<|lI!

IBM MQ Worktlow for z/OS

Programming Guide

Version 3.3

SC33-7031-05

<|lI!

IBM MQ Worktlow for z/OS

Programming Guide

Version 3.3

SC33-7031-05

Note!
Before using this information and the product it supports, be sure to read the general information under

Fifth Edition (March 2001)

This edition applies to version 3, release 3 of IBM MQSeries Workflow for z/OS (product number 5655-BPM) and to
all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC33-7031-04.

© Copyright International Business Machines Corporation 1999, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
FiguresVi
Tablesix

Aboutthisbook Xi

Who should read this bookxi
How to get additional information.xi
How to send your commentsxi
How this book is organizedxi
How to read the syntax diagrams xii

Summary of Changes Xv
Summary of deprecated API calls. . . xvii

Chapter 1. MQSeries Workflow

programming concepts . .1
Understanding the programming concept. .1
The role of the programmer in modeling a process 1
Programming interfaces . .2
Prerequisites for programming language API .3
Building an MQ Workflow applrcatron .3
Overview . .3
Handling errors .4
Memory management . . .1
Client/server communication and data access
models oo 12
Synchronous Cl1ent / server commun1cat1on oL 12
Asynchronous client/server communication . . 13
The push data access model.13
Receiving information.14
An MQ Workflow session15
Using an authentication exit.16
Coding an authentication exit17
Activating an authentication exit19
Error handling19
Queryingdata20
Persistent lists20
Using filters, sort criteria, and thresholds .. .20
Handling collections . . A |
C-language and COBOL Vectors A |
COBOL examples27
Javaarrays30
Handling containers . . B]
Data structure/container type B 1 |
Data member/container element31
Predefined data members. . . . L0 32
Determining the structure of an unknown
container37
Accessing a known contamer element48
Accessing a value of a container49
Accessing a value of a container element . . . 56
Setting a value of a container62
Return codes/FmcException.67

© Copyright IBM Corp. 1999, 2001

Monitoring a process instance . .
Obtaining an process instance monitor
Ownership of monitors

Authorization considerations

Stateless server support

Types of API calls
Basic API calls .o
Accessor/mutator API calls .

Action API calls
Activity implementation API Calls

Chapter 2. Language interfaces

C and C++ interface .
An MQ Workflow client appllcatlon
An MQ Workflow activity implementation
Compiling and linking .

Java interface .
Threading cons1clerat10ns for the]ava CORBA
Agent .
An MQ Workflow cl1ent appllcatlon
An MQ Workflow activity implementation
Compiling
How to use the MQ Workﬂow]ava API from
within IBM VisualAge for Java
Troubleshooting .
Object management .

COBOL interface
Calling the API.
String handling.
Coding an MQ Workflow cl1ent appl1cat1on in
COBOL . S
Coding an MQ Workflow act1v1ty
implementation in COBOL .
Compiling and linking
Mapping C to COBOL data types
Name changes between COBOL and C.
Example of the use of strings .

The XML message interface
The MQ Workflow XML message
Sending requests to MQ Workflow .
Invoking an activity implementation
Error Handling . .
The MQ Workflow XML message format .

Chapter 3. Interfacing with the
Program Execution Server.
CICS considerations .
IMS considerations .
Program mapping via the Program Execut1on
Server .

Introductron .

Program mapping defm1t1ons .

Mapping algorithm

Supported program mapping def1n1t10n element

types .

. 67
. 68
. 69
. 69
.72
. 76
. 76
.92

. 133
. 133

. 137
. 137
. 137
. 138
. 139
. 140

. 141
. 143
. 143
. 145

. 145
. 146
. 147
. 148
. 148
. 148

. 148

. 149
. 151
. 152
. 152
. 162
. 163
. 163
. 168
. 170
. 175
. 182

. 189
. 189
. 189

. 189
. 189
. 191

. 194

. 199

iii

Grammar.203
Usertype 214
Size of program mappmg 1nterface def1n1t1on
elements 216
Activation of program mappmg def1n1t1ons .. 217
Troubleshooting . . B
Additional mapping examples218
Program execution server exits 224
Introduction. . . e o224
Interfaces for all ex1ts 225
Special considerations for exit programmmg . 227
Program mapping exit228
Program invocation exit. 231
Notificationexit239

Chapter 4. Using the MQ Workflow
Runtime API.249

Overview of the Runtime API.249
APIclasses253
APl calls perclass.256
Activitylnstance256
Act1V1tylnstanceN0t1f1cat1on o259
ActivitylnstanceNotificationVector 261
ActivitylnstanceVector262
Agent.262
Container. . . 1 oY
ContamerElement oL 267
ContainerElementVector.269
ControlConnectorIlnstance269
ControlConnectorInstanceVector 270
DateAndTime/ ch]DateTlme/ ch]CDateTlme 271
DIllOptions L272
ExecutionAgent/ ch]PEA e 272
ExecutionData273
ExecutionService274
ExeOptions278
ExternalOptions279
FmcError/FmcjError281
FmcException282
Global.28
ImplementationData283
ImplementationDataVector 284
InstanceMonitor284
Item285
ItemVector288
Message288
PersistentList288
Person.28
Point293
PointVector2%
ProcessInstance.29
ProcessInstancelist298
ProcessInstancelistVector 298
ProcessInstanceNotification. 298
ProcessInstanceNotificationVector. 299
ProcessInstanceVector300
ProcessTemplate300
ProcessTemplateList302
ProcessTemplateListVector303
ProcessTemplateVector303
ProgramData304

iV MQSeries Workflow for z/OS Programming Guide

ProgramTemplate .
ReadOnlyContainer

ReadOnlyContainerHolder .

ReadWriteContainer .
Result .

Service

StringVector .
SymbolLayout .
Workitem.
WorkitemVector
Worklist .
WorklistVector .

Chapter 5. API action and activity

implementation calls

Activity instance actions.
ForceFinish()
ForceRestart()
InContainer()

ObtamProcessMomtor() .

OutContainer() .
Refresh() .
SubProcessInstance() .
Terminate() .

Act1v1ty instance notification act1ons

ActivityInstance() .
StartTool()

Container activity 1mplementat1on API calls .

InContainer()

OutContainer() .

SetOutContainer() .
Execution service actions

CreateProcessInstanceList() .
CreateProcessTemplateList()

CreateWorklist()
Logoff()

Logon()
Passthrough()

QueryAct1V1tyInstanceN0t1f1cat1ons()

Queryltems()

QueryProcesslnstanceLlsts()
QueryProcessInstanceNotifications() .
QueryProcessInstances() .
QueryProcessTemplateLists()

QueryProcessTemplates()
QueryWorkitems().
QueryWorklists()
Receive() .
SetPersonAbsent()
TerminateReceive()
Instance monitor actions.

ObtainInstanceMonitor() /
ObtainBlockMonitor()/ ObtainProcessMonitor() .
N A5}
. 427
. 427
. 429
. 432
. 434
. 436
. 438

Refresh() .

Item actions .
Delete()
Obta1nProcessMon1tor()
ProcessInstance() .
Refresh() .
SetDescription()
SetName()

. 305
. 307
. 307
. 308
. 309
. 310
. 311
. 311
. 312
. 314
. 315
. 316

. 317
. 317
. 317
. 320
. 322
. 324
. 326
. 328
. 330
. 332
. 334
. 335
. 337
. 339
. 340
. 341
. 343
. 345
. 346
. 352
. 357
. 365
. 367
. 373
. 375
. 381
. 388
. 390
. 395
. 400
. 402
. 407
. 413
. 415
. 418
. 420
. 422

422

Transfer().

Persistent list actions .

Delete()
Refresh .
SetDescription()
SetFilter().
SetSortCriteria()
SetThreshold() .

Person actions .
Refresh() .
SetAbsence().
SetSubstitute() .

Process instance actions .
Delete()

InContainer() .o
ObtainProcessMonitor() .
OutContainer() .
Refresh() .

Restart() .

Resume() .
SetDescrlptlon()
SetName()

Start() .

Suspend()

Terminate() .

Process instance list actions.
QueryProcessInstances() .

Process template actions.
CreateAndStartInstance()
Createlnstance()

Delete() .
ExecuteProcessInstance()
InitiallInContainer()
ProgramTemplate()
Refresh() .

Process template list actions
QueryProcessTemplates()

Program template actions
Execute() .

Service actions .

Refresh() .
SetPassword() .
UserSettings()

Work item actions .
ActivityInstance() .
CancelCheckOuty() .
CheckIn().

CheckOut() .
Finish()
ForceFinish()
ForceRestart()
InContainer()
OutContainer() .

. 440
. 443
. 443
. 445
. 447
. 449
. 451
. 453
. 455
. 455
. 457
. 459
. 461
. 462
. 464
. 466
. 468
. 471
. 473
. 474
. 476
. 478
. 481
. 483
. 485
. 487
. 488
. 490
. 491
. 496
. 499
. 502
. 509
. 511
. 514
. 516
. 516
. 519
. 519
. 524
. 524
. 526
. 528
. 530
. 532
. 534
. 536
. 539
. 543
. 545
. 548
. 550
. 552

Restart() .
Start() .
StartTool()
Terminate() .

Work list actions . .
QueryAct1v1tyInstanceNot1f1cat1ons()
Queryltems()
QueryProcessInstanceNotlflcatlons()
QueryWorkitems().

Chapter 6. Examples

How to create persistent lists . .
Create a process instance list (C- language).
Create a process instance list (C++) .

Create a process instance list (Java) .

Create a process instance list (COBOL) .
How to query persistent lists .

Query worklists (C-language) .

Query worklists (C++)

Query worklists (Java)

Query worklists (COBOL) .

How to query a set of objects . .
Query process instances (C-language)
Query process instances (C++).

Query process instances (Java).
Query process instances (COBOL)

Query work items from a worklist (C-language)

Query work items from a worklist (C++) .
Query work items from a worklist (Java) .
Query work items from a worklist (COBOL)
An activity implementation.
Programming an executable (C- language)
Programming an executable (C++)
Programming an executable (Java)
Programming an activity implementation
(COBOL) .

Notices .
Trademarks .

Glossary

Bibliography. . .
MQSeries Workflow for z/OS pubhcatlons
MQ Workflow publications. .
Workflow publications

MQSeries publications

Other useful publications

Licensed books .

Index .

Contents

. 554
. 556
. 558
. 560
. 562
. 563
. 565
. 568
. 571

. 575
. 575
. 575
. 577
. 578
. 582
. 585
. 586
. 588
. 590
. 594
. 600
. 601
. 602
. 603

. 607
611

. 612
. 614

618

. 622
. 623
. 624
. 626

. 642

. 647
. 648

. 651

. 657
. 657
. 657
. 657
. 657
. 657
. 658

. 659

\'%

Vi MQSeries Workflow for z/OS Programming Guide

Figures

LN .

AN

10.

11.

12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.
32.
33.
34.
35.
36.
37.
38.

39.
40.

MQ Workflow Client APIs . .2
Accessing a result object in the C- language 5
Accessing a result objectinC++6
Accessing a result object in COBOL (via

PERFORM)7

Accessing a result ob]ect in COBOL (V1a CALL) 8
Handling data sent by an MQ Workflow server 15
Reading a vector in C (using

First/NextElement() calls). 24
Reading a vector in C (using NextElement()

only).26
Reading a Vector in COBOL (usmg
First/NextElement calls)27
Reading a vector in COBOL (using

NextElement calls only)29
Instance monitors for process instances and
activity instances of type Block68
Stateless server support72
C example using basic functions84
C++ example using basic methods.86
COBOL example using basic calls (via

PERFORM) 88
COBOL example using bas1c calls (V1a CALL) 90
Accessing valuesinC.125
Accessing values in C++. . . . 127
Accessing values in COBOL (via PERFORM) 129
Accessing values in COBOL (via CALL) 131
Sending requests to MQ Workflow 168
Starting an activity implementation 170
Program mapping illustration 190
Program mapping control flow 190
How to create a program mapping 191
Default forward /backward mapping 193
Usertype example 194
Default forward mapping 1llustrat10n 195
Forward2: Non-default forward mapping
illustration . . . 195
Non-default backward mappmg Backwardl
illustration 196
Backward2: Expl1c1t mappmg 1llustrat10n 196
Forward mapping with constants. 198
Backward mapping with constants 198
Relationship between mapping elements 203
Usertype exit 215
Setting up client/server commurucatlon 249
Querying objects 250
Dealing with process mstances and (work)

items 0251
Monitoring a process mstance .o .. 252
Handling data sent by an MQ Workﬂow

server 253

© Copyright IBM Corp. 1999, 2001

41.
42.

43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.

55.
56.

57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.

69.

Process instance states
Work item states - process mstance state
running
Work item states process mstance state
suspending or suspended
Work item states - process instance state
terminating or terminated
Sample C program to create a process
instance list . e
Sample C++ program to create a process
instance list . o
Sample Java program to create a process
instance list .
Sample COBOL program to create a process
instance list (via PERFORM) .o
Sample COBOL program to create a process
instance list (via CALL) .
Sample C program to query workhsts
Sample C++ program to query worklists
Sample Java program to query worklists
Sample COBOL program to query worklists
(via PERFORM). .
Sample COBOL program to query workhsts
(via CALL)
Sample C program to query process mstances
Sample C++ program to query process
instances . e
Sample Java program to query process
instances . .
Sample COBOL program to query process
instances (via PERFORM)
Sample COBOL program to query process
instances (via CALL) .
Sample C program to query work 1tems from
a worklist . .
Sample C++ program to query work 1tems
from a worklist .
Sample Java program to query work 1tems
from a worklist .
Sample COBOL program to query work 1tems
from a worklist (via PERFORM) . .
Sample COBOL program to query work items
from a worklist (via CALL) .
Sample activity implementation
Sample activity implementation
Sample activity implementation
Sample activity implementation
PERFORM) . .
Sample activity 1mplemer1tat1or1 (COBOL via
CALL) . .

C—language)
C++)
Java)
COBOL, via

~ A~ o~ o~

. 462

. 531

. 531

. 532

. 575

. 577

. 578

. 582

. 584

586
588
590

. 594

. 597

601

. 602

. 603

. 607

. 609

. 611

. 612

. 614
. 618
. 620
623
624
626

. 642

. 644

vii

viii MQSeries Workflow for z/OS Programming Guide

Tables

List of return codes

Authorization for persons. .

JCLs provided for C/C++ programs
Copybooks provided for COBOL programs
JCLs provided for COBOL programs
Mapping C to COBOL data types.
Function name mapping .

Class prefix abbreviations

Abbreviations for COBOL nammg

SO PN

—_

© Copyright IBM Corp. 1999, 2001

Rule mapping with no constant definition

. 70
. 140

151
151

. 152
. 153
. 159
. 160

197

11.
12.
13.

14.

15.
16.

Mapping with constant definition.

Mapping combinations

C/C++ data type mappings (legacy
application (C/C++) to FDL types (structure))
COBOL data type mappings (legacy
application (COBOL) to FDL types
(structure))

Interface element size .

Context types

. 197
. 200

201

. 202
. 217
. 238

ix

X MQSeries Workflow for z/OS Programming Guide

About this book

This book describes how to use the IBM MQSeries Workflow for OS/390 for
0S/390 Runtime Application Programming Interfaces (hereafter called MQ
Workflow APIs) and also how to invoke API requests by passing messages in
Extensible Markup Language (XML). The first part of the book describes the
concepts underlying the APIs while the remainder of the book provides a reference
for the API action calls. The book also describes the MQ Workflow predefined data
structures.

Note: All references to the operating system OS/390 (R) in this book also apply to
z/OS.

Who should read this book

This book is intended for programmers who design and implement programs
using an MQ Workflow API and who may participate in designing a workflow
model with IBM MQSeries Workflow for OS/390. It assumes that readers are
experienced programmers and that they understand the concepts of modeling
processes.

How to get additional information
Visit the MQSeries Workflow home page at

http- / /www saftware ihm com /ts/mgseries/warkflow]
For a list of additional publications, refer to ﬂd.QJAZm:kﬂmALpnbhca.uonsLod

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
MQSeries Workflow documentation, choose one of the following methods:

¢ Send your comments by e-mail to: swsdid@de.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of MQSeries Workflow, and, if applicable, the specific location of the text
you are commenting on (for example, a page number or table number).

* Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

How this book is organized

[‘Notices” on page 647 describes some notices and trademarks.

4 . : 7

provides an
overview of how to design applications to work with the MQ Workflow workflow
manager.

'Chapter 2 Tanguage interfaces” on page 137 discusses the API from the

perspective of the language used: C, C++, Java, or COBOL.

© Copyright IBM Corp. 1999, 2001 xi

http://www.software.ibm.com/ts/mqseries/workflow

['Chapter 3. Interfacing with the Program Execution Server” on page 189 describes

the interface with the Program Execution Server, including the use of program
mappings to bring Workflow API containers into a format acceptable by legacy
applications and how to use exits.

G . : ”

provides an
overview of the classes supported by the APL

'Chapter 5 API action and activity implementation calls” on page 317 describes the

API calls that enable applications to manipulate worklists and work items, to work
with process instances and container data, and to log on to and log off from an
MQ Workflow server.

4 7

the APL

provides some examples that show how to use

The back of the book includes a glossary that defines terms as they are used in this
book, a bibliography, and an index.

How to read the syntax diagrams

xii

Throughout this book, syntax is described the following way; all spaces and other
characters are significant:

* Read the syntax diagrams from left to right, from top to bottom, following the
main path of the line.

The »»— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next line.
The »— symbol indicates that a statement is continued from the previous line.
The —»< symbol indicates the end of a statement.

 Diagrams can be broken into fragments. A fragment is indicated by vertical bars
with the name of the fragment between the bars. The fragment itself follows the
same syntactical rules as the main diagram.

»—-I a-fragment i >

* Required items appear on the horizontal line, the main path.

»»>—required-item ><

* Optional items appear below (or above) the main path.

»»>—required-item |_ <
optional-itemJ

* If you can choose from one or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

MQSeries Workflow for z/OS Programming Guide

A\
A

»>—required-i tem—[requ ired-choicel
required-choiceZ—|

If choosing one of the items is optional, the entire stack appears below the main
path.

A\
A

»>—required-item
bptional-choicel:‘
ptional-choice?

An arrow returning to the left, above the main path, indicates an item that can
be repeated.

»»—required-item———repeatable-item

v
A

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

»>—required-item———repeatable-item ><

Keywords appear in uppercase, for example, NAME. They must be spelled
exactly as shown. Variables appear in lowercase italic letters, for example, string.
They represent user-supplied values.

About this book Xxiii

Xiv MQSeries Workflow for z/OS Programming Guide

Summary of Changes

Changes to this document for IBM MQSeries Workflow for OS/390 Version 3.3 are:
* API extensions are added to support stateless server implementations, that is:

— The execution service exposes new API calls to retrieve a session
representation and to recreate sessions, that is, SessionID() and
SetSessionContext() are added.

— New API calls are added so that all major objects can be externally
represented by some string, that is, ProcessInstanceListPersistentOid(),
ProcessTemplateListPersistentOid(), WorklistPersistentOid(),
InstanceMonitorPersistentOid(), ReadOnlyContainerAsStream(),
ReadWriteContainerAsStream(), ProgramDataAsStream(), and
ProgramTemplateAsStream() are added.

— The execution service exposes new API calls to recreate objects from their OID
or from a stream, that is, PersistentActivityInstance(),
PersistentActivityInstanceNotification(), PersistentInstanceMonitor(),
PersistentPerson(), PersistentProcessInstance(), PersistentProcessInstanceList(),
PersistentProcessInstanceNotification(), PersistentProcessTemplate(),
PersistentProcessTemplateList(), PersistentWorkitem(), PersistentWorklist(),
ProgramDataFromStream(), ProgramTemplateFromStream(),
ReadOnlyContainerFromStream(), and ReadWriteContainerFromStream() are
added.

* A new instance monitor is added. The instance monitor state can be passed
between applications - see above - and nested monitors can be deleted without
caring for the nesting level. Appropriate API calls are added to access the new
monitor. Using the existing monitor is deprecated, that is, support will be
removed in a later release or version.

* API extensions are added to support process repair actions, that is,
ActivityInstanceForceFinish() and ActivitylnstanceForceRestart() are added.
These API calls allow to pass containers. The appropriate work item actions now
allow to pass containers.

¢ The execution service supports a new way to log on with user credentials, which
are passed to a user-provided authentication exit.

* A new activity instance and work item state Expired is supported, which can be
used in queries for work items. The ExpirationTime() can be queried.

* The activity instance exposes a new API call Refresh().

* The process instance exposes a new API call to retrieve the OID of the associated
process template, PersistentOidOfProcessTemplate().

* The container size can be 4 MB. CICS COMMAREA and IMS IOAREA
restrictions must, however, be considered.

+ Conversion between read/write and read-only containers is added.
* The Java API supports the ExecuteProcessInstance() method.

* Beside performance, the distinction between primary and secondary attributes is
removed. That is, an object is automatically refreshed from the server when an
attribute not yet available in the API is read.

* The audit mode can be more detailed, which is expressed by the Filter
enumeration.

* An audit record can be sent to a user-defined MQSeries application. The XML
DTD is extended appropriately.

© Copyright IBM Corp. 1999, 2001 Xv

xvi

When a work item is terminated or expires, an XML message is sent to a UPES.
The UPES must at least have version 3.3.0.

Changes to this document for IBM MQSeries Workflow for OS/390 Version 3.2.2
are:

The execution service API calls to query work items or to create a worklist allow
for the specification of a new filter criterion CREATION_TIME.

The execution service exposes a new API call SetPersonAbsent().
The container exposes a new API call SetStringCcsid().

The activity instance exposes new API calls InContainer(), OutContainer(),
PersistentObject(), and Terminate().

The process instance exposes a new API call OutContainer().

The work item and notifications expose new API calls
PersistentOidOfProcessInstance().

The work item and activity instance notification expose new API calls
PersistentOidOfActivitylnstance() and Activitylnstance().

An activity implementation allows for the retrieval of the associated activity
instance object identifier, that is, the program execution agent exposes new API
calls PersistentOidOfActivityInstance() and
RemotePersistentOidOfActivityInstance().

The maximum priority of an activity instance and thus the maximum priority of
a work item or activity instance notification can be 999.

MQSeries Workflow for z/OS Programming Guide

Summary of deprecated API calls

* Using the FmcjBlockInstanceMonitor and the FmcjProcessInstanceMonitor
respectively functions starting with FmcjBlockInstanceMonitor or
FmcjProcessInstanceMonitor is deprecated. Use the FmcjInstanceMonitor instead.

* Using the COS, OSA, RMI, and IOR policies in the Java API is deprecated.

The following table states the API calls, which are deprecated, and the new API
calls to be used instead. Deprecated API calls should not be used; they will be
removed in a future release or version of the API.

Deprecated API call
Class/Function::method/function

API call to be used
Class/Function::method/function

Activitylnstance:: ObtainProcessInstanceMonitor()

Activitylnstance::ObtainProcessMonitor()

ActivityInstance::PersistentObject()

ExecutionService::PersistentActivityInstance()

ActivitylnstanceNotification::Expired()

There is a notification and the work item state is not
Ready

ActivityInstanceNotification:: PersistentObject()

ExecutionService:: PersistentActivityInstanceNotification()

ActivitylnstanceNotification:: StartOverdue()

There is a notification and the work item state is Ready

ActivityInstanceNotification::
ObtainProcessInstanceMonitor()

ActivityInstanceNotification:: ObtainProcessMonitor()

Item::ObtainProcessInstanceMonitor()

Item::ObtainProcessMonitor()

ProcessInstance::ObtainMonitor()

ProcessInstance::ObtainProcessMonitor()

ProcessInstance::PersistentObject()

ExecutionService::PersistentProcessInstance

ProcessInstanceNotification::
ObtainProcessInstanceMonitor()

ProcessInstanceNotification:: ObtainProcessMonitor()

ProcessInstanceNotification:: PersistentObject()

ExecutionService:: PersistentProcessInstanceNotification()

ProcessTemplate::InContainer()

ProcessTemplate::InitialInContainer()

ProcessTemplate::PersistentObject()

ExecutionService:: PersistentProcessTemplate()

Workitem:: ObtainProcessInstanceMonitor()

Workitem::ObtainProcessMonitor()

Workitem::PersistentObject()

© Copyright IBM Corp. 1999, 2001

ExecutionService::PersistentWorkitem()

xvii

Xviili MQSeries Workflow for z/OS Programming Guide

Chapter 1. MQSeries Workflow programming concepts

This chapter provides you with a general introduction to the programming
concepts of MQ Workflow.

Understanding the programming concept

This chapter introduces the concept of workflow modeling as it relates to the
design of application programs for use with IBM MQSeries Workflow, hereafter
referred to as MQ Workflow.

MQ Workflow provides a way to model a process and assign applications to
activities in the resulting workflow model. This enables the workflow manager to
automate the control of activities and the flow of data.

Work can be routed to the person who performs the activity instance. An
application program required to perform an activity instance can be designed to
start when a user starts an activity instance.

The role of the programmer in modeling a process

As workflow models are defined, the applications and data structures needed to
support program activities are identified. Programmers can create new
applications, integrate existing applications, or reengineer existing applications to
support these program activities.

To reengineer existing applications with the workflow model, programmers must
determine if the applications used by the enterprise can be functionally
decomposed. The control and flow logic are separated from the application, the
start and exit conditions are moved into the workflow model, and the program is
divided into modules to be invoked by the workflow manager at the appropriate
points. The resulting modules are applications that are assigned to perform the
program activities defined in the workflow model.

Most applications include many diverse functions, and many can support several
different activities in different stages of a process. Output produced by one
function of a program can be used as input by another function of the same
program. Therefore, the same application can be used to support many different
program activities in a workflow model.

Your enterprise might also use Enterprise Resource Planning (ERP) or packaged
applications like word-processing or spreadsheet applications.

Decomposition of such applications may not be possible. However, a programmer
could write shell procedures that query the contents of containers, pass data from
an input container to the program when the activity instance is started, and direct
data into an output container when it finishes.

With MQ Workflow you will be able to use mappings so you can support any
legacy application with this tool. There may be old applications whose interfaces
you can’t change because other applications or programs have been configured to
work with these long time ago: if you changed one configuration of an interface,

© Copyright IBM Corp. 1999, 2001

Programming concepts

you would have to change them all. This mapper enables you to use all legacy
applications with your Workflow applications via the mapping tool.

Return codes, provided by the assigned program, can then be used to evaluate exit
and transition conditions.

Programming interfaces

MQ Workflow provides application program interface (API) and Extensible
Markup Language (XML) message interface support, as well as a set of predefined
data structure members, to assist programmers who develop applications for use
with workflow models. In addition, several programming samples are provided.

In a programming-language-based programming model, the client application
issues an API call in order to execute a request. In a message-based programming
model, the request and information needed to execute the request are contained in
a message that is interchanged through a message queuing system between the
client application and some server.

The MQ Workflow predefined data structure members provide information about
the current process, activity, or block, and are associated with the operating
characteristics of a process instance or activity instance.

API interfaces in the following languages are described in this book:
* MQ Workflow C-language API

* MQ Workflow C++ language API

* MQ Workflow Java API

* MQ Workflow COBOL API

* MQ Workflow XML message interface

ActiveX Java Lotus Visual Basic V2
Notes
COBOL
X
M Ct+ C(v2)
i (V3IV2)
C (V3)

[= supported under OS/390

Figure 1. MQ Workflow Client APIs

The basic interfaces for requesting Runtime services from MQ Workflow are a
C-language API and an XML message interface. Access can be galned to the
C-language functions from all languages that support C calls - see
linking” on page 139 for more information. A C++ language API and the COBOL
API are provided on top of the C-language API. Since the C++ API is a small layer
of inline methods, that is, delivered as source code, access can be gained from all
popular C++ compilers. The Java API is implemented on top of the C++ layer. MQ
Workflow uses the XML 1.0 standard as document description language.

The MQ Workflow APIs provide API calls:

* To execute process models, that is, to work with process instances and container
data and to manipulate worklists and work items

* To monitor the progress of execution

2 MQSeries Workflow for z/OS Programming Guide

Programming concepts

* To issue process administrator functions
¢ To receive information sent by an MQ Workflow server
* To process container data associated with an activity implementation

Prerequisites for programming language API

MQ Workflow application development assumes that the appropriate environment
is established. This means that:

* MQ Workflow for OS/390 must be installed on the machine where you are
developing your applications.

* A compiler of one of the supported languages is installed and configured.

Refer 'Chapter 2 Tanguage interfaces” on page 137 for more information.
Building an MQ Workflow application

Overview

There are essentially two different tasks which you can address by using the MQ
Workflow application programming interface (API):

* You can write your own client application. For example, you may want to:
— Control the MQ Workflow functionality provided to your user.
— Present the MQ Workflow functionality in a way that your user is accustomed
to.
— Run selected MQ Workflow tasks without user intervention.

* You can write a program that implements an activity in your workflow process
model.

These two kinds of programs usually contain specific parts which are discussed in
chapters “An MQ Workflow client application” and “An MQ Workflow activity
implementation”. See the respective chapters per language.

The concepts underlying the MQ Workflow API are common to all programs using
the MQ Workflow APIs. They are summarized here and discussed in more detail
in the following chapters.

Concepts of the programming language API
All persistent objects such as work items and process instances are accessed

through transient objects which represent their state at the time when they were
queried from a server. In the C-language or COBOL AP]I, a so-called handle
represents a pointer to such a transient object.

In order to request an action on an object, a session must have been established
with an appropriate MQ Workflow server. The action itself can then be executed
synchronously. Some actions can also be executed asynchronously.

Only objects for which you are authorized are returned from the server to the
client.

Separate API calls (termed functions, methods, or subprograms, depending on the
programming language) are available for each action on an object or for accessing
each property of an object. This approach allows API call parameters to be checked
by the compiler and best represents the object-action paradigm supported by MQ
Workflow.

Chapter 1. MQSeries Workflow programming concepts 3

Programming concepts

In C, C++, and COBOL, detailed error information is provided by a so-called result
object. This object is available in addition to the return code set by action API calls.
See chapter 'The result object’] for detailed information on the result object.

Objects are managed by the application programmer but object memory is owned
by the MQ Workflow APL The application programmer determines the lifetime of
transient objects by using allocate, or query, and deallocate mechanisms. The MQ
Workflow API hides the internal structure of transient objects.

Concepts of the XML message interface

All persistent objects are accessed by their unique name, that is, the actual name
may need to be padded with the printable version of the object’s identifier in order
to achieve uniqueness.

In order to request an action, a session need not be established as in the
programming language APIL You must, however, be authorized for the action itself.

All actions are executed asynchronously. Correlation data is part of the message so
that the application can correlate the request sent to MQ Workflow and the
execution server response.

Handling errors

All action, activity implementation, program execution management API calls, or
messages show whether or not the call has been successfully executed by returning
a so-called return code as their return value. Java throws an appropriate
FmcException when the method has not been executed successfully. The XML
message interface provides the return code in the response message. The return
code is one of a set of predefined codes (see I‘List of return codes” on page d). The
exact return codes or exceptions for each of those API calls are listed with the
description of each call.

You should design your programs to handle all return codes or exceptions that can
arise now or in future. That is, if you are not only asking whether the return code
is different from FMC_OK, but, if you are checking return codes explicitly, then
you should always care for unexpected errors. For example, if you are coding an if
statement, then you should also code an else statement. If you are coding a switch
statement, then you should also code the default case.

In addition to the return code, a so-called result object can be accessed in C, C++,
and COBOL, which describes the result of the call in more detail.

Although the result object is set by each API call, querying its contents can be of
special importance for basic and accessor API calls. Basic and accessor API calls do
not return any value or return the value queried as their return value. It can
happen during application development that a wrong handle or a buffer too small
to hold a character value is specified. Additional errors can occur when a not yet
available attribute is automatically read from the server. To look for such erroneous
situations, the result object can be queried (besides checking the trace).

The result object

In general, a result object states the result of the last MQ Workflow API request (in
the considered thread). It especially allows for analyzing an erroneous situation in
more detail and contains the following information:

¢ The return code.

4 MQSeries Workflow for z/OS Programming Guide

Programming concepts

* The origin of the result, that is, the file that caused the result to be written, and
the line and function where the error or the completion of the request occurred.

* Parameters (up to five) which describe the objects involved.

The result can be retrieved as a formatted message text with all parameters added
to the text. The current locale is considered when building that message text so
that the message is provided in your selected language.

Although MQ Workflow does not explicitly support threads in that it manages the
synchronization of objects (you have to care for that), MQ Workflow does not
prohibit to use threads. That is why it provides for result objects on a per thread
basis.

All results of API calls are written into the result object associated with the thread
the request executes in. It is sufficient to access the result object just once
per-thread using the FmcjResultObjectOfCurrentThread() function respectively the
FmcjResult::ObjectOfCurrentThread() method. The result object is automatically
updated with each request.

A result object is automatically allocated by MQ Workflow when the first MQ
Workflow API call is issued in that thread. It can be accessed at any time and as
often as needed.

For example, in the C-language, you can access and use a result object in the
following way:

#include <stdio.h>
#include <fmcjcrun.h>

int main()

{
FmcjResultHandle result = 0;
FmcjStringVectorHandle parms = 0;
char buffer[2000]= "";

result= FmcjResultObjectOfCurrentThread();
printf("Accessed result object of current thread\n");

printf("Return code: %i\n", FmcjResultRc(result));

printf("Text : %s\n", FmcjResultMessageText(result,buffer,2000));
printf("Origin : %s\n", FmcjResultOrigin(result,buffer,2000));

parms= FmcjResultParameters(result);
while (0 != FmcjStringVectorNextResultParmElement(parms, buffer, 2000))
printf("Parameter : %s\n", buffer);

return 0;

Figure 2. Accessing a result object in the C-language

Note: The NextResultParmElement() function is used on the string vector so that
the result object is not changed while reading the parameters.

For example, in the C++ language, you can access and use a result object the
following way:

Chapter 1. MQSeries Workflow programming concepts 5

Programming concepts

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()

vector<string> parms;
FmcjResult *pResult = FmcjResult::0bjectOfCurrentThread();

cout << "Accessed result object of current thread" << endl;

cout << "Return code: " << pResult->Rc() << endl;
cout << "Text : " << pResult->MessageText() ;

cout << "Origin : " << pResult->0rigin() << endl;
pResult->Parameters (parms);

cout << "Parameter : ";

for (int i=0; i<parms.size(); i++)
{
cout << parms[i] << " "
cout << endl;

delete pResult; // cleanup object from heap
return 0;

Figure 3. Accessing a result object in C++

Note: The transient C++ representation of your result object is destructed like any
other object. Each retrieval of the result object constructs a separate
representation.

For example, in COBOL, you can access and use a result object in the following
ways:

6 MQSeries Workflow for z/OS Programming Guide

Programming concepts

IDENTIFICATION DIVISION.
PROGRAM-ID. "RESOBJ".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.

01 buffer PIC X(2000) VALUE SPACES.
PROCEDURE DIVISION.

PERFORM FmcjResultObjOfCurrentThread.
DISPLAY "Accessed result object of current thread".

SET hd1Result TO FmcjResultHandleReturnValue.
PERFORM FmcjResultRc.

DISPLAY "Return code: " intReturnValue.
MOVE 2000 TO bufferlength.

CALL "SETADDR" USING buffer messageBuffer.
PERFORM FmcjResultMessageText.

DISPLAY "Text : " buffer.

CALL "SETADDR" USING buffer originBuffer.
PERFORM FmcjResultOrigin.

DISPLAY "Origin : " buffer.

PERFORM FmcjResultParms.

SET hd1Vector TO FmcjStrVHandleReturnValue.

CALL "SETADDR" USING buffer elementBuffer.
PERFORM FmcjStrVNextResultParmElement.

PERFORM UNTIL pointerReturnValue = NULL
DISPLAY "Parameter : " buffer
PERFORM FmcjStrVNextResultParmElement

END-PERFORM.

STOP RUN.

COPY fmcperf.

Figure 4. Accessing a result object in COBOL (via PERFORM)

Chapter 1. MQSeries Workflow programming concepts 7

Programming concepts

IDENTIFICATION DIVISION.
PROGRAM-ID. "RESOBJ".

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY fmcvars.
01 buffer PIC X(2000) VALUE SPACES.

PROCEDURE DIVISION.

CALL "FmcjResultObjectOfCurrentThread"
RETURNING FmcjResultHandleReturnValue.
DISPLAY "Accessed result object of current thread".

SET hd1Result TO FmcjResultHandleReturnValue.
CALL "FmcjResultRc"

USING BY VALUE hdlResult

RETURNING intReturnValue.
DISPLAY "Return code: " intReturnValue.
MOVE 2000 TO bufferlength.
CALL "SETADDR" USING buffer messageBuffer.
CALL "FmcjResultMessageText"

USING BY VALUE hdlResult

messageBuffer

bufferLength
RETURNING pointerReturnValue.
DISPLAY "Text : " buffer.

CALL "SETADDR" USING buffer originBuffer.
CALL "FmcjResultOrigin"
USING BY VALUE hdl1Result
originBuffer

bufferLength
RETURNING pointerReturnValue.
DISPLAY "Origin : " buffer.

CALL "FmcjResultParameters"

USING BY VALUE hdlResult

RETURNING FmcjStrVHandleReturnValue.
SET hd1Vector TO FmcjStrVHandleReturnValue.

CALL "SETADDR" USING buffer elementBuffer.
CALL "FmcjStringVectorNextResultParmElement"
USING BY VALUE hdlVector
elementBuffer
bufferLength
RETURNING pointerReturnValue.

PERFORM UNTIL pointerReturnValue = NULL
DISPLAY "Parameter : " buffer
CALL "FmcjStringVectorNextResultParmElement"
USING BY VALUE hd1Vector
elementBuffer
bufferLength
RETURNING pointerReturnValue
END-PERFORM.

STOP RUN.

Figure 5. Accessing a result object in COBOL (via CALL)

Note: The SETADDR routine is shown in Example of the use of strings” onl

8 MQSeries Workflow for z/OS Programming Guide

Programming concepts

List of return codes

The following list shows the numeric values of the return codes or exceptions that
are issued by the MQ Workflow APIs; it is strongly adviced to use the symbolic
names instead of the integer values. For COBOL, the return code identifiers have a
maximum length of 30 characters. Additional words in the return codes are
separated by hyphens and not by underscores (as is common for C). In order to
avoid misunderstandings, the C version of the return codes is used in this book,

especially in descriptions of the API calls (LCha.p.ter.S_AH_acnon_and_achm.t#
Lm.plem.en.tah.an_caﬂs_an_pa.geﬂﬂ)

Note: When the result object states an FMC_ERROR_COMMUNICATION, that
error is accompanied by three parameters: the failing action, the reason code
for the failure, and the failing object.

Table 1. List of return codes

Numeric |Symbolic value (C/C++) Symbolic value (COBOL)

value

0 FMC_OK FMC-OK

1 FMC_ERROR FMC-ERROR

10 FMC_ERROR_USERID_UNKNOWN FMC-ERROR-USERID-UNKNOWN
11 FMC_ERROR_ALREADY_LOGGED_ON FMC-ERROR-ALR-LOGGED-ON
12 FMC_ERROR_PASSWORD FMC-ERROR-PASSWORD

13 FMC_ERROR_COMMUNICATION FMC-ERROR-COMMUNICATION
14 FMC_ERROR_TIMEOUT FMC-ERROR-TIMEOUT

15 FMC_ERROR_INVALID_CODE_PAGE FMC-ERROR-INVAL-CODE-PAGE
16 FMC_ERROR_INVALID_CHAR FMC-ERROR-INVAL-CHAR

100 FMC_ERROR_INTERNAL FMC-ERROR-INTERNAL

101 FMC_ERROR_SERVER FMC-ERROR-SERVER

102 FMC_ERROR_UNKNOWN FMC-ERROR-UNKNOWN

103 FMC_ERROR_MESSAGE_FORMAT FMC-ERROR-MESSAGE-FORMAT
104 FMC_ERROR_MESSAGE_DATA FMC-ERROR-MESSAGE-DATA

105 FMC_ERROR_RESOURCE FMC-ERROR-RESOURCE

106 FMC_ERROR_NOT_LOGGED_ON FMC-ERROR-NOT-LOGGED-ON
107 FMC_ERROR_NEW_OWNER_NOT_FOUND FMC-ERROR-NEW-OWNER-NOT-FOUND

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

FMC_ERROR_NO_OLD_OWNER
FMC_ERROR_OLD_OWNER_ABSENT
FMC_ERROR_NEW_OWNER_ABSENT
FMC_ERROR_ALREADY_STARTED
FMC_ERROR_MEMBER_NOT_FOUND
FMC_ERROR_MEMBER_NOT_SET
FMC_ERROR_WRONG_TYPE
FMC_ERROR_MEMBER_CANNOT_BE_SET
FMC_ERROR_MEMBER_INVALID
FMC_ERROR_FORMAT
FMC_ERROR_DOES_NOT_EXIST
FMC_ERROR_NOT_AUTHORIZED
FMC_ERROR_WRONG_STATE
FMC_ERROR_NOT_UNIQUE
FMC_ERROR_EMPTY
FMC_ERROR_NO_MANUAL_EXIT
FMC_ERROR_PROFILE
FMC_ERROR_INVALID_FILTER
FMC_ERROR_PROGRAM_EXECUTION
FMC_ERROR_PROTOCOL
FMC_ERROR_TOOL_FUNCTION
FMC_ERROR_INVALID_TOOL

FMC-ERROR-NO-OLD-OWNER
FMC-ERROR-OLD-OWNER-ABSENT
FMC-ERROR-NEW-OWNER-ABSENT
FMC-ERROR-ALR-STRTD
FMC-ERROR-MEMBER-NOT-FOUND
FMC-ERROR-MEMBER-NOT-SET
FMC-ERROR-WRONG-TYPE
FMC-ERROR-MEMBER-CANNOT-BE-SET
FMC-ERROR-MEMBER-INVAL
FMC-ERROR-FORMAT
FMC-ERROR-DOES-NOT-EXIST
FMC-ERROR-NOT-AUTH
FMC-ERROR-WRONG-STATE
FMC-ERROR-NOT-UNIQUE
FMC-ERROR-EMPTY
FMC-ERROR-NO-MANUAL-EXIT
FMC-ERROR-PROFILE
FMC-ERROR-INVAL-FILTER
FMC-ERROR-PROGRAM-EXECUTION
FMC-ERROR-PROTOCOL
FMC-ERROR-TOOL-FUNCTION
FMC-ERROR-INVAL-TOOL

Chapter 1. MQSeries Workflow programming concepts

Programming concepts

Table 1. List of return codes (continued)

Numeric |Symbolic value (C/C++) Symbolic value (COBOL)

value

130 FMC_ERROR_INVALID_HANDLE FMC-ERROR-INVAL-HANDLE

131 FMC_ERROR_NOT_EMPTY FMC-ERROR-NOT-EMPTY

132 FMC_ERROR_INVALID_USER FMC-ERROR-INVAL-USER

133 FMC_ERROR_OWNER_ALREADY_ASSIGNED FMC-ERROR-OWNER-ALR-ASSIGNED
134 FMC_ERROR_INVALID_NAME FMC-ERROR-INVAL-NAME

135 FMC_ERROR_INVALID_PROGRAMID FMC-ERROR-INVAL-PROGRAMID

136 FMC_ERROR_SIZE_EXCEEDED FMC-ERROR-SIZE-EXCEEDED

137 FMC_ERROR_INVALID_TEMPLATE_NAME FMC-ERROR-INVAL-TEMPL-NAME
138 FMC_ERROR_INFINITE_RECURSION FMC-ERROR-INFINITE-RECURSION
139 FMC_ERROR_SUB_PROC_MEMBER_NOT_SET FMC-ERROR-SUBPROC-M-NOT-SET
140 FMC_ERROR_PROCESS_TEMPLATE_NOT_FOUND | FMC-ERROR-PROC-TEMPL-NOT-FOUND
406 FMC_ERROR_WRONG_ACT_IMPL_KIND FMC-ERROR-WRONG-ACT-IMPL-KIND
500 FMC_ERROR_NON_LOCAL_USER FMC-ERROR-NON-LOCAL-USER

501 FMC_ERROR_WRONG_KIND FMC-ERROR-WRONG-KIND

502 FMC_ERROR_INVALID_ACTIVITY FMC-ERROR-INVAL-ACT

503 FMC_ERROR_CHECKOUT_NOT_POSSIBLE FMC-ERROR-CHKOUT-NOT-POSSIBLE
504 FMC_BACK_LEVEL_VERSION FMC-BACK-LEVEL-VERSION

505 FMC_ERROR_NEWER_VERSION FMC-ERROR-NEWER-VERSION

506 FMC_ERROR_INVALID_CORRELATION_ID FMC-ERROR-INVAL-CORRELATION-ID
507 FMC_ERROR_NOT_ALLOWED FMC-ERROR-NOT-ALLOWED

508 FMC_ERROR_BACK_LEVEL_OBJECT FMC-ERROR-BACK-LEVEL-OB]J

509 FMC_ERROR_INVALID_CONTAINER FMC-ERROR-INVAL-CNTR

510 FMC_ERROR_UNEXPECTED_CONTAINER FMC-ERROR-UNEXPECTED-CNTR

511 FMC_ERROR_NO_PROGRAM_FOR_PLATFORM FMC-ERROR-NO-PROG-FOR-PLATF
512 FMC_ERROR_LOGON_DENIED FMC-ERROR-LOGON-DENIED

513 FMC_ERROR_AUTHENTICATION FMC-ERROR-AUTHENTICATION

800 FMC_ERROR_BUFFER FMC-ERROR-BUFFER

801 FMC_ERROR_INVALID_SESSION FMC-ERROR-INVAL-SESSION

802 FMC_ERROR_INVALID_TIME FMC-ERROR-INVAL-TIME

804 FMC_ERROR_NO_MORE_DATA FMC-ERROR-NO-MORE-DATA

805 FMC_ERROR_INVALID_OID FMC-ERROR-INVAL-OID

807 FMC_ERROR_INVALID_THRESHOLD FMC-ERROR-INVAL-THRESHOLD

808 FMC_ERROR_INVALID_SORT FMC-ERROR-INVAL-SORT

809 FMC_ERROR_OBJECT_IN_USE FMC-ERROR-OB]J-IN-USE

810 FMC_ERROR_INVALID_DESCRIPTION FMC-ERROR-INVAL-DESCRIPTION
811 FMC_ERROR_INVALID_INVOCATION_TYPE FMC-ERROR-INVAL-INV-TYPE

812 FMC_ERROR_OWNER_NOT_FOUND FMC-ERROR-OWNER-NOT-FOUND
813 FMC_ERROR_INVALID_LIST TYPE FMC-ERROR-INVAL-LIST-TYPE

814 FMC_ERROR_INVALID_RESULT_HANDLE FMC-ERROR-INVAL-RESULT-HANDLE
815 FMC_ERROR_MESSAGE_CATALOG FMC-ERROR-MESSAGE-CATALOG

816 FMC_ERROR_INVALID_SPECIFICATION FMC-ERROR-INVAL-SPECIFICATION
817 FMC_ERROR_QRY_RESULT_TOO_LARGE FMC-ERROR-QRY-RESULT-TOO-LARGE
818 FMC_ERROR_NO_VERSION_2_FILTER FMC-ERROR-NO-VERSION-2-FILTER
819 FMC_ERROR_INVALID_USER_CONTEXT FMC-ERROR-INVAL-USER-CONTEXT
820 FMC_ERROR_MESSAGE_STRING FMC-ERROR-MESSAGE-STRING

821 FMC_ERROR_MESSAGE_SIZE_EXCEEDED FMC-ERROR-MSG-SIZE-EXCEEDED
822 FMC_ERROR_INVALID_STREAM FMC-ERROR-INVAL-STREAM

900 FMC_ERROR_NO_SYS_ADMIN FMC-ERROR-NO-SYS-ADMIN

901 FMC_ERROR_INVALID_SESSION_MODE FMC-ERROR-INVAL-SESSION-MODE
902 FMC_ERROR_PROGRAM_UNDEFINED FMC-ERROR-PROGRAM-UNDEFINED
903 FMC_ERROR_PEA_NOT_RUNNING FMC-ERROR-PEA-NOT-RUNNING

904 FMC_ERROR_PEA_NOT_LOCAL FMC-ERROR-PEA-NOT-LOCAL

10 MQSeries Workflow for z/OS Programming Guide

Table 1. List of return codes (continued)

Programming concepts

Numeric |Symbolic value (C/C++) Symbolic value (COBOL)
value
905 FMC_ERROR_INVALID_ABSENCE_SPEC FMC-ERROR-INVAL-ABSENCE-SPEC
1000 FMC_ERROR_NOT_SUPPORTED FMC-ERROR-NOT-SUPPORTED
1012 FMC_ERROR_PROGRAM_NOT_DEFINED FMC-ERROR-PROGRAM-NOT-DEFINED
1014 FMC_ERROR_PEA_NOT_REACHABLE FMC-ERROR-PEA-NOT-REACHABLE
1015 FMC_ERROR_INVALID_PEA_FROM_CTNR FMC-ERROR-INVALID-PEA-FRM-CTNR
1016 FMC_ERROR_INVALID_PEA_FROM_MODEL FMC-ERROR-INVAL-PEA-FRM-MODEL
1017 FMC_ERROR_INVALID_SYSTEM_FROM_CTNR FMC-ERROR-INVAL-SYSTEM-FRM-CTNR
1018 FMC_ERROR_INVALID_SYSTEM_FROM_MODEL FMC-ERROR-INVAL-SYSTEM-FRM-MODEL
1019 FMC_ERROR_SUB_PROC_TERMINATED_BY_ERROR| FMC-ERROR-SB-PRC-TERM-BY-ERROR
1020 FMC_ERROR_NO_PEA_FOUND_FOR_AUTO_START | FMC-ERROR-NO-PEA-FND-FR-AUT-ST
1021 FMC_ERROR_NO_CTNR_ACCESS FMC-ERROR-NO-CTNR-ACCESS
1022 FMC_ERROR_INVALID_CONFIG_ID FMC-ERROR-INVAL-CONFIG_ID
1023 FMC_ERROR_MIG_OF_RUNNING_PROG FMC-ERROR-MIG-OF-RUNNING-PROG
1024 FMC_ERROR_MIG_OF_CHCKDOUT_SUSP FMC-ERROR-MIG-OF-CHCKDOUT-SUSP
1025 FMC_ERROR_MIGRATION_NO_SUBPROC FMC-ERROR-MIGRATION-NO-SUBPROC
1100 FMC_ERROR_XML_DOCUMENT_INVALID FMC-ERROR-XML-DOCUMENT-INVAL
1101 FMC_ERROR_XML_NO_MQSWF_DOCUMENT FMC-ERROR-XML-NO-MQSWF-DOC
1102 FMC_ERROR_XML_MESSAGE_NOT_SUPPORTED FMC-ERROR-XML-MSG-NOT-SUPP
1103 FMC_ERROR_XML_WRONG_DATA_STRUCTURE FMC-ERROR-XML-WRONG-DATA-STR
1104 FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND | FMC-ERROR-XML-D-M-NOT-FOUND
1105 FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE | FMC-ERROR-XML-D-M-WRONG-TYPE
1106 FMC_ERROR_XML_BACKOUT_COUNT_EXCEEDED | FMC-ERROR-XML-BACKCNT-EXCEEDED
1107 FMC_ERROR_XML_DOCUMENT_FORMAT FMC-ERROR-XML-DOCUMENT-FORMAT
1108 FMC_ERROR_XML_PARAMETER_INCORRECT FMC-ERROR-XML-PARM-INCORRECT
1109 FMC_ERROR_XML_PARAMETER_SIGNATURE_ FMC-ERROR-XML-PARMSG-INCORRECT
INCORRECT
1110 FMC_ERROR_XML_INVALID_ELEMENT FMC-ERROR-XML-INVAL-ELEMENT
1111 FMC_ERROR_XML_INCORRECT_PARAMETER FMC-ERROR-XML-INCORRECT-PARM
1150 FMC_ERROR_XML_PARSER_NOT_INSTALLED FMC-ERROR-XML-PARSER-NOT-INST
2000 FMC_ERROR_INVALID_QUEUE_SCOPE FMC-ERROR-INVAL-QUEUE-SCOPE
32013 FMC_ERROR_USER_SUPPORT_ MISMATCH FMC-ERROR-USER-SUPPORT-MISMAT
32014 FMC_ERROR_SUPPORT_MODE_MISMATCH FMC-ERROR-SUPPORT-MODE-MISMAT
32015 FMC_ERROR_IMPLEMENTATION_SUPPORT_ FMC-ERROR-IMPL-SUPPORT-MISMAT
MISMATCH
32202 FMC_ERROR_USER_NOT_AUTHORIZED FMC-ERROR-USER-NOT-AUTH
32203 FMC_ERROR_LOCAL_USER_REQUIRED FMC-ERROR-LOCAL-USER-REQUIRED
32204 FMC_ERROR_EXIT_ERROR FMC-ERROR-EXIT-ERROR

Memory management

Workflow process models, their instances, and resulting work items are all objects
persistently stored in an MQ Workflow database. This means that they exist
independently from an application program.

When persistent objects are queried by an application program, they are
represented by transient objects which carry the states of the persistent objects at the
time of the query. When multiple queries are issued, there can be multiple
transient objects representing the same persistent object, even representing different

states of that object.

The lifetime of transient objects and their memory is fully managed by you, because
you know best when those objects are no longer needed, that is, when objects are

Chapter 1. MQSeries Workflow programming concepts

11

Programming concepts

to be deallocated (C-language, COBOL) or destructed (C++). Transient objects are,
however, no longer available when your application program ends.

Some transient objects are explicitly allocated by you. These are supporting objects,
which do not reflect persistent ones. Examples are the FmcjStringVector when you
specify a set of persons to stand in for (C-language, COBOL) or the
ExecutionService object, which allows services to be requested from an execution
server.

Transient objects, which do reflect persistent objects, are implicitly allocated by you
when you create or retrieve persistent objects, for example, by querying.

Although the life time of transient objects is fully managed by you, their actual
internal object structure is encapsulated by the MQ Workflow APIL. The MQ
Workflow API provides a handle (C-language, COBOL) to you so that you can
issue requests against the object. In the C++ API, that handle is the only data
member of your class. Therefore, you are independent of internal changes. It
further allows MQ Workflow to lazy read a collection of objects passed from the
server and thus increases performance.

The MQ Workflow API follows the programming by contract concept. This means
that any handle passed to it which is not 0 (NULL) is assumed to be a valid
handle which can be used to access an object. This is especially important to be
considered for queries. Any nonzero vector handle is assumed to point to an
already existing vector of objects and is used in order to add newly qualifying
objects. In other words, you should initialize any new handle to 0.

As all resource memory is finally owned by the application process itself, you can
access all objects from different threads within that process. MQ Workflow does
not hinder you from using threads; it is coded reentrantly. On the other hand, MQ
Workflow does not explicitly support threads. If you want to access the same
transient object from within different threads, you have to synchronize the access
on that object. Objects are not thread-safe.

Client/server communication and data access models

When you request actions from an MQ Workflow server or when you want to
observe the result of actions, you can:

* Use a synchronous protocol to ask for an action and to view changes of the
object which you used to call the action.

* Use a synchronous protocol to pull for data created or changed.

* Receive unsolicited information on created or changed objects pushed by the
server.

* Use an asynchronous protocol to ask for an action and to view the result at a
later point in time.

For example, when you ask a process instance object to be started:

* As an immediate result, the state of the process instance is updated.

* You can query work items in order to view (pull for) new objects created.
* You can automatically receive new work items sent (pushed) to you.

Synchronous client/server communication

Applying a synchronous protocol means that you issue a request to an MQ
Workflow server and then wait until you receive a response. All action API calls

12 MQSeries Workflow for z/OS Programming Guide

Programming concepts

operate this way; your application (thread) is blocked until the response arrives or
until your timeout set on the execution service object exceeds.

Note: The synchronous way of communication is not supported for the XML
message interface.

Asynchronous client/server communication

Applying an asynchronous protocol means that you issue a request to an MQ
Workflow server but you do not wait until you receive a response. The
ExecuteProcessInstanceAsync() API call operates this way; your application
(thread) is not blocked and you can receive the response at a later time.

When you asynchronously issue an action, then you do, however, receive an
acknowledgement telling whether MQ Workflow accepted the request or not. You
can also receive a correlation identification which you can use in order to receive a
specific response. You can specifiy a user context in order to correlate a response
received.

For example, when you ask a process instance to be executed asynchronously:
* As an immediate result, you get informed whether the request is accepted.

* When you specified a buffer to hold a correlation ID, you get an ID which you
can use in the Receive() call to wait for that specific response.

* When you specify a user context, that context is returned to you as part of the
response. You can use it for user- specific correlation.

Note: The asynchronous way of communication is only supported in COBOL,
C++, and the C-language. All message-based requests are executed
asynchronously.

The push data access model

Receiving unsolicited information pushed by an MQ Workflow server means that
you set up communication in a way that you are automatically informed about
new or changed objects.

Note: The push data access model is not supported in Java and the XML message
interface.

In order to obtain information pushed by an MQ Workflow server:
1. The server must be asked for sending data. This means that:

* The settings of the considered process instance must specify
REFRESH_POLICY PUSH. This setting is inherited from the domain level,
through the system group to the system and down to the process template.
Each specification can be overwritten on a lower level.

¢ The users must be logged on with a Present or PresentHere session mode, that
is, they are enabled to receive information.

2. The application must use API calls in order to receive data pushed.

Provided that these prerequisites are fulfilled, the MQ Workflow execution server
pushes changes on work items or notifications to the owner of the item:

1. On creation of the item.
2. On deletion of the item.

Chapter 1. MQSeries Workflow programming concepts 13

Programming concepts

3. Whenever a primary property of the item changes - see I’Accessor/mutator AP]

kalls” on page 92 for a definition of primary properties.

The caller of the action will, however, not receive such information because, as a
result of the action, the transient object has already been updated with relevant
data.

Changes on disabled work items are not pushed. Only the deletion of such work
items is pushed.

Examples:

When a process instance is suspended and when its refresh policy is push, the MQ
Workflow execution server sends informations to all owners of non-disabled items
which are currently logged on as present.

When the description of a process instance is changed and when the refresh policy
is push, the MQ Workflow execution server sends informations to all owners of
process instance notifications which are currently logged on as present.

When a work item is transferred to user N by the owner of the work item and
when the refresh policy of the associated process instance is push, the MQ
Workflow execution server sends an information to user N when he/she is
currently logged on as present. The owner of the work item as the requester of the
action does not get any additional information.

Note: Filtering and sorting is left to the application. No indication about affected
worklists is pushed to the client.

Receiving information

In C, C++, and COBOL, the execution service object provides for a means to
receive information (execution data) pushed by an MQ Workflow execution server
at any time wanted. The Receive() call blocks the calling application until some
information is received or until the specified timeout value has been reached. That
is why an application typically starts a separate thread or process for receiving
data in order to prevent blocking the entire application.

Note: Receiving any asynchronous response, that is, not waiting for a specific
response identified by its correlation ID, or receiving pushed data, becomes
possible in a different application process when you retrieve the session ID
and attach to that session in the other process (SetSessionContext()).

A timeout value of -1 specifies an indefinite wait time interval. Note that in this
case you must ensure that you stop receiving data before your application ends.
There is a TerminateReceive() API call which can be used to send a terminate
indication to the receiving part of the application in order to inform that receiving
data may end.

Notes:

1. A Receive() call survives a Logoff() call which ends your session with an
execution server. The execution server stops, however, pushing information
when logoff has been executed. When you did not send a TerminateReceive() to
the receiving application thread, then you have to end that thread because of
other knowledge. TerminateReceive() can only be called as long as a session
exists.

14 MQSeries Workflow for z/OS Programming Guide

Programming concepts

2. If information is not received and therefore stays in the client input queue, the
MQSeries(R) expiration mechanism applies in order to get rid of such "dead"
messages. The expiration time of client messages can be configured for MQ
Workflow.

When receiving data, a correlation identification can be specified to indicate which
information is to be read. If it is not specified or pointing to
FMCJ_NO_CORRELID, then any asynchronous response or pushed data arriving
for the session is received; note that the correlation identification is set as the result
of a successful asynchronous request.

Execution
Data

A

Execution
. Service
Receive Item

" 4 ¥ A

Workitem Activity Process
Instance Instance

FromData

A Notification Notification
Update
From Data l
v v

Process ReadOnly

Instance Container
Figure 6. Handling data sent by an MQ Workflow server. Legend: --» Inheritance (C++); —
provides for access

Once execution data has been received, its type can be determined and the
appropriate action can be called. For example, when a work item creation is
indicated, a conversion from the execution data to a work item can be requested.
When a work item change is indicated, the persistent object ID of the work item
can be requested so that the appropriate work item can be updated.

When the response to an ExecuteProcessInstanceAsync() request is received, the
process instance created and executed can be analyzed. For example, its state can
be used to determine whether the process instance executed successfully. Its output
container can then be read. If an error occurrs, the error description can be
examined.

An MQ Workflow session

In order to communicate with an MQ Workflow server, a session must have been
established between the user and that server. The server is either identified
explicitly (system group or system at system group) or taken from the user’s
profile. If the information is not found in the user’s profile, the configuration
profile is read.

Note: Authentication is not required in order to use the XML message interface,
that is, a session need not be established.

Chapter 1. MQSeries Workflow programming concepts 15

Programming concepts

The session is established by logging on. From then on services can be requested
from the server; the service object which represents the session between the user
logging on and the server, is set up accordingly.

Logon requires that the administration server is up and running on the selected
system because the administration server manages sessions and checks the
authentication of the user. It additionally cares for any severe errors to be written
to the error log.

Any objects which are retrieved or created belong to the session where they have
been queried or created. They carry the session identification so that further
actions on those objects are executed in the same session with the authorization of
the logged-on user.

Although threads are not explicitly supported by MQ Workflow (objects are not
threadsafe), MQ Workflow does not prevent you from using threads. A session can
span multiple threads. You have to care, however, for object synchronization. And,
in all languages except Java, you should use the Connect() and Disconnect() API
calls on each thread so that API resources are managed correctly.

A single application program or multiple application programs can allocate
multiple service objects and log on with different users or the same user in
parallel. Sessions are kept separate by the service objects. A single service object
thus represents a single session. A second request to log on via a service object will
be rejected if it comes from a different user. Otherwise, it is accepted but not
repeated; the logon request has already been executed successfully.

A session can run in default mode or in present mode. When you are operating in a
present session mode, activity instances which are started automatically can be
scheduled on your behalf and you can receive information pushed by an MQ
Workflow server. There can only be a single present session per user.

The service object provides for a timeout value to be set. This is the time the
application waits for the answer from a server. The application is thus blocked
during this time at a maximum. The timeout is specified in milliseconds. A value
of -1 denotes an indefinite timeout value. The timeout value can be changed at any
time.

Note: MQ Workflow uses the communication mechanisms of IBM MQSeries. If
your application sets up its own signal handler, then you should refer to the
MQSeries Application Programming Guide, especially the chapter UNIX signal
handling, for restrictions imposed by MQSeries.

Using an authentication exit

Especially in Web-based environments, product-independent infrastructures
handling authentication and authorization of users become more common-place.
Not only user directories like LDAP are exploited but also public-key
infrastructures are used more widely. Especially in E]B environments
credential-based authentication is the rule, not the exception.

To support such environments, MQ Workflow provides a means to authenticate

users by some third-party authentication scheme instead of by MQ Workflow itself.
Third-party authentication is supported by a so-called authentication exit, which has
to be provided by the user and called by MQ Workflow. An authentication exit can

16 MQSeries Workflow for z/OS Programming Guide

Programming concepts

use any authentication service like a simple file, a database, directory services,
0S/390 Security Server (RACF) and so on.

An MQ Workflow client initiates third-party authentication by calling a variant of
the Logon() API that allows to specify credentials and optionally a user name.
When called, the MQ Workflow administration server invokes the authentication
exit passing the information received. It is then the responsibility of the
authentication exit to verify authentication based on the information passed, and to
map the information to an MQ Workflow user ID. The MQ Workflow user ID has
to be returned to the administration server, which checks whether the user ID is a
registered MQ Workflow user ID; any other user ID will be rejected. If the user ID
is valid, the administration server grants a session for that user without any
further verification. The authentication exit and the MQ Workflow administration
server form a trusted environment.

By implementing an authentication exit, you are able to use your existing user
authentication service. You can use your established user IDs for authentication
and map them to MQ Workflow user IDs.

Check SEMCSRC(FMCHSAXT) for an authentication exit programming example.

Coding an authentication exit
Authentication exits are supported in the C-language environment.

An authentication exit has a defined interface, to which every user-written exit
must conform. For the C-language, the interface is described by the header file
fmcaexit installed in the SFMCH library.

The C-language authentication exit must provide an Init() function, which is called
when the exit is needed the first time, that is, during MQ Workflow administration
server startup and a Delnit() function, which is called when the exit is unloaded,
that is, when the administration server is shut down.

Usually the Init() function does all the initialization needed for the exit. When
initialization is not needed, provide an empty implementation, that is, return
FMC_EXIT_OK, that is, 0.

Delnit() normally deallocates and frees resources allocated during Init(). If Delnit()
is not needed, provide an empty implementation, that is, return FMC_EXIT_OK,
that is, 0.

Actual authentication is done by the C-language Authenticate() function, which has
to be implemented to make logging on based on user credentials possible.
Consider that user authentication can be performance critical since there can be
phases when many users log on in parallel, for example, in the morning or after
lunch. The MQ Workflow administration server handles one logon request at a
time.

Notes:

1. Whenever you modify your authentication exit, you must shut down and
restart the administration server in order to make your changes effective.

2. An authentication exit is called in the context of an MQ Workflow transaction.
Consequently, commit and rollback calls must never be issued to prevent
prematurely ending that transaction.

Chapter 1. MQSeries Workflow programming concepts 17

Programming concepts

— C-language signatures

long FMC_APIENTRY Init(void ** exitHandle,
char * initializationParameter,

Tong initializationParameterLength,
char = errorldBuffer,

long * errorIdBufferLength,

char * descriptionBuffer,

long * descriptionBufferLength)

Tong FMC_APIENTRY Delnit(void ** exitHandle,

char * errorldBuffer,

long * errorldBufferLength,
char * descriptionBuffer,

Tong * descriptionBufferLength)

Tong FMC_APIENTRY Authenticate(
FmcjServerAuthExitAuthenticate * exitParms)

Parameters

All parameters but the exitParms are reserved for future use. The exitParms specify
information exchanged between the MQ Workflow administration server and the
authentication exit. See the fmchOxit header file for more detailed descriptions.

exitParameterListEyecatcher
Input. An eyecatcher (FMCAXHRP) to identify the list of
parameters.

exitParameterListVersion
Input. The version of the parameter list.

exitParameterListLength
Input. The size of the parameter list structure.

version Input. The version number of the MQ Workflow client.
release Input. The release number of the MQ Workflow client.
modlevel Input. The modification level of the MQ Workflow client.
userCredentials

Input/Output. The buffer containing the user credentials.

userCredentialsSize
Input/Output. The size of the user credentials contained in the
user credentials buffer.

userCredentialsBufferSize
Input. The size of the buffer containing the user credentials.

exitCorrellD Input/Output. A correlation ID which must be returned but not
changed.

phaseNumber Input/Output. A number maintained by the MQ Workflow
administration server; must be returned but not changed. Reserved
for future use.

exitResult Output. The result of authentication: either LogonAccepted,
LogonDenied, or Error. Other values are reserved for future use.

reasonCode Output. Specifies a user-defined reason of an Error result.

18 MQSeries Workflow for z/OS Programming Guide

Programming concepts
userName Input/Output. A user name known by the authentication exit.

mqwfUserID Output. The MQ Workflow user ID returned by a successful
authentication. Remember that an MQ Workflow user ID must
contain only uppercase characters.

Return type
long/int The result of calling this API call.

* FMC_EXIT_OK, that is, 0, signals that the function executed
successfully.

* FMC_EXIT_RECOVERABLE_ERROR, that is, a 1, signals that the
function executed unsuccessfully but recoverable. The logon
request returns FMC_ERROR_NOT_AUTHORIZED.

* FMC_EXIT_NONRECOVERABLE_ERROR, that is, a 2, signals
that the function executed unsuccessfully and nonrecoverable.
When the C-language Authenticate() or the Java authenticate()
returns that error, the adminstration server shuts down. A
C-language Init() or Delnit() returning that error is treated
similar to a recoverable error.

Activating an authentication exit

Set the RTAuthenticationExitTypeServer variable in the configuration profile of the
server to "C". That is, add the specification to CustHLQ.SFMCDATA(FMCHEMPR).

Depending on the RTAuthenticationExitTypeServer setting, the authentication exit is
loaded when the MQ Workflow administration server starts and the authentication
exit Init() function is called.

The authentication exit is called by the administration server whenever you issue a
logon with credentials. Note that a logon request specifying an MQ Workflow user
ID (and a password) is executed by the administration server without involving
the authentication exit.

When the MQ Workflow administration server shuts down, the authentication exit
is unloaded. The authentication exit Delnit() function is called before the
authentication exit is unloaded.

To ensure adequate performance, the authentication exit must be a load library so
that it can be loaded into the address space of the administration server. It has to
be named fmcaexit and to be placed into a load library which is part of the
STEPLIB concatenation.

Take special care that no broken load library is put into the administration server’s
STEPLIB. A broken authentication exit can cause a shutdown of the administration
server and a wrong authentication exit can undermine your security concept.

Error handling
Logging on with user credentials can be rejected because:

* The authentication exit is not found; the required functions (entry points in the
DLL) are not found; the called functions do not return FMC_EXIT_OKU!. In all
these situations, FMC_ERROR_NOT_AUTHORIZED is returned by the logon
with credentials request.

1. FMC_EXIT_NONRECEOVERABLE_ERROR shuts down the administration server.

Chapter 1. MQSeries Workflow programming concepts 19

Programming concepts

e The user ID returned by the authentication exit is not a registered MQ Workflow
user ID; results in FMC_ERROR_USERID_UNKNOWN.

e The authentication exit denies authentication; results in
FMC_ERROR_LOGON_DENIED.

* The authentication exit reports an error because of the stated reason; results in
FMC_ERROR_AUTHENTICATION and the first parameter (of the result object)
set to the reason code.

Querying data

There are essentially three means of querying data from an MQ Workflow server:

* A query via a service object, which returns all objects authorized for. The
number of objects returned to the client can be restricted by a filter and a
threshold.

* A query using a persistent list definition, which returns all objects qualifying
through the list definition.

* A specific request, like the request for user settings or a refresh request for a
specific object.

Note: Querying data is not supported by the XML message interface.

Persistent lists

A persistent list represents a set of objects of the same type. Moreover, all objects
which are accessible through the list have the same characteristics. A list can be for
public usage, that is, it is visible by all users, or for private usage, that is, it has an
owner and is only visible by that owner.

The characteristics of the objects contained in the list are given by so-called filter
criteria. The filter criteria specified and the authorization of the user issuing the
query determine the contents of the list. This means that the contents itself is not
stored persistently but determined when a query request is issued. This especially
means that a public list can deliver different results depending on the user who
applies the query.

The number of objects transferred from the server to the client as the result of the
query can be restricted by specifying a threshold. The threshold is used after sort
criteria have been applied.

A list can be a process template list, a process instance list, or a worklist.

Using filters, sort criteria, and thresholds

A filter is a character string specifying criteria which must follow the rules stated
by the filter syntax diagrams. Refer to the appropriate API calls for the exact
syntax. Some sample criteria are shown here:

"NAME = 'MyProcessInstance'"

"NAME LIKE 'MyxIns?ance'"
"LAST_MODIFICATION_TIME > '1998-2-19 11:38:0'"
"STATE IN (READY,RUNNING)"

A sort criterion is a character string specifying criteria which must follow the rules

stated by the sort criteria syntax diagrams. Refer to the appropriate API calls for
the exact syntax. Some sample criteria are shown here:

20 MQSeries Workflow for z/OS Programming Guide

Programming concepts

"NAME ASC"
"NAME ASC, LAST_MODIFICATION_TIME DESC"

Note that objects are sorted on the server, that is, the code page of the server
determines the sort sequence.

A threshold specifies the maximum number of objects to be returned to the client.
That threshold is applied after the objects have been sorted.

Handling collections

The result of a query for a set of objects is a so-called vector of objects in C, C++,
or COBOL, or an array of objects in the Java language.

A vector is provided by the caller and filled by the MQ Workflow API. The
ownership of the vector elements, the objects, stays with the vector. They are
automatically deleted when the vector is deleted.

Any objects returned are appended to the supplied vector. If you want to read the
current objects only, you have to clear the vector before you call the query method.
This means that you should erase all elements of the vector in the C++ API This
means that you should set the vector handle to 0 in the C-language API and
COBOL.2 If the vector handle is not initialized to 0, it must point to a vector of
objects of the appropriate kind so that newly queried objects can be appended. In
other words, any nonzero handle is used by the C-language or COBOL in order to
access a vector assumed to already exist.

In the C-language or COBOL, the result of the query is the vector handle
initialized to the set of objects, if a 0 handle had been passed, respectively the
existing vector extended by new objects. Special vector accessor functions are
provided to access the objects (see below). When a vector element is read, it
becomes an object of its own and thus has to be deleted when no longer used. Any
operations on that object refer to the object only and do not have any impacts on
the vector element from which the object was copied. For example, a Refresh()
changes the object only but not its original copy within the vector. This means that
a further iteration through the vector finds any elements unchanged.

In the C++ language, the result of the query is an instance of vector<class T>.
Access to the objects is gained via appropriate vector methods; refer to the STL
documentation. When a vector element is read, a (const or non-const) reference to
the object is returned. This means that a change of the object does actually change
the vector element. A further iteration through the vector finds the elements
changed.

An array is provided and filled by the MQ Workflow API. The ownership of the
array elements, the objects, stays with the array.

C-language and COBOL vectors

Vector accessor functions are described below. This is because all these functions
are similar looking and have similar requirements, even for different objects. They
are all handled locally by the AP], that is, they do not communicate with the
server. Neither a connection to a server nor specific authorizations are required to
execute.

2. Declare a new vector handle or deallocate an existing vector object before reuse.

Chapter 1. MQSeries Workflow programming concepts 21

Programming concepts

Return codes
The C-language and COBOL functions or the result object can return the following
codes, the number in parentheses shows their integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)
A parameter references an undefined location. For example, the
address of a handle is expected, but 0 is passed.
FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an
object of the requested type.
FMC_ERROR_NO_MORE_DATA(804)
The vector contains no or no more element.
FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your IBM
representative.

Vector accessor functions allow for the operations listed below; "Xxx” denotes some
scope, for example, FmcjXxxVectorFirstElement() can stand for
FmcjProcessInstanceVectorFirstElementy().

FmcjXxxVectorDeallocate
Allows the application to deallocate the storage reserved for the specified transient
vector object. All elements contained are also deallocated.

The C-language handle is set to 0 so that it can no longer be used.

C-language signature

APIRET FMC_APIENTRY FmcjXxxVectorDeallocate(
FmcjXxxVectorHandle = hd1Vector)

— COBOL
FmcjXxxVectorDeallocate.

CALL "FmcjXxxVectorDeallocate"
USING
BY REFERENCE
hd1Vector
RETURNING
intReturnValue.

Parameters
hdlVector Input/Output. The address of the handle to the vector to be
deallocated.

FmcjXxxVectorFirstElement
Returns the first element of the vector. That element becomes an object on its own

and has to be deallocated if no longer used. The vector is positioned to the next
element.

If the vector is empty or if an error occurred, 0 (zero) is returned.

22 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— C-language signature

FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorFirstElement (
FmcjXxxVectorHandle hdlVector)

— COBOL

FmcjXxxVectorFirstETlement.

CALL "FmcjXxxVectorFirstElement"
USING
BY VALUE
hd1Vector
RETURNING
FmcjXxxHandleReturnValue.

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
FmcjXxxHandle
The handle of the first element of the vector or 0.

FmcjXxxVectorNextElement
Returns the vector element at the current vector position; the initial vector position

is the first element. That element becomes an object on its own and has to be
deallocated if no longer used. The vector is positioned to the next element.

If the vector is empty, if there are no more elements in the vector, or if an error
occurred, 0 (zero) is returned.

— C-language signature

FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorNextElement (
FmcjXxxVectorHandle hdlVector)

— COBOL
FmcjXxxVectorNextElement.

CALL "FmcjXxxVectorNextElement"
USING
BY VALUE
hd1Vector
RETURNING
FmcjXxxHand1leReturnValue.

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type

FmcjXxxHandle
The handle of the vector element at the current position or 0.

Chapter 1. MQSeries Workflow programming concepts 23

Programming concepts

FmcjXxxVectorSize
Returns the number of elements in the vector.

— C-language signature

unsigned long FMC_APIENTRY FmcjXxxVectorSize(
FmcjXxxVectorHandle hdlVector)

— COBOL
FmcjXxxVectorSize.

CALL "FmcjXxxVectorSize"
USING
BY VALUE
hd1Vector
RETURNING
uTongReturnValue.

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
unsigned long
The number of elements in the vector.

C-language examples
In the following, some C-language examples on how to read a vector are shown;
note that you can start with a first element call as well as with a next element call.

Using First/NextElement() calls:

#include <stdio.h>
#include <fmcjcrun.h>

int main()

APIRET rc;

FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;

FmcjProcessInstanceHandle hdlInstance = 0;

unsigned Tong i =03

unsigned long numElements = 0;

char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

Figure 7. Reading a vector in C (using First/NextElement() calls) (Part 1 of 5)

24 MQSeries Workflow for z/OS Programming Guide

Programming concepts
FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServicelLogon(service,
"ADMIN", "PASSWORD",
Fmc_SM Default, Fmc_SA Reset
)
if (rc != FMC_OK)
return rc;
printf("Logged on\n");

Figure 7. Reading a vector in C (using First/NextElement() calls) (Part 2 of 5)

rc= FmcjExecutionServiceQueryProcessInstances (
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hd1Vector);

if (rc = FMC_OK)

return rc;
printf("Queried process instances\n");

Figure 7. Reading a vector in C (using First/NextElement() calls) (Part 3 of 5)

hd1Instance= FmcjProcessInstanceVectorFirstElement (hd1Vector);
numElements= FmcjProcessInstanceVectorSize(hd1Vector);

printf("Instances in the vector:\n");
for(i=0; i< numElements; i++)

printf("- name: %s\n",
FmcjProcessInstanceName(hd1Instance,tInfo,
FMC_PROCESS_INSTANCE_NAME_LENGTH));
FmcjProcessInstanceDeallocate(&hd1Instance);
hd1Instance= FmcjProcessInstanceVectorNextElement (hd1Vector) ;

}

FmcjProcessInstanceVectorDeallocate(&hd1Vecor);

Figure 7. Reading a vector in C (using First/NextElement() calls) (Part 4 of 5)

FmcjExecutionServicelLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);
FmcjGlobalDisconnect();
return FMC_OK;
1
Figure 7. Reading a vector in C (using First/NextElement() calls) (Part 5 of 5)

Using NextElement() call only:

Chapter 1. MQSeries Workflow programming concepts 25

Programming concepts

#include <stdio.h>
#include <fmcjcrun.h>

int main()
{
APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hd1Vector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

Figure 8. Reading a vector in C (using NextElement() only) (Part 1 of 5)

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);

rc = FmcjExecutionServicelLogon(service,

"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA Reset

)s
if (rc = FMC_OK)
return rc;
printf("Logged on\n");

Figure 8. Reading a vector in C (using NextElement() only) (Part 2 of 5)

rc= FmcjExecutionServiceQueryProcessInstances (
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hd1Vector);

if (rc != FMC_OK)

return rc;
printf("Queried process instances\n");

Figure 8. Reading a vector in C (using NextElement() only) (Part 3 of 5)

printf("Instances in the vector:\n");
while (0 != (hdlInstance=FmcjProcessInstanceVectorNextElement (hd1Vector)))

printf("- name: %s\n",
FmcjProcessInstanceName (hd1Instance,tInfo,

FMC_PROCESS_INSTANCE_NAME_LENGTH));
FmcjProcessInstanceDeallocate(&hdlInstance));

}

FmcjProcessInstanceVectorDeallocate(&hdlVector));

Figure 8. Reading a vector in C (using NextElement() only) (Part 4 of 5)

26 MQSeries Workflow for z/OS Programming Guide

Programming concepts

FmcjExecutionServicelLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

Figure 8. Reading a vector in C (using NextElement() only) (Part 5 of 5)

COBOL examples

In the following, some COBOL examples on how to read a vector are shown; note
that you can start with a FirstElement or NextElement call.

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.
01 TocalUserID PIC X(30) VALUE z"ADMIN".
01 TocalPassword PIC X(30) VALUE z"PASSWORD".
01 numElements PIC 9(9) BINARY.
01 i PIC 9(9) BINARY.
01 buffer PIC X(64) VALUE SPACES.
LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

Figure 9. Reading a vector in COBOL (using First/NextElement calls) (Part 1 of 4)

Chapter 1. MQSeries Workflow programming concepts 27

Programming concepts
PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
PERFORM FmcjESAllocate.

CALL "SETADDR" USING TocalUserlId userId.

CALL "SETADDR" USING TocalPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.

MOVE Fmc-SA-Reset TO absencelndicator.

PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-O0K THEN GOBACK.
DISPLAY "Logged on".

CALL "SETADDR" USING FmcjNoFilter filter.

CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.

PERFORM FmcjESQueryProcInsts.

SET hd1Vector TO instances.

MOVE intReturnValue TO retCode

IF retCode NOT = FMC-0K THEN GOBACK.
DISPLAY "Queried Process Instances".

Figure 9. Reading a vector in COBOL (using First/NextElement calls) (Part 2 of 4)

PERFORM FmcjPIVFirstElement.

SET hdlInstance TO FmcjPIHandleReturnValue.
PERFORM FmcjPIVSize.

MOVE ulongReturnValue TO numElements.

DISPLAY "Instances in the vector:".
MOVE FMC-PROC-INST-NAME-LENGTH TO bufferlLength.
CALL "SETADDR" USING buffer instanceNameBuffer.
PERFORM VARYING i FROM O BY 1 UNTIL i >= numElements
PERFORM FmcjPIName
DISPLAY "- name: " buffer
PERFORM FmcjPIDeallocate
PERFORM FmcjPIVNextElement
SET hdlInstance TO FmcjPIHandleReturnValue
END-PERFORM

Figure 9. Reading a vector in COBOL (using First/NextElement calls) (Part 3 of 4)

PERFORM FmcjPIVDeallocate.
PERFORM FmcjESLogoff.

DISPLAY "Logged off".

PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 9. Reading a vector in COBOL (using First/NextElement calls) (Part 4 of 4)

28 MQSeries Workflow for z/OS Programming Guide

Programming concepts

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.
WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 lTocalUserID PIC X(30) VALUE z"ADMIN".
01 TocalPassword PIC X(30) VALUE z"PASSWORD".
01 buffer PIC X(64) VALUE SPACES.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

Figure 10. Reading a vector in COBOL (using NextElement calls only) (Part 1 of 4)

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
PERFORM FmcjESATllocate.

CALL "SETADDR" USING TocalUserId userId.

CALL "SETADDR" USING TocalPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.

MOVE Fmc-SA-Reset TO absencelndicator.

PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-0K THEN GOBACK.
DISPLAY "Logged on".

CALL "SETADDR" USING FmcjNoFilter filter.

CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.

PERFORM FmcjESQueryProclInsts.

SET hd1Vector TO instances.
MOVE intReturnValue TO retCode

IF retCode NOT = FMC-0K THEN GOBACK.
DISPLAY "Queried Process Instances".

Figure 10. Reading a vector in COBOL (using NextElement calls only) (Part 2 of 4)

Chapter 1. MQSeries Workflow programming concepts

29

Programming concepts

DISPLAY "Instances in the vector:".
MOVE FMC-PROC-INST-NAME-LENGTH TO bufferLength.
CALL "SETADDR" USING buffer instanceNameBuffer.

PERFORM FmcjPIVNextElement.

PERFORM UNTIL FmcjPIHandleReturnValue = NULL
SET hdlInstance TO FmcjPIHandleReturnValue
PERFORM FmcjPIName
DISPLAY "- name: " buffer
PERFORM FmcjPIDeallocate
PERFORM FmcjPIVNextElement

END-PERFORM

Figure 10. Reading a vector in COBOL (using NextElement calls only) (Part 3 of 4)

PERFORM FmcjPIVDeallocate.
PERFORM FmcjESLogoff.

DISPLAY "Logged off".

PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 10. Reading a vector in COBOL (using NextElement calls only) (Part 4 of 4)

Java arrays

In Java, the result of a query for a set of objects is stored in arrays. The arrays are
declared by you as a variable of the respective type, for example:

ProcessInstance[] processInstances;

With each new query, all existing objects in the array are deleted and the new
objects are added.

The number of objects contained in an array is determined by accessing its length
variable, for example:

processInstances.length

All array indexes start with 0 (zero). That is, valid index numbers are 0 to length-1.
You access an object by providing its index number, for example,
processInstances[0]. Note that you should not remember the index number of an
object because the object can have a different index after each query, depending on
the sort criteria and the number of objects returned.

Handling containers

A container represents input or output data of a process template, process instance,
work item, activity implementation, or support tool at Runtime. Each container is
defined by a data structure which declares the container to be of the type of that
data structure.

30 MQSeries Workflow for z/OS Programming Guide

Programming concepts

Data structure/container type

A data structure is uniquely identified by its name and contains an ordered list of
data members. At Runtime, it can become a stream of 4 MB passed between the
client and the server. Activity implementations need, however, to consider the
restrictions imposed by CICS or IMS.

The data structures and their usage as input containers or output containers are
defined during modeling. A special data structure called
DEFAULT_DATA_STRUCTURE is provided by MQ Workflow and contains no
user-defined data members when installed. The DEFAULT DATA_STRUCTURE
cannot be deleted, but it can be extended during modeling.

Data member/container element

A data member of a data structure has a name and a data type. Data types are
either basic and then STRING, LONG, BINARY, or FLOAT,or another data
structure. Using a data structure as the data type of a data member (nesting)
allows for recursive definitions of data members.

A data member can represent a one-dimensional array. If a data member represents
an array, the number of elements in that array is shown in parentheses ().

A data structure can have up to 512 user-defined data members. A data member
that represents an array of data members counts with as many data members as it
has elements.

Data members are specified using their fully qualified name within the container.
The fully qualified name® of a data member is a name in dot notation where the
hierarchy of nested data members is presented from left to right, and their names
are separated by a dot.

If a data member actually specifies an array of data members, the index number of
a specific data member is specified in brackets ([n]) or parentheses ((n)).

When a data structure denotes the type of a container, then its data members (first
level of any hierarchy) are also called container elements. They define the structural
members of the container. When the data type of a container element (n-th level of
any hierarchy) is a data structure (nesting), then that container element again has
container elements or structural members.

Container elements of a basic data type are also called the leaves of the container.
These are the members which can hold a value, that is, which can be asked for a
value and which can be set to a new value.

For example, assume that the data structure PERSON describes an input container
or output container and that PERSON has been defined as:

Name STRING

Addr ADDRESS
Street STRING
POBOX LONG(2)

3. A fully qualified name in XML is represented by the nesting hierarchy.

Chapter 1. MQSeries Workflow programming concepts 31

Programming concepts

PERSON has two structural data members named Name and Addr. Name is of
basic data type STRING and Addr is of data type ADDRESS. That is the data
structure ADDRESS is nested within the data structure PERSON.

The input or output container described by PERSON then has two container
elements or structural members named Name and Addr, where Addr defines a
structure by itself. The container elements or structural members of the container
element Addr are Street and POBOX.

The leaves of the container, that is, the container elements which can carry a value,
and their fully qualified names within the container are:

Name
Addr.Street
Addr.POBOX[0]
Addr.POBOX[1]

Note that since the size of the POBOX array is 2, the valid index numbers are 0
and 1. This is because all array indexes start with 0 (zero).

Also note that the fully qualified names are not prefixed with the name of the data
structure PERSON. That data structure denotes the type of the container.

For detailed examples see P’Chapfpr 6 Fyamp]pq” on page 5749

The XML message interface
In the XML message interface, data members (container elements) are represented
as follows:

* The data member name is represented by an XML element name.

* Nested data structures are decomposed into XML child elements according to
their structure, that is, there is no dot notation for fully qualified names.

* Arrays are depicted as a sequence of elements.
* The data member type is not part of the XML element content.

For example:

<Name>
<Addr>
<Street></Street>
<POBOX></POBOX>
<POBOX></POBOX>
</Addr>
</Name>

For more information refer to Container data” on page 168.

Predefined data members

All containers automatically specify data members predefined by MQ Workflow.
They can hold values associated with the operational characteristics of an activity
or process. Predefined data members are data members that need not be defined
by the modeler but are automatically available. They can be accessed by the
container APIL. Their names start with the reserved character "_".

Predefined data member values can be:

* Used to evaluate activity exit criteria.

* Accessed by activity implementations or support tools.

* Dynamically set to change the operational characteristics of subsequent activities.

32 MQSeries Workflow for z/OS Programming Guide

Programming concepts

Predefined data members provide for the flexibility of modelers. The decision on
operational characteristics of a process or activity is taken at Runtime. They also
provide activity implementations and support tools a means to access the
operational characteristics through the use of API API calls.

There are the following sets of predefined data members:
* Fixed data members

* Process information data members

* Activity information data members

Fixed data members provide information about the current activity instance. They
cannot be set using an API API call. An exception is the _RC data member which
should be set only if the program cannot otherwise specify a return code (see the
following).

Process information and activity information data members are associated with the
operational characteristics of a process or activity. They operate the same way as
any user-defined data members. This means that the values for specific operational
characteristics of a process instance or activity instance can be accessed or changed
just like the values for any other user-defined data member.

The following provides the fully qualified name and a brief description of each of
the predefined data members.

There are no arrays of any predefined data member.

Fixed data members
Fixed data members _ACTIVITY, PROCESS, and _PROCESS_MODEL cannot be set

using API API calls. Their values can be read using API container API calls. Fixed
data member _RC is available in output containers but should only be set when
your compiler does not support a program exit code.

_ACTIVITY
This data member contains the fully-qualified name of the considered
activity instance. The value of this data member is automatically set when
the activity instance or an associated work item is started.

Data type: STRING

PROCESS
This data member contains the name of the associated process instance.
The value of this data member is automatically set when the activity
instance or an associated work item is started.

Data type: STRING

_PROCESS_MODEL
This data member contains the name of the associated process model. The
value of this data member is automatically set when the activity instance
or an associated work item is started.

Data type: STRING

_RC This data member contains the return code of the activity implementation
when the implementation is a program. Typically it is used to evaluate exit
and transition conditions. It cannot be read from input containers and,
unless it has not been set explicitly, it is automatically set to the exit code
of the activity implementation when that program ends. If set explicitly,
then that value stays.

Chapter 1. MQSeries Workflow programming concepts 33

Programming concepts

In cases where your compiler does not support an exit code, you can use
the Container API to set its value.

Data type: LONG

Process information data members

Process information data members serve to dynamically specify properties of a
process instance. In general, the process modeler can choose where values for
process instance properties are to be obtained.

* Values can be inherited from a top-level process instance.

* Values can be obtained from the process information data members in the input
container. They are then either set as default values or provided in the input
container when the process instance is started.

If specified via the DATA_FROM_INPUT_CONTAINER indicator, the values of the
process information data members are read by MQ Workflow when the process
instance is started. If a value for a process information data member is not set,
then a default value is used (see the detailed descriptions below).

_PROCESS_INF0.Role
A role that people assigned to an activity instance of the process instance
must fulfill.

Any role set becomes an additional criterion to roles set for the activity
instance. Only people who are members of all the specified roles are
eligible.

If no role is set and no roles are specified for the activity instance, then no
role criteria are applied.

Data type: STRING

_PROCESS_INF0.0rganization
The organization to which people must belong to receive work items of the
process instance. This setting is only used if no organization is specified for
the activity instance.

If no organization is set and no organization is specified for the activity
instance, the default is the organization of the person who starts the
process instance.

Data type: STRING

_PROCESS_INFO.ProcessAdministrator
The user ID of the person notified if:
¢ The process instance is expired.
* No person meets the criteria to perform an activity instance.
* No valid person has been specified for notification.
* The person notified that an activity instance is overdue has exceeded the
time allowed for an action, that is, the second notification is sent.

If not set, the default process administrator is the person who starts the
process instance.
Data type: STRING

_PROCESS_INFO.Duration
Specifies how long the process instance is allowed to take. The value is
expressed in seconds.

If not set, the default is "Endless".

34 MQSeries Workflow for z/OS Programming Guide

Programming concepts
Data type: LONG

Activity information data members

Activity information data members serve to dynamically specify properties of an
activity instance. In general, the process modeler can choose where values for
activity instance properties are to be obtained.

* Values can be obtained from the activity information data members in the input
container. They are then either set as default values or provided in the input
container when an activity instance or associated work item is started.

If specified, the values of the activity information data members are read by MQ
Workflow when the activity instance is scheduled. If a value is not set, then a
default value is used (see the detailed descriptions below).

The following indicators specify that activity information data members are to be
read:

* DONE_BY STAFF DEFINED_IN INPUT_CONTAINER

* NOTIFICATION DEFINED_IN INPUT_CONTAINER

+ PRIORITY DEFINED_IN INPUT_CONTAINER

_ACTIVITY_INFO.Priority
The numeric value assigned as the priority of an activity instance. MQ
Workflow does not deduce any meaning from this value; it is just used for
client purposes. Any integer value between 0 and 999 can be specified. If
the value specified is invalid or the data member is not set, a default of 0
(zero) is used.

Data type: LONG

_ACTIVITY_INFO.MembersOfRoles
The role or roles a person must fulfill to receive a work item for the
activity instance. Multiple roles may be specified and are then to be
separated by a semicolon (;).

Any role or roles set for this data member become an additional criterion
to the role set for the process instance. Only people who are members of
all the specified roles are eligible.

If not set, the role specified for the process instance is used. If no role is set
for the process instance and no roles are specified for the activity instance,
then no role criteria are applied.

Note: This specification is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.CoordinatorOfRole
The role or roles a person must coordinate to receive a work item for the
activity instance. Multiple roles to coordinate may be specified and are
then to be separated by a semicolon (;).

To receive a work item, the eligible person must be assigned as coordinator
of all the specified roles in addition to being a member of all roles
specified for the process instance and for the activity instance.

If not set, the roles specified by the process instance and the activity
instance are solely used. If no roles to be member of nor roles to coordinate
have been specified, no role criteria are applied.

Chapter 1. MQSeries Workflow programming concepts 35

Programming concepts

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.Organization
The organization to which people must belong to receive work items of the
activity instance.

If an organization is set using this data member, any organization set for
the process instance is ignored.

If not set, the organization specified by the process instance is used. If no
organization is set and no organization is specified for the process instance
properties, the default is the organization of the person who starts the
process instance.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO. OrganizationType
This data member is used to indicate if a work item for the activity
instance should be assigned to persons in a child organization.

To make all persons in the specified organization and all of its child
organizations eligible, set the value of this data member to 0.

To limit the persons who are eligible to the members of the specified
organization and the managers of the first level of child organizations, set
this data member to any nonzero value.

If not set, the default is 0. If no organization is set for the
_ACTIVITY_INFO.Organization data member, any value set here is ignored.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: long

_ACTIVITY_INFO.LowerLevel
The minimum level persons must have to receive work items of the
activity instance. A value between 0 and 9 can be set. The default value is
0 (zero).
If the level specified here is greater than the value specified for the upper
level, or if the level is not set, the default value of 0 (zero) is used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.
Data type: LONG

_ACTIVITY_INFO.UpperLevel
The maximum level for persons to receive work items of the activity
instance. A value between 0 and 9 can be set. The default value is 9.

If the level specified here is less than the value specified for the lower
level, or the level is not set, the default value of 9 is used.

36 MQSeries Workflow for z/OS Programming Guide

Programming concepts

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.People
This data member is used to specifically identify the people who should
receive a work item of the activity instance. Multiple entries are possible
and are then to be separated by a semicolon (;).

If any people are identified using this data member, any values set for data
members ACTIVITY_ INFO.MembersOfRoTes,
_ACTIVITY_INFO.CoordinatorOfRole, ACTIVITY_INFO.Organization,
_ACTIVITY_INFO.OrganizationType, _ACTIVITY_INFO.LowerLevel, and
_ACTIVITY_INFO.UpperLevel are ignored.

If no value is set, any values set for the above data members are used. If
no values have been set for those, the values set for staff definition for the
process instance are used.

If no values have been set for the process instance, the people in the
organization and all child organizations of the process starter receive a
work item for the activity instance.

Data type: STRING

_ACTIVITY_INFO.PersonToNotify
Used to identify the person to notify if the specified duration to complete
the activity instance expires before the activity instance is complete.

If the user ID specified by the data member is invalid or the data member
is not set, the process administrator is notified.

Data type: STRING

_ACTIVITY_INFO.Duration
Used to specify the maximum number of seconds allowed to complete the
activity.

If the activity is not completed before the specified duration, the defined
person is notified.

If the value specified by the data member is invalid or the data member is
not set, no notification occurs.

Data type: LONG

_ACTIVITY_INFO.Duration2
Used to specify the maximum number of seconds allowed to act on an
activity instance notification.

If the notification is not acted on before the specified number of seconds
expires, the process administrator is notified.

If the value specified by the data member is invalid or the data member is
not set, no notification occurs.

Data type: LONG

Determining the structure of an unknown container

There are various API calls in order to determine the structure of an unknown
container and/or its leaves. Applied to a container, they return a collection of

Chapter 1. MQSeries Workflow programming concepts 37

Programming concepts

container elements. Once the collection of container elements is available, similar
API calls can be recursively applied in order to step down through a nested
structure.

Note: In the XML message interface, a container is always completely described in
the message. An application can thus determine the structure of a container
by analyzing the container in the message.

Determining the leaves
The following API calls allow to determine the number of leaves in a container or

to retrieve the leaves themselves. When all leaves are requested, then not only the
user-defined leaves or their leaf count are provided, but also the MQ Workflow
predefined data members.

— C-language signatures
unsigned long FmcjContainerLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerLeaves(FmcjContainerHandle handle)

unsigned long FmcjContainerAllLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerAllLeaves(FmcjContainerHandle handle)

C++ language signatures
unsigned long LeafCount()

void Leaves(vector<FmcjContainerElement> const & leaves) const
unsigned long AllLeafCount()

void AllLeaves(vector<FmcjContainerElement> const & leaves) const

— Java signatures
public abstract int leafCount() throws FmcException

public abstract ContainerElement[] Teaves() throws FmcException
public abstract int alllLeafCount() throws FmcException

public abstract ContainerElement[] alllLeaves() throws FmcException

38 MQSeries Workflow for z/OS Programming Guide

— COBOL

Programming concepts

FmcjCLeafCount.

CALL "FmcjContainerLeafCount"
USING
BY VALUE
hd1Container
RETURNING
ulongReturnValue.

FmcjCLeaves.

CALL "FmcjContainerLeaves"
USING
BY VALUE
hd1Container
RETURNING

FmcjCEVHandTeReturnValue.

FmcjCAT1LeafCount.

CALL "FmcjContainerAllLeafCount"
USING
BY VALUE
hd1Container
RETURNING
ulongReturnValue.

FmcjCAT1Leaves.

CALL "FmcjContainerAllLeaves"
USING
BY VALUE
hd1Container
RETURNING

FmcjCEVHandTeReturnValue.

Parameters
handle
leaves

Input. The handle of the container to be queried.
Input/Output. The vector or array of container elements to be

filled.

Return type

ContainerElement[]/FmcjContainerElementVectorHandle
The container elements which are leaves.

long/unsigned long/int

The number of user-defined leaves or the number of all leaves,

user-defined and predefined.

Determining the structural members
The following API calls allow to determine the number of structural members in a

container or to retrieve the structural members themselves.

Chapter 1. MQSeries Workflow programming concepts

39

Programming concepts

— C-language signatures
unsigned long FmcjContainerMemberCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerStructMembers(FmcjContainerHandle handle)

— C++ language signatures
unsigned long MemberCount()

void StructMembers(vector<FmcjContainerElement> const & members) const

— Java signatures
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

— COBOL
FmcjCMemberCount.

CALL "FmcjContainerMemberCount"
USING
BY VALUE
hd1Container
RETURNING
ulongReturnValue.

FmcjCStructMembers.

CALL "FmcjContainerStructMembers"
USING
BY VALUE
hd1Container
RETURNING
FmcjCEVHandTeReturnValue.

Parameters

handle Input. The handle of the container to be queried.

members Input/Output. The vector or array of container elements to be
filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are part of the container.
long/unsigned long/int

The number of structural members in the container.

Determining the type
The following API calls provide the type of a container, that is, the name of the

associated data structure.

40 MQSeries Workflow for z/OS Programming Guide

Programming concepts

C-language signature

char * FmcjContainerType(FmcjContainerHandle handle,
char = containerTypeBuffer,
unsigned Tong bufferLength)

— C++ language signature
string Type()

— Java signature
public abstract String type() throws FmcException

— COBOL
FmcjCType.

CALL "FmcjContainerType"

USING

BY VALUE
hd1Container
containerTypeBuffer
bufferLength

RETURNING
pointerReturnValue.

Parameters
bufferLength Input. The length of the buffer to contain the container type; must
be at least FMC_CONTAINER_TYPE_LENGTH bytes.

containerTypeBuffer
Input/Output. The buffer to contain the container type.
handle Input. The handle of the container to be queried.

Return type
BSTR/char*/string/String
The type of the container.

Analyzing a container element

Once a container element has been accessed, it can be asked for its properties, its
name, whether it is a leaf and an array, or a structure itself. Functions/methods
you have seen on the container can then be applied recursively in order to step
down through a nested structure.

Determining the name or type of a container element
The following API calls allow to determine the name of a container element or its

type.

Chapter 1. MQSeries Workflow programming concepts 41

Programming concepts

— C-language signatures

char* FmcjContainerElementName (FmcjContainerElementHandle handle,
char = buffer,
unsigned Tong bufferLength)
char* FmcjContainerElementFullName(FmcjContainerElementHandle handle,
char * buffer,
unsigned Tong bufferLength)
char* FmcjContainerElementType (FmcjContainerElementHandle handle,
char = buffer,
unsigned long bufferLength)

— C++ language signatures
string Name() const

string FullName() const

string Type() const

— Java signatures
public abstract String name() throws FmcException

public abstract String fullName() throws FmcException

public abstract String type() throws FmcException

42 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— COBOL
FmcjCEName.

CALL "FmcjContainerElementName"

USING

BY VALUE
hd1Element
elementNameBuffer
bufferLength

RETURNING
pointerReturnValue.

FmcjCEFuTl1Name.
CALL "FmcjContainerElementFullName"
USING
BY VALUE
hd1Element
elementNameBuffer
bufferLength
RETURNING
pointerReturnValue.

FmcjCEType.

CALL "FmcjContainerElementType"

USING

BY VALUE
hdTETement
containerTypeBuffer
bufferLength

RETURNING
pointerReturnValue.

Parameters
bufferLength Input. The length of the buffer to be filled.
buffer Input/Output. The buffer to contain the container element name or

type.
handle Input. The handle of the container element to be queried.

Return type
BSTR/char*/string/String
The name or type of the container element.

Determining the structural properties of a container element
The following API calls allow to determine whether the considered container
element is a leaf or a structure by itself and whether it is denoted to be an array.

C-language signatures
bool FmcjContainerElementIsArray (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsLeaf (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsStruct(FmcjContainerElementHandle handle)

Chapter 1. MQSeries Workflow programming concepts 43

Programming concepts

— C++ language signatures
bool IsArray () const

bool IsLeaf () const

bool IsStruct() const

— Java signatures

public abstract boolean isArray () throws FmcException
public abstract boolean isLeaf () throws FmcException

public abstract boolean isStruct() throws FmcException

— COBOL
FmcjCEIsArray.

CALL "FmcjContainerElementIsArray"
USING
BY VALUE
hd1ETement
RETURNING
boolReturnValue.

FmcjCEIsLeaf.

CALL "FmcjContainerElementIsLeaf"
USING
BY VALUE
hd1ETement
RETURNING
boolReturnValue.

FmcjCEIsStruct.

CALL "FmcjContainerElementIsStruct"
USING
BY VALUE
hd1ETement
RETURNING
boolReturnValue.

Parameters

handle Input. The handle of the container element to be queried.

Return type

boolean/bool An indicator whether the container element is an array, a leaf, or a

structure.

Determining the leaves of a container element
The following API calls allow to determine the number of leaves of a container

element or to retrieve the leaves themselves.

44 MQSeries Workflow for z/OS Programming Guide

Programming concepts

Note: When these API calls are called on a leaf itself, the LeafCount() returns 1

because the container element obviously is a leaf, but no further leaves are

returned when Leaves() are queried.

— C-language signatures
unsigned Tong
FmcjContainerElementLeafCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementLeaves(FmcjContainerElementHandle handle)

— C++ language signatures
unsigned long LeafCount()

void Leaves(vector<FmcjContainerElement> const & Teaves) const

— Java signatures
public abstract int leafCount() throws FmcException

public abstract ContainerElement[] Teaves() throws FmcException

— COBOL
FmcjCELeafCount.

CALL "FmcjContainerElementLeafCount"
USING
BY VALUE
hd1ETement
RETURNING
uTongReturnValue.

FmcjCELeaves.

CALL "FmcjContainerElementLeaves"
USING
BY VALUE
hd1ETement
RETURNING
FmcjCEVHandTeReturnValue.

Parameters

handle Input. The handle of the container to be queried.

leaves Input/Output. The vector or array of container elements to be
filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle
The container elements which are leaves.
long/unsigned long/int
The number of user-defined leaves.

Chapter 1. MQSeries Workflow programming concepts

45

Programming concepts

Determining the structural members of a container element
The following API calls allow to determine the number of structural members of a
container element or to retrieve the structural members themselves.

— C-language signatures
unsigned Tong
FmcjContainerElementMemberCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementStructMembers(FmcjContainerElementHandle handle)

— C++ language signatures
unsigned long MemberCount ()

void StructMembers(vector<FmcjContainerElement> const & members) const

— Java signatures
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

— COBOL

FmcjCEMemberCount.

CALL "FmcjContainerElementMemberCount"
USING
BY VALUE
hd1ETement
RETURNING
uTongReturnValue.

FmcjCEStructMembers.

CALL "FmcjContainerElementStructMembers"
USING
BY VALUE
hd1ETement
RETURNING
FmcjCEVHandTeReturnValue.

Parameters

handle Input. The handle of the container element to be queried.

members Input/Output. The vector or array of container elements to be
filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are structural members.
long/unsigned long/int

The number of structural members.

46 MQSeries Workflow for z/OS Programming Guide

Programming concepts

Determining the elements of an array

The following API calls allow to determine the number of elements in an array or

to retrieve the elements themselves.

— C-language signatures
unsigned Tong
FmcjContainerElementCardinality(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementArrayElements(FmcjContainerElementHandle handle)

C++ language signatures
unsigned long Cardinality() const

void ArrayMembers(vector<FmcjContainerElement> const & elements) const

— Java signatures
public abstract int cardinality() throws FmcException

public abstract ContainerElement[] arrayElements() throws FmcException

— COBOL

FmcjCECardinality.

CALL "FmcjContainerElementCardinality"
USING
BY VALUE
hd1ETement
RETURNING
uTongReturnValue.

FmcjCEArrayElements.

CALL "FmcjContainerElementArrayElements"
USING
BY VALUE
hd1ETement
RETURNING
FmcjCEVHandTeReturnValue.

Parameters

handle Input. The handle of the container element to be queried.

elements Input/Output. The vector or array of container elements to be
filled.

Return type

ContainerElement[]/FmcjContainerElementVectorHandle
The container elements which are part of the queried array
container element.

Chapter 1. MQSeries Workflow programming concepts

47

Programming concepts

long/unsigned long

The cardinality of the array described by the container element.

Accessing a known container element

When you know the (dotted) name of a container element, that name can be used
in order to directly access the container element without iterating and searching

through the whole container or container element structure.

Note: A qualified name must start with a letter and cannot start with brackets or
other words, if you want to access an element of a container
is an array, then you need to call the ArrayElements() API

parentheses. In
element which
call.

APIRET FMC_APIENTRY

APIRET FMC_APIENTRY

— C-language signature

FmcjContainerGetElement (

FmcjContainerHandle handle,
char const = qualifiedName,
FmcjContainerElementHandle * element)

FmcjContainerElementGetElement (

FmcjContainerElementHandle handle,
char const * qualifiedName,
FmcjContainerElementHandle =* element)

APIRET GetElement(

— C++ language signature

qualifiedName,
) const

string const &
FmcjContainerETlement & element

— Java signature
public abstract

ContainerElement getElement(String qualifiedName) throws FmcException

48 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— COBOL
FmcjCGetElement.

CALL "FmcjContainerGetElement"

USING

BY VALUE
hd1Container
qualifiedName

BY REFERENCE
element

RETURNING
intReturnValue.

FmcjCEGetETement.

CALL "FmcjContainerElementGetElement"
USING
BY VALUE
hd1ETement
qualifiedName
BY REFERENCE
element
RETURNING
intReturnValue.

Parameters

element Output. The container element.

handle Input. The handle of the container or container element to be
queried.

qualifiedName
Input. The fully qualified name of the container element.

Return type
long/APIRET The return code of calling this API call - see return codes.

Accessing a value of a container

The following API calls return the value of a container leaf.
FMC_ERROR_MEMBER_NOT _SET is returned if no information is available.

When the leaf is an array of values, an index must be specified. Since an index is

to be specified, the fully qualified name must be given without the index and its
parentheses.

Chapter 1. MQSeries Workflow programming concepts 49

Programming concepts

— C-language signatures

unsigned Tong
FMC_APIENTRY FmcjContainerArrayBinaryLength(

FmcjContainerHandle handle,
char const = qualified name,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerArrayBinaryValue(

FmcjContainerHandle handle,
char const = qualifiedName,
unsigned Tong index,
FmcjBinary =* value,
unsigned Tong bufferLength)

unsigned Tong
FMC_APIENTRY FmcjContainerBinaryLength(
FmcjContainerHandle handle,
char const * qualified name)

APIRET FMC_APIENTRY FmcjContainerBinaryValue(

FmcjContainerHandle handle,
char const * qualifiedName,
FmcjBinary =* value,
unsigned long bufferLength)

— C-language signatures

APIRET FMC_APIENTRY FmcjContainerArrayFloatValue(
FmcjContainerHandle handle,

char const * qualifiedName,
unsigned Tong index,
double = value)

APIRET FMC_APIENTRY FmcjContainerFloatValue(
FmcjContainerHandle handle,

char const = qualifiedName,
double = value)
unsigned Tong bufferLength)

— C-language signatures

APIRET FMC_APIENTRY FmcjContainerArraylLongValue(
FmcjContainerHandle handle,

char const * qualifiedName,
unsigned Tong index,
long * value)

APIRET FMC_APIENTRY FmcjContainerLongValue(
FmcjContainerHandle handle,
long * value)

50 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— C-language signatures

unsigned Tong

FmcjContainerHandle
char const =
unsigned long

APIRET FMC_APIENTRY
FmcjContainerHandle
char const *
unsigned Tong
char *
unsigned long

unsigned long

char const *

char const *
char *
unsigned Tong

FMC_APIENTRY FmcjContainerArrayStringLength(

handle,
qualified name,
index)

FmcjContainerArrayStringValue(

handle,
qualifiedName,
index,
value,
bufferLength)

FMC_APIENTRY FmcjContainerArrayStringLength(
FmcjContainerHandle

handle,
qualified name)

APIRET FMC_APIENTRY FmcjContainerStringValue(
FmcjContainerHandle

handle,
qualifiedName,
value,
bufferLength)

— C++ language signatures

unsigned long BinaryLength(unsi

APIRET Value(string const &
unsigned Tong

FmcjBinary *
unsigned Tong

unsigned long BinaryLength()

gned long index)

qualifiedName,
index,
value,

bufferLength) const

— C++ language signatures

APIRET Value(string const &
unsigned Tong
long &

APIRET Value(string const a
long &

qualifiedName,
index,
value) const

qualifiedName,
value) const

— C++ language signatures

APIRET Value(string const &
unsigned Tong
double &

APIRET Value(string const a
double &

qualifiedName,
index,
value) const

qualifiedName,
value) const

Chapter 1. MQSeries Workflow programming concepts

51

Programming concepts

APIRET Value(string const
string &

APIRET Value(string const
string &

— C++ language signatures

unsigned long

& qualifiedName,
index,
value) const

[<3]

qualifiedName,
value) const

— Java signatures

public abstract
byte[] getBuffer2(String
int

public abstract
byte[] getBuffer(String

qualifiedName,
index) throws FmcException

qualifiedName) throws FmcException

— Java signatures

public abstract
double getDouble2(String
int

public abstract
double getDouble(String

qualifiedName,
index) throws FmcException

qualifiedName) throws FmcException

— Java signatures
public abstract
int getLong2(String

int
public abstract
int getLong(String

qualifiedName,
index) throws FmcException

qualifiedName) throws FmcException

Java signatures

public abstract

String getString2(String
int

public abstract

String getString(String

qualifiedName,
index) throws FmcException

qualifiedName) throws FmcException

52 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— COBOL
FmcjCArrayBinaryLength.

CALL "FmcjContainerArrayBinarylLength"

USING

BY VALUE
hd1Container
qualifiedName
indexValue

RETURNING
ulongReturnValue.

FmcjCArrayBinaryValue.

CALL "FmcjContainerArrayBinaryValue"

USING

BY VALUE
hd1Container
qualifiedName
indexValue
pointerValue
datalLength

RETURNING
intReturnValue.

FmcjCBinarylLength.

CALL "FmcjContainerBinaryLength"
USING
BY VALUE
hd1Container
qualifiedName
RETURNING
ulongReturnValue.

FmcjCBinaryValue.

CALL "FmcjContainerBinaryValue"

USING

BY VALUE
hd1Container
qualifiedName
pointerValue
datalength

RETURNING
intReturnValue.

Chapter 1. MQSeries Workflow programming concepts 53

Programming concepts

— COBOL

FmcjCArrayFloatValue.
CALL "FmcjContainerArrayFloatValue"
USING
BY VALUE
hd1Container
qualifiedName
indexValue
BY REFERENCE
doubleValue
RETURNING
intReturnValue.
FmcjCFloatValue.
CALL "FmcjContainerFloatValue"
USING
BY VALUE
hd1Container
qualifiedName
BY REFERENCE
doubleValue
RETURNING
intReturnValue.

— COBOL

FmcjCArraylLongValue.

CALL "FmcjContainerArraylLongValue"

USING

BY VALUE
hd1Container
qualifiedName
indexValue

BY REFERENCE
intValue

RETURNING
intReturnValue.

FmcjCLongValue.

CALL "FmcjContainerLongValue"

USING

BY VALUE
hd1Container
qualifiedName

BY REFERENCE
intValue

RETURNING
intReturnValue.

54 MQSeries Workflow for z/OS Progra

mming Guide

— COBOL

Programming concepts

FmcjCArrayStringlLength.

CALL "FmcjContainerArrayStringlLength"

USING

BY VALUE
hd1Container
qualifiedName
indexValue

RETURNING
ulongReturnValue.

FmcjCArrayStringValue.

CALL "FmcjContainerArrayStringValue"

USING

BY VALUE
hd1Container
qualifiedName
indexValue
valueBuffer
bufferLength

RETURNING
intReturnValue.

FmcjCStringlLength.

CALL "FmcjContainerStringLength"
USING
BY VALUE
hd1Container
qualifiedName
RETURNING
ulongReturnValue.

FmcjCStringValue.

CALL "FmcjContainerStringValue"

USING

BY VALUE
hd1Container
qualifiedName
valueBuffer
bufferLength

RETURNING
intReturnValue.

Parameters

bufferLength

Input. The length of the buffer available for passing the value;

must be greater than or equal to the actual length. Use the
appropriate Length() API calls to determine the actual length.

handle Input. The handle of the container to be queried.

index Input. When the leaf is an array, the index of the array element to
be queried.

isArray Input. If set to True, an array is to be queried and the index is
used.

qualifiedName
Input. The fully qualified name of the leaf within the container.

value Output. The value of the leaf.

Chapter 1. MQSeries Workflow programming concepts 55

Programming concepts

Return type
byte[l/double/int/String
The leaf value.
unsigned long
The minimum required buffer length for reading the value.
long/APIRET The return code of calling this API call - see return codes.

Accessing a value of a container element

The following API calls return the value of a container element leaf. When the leaf
is an array of values, an index must be specified.
FMC_ERROR_MEMBER_NOT _SET is returned if no information is available. Note
that, in contrast to querying container leaves, the name of the leaf need not be
specified because the container element itself is the leaf queried.

— C-language signatures

unsigned Tong
FMC_APIENTRY FmcjContainerElementArrayBinarylLength(
FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayBinaryValue(

unsigned Tong index,
FmcjBinary =* value,
unsigned Tong bufferLength)

unsigned Tong
FMC_APIENTRY FmcjContainerElementBinaryLength(
FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementBinaryValue(
FmcjContainerElementHandle handle,
FmcjBinary =* value,
unsigned Tong bufferLength)

— C-language signatures

APIRET FMC_APIENTRY FmcjContainerElementArrayFloatValue(
FmcjContainerElementHandle handle,
unsigned Tong index,
double = value)

APIRET FMC_APIENTRY FmcjContainerElementFloatValue(
FmcjContainerElementHandle handle,
double = value)

— C-language signatures

APIRET FMC_APIENTRY FmcjContainerElementArraylLongValue(
FmcjContainerElementHandle handle,
unsigned long index,
Tong * value)

APIRET FMC_APIENTRY FmcjContainerElementLongValue(
FmcjContainerElementHandle handle,
long * value)

56 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— C-language signatures

unsigned Tong
FMC_APIENTRY FmcjContainerElementArrayStringLength(
FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayStringValue(
FmcjContainerElementHandle handle,

unsigned Tong index,
char * value,
unsigned Tong bufferLength)

unsigned Tong
FMC_APIENTRY FmcjContainerElementArrayStringLength(
FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementStringValue(
FmcjContainerElementHandle handle,
char * value,
unsigned Tong bufferLength)

— C++ language signatures
unsigned long BinaryLength(unsigned lTong index)
APIRET Value(unsigned long index,

FmcjBinary =* value,

unsigned Tong bufferLength) const
unsigned long BinaryLength()

APIRET Value(FmcjBinary = value,
unsigned Tong bufferLength) const

— C++ language signatures
APIRET Value(unsigned long index,

Tong & value) const
APIRET Value(long & value) const
APIRET Value(unsigned long index,

double & value) const
APIRET Value(double & value) const
APIRET Value(unsigned long index,

string & value) const
APIRET Value(string & value) const

Chapter 1. MQSeries Workflow programming concepts

57

Programming concepts

— Java signatures
public abstract
byte[] getBuffer2(int index) throws FmcException

public abstract
byte[] getBuffer() throws FmcException

pubTic abstract
double getDouble2(int index) throws FmcException

public abstract
double getDouble() throws FmcException

public abstract
int getLong2(int index) throws FmcException

public abstract
int getLong() throws FmcException

pubTic abstract
String getString2(int index) throws FmcException

public abstract
String getString() throws FmcException

58 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— COBOL

FmcjCEArrayBinarylLength.

CALL "FmcjContainerElementArrayBinarylLength"
USING
BY VALUE
hd1Element
indexValue
RETURNING
ulongReturnValue.

FmcjCEArrayBinaryValue.

CALL "FmcjContainerElementArrayBinaryValue"
USING
BY VALUE
hd1ETlement
indexValue
pointerValue
datalength
RETURNING
intReturnValue

FmcjCEBinaryLength.

CALL "FmcjContainerElementBinarylLength"
USING
BY VALUE
hd1Element
RETURNING
uTongReturnValue.

FmcjCEBinaryValue.

CALL "FmcjContainerElementBinaryValue"
USING
BY VALUE
hd1Element
pointerValue
datalength
RETURNING
intReturnValue.

Chapter 1. MQSeries Workflow programming concepts 59

Programming concepts

— COBOL

FmcjCEArrayFloatValue.

CALL "FmcjContainerElementArrayFloatValue"
USING
BY VALUE
hd1ETement
indexValue
BY REFERENCE
doubleValue
RETURNING
intReturnValue.

FmcjCEFloatValue.

CALL "FmcjContainerElementFloatValue"
USING
BY VALUE
hd1ETement
BY REFERENCE
doubleValue
RETURNING
intReturnValue.

— COBOL
FmcjCEArrayLongValue.

CALL "FmcjContainerElementArrayLongValue"
USING
BY VALUE
hd1Element
indexValue
BY REFERENCE
intValue
RETURNING
intReturnValue.

FmcjCELongValue.

CALL "FmcjContainerElementLongValue"

USING

BY VALUE
hd1ETement

BY REFERENCE
intValue

RETURNING
intReturnValue.

60 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— COBOL

FmcjCEArrayStringlLength.

CALL "FmcjContainerElementArrayStringlLength"

FmcjCEArrayStringValue.

CALL "FmcjContainerElementArrayStringValue"

FmcjCEStringlLength.

CALL "FmcjContainerElementStringlLength"

FmcjCEStringValue.

CALL "FmcjContainerElementStringValue"

USING

BY VALUE
hd1Element
indexValue

RETURNING
uTongReturnValue.

USING

BY VALUE
hd1ETement
indexValue
valueBuffer
bufferLength

RETURNING
intReturnValue.

USING
BY VALUE
hdTETement
RETURNING
uTongReturnValue.

USING

BY VALUE
hd1ETement
valueBuffer
bufferLength

RETURNING
intReturnValue.

Parameters
bufferLength

handle
index

value

Return type

Input. The length of the buffer available for passing the value;
must be greater than or equal to the actual length. Use the
appropriate Length() API calls to determine the actual length.
Input. The handle of the container element to be queried.

Input. When the leaf is an array, the index of the array element to
be queried. In ActiveX, the index is ignored for a container element
which is no array.

Output. The value of the leaf.

byte[l/double/int/String

unsigned long

The leaf value.

The minimum required buffer length for reading the value.

long/APIRET The return code of calling this API call - see return codes.

Chapter 1. MQSeries Workflow programming concepts 61

Programming concepts

Setting a value of a container

The following API calls allow to set the value of a container leaf in a read/write
container.

When the leaf is an array of values, an index must be specified. Since an index is
to be specified, the fully qualified name must be given without the index and its
parentheses.

Setting a container value changes the value in the API cache only; the execution
server is not contacted. The container can then be used as the input container for a
process instance (Start(), CreateAndStart(), Execute()), as the output container of a
work item (CheckIn(), SetOutContainer()), or as a corrective container when calling
ForceFinish() or ForceRestart().

— C-language signatures

APIRET FMC_APIENTRY FmcjContainerSetArrayBinaryValue(
FmcjReadWriteContainerHandle handle,

char const * qualifiedName,
unsigned Tong index,
FmcjBinary const = value,
unsigned Tong datalength)

APIRET FMC_APIENTRY FmcjContainerSetBinaryValue(
FmcjReadWriteContainerHandle handle,

char const = qualifiedName,
FmcjBinary const * value,
unsigned long datalength)

— C-language signatures

APIRET FMC_APIENTRY FmcjContainerSetArrayFloatValue(
FmcjReadWriteContainerHandle handle,

char const = qualifiedName,
unsigned Tong index,
double value)

APIRET FMC_APIENTRY FmcjContainerSetFloatValue(
FmcjReadWriteContainerHandle handle,
char const * qualifiedName,
double value)

— C-language signatures

APIRET FMC_APIENTRY FmcjContainerSetArrayLongValue(
FmcjReadWriteContainerHandle handle,

char const * qualifiedName,
unsigned Tong index,
Tong value)

APIRET FMC_APIENTRY FmcjContainerSetLongValue(
FmcjReadWriteContainerHandle handle,
long value)

62 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— C-language signatures

APIRET FMC_APIENTRY FmcjContainerSetArrayStringValue(
FmcjReadWriteContainerHandle handle,

char const =
unsigned Tong
char const *

APIRET FMC_APIENTRY FmcjContainerSe

FmcjReadWriteContainerHandle

char const *
char const *

tStringValue(

qualifiedName,
index,
value)

handle,
qualifiedName,
value)

— C++ language signatures

APIRET SetValue(string const &
unsigned Tong
FmcjBinary const =
unsigned Tong

APIRET SetValue(string const &
FmcjBinary const =

qualifiedName,

index,
value,
datalLength)

const

qualifiedName,

value,

unsigned long datalLength) const
— C++ language signatures
APIRET SetValue(string const & qualifiedName,
unsigned Tong index,
Tong value) const
APIRET SetValue(string const a qualifiedName,
Tong value) const
— C++ language signatures
APIRET SetValue(string const & qualifiedName,
unsigned Tong index,
double value) const
APIRET SetValue(string const a qualifiedName,
double value) const
— C++ language signatures
APIRET SetValue(string const & qualifiedName,
unsigned Tong index,
string const & value) const
APIRET SetValue(string const & qualifiedName,
string const & value) const

Chapter 1. MQSeries Workflow programming concepts

63

Programming concepts

— Java signatures
public abstract

void setBuffer2(String qualifiedName,
int index,
byte value [1) throws FmcException
public abstract
void setBuffer(String qualifiedName,
byte value[]) throws FmcException
— Java signatures
pubTic abstract
void setDouble2(String qualifiedName,
int index,
double value) throws FmcException
pubTic abstract
void setDouble(String qualifiedName,
double value) throws FmcException
— Java signatures
public abstract
void setlLong2(String qualifiedName,
int index,
long value) throws FmcException
public abstract
void setlLong(String qualifiedName,
Tong value) throws FmcException
— Java signatures
public abstract
void setString2(String qualifiedName,
int index,
String value) throws FmcException
public abstract
void setString(String qualifiedName,
String value) throws FmcException

64 MQSeries Workflow for z/OS Programming Guide

Programming concepts

— COBOL

FmcjRWCSetArrayBinaryValue.

CALL "FmcjReadWriteContainerSetArrayBinaryValue"
USING
BY VALUE
hd1Container
qualifiedName
indexValue
pointerValue
datalength
RETURNING
intReturnValue.

FmcjRWCSetBinaryValue.

CALL "FmcjReadWriteContainerSetBinaryValue"
USING
BY VALUE
hd1Container
qualifiedName
pointerValue
datalength
RETURNING
intReturnValue.

— COBOL
FmcjRWCSetArrayFloatValue.
CALL "FmcjReadWriteContainerSetArrayFloatValue"
USING
BY VALUE

hd1Container
qualifiedName
indexValue
doubleValue
RETURNING
intReturnValue.

FmcjRWCSetFloatValue.
CALL "FmcjReadWriteContainerSetFloatValue"
USING
BY VALUE
hd1Container

qualifiedName

doubleValue
RETURNING

intReturnValue.

Chapter 1. MQSeries Workflow programming concepts 65

Programming concepts

— COBOL
FmcjRWCSetArraylLongValue.

CALL "FmcjReadWriteContainerSetArraylLongValue"
USING
BY VALUE
hd1Container
qualifiedName
indexValue
intValue
RETURNING
intReturnValue.

FmcjRWCSetLongValue.

CALL "FmcjReadWriteContainerSetLongValue"
USING
BY VALUE
hd1Container
qualifiedName
intValue
RETURNING
intReturnValue.

— COBOL
FmcjRWCSetArrayStringValue.
CALL "FmcjReadWriteContainerSetArrayStringValue"
USING
BY VALUE

hd1Container
qualifiedName
indexValue
pointerValue
RETURNING
intReturnValue.

FmcjRWCSetStringValue.

CALL "FmcjReadWriteContainerSetStringValue"
USING
BY VALUE
hd1Container
qualifiedName
pointerValue
RETURNING
intReturnValue.

Parameters

dataLength Input. The length of the binary value.

handle Input. The handle of the container to be set.

index Input. When the leaf is an array, the index of the array element to
be set.

isArray Input. If set to True, an array element is to be set and the index is
used.

qualifiedName
Input. The fully qualified name of the leaf within the container.

value Input. The value of the leaf. Note that values for leaves of type

66 MQSeries Workflow for z/OS Programming Guide

Programming concepts

BINARY must be specified as a sequence of two-digit hexadecimal
numbers. For example, the string "abc<cr><If>" would be
represented as '6162630d0a’” (where <cr> denotes the ASCII
‘carriage return’ character and <If> denotes the ASCII line-feed
character).

Return type
long/APIRET The return code of calling this API call - see return codes.

Return codes/FmcException

The following return codes can be returned or can be described by the result object
or following exceptions can be thrown, the number in parentheses shows their
integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR_BUFFER(800)

The provided buffer is too small.
FMC_ERROR(1)

A parameter references an undefined location. For example, the

address of a handle is expected, but 0 is passed.
FMC_ERROR_EMPTY(122)

The object has not yet been read from the server.
FMC_ERROR_FORMAT(117)

The qualified name does not conform to the syntax rules.
FMC_ERROR_INVALID_HANDLE(130)

The handle provided is invalid; it is 0 or it is not pointing to an

object of the requested type.
FMC_ERROR_MEMBER_CANNOT_BE_SET(115)

The specified member is an MQ Workflow predefined fixed data

member; it is for information only.
FMC_ERROR_MEMBER_NOT_FOUND(112)

The specified member is not part of the container or container

element.
FMC_ERROR_MEMBER_NOT_SET(113)

The specified member has no value.

Monitoring a process instance

MQ Workflow allows for obtaining a monitor for a specified process instance. A

process instance monitor typically allows for:

¢ Observing the progress of a process instance execution.

* Determining the state of execution, that is, to determine which activity instance
is currently in progress, is waiting to be executed by whom, is InError and
waiting for some action. It allows to determine whether notifications occurred
because the maximum work time was exceeded.

* Viewing the history of execution, that is, what path has been taken through the
process instance and why. It allows to determine where the bottlenecks of
execution are or where the most time-consuming parts are.

Note: Monitoring a process instance is not supported in the XML message
interface.

Chapter 1. MQSeries Workflow programming concepts 67

Programming concepts

Obtaining an process instance monitor

Once a process instance* has been accessed, an instance monitor for a process
instance can be obtained (ObtainProcessMonitor()). The transient instance monitor
object then represents all information about activity instances directly contained in
the described process instance as well as all information on control connector
instances connecting those activity instances.

Instance Monitor for process instance
Program Activity 1

\
e

Program Activity 2 Block Activity 3

Instance Monitor for block
activity instance

3,

Block Activity 4

Program Activity 7 Program Activity 8

EEE .
[E2] Process Activity 6
Program Activity 5 Y

Instance Monitor for block
activity instance

Instance Monitor for activity
instance of kind process

B3]
Program Activity 9

Figure 11. Instance monitors for process instances and activity instances of type Block

For example, the illustrated instance monitor describes three program activities,
Program Activity 1, Program Activity 2, and Program Activity 9, and an activity of
type Block, Block Activity 3. There are three control connectors between these
activities.

The instance monitor object can then be asked for the activity instances and the
control co