
pertaining to the ProcessInstance. They are:
v Name
v Description
v Process category
v Status
v Parent process of the process instance
v Top-level process of the process instance
v Whether or not the process instance is being audited
v Whether or not the process instance is exited in case an error occurred
v Whether or not the starter of the process instance will be prompted to enter

data for the process instance

The Data and Staff tab displays information relating to the administration of
the list-item object. They are:
v Input and output Container names of the process instance
v The process administrator of the process instance
v The user who started the process instance
v The role and organization criteria for the users assigned activities for the

process instance

The History tab displays three pieces of activity information. They are:
v TimeStamps

The date and time when the process instance was created, started, and last
modified.

728 Programming Guide

v Notification
The date and time that the first notification will be sent (or was sent) for
the activity.

v Finished
The date and time the activity was completed.

The Documentation tab displays any annotations added for the list-item
object.

Note: In the Runtime Client or any application created with the
ProcessInstanceList Control, which utilizes a menu bar, the process item
property dialog (and all other context menu items) can also be accessed
via the menu bar’s Process option.

ProcessInstanceList Settings

The settings for the process instance list can be viewed and adjusted by
placing the mouse pointer within an unused portion of the Control’s window
area, clicking the right mouse button and selecting ProcessInstanceList
settings.

The ProcessInstanceList settings dialog displays three tabs: General, Filter,
and Sort.

In the General page the name and the type of the process template list are
shown. Here the user can also modify the threshold value and the description
of the process template list. The other two pages are intended to display and
modify the Filter and the Sort Criteria.

Following properties can be modified: Appearance, Arrange, BackColor,
BorderStyle, CtrlColumnOrder, CtrlColumnWidth, Font, ForeColor, View.

Methods

The ProcessInstanceList Control supports the following methods besides the
methods supported by all list controls - see “Chapter 57. Methods supported
by all GUI controls” on page 695 and “Chapter 58. Methods supported by all
list controls” on page 699:

ContextMenuRestart
Calls the context menu item ’Restart’.

This method restarts the selected list of process instances within the Control.
See “Restart()” on page 548 for a more detailed description.

Chapter 64. ProcessInstanceListCtrl 729

Signature
long ContextMenuRestart()

Return type
long Return code of FmcjProcessInstance::Restart().

ContextMenuResume
Calls the context menu item ’Resume’.

This method resumes the selected list of process instances within the Control.
See “Resume()” on page 550 for a more detailed description.

Signature
long ContextMenuResume()

Return type
long Return code of FmcjProcessInstance::Resume().

ContextMenuResumeDeep
Calls the context menu item ’Resume deep’.

This method resumes the selected list of process instances within the Control.
See “Resume()” on page 550 for a more detailed description.

Signature
long ContextMenuResumeDeep()

Return type
long Return code of FmcjProcessInstance::Resume().

ContextMenuStart
Calls the context menu item ’Start’.

This method starts the selected list of process instances within the Control.
See “Start()” on page 557 for a more detailed description.

Signature
long ContextMenuStart()

730 Programming Guide

Return type
long Return code of FmcjProcessInstance::Start().

ContextMenuSuspend
Calls the context menu item ’Suspend’.

This method suspends the selected list of process instances within the Control.
See “Suspend()” on page 560 for a more detailed description.

Signature
long ContextMenuSuspend()

Return type
long Return code of FmcjProcessInstance::Suspend().

ContextMenuSuspendDeep
Calls the context menu item ’Suspend deep’.

This method suspends the selected list of process instances within the Control.
See “Suspend()” on page 560 for a more detailed description.

Signature
long ContextMenuSuspendDeep()

Return type
long Return code of FmcjProcessInstance::Suspend().

ContextMenuTerminate
Calls the context menu item ’Terminate’.

This method terminates the selected list of process instances within the
Control. See “Terminate()” on page 563 for a more detailed description.

Signature
long ContextMenuTerminate ()

Return type
long Return code of FmcjProcessInstance::Terminate().

RefreshProcessInstanceList
Refreshes the ProcessInstanceList Control.

Chapter 64. ProcessInstanceListCtrl 731

Signature
long RefreshProcessInstanceList()

Return type
long If processing completes successfully, FMC_OK is returned.

Events

See “Chapter 59. Events triggered by all GUI controls” on page 705,
“Chapter 60. Events triggered by all non-monitor GUI controls” on page 707,
and “Chapter 61. Events triggered by all list controls” on page 711.

732 Programming Guide

Chapter 65. WorklistCtrl

The following describes the methods related to the WorklistCtrl Control. A
worklist comprises a set of work items for a user. The worklist object reflects
the worklist, which is stored in the IBM MQWorkflow Runtime server’s
database.

Properties

In design mode, the properties for the Worklist Control can be viewed and
adjusted by placing the mouse pointer within the Control’s grid area, clicking
the right mouse button and selecting Properties.

The property dialog contains four tabs: Fonts, Colors, Column Selection, and
Column Attribute.

All of the tabs are available in design mode and runtime mode.

The Fonts tab displays a standard font dialog. The font, its size, style, and the
effects used to display the text in the Worklist Control’s window can be
manipulated here.

The Colors tab provides a mechanism to manipulate the color scheme of the
Control’s window.

The foreground and background colors of the Control can be set or altered.
Select ForeColor or BackColor, click on one of the sixteen color buttons, and
click on the Apply button.

The Column Selection tab allows columns or information to be added to or to
be removed from the Control’s display. To add columns, highlight items in the
right pane, and click the Add button. To remove columns, highlight in the left
pane, and click the Delete button.

The Icon view and Width tab provides a mechanism to manipulate certain
aspects of how the Control displays its items. They are as follows:
1. The Icon view check box is used to indicate which columns of information

(the names of which are shown in the list box on the left) are to be
included when the Icon display style is in effect. The columns that are
selected at any given time are shown below the icon on the right. They are
Description and Activity Type.

© Copyright IBM Corp. 1993, 2001 733

2. The Column width is used to indicate the number of pixels a column item
will occupy. It only pertains to the Report format of the display. To adjust
the width of a column, highlight the desired item in the list box on the
left, enter a numeric value in the Column width entry box, and click the
Apply button.

3. The Alignment is used to justify the text of a column either to the left or
to the right. It only pertains to the Report format of the display.

Runtime Mode

If the mouse pointer is placed on a given item and the right mouse button is
clicked, the context menu for that item is displayed. If the Properties option is
selected, a tabbed dialog appears.

The property dialog contains five tabs: General, Staff, Start & exit , History,
and Documentation. The General tab displays the following pieces of
information pertaining to the Worklist-item object. They are:
v Activity name
v Activity status
v Activity type
v Program

The name of the program or process assigned to the activity.
v Received as

A user category that defines why the activity was placed on the worklist:
– The user who has been assigned the activity.
– The substitute who received the activity because a defined user is

declared absent.
– The process administrator who received the activity because the defined

user is declared absent and no substitute has been specified for the
defined user.

Note: If no process administrator is defined for a process in Buildtime,
the person who starts the process instance is assigned as the
process administrator of the process instance.

– The system administrator who received the activity because the process
administrator has been deleted.

The Staff tab displays information belonging to the administration of the
Worklist-item object. They are:

v On the worklist of
User IDs of the users who were assigned the activity or (if the activity has
been started) the user ID of the user who started the activity.

734 Programming Guide

v Process administrator
The process administrator of the process instance to which the activity
belongs.

v Priority
The priority assigned to the activity in Buildtime.

v Started on Server
The name of the server on which the activity was initiated.

The Start & exit tab displays information relating to the start and exit
conditions of the work item. They are:
v Start

The start mode of the activity (manual or automatic).
v Start condition:

The condition that must be met before the activity is started (automatic
start) or is added to a worklist (manual start).

v Exit
The exit mode of the activity (manual or automatic).

v Exit condition
The condition that must be met before the activity is finished.

The History tab displays the following activity information:
v Received

The date and time when the activity arrived on the worklist.
v Notification

The date and time when the first notification is due for the activity.
v Finished

The date and time when the activity was completed.

The Documentation tab displays any annotations added for the list.

Note: In the Client or any application created with the Worklist Control,
which also utilizes a menu bar, the work item properties dialog (and all other
context menu items) can also be accessed via the menu bar’s Activity option.

Worklist Settings

The settings for the Worklist Control can be viewed and adjusted by placing
the mouse pointer within an unused portion of the Control window area,
clicking the right mouse button and selecting Worklist settings.

Chapter 65. WorklistCtrl 735

The General tab displays various pieces of information pertaining to the
worklist and its appearance. The ordering of the first three columns (from left
to right) can be set along with the sort order (ascending or descending). The
column ordering only applies when the report format is in effect.

After adjusting the settings, select the OK button. Items that meet the
selection criteria are displayed on the worklist. The filter criteria are saved
and persist, even between logons.

Following properties can be modified: Appearance, Arrange, BackColor,
BorderStyle, CtrlColumnOrder, CtrlColumnWidth, Font, ForeColor, View.

Methods

The Worklist Control supports the following methods besides the methods
supported by all list controls - see “Chapter 57. Methods supported by all GUI
controls” on page 695 and “Chapter 58. Methods supported by all list
controls” on page 699:

ContextMenuFinish
Calls the context menu item ’Finish’.

This method finishes the selected list of work items within the Control. See
“Finish()” on page 638 for a more detailed description.

Signature
long ContextMenuFinish()

Return type
long Return code of FmcjWorkitem::Finish().

ContextMenuForceFinish
Calls the context menu item ’Force finish’.

This method finishes the selected list of Workitems within the Control. See
“ForceFinish()” on page 640 for a more detailed description.

Signature
long ContextMenuForceFinish()

Return type
long Return code of FmcjWorkitem::ForceFinish().

736 Programming Guide

ContextMenuForceRestart
Calls the context menu item ’Force restart’.

This method restarts the selected list of Workitems within the Control. See
“ForceRestart()” on page 643 for a more detailed description.

Signature
long ContextMenuForceRestart()

Return type
long Return code of FmcjWorkitem::ForceFinish().

ContextMenuRestart
Calls the context menu item ’Restart’.

This method restarts the selected list of Workitems within the Control. See
“Restart()” on page 650 for a more detailed description.

Signature
long ContextMenuRestart()

Return type
long Return code of FmcjWorkitem::Restart().

ContextMenuSelectAll
Calls the context menu item ’Select all’.

This method selects all objects within the List Control.

Signature
long ContextMenuSelectAll()

Return type
long If processing completes successfully, FMC_OK is returned.

ContextMenuStart
Calls the context menu item ’Start’.

This method starts the selected list of work items within the Control. See
“Start()” on page 652 for a more detailed description.

Chapter 65. WorklistCtrl 737

Signature
long ContextMenuStart()

Return type
long Return code of FmcjWorkitem::Start().

ContextMenuStartTool
Calls the context menu item ’Start tool’.

This method starts the selected list of support tools within the Control. See
“StartTool()” on page 655 for a more detailed description.

Signature
long ContextMenuStartTool()

Return type
long Return code of FmcjWorkitem::StartTool().

ContextMenuTransfer
Calls the context menu item ’Transfer’.

This method transfers the selected list of work items within the Control from
one user to another one. A separate dialog is shown to specify the fromUserID
as well as the toUserID. A dropdown list provides a list of user IDs from the
FDL. The dropdown list is empty in case you are authorized for all users, in
which case you must explicitly specify the toUserID. The transfer occurs for all
selected items within the List Control.

See “Transfer()” on page 505 for a more detailed description.

Signature
long ContextMenuTransfer()

Return type
long Return code of FmcjWorkitem::Transfer().

PushOption
This method is used to return the current setting of the PUSH option for this
worklist.

738 Programming Guide

If True is returned, PUSH processing is enabled for the worklist. In this case,
pushed items (work items as well as notifications) are used to dynamically
update the items in the worklist. The user does not need to invoke worklist
refresh processing in order to add new items to the worklist or to see changes
(state, time stamps) of items already contained in the worklist.

The MQ Workflow Runtime client invokes this method in order to display the
current setting within the Settings dialog of a specific worklist.

Signature
boolean PushOption()

Return type
boolean If push is enabled for the worklist, True is returned, False

otherwise.

RefreshWorklist
Refreshes the Worklist Control.

Signature
long RefreshWorklist()

Return type
long If processing completes successfully, FMC_OK is returned.

SetPushOption
This method is used to enable or disable PUSH processing for the current
worklist.

The MQ Workflow Runtime client invokes this method when the user changes
the value of the PUSH check-box within the Settings dialog of a specific
worklist.

Signature
void SetPushOption(boolean value)

Parameters
value Input. An indicator whether PUSH processing is to be enabled

or not.

Chapter 65. WorklistCtrl 739

Events

The Worklist Control supports the following events besides the events
triggered by all non-monitor controls - see “Chapter 59. Events triggered by
all GUI controls” on page 705, “Chapter 60. Events triggered by all
non-monitor GUI controls” on page 707, and “Chapter 61. Events triggered by
all list controls” on page 711.

ActivityInstanceNotificationChanged
This OLE event is fired when an existing activity instance notification of the
current worklist has changed.

The index parameter denotes the index of the changed activity instance
notification in the ActivityInstanceNotifArray of the current worklist.

The WorklistCtrl as exploited by the MQ Workflow Runtime client uses this
event to refresh the values in the GUI.

Signature
ActivityInstanceNotificationChanged(long index)

Parameters
index Input. The index of the activity instance notification in the

current worklist.

ProcessInstanceNotificationChanged
This OLE event is fired when an existing process instance notification of the
current worklist has changed.

The index parameter denotes the index of the changed process instance
notification in the ProcessInstanceNotifArray of the current worklist.

The WorklistCtrl as exploited by the MQ Workflow Runtime client uses this
event to refresh the values in the GUI.

Signature
ProcessInstanceNotificationChanged(long index)

Parameters
index Input. The index of the process instance notification in the

current worklist.

740 Programming Guide

WorkitemChanged
This OLE event is fired when an existing work item of the current worklist
has changed.

The index parameter denotes the index of the changed work item in the
WorkitemArray of the current worklist.

The WorklistCtrl as exploited by the MQ Workflow Runtime client uses this
event to refresh the values in the GUI.

Signature
WorkitemChanged(long index)

Parameters
index Input. The index of the work item in the current worklist.

Starting
Occurs when a work item was started.

Signature
void Starting(BSTR name)

Parameters
name Output. The string denoting the name of the started work

item.

Chapter 65. WorklistCtrl 741

742 Programming Guide

Chapter 66. MonitorCtrl

Properties

In design mode, the properties for the Monitor Control can be viewed and
adjusted by placing the mouse pointer within the Control’s grid area, clicking
the right mouse button, and selecting Properties.

The property dialog contains two tabs: General and Colors.

All of the tabs are available in design mode and runtime mode.

The General tab displays the Zoom factor which can be changed for the
current session. A valid value is between 10 and 200. Zoom factor 100 is the
default.

The Colors tab provides a mechanism to manipulate the color scheme of the
Control’s window.

It displays the current color settings. For the current session you can change
the color used for selected items as well as the color for the background
(PaperColor).

Methods

The Monitor Control supports the following methods besides the methods
supported by all controls - see “Chapter 57. Methods supported by all GUI
controls” on page 695.

ActivityProperties()
This method displays the property pages of the currently selected activity
instance.

Signature
void ActivityProperties()

ConnectGUI
Connects the MonitorCtrl object with the MQWorkflowCtrl object.

© Copyright IBM Corp. 1993, 2001 743

Signature
void ConnectGUI(IDispatch * wfc)

Parameters
wfc Input. The pointer to the MQWorkflowCtrl object.

ControlConnectorProperties
This method displays the property pages of the currently selected
ControlConnector.

Signature
void ControlConnectorProperties()

OpenMonitor
This method displays the process model graph as provided by the monitor
parameter. The graph layout is controlled by the layout coordinates provided
by the underlying C++ Api layer. The request is ignored when issued more
than once.

Signature
void OpenMonitor(IDISPATCH * monitor)

Parameters
monitor Input. The pointer to the instance monitor object.

Refresh
This method refreshes the current process model graph. It must be used to
refresh activity instance states. An automatic refresh is not supported.

Signature
long Refresh()

Return type
long The return code of FmcjBlockInstanceMonitor::Refresh().

744 Programming Guide

Events

The Monitor Control triggers the following events besides the events triggered
by all controls - see “Chapter 59. Events triggered by all GUI controls” on
page 705.

AfterRefreshing
This OLE event is fired when refreshing ends. It is preceded by a
BeforeRefreshing event.

Signature
void AfterRefreshing()

BeforeRefreshing
This OLE event is fired when the user clicks the Refresh menu item. It is
preceded by a DoRefresh event.

Signature
void BeforeRefreshing()

BlockActivityClick
This OLE event is fired when the user clicks the right mouse button over an
activity instance of kind Block.

Signature
void BlockActivityClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and display the context menu.
x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

Chapter 66. MonitorCtrl 745

BlockActivityDoubleClick
This OLE event is fired when the user double- clicks the left mouse button
over an activity instance of kind Block.

Signature
void BlockActivityDoubleClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and open a new monitor window.
x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ControlConnectorClick
This OLE event is fired when the user clicks the right mouse button over a
control connector instance.

Signature
void ControlConnectorClick(IDISPATCH * connector,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
connector Input. A pointer to the control connector instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and display the context menu.
x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ControlConnectorDoubleClick
This OLE event is fired when the user double-clicks the left mouse button
over a control connector instance.

746 Programming Guide

Signature
void ControlConnectorDoubleClick(IDISPATCH * connector,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
connector Input. A pointer to the control connector instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and display the control connector
instance property page.

x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

DoActivityEnter
This OLE event is fired when the user selects an activity instance and presses
the Enter key.

Signature
void DoActivityEnter(IDISPATCH * activity,

boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action which is the same as the mouse
double-click; it depends on the activity instance type.

DoControlConnectorEnter
This OLE event is fired when the user selects a control connector instance and
presses the Enter key.

Signature
void DoControlConnectorEnter(IDISPATCH * connector,

boolean * enableDefault)

Parameters

Chapter 66. MonitorCtrl 747

connector Input. A pointer to the control connector instance object.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action; currently there is no default action.

DoRefresh
This OLE event is fired when the user selects Refresh from the context menu.

Signature
void DoRefresh(boolean * enableDefault)

Parameters
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and issue a complete refresh of all
activity instances and control connector instances displayed
within the Monitor window.

DoShowContextMenu
This event is fired in case the right mouse button is clicked to show the
context menu. The user can cancel the ContextMenu display by setting the
enableDefault parameter to False.

Signature
void DoShowContextMenu(boolean * enableDefault)

Parameters
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and display the context menu.

Error
Occurs when opening a monitor signals an error.

Signature
void Error(short returnCode,

BSTR * messageText,
boolean * cancelDisplay)

Parameters
returnCode Input. The return code.
messageText Input. The formatted message text describing the error.
cancelDisplay Input. If set to True, the display is canceled.

748 Programming Guide

MonitorOpen
This OLE event is fired when the user clicks the in-place (or context) menu
monitor item Open Activity.

Signature
void MonitorOpen(IDISPATCH * activity)

Parameters
activity Input. A pointer to the activity instance object.

ProcessActivityClick
This OLE event is fired when the user clicks the right mouse button over an
activity instance of kind Process.

Signature
void ProcessActivityClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and display the context menu.
x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ProcessActivityDoubleClick
This OLE event is fired when the user double-clicks the left mouse button
over an activity instance of kind Process.

Signature
void ProcessActivityDoubleClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Chapter 66. MonitorCtrl 749

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action; currently there is not default action.
x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ProgramActivityClick
This OLE event is fired when the user clicks the right mouse button over an
activity instance of kind Program. It displays the properties page of the activity
instance.

Signature
void ProgramActivityClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and display the context menu.
x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ProgramActivityDoubleClick
This OLE event is fired when the user double-clicks the left mouse button
over an activity instance of kind Program. It displays the property pages of the
activity instance.

Signature
void ProcessActivityDoubleClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.

750 Programming Guide

button Input. Indicates which button was pressed; 0 denotes the left
button, 2 the right button.

enableDefault Input. An indicator whether the Monitor Control should
perform its default action and display the property pages of
the selected activity instance.

x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

Chapter 66. MonitorCtrl 751

752 Programming Guide

Part 9. Examples and scenarios

© Copyright IBM Corp. 1993, 2001 753

754 Programming Guide

Chapter 67. Scenarios

The following scenarios are delivered with MQ Workflow. Scenarios are
intended to demonstrate some functionality of the product. They can be
executed and looked at. In order to execute a scenario:
1. Import the FDL.
2. Start the MQ Workflow system.
3. Execute the scenario; by default, it has been installed in the \bin

subdirectory of your installation directory if you selected to install the
samples.

Refer to the readme file in the appropriate directory for possible updates.
v A sample credit request

For the Windows platforms and ActiveX in \Program Files\MQSeries
Workflow\Scenario\Credit:
– The FDL: fmccred.fdl
– The activity implementations: fmcn6bna.vbp, fmcn6bni.vbp,

fmcn6bnp.vbp, fmcn6bnr.vbp
v A sample life insurance request

For the Windows platforms and ActiveX in \Program Files\MQSeries
Workflow\Scenario\Life:
– The FDL: fmclife.fdl

© Copyright IBM Corp. 1993, 2001 755

756 Programming Guide

Chapter 68. Examples

The following examples are delivered with the MQ Workflow; examples are
intended to demonstrate some API usage. They can be compiled and linked
and then executed. Some examples also provide a version which can be
executed. They can then be found in the \bin subdirectory of your installation
directory if you selected to install the samples.

Note: For the most recent set of examples, look at
//http://www-4.ibm.com/software/ts/mqseries/txppacs

for the MQ Workflow support packs. For example,
v MQ Workflow API Programming Examples
v MQ Workflow Rapid Deployment Wizard

Refer to the readme file in the appropriate directory for possible updates.
v Container handling in an activity implementation

– For all supported platforms and the C-language in the \smp\c\actimpl
subdirectory of the install directory: fmctjcim.c

– For all supported platforms and the C++-language in the
\smp\c++\actimpl subdirectory of the install directory: fmctjpim.cxx

– For the Windows platforms and ActiveX in \Program Files\MQSeries
Workflow\Smp\VB\Actimpl: fmcnshow.vbp

Note: These programs are able to analyze an unknown container. Especially
the fmcnshow program can be used as your initial activity
implementation in order to test a new process model.

v The Runtime client
For the Windows platforms and ActiveX in \Program Files\MQSeries
Workflow\Smp\VB\Rtc: fmcn6rtc.vbp

v Hello world
For all supported platforms and the Java language:
– In the \smp\java\HelloApplication subdirectory of the installation

directory: HelloApplication.java
– In the \smp\java\HelloApplet subdirectory of the installation directory:

HelloApplet.java and HelloApplet.html
– In the \smp\java\HelloApplet1 subdirectory of the installation directory:

HelloApplet1.java and HelloApplet1.html

© Copyright IBM Corp. 1993, 2001 757

– In the \smp\java\HelloServlet subdirectory of the installation directory:
HelloServlet.java and HelloServlet.html

v Distributed process example using XML
For all supported platforms in the \smp\dpxml subdirectory of the
installation directory.

v Authentication exit example
– For all supported platforms and the C-language in the \smp\c\authexit

subdirectory of the installation directory.
– For all supported platforms and the Java language in the

\smp\java\authexit subdirectory of the installation directory.

The following chapters additionally show some examples. They are intended
to present the stated concept only.

758 Programming Guide

Chapter 69. How to create persistent lists

The following examples show how to create a persistent list, that is, a
persistent view on a set of objects. They define a view on process instances.
Other possible lists to define are process template lists or worklists.

Create a process instance list (ActiveX)

Dim eService As ExecutionService
Dim Err As String

MQWorkflowCtrl1.Connect
Index = MQWorkflowCtrl1.ExecutionServiceArray.Add("SYSTEM", "SYS_GRP")

If Index < 0 Then
Err = "Error adding execution service to service array"
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Set eService = MQWorkflowCtrl1.ExecutionServiceArray.GetAt(Index)
Rc = eService.Logon("USERID", "password")
If Rc <> 0 Then

Err = "Logon failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Rc = eService.CreateProcessInstanceList(
"PIL1",
TypeOfList.TypeOfList_Private, "ADMIN", False,
"", True,
"", True,
"", True,
0, True)

If Rc <> 0 Then
Err = "CreateProcessInstanceList failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

End If

eService.Logoff
MQWorkflowCtrl1.Disconnect

© Copyright IBM Corp. 1993, 2001 759

Create a process instance list (C-language)

#include <stdio.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceListHandle instanceList = 0;
unsigned long threshold = 10;
int enumValue = 0;
char name[50] = "MyTenInstances";
char desc[50] = "This list contains no more than 10 instances";

FmcjGlobalConnect();
/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{

printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}

Figure 27. Sample C program to create a process instance list (Part 1 of 4)

rc= FmcjExecutionServiceLogon(service,
"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{

printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}

Figure 27. Sample C program to create a process instance list (Part 2 of 4)

760 Programming Guide

/* create a process instance list */
rc = FmcjExecutionServiceCreateProcessInstanceList(

service,
name,
Fmc_LT_Private,
"USERID",
desc,
FmcjNoFilter,
FmcjNoSortCriteria,
&threshold,
&instanceList);

Figure 27. Sample C program to create a process instance list (Part 3 of 4)

if (rc != FMC_OK)
printf("CreateProcessInstanceList returns: %u%\n",rc);

else
printf("CreateProcessInstanceList okay\n");

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);
FmcjGlobalDisconnect();
return 0;

}

Figure 27. Sample C program to create a process instance list (Part 4 of 4)

Chapter 69. How to create persistent lists 761

Create a process instance list (C++)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{

cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

// create a process instance list

FmcjProcessInstanceList instanceList;
string name ("MyTenInstances");
string desc ("List contains no more than 10 instances");
string onwer ("USERID");
unsigned long threshold= 10;

Figure 28. Sample C++ program to create a process instance list (Part 1 of 2)

762 Programming Guide

rc = service.CreateProcessInstanceList(
name,
FmcjPersistentList::Private,
&owner,
&desc,
FmcjNoFilter,
FmcjNoSortCriteria,
&threshold,
instanceList);

if (rc != FMC_OK)
cout << "CreateProcessInstanceList returns: " << rc << endl;

else
cout << "CreateProcessInstanceList okay" << endl;

service.Logoff();

FmcjGlobal::Disconnect();
return 0;

}

Figure 28. Sample C++ program to create a process instance list (Part 2 of 2)

Chapter 69. How to create persistent lists 763

Create a process instance list (Java)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;
import com.ibm.workflow.api.PersistentListPackage.*;

public class CreateProcInstList
{

public static void main(String[] args)
{

// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password

if ((args.length < 2) || (args.length > 4))
{

System.out.println("Usage:");
System.out.println("java CreateProcessInstanceList

<agent> <LOC|RMI|OSA|IOR|COS>
[userid] [password]");

System.exit(0);
}

Figure 29. Sample Java program to create a process instance list (Part 1 of 8)

764 Programming Guide

try
{

// An agent bean representing a MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();
// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{

agent.setLocator(Agent.LOC_LOCATOR);
}
else if (args[1].equalsIgnoreCase("RMI"))
{

agent.setLocator(Agent.RMI_LOCATOR);
}
else if (args[1].equalsIgnoreCase("OSA"))
{

agent.setLocator(Agent.OSA_LOCATOR);
}
else if (args[1].equalsIgnoreCase("IOR"))
{

agent.setLocator(Agent.IOR_LOCATOR);
}
else if (args[1].equalsIgnoreCase("COS"))
{

agent.setLocator(Agent.COS_LOCATOR);
}
else
{

System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

Figure 29. Sample Java program to create a process instance list (Part 2 of 8)

Chapter 69. How to create persistent lists 765

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

Figure 29. Sample Java program to create a process instance list (Part 3 of 8)

// Log on to the execution service. If the UserID and/or the password is
// invalid, a FmcException will be thrown.
service.logon(userid, passwd);
System.out.println("Logon successful");

String ListName ="MyTenInstances";
String ListDesc = "List contains no more than 10 instances";
String ListFilter = "";
String ListSort = "";
int ListThreshold = 10;

Figure 29. Sample Java program to create a process instance list (Part 4 of 8)

766 Programming Guide

try
{

service.createProcessInstanceList(ListName, TypeOfList.PRIVATE,
userid , ListDesc, ListFilter,
ListSort, ListThreshold);

System.out.println("Private ProcessInstanceList created successfully");
}
catch(FmcException e)
{

if (e.rc == FmcException.FMC_ERROR_NOT_UNIQUE)
{

System.out.println("ProcessInstanceList: '" + ListName +
"' already exists");

}
}

Figure 29. Sample Java program to create a process instance list (Part 5 of 8)

finally
{

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

}

Figure 29. Sample Java program to create a process instance list (Part 6 of 8)

catch(FmcException e)
{

// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{

System.out.println(" " + e.parameters[i]);
}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

Figure 29. Sample Java program to create a process instance list (Part 7 of 8)

Chapter 69. How to create persistent lists 767

catch(Exception e)
{

// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

Figure 29. Sample Java program to create a process instance list (Part 8 of 8)

768 Programming Guide

Chapter 70. How to query persistent lists

The following examples show how to retrieve persistent lists from the MQ
Workflow execution server and how to query the characteristics of a list. They
use worklists as example. Other possible lists to query are process template
lists or process instance lists.

© Copyright IBM Corp. 1993, 2001 769

Query worklists (ActiveX)

Dim eService As ExecutionService
Dim wl As Worklist
Dim Err As String
Dim Msg As String
Dim s As Integer
Dim i As Integer

MQWorkflowCtrl1.Connect
Index = MQWorkflowCtrl1.ExecutionServiceArray.Add("SYSTEM", "SYS_GRP")

If Index < 0 Then
Err = "Error adding execution service to service array"
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Set eService = MQWorkflowCtrl1.ExecutionServiceArray.GetAt(Index)
Rc = eService.Logon("USERID", "password")
If Rc <> 0 Then

Err = "Logon failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Rc = eService.QueryWorklists
If Rc <> 0 Then

Err = "QueryWorklists failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
s = eService.WorklistArray.GetSize
For i = 0 To s - 1

Set wl = eService.WorklistArray.GetAt(i)

Msg = "Worklist: Name = " + wl.Name
MsgBox Msg, vbInformation, "Worklist"

Next i

End If

eService.Logoff
MQWorkflowCtrl1.Disconnect

770 Programming Guide

Query worklists (C-language)

#include <stdio.h>
#include <memory.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjWorklistHandle worklist = 0;
FmcjWorklistVectorHandle lists = 0;
unsigned long numWList = 0;
unsigned long i = 0;
unsigned long enumValue = 0;
char tInfo[4096+1]= "";

Figure 30. Sample C program to query worklists (Part 1 of 10)

FmcjGlobalConnect();

/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{

printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}
rc= FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{

printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}

Figure 30. Sample C program to query worklists (Part 2 of 10)

/* query worklists */
rc = FmcjExecutionServiceQueryWorklists(service, &lists);
if (rc != FMC_OK)

printf("QueryWorklists() returns: %u%\n",rc);
else

printf("QueryWorklists() returns okay\n");

Figure 30. Sample C program to query worklists (Part 3 of 10)

Chapter 70. How to query persistent lists 771

if (rc == FMC_OK)
{

numWList= FmcjWorklistVectorSize(lists);
printf ("Number of worklists returned : %u\n", numWList);
for(i=1; i<= numWList; i++)
{

worklist= FmcjWorklistVectorNextElement(lists);
FmcjWorklistName(worklist, tInfo, 4097);
printf("- Name : %s\n",tInfo);

Figure 30. Sample C program to query worklists (Part 4 of 10)

enumValue= FmcjWorklistType(worklist);
if (enumValue == Fmc_LT_Private)

printf("- Type : %s\n","private");
if (enumValue == Fmc_LT_Public)

printf("- Type : %s\n","public");

FmcjWorklistOwnerOfList(worklist, tInfo, 4097);
printf("- OwnerOfList : %s\n",tInfo);
printf("- OwnerOfList is null ? : %u\n",

FmcjWorklistOwnerOfListIsNull(worklist));

Figure 30. Sample C program to query worklists (Part 5 of 10)

FmcjWorklistDescription(worklist, tInfo, 4097);
printf("- Description : %s\n",tInfo);
printf("- Description is null ? : %u\n",

FmcjWorklistDescriptionIsNull(worklist));

Figure 30. Sample C program to query worklists (Part 6 of 10)

FmcjWorklistFilter(worklist, tInfo, 4097);
printf("- Filter : %s\n",tInfo);
printf("- Filter is null ? : %u\n",

FmcjWorklistFilterIsNull(worklist));

Figure 30. Sample C program to query worklists (Part 7 of 10)

772 Programming Guide

FmcjWorklistSortCriteria(worklist, tInfo, 4097);
printf("- SortCriteria : %s\n",tInfo);
printf("- SortCriteria is null ? : %u\n",

FmcjWorklistSortCriteriaIsNull(worklist));

Figure 30. Sample C program to query worklists (Part 8 of 10)

printf("- Threshold : %u\n",
FmcjWorklistThreshold(worklist));

printf("- Threshold is null ? : %u\n",
FmcjWorklistThresholdIsNull(worklist));

/* deallocate just read object */
FmcjWorklistDeallocate(&worklist);

}
FmcjWorklistVectorDeallocate(&lists);

}

Figure 30. Sample C program to query worklists (Part 9 of 10)

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Figure 30. Sample C program to query worklists (Part 10 of 10)

Chapter 70. How to query persistent lists 773

Query worklists (C++)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{

cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

Figure 31. Sample C++ program to query worklists (Part 1 of 10)

// query worklists

vector<FmcjWorklist> lists;
FmcjWorklist worklist;
rc = service.QueryWorklists(lists);
if (rc != FMC_OK)

cout << "QueryWorklists() returns: " << rc << endl;
else

cout << "QueryWorklists returns okay" << endl;

Figure 31. Sample C++ program to query worklists (Part 2 of 10)

if (rc == FMC_OK)
{

unsigned int numWList= lists.size();
cout << "Number of worklists returned : " << numWList << endl;

Figure 31. Sample C++ program to query worklists (Part 3 of 10)

774 Programming Guide

for(unsigned long i=0; i< numWList; i++)
{

worklist= lists[i];
cout << "Name : " << worklist.Name() << endl;

Figure 31. Sample C++ program to query worklists (Part 4 of 10)

cout << "Type : " <<
((worklist.Type() == FmcjPersistentList::Private) ? "private" :
(worklist.Type() == FmcjPersistentList::Public) ? "public" :
"not set") << endl;

Figure 31. Sample C++ program to query worklists (Part 5 of 10)

cout << "Owner : " << worklist.OwnerOfList() << endl;
cout << "Owner null ? : " << worklist.OwnerOfListIsNull() << endl;

Figure 31. Sample C++ program to query worklists (Part 6 of 10)

cout << "Description : " << worklist.Description() << endl;
cout << "Description null ?: " << worklist.DescriptionIsNull() << endl;

Figure 31. Sample C++ program to query worklists (Part 7 of 10)

cout << "Filter : " << worklist.Filter() << endl;
cout << "Filter null ? : " << worklist.FilterIsNull() << endl;
cout << "SortCriteria : " << worklist.SortCriteria() << endl;
cout << "SortCriteria null?: " << worklist.SortCriteriaIsNull()<< endl;

Figure 31. Sample C++ program to query worklists (Part 8 of 10)

cout << "Threshold : " << worklist.Threshold() << endl;
cout << "Threshold null ? : " << worklist.ThresholdIsNull() << endl;
cout << endl; } cout << endl; }

Figure 31. Sample C++ program to query worklists (Part 9 of 10)

Chapter 70. How to query persistent lists 775

Query worklists (Java)

rc = service.Logoff();
FmcjGlobal::Disconnect();
return 0;

}

Figure 31. Sample C++ program to query worklists (Part 10 of 10)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;
import com.ibm.workflow.api.PersistentListPackage.*;

public class QueryWorkLists
{

public static void main(String[] args)
{

// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password
//
if ((args.length < 2) || (args.length > 4))
{

System.out.println("Usage:");
System.out.println("java QueryWorkLists [userid] [password]");
System.exit(0);

}

Figure 32. Sample Java program to query worklists (Part 1 of 10)

776 Programming Guide

try
{

// An agent bean representing a MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();

// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{

agent.setLocator(Agent.LOC_LOCATOR);
}
else if (args[1].equalsIgnoreCase("RMI"))
{

agent.setLocator(Agent.RMI_LOCATOR);
}
else if (args[1].equalsIgnoreCase("OSA"))
{

agent.setLocator(Agent.OSA_LOCATOR);
}
else if (args[1].equalsIgnoreCase("IOR"))
{

agent.setLocator(Agent.IOR_LOCATOR);
}
else if (args[1].equalsIgnoreCase("COS"))
{

agent.setLocator(Agent.COS_LOCATOR);
}
else
{

System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

Figure 32. Sample Java program to query worklists (Part 2 of 10)

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

Figure 32. Sample Java program to query worklists (Part 3 of 10)

Chapter 70. How to query persistent lists 777

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, a FmcException will be thrown.

// do a forced logon
service.logon2(userid, passwd, SessionMode.PRESENT_HERE,

AbsenceIndicator.LEAVE);
System.out.println("Logon successful");

Figure 32. Sample Java program to query worklists (Part 4 of 10)

// Query the set of worklists the logged on user can access.
WorkList[] worklists = service.queryWorkLists();

if (worklists.length == 0)
{

System.out.println(" No worklist found");
}
else
{

System.out.println(" Number of worklists returned: " + worklists.length
);

Figure 32. Sample Java program to query worklists (Part 5 of 10)

778 Programming Guide

// Iterate over the worklists, printing out their names.
for (int ndx = 0; ndx < worklists.length; ndx++)
{

System.out.println(" Name :" + worklists[ndx].name());

if (worklists[ndx].type() == TypeOfList.PUBLIC)
{

System.out.println(" Type :Public ");
}
else if (worklists[ndx].type() == TypeOfList.PRIVATE)
{

System.out.println(" Type :Private");
}
else
{

System.out.println(" Type :NotSet ");
}

Figure 32. Sample Java program to query worklists (Part 6 of 10)

System.out.println(" Owner :" + worklists[ndx].ownerOfList());
System.out.println(" Description :"+ worklists[ndx].description());
System.out.println(" Filter :"+ worklists[ndx].filter());
System.out.println(" SortCriteria :"+ worklists[ndx].sortCriteria());
System.out.println(" Threshold :"+ worklists[ndx].threshold());
System.out.println(" ");

}

}/* End if*/

Figure 32. Sample Java program to query worklists (Part 7 of 10)

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

Figure 32. Sample Java program to query worklists (Part 8 of 10)

Chapter 70. How to query persistent lists 779

catch(FmcException e)
{

// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{

System.out.println(" " + e.parameters[i]);
}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

Figure 32. Sample Java program to query worklists (Part 9 of 10)

catch(Exception e)
{

// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

Figure 32. Sample Java program to query worklists (Part 10 of 10)

780 Programming Guide

Chapter 71. How to query a set of objects

The following examples show how to query objects for which you are
authorized. They use a query for process instances in order to demonstrate an
ad-hoc query. They use work items in order to demonstrate how to query the
contents of a predefined list, a worklist.

Note: ActiveX supports querying objects only from a predefined list.

© Copyright IBM Corp. 1993, 2001 781

Query process instances from a process instance list (ActiveX)

Dim eService As ExecutionService
Dim pil As ProcessInstanceList
Dim Err As String
Dim Msg As String
Dim s As Integer
Dim i As IntegerDim

MQWorkflowCtrl1.Connect
Index = MQWorkflowCtrl1.ExecutionServiceArray.Add("SYSTEM", "SYS_GRP")

If Index < 0 Then
Err = "Error adding execution service to service array"
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Set eService = MQWorkflowCtrl1.ExecutionServiceArray.GetAt(Index)
Rc = eService.Logon("USERID", "password")
If Rc <> 0 Then

Err = "Logon failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Rc = eService.QueryProcessInstanceLists
If Rc <> 0 Then

Err = "QueryProcessInstanceLists failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
s = eService.ProcessInstanceListArray.GetSize

If s > 0 Then
Set pil = eService.ProcessInstanceListArray.GetAt(0)
Rc = pil.QueryProcessInstances
If Rc <> 0 Then

Err = "QueryProcessInstances failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
Msg = "Number of instances returned: " + Str(pil.GetSize)
MsgBox Msg, vbInformation, "ProcessInstances"

End If
Else

Err = "No ProcessInstanceList available"
MsgBox Err, vbCritical, "Error"

End If
End If

eService.Logoff
MQWorkflowCtrl1.Disconnect

782 Programming Guide

Query process instances (C-language)

#include <stdio.h>
#include <memory.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceHandle instance = 0;
FmcjProcessInstanceVectorHandle iList = 0;
unsigned long numIList = 0;
unsigned long i = 0;
char tInfo[4096+1]= "";

FmcjGlobalConnect();

/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{

printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}
rc= FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{

printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}
/* query process instances */
rc= FmcjExecutionServiceQueryProcessInstances(

service,
FmcjNoFilter, FmcjNoSortCriteria, FmcjNoThreshold,
&iList);

if (rc != FMC_OK)
printf("QueryProcessInstances() returns: %u%\n",rc);

else
printf("QueryProcessInstances() returns okay\n");

Figure 33. Sample C program to query process instances (Part 1 of 2)

Chapter 71. How to query a set of objects 783

Query process instances (C++)

if (rc == FMC_OK)
{

numIList= FmcjProcessInstanceVectorSize(iList);
printf ("Number of instances returned : %u\n", numIList);

for(i=1; i<= numIList; i++)
{

instance= FmcjProcessInstanceVectorNextElement(iList);
FmcjProcessInstanceName(instance, tInfo, 4097);
printf("- Name : %s\n",tInfo);
FmcjProcessInstanceDeallocate(&instance);

}

FmcjProcessInstanceVectorDeallocate(&iList);
}

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Figure 33. Sample C program to query process instances (Part 2 of 2)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{

cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

Figure 34. Sample C++ program to query process instances (Part 1 of 3)

784 Programming Guide

// query process instances

vector<FmcjProcessInstance> instances;

rc = service.QueryProcessInstances(
FmcjNoFilter, FmcjNoSortCriteria, FmcjNoThreshold,
instances);

if (rc != FMC_OK)
cout << "QueryProcessInstances returns: " << rc << endl;

else
cout << "QueryProcessInstances okay" << endl;

Figure 34. Sample C++ program to query process instances (Part 2 of 3)

if (rc == FMC_OK)
{

cout << "Number of instances returned: " << instances.size() << endl;

for (int i=0; i < instances.size(); i++)
cout << "- Name: " << instances[i].Name() << endl;

}

service.Logoff();

FmcjGlobal::Disconnect();
return 0;

}

Figure 34. Sample C++ program to query process instances (Part 3 of 3)

Chapter 71. How to query a set of objects 785

Query process instances (Java)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;

public class QueryProcInst
{

public static void main(String[] args)
{

// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password

if ((args.length < 2) || (args.length > 4))
{

System.out.println("Usage:");
System.out.println(" java QueryProcessInstances [userid] [password]");
System.exit(0);

}

Figure 35. Sample Java program to query process instances (Part 1 of 9)

786 Programming Guide

try
{

// An agent bean representing a MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();
// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{

agent.setLocator(Agent.LOC_LOCATOR);
}
else if (args[1].equalsIgnoreCase("RMI"))
{

agent.setLocator(Agent.RMI_LOCATOR);
}
else if (args[1].equalsIgnoreCase("OSA"))
{

agent.setLocator(Agent.OSA_LOCATOR);
}
else if (args[1].equalsIgnoreCase("IOR"))
{

agent.setLocator(Agent.IOR_LOCATOR);
}
else if (args[1].equalsIgnoreCase("COS"))
{

agent.setLocator(Agent.COS_LOCATOR);
}
else
{

System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

Figure 35. Sample Java program to query process instances (Part 2 of 9)

Chapter 71. How to query a set of objects 787

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

Figure 35. Sample Java program to query process instances (Part 3 of 9)

// Log on to the execution service. If the UserID and/or the password is
// invalid, a FmcException will be thrown.
// do a forced logon
service.logon2(userid, passwd, SessionMode.PRESENT_HERE,

AbsenceIndicator.LEAVE);
System.out.println("Logon successful");

Figure 35. Sample Java program to query process instances (Part 4 of 9)

// Query a set of processinstances (30 at maximum), sort them by name
ProcessInstance[] procInstances =

service.queryProcessInstances("","NAME DESC", 30);

if (procInstances.length == 0)
{

System.out.println(" No process instances found");
}
else
{

System.out.println("Number of instances returned: " + procInstances.length);

Figure 35. Sample Java program to query process instances (Part 5 of 9)

788 Programming Guide

// Iterate over the process instances, printing out their names.
for (int ndx = 0; ndx < procInstances.length; ndx++)
{

System.out.println(" - Name: " + procInstances[ndx].name());
}

}

Figure 35. Sample Java program to query process instances (Part 6 of 9)

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

Figure 35. Sample Java program to query process instances (Part 7 of 9)

catch(FmcException e)
{

// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{

System.out.println(" " + e.parameters[i]);
}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

Figure 35. Sample Java program to query process instances (Part 8 of 9)

Chapter 71. How to query a set of objects 789

catch(Exception e)
{

// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

Figure 35. Sample Java program to query process instances (Part 9 of 9)

790 Programming Guide

Query work items from a worklist (ActiveX)

Dim eService As ExecutionService
Dim wl As Worklist
Dim Err As String
Dim Msg As String
Dim s As Integer
Dim i As Integer

MQWorkflowCtrl1.Connect
Index = MQWorkflowCtrl1.ExecutionServiceArray.Add("SYSTEM", "SYS_GRP")

If Index < 0 Then
Err = "Error adding execution service to service array"
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Set eService = MQWorkflowCtrl1.ExecutionServiceArray.GetAt(Index)
Rc = eService.Logon("USERID", "password")
If Rc <> 0 Then

Err = "Logon failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Rc = eService.QueryWorklists
If Rc <> 0 Then

Err = "QueryWorklists failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
s = eService.WorkliistArray.GetSize

If s > 0 Then
Set wl = eService.WorklistArray.GetAt(0)
Rc = wl.QueryWorkitems
If Rc <> 0 Then

Err = "QueryWorkitems failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
Msg = "Number of workitems returned: " + Str(wl.GetSize)
MsgBox Msg, vbInformation, "Workitems"

End If
Else

Err = "No Worklist available"
MsgBox Err, vbCritical, "Error"

End If
End If

eService.Logoff
MQWorkflowCtrl1.Disconnect

Chapter 71. How to query a set of objects 791

Query work items from a worklist (C-language)

#include <stdio.h>
#include <string.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */

int main (int argc, char ** argv)
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjWorklistVectorHandle wLists = 0;
FmcjWorklistHandle worklist = 0;
FmcjWorkitemVectorHandle wVector = 0;
FmcjWorkitemHandle workitem = 0;
unsigned long numWList = 0;
char tInfo[4096+1] = "";

FmcjGlobalConnect();

/* Logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{

printf("Service object could not be allocated: %u%\n",rc);
return -1;

}

rc= FmcjExecutionServiceLogon(service,
"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet);

if (rc != FMC_OK)
{

printf("Logon failed - rc : %u%\n",rc);
rc= FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* query worklists */
rc = FmcjExecutionServiceQueryWorklists(service, &wLists);
if (rc != FMC_OK)

printf("QueryWorklists() returns: %u%\n",rc);
else

printf("QueryWorklists() returns okay\n");

Figure 36. Sample C program to query work items from a worklist (Part 1 of 2)

792 Programming Guide

if (rc == FMC_OK)
{

numWList= FmcjWorklistVectorSize(wLists);
printf ("Number of worklists returned : %u\n", numWList);
if (numWList == 0)
{

printf("No worklist found \n");
FmcjWorklistVectorDeallocate(&wLists);
rc= FmcjExecutionServiceDeallocate(&service);
return -1;

}

worklist= FmcjWorklistVectorFirstElement(wLists);
FmcjWorklistName(worklist, tInfo, 4097);
printf("Name : %s\n",tInfo);

/* query workitems */
rc= FmcjWorklistQueryWorkitems(worklist, &wVector);
printf("\nQuery workitems of list returns rc: %u\n",rc);

if (rc == FMC_OK)
{

while (0 != (workitem= FmcjWorkitemVectorNextElement(wVector)))
{

FmcjWorkitemName(workitem, tInfo, 4097);
printf("- Name : %s\n",tInfo);

FmcjWorkitemDeallocate(&workitem);
}

}

FmcjWorklistDeallocate(&worklist);
FmcjWorklistVectorDeallocate(&wLists);

}

/* Logoff */
rc= FmcjExecutionServiceLogoff(service);
rc= FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Figure 36. Sample C program to query work items from a worklist (Part 2 of 2)

Chapter 71. How to query a set of objects 793

Query work items from a worklist (C++)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

Figure 37. Sample C++ program to query work items from a worklist (Part 1 of 5)

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{

cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

Figure 37. Sample C++ program to query work items from a worklist (Part 2 of 5)

// query worklists

vector<FmcjWorklist> lists;
FmcjWorklist worklist;

rc = service.QueryWorklists(lists);
if (rc != FMC_OK)

cout << "QueryWorklists() returns: " << rc << endl;
else

cout << "QueryWorklists returns okay" << endl;

if (rc == FMC_OK)
{

unsigned int numWList= lists.size();
cout << "Number of worklists returned : " << numWList << endl;
if (numWList == 0)
{

cout << "No worklist found" << endl;
return -1;

}

Figure 37. Sample C++ program to query work items from a worklist (Part 3 of 5)

794 Programming Guide

worklist= lists[0];
cout << "Name : " << worklist.Name() << endl;

vector<FmcjWorkitem> wVector;
FmcjWorkitem workitem;

rc= worklist.QueryWorkitems(wVector);
cout << "Query workitems of list returns: " << rc << endl;
cout << "Number of workitems " << wVector.size() << endl;

Figure 37. Sample C++ program to query work items from a worklist (Part 4 of 5)

if (rc == FMC_OK)
{

for (int i= 0; i < wVector.size(); i++)
{

workitem= wVector[i];
cout << "Name : " << workitem.Name() << endl;

}
}

}

rc = service.Logoff();

FmcjGlobal::Disconnect();
return 0;

}

Figure 37. Sample C++ program to query work items from a worklist (Part 5 of 5)

Chapter 71. How to query a set of objects 795

Query work items from a worklist (Java)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;

public class QueryWorkItems
{

public static void main(String[] args)
{

// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password

if ((args.length < 2) || (args.length > 4))
{

System.out.println("Usage:");
System.out.println(" java QueryWorkitems [userid] [password]");
System.exit(0);

}

Figure 38. Sample Java program to query work items from a worklist (Part 1 of 8)

796 Programming Guide

try
{

// An agent bean representing a MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();

// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{

agent.setLocator(Agent.LOC_LOCATOR);
}
else if (args[1].equalsIgnoreCase("RMI"))
{

agent.setLocator(Agent.RMI_LOCATOR);
}
else if (args[1].equalsIgnoreCase("OSA"))
{

agent.setLocator(Agent.OSA_LOCATOR);
}
else if (args[1].equalsIgnoreCase("IOR"))
{

agent.setLocator(Agent.IOR_LOCATOR);
}
else if (args[1].equalsIgnoreCase("COS"))
{

agent.setLocator(Agent.COS_LOCATOR);
}
else
{

System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

Figure 38. Sample Java program to query work items from a worklist (Part 2 of 8)

Chapter 71. How to query a set of objects 797

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, a FmcException will be thrown.
// do a forced logon
service.logon2(userid, passwd, SessionMode.PRESENT_HERE,

AbsenceIndicator.LEAVE);
System.out.println("Logon successful");

Figure 38. Sample Java program to query work items from a worklist (Part 3 of 8)

// Query the set of worklists the logged on user can access.
WorkList[] worklists = service.queryWorkLists();

if (worklists.length == 0)
{

System.out.println(" No worklist found");
}
else
{

System.out.println(" Number of worklists returned: " + worklists.length);

WorkList worklist = worklists[0];
System.out.println(" Name: "+worklist.name());

Figure 38. Sample Java program to query work items from a worklist (Part 4 of 8)

798 Programming Guide

// Query the set of workitems in the first worklist.
WorkItem[] workitems = worklist.queryWorkItems();
System.out.println(" Number of workitems: " + workitems.length);

// Iterate over the workitems, printing out their names.
for (int ndx = 0; ndx < workitems.length; ndx++)
{

System.out.println(" " + workitems[ndx].name());
}

}/* End if*/

Figure 38. Sample Java program to query work items from a worklist (Part 5 of 8)

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

Figure 38. Sample Java program to query work items from a worklist (Part 6 of 8)

catch(FmcException e)
{

// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{

System.out.println(" " + e.parameters[i]);
}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

Figure 38. Sample Java program to query work items from a worklist (Part 7 of 8)

Chapter 71. How to query a set of objects 799

catch(Exception e)
{

// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

Figure 38. Sample Java program to query work items from a worklist (Part 8 of 8)

800 Programming Guide

Chapter 72. An activity implementation

The following examples show the concept of how to query and set containers
from within an activity implementation. Refer to the examples provided with
the product for more details.

Programming an executable (C-language)

#include <stdio.h>
#include <fmcjccon.h> /* MQ Workflow Container API */
int main()
{

FILE * file1 = 0;
APIRET rc = FMC_OK;
FmcjReadOnlyContainerHandle input = 0;
FmcjReadWriteContainerHandle output = 0;
char stringBuffer[4097]="";

/*- keep results in a file --*/
file1 = fopen ("sample.out", "a");
if (file1 == 0)

return -1;
fprintf(file1,"\n----- C-API Activity Implementation called -----\n");
fflush(file1);

Figure 39. Sample activity implementation (C-language) (Part 1 of 4)

FmcjGlobalConnect();

/*-- retrieve the input container from the PEA who started the program --*/
rc = FmcjContainerInContainer(&input);
fprintf(file1, "Get Input Container - rc: %u\n", rc);
if (rc != FMC_OK)
{

fclose(file1);
return 1;

}

fprintf(file1, "Input Container Name: %s\n",
FmcjReadOnlyContainerType(input, stringBuffer, 4097));

Figure 39. Sample activity implementation (C-language) (Part 2 of 4)

© Copyright IBM Corp. 1993, 2001 801

Programming an executable (C++)

/*-- retrieve the output container from the PEA who started the program -*/
rc = FmcjContainerOutContainer(&output);
fprintf(file1, "Get Output Container - rc: %u\n", rc);
if (rc != FMC_OK)
{

fclose(file1);
return 1;

}

fprintf(file1, "Output Container Name: %s\n",
FmcjReadWriteContainerType(output, stringBuffer, 4097));

Figure 39. Sample activity implementation (C-language) (Part 3 of 4)

/*----- Modify output values --*/
rc= FmcjReadWriteContainerSetLongValue(output, "aFieldInTheOutput",42);
fprintf(file1, "\nSetting long value returns rc: %u\n", rc);

...

/*-- return the output container to the PEA who started the program -----*/
rc = FmcjContainerSetOutContainer(output);
fprintf(file1, "\nSet Output Container - rc: %u\n",rc);
fflush(file1);

FmcjGlobalDisconnect();
fclose(file1);
return 0; // _RC passed to MQ Workflow

}

Figure 39. Sample activity implementation (C-language) (Part 4 of 4)

#include <fstream.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjpcon.hxx> // MQ Workflow Container API
int main()
{
/*- keep results in a file --*/

ofstream file1("sample.out");
if (file1 == 0)

return -1;

file1 << "\n----- C++-API Activity Implementation called -----\n" << endl;

Figure 40. Sample activity implementation (C++) (Part 1 of 4)

802 Programming Guide

FmcjGlobal::Connect();

/*-- retrieve the input container from the PEA who started the program --*/
FmcjReadOnlyContainer input;

APIRET rc = FmcjContainer::InContainer(input);
file1 << "Get Input Container - rc: " << rc << endl;
if (rc != FMC_OK)
{

file1.close();
return 1;

}

file1 << "Input Container Name: " << input.Type() << endl;

Figure 40. Sample activity implementation (C++) (Part 2 of 4)

/*-- retrieve the output container from the PEA who started the program -*/
FmcjReadWriteContainer output;

rc = FmcjContainer::OutContainer(output);
file1 << "Get Output Container - rc: " << rc << endl;
if (rc != FMC_OK)
{

file1.close();
return 1;

}

file1 << "Output Container Name: " << output.Type() << endl;
/*----- Modify output values --*/

rc= output.SetValue("aFieldInTheOutput",42L);
file1 << "Setting long value returns rc: " << rc << endl;

...

Figure 40. Sample activity implementation (C++) (Part 3 of 4)

/*-- return the output container to the PEA who started the program -----*/
rc = FmcjContainer::SetOutContainer(output);
file1 << "Set Output Container - rc: " << rc << endl;

FmcjGlobal::Disconnect();
file1.close();
return 0; // _RC passed to MQ Workflow

}

Figure 40. Sample activity implementation (C++) (Part 4 of 4)

Chapter 72. An activity implementation 803

Programming an executable (Java)

import com.ibm.workflow.api.*;

// Various needed classes

import java.io.*;
import java.util.*;

public class ActivityImplementation {
public static PrintWriter out;

public static void main(String args[])
{

try
{ out = new PrintWriter(

new BufferedWriter(new FileWriter("ActivityImplementation.log")));
}
catch (IOException e) {}

// Maximum nesting depth is 10
ContainerElement[][] members = new ContainerElement[10][];
// Maximum element number is 200
ContainerElement[][] leaves = new ContainerElement[200][];

String membername;
String membertype;

String strvalbuf;
byte[] binvalbuf = { 0,1,2,3,4,5,6,7,8,9,10 };
int lvalbuf = 0;
double fvalbuf = 0.0;
String tInfo;
int j = 0, k = 0, l = 0;
int index = 0;
Calendar ltime = Calendar.getInstance();

int param = -1;
int pimreturn = 0;

String setstr ="";
int setlong = 0;
double setdbl = 0;

ltime.setTime(new Date());

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
boolean again = false;
String choice;

Figure 41. Sample activity implementation (Java) (Part 1 of 25)

804 Programming Guide

/*--*/
/* Check command line parameters */
/*--*/

if (args.length!=1)
{

System.out.println("\nUsage: java ActivityImplementation <-r{0|1|2|3|4|5}>\n"
+ "-rx: x specifies the return code of the program\n\n"
+ "Program output is written to ActivityImplementation.log\n");

System.exit(-1);
}

try { // general try clause for whole example

Agent agent = new Agent();
agent.setLocator(Agent.LOC_LOCATOR);
agent.setName("LOCAL");

ExecutionService service = agent.locate("","");
System.out.println();

if (args[0].equals("-r0")) param=0;
if (args[0].equals("-r1")) param=1;
if (args[0].equals("-r2")) param=2;
if (args[0].equals("-r3")) param=3;
if (args[0].equals("-r4")) param=4;
if (args[0].equals("-r5")) param=5;

switch (param)
{
case -1:
System.out.println("\nUsage: java ActivityImplementation <-r{0|1|2|3|4|5}>\n"

+ "-rx: x specifies the return code of the program\n\n"
+ "Program output is written to ActivityImplementation.log\n");

System.exit(-1);
break;
case 0: pimreturn = 0; break;
case 1: pimreturn = 1; break;
case 2: pimreturn = 2; break;
case 3: pimreturn = 3; break;
case 4: pimreturn = 4; break;
case 5: pimreturn = 5; break;
}

out.write("\n\n" + "---\n"
+ "API Tutorial - Activity implementation example program.\n"
+ "Called at : " + ltime.getTime().toString() + "\n"
+ "Desired RC: " + pimreturn + "\n\n");

Figure 41. Sample activity implementation (Java) (Part 2 of 25)

Chapter 72. An activity implementation 805

/**/
/* First we cope with the activity's INPUT container: */
/* - get the container */
/* - get the leaves of the container */
/* - display the member values */
/**/

/*----- Get Input Container --*/

ReadOnlyContainer inctnr;
ExecutionAgent eAgent = agent.getExecutionAgent();

inctnr = eAgent.inContainer();

out.write("\nReceived input container '" + inctnr.type() + "'\n");
System.out.println("\nReceived input container '" + inctnr.type() + "'\n");

/*----- Get Leave Count --*/

int ulLeafCount = inctnr.allLeafCount();

out.write("Input container AllLeafCount() = " + ulLeafCount + "\n");

/*----- Get the Leaves ---*/

leaves[0]=inctnr.allLeaves();

if (ulLeafCount != leaves[0].length)
{

out.write("LeafCount - vector size mismatch: "
+ "ulLeafCount = " + ulLeafCount
+ " size = " + leaves[0].length + "\n");

}

Figure 41. Sample activity implementation (Java) (Part 3 of 25)

806 Programming Guide

/*----- Show the data members --*/

out.write("Input container leaves:\n");

ContainerElement element = leaves[0][0];

for (j=0; j < ulLeafCount; j++)
{

membername = element.fullName();
membertype = element.type();

if (membertype.equals("STRING"))
{

try
{

strvalbuf = element.getString();
out.write("STRING '" + membername + "'= " + strvalbuf + "\n");

}
catch (FmcException e)
{
switch (e.rc)
{

case FmcException.FMC_ERROR_MEMBER_NOT_SET:
out.write("STRING '" + membername + "'= <not set>" + "\n");
break;

default:
out.write("Failed to access " + membername + " with RC " + e.rc + "\n");
break;

}
}

} /* end if STRING */

Figure 41. Sample activity implementation (Java) (Part 4 of 25)

Chapter 72. An activity implementation 807

if (membertype.equals("LONG"))
{

try
{

lvalbuf = element.getLong();
out.write("LONG '" + membername + "'= " + lvalbuf + "\n");

}
catch (FmcException e)
{
switch (e.rc)
{

case FmcException.FMC_ERROR_MEMBER_NOT_SET:
out.write("LONG '" + membername + "'= <not set>" + "\n");
break;

default:
out.write("Failed to access " + membername + " with RC " + e.rc + "\n");
break;

}
}

} /* end if LONG */

Figure 41. Sample activity implementation (Java) (Part 5 of 25)

if (membertype.equals("FLOAT"))
{

try
{

fvalbuf = element.getDouble();
out.write("FLOAT '" + membername + "'= " + fvalbuf + "\n");

}
catch (FmcException e)
{
switch (e.rc)
{

case FmcException.FMC_ERROR_MEMBER_NOT_SET:
out.write("FLOAT '" + membername + "'= <not set>" + "\n");
break;

default:
out.write("Failed to access " + membername + " with RC " + e.rc + "\n");
break;

}
}

} /* end if FLOAT */

Figure 41. Sample activity implementation (Java) (Part 6 of 25)

808 Programming Guide

if (membertype.equals("BINARY"))
{

try
{

binvalbuf = element.getBuffer();
out.write("BINARY '" + membername + "'= <not shown>\n");

}
catch (FmcException e)
{
switch (e.rc)
{

case FmcException.FMC_ERROR_MEMBER_NOT_SET:
out.write("BINARY '" + membername + "'= <not set>" + "\n");
break;

default:
out.write("Failed to access " + membername + " with RC " + e.rc + "\n");
break;

}
}
} /* end if BINARY */

element = leaves[0][j];

} /* end for */

Figure 41. Sample activity implementation (Java) (Part 7 of 25)

Chapter 72. An activity implementation 809

/**/
/* Now we process the activity's OUTPUT container, but only if the */
/* program was not started with the -s switch */
/* - get the container */
/* - navigate through the ContainerElement levels to the leaves */
/* - modify the member values */
/* - send the container to the server */
/**/

/*----- Get Output Container ---*/

ReadWriteContainer outctnr = eAgent.outContainer();

out.write("Received output container '" + outctnr.type() + "'\n");
System.out.println("Received output container '" + outctnr.type() + "'");

/*----- Navigate through the ContainerElement structures ---------------*/

int level = 0; // Current nesting level
int start = 0; // Start "stack pointer" of vectors
int current = 0; // End "stack pointer" of vectors
boolean AllLeavesReached = false;

// Get the number of 1st level container elements

int ulMemberCount = outctnr.memberCount();

if (ulMemberCount == 0) // No data structure at all, error?
{

AllLeavesReached = true;
}
else // Get the vector of 1st level container elements
{

members[level] = outctnr.structMembers();
}

while (AllLeavesReached == false)
{

out.write("Number of members: " + ulMemberCount + "\n");

// Check consistency

if (members[level].length != ulMemberCount)
{

out.write("MemberCount - Vector Size mismatch: "
+ "ulMemberCount = " + ulMemberCount
+ " Size = " + members[level].length + "\n");

}

element = members[level][0];

out.write("IsStruct-IsLeaf-IsArray-Cardinality-Membername\n");

Figure 41. Sample activity implementation (Java) (Part 8 of 25)
810 Programming Guide

for (j=0; j < ulMemberCount; j++)
{

out.write(" " + element.isStruct());

if (element.isStruct())
{

// Put the next nesting level of this data structure "on the stack"
leaves[current] = element.structMembers();
current++;

}

out.write(" " + element.isLeaf() + " " + element.isArray()
+ " " + element.cardinality() + " "
+ element.fullName() + "\n");

element = members[level][j];

} /* end for */

if (start >= current) // Nothing "on the stack"
{

AllLeavesReached = true;
}
else
{

level++;
// Get the next vector from the stack and increase stack pointer
members[level] = leaves[start];
start++;
ulMemberCount = members[level].length;

}

} /* end while */

Figure 41. Sample activity implementation (Java) (Part 9 of 25)

Chapter 72. An activity implementation 811

/*----- Modify the data members --*/

out.write("\n\nSetting the data members...\n");
System.out.println("\nSetting the data members...\n");

leaves[0] = outctnr.leaves();

ulLeafCount = leaves[0].length;

try
{

for (j=0; j < ulLeafCount; j++)
{

element = leaves[0][j];

membername = element.fullName();
membertype = element.type();

if (membertype.equals("STRING"))
{

if (membername.endsWith("]") || membername.endsWith(")"))

// Array element, take the array function
{

// Remember the index and remove the suffix from the name

if (membername.endsWith("]"))
{

try
{

index=
Integer.parseInt(membername.substring(membername.indexOf("[")+1,

membername.indexOf("]")-1));
}
catch (NumberFormatException e) {}

}

Figure 41. Sample activity implementation (Java) (Part 10 of 25)

812 Programming Guide

else
{

try
{

index=
Integer.parseInt(membername.substring(membername.indexOf("(")+1,

membername.indexOf(")")-1));
}
catch (NumberFormatException e) {}

}

System.out.print("Enter a value for STRING array member '"
+ membername + "[" + index + "]'? [y/n] ");

setstr = in.readLine();

Figure 41. Sample activity implementation (Java) (Part 11 of 25)

if (setstr.equalsIgnoreCase("y"))
{

System.out.print("Value: ");
setstr = in.readLine();

outctnr.setString2(membername,index,setstr);
strvalbuf = outctnr.getString2(membername,index);

out.write("Setting ArrayStringValue '" + membername + "[" + index +
"]'=" + strvalbuf + "\n");

System.out.println("Setting ArrayStringValue '" + membername + "[" +
index + "]' = " + strvalbuf + "\n");

}
}

Figure 41. Sample activity implementation (Java) (Part 12 of 25)

Chapter 72. An activity implementation 813

else
{

System.out.print("Enter a value for STRING member '"
+ membername + "'? [y/n] ");

setstr = in.readLine();

if (setstr.equalsIgnoreCase("y"))
{

System.out.print("Value: ");
setstr = in.readLine();

outctnr.setString(membername,setstr);
strvalbuf = outctnr.getString(membername);

out.write("Setting StringValue '" +
membername + "'= " + strvalbuf + "\n");

System.out.println("Setting StringValue '" + membername +
"'= " + strvalbuf + "\n");

}
}

} /* end if STRING */

Figure 41. Sample activity implementation (Java) (Part 13 of 25)

814 Programming Guide

if (membertype.equals("LONG"))
{

if (membername.endsWith("]") || membername.endsWith(")"))

// Array element, take the array function
{

// Remember the index and remove the suffix from the name

if (membername.endsWith("]"))
{

try
{

index=
Integer.parseInt(membername.substring(membername.indexOf("[")+1,

membername.indexOf("]")-1));
}
catch (NumberFormatException e) {}

}
else
{

try
{

index=
Integer.parseInt(membername.substring(membername.indexOf("(")+1,

membername.indexOf(")")-1));
}
catch (NumberFormatException e) {}

}

System.out.print("Enter a value for LONG array member '"
+ membername + "[" + index + "]'? [y/n] ");

setstr = in.readLine();

Figure 41. Sample activity implementation (Java) (Part 14 of 25)

Chapter 72. An activity implementation 815

if (setstr.equalsIgnoreCase("y"))
{

do
{

again=false;
System.out.print("\nValue: ");
choice = in.readLine();
try { setlong = Integer.parseInt(choice); }
catch (NumberFormatException e) { again=true; }
} while (again);

outctnr.setLong2(membername,index,setlong);
lvalbuf = outctnr.getLong2(membername,index);

out.write("Setting ArrayLongValue '" + membername + "[" + index +
"]' = " + lvalbuf + "\n");

System.out.println("Setting ArrayLongValue '" + membername + "[" +
index + "]' = " + lvalbuf + "\n");

}
}

Figure 41. Sample activity implementation (Java) (Part 15 of 25)

816 Programming Guide

else
{

System.out.print("Enter a value for LONG member '"
+ membername + "'? [y/n] ");

setstr = in.readLine();

if (setstr.equalsIgnoreCase("y"))
{

do
{

again=false;
System.out.print("\nValue: ");
choice = in.readLine();
try { setlong = Integer.parseInt(choice); }
catch (NumberFormatException e) { again=true; }
} while (again);

outctnr.setLong(membername,setlong);
lvalbuf = outctnr.getLong(membername);

out.write("Setting LongValue '" +membername+ "' = " +lvalbuf+ "\n");
System.out.println("Setting LongValue '" +membername+"' = " +

lvalbuf + "\n");
}

}
} /* end if LONG */

Figure 41. Sample activity implementation (Java) (Part 16 of 25)

Chapter 72. An activity implementation 817

if (membertype.equals("FLOAT"))
{

if (membername.endsWith("]") || membername.endsWith(")"))

// Array element, take the array function
{

// Remember the index and remove the suffix from the name

if (membername.endsWith("]"))
{

try
{

index=
Integer.parseInt(membername.substring(membername.indexOf("[")+1,

membername.indexOf("]")-1));
}
catch (NumberFormatException e) {}

}
else
{

try
{

index=
Integer.parseInt(membername.substring(membername.indexOf("(")+1,

membername.indexOf(")")-1));
}
catch (NumberFormatException e) {}

}

System.out.print("Enter a value for FLOAT array member '"
+ membername + "[" + index + "]'? [y/n] ");

setstr = in.readLine();

Figure 41. Sample activity implementation (Java) (Part 17 of 25)

818 Programming Guide

if (setstr.equalsIgnoreCase("y"))
{

do
{

again=false;
System.out.print("\nValue: ");
choice = in.readLine();
try { setdbl = (Double.valueOf(choice)).doubleValue(); }
catch (NumberFormatException e) { again=true; }
} while (again);

outctnr.setDouble2(membername,index,setdbl);
fvalbuf = outctnr.getDouble2(membername,index);

out.write("Setting ArrayFloatValue '" + membername + "[" + index +
"]' = " + fvalbuf + "\n");

System.out.println("Setting ArrayFloatValue '" + membername + "[" +
index + "]' = " + fvalbuf + "\n");

}
}

Figure 41. Sample activity implementation (Java) (Part 18 of 25)

Chapter 72. An activity implementation 819

else
{

System.out.print("Enter a value for FLOAT member '"
+ membername + "'? [y/n] ");

setstr = in.readLine();

if (setstr.equalsIgnoreCase("y"))
{

do
{

again=false;
System.out.print("\nValue: ");
choice = in.readLine();
try { setdbl = (Double.valueOf(choice)).doubleValue(); }
catch (NumberFormatException e) { again=true; }
} while (again);

outctnr.setDouble(membername,setdbl);
fvalbuf = outctnr.getDouble(membername);

out.write("Setting FloatValue '" +membername+ "' = " +fvalbuf+ "\n");
System.out.println("Setting FloatValue '" + membername + "' = " +

fvalbuf + "\n");
}

}
} /* end if FLOAT */

Figure 41. Sample activity implementation (Java) (Part 19 of 25)

820 Programming Guide

if (membertype.equals("BINARY"))
{

if (membername.endsWith("]") || membername.endsWith(")"))

// Array element, take the array function
{

// Remember the index and remove the suffix from the name

if (membername.endsWith("]"))
{

try
{

index=
Integer.parseInt(membername.substring(membername.indexOf("[")+1,

membername.indexOf("]")-1));
}
catch (NumberFormatException e) {}

}
else
{

try
{

index=
Integer.parseInt(membername.substring(membername.indexOf("(")+1,

membername.indexOf(")")-1));
}
catch (NumberFormatException e) {}

}

outctnr.setBuffer2(membername,index,binvalbuf);
binvalbuf = outctnr.getBuffer2(membername,index);

out.write("Setting ArrayBinaryValue '" + membername + "[" + index +
"]' = <not shown>\n");

System.out.println("Setting ArrayBinaryValue '" + membername + "[" +
index + "]' = <not shown>\n");

}

Figure 41. Sample activity implementation (Java) (Part 20 of 25)

Chapter 72. An activity implementation 821

else
{

outctnr.setBuffer(membername,binvalbuf);
binvalbuf = outctnr.getBuffer(membername);

out.write(
"Setting BinaryValue '" + membername + "' = <not shown>\n");
System.out.println(
"Setting BinaryValue '" + membername + "' = <not shown>\n");

}
} /* end if BINARY */

} /* end for */
}/* End try*/
catch (FmcException e)
{
}/* End catch*/

Figure 41. Sample activity implementation (Java) (Part 21 of 25)

/*---*/
/* Send output container to PEA */
/*---*/

System.out.println("\nSetting output container.");
out.write("\nSetting output container.\n");
eAgent.setOutContainer(outctnr);

Figure 41. Sample activity implementation (Java) (Part 22 of 25)

/*---*/
/* Logoff and deinit the API environment. */
/*---*/

System.out.println("\nLogging off.");
out.write("\nLogging off.\n");
service.logoff();
out.flush();
out.close();
System.exit(pimreturn);

} // end of general try clause

Figure 41. Sample activity implementation (Java) (Part 23 of 25)

822 Programming Guide

catch(FmcException e)
{

int c;

// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (c = 0; c < e.parameters.length ; c++)
{

System.out.println(" " + e.parameters[c]);
}
System.out.println(" StackTrace : ");
e.printStackTrace();

out.write("FmcException occured");
out.write("\n RC : " + e.rc);
out.write("\n Origin : " + e.origin);
out.write("\n MessageText: " + e.messageText);
out.write("\n Exception : " + e.getMessage());
out.write("\n Parameters : ");
for (c = 0; c < e.parameters.length ; c++)
{

out.write(" " + e.parameters[c]);
}
out.write("\n StackTrace : ");
e.printStackTrace(out);
out.flush();
out.close();

}

Figure 41. Sample activity implementation (Java) (Part 24 of 25)

catch(Exception e)
{

// Catch and report any exception that occurred.
e.printStackTrace();
e.printStackTrace(out);
out.flush();
out.close();

}

} // end of void main

} // end of ActivityImplementation

Figure 41. Sample activity implementation (Java) (Part 25 of 25)

Chapter 72. An activity implementation 823

824 Programming Guide

Part 10. Appendixes

© Copyright IBM Corp. 1993, 2001 825

826 Programming Guide

Appendix A. FlowMark Version 2 compatibility mode

Note: The FlowMark Version 2 interface will no longer be supported with the
next release or version.

The MQ Workflow APIs support a FlowMark Version 2.3 API compatibility
mode that allows you to run FlowMark Version 2.3 programs. It is, however,
recommended that you replace the Version 2 API calls with the MQ Workflow
Version 3 API calls in all your applications.

The following languages and compilers are supported in compatibility mode:
v The C-language API

– For AIX and the IBM C++ Professionell for AIX Version 5.0
– For Windows NT or Windows 98 and IBM VisualAge for C++ 3.5 or

Microsoft Visual C++ 5.0
v The C++ language API

– For AIX and the IBM C++ Professionell for AIX Version 5.0
– For HP-UX and the HP aC++ Compiler S700 Version A.01.15.01
– For Windows NT or Windows 98 and IBM VisualAge for C++ 3.5 or

Microsoft Visual C++ 5.0
v The VisualBasic API

– For Windows NT or Windows 98 and Microsoft VisualBasic 5.0

Repeating the compile-and-link step should be sufficient to make your Version
2.3 programs run.

MQ Workflow Version 3 contains new header, library and dynamic link
libraries for this purpose. The header files have the FlowMark Version 2.3
names so that you do not have to change your source code. The library and
dynamic link libraries have new names. You can, however, choose to (DLL)
rename these files to their Version 2 names; otherwise, you have to adapt your
link step to the new names. The following table provides an overview on the
compatibility API and the files to include and link with:

Table 4. FlowMark Version 2 Compatibility APIs on AIX

Language AIX

header lib DLL

C exmajapc.h fmcjdapc.lib libfmcjdapc.a

C++ exmpjapi.hxx fmcjdcom.lib
fmcjdcbr.lib
fmcjdrun.lib
fmcjdcon.lib

libfmcjdcom.a
libfmcjdcbr.a
libfmcjdrun.a
libfmcjdcon.a

© Copyright IBM Corp. 1993, 2001 827

Table 5. FlowMark Version 2 Compatibility APIs on HP-UX

Language HP-UX

header lib DLL

C++ exmpjapi.hxx fmcjdcom.lib
fmcjdcbr.lib
fmcjdrun.lib
fmcjdcon.lib

libfmcjdcom.sl
libfmcjdcbr.sl
libfmcjdrun.sl
libfmcjdcon.sl

Table 6. FlowMark Version 2 Compatibility APIs on Windows NT/98

Language Windows NT/98

header lib DLL

C exmwjapc.h fmcjdapc.lib fmcjdapc.dll

C++ exmpjapi.hxx fmcjdcom.lib
fmcjdcbr.lib
fmcjdrun.lib
fmcjdcon.lib

fmcjdcom.dll
fmcjdcbr.dll
fmcjdrun.dll
fmcjdcon.dll

VisualBasic exmbjapv.bas fmcjdapv.dll

Because MQ Workflow Version 3 has an extended functionality and flexibility,
there are some deviations related to the API. You must be aware of these
differences, which can influence your Version 2 program behaving differently.
This applies mainly to return codes and authorization definitions.

Deviations from FlowMark Version 2

v Version 3 provides for more detailed states than Version 2 and, therefore,
these states are mapped on a best-can-do basis:
When a work item is to be started and the program execution agent is not
running or when the program to be started is not found, the work item
goes into state InError. The InError state is exposed as a Version 2 Running
state so that a Version 2 Restart() or Terminate() can be issued. Because of
the actual InError state, a Version 3 ForceRestart() or ForceFinish() is called
which, however, requires the caller to have process administration authority.
When a work item is checked out, the work item goes into state
CheckedOut. The CheckedOut state is exposed as a Version 2 Running state
so that a Version 2 Restart() or Terminate() can be issued. Because of the
actual CheckedOut state, a Version 3 ForceRestart() or ForceFinish() is called
which, however, requires the caller to have process administration authority.
When a manual exit work item has executed its activity implementation, it
is set to state Executed. This is mapped to the Version 2 Ready state to show
that the program has executed once and can be finished (called
ManualExit() in Version 2).

828 Programming Guide

v Version 3 supports an authorization concept that is more restricted than the
Version 2 concept:
Process administration authority is needed for work item ForceFinish() and
ForceRestart(). This is also needed for the Version 2 C-language
ChangeActivityState() function when you request finish or restart.
Authorization changes become active at once. This is because authorization
is checked by the server only. The UserSettings() method returns the
settings of the user at the time when called, that is, it fetches the current
user authorizations from the server every time it is called. In Version 2, the
user settings were retrieved once when logging on.

v Version 3 return codes are mapped to Version 2 return codes on a
best-can-do basis:
ERROR_TIMEOUT is returned when the client does not receive an answer
within the specified time. This can also mean that the server is not running.

v The scope or database and server specifications are case-sensitive. They are
not folded to uppercase. The scope or database corresponds to the system
group specification in Version 3; the server to the system specification.

v The password is case-sensitive.
v Logon() allows for a specification of the absence setting. If it is not set (as in

the compatibility mode), the absence behavior - whether the absence
information is to be reset or not - is taken from the person record.

v If the MQ Workflow server allows for a unified logon, an empty password
and user ID are accepted (see also “Logon()” on page 409).

v Logon() allows for a specification of the session mode. If it is not set (as in
the compatibility mode), the session mode is taken from the user or
configuration profile. If it is not found there, session mode present is used.
Only one present session can exist per user.
If an application that is using the present session mode ends abnormally
during the application test phase, a session record is still held on the server.
You then have to wait with a new logon attempt until that session expires
or to log on with the present here session mode.
Present here forces any other present session for the user logoff. Such,
present here especially forces any pending present session logoff. If you rely
on the already logged on return code, do not set any session mode or set the
present mode in the profile. Default allows for multiple parallel sessions per
user.
You can use the fmczchk utility to set or erase profile values; the key is
V2_SESSION_MODE; the values are DEFAULT, PRESENT, or
PRESENTHERE. For example, to set a default session mode in
configuration FMC, issue:
fmczchk -y FMC -c inst:m,V2_SESSION_MODE,DEFAULT

Appendix A. FlowMark Version 2 compatibility mode 829

v IsDeleteFinishedItems() always returns false since this setting has been
moved from the user to the process. The attempt to change this setting
returns FMC_OK but nothing is changed.

v The PersonsAuthorizedFor() method does not return any persons when the
logged-on user is authorized for all persons.

v SetPersonsToStandInFor() requires staff authorization.
v When the logged-on user is an administrator for all categories, then

IsAdminForCategory(x) returns true even if the category does not exist.
v Process templates are versioned in MQ Workflow. This means that a process

template can be no longer valid, which is defined as invalid.
v Creation of a process instance returns primary values only.
v Process instance names are generated differently. The process template

name is no longer padded by _n but by a $ sign followed by an object ID
representation so that names are unique.

v Process instance input container and output container names are secondary
attributes, that is, the process instance must be refreshed before they can be
read.

v The IsTerminatedOnError() method on process templates or process
instances always returns false.

v MQ Workflow introduces the concept of autonomy of subprocesses. Only
non-autonomous subprocesses with respect to control autonomy are
suspended or resumed when the deep option is specified. Suspend() of a
ready process instance is not supported.

v Creation of a worklist does not check whether the owner of the items
contained is a registered user or whether you are authorized to see the
items of that user. The worklist is created anyhow. The item owner is part
of the filter in Version 3 so that the owner is only applied when the
worklist content, that is, the items, are queried. If you specified an
unknown item owner or if you are not authorized to see the items of the
specified owner, you will not see any items at all.

v The last modification time of a work item is changed even if only the
description of the work item changes.

v To check out a work item is possible only if the corresponding MQ
Workflow setting defines that checking out is allowed. If not,
FMC_ERROR_CHECKOUT_NOT_POSSIBLE is returned.

v Deletion of a ready work item is allowed as long as it is not the last work
associated with the activity instance. You can always delete ready work
items in a terminated or terminating process instance.

v Version 3 allows for a priority setting between 0 and 999 (9 in FlowMark
Version 2). The compatibility API allows for a filter criterion with a
MAX_PRIORITY specification of 999 so that objects with a priority greater
than 9 can be searched for.

830 Programming Guide

v When a notification duration is not set, then no notification occurs. If the
person to notifiy is not supplied or is unknown, the process administrator
is notified.

v Finish() on a notification is supported by an implementation returning
FMC_OK. This means that notifications must be deleted explicitly.

v Input and output containers are only sent to the program execution agent
when they are accessed by the activity implementation or support tool. This
behavior can be set in Version 3.

v The program execution agent provides the program identification (called
session ID in Version 2) only to trusted programs. This property can be set
in Version 3.

v Passthrough() cannot be called from a support tool.
v The maximum size of a container passed between the client and the server

can be 32KB.
v A container can have leaves of binary data types.
v ExmcChangeActivityState() performs the finish action without first checking

for a requested ready or running state. It currently requires that the activity
name is unique within a process instance, which means it does not support
unique activity names within blocks. It returns
EXMPJ_WRONG_ACTIVITY_STATE also if the process is not running.

v Bundles are not yet supported.

FlowMark Version 2 C-language programs

Running an existing application program
MQ Workflow Version 3 is delivered so that FlowMark Version 2 application
programs can run unchanged. See “Deviations from FlowMark Version 2” on
page 828 for possible increased authorization requirements. A compile and
link should be sufficient to make your Version 2 programs run.

If you want to run an existing FlowMark Version 2 C-language application
program in an MQ Workflow Version 3 environment:
v Make sure that MQ Workflow Version 3 paths are searched so that the new

header file for Version 3 is used:
– exmwjapc.h for Windows NT or Windows 95
– exmajapc.h for AIX

v Change your application build step to link with the MQ Workflow Version
3 API library fmcjdapc.lib instead of the FlowMark Version 2 library

v Compile and link your application

Appendix A. FlowMark Version 2 compatibility mode 831

FlowMark Version 2 Visual Basic programs

Running an existing application program
MQ Workflow Version 3 is delivered so that FlowMark Version 2 application
programs can run unchanged. See “Deviations from FlowMark Version 2” on
page 828 for possible increased authorization requirements.

If you want to run an existing FlowMark Version 2 Visual Basic application
program in the MQ Workflow Version 3 environment, make sure that:
v MQ Workflow Version 3 paths are searched so that the new Version 3

provided declarations exmbjapv.bas are used
v The MQ Workflow Version 3 dynamic link library fmcjdapv.dll is in a

directory in your PATH statement

FlowMark Version 2 C++ programs

Running an existing application program
MQ Workflow Version 3 is delivered so that FlowMark Version 2 application
programs can run unchanged. See “Deviations from FlowMark Version 2” on
page 828 for possible increased authorization requirements. A re-compile and
re-link should be sufficient to make your Version 2 programs run.

If you want to run an existing FlowMark Version 2 C++ application program
in an MQ Workflow Version 3 environment:
v Make sure that MQ Workflow Version 3 paths are searched so that the new

Version 3 provided exmpjapi.hxx header file is used

Note: Since the FlowMark Version 2 exmpjapi.hxx header file is
self-sufficient, you should have included no other FlowMark header
files in your application. If this is not the case, delete all other
inclusions.

v Change your application build step to link with the MQ Workflow Version
3 API libraries fmcjdcom.lib, and fmcjdcbr.lib, fmcjdrun.lib and/or fmcjdcon.lib
instead of the FlowMark Version 2 library, see “Chapter 16. Compiling and
linking” on page 163

v Compile and link your application

Using MQ Workflow Version 3 methods
If you want to extend an existing FlowMark Version 2 C++ application
program in order to use the new methods provided with the MQ Workflow
Version 3 API, then you should migrate your application first. This is because
there are some extensions and deviations from FlowMark Version 2.

Migration is done according to the following list:

832 Programming Guide

1. General steps to be done

Note: You should follow the sequence of steps illustrated below since
some of the global change steps base on each other.

Header file inclusion:
#include <bool.h> // true, false (dependent inclusion)
#include <fmcjstr.hxx> // string (dependent inclusion)
#include <vector.h> // vector (dependent inclusion)
#include <fmcjprun.hxx> // C++ runtime client interface

or
#include <fmcjpcon.hxx> // C++ container interface

a. Include the MQ Workflow Version 3 C++ Runtime API header file
fmcjprun.hxx or fmcjpcon.hxx instead of the FlowMark Version 2 header
file exmpjapi.hxx.

Note: Because the FlowMark Version 2 exmpjapi.hxx header file is
self-sufficient, you should have included no other FlowMark
header files in your application. If not so, delete all other
inclusions.

b. Conditionally include bool.h before fmcjprun.hxx or fmcjpcon.hxx.
If your compiler does not support any bool definition, include this MQ
Workflow delivered definition of bool. Otherwise, use the bool
definition of your compiler.

Note: bool.h must be included before your string definition file.
c. Conditionally include fmcjstr.hxx before fmcjprun.hxx or fmcjpcon.hxx.

If your compiler does not support any string class, include this MQ
Workflow delivered definition of a string class. Otherwise, include your
compiler string definition file.

d. Conditionally include vector.h before fmcjprun.hxx.
If your compiler does not support any vector, include this MQ
Workflow delivered definition of a vector. Otherwise, include your
compiler vector definition file.

Names of return/error codes:
e. Change all EXM_API_OK occurrences to FMC_OK. Change all

EXM_API_ERROR occurrences to FMC_ERROR.
After this step, return/error codes are named correctly.

Names of classes:
f. Change all Exm occurences to Fmcj. Change the resulting FmcjServer

references to FmcjExecutionService. Change the resulting
FmcjWorkitemNotification references to

Appendix A. FlowMark Version 2 compatibility mode 833

FmcjActivityInstanceNotification. Change the resulting FmcjItemBase
references to FmcjItem. Change the resulting FmcjUser references to
FmcjPerson.
After this step, classes are named correctly.

Names of methods:
g. Change all GetXxx() method names to Xxx() except the GetElement()

method which does not change its name. Change all ChangeXxx()
method names to SetXxx().
This means that accessor methods are consistently named according to
the data member name; mutator methods have the prefix ″Set″.

Change all EndCondition() method calls to ExitCondition().
Change all ExecutionSessionID() method calls to ProgramID().
Change all PersistentHandle() method calls to PersistentOid().
Change all ReadPersistentObject() method calls to PersistentObject().
Change all Organization() method calls to OrganizationName().
Change all Roles() method calls to NamesOfRoles().
Change all RolesToCoordinate() method calls to
NamesOfRolesToCoordinate().
Change all QueryWorkitemNotifications() method calls to
QueryActivityInstanceNotifications().

This is because of Version 3 C++- and C-language API cleanup and
compatibility. The PersistentHandle() method name has been changed
to avoid confusion with C-API handles.

After this step, all supported methods are named correctly.
2. Mandatory specific steps

These are steps which you must carry out if you use the named class and
method.
v FmcjActivityInstanceNotification

The IsEscalated() method has been changed to StateOfNotification()
returning the exact state of escalation as an enumeration.
The information formerly queried via the IsFirstEscalatation(), and
IsSecondEscalation() methods can be accessed by using the Kind()
method. The Kind() method returns the exact type of an item as an
enumeration.
The IsProcessType() and IsProgramType() methods have been changed
to ActivityKind() returning the kind of the associated activity instance as
an enumeration.
The NotificationTime() method has been changed to
FirstNotificationTime() and SecondNotificationTime() so that both times
can be queried.

834 Programming Guide

The ManualExit() and ManualStart() accessor methods return false (the
boolean default) as long as the object is not complete.
The Finish() method is no longer needed, that is, it has to be removed.

v FmcjContainer

ActivityInfo() and ProcessInfo() methods need to be removed; it is no
longer necessary to call these methods before accessing their data
members. Specifying their fully qualified names when querying a
container is sufficient.
Activity implementations do not need to pass their program
identifications to the program execution agent when they are dealing
with their input or output containers. This means, that either the
program ID parameter has to be removed from the InContainer(), or
OutContainer() calls, or the appropriate RemoteInContainer(), or
RemoteOutContainer() methods have to be called.

v FmcjExecutionService respectively FmcjService

Constructor FmcjExecutionService(systemGroup) - ExmServer(scope) - is
no longer supported since you always connect to either a specific
system or your home system.
The Name() method has to be replaced by SystemName().
The Scope() method has to be replaced by SystemGroupName().
The user identification is case-sensitive. It is no longer folded to
uppercase when logging on.
The CreateWorklist() method needs to specify the additional parameters
for persistent lists, namely worklist owner, type, description, sort
criteria, and threshold. The filter attribute has become a string and the
owner of the workitems is part of the filter criterion.
The QueryProcessTemplates() and QueryProcessInstances() methods
newly allow for specifying sort criteria, and thresholds. The filter
attribute has become a string.
The UserSettings() method has become an action method returning an
APIRET value. In FlowMark Version 2, user information was provided
as the result of a successful Logon() request. In MQ Workflow Version 3,
user settings have to be queried explicitly.
Passthrough() does no longer need to pass a program identification. This
means that either the program ID parameter has to be removed or the
RemotePassthrough() method has to be called.

v FmcjFilter

To provide for increased flexibility and extentability, the FmcjFilter class
has been removed. A string containing the filter expression has to be
provided instead of the FmcjFilter object.

v FmcjItem

Appendix A. FlowMark Version 2 compatibility mode 835

The ItemType enumeration ″WorkitemNotification″ has become more
specific and is split into FirstActivityInstanceNotification and
SecondInstanceActivityNotification. Such, any check on an item whether
it is a notification has to be replaced with an appropriate or-statement to
check whether it is a first or second notification.
Methods ManualExit(), ManualStart(), ExitCondition(), StartCondition(),
Priority(), and Staff() are not applicable for process instance
notifications. Thus, they have been moved from the FmcjItem class to
the FmcjWorkitem and FmcjActivityInstanceNotification classes. This
means that you can only call them on objects of the respective kind.
ChangeDescription() has been renamed to SetDescription(). Since the
description is now an optional parameter, a pointer to a string needs to
be passed instead of a reference to a description.

v FmcjPerson

The functionality to specify whether finished items are to be deleted has
been moved from the logged-on user to the process models. Thus, any
IsDeleteFinishedItems() and SetDeleteFinishedItems() calls need to be
removed.

v FmcjProcessInstance

The IsAudited() method has been changed to AuditMode() returning the
exact type of auditing as an enumeration.

v FmcjProcessInstanceNotification

The Expired() method has been removed since a process instance
notification is only raised when the process instance is expired.
The Finish() method is no longer needed, that is, it has to be removed.

v FmcjProcessTemplate

The IsAudited() method has been changed to AuditMode() returning the
exact type of auditing as an enumeration.
The CreateInstance() and CreateAndStartInstance() methods have
additional, still reserved parameters; at least 0 pointers need to be
provided.

v FmcjWorkitem

The IsEscalated() method has been changed to StateOfNotification()
returning the exact state of escalation as an enumeration.
The IsProcessType() and IsProgramType() methods have been changed
to ActivityKind() returning the kind of the work item - inherited from
the activity - as an enumeration.
The NotificationTime() method has been changed to
FirstNotificationTime() and SecondNotificationTime() so that both times
can be queried.
The ManualExit() and ManualStart() accessor methods return false (the
boolean default) as long as the object is not complete.

836 Programming Guide

The ManualExit() action method has been changed to Finish() to better
fit to the resulting state.
The CheckIn() method does no longer require a work item output
container. You must pass a pointer to your output container instead of
the container itself.
The CheckOut() method potentially returns all information about the
activity implementation known to MQ Workflow. You need to request
the common data only and pick up your input container; from there in
order to achieve the FlowMark Version 2 behavior.

v FmcjWorklist

The filter is returned as a string instead of a Filter object.
The IsDefault() method has been removed. There is only a worklist if
you or someone else created one.
The owner of the work items has become part of the filter specification;
there may be multiple owners.
The QueryWorkitems() method no longer allows for the specification of
an ad-hoc filter. A persistent filter can be specified when a worklist
definition is created. If you need to filter, either create the worklist with
the appropriate filter or use the
FmcjExecutionServive::QueryWorkitems() method which allows for
specifying an ad-hoc filter.

v CppStartApi and CppFinishApi are no longer needed and need to be
removed.

3. Optional specific steps

These are steps which you can choose to execute or not.
v FmcjItem::StartTime() If you used this method, it actually returned the

creation time of the item. If you want to keep this semantics, change the
method name to CreationTime(). StartTime returns the starting time.

v Refresh If you used the refresh method to update relevant object values
after an action, this is not always necessary. The object is automatically
refreshed with the changed values as the result of calling an action
method. For example, calling FmcjWorkitem::Start() updates the
workitem’s state.

v FmcjPerson::CategoriesAuthorizedFor() This method only returns the
categories for which you are authorized with basic rights. If you want to
keep the FlowMark Version 2 behavior, then you have to add the
CategoriesAuthorizedForAsAdmin().

Appendix A. FlowMark Version 2 compatibility mode 837

838 Programming Guide

Appendix B. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504–1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

© Copyright IBM Corp. 1993, 2001 839

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

840 Programming Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp.1993, 1999. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States, other countries, or both:
v AIX
v CICS
v C Set++
v FlowMark
v IBM
v IMS
v MQSeries
v OS/2
v OS/390

Appendix B. Notices 841

v VisualAge

Lotus Notes is a registered trademark, and Domino and Lotus Go Webserver
are trademarks of Lotus Development Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service
marks of others.

842 Programming Guide

Glossary

This glossary defines important terms and
abbreviations used in this publication. If
you do not find the term you are looking
for, refer to the index or the IBM Dictionary
of Computing, New York: McGraw-Hill, 1994.

A

administration server. The MQ Workflow
component that performs administration
functions within an MQ Workflow system.
Functions include starting and stopping of the
MQ Workflow system, performing error
management, and participating in administrative
functions for a system group.

activity. One of the steps that make up a
process model. This can be a program activity,
process activity, or block activity.

activity information member. A predefined
data structure member associated with the
operating characteristics of an activity.

API. Application Programming Interface.

application programming interface. An
interface provided by the MQ Workflow
workflow manager that enables programs to
request services from the MQ Workflow
workflow manager. The services are provided
synchronously.

audit trail. A relational table in the database
that contains an entry for each major event
during execution of a process instance.

authorization. The attributes of a user’s staff
definition that determine the user’s level of
authority in MQ Workflow. The system
administrator is allowed to perform all functions.

B

bend point. A point at which a connector starts,
ends, or changes direction.

block activity. A composite activity that consists
of a group of activities, which can be connected
with control and data connectors. A block
activity is used to implement a Do-Until loop; all
activities within the block activity are processed
until the exit condition of the block activity
evaluates to true. See also composite activity.

Buildtime. An MQ Workflow component with a
graphical user interface for creating and
maintaining workflow models, administering
resources, and the system network definitions.

C

cardinality. (1) An attribute of a relationship
that describes the membership quantity. There
are four types of cardinality: One-to-one,
one-to-many, many-to-many, and many-to-one.
(2) The number of rows in a database table or
the number of different values in a column of a
database table.

child organization. An organization within the
hierarchy of administrative units of an enterprise
that has a parent organization. Each child
organization can have one parent organization
and several child organizations. The parent is
one level above in the hierarchy. Contrast with
parent organization.

cleanup server. The MQ Workflow component
that physically deletes information in the MQ
Workflow Runtime database, which had only
been deleted logically.

composite activity. An activity which is
composed of other activities. Composite activities
are block activities and bundle activities.

© Copyright IBM Corp. 1993, 2001 843

container API. An MQ Workflow API that
allows programs executing under the control of
MQ Workflow to obtain data from the input and
output container of the activity and to store data
in the output container of the activity.

control connector. Defines the potential flow of
control between two nodes in the process. The
actual flow of control is determined at run time
based on the truth value of the transition
conditions associated with the control connector.

coordinator. A predefined role that is
automatically assigned to the person designated
to coordinate a role.

D

data connector. Defines the flow of data
between containers.

data container. Storage for the input and output
data of an activity or process. See input container
and output container.

data mapping. Specifies, for a data connector,
which fields from the associated source container
are mapped to which fields in the associated
target container.

data structure. A named entity that consists of a
set of data structure members. Input and output
containers are defined by reference to a data
structure and adopt the layout of the referenced
data structure type.

data structure member. One of the variables of
which a data structure is composed.

default control connector. The graphical
representation of a standard control connector,
shown in the process diagram. Control flows
along this connector if no other control path is
valid.

domain. A set of MQ Workflow system groups
which have the same meta-model, share the
same staff information, and topology
information. Communication between the
components in the domain is via message
queuing.

dynamic staff assignment. A method of
assigning staff to an activity by specifying
criteria such as role, organization, or level. When
an activity is ready, the users who meet the
selection criteria receive the activity to be worked
on. See also level, organization, process
administrator, and role.

E

end activity. An activity that has no outgoing
control connector.

execution server. The MQ Workflow component
that performs the processing of process instances
at runtime.

exit condition. A logical expression that
specifies whether an activity is complete.

export. An MQ Workflow utility program for
retrieving information from the MQ Workflow
database and making it available in MQ
Workflow Definition Language (FDL) or HTML
format. Contrast with import.

F

fixed member. A predefined data structure
member that provides information about the
current activity. The value of a fixed member is
set by the MQ Workflow workflow manager.

(FDL) MQ Workflow Definition Language.
The language used to exchange MQ Workflow
information between MQ Workflow system
groups. The language is used by the import and
export function of MQ Workflow and contains
the workflow definitions for staff, programs, data
structures, and topology. This allows non-MQ
Workflow components to interact with MQ
Workflow. See also export and import.

fork activity. An activity that is the source of
multiple control connectors.

form. In Lotus Notes, a form controls how you
enter information into Lotus Notes and how that
information is displayed and printed.

844 Programming Guide

formula. In Lotus Notes, a mathematical
expression that is used, for example, to select
documents from a database or to calculate values
for display.

fully-qualified name. A qualified name that is
complete; that is, one that includes all names in
the hierarchical sequence above the structure
member to which the name refers, as well as the
name of the member itself.

I

import. An MQ Workflow utility program that
accepts information in the MQ Workflow
definition language (FDL) format and places it in
an MQ Workflow database. Contrast with export.

input container. Storage for data used as input
to an activity or process. See also source and data
mapping.

L

level. A number from 0 through 9 that is
assigned to each person in an MQ Workflow
database. The person who defines staff in
Buildtime can assign a meaning to these
numbers such as rank and experience. Level is
one of the criteria that can be used to
dynamically assign activities to people.

local user. Identifies a user during staff
resolution whose home server is in the same
system group as the originating process.

local subprocess. A subprocess that is processed
in the same MQ Workflow system group as the
originating process.

logical expression. An expression composed of
operators and operands that, when evaluated,
gives a result of true, false, or an integer.
(Nonzero integers are equivalent to false.) See
also exit condition and transition condition.

M

manager. A predefined role that is automatically
assigned to the person who is defined as head of
an organization.

message queuing. A communication technique
that uses asynchronous messages for
communication between software components.

N

navigation. Movement from a completed
activity to subsequent activities in a process. The
paths followed are determined by control
connectors, their associated transition conditions,
and by the start conditions of activities. See also
control connector, exit condition, transition condition,
and start condition.

node. (1) The generic name for activities within
a process diagram. (2) The operating system
image that hosts MQ Workflow systems.

notification. An MQ Workflow facility that can
notify a designated person when a process or
activity is not completed within the specified
time.

notification work item. A work item that
represents an activity or process notification.

O

organization. An administrative unit of an
enterprise. Organization is one of the criteria that
can be used to dynamically assign activities to
people. See child organization and parent
organization.

output container. Storage for data produced by
an activity or process for use by other activities
or for evaluation of conditions. See also sink.

P

parent organization. An organization within the
hierarchy of administrative units of an enterprise
that has one or more child organizations. A child

Glossary 845

is one level below its parent in the hierarchy.
Contrast with child child organization.

parent process. A process instance that contains
the process activity which started the process as
a subprocess.

pattern activity. A single and simple activity in
a bundle activity from which multiple instances,
called pattern activity instances, are created at
run time.

person (pl. people). A member of staff in an
enterprise who has been defined in the MQ
Workflow database.

predefined data structure member. A data
structure member predefined by MQ Workflow
and used for communication between user
applications and MQ Workflow Runtime.

process. Synonymously used for a process
model and a process instance. The actual
meaning is typically derived from the context.

process activity. An activity that is part of a
process model. When a process activity is
executed, an instance of the process model is
created and executed.

process administrator. A person who is the
administrator for a particular process instance.
The administrator is authorized to perform all
operations on a process instance. The
administrator is also the target for staff
resolution and notification.

process category. An attribute that a process
modeler can specify for a process model to limit
the set of users who are authorized to perform
functions on the appropriate process instances.

process definition. Synonym for process model.

process diagram. A graphical representation of
a process that shows the properties of a process
model.

process instance. An instance of a process to be
executed in MQ Workflow Runtime.

process instance list. A set of process instances
that are selected and sorted according to
user-defined criteria.

process instance monitor. An MQ Workflow
client component that shows the state of a
particular process instance graphically.

process management. The MQ Workflow
Runtime tasks associated with process instances.
These consist of creating, starting, suspending,
resuming, terminating, restarting, and deleting
process instances.

process model. A set of processes represented
in a process model. The processes are
represented in graphical form in the process
diagram. The process model contains the
definitions for staff, programs, and data
structures associated with the activities of the
process. After having imported and translated
the process model into a process template, the
process template can be executed over and over
again. Workflow model and process definition are
synonyms.

process monitor API. An application
programming interface that allows applications
to implement the functions of a process instance
monitor.

process-relevant data. Data that is used to
control the sequence of activities in a process
instance.

process status. The status of a process instance.

process template. A fixed form of a process
model from which process instances can be
created. It is the imported and translated form in
MQ Workflow Runtime. See also process instance.

process template list. A set of process templates
that have been selected and sorted according to
user-defined criteria.

program. A computer-based application that
serves as the implementation of a program
activity or as a support tool. Program activities
reference executable programs using the logical

846 Programming Guide

names associated with the programs in MQ
Workflow program registrations. See also program
registration.

program activity. An activity that is executed by
a registered program. Starting this activity
invokes the program. Contrast with process
activity.

program execution agent. The MQ Workflow
component that manages the implementations of
program activities, such as .EXE and .DLL files.

program registration. Registering a program in
MQ Workflow so that sufficient information is
available for managing the program when it is
executed by MQ Workflow.

R

role. A responsibility that is defined for staff
members. Role is one of the criteria that can be
used to dynamically assign activities to people.

S

scheduling server. The MQ Workflow
component that schedules actions based on time
events, such as resuming suspended work items,
or detecting overdue processes.

server. The servers that make up an MQ
Workflow system are called Execution Server,
Administration Server, Scheduling Server, and
Cleanup Server.

sink. The symbol that represents the output
container of a process or a block activity.

source. The symbol that represents the input
container of a process or a block activity.

specific resource assignment. A method of
assigning resources to processes or activities by
specifying their user IDs.

standard client. The MQ Workflow component,
which enables creation and control of process
instances, working with worklists and work
items, and manipulation of personal data of the
logged-on user.

start activity. An activity that has no incoming
control connector.

start condition. The condition that determines
whether an activity with incoming control
connectors can start after all of the incoming
control connectors are evaluated.

subprocess. A process instance that is started by
a process activity.

substitute. The person to whom an activity is
automatically transferred when the person to
whom the activity was originally assigned is
declared as absent.

support tool. A program that end users can
start from their worklists in the MQ Workflow
Client to help complete an activity.

symbolic reference. A reference to a specific
data item, the process name, or activity name in
the description text of activities or in the
command-line parameters of program
registrations. Symbolic references are expressed
as pairs of percent signs (%) that enclose the
fully-qualified name of a data item, or either of
the keywords _PROCESS or _ACTIVITY.

system. The smallest MQ Workflow unit within
an MQ Workflow domain. It consists of a set of
the MQ Workflow servers.

system group. A set of MQ Workflow systems
that share the same database.

system administrator. (1) A predefined role that
conveys all authorizations and that can be
assigned to exactly one person in an MQ
Workflow system. (2) The person at a computer
installation who designs, controls, and manages
the use of the computer system.

T

top-level process. A process instance that is not
a subprocess and is started from a user’s process
instance list or from an application program.

transition condition. A logical expression
associated with a conditional control connector. If

Glossary 847

specified, it must be true for control to flow
along the associated control connector. See also
control connector.

translate. The action that converts a process
model into a Runtime process template.

U

user ID. An alphanumeric string that uniquely
identifies an MQ Workflow user.

V

verify. The action that checks a process model
for completeness.

W

workflow. The sequence of activities performed
in accordance with the business processes of an
enterprise.

Workflow Management Coalition (WfMC). A
non-profit organization of vendors and users of
workflow management systems. The Coalition’s
mission is to promote workflow standards for
workflow management systems to allow
interoperability between different
implementations.

workflow model. Synonym for process model.

work item. Representation of work to be done
in the context of an activity in a process instance.

work item set of a user. All work items
assigned to a user.

worklist. A list of work items assigned to a user
and retrieved from a workflow management
system.

worklist view. List of work items and
notifications selected from a work item set of a
user according to filter criteria which are an
attribute of a worklist. It can be sorted according
to sort criteria if specified for this worklist.

848 Programming Guide

Bibliography

To order any of the following publications,
contact your IBM representative or IBM
branch office.

MQSeries Workflow publications

This section lists the publications included
in the MQSeries Workflow library.
v IBM MQSeries Workflow: List of Workstation

Server Processor Groups, GH12-6357, lists
the processor groups for MQ Workflow.

v IBM MQSeries Workflow: Concepts and
Architecture, GH12-6285, explains the basic
concepts of MQ Workflow. It also
describes the architecture of MQ
Workflow and how the components fit
together.

v IBM MQSeries Workflow: Getting Started
with Buildtime, SH12-6286, describes how
to use Buildtime of MQ Workflow.

v IBM MQSeries Workflow: Getting Started
with Runtime, SH12-6287, describes how
to get started with the MQ Workflow
Client.

v IBM MQSeries Workflow: Programming
Guide, SH12-6291, explains the application
programming interfaces (APIs).

v IBM MQSeries Workflow: Installation Guide,
SH12-6288, contains information and
procedures for installing and customizing
MQ Workflow.

v IBM MQSeries Workflow: Administration
Guide, SH12-6289, explains how to
administer an MQ Workflow system.

Related publications
v IBM MQSeries: Application Programming

Guide, SC33-0807.
v IBM MQSeries: System Administration,

SC33-1873.

v Frank Leymann, Dieter Roller, Production
Workflow: Concepts and Techniques (New
Jersey: Prentice Hall PTR, 1999)

v Frank Leymann, Dieter Roller,
″Workflow-based Applications″, IBM Systems
Journal 36, no. 1 (1997): 102–123, - you can
also refer to the Internet:
http://www.almaden.ibm.com/journal/
sj/361/leymann.html

v Workflow Handbook 1997 published in
association with WfMC. Edited by Peter
Lawrence.

v Extensible Markup Language (XML) 1.0,
W3C Recommendation February 1998:
http://www.w3.org/TR/REC-xml

© Copyright IBM Corp. 1993, 2001 849

850 Programming Guide

Index

A
accessor API calls

API calls 109
bool 109
char 137, 144
date/time 110
default values 106
definition 106
enumeration 111
error handling 11
integer 142
IsNull 142
lifetime of values 107
long 136, 142, 145
multi-valued 138
object 145
object valued 139, 140
return codes 107
string 137, 144
vector 35

action API calls
definition 150
error handling 10

activation time 256
activity implementation

activity instance 152
API calls 151
container 161, 181, 191
error handling 10
general information 152
input container 369, 373
Java High Performance

Bridge 192
output container 371, 376, 378,

380
passthrough 416
program identification 152
pseudo code 161, 181, 191
remote passthrough 472
return code 162, 181, 191
user identification 152
XML 219

activity instance
accessor API calls 256
action API calls 259
activation time 256
activity implementation 152
array methods 260
assignment 256

activity instance (continued)
basic API calls 255
category 256
comparison 255, 256
completeness 255
constructor 255
copy 255
creation 255
deallocation 255
definition 341
description 256
destructor 255
documentation 256
duplication 255
empty 255
end time 256
enumeration, escalation 114
enumeration, state 115
enumeration, type 118
error reason 257, 291
exit condition 257
exit mode 257
expiration time 257
finish, force 341
first notification 257
icon 257
implementation 257
input container 347
input container, name 257
kind 255
last modification time 257
last state change time 257
monitor 80
monitor, process instance 349
name 257, 258
notification 423
notification state 259
notification time 257, 258
notified persons 257, 258
object ID 258
output container 352
output container, name 258
overview 255
persons, notified 257, 258
priority 258
process administrator 258
process instance name 258
process instance state 258
program, implementing 257

activity instance (continued)
refresh 354
restart, force 344
retrieval 363, 624
second notification 258
staff 258
start condition 259
start mode 258
start time 259
starter 259
state 259
subprocess instance,

retrieval 356
support tools 259
symbol layout 259
system 258
system group 258
terminate 359
vector API calls 263

activity instance notification

accessor API calls 261, 296
action API calls 262
activity instance, kind 261
activity instance, object ID 262
activity instance, retrieval 363
array methods 263
assignment 261
basic API calls 260
category 297
comparison 261
constructor 260
copy 260
creation 260
creation time 297
deallocation 260
definition 363
delete 489
description 297
description, set 500
destructor 260
documentation 297
duplication 260
end time 297
error reason 261
exit condition 261
exit mode 262
expiration time 261
first notification 261
icon 297

© Copyright IBM Corp. 1993, 2001 851

activity instance notification
(continued)

implementation 262
input container, name 297
kind 260
last modification time 297
monitor, process instance 492
name 298
name, set 503
notification state 262
notification time 261, 262
object ID 298
object identifier 363
output container, name 298
overview 260
owner 298
priority 262
process administrator 298
process instance 495
process instance, name 298
process instance, state 298
process instance ID 298
program, implementing 262
received reason 298
received time 298
refresh 498
second notification 262
staff 262
start condition 262
start mode 262
start time 298
start tool 366
state 262
support tools 262
system 298
system group 298
transfer 505
update 145, 298

agent
accessor API calls 264
API calls 264
basic API calls 264
bound 265
configuration ID 264
construction 264
context 265
listener 264
listener,remove 265
locator policy 265
name 265
overview 264
program execution agent 264
version 266

allocation
conversion 98

allocation (continued)
copy 99
declaration 94
explicit 167, 205
implicit 167, 205

APIENTRY 164
application

activity implementation 9, 161,
247

activity implementation,
ActiveX 181

activity implementation,
Java 191

client 9, 159, 247
client, ActiveX 179
client, Java 189
support tool 9, 161, 191, 247
support tool, ActiveX 181

array
ActiveX 40
activity instance notification 263
activity instances 260
container 270
container element 274
control connector instance 274
exceptions 40
execution serviceactivity instance

notification 286
Java 43
point 306
process instance list 312
process instance notification 314
process template list 319
query result 34
string 329
work item 335
worklistactivity instance

notification 336
assign reason 112
assignment 97
asynchronous protocol 19
audit setting 113
authentication

exit 27
authorization

definitions 83
explicit 83
implicit 83
process administrator 83
system administrator 83
XML message 216

authorization exit
activate 30
Autenticate() 28
authenticate() 28

authorization exit (continued)
DeInit() 28
error handling 31
Init() 28
interface 28
Logon() 409
overview 27
RTAuthenticationExitTypeServer 30

B
basic API calls

definition 93
error handling 11
return codes 93

bool definition 159

C
calling convention 164
category

activity instance 256
item 297
person, administrator 303
person, authorized for 302
process instance 308
process template 316

check in 629
check out 632
client concentrator 186
code page 164
comparison 97
compatibility

C++ language 827, 832
C-language 827, 831
FlowMark 827
REXX language 827
Visual Basic language 827, 832

compile
bool, string, vector 159
calling convention 164
compilers supported 165
FMC_APIENTRY 164
headers 163
library files 163
platforms supported 165

complete
data view 100
function 100, 107

concepts
memory management 10, 167
object access 9
object management 205
result object 10
session 9

constructor
activity instance 255
copy 99

852 Programming Guide

constructor (continued)
declaration 94

container

accessor API calls 266
activity implementation 151,

161, 181, 191
activity implementation API

calls 269
analyze structure 54
array 45
array index 46
array methods 270
basic API calls 266
basic data types 45
binary 267
CCSID 269
container element 46
conversion 98
data member 45
data structure 45
definition 45
double 268
element 268
element overview 270
element vector 274
example 46
exception 77
fixed data members 48
float 267
fully qualified name 45
input, activity instance 347
input, process template 595
input, work item 646
input container 369, 373
leaf 46, 54
leaf, number 267, 268
leaves 269
long 267
member 269
member, number 269
name in dot notation 45
output, activity instance 352
output, work item 648
output container 371, 376, 378,

380
overview 266
predefined data members 47
process instance, output

container 543
read-only 369
read/write 369
return codes 77
stream, inbound 268
stream, outbound 267
string 267

container (continued)
structural member 46, 55
support tool 151, 161, 181, 191
type 56, 269
value 46, 64, 72
value, set 269

container element
access 63
array 58, 61, 271
array methods 274
assignment 271
binary 271
cardinality 272
comparison 271
constructor 271
copy 271
deallocation 271
definition 46
destructor 271
double 272
duplication 271
element, nested 272
empty 271
exception 77
float 271
leaf 46, 58, 59
leaf, number 273
leaves 273
long 271
member 273
member, number 273
name 57, 272, 273
return codes 77
string 272
structural member 58, 60
type 46, 57, 273
value 69, 274

control connector instance
accessor API calls 275
array methods 274
assignment 275
basic API calls 275
bend point 275
comparison 275
constructor 275
copy 275
deallocation 275
destructor 275
duplication 275
empty 275
enumeration, state 119
enumeration, type 120
kind 275
monitor 80
name 276

control connector instance
(continued)

overview 275
source 276
state 276
target 276
transition condition 276
vector 276

conversion
container 98
read-only container 324, 325
read/write container 325, 326

copy
constructor 99
container 98
conversion 98
function 99

D
data access

models 19
pull 19
push 19
view 100, 107

date/time
accessor API calls 277
assignment 277
basic API call 277
comparison 277
constructor 277
current 277
day 277
destructor 277
empty 277
hour 277
minute 277
month 277
overview 276
second 277
string format 277
string representation 277
valid range 278
year 277

deallocation
declaration 99
function 35, 99
vector 35

debug
activity implementation 16
authorization 16
client application 15
dynamic link library 16
enablement 16
executable 16
prerequisites 15

Index 853

debug (continued)
support tool 16
test database 15

description
activity instance 256
activity instance notification 297
error 280
item 297, 500
persistent list 514
person 302
process instance 308, 552
process instance list 300, 384
process instance notification 297
process template 317
process template list 300, 392
program data 321
program template 323
work item 297
worklist 300, 399

destructor
declaration 99

development kit
requirement 7

DLL options
accessor API calls 278
assignment 278
basic API calls 278
constructor 278
copy 278
creation 278
deallocation 278
destructor 278
duplication 278
empty 278
entry point 278
execution, fenced 278
file name 278
keep loaded 278
overview 278
path name 278

documentation
activity instance 256
activity instance notification 297
item 297
process instance 308
process instance notification 297
process template 317
work item 297

E
empty

function 101, 106
object 101

end time
activity instance 256

end time (continued)
item 297
process instance 308
work item 297

enumeration
assign reason 112
audit setting 113
escalation, activity instance 114
escalation, process instance 132
EXE options style 123
execution mode 122
execution user 123
kind, execution data 121
program retrieval, work

item 135
state, activity instance 115
state, connector 119
state, item 128
state, process instance 133
time period, external service 124
type, activity instance 118
type, connector 120
type, implementation data 127
type, item 131
type, persistent list 132

equal
comparison 97
function 97

error
accessor API calls 291
ActiveX exceptions 14
basic API calls 291
handling 10
Java exceptions 11
overview 291
reason 291
reason, activity instance 257
reason, activity instance

notification 261
reason, work item 333
result object 169
return codes 11
XML 227

exception, Java 291
exceptions

ActiveX GUI controls 14
Java 11

EXE options
accessor API calls 287
basic API calls 287
overview 287
style 123

execution data 21
accessor API calls 280
activity instance notification 280

execution data 21 (continued)
assignment 280
basic API calls 280
constructor 280
container 281
copy 280
creation 280
deallocation 280
destructor 280
duplication 280
empty 280
error description 280
kind 121, 280
object ID 281
overview 280
process instance 281
process instance notification 281
user context 281
work item 281

execution mode 122
execution service

accessor API calls 282, 328, 329
action API calls 284
activity implementation API

calls 286
activity instance creation 282
activity instance notification

creation 282
allocation 281
allocation, for system 281
allocation, for system group 281
array methods 286
assignment 282
basic API calls 281
compariosn 282
constructor 281
container creation,

read-only 284
container creation,

read/write 284
copy 281
creation 281
deallocation 282
definition 383
destructor 282
duplication 281
instance monitor creation 282
log off 407
log on 409
logged-on user 329
logon status 329
overview 247, 281
passthrough 416
password, set 615
PEA startup 420

854 Programming Guide

execution service (continued)
person creation 282
process instance creation 283
process instance list 384
process instance list creation 283
process instance notification

creation 283
process template creation 283
process template list 391
process template list

creation 283
program data creation 283
program execution management

API calls 286
program template creation 284
query, activity instance

notification 423
query, item 431
query, process instance 446
query, process instance list 437
query, process instance

notification 440
query, process template 454
query, process template list 451
query, work item 459
query, worklist 466
remote passthrough 472
session, begin 409
session, end 407
session, passthrough 416
session, remote passthrough 472
session creation 284
session ID 284
settings, logged on user 617
system 329
system group 329
timeout 329
timeout, set 329
user ID 329
work item creation 283
worklist 398
worklist creation 283

execution user 123
exit condition

activity instance 257
activity instance notification 261
work item 333

exit mode
activity instance 257
activity instance notification 262
work item 333

expiration
activity instance 257
activity instance notification 261
suspension, process instance 310

expiration (continued)
work item 333

External service options
accessor API calls 289
basic API calls 288
overview 288
time period 124

F
filter

activity instance notification 423
definition 33
item 431
persistent list 509, 517
process instance 446
process instance list 384, 385
process instance notification 440
process template 454
process template list 392
work item 459
worklist 398, 399

finish
activity instance, force 341
work item 638
work item, force 640

FlowMark Version 2 827
FMC_APIENTRY 164
FmcjActivityInstance

API calls 255
ForceFinish() 341
ForceRestart() 344
InContainer() 347
ObtainProcessMonitor() 349
OutContainer() 352
Refresh() 354
SubProcessInstance() 356
Terminate() 359

FmcjActivityInstanceNotification
ActivityInstance() 363
API calls 260
Delete() 489
ObtainProcessMonitor() 492
ProcessInstance() 495
Refresh() 498
SetDescription() 500
SetName() 503
StartTool() 366
Transfer() 505
Update() 145

FmcjContainer
API calls 266
container element 369
definition 369
InContainer() 369
leaves 369

FmcjContainer (continued)
OutContainer() 371
RemoteInContainer() 373
RemoteOutContainer() 376
SetOutContainer() 378
SetRemoteOutContainer() 380

FmcjContainerElement
accessor API calls 271
API calls 270
basic API calls 270

FmcjControlConnectorInstance
API calls 275

FmcjDateAndTime
API calls 276

FmcjDllOptions
API calls 278

FmcjError
API calls 291

FmcjExecutionData
API calls 280

FmcjExecutionService
API calls 281
CreateProcessInstanceList() 384
CreateProcessTemplateList() 391
CreateWorklist() 398
definition 383
Logoff() 407
Logon() 409
Passthrough() 416
PEAStartUp() 420
Query

ActivityInstanceNotifications() 423
QueryItems() 431
QueryProcessInstanceLists() 437
QueryProcessInstanceNotifications() 440
QueryProcessInstances() 446
QueryProcessTemplateLists() 451
QueryProcessTemplates() 454
QueryWorkitems() 459
QueryWorklists() 466
Receive() 469
Refresh() 613
RemotePassthrough() 472
SetPassword() 615
SetPersonAbsent() 475
TerminateReceive() 477
UserSettings() 617

FmcjExeOptions
API calls 287

FmcjExternalOptions
API calls 288

FmcjGlobal
API calls 292

FmcjImplementationData
API calls 293

Index 855

FmcjInstanceMonitor
API calls 294
ObtainBlockMonitor() 481
ObtainInstanceMonitor() 481
ObtainProcessMonitor() 481
Refresh() 484

FmcjItem
API calls 296
Delete() 489
ObtainProcessMonitor() 492
ProcessInstance() 495
Refresh() 498
SetDesription() 500
SetName() 503
Update() 145

FmcjMessage
API calls 299

FmcjPEA
API calls 279

FmcjPersistentList
API calls 300
Delete() 509
Refresh() 512
SetDescription() 514
SetFilter() 517
SetSortCriteria() 520
SetThreshold() 522

FmcjPerson
API calls 301
Refresh() 527
SetAbsence() 529
SetSubstitute() 531

FmcjPoint
API calls 306

FmcjProcessInstance
API calls 307
Delete() 535
InContainer() 538
ObtainProcessMonitor() 540
OutContainer() 543
Refresh() 545
Restart() 548
Resume() 550
SetDescription() 552
SetName() 555
Start() 557
Suspend() 560
Terminate() 563
Transfer() 505

FmcjProcessInstanceList
API calls 312
Delete() 509
QueryProcessInstances() 567
Refresh() 512
SetDescription() 514

FmcjProcessInstanceList (continued)
SetFilter() 517
SetSortCriteria() 520
SetThreshold() 522

FmcjProcessInstanceNotification
API calls 313
Delete() 489
ObtainProcessMonitor() 492
ProcessInstance() 495
Refresh() 498
SetDescription() 500
SetName() 503
Transfer() 505
Update() 145

FmcjProcessTemplate
API calls 315
CreateAndStartInstance() 571
CreateInstance() 579
Delete() 582
ExecuteProcessInstance() 585
InitialInContainer() 595
ProgramTemplate() 597
Refresh() 600

FmcjProcessTemplateList
API calls 318
Delete() 509
QueryProcessTemplates() 603
Refresh() 512
SetDescription() 514
SetFilter() 517
SetSortCriteria() 520
SetThreshold() 522

FmcjProgramData
API calls 320

FmcjProgramTemplate
API calls 322
Execute() 607

FmcjReadOnlyContainer
API calls 324

FmcjReadOnlyContainerHolder
API calls 325

FmcjReadWriteContainer
API calls 325

FmcjResult
API calls 327

FmcjService
API calls 328
definition 613
PEAShutDown() 418
Refresh() 613
SetPassword() 615
UserSettings() 617

FmcjStringVector
vector 330

FmcjSymbolLayout
API calls 331

FmcjWorkitem
ActivityInstance() 624
API calls 332
CancelCheckOut() 627
CheckIn() 629
CheckOut() 632
Delete() 489
Finish() 638
ForceFinish() 640
ForceRestart() 643
InContainer() 646
ObtainProcessMonitor() 492
OutContainer() 648
ProcessInstance() 495
Refresh() 498
Restart() 650
SetDescription() 500
SetName() 503
Start() 652, 655
Terminate() 657
Transfer() 505
Update() 145

FmcjWorklist
API calls 335
Delete() 509
QueryActivityInstance

Notifications() 661
QueryItems() 665
QueryProcessInstance

Notifications() 668
QueryWorkitems() 671
Refresh() 512
SetDescription() 514
SetFilter() 517
SetSortCriteria() 520
SetThreshold() 522

fully qualified name 45
function

accessor 106
action 150
activity implementation 151
basic 93
categories 93
client/server call 150
program execution

management 155
vector accessor 35

G
global services

accessor API calls 292
basic API calls 292
overview 292

856 Programming Guide

H
handle

object 9
High Performance Bridge 192

I
icon

activity instance 257
activity instance notification 297
graphical information 331
item 297
process instance 308
process instance notification 297
process template 317
program data 321
program template 323
work item 297

implementation data
accessor API calls 293
activity instance 257
activity instance notification 262
basic API calls 293
basis, implementation data 125
DLL 278
EXE 287
external service 288
overview 293
platform 125
program 320
program template 322
type 127
work item 333

input container
activity implementation 161,

181, 191
activity instance 257, 347
activity instance notification 297
item 297
needed 309, 317
process instance 308, 538
process instance notification 297
process template 317, 595
program data 321
program template 323
support tool 161, 181, 191
work item 297, 646

instance monitor
accessor API calls 295
action API calls 295
activity instance 80, 295
assignment 295
basic API calls 295
comparison 295
constructor 295

instance monitor (continued)
control connector instance 80,

295
copy 295
creation 295
deallocation 295
definition 481
destructor 295
duplication 295
monitor, block activity 481
monitor, process activity 481
object ID 295
obtain 79, 81
overview 79, 294
ownership 81
process instance 349, 492, 540
refresh 484

item

accessor API calls 296
action API calls 299
assignment 296
basic API calls 296
category 297
comparison 296
completeness 296
constructor 296
copy 296
creation 296
creation time 297
deallocation 296
definition 489
delete 489
description 297
description, set 500
destructor 296
documentation 297
duplication 296
empty 296
end time 297
filter 431, 459
icon 297
input container, name 297
kind 296
last modification time 297
monitor, process instance 492
mutator API calls 298
name 298, 503
object ID 298
object identifier 489
output container, name 298
overview 296
owner 298
process administrator 298
process instance, name 298
process instance, retrieval 495

item (continued)
process instance, state 298
process instance ID 298
properties 500
query 431
received reason 298
received time 298
refresh 498
sort criteria 434, 463
start time 298
state 128, 621
system 298
system group 298
threshold 434, 463
transfer 505
type 131
update 298
vector 299
worklist 398

J
Java High Performance Bridge 192

K
kind

function 101

L
last modification time

activity instance 257
activity instance notification 297
item 297
process instance 309
process instance notification 297
process template 317
work item 297

last state change time
activity instance 257
process instance 309

locale 164
log off 407
logon

absence setting 411
default 410
present 410
session, execution server 409
session mode 410

M
memory

management 10, 167
ownership 10
thread 168, 205

message
accessor API calls 299
overview 299

Index 857

message (continued)
text 300

message interface 207
method

accessor 106
action 150
activity implementation 151
basic 93
categories 93
client/server call 150
program execution

management 155
migration

C++ programs 832
C-language programs 831
compatibility mode 831, 832
steps 832
Visual Basic programs 832

modules 3
MQSeries message descriptor 209

N
name

activity instance 257, 258
activity instance notification 298
agent 265, 266
agent, set 266
container 269
container element 272, 273
control connector instance 276
data structure 269, 273
DLL 278
entry point 278
EXE 288
external service 290
implementation 257, 262, 333
input container 297, 308
input container, activity

instance 257
item 298, 503
name 607
organization 309, 317
output container 298, 309, 317
output container, activity

instance 258
parent, process instance 310
persistent list 509
person, first name 302
person, last name 304
person, middle name 304
person, organization 304
person, organizations 304
person, roles 304
process instance 258, 298, 309,

311, 555, 571, 579, 586

name (continued)
process instance list 300, 384,

567
process instance notification 298
process template 310, 317
process template list 300, 391,

392, 603
program 257, 262, 333
role 310, 318
symbol position 331
syntax 503, 555, 571, 579, 586
system 258, 298, 305, 311, 329
system group 258, 298, 329
top level process instance 311
work item 298
working directory 288
worklist 300, 398, 399, 661

notification
activity instance 257, 258
activity instance

notification 261, 262
activity instance notification,

query 423, 661
filter 423, 440
item, query 431
persons, activity instance 257
process instance 309
process instance notification 314
process instance notification,

query 440, 668
sort criteria 427, 442, 443
threshold 427, 443
work item 333
worklist, create 398

O
object

access 9
management 205
memory management 10
optional property 106
persistent 167, 205
primary property 107
secondary property 107
transient 167, 205

object identifier
activity instance 258, 262, 279,

333
activity instance

notification 298, 363
control connector source 276
control connector target 276
execution data 281
instance monitor 295
item 489

object identifier (continued)
process instance 298, 310, 535
process instance list 300
process instance notification 298
process template 317, 571
process template list 300, 310
work item 298, 621
worklist 300

output container
activity implementation 161,

181, 191
activity instance 352
process instance 543
work item 648

owner
instance monitor 81
persistent list 509
process instance list 384, 567
process template list 391, 603
transfer, item 505
worklist 398, 661

P
passthrough 416, 472
password, set 615
persistent list

accessor API calls 300
action API calls 301
basic API calls 300
definition 33, 509
delete 509
description 300, 384, 392, 399
description, set 514
empty 300
filter 300, 384, 385, 392, 398, 399,

509
filter, set 517
name 300, 384, 391, 392, 398,

399, 509
object ID 300
overview 249, 300
owner 300, 384, 391, 398, 509
private 301
process instance 384
process template list 391
public 301
query 567, 603
query, process instance list 437
query, worklist 661, 665, 668,

671
refresh 512
sort criteria 300, 384, 387, 392,

394, 399, 403, 509
sort criteria, set 520
threshold 300, 384, 392, 398, 509

858 Programming Guide

persistent list (continued)
threshold, set 522
type 132, 301, 384, 391, 398, 509
worklist 398

person

absence 302, 475, 529
absence, resetting 304
accessor API calls 301
action API calls 305
administrator 303
assignment 301
authorization 302, 303, 304, 305

administrator 303
categories 302, 303
category administrator 303
definition 303
for me 305
operation 303
persons 303, 305
process definition 303
staff definition 303
topology definition 303

basic API calls 301
categories 302
category administor 303
comparison 301
completeness 301
constructor 301
copy 301
creation 301
deallocation 301
definition 527
description 302
destructor 301
duplication 301
empty 301
first name 302
last name 304
level 304
manager 303, 304
middle name 304
notification 257, 258
oranization 304
organization 304
overview 301
password, set 615
person ID 304
phone 305
refresh 527
role 304
role coordination 304
settings, logged on user 617
substitute 305, 531
substitutee 305
system 305

person (continued)
user ID 305

point
accessor API calls 306
array methods 306
assignment 306
basic API calls 306
comparison 306
constructor 306
copy 306
creation 306
deallocation 306
destructor 306
duplication 306
empty 306
overview 306
vector 307
x-coordinate 306
y-coordinate 306

predefined data members 47
_ACTIVITY 48
_ACTIVITY_INFO 50

CoordinatorOfRole 51
definition 50
Duration 53
Duration2 53
LowerLevel 52
MembersOfRoles 50
Organization 51
OrganizationType 52
People 52
PersonToNotify 53
Priority 50
UpperLevel 52

_PROCESS 48
_PROCESS_INFO 49

definition 49
Duration 50
Organization 49
ProcessAdministrator 49
Role 49

_PROCESS_MODEL 48
_RC 48
activity information 47, 50
fixed 47, 48
process information 47, 49

primary view
definition 107
IsComplete() 100

priority
activity instance 258
activity instance notification 262
execute program 324
work item 333

process administrator 83

process administrator 83
(continued)

activity instance 258
activity instance notification 298
process instance 310
process instance notification 298
process template 318
work item 298

process instance

accessor API calls 307
action API calls 311
assignment 307
audit mode 308
basic API calls 307
category 308
comparison 307
completeness 307
constructor 307
copy 307
create 571, 579
creation 307
creation time 308
creator 308
deallocation 307
definition 535
delete 535
description 308, 552
destructor 307
documentation 308
duplication 307
empty 307
end time 308
escalation 132
execute 585
filter 446
icon 308
input container 538
input container, name 308
input container, needed 309
last modification time 309
last state change time 309
monitor 540
name 309, 535, 555, 571, 579,

586
notification 440
notification state 310
notification time 309
notified person 309
object ID 310
object identifier 535
organization 309
output container 543
output container, name 309
overview 307
parent name 310

Index 859

process instance (continued)
persistent list, create 384
process administrator 310
process template ID 310
process template name 310
query 446
refresh 545
restart 548
resume 550
role 310
sort criteria 448
start 557, 571
start time 310
starter 310
state 133, 310, 535
suspend 560
suspension expiration time 310
suspension time 311
system 311
terminate 563
threshold 448
top level name 311
vector 315

process instance list

accessor API calls 300
action API calls 301, 312
array methods 312
assignment 312
basic API calls 312
comparison 312
constructor 312
copy 312
creation 312, 384
deallocation 312
delete 509
description 300, 384
description, set 514
destructor 312
duplication 312
filter 300, 384, 385
filter, set 517
name 300, 384, 567
object ID 300
overview 312
owner 300, 384, 567
private 301
public 301
query 437, 567
refresh 512
sort criteria 300, 384, 387
sort criteria, set 520
threshold 300, 384
threshold, set 522
type 132, 301, 384, 567
vector 313

process instance notification
accessor API calls 296, 314
action API calls 314
array methods 314
assignment 314
basic API calls 313
comparison 314
constructor 313
copy 313
creation 313
deallocation 313
delete 489
description, set 500
destructor 313
duplication 313
kind 313
monitor,process instance 492
name, set 503
notification time 314
overview 313
process instance 495
refresh 498
transfer 505
update 145
vector 315

process template

accessor API calls 316
action API calls 318
assignment 316
audit mode 316
basic API calls 316
category 316
comparison 316
completeness 316
constructor 316
copy 316
create process instance 571, 579
creation 316
creation time 317
deallocation 316
definition 571
delete 582
description 317
destructor 316
documentation 317
duplication 316
empty 316
excution user 123
execute process instance 585
execution mode 122
filter 454
icon 317
input container 595
input container, name 317
input container, needed 317

process template (continued)
last modification time 317
name 317, 571
object ID 317
object identifier 571
organization 317
output container, name 317
overview 315
persistent list, create 391
process administrator 318
program template 597, 607
query 454
refresh 600
role 318
sort criteria 456
start process instance 571
threshold 456
valid-from date 571
valid from time 318
vector 320

process template list
accessor API calls 300
action API calls 301, 319
array methods 319
assignment 319
basic API calls 319
comparison 319
constructor 319
copy 319
creation 319, 391
deallocation 319
delete 509
description 300, 392
description, set 514
destructor 319
duplication 319
filter 300, 392
filter, set 517
name 300, 391, 392, 603
object ID 300
overview 318
owner 300, 391, 603
private 301
public 301
query 451, 603
refresh 512
sort criteria 300, 392, 394
sort criteria, set 520
threshold 300, 392
threshold, set 522
type 132, 301, 391, 603
vector 319

profile
defaults 383
user 383

860 Programming Guide

profile (continued)
workstation 383

program data
accessor API calls 321
assignment 321
basic API calls 320
comparison 321
constructor 320
copy 320
creation 320
deallocation 320
description 321
destructor 320
duplication 320
empty 321
execution mode 321
execution user 321
icon 321
implementation 321
input container 321
output container 321
overview 320
stream format 321
trusted 322
unattended mode 321

program execution agent
activity implementation API

calls 279
activity instance, object ID 279
overview 279
program ID 279
shutdown 418
start 420
user ID 279

program execution management API
calls

API calls 155
error handling 10
program execution agent 151

program execution server
definition 220

program identification 152
program template

assignment 322
comparison 322
constructor 322
copy 322
creation 322
deallocation 322
definition 607
description 323
destructor 322
duplication 322
empty 322
execute 607

program template (continued)
execution mode 323
execution user 323
icon 323
implementation 323
input container 323
input container, needed 323
output container 323
output container, needed 323
overview 322
stream format 322
structures from activity 323
trusted 323
unattended mode 323
valid from time 323

programming
activity implementation 9, 247
client 9, 247
prerequisites 7
support tool 9, 247

property
optional 106
primary 107
secondary 107

protocol
asynchronous 19
supported 19
synchronous 19
unsolicited 19, 410

pull data 19
push

data, receive 469
enable 20
kind of information 20
receive 21
session mode 410
terminate receive 477

push data 19

Q
query

activity instance notification 423
array of objects 34
data 33
item 431
process instance 446
process instance list 437
process instance list, process

instances 567
process instance notification 440
process template list 451
process template list, process

templates 603
vector of objects 34
work item 459
worklist 466, 661

query (continued)
worklist, items 665
worklist, process instance

notification 668
worklist, work item 671

R
read-only container

accessor API calls 266
activity implementation, input

container 369, 373
activity instance, input

container 347
activity instance, output

container 352
assignment 324
basic API calls 324
comparison 324
constructor 324, 325
conversion 324, 325
copy 324
creation 324, 325
deallocation 324
definition 369
destructor 324
duplication 324
holder 325
overview 324
process instance, output

container 543
work item, input container 646

read-only container holder

accessor API calls 325
basic API calls 325
overview 325

read/write container

accessor API calls 266, 326
activity implementation, output

container 371, 376, 378, 380
assignment 326
basic API calls 325
binary, set 326
comparison 326
constructor 326
conversion 325, 326
copy 326
creation 326
deallocation 326
definition 369
destructor 326
float, set 326, 327
long, set 326, 327
mutator API calls 326
overview 325

Index 861

read/write container (continued)
process instance, input

container 538
process template, input

container 595
string, set 326, 327
value, set 327
work item, output container 648

receive data 469
remote

terminate, subprocess 563
restart

activity instance, force 344
work item 650
work item, force 643

result object
access 328
accessor API calls 328
basic API calls 327
definition 169
destructor 327
error information 10
information contained 169
message text 328
origin 328
overview 327
parameter 328
retrieval 328
return code 328
thread 169

return code
access API calls 107
action API calls 10
activity implementation 162,

181, 191
basic API calls 93
error handling 10
list of 11

S
secondary view

definition 107
IsComplete() 100

service
accessor API calls 328
action API calls 329
execution service 383
logged-on user 329
logon status 329
overview 328
password, set 615
settings, logged on user 617
system 329
system group 329
timeout 329

service (continued)
timeout, set 329
user ID 329

session
absence setting 411
begin 383, 409, 416, 472
default 410
end 383, 407
establish 25
establish, execution server 383
log off 383, 407
log on 383, 409
mode 410
overview 25
passthrough 416
present 410
remote passthrough 472
requirement 9
unified logon 410

sort criteria
activity instance notification 427
definition 34
item 434, 463
persistent list 509, 520
process instance 448
process instance list 384, 387
process instance

notification 442, 443
process template 456
process template list 392, 394
work item 463
worklist 399, 403

staff
activity instance 258
activity instance notification 262
authorization 303
work item 333

start
process instance 557, 571
support tool 366
work item 652, 655

start condition
activity instance 259
activity instance notification 262
work item 334

start mode
activity instance 258
activity instance notification 262
work item 333

start time
activity instance 259
process instance 310
work item 298

starter
activity instance 259

starter (continued)
process instance 310

state
activity instance 259
activity instance notification 262
control connector instance 276
item 621
last change time 309
process instance 258, 298, 310,

535
work item 334, 621

stateless
application 87
AsStream 88
FromStream 88
identity-based objects 88
PersistentObject 88
PersistentOID 88
server 87
SessionID 88
value-based objects 88

string
array methods 329
vector 330

string definition 159
subprocess

resume 550
suspend 560
terminate 563

support tool
activity instance 259
activity instance notification 262
input container 151, 161, 181,

191
program identification 152
pseudo code 161, 181, 191
work item 334

suspension
process instance 560

symbol layout
accessor API calls 331
activity instance 259
assignement 331
basic API calls 331
comparison 331
constructor 331
copy 331
creation 331
deallocation 331
destructor 331
duplication 331
empty 331
icon position 331, 332
name position 331, 332
overview 331

862 Programming Guide

synchronous protocol 19
syntax diagrams

how to read xiii
syntax rules

description, item 500
description, persistent list 514
description, process instance 552
name, item 503
name, process instance 555, 571,

579, 586
XML DTD 237

system
execution server 383
execution service 329
person 305
process instance 258, 298, 311

system administrator 83
system group

execution server 383
execution service 329
name 298
process instance 258, 311

T
thread 168, 205

considerations 196
Java CORBA Agent 185
number of 186
safeness 168
thread pool 186
worker thread 186

threshold
activity instance

notifications 427
definition 34
items 434, 463
multi-thread libraries 164
persistent list 509, 522
process instance list 384
process instance

notifications 443
process instances 448
process template list 392
process templates 456
worklist 398

transient object 9
type

persistent list 509
private, persistent list 509
private, process instance list 567
private, process template

list 603
private, worklist 661
process instance list 384, 567
process template list 391, 603

type (continued)
public, persistent list 509
public, process instance list 567
public, process template list 603
public, worklist 661
worklist 398, 661

U
unified logon 410
unsolicited information 19
user

activity implementation 152
default values, profile 383
password, set 615
settings 617

V
vector

accessor function 35
activity instance

notifications 263
activity instances 263
container elements 274
control connector instances 276
deallocate 35
definiiton 159
first element 36
implementation data 294
items 299
next element 36
overview 330
points 307
process instance lists 313
process instance

notifications 315
process instances 315
process template lists 319
process templates 320
query result 34
return codes 35
size 37
work items 335
worklist 337

view
data view 107
IsComplete() 100
primary 107
secondary 107

W
work item

accessor API calls 296, 332
action API calls 334
activity instance, retrieval 624
activity instance ID 333
activity instance kind 333

work item (continued)
array methods 335
assignment 332
basic API calls 332
cancel checkout 627
category 297
check in 629
check out 632
comparison 332
constructor 332
copy 332
creation 332
creation time 297
deallocation 332
definition 621
delete 489
description 297
description, set 500
destructor 332
documentation 297
duplication 332
end time 297
error reason 291, 333
exit condition 333
exit mode 333
expiration time 333
finish 638
finish, force 640
first notification 333
icon 297
implementation 333
input container 646
input container, name 297
kind 332
last modification time 297
monitor, process instance 492
name 298
name, set 503
notification state 334
notification time 333
object ID 298
object identifier 621
output container 648
output container, name 298
overview 332
owner 298
persistent list, create 398
priority 333
process administrator 298
process instance 495
process instance, name 298
process instance, state 298
process instance ID 298
program retrieval 135
query 431, 459

Index 863

work item (continued)
query, worklist 671
received reason 298
received time 298
refresh 498
restart 650
restart, force 643
second notification 333
staff 333
start 652, 655
start condition 334
start mode 333
start time 298
state 334, 621
support tool 334
system 298
system group 298
terminate 657
transfer 505
update 145, 298
vector 335

workflow model 3
worklist

accessor API calls 300, 336
action API calls 301, 336
array methods 336
assignment 335
basic API calls 335
beep option 336
comparison 335
constructor 335
copy 335
creation 335, 398
deallocation 335
definition 661
delete 509
description 300, 399
description, set 514
destructor 335
duplication 335
filter 300, 398, 399
filter, set 517
name 300, 398, 399, 661
object ID 300
overview 335
owner 300, 398, 661
private 301
public 301
query 466, 665, 668, 671
query, activity instance

notification 661
refresh 512
sort criteria 300, 399, 403
sort criteria, set 520
threshold 300, 398

worklist (continued)
threshold, set 522
type 132, 301, 398, 661
vector 337

workstation profile

default values 383

X
XML

activity implementation 219
authentication 216
authorization 216
code page support 214
container 212
correlation 211
DTD 237
error handling 227
example, container 211
example, create/start process

instance 216
example, execute process

instance 213
message content 210
message format 209, 237
message interface 207
user context data 211
user-defined program execution

server 220
XML message header 211

864 Programming Guide

Readers’ Comments — We’d Like to Hear from You

IBM MQSeries Workflow
Programming Guide
Version 3.3

Publication No. SH12-6291-06

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6291-06

SH12-6291-06

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Part Number: CT89AIE
Program Number: 5697-FM3

Printed in Denmark by IBM Danmark A/S

SH12-6291-06

(1
P)

P/
N:

CT
89
AI
E

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
M

Q
Se

rie
s

W
or

kf
lo

w
Pr

og
ra

m
m

in
g

G
ui

de
Ve

rs
io

n
3.

3

	Contents
	About this book
	Who should read this book
	How to get additional information
	How to send your comments
	How this book is organized
	How to read the syntax diagrams

	Summary of Changes
	Summary of deprecated API calls
	Part 1. Programming concepts
	Chapter 1. Understanding the programming concept
	The role of the programmer in modeling a process

	Chapter 2. Programming interfaces
	Chapter 3. Prerequisites for programming language API
	Chapter 4. Building an MQ Workflow application
	Overview
	Concepts of the programming language API
	Concepts of the XML message interface

	Handling errors
	List of return codes
	List of ActiveX GUI Control exceptions

	Debugging considerations
	Prerequisites
	Creating a test database
	Debugging a client application
	Debugging an activity implementation or support tool

	Chapter 5. Client/server communication and data accessmodels
	Synchronous client/server communication
	Asynchronous client/server communication
	The push data access model
	Receiving information

	Chapter 6. An MQ Workflow session
	Chapter 7. Using an authentication exit
	Coding an authentication exit
	Activating an authentication exit
	Error handling

	Chapter 8. Querying data
	Persistent lists
	Using filters, sort criteria, and thresholds
	Handling collections
	C-language vectors
	Return codes
	FmcjXxxVectorDeallocate
	FmcjXxxVectorFirstElement
	FmcjXxxVectorNextElement
	FmcjXxxVectorSize
	C-language examples
	Using First/NextElement() calls
	Using NextElement() call only

	ActiveX arrays
	Exceptions
	Add
	GetAt
	GetSize
	RemoveAll
	RemoveAt
	SetAt
	Events
	NewObject
	ObjectRemove

	Java arrays

	Chapter 9. Handling containers
	Data structure/container type
	Data member/container element
	The XML message interface

	Predefined data members
	Fixed data members
	Process information data members
	Activity information data members

	Determining the structure of an unknown container
	Determining the leaves
	Determining the structural members
	Determining the type
	Analyzing a container element
	Determining the name or type of a container element
	Determining the structural properties of a container element
	Determining the leaves of a container element
	Determining the structural members of a container element
	Determining the elements of an array

	Accessing a known container element
	Accessing a value of a container
	Accessing a value of a container element
	Setting a value of a container
	Return codes/FmcException

	Chapter 10. Monitoring a process instance
	Obtaining an process instance monitor
	Ownership of monitors

	Chapter 11. Authorization considerations
	Chapter 12. Stateless server support
	Chapter 13. Types of API calls
	Basic API calls
	Return codes
	Allocation
	Assignment
	Comparison/equality
	Conversion
	Copy
	Deallocation
	IsComplete()
	IsEmpty()
	Kind()
	C-language Example: using basic functions
	C++ Example: using basic methods

	Accessor/mutator API calls
	Primary/secondary properties
	Return codes
	Accessing a value of type bool
	Accessing a value of type date/time
	Accessing an enumerated value
	Assign reason
	Audit setting
	Activity instance escalation
	Activity instance state
	Activity instance type
	Connector state
	Connector type
	Execution data kind
	Execution mode
	Execution user
	EXE options style
	External service options time period
	Implementation data basis
	Implementation data type
	Item state
	Item type
	Persistent list type
	Process instance escalation
	Process instance state
	Work item program retrieval

	Accessing a value of type integer
	Accessing a value of type string
	Accessing a multi-valued property
	Accessing an object valued property
	Accessing a pointer valued property
	Determining whether an optional property is set
	Setting a value of type integer
	Setting a value of type string
	Setting an object valued property
	Updating an object
	C-language example: accessing values
	C++ example: accessing values

	Action API calls
	Activity implementation API calls
	Accessing general information
	Dynamic link libraries

	Program execution management API calls

	Part 2. The C and C++ APIs
	Chapter 14. An MQ Workflow client application
	Chapter 15. An MQ Workflow activity implementation orsupport tool
	Chapter 16. Compiling and linking
	Supported compilers
	C++ prerequisite header files
	Sample compile statements

	Chapter 17. Memory management
	Chapter 18. The result object
	Part 3. ActiveX controls
	Chapter 19. Component overview
	Functional overview
	Workflow Control overview
	How to work with an ExecutionService
	How to work with lists
	ProcessTemplateList Control overview
	ProcessInstanceList Control overview
	Worklist Control overview
	Monitor Control overview

	Chapter 20. An MQ Workflow client application
	Chapter 21. An MQ Workflow activity implementation orsupport tool
	Part 4. The JAVA API
	Chapter 22. Threading considerations for the Java CORBAAgent
	JNDI locator policy
	OSA, IOR, and COS locator policies
	RMI locator policy
	Microsoft JVM/Internet Explorer V4/V5 and RMI

	Chapter 23. An MQ Workflow client application
	Chapter 24. An MQ Workflow activity implementation
	The Java High Performance Bridge
	Setup on Windows platforms
	Setup on UNIX
	Programming considerations
	Maintaining state between invocations
	Program termination
	Threading considerations
	Output to standard out

	Chapter 25. Compiling
	JNDI locator policy

	Chapter 26. How to use the MQ Workflow Java API fromwithin IBM VisualAge for Java
	Running the MQ Workflow Java CORBA Agent inside the WebSphere TestEnvironment

	Chapter 27. Troubleshooting
	Chapter 28. Object management
	Garbage Collection when using Java API classes

	Part 5. The XML message interface
	Chapter 29. The MQ Workflow XML message
	Relevant MQSeries Message Descriptor (MQMD) fields
	The application data
	The MQ Workflow XML message header
	Container data
	Execute process instance example

	Code page support

	Chapter 30. Sending requests to MQ Workflow
	Supported functions
	XML input queue
	Authentication and authorization
	Create and start a process instance example

	Chapter 31. Invoking an activity implementation
	User-defined program execution server (UPES)
	Messages sent to a UPES
	ActivityImplInvoke message
	ActivityExpired message
	TerminateProgram message

	Authorization
	Synchronous invocation example
	UPES response example

	Chapter 32. Error Handling
	MQ Workflow XML message life cycle
	General error processing
	Sending a response

	Detailed error processing
	Wrong message format in the MQMD
	Wrong message name or XML document not well formed
	Message processing errors
	Errors when returning a response
	Backout count exceeded
	The GeneralError message

	Chapter 33. The MQ Workflow XML message format
	Part 6. Using the MQ Workflow APIs
	Chapter 34. Using the MQ Workflow Runtime API
	Overview of the Runtime API
	API classes

	API calls per class
	ActivityInstance
	ActivityInstanceArray
	ActivityInstanceNotification
	ActivityInstanceNotificationArray
	ActivityInstanceNotificationVector
	ActivityInstanceVector
	Agent
	Container
	ContainerArray
	ContainerElement
	ContainerElementArray
	ContainerElementVector
	ControlConnectorArray
	ControlConnectorInstance
	ControlConnectorInstanceVector
	DateAndTime/ FmcjDateTime/ FmcjCDateTime
	DllOptions
	ExecutionAgent/FmcjPEA
	ExecutionData
	ExecutionService
	ExecutionServiceArray
	ExeOptions
	ExternalOptions
	FmcError/FmcjError
	FmcException
	Global
	ImplementationData
	ImplementationDataVector
	InstanceMonitor
	Item
	ItemVector
	Message
	PersistentList
	Person
	Point
	PointArray
	PointVector
	ProcessInstance
	ProcessInstanceList
	ProcessInstanceListArray
	ProcessInstanceListVector
	ProcessInstanceNotification
	ProcessInstanceNotificationArray
	ProcessInstanceNotificationVector
	ProcessInstanceVector
	ProcessTemplate
	ProcessTemplateList
	ProcessTemplateListArray
	ProcessTemplateListVector
	ProcessTemplateVector
	ProgramData
	ProgramTemplate
	ReadOnlyContainer
	ReadOnlyContainerHolder
	ReadWriteContainer
	Result
	Service
	StringArray
	StringVector
	SymbolLayout
	Workitem
	WorkitemArray
	WorkitemVector
	Worklist
	WorklistArray
	WorklistVector

	Part 7. API action and activity implementation calls
	Chapter 35. Activity instance actions
	ForceFinish()
	ForceRestart()
	InContainer()
	ObtainProcessMonitor()/ObtainInstanceMonitor
	OutContainer()
	Refresh()
	SubProcessInstance()
	Terminate()

	Chapter 36. Activity instance notification actions
	ActivityInstance()
	StartTool()

	Chapter 37. Container activity implementation API calls
	InContainer()
	OutContainer()
	RemoteInContainer()
	RemoteOutContainer()
	SetOutContainer()
	SetRemoteOutContainer()

	Chapter 38. Execution service actions
	CreateProcessInstanceList()
	CreateProcessTemplateList()
	CreateWorklist()
	Logoff()
	Logon()
	Passthrough()
	PEAShutDown()
	PEAStartUp()
	QueryActivityInstanceNotifications()
	QueryItems()
	QueryProcessInstanceLists()
	QueryProcessInstanceNotifications()
	QueryProcessInstances()
	QueryProcessTemplateLists()
	QueryProcessTemplates()
	QueryWorkitems()
	QueryWorklists()
	Receive()
	RemotePassthrough()
	SetPersonAbsent()
	TerminateReceive()

	Chapter 39. Instance monitor actions
	ObtainInstanceMonitor()/ ObtainBlockMonitor()/ ObtainProcessMonitor()
	Refresh()

	Chapter 40. Item actions
	Delete()
	ObtainProcessMonitor()/ObtainInstanceMonitor
	ProcessInstance()
	Refresh()
	SetDescription()
	SetName()
	Transfer()

	Chapter 41. Persistent list actions
	Delete()
	Refresh
	SetDescription()
	SetFilter()
	SetSortCriteria()
	SetThreshold()

	Chapter 42. Person actions
	Refresh()
	SetAbsence()
	SetSubstitute()

	Chapter 43. Process instance actions
	Delete()
	InContainer()
	ObtainProcessMonitor()
	OutContainer()
	Refresh()
	Restart()
	Resume()
	SetDescription()
	SetName()
	Start()
	Suspend()
	Terminate()

	Chapter 44. Process instance list actions
	QueryProcessInstances()

	Chapter 45. Process template actions
	CreateAndStartInstance()
	CreateInstance()
	Delete()
	ExecuteProcessInstance()
	InitialInContainer()
	ProgramTemplate()
	Refresh()

	Chapter 46. Process template list actions
	QueryProcessTemplates()

	Chapter 47. Program template actions
	Execute()

	Chapter 48. Service actions
	Refresh()
	SetPassword()
	UserSettings()

	Chapter 49. Work item actions
	ActivityInstance()
	CancelCheckOut()
	CheckIn()
	CheckOut()
	Finish()
	ForceFinish()
	ForceRestart()
	InContainer()
	OutContainer()
	Restart()
	Start()
	StartTool()
	Terminate()

	Chapter 50. Work listactions
	QueryActivityInstanceNotifications()
	QueryItems()
	QueryProcessInstanceNotifications()
	QueryWorkitems()

	Part 8. Working with ActiveX controls
	Chapter 51. The ExecutionService Control
	Chapter 52. The list controls
	Chapter 53. The Monitor Control
	Chapter 54. Typical scenario of ActiveX Control methods
	Chapter 55. MQWorkflowCtrl
	Methods
	ConfigurationID
	Connect
	ContainerArray
	CurrentDateAndTime
	DateAndTime
	Disconnect
	ExecutionServiceArray
	NewActivityInstance
	NewActivityInstanceNotification
	NewContainer
	NewExecutionService
	NewInstanceMonitor
	NewPerson
	NewProcessInstance
	NewProcessInstanceList
	NewProcessInstanceNotification
	NewProcessTemplate
	NewProcessTemplateList
	NewProgramData
	NewProgramTemplate
	NewWorkitem
	NewWorklist
	ProgramID
	RemoteUserID
	SetConfigurationID
	StringArray
	UserID

	Chapter 56. ContainerCtrl
	Properties
	Methods
	Container
	ProgramID
	RemoteUserID
	UserID

	Events
	Error

	Chapter 57. Methods supported by all GUI controls
	AboutBox
	ReadUserSettings
	RemoveGUI
	SetHelpFile
	ShowContextMenu
	WriteUserSettings

	Chapter 58. Methods supported by all list controls
	ConnectGUI
	ContextMenuDelete
	ContextMenuListProperties
	ContextMenuListSettings
	ContextMenuListRefresh
	ContextMenuProperties
	ContextMenuViewIcon
	ContextMenuViewList
	ContextMenuViewReport
	ContextMenuViewSmallIcon
	FindFirst
	FindNext
	GetItemAt
	GetItemCount

	Chapter 59. Events triggered by all GUI controls
	Click
	DblClick
	KeyPress

	Chapter 60. Events triggered by all non-monitor GUIcontrols
	Error
	KeyDown
	KeyUp
	MouseDown
	MouseMove
	MouseUp

	Chapter 61. Events triggered by all list controls
	ViewChanged

	Chapter 62. ExecutionServiceCtrl
	Properties
	Methods
	ConnectGUI
	ContextMenuDeleteProcInstList
	ContextMenuDeleteProcTempList
	ContextMenuDeleteWorklist
	ContextMenuLogoff
	ContextMenuLogon
	ContextMenuLogonDialog
	ContextMenuNewProcInstList
	ContextMenuNewProcTempList
	ContextMenuNewWorklist
	ContextMenuProperties
	ContextMenuRefresh
	ContextMenuRefreshProcInstLists
	ContextMenuRefreshProcInstances
	ContextMenuRefreshProcTempLists
	ContextMenuRefreshProcTemplates
	ContextMenuRefreshWorkitems
	ContextMenuRefreshWorklists
	ContextMenuUserInformation

	Events
	ItemCollapsed
	ItemCollapsing
	ItemExpanded
	ItemExpanding
	SelChanged
	SelChanging

	Chapter 63. ProcessTemplateListCtrl
	Properties
	Methods
	ContextMenuCreateInstance
	RefreshProcessTemplateList

	Events

	Chapter 64. ProcessInstanceListCtrl
	Properties
	Methods
	ContextMenuRestart
	ContextMenuResume
	ContextMenuResumeDeep
	ContextMenuStart
	ContextMenuSuspend
	ContextMenuSuspendDeep
	ContextMenuTerminate
	RefreshProcessInstanceList

	Events

	Chapter 65. WorklistCtrl
	Properties
	Methods
	ContextMenuFinish
	ContextMenuForceFinish
	ContextMenuForceRestart
	ContextMenuRestart
	ContextMenuSelectAll
	ContextMenuStart
	ContextMenuStartTool
	ContextMenuTransfer
	PushOption
	RefreshWorklist
	SetPushOption

	Events
	ActivityInstanceNotificationChanged
	ProcessInstanceNotificationChanged
	WorkitemChanged
	Starting

	Chapter 66. MonitorCtrl
	Properties
	Methods
	ActivityProperties()
	ConnectGUI
	ControlConnectorProperties
	OpenMonitor
	Refresh

	Events
	AfterRefreshing
	BeforeRefreshing
	BlockActivityClick
	BlockActivityDoubleClick
	ControlConnectorClick
	ControlConnectorDoubleClick
	DoActivityEnter
	DoControlConnectorEnter
	DoRefresh
	DoShowContextMenu
	Error
	MonitorOpen
	ProcessActivityClick
	ProcessActivityDoubleClick
	ProgramActivityClick
	ProgramActivityDoubleClick

	Part 9. Examples and scenarios
	Chapter 67. Scenarios
	Chapter 68. Examples
	Chapter 69. How to create persistent lists
	Create a process instance list (ActiveX)
	Create a process instance list (C-language)
	Create a process instance list (C++)
	Create a process instance list (Java)

	Chapter 70. How to query persistent lists
	Query worklists (ActiveX)
	Query worklists (C-language)
	Query worklists (C++)
	Query worklists (Java)

	Chapter 71. How to query a set of objects
	Query process instances from a process instance list (ActiveX)
	Query process instances (C-language)
	Query process instances (C++)
	Query process instances (Java)
	Query work items from a worklist (ActiveX)
	Query work items from a worklist (C-language)
	Query work items from a worklist (C++)
	Query work items from a worklist (Java)

	Chapter 72. An activity implementation
	Programming an executable (C-language)
	Programming an executable (C++)
	Programming an executable (Java)

	Part 10. Appendixes
	Appendix A. FlowMark Version 2 compatibility mode
	Deviations from FlowMark Version 2
	FlowMark Version 2 C-language programs
	Running an existing application program

	FlowMark Version 2 Visual Basic programs
	Running an existing application program

	FlowMark Version 2 C++ programs
	Running an existing application program
	Using MQ Workflow Version 3 methods

	Appendix B. Notices
	Trademarks

	Glossary
	Bibliography
	MQSeries Workflow publications
	Related publications

	Index
	Readers’ Comments — We'd Like to Hear from You

