<|lI!

IBM MQSeries Workflow for 0S/390

Programming Guide

Version 3 Release 2

SC33-7031-03

<|lI!

IBM MQSeries Workflow for 0S/390

Programming Guide

Version 3 Release 2

SC33-7031-03

Note!
Before using this information and the product it supports, be sure to read the general information under Natices” ar

Third Edition (February 2000)

This edition applies to Version 3, Release 2, Modification Level 1 of IBM MQSeries Workflow for OS/390 (product
number 5565-A96) and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has
been removed, address your comments to:

IBM Deutschland Entwicklung GmbH
Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

FAX (Germany): 07031+16-3456
FAX (Other Countries): (+49)+7031-16-3456

IBM Mail Exchange: DEIBMBMY at IBMMAIL
Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
FiguresVi
Tablesix

Aboutthisbook Xi

Who should read thisbookxi
How to get additional information.xi
How to send your commentsxi
How this book is organizedxi
How to read the syntax diagrams xii
Noticesxii
TrademarksXV

Summary of changes xvii

Chapter 1. MQSeries Workflow
programming concepts1
Understanding Workflow programming . |
The role of the programmer in modeling a process 1
Programming interfaces .2
Prerequisites for using a programmmg language API 3
Overview of the Runtime API .. .3
Building an MQSeries Workflow appllcatlon .o L7
Overview . . o 7
Handling errors S 8
Object and memory management B |
The result object. . 12
Client/server Communlcahon and data access

models16
Synchronous cllent/ server Commumcatlon .. .16
Asynchronous client/server communication . . 16
The push data access model.16
Receiving information.17

An MQSeries Workflow session19

Queryingdata19
Persistent lists20
Using filters, sort criteria, and thresholds .. .20
Handling collections20
C and COBOL vector accessor funct1ons Lo 21
Javaarrays30

Handling containers . . B]
Data structure/container type L. 30
Data member/container element30
Predefined data members.32
Determining the structure of an unknown
container . . . G 74
Analyzing a contamer element 3 |
Accessing a known container element47
Accessing a value of a container47
Accessing a value of a container element . . .54
Setting a value of a container60
Return codes/FmcException.65

Monitoring a process instance65
Obtaining a process instance monitor. 66

© Copyright IBM Corp. 1999, 2000

Ownership of monitors . 67
Authorization considerations . 67
Types of API calls . 70

Basic API calls . 70

Accessor API calls . . .8

Action API calls . . 122

Activity implementation API calls 122
Chapter 2. Language interfaces . 125
C and C++ interface . . . 125

Coding an MQSeries Worl(flow Cllent

application in C or C++ . . 125

Coding an MQSeries Workflow act1V1ty

implementation in C or C++ . . 126

Compiling and linking . 127
Java interface . . 128

The Java CORBA Agent . 129

The communication layer . 129

The locator methods . . 130

The Java API Beans . 130

Coding an MQSeries Workflow cl1ent

application in Java. . 132

Coding an MQSeries Workflow acthlty

implementation in Java . .o . 133

Compiling . . 134

Object management . .o . 134

Garbage collection when using]ava API Beans 135
COBOL interface . 135

Calling the API. . 135

String handling. . . 136

Coding an MQSeries Workflow chent

application in COBOL . . 136

Coding an MQSeries Workflow act1v1ty

implementation in COBOL . . . 137

Compiling and linking . 138

Mapping C to COBOL data types . 139

Name changes between COBOL and C. . 140

Example of the use of strings . . 150
XML message interface . . 151

The MQSeries Workflow message . . 151

Sending requests to MQSeries Workflow . 154

Invoking an activity implementation . 156

The MQSeries Workflow XML message format 160
Chapter 3. Interfacing with the
Program Execution Server. . 167
CICS considerations . . 167
IMS considerations . 167
Program mapping via the Program Execut1on
Server . . 167

Introduct1on . . 167

Program mapping def1n1t10ns . . 169

Mapping algorithm 172

Supported program mapping def1n1tlon element

types . . 177

iii

Grammar.
Usertype .

Size of program mappmg 1nterface def1n1t1on

elements .

Activation of program mappmg def1mt10ns
Troubleshooting

Additional mapping examples

Program execution server exits

Introduction .
Interfaces for all ex1ts

Special considerations for exit programmmg .

Program mapping exit
Program invocation exit .
Notification exit

Chapter 4. API classes and objects
Summary.

API calls by class .

ActivityInstance .
Actlv1tyInstanceNot1f1cat10n
ActivitylnstanceNotificationVector
ActivityInstanceVector

Agent . .
BlockInstanceMomtor

Container.

ContamerElement
ContainerElementVector .
ControlConnectorInstance .
ControlConnectorInstanceVector .
Date and Time

(FmcDateTime /FmcjCDateTime/Calendar)
DIlOptions e
ExecutionAgent

ExecutionData .
ExecutionService

ExeOptions .

ExternalOptions
FmcError/FmcjError .
FmcException .

Global. .
ImplementationData .

Item

ItemVector

Message .

PersistentList

Person.

Point .

PointVector .

ProcessInstance.
ProcessInstancelist
ProcessInstancelListVector
ProcessInstanceMonitor .
ProcessInstanceNotification.
ProcessInstanceNotificationVector.
ProcessInstanceVector
ProcessTemplate
ProcessTemplateList .
ProcessTemplateListVector .
ProcessTemplateVector
ProgramData

ProgramTemplate .

. 181
. 192

. 194
. 195
. 196
. 196
. 202
. 202
. 203
. 205
. 206
. 209
. 217

227

. 227
. 229
. 229
. 233
. 235
. 235
. 235
. 237
. 238
. 241
. 243
. 243
. 244

. 245
. 246
. 246
. 247
. 248
. 250
. 252
. 253
. 254
. 255
. 255
. 256
. 258
. 259
. 259
. 260
. 264
. 264
. 265
. 268
. 269
. 269
. 269
. 270
. 270
. 271
. 273
. 274
. 274
. 274
. 275

iV MQSeries Workflow for OS/390 Programming Guide

ReadOnlyContainer277

ReadWriteContainer277
Result.279
Service280
StringVector.280
SymbolLayout281
Workltem28
WorkItemVector284
Worklist284
WorklistVector28

Chapter 5. API action and activity
implementationcalls 287

ActivityInstance actions . . . o287
ObtamProcessInstanceMomtor() 287
SubProcessInstance()289

ActivityInstanceNotification actions 291
PersistentObject()292
StartTool()2%

BlockInstanceMonitor actions29
ObtainBlockInstanceMonitor() 296
ObtainProcessInstanceMonitor() 298
Refresh() 3m

Container activity 1mp1ementat10n calls.303
InContainer()303
OutContainer().305
RemoteInContainer()307
RemoteOutContainer()308
SetOutContainer()310
SetRemoteOutContainer()312

ExecutionService actions.314
CreateProcessInstancelist().315
CreateProcessTemplateList()321
CreateWorklist()326
Logoff)333
Logon()33%4
Passthrough() 339
QueryAct1V1tyInstanceN0t1f1cat1ons() Lo 034
Queryltems()347
QueryProcessInstanceLists() 353
QueryProcessInstanceNotifications() 355
QueryProcessInstances().36l
QueryProcessTemplateLists() 366
QueryProcessTemplates() 368
QueryWorkitems().372
QueryWorklists()379
Receive() . . . e 1 1 |
RemotePassthrough() G 1
TerminateReceive()2386

Item actions.387
Delete() 388
ObtamProcessInstanceMomtor()39
ProcessInstance()39
Refresh()3%
SetDescription()39
SetName()39
Transfer().400

PersistentList actions402
Delete()403
Refresh()404
SetDescription()406

SetFilter().

SetSortCriteria()

SetThreshold() .
Person actions .

Refresh() .

SetAbsence().

SetSubstitute() .
ProcessInstance actions .

Delete()

InContainer()

ObtainMonitor()

PersistentObject() .

Refresh() .

Restart() .

Resume() .

SetDescription()

SetName()

Start() .

Suspend()

Terminate() .
ProcessInstanceList actions .

QueryProcessInstances() .

ProcessInstanceNotification actions .

PersistentObject() .

ProcessTemplate actions .
CreateAndStartInstance()
Createlnstance()

Delete()
ExecuteProcessInstance()
InitiallInContainer()
PersistentObject() .
ProgramTemplate()
Refresh() . .

ProcessTemplateList actlons
QueryProcessTemplates()

ProgramTemplate actions
Execute() .

Service actions .

Refresh() .
SetPassword() .
UserSettings()

Workitem actions .
CancelCheckOut() .
CheckIn(). .
CheckOut() .

Finish()
ForceFinish()
ForceRestart()
InContainer()
OutContainer() .
PersistentObject() .
Restart() .

. 408
. 410
. 412
. 414
. 414
. 416
. 417
. 419
. 420
. 421
. 424
. 426
. 428
. 430
. 431
. 433
. 435
. 437
. 439
. 441
. 443
. 443
. 446
. 446
. 448
. 448
. 453
. 456
. 458
. 465
. 467
. 469
. 471
. 473
. 473
. 475
. 476
. 480
. 480
. 481
. 483
. 485
. 487
. 489
. 491
. 495
. 497
. 499
. 501
. 502
. 504
. 506

Start() .
StartTool()
Terminate() .

Worklist actions
QueryActhltyInstanceNotlflcatlons()
Queryltems() Lo
QueryProcessInstanceNotlflcatlons()
QueryWorkitems().

Chapter 6. Examples
How to create persistent lists .
Create a process instance list (C) .
Create a process instance list (C++) .
Create a process instance list (Java) .
Create a process instance list (COBOL) .
How to query persistent lists . .
Query worklists (C) .
Query worklists (C++)
Query worklists (Java)
Query worklists (COBOL) .
How to query a set of objects .
Query process instances (C)
Query process instances (C++).
Query process instances (Java).
Query process instances (COBOL)
Query work items from a worklist (C) .
Query work items from a worklist (C++) .
Query work items from a worklist (Java) .
Query work items from a worklist (COBOL)
How to code an activity implementation .
Programming an activity implementation (C)

Programming an activity implementation (C++)

Programming an activity implementation

(COBOL).
Glossary

Bibliography. .. .
MQSeries Workflow for OS/ 390 pubhcatlons
MQSeries Workflow publications . .
Workflow publications .

MQSeries publications

Other useful publications

Licensed books .

Index .

Readers’ Comments — We’d Like to
Hear from You .

Contents

. 508
. 509
. 511
. 514
. 514
. 517
. 519
. 521

. 525
. 525
. 526
. 527
. 528
. 531
. 535
. 536
. 538
. 539
. 542
. 549
. 550
. 552
. 553
. 556
. 560
. 562
. 564

567

. 572

573
574

. 575
. 579

. 585
. 585
. 585
. 585
. 585
. 585
. 586

. 587

. 595

\'%

Vi MQSeries Workflow for OS/390 Programming Guide

Figures

LN .

o

*

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.

37.

38.
39.

MQSeries Workflow Client API hierarchy
Setting up client/server communication
Querying objects .

Dealing with process mstances and (work)
items . . .
Monitoring a process mstance

Handling data sent by an MQSeries Workﬂow

server .
Accessing a result ob]ect in C

Accessing a result object in C++. .
Accessing a result object in COBOL (via
PERFORM)) .
Accessing a result ob]ect in COBOL (V1a
CALL)

Handling data sent by an MQSenes Workﬂow

server . .
Reading a Vector in C (usmg
First/NextElement() calls).

Reading a vector in C (using NextElement()

call only)

Reading a Vector in COBOL (usmg
First/NextElement calls) .

Reading a vector in COBOL (usmg
NextElement calls only)

Process instance monitors and block mstance

monitors

C example using bas1c functlons

C++ example using basic methods .
COBOL example using basic calls (via
PERFORM)

COBOL example using bas1c calls (V1a CALL)

Accessing values in C.
Accessing values in C++ .

Accessing values in COBOL (via PERFORM)

Accessing values in COBOL (via CALL)
MQSeries Workflow message
Sending requests to MQSeries Workﬂow

Starting an activity implementation via XML
Sample activity implementation using XML

Document type definition (DTD) for
MQSeries Workflow XML messages .
Program mapping illustration. .

Program mapping control flow

How to create a program mapping.
Default forward /backward mapping
Usertype example .

Default forward mapping 1llustrat10n
Forward2: Non-default forward mapping
illustration.

Non-default backward mappmg Backwardl

illustration.
Backward2: Expl1c1t mappmg 111ustrat10n
Forward mapping with constants..

© Copyright IBM Corp. 1999, 2000

W N

.13
.13

.14

.15

.18

. 25

. 26

. 27

.29

. 66

.78
. 80

. 81
83

. 116

. 117
118
120

. 151

155
156
159

. 161
. 168
. 168
. 169

171

. 172

173

. 173

. 174

174

. 176

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Backward mapping with constants.
Relationship between mapping elements.
Usertype exit

Process instance states

Work item states - process mstance state
running

Work item states process mstance state
suspending or suspended

Work item states - process instance state
terminating or terminated

Sample C program to create a process
instance list . o
Sample C++ program to create a process
instance list .

Sample Java program to create a process
instance list .

Sample COBOL program to create a process
instance list (via PERFORM) .o
Sample COBOL program to create a process
instance list (via CALL) .

Sample C program to query workhsts
Sample C++ program to query worklists
Sample Java program to query worklists
Sample COBOL program to query worklists
(via PERFORM). .o

Sample COBOL program to query workhsts
(via CALL)

Sample C program to query process mstances
Sample C++ program to query process
instances .

Sample Java program to query process
instances . .

Sample COBOL program to query process
instances (via PERFORM) .

Sample COBOL program to query process
instances (via CALL) .

Sample C program to query work 1tems from
a worklist.

Sample C++ program to query work 1tems
from a worklist .

Sample Java program to query work 1tems
from a worklist .

Sample COBOL program to query work 1tems
from a worklist (via PERFORM) . .
Sample COBOL program to query work items
from a worklist (via CALL) . .o
Sample activity implementation (C) .
Sample activity implementation (C++)
Sample activity implementation (COBOL, via
PERFORM) .

Sample activity 1mp1ementat10n (COBOL via
CALL) . .o

. 176

181

. 193
. 419

. 486

. 486

. 487

. 526

. 527

. 528

. 531

. 533

536
538
539

. 542

. 545

550

. 552

. 553

. 556

. 558

. 560

. 562

. 564

. 567

. 569
. 573

574

. 575

. 577

vii

viii MQSeries Workflow for 0S/390 Programming Guide

Tables

List of return codes

Authorization for persons. .

JCLs provided for C/C++ programs
Copybooks provided for COBOL programs
JCLs provided for COBOL programs
Mapping C to COBOL data types.
Function name mapping .

Class prefix abbreviations

Abbreviations for COBOL nammg

SO PN

—_

© Copyright IBM Corp. 1999, 2000

Rule mapping with no constant definition

. 68
. 128

138
139

. 139
. 140
. 146
. 147

175

11.
12.
13.

14.

15.
16.

Mapping with constant definition.

Mapping combinations

C/C++ data type mappings (legacy
application (C/C++) to FDL types (structure))
COBOL data type mappings (legacy
application (COBOL) to FDL types
(structure))

Interface element size .

Context types

. 175
. 178

179

. 180
. 195
. 216

ix

X MQSeries Workflow for OS/390 Programming Guide

About this book

This book describes how to use the IBM MQSeries Workflow for OS/390 Runtime
(Client) Application Programming Interface (MQSeries Workflow API) and also to
invoke API requests by passing messages in Extensible Markup Language (XML)
to an MQSeries queue from an application. The first part of the book describes the
concepts underlying the API while the rest of the book provides a reference for the
API action calls. The book also describes the MQSeries Workflow predefined data
structures.

Note: The licensed books that were declassified in OS/390 Version 2 Release 4
appear on the OS/390 Online Library Collection, SK2T-6700. The remaining
licensed books for OS/390 Version 2 appear on the OS/390 Licensed
Product library, LK2T-2499, in unencrypted form.

Who should read this book

This book is intended for programmers who design and implement programs
using an MQSeries Workflow API and who may participate in designing an
MQSeries Workflow workflow model. It assumes that readers are experienced
0S/390 programmers and that they understand the process modeling concepts.

How to get additional information

Visit the MQSeries Workflow home page at
Ml ; . 7 o funcitiod

For a list of additional publications, refer to EMQSeries Workflow publications” anl

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
MQSeries Workflow documentation, choose one of the following methods:

* Send your comments by e-mail to: s390id@de.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of MQSeries Workflow, and, if applicable, the specific location of the text
you are commenting on (for example, a page number or table number).

* Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

How this book is organized

provides an
Workflow

workflow manager.

'Chapter 2_Language interfaces” on page 129 discusses the API from the

perspective of the language used: C, C++, Java, or COBOL.

© Copyright IBM Corp. 1999, 2000 xi

http://www.software.ibm.com/ts/mqseries/workflow

['Chapter 3. Interfacing with the Program Execution Server” on page 167 describes

the interface with the Program Execution Server, including the use of program
mappings to bring Workflow API containers into a format acceptable by legacy
applications and how to use exits.

G . ”

provides an overview of the
classes supported by the APIL

[‘Chapter 5 API action and activity implementation calls” on page 287 describes the

API calls that enable applications to manipulate worklists and work items, to work
with process instances and container data, and to log on to and log off from an
MQSeries Workflow server.

4 7

the APL

provides some examples that show how to use

The back of the book includes a glossary that defines terms as they are used in this
book, a bibliography, and an index.

How to read the syntax diagrams

xii

Throughout this book, syntax is described the following way; all spaces and other
characters are significant:

* Read the syntax diagrams from left to right, from top to bottom, following the
main path of the line.

The »»— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next line.
The »— symbol indicates that a statement is continued from the previous line.
The —»< symbol indicates the end of a statement.

 Diagrams can be broken into fragments. A fragment is indicated by vertical bars
with the name of the fragment between the bars. The fragment itself follows the
same syntactical rules as the main diagram.

»—-I a-fragment i >

* Required items appear on the horizontal line, the main path.

»»>—required-item ><

* Optional items appear below (or above) the main path.

»»>—required-item |_ <
optional-itemJ

* If you can choose from one or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

MQSeries Workflow for OS/390 Programming Guide

A\
A

»>—required-i tem—[requ ired-choicel
required-choiceZ—|

If choosing one of the items is optional, the entire stack appears below the main
path.

v
A

ptional-choicel:‘

»>—required-item
i:Zpt'ional—choicez

* An arrow returning to the left, above the main path, indicates an item that can
be repeated.

A\
A

»»—required-item———repeatable-item

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

»>—required-item———repeatable-item ><

* Keywords appear in uppercase, for example, NAME. They must be spelled
exactly as shown. Variables appear in lowercase italic letters, for example, string.
They represent user-supplied values.

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

About this book Xxiii

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road

Poughkeepsie New York 12601-5400
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any pointers in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement. IBM accepts
no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples can include
the names of individuals, companies, brands, or products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information in an online form, the photographs and color
illustrations may not appear.

Xiv MQSeries Workflow for 0S/390 Programming Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:

¢ AIX

- CICS

« DB2

* FlowMark

- IBM

« IMS

¢ Language Environment
* MQSeries

* MVS

« 0S/2

+ 0S/390

¢ RISC System/6000

Lotus Notes is a registered trademark, and Domino and Lotus Go Webserver are
trademarks of Lotus Development Corporation.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc., in the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks
of others.

About this book XV

XVi MQSeries Workflow for 0S/390 Programming Guide

Summary of changes

This edition reflects changes related to the following APARs:

PQ34 776
PQ34 802
PQ34 803
PQ34 805
PQ34 806

In particular, a new PES exit has been introduced to provide event notification in

conjunction with program invocations. For details, see L

7

© Copyright IBM Corp. 1999, 2000

xvii

Xviili MQSeries Workflow for OS/390 Programming Guide

Chapter 1. MQSeries Workflow programming concepts

This chapter provides you with a general introduction to the programming
concepts of MQSeries Workflow.

Understanding Workflow programming

This section introduces the concept of workflow modeling as it relates to the
design of application programs for use with IBM MQSeries Workflow.

MQSeries Workflow provides a way to model a process and assign applications to
activities in the resulting workflow model. This enables the workflow manager to
automate the control of activities and the flow of data.

Work can be routed to the person who performs the activity instance. An
application program required to perform an activity instance can be designed to
start when a user starts an activity instance.

The role of the programmer in modeling a process

As workflow models are defined, the applications and data structures needed to
support program activities are identified. Programmers can create new
applications, integrate existing applications, or reengineer existing applications to
support these program activities.

To reengineer existing applications with the workflow model, programmers must
determine if the applications used by the enterprise can be functionally
decomposed. The control and flow logic are separated from the application, the
start and exit conditions are moved into the workflow model, and the program is
divided into modules to be invoked by the workflow manager at the appropriate
points. The resulting modules are applications that are assigned to perform the
program activities defined in the workflow model.

Most applications include many diverse functions, and many can support several
different activities in different stages of a process. Output produced by one
function of a program can be used as input by another function of the same
program. Therefore, the same application can be used to support many different
program activities in a workflow model.

Your enterprise might also use Enterprise Resource Planning (ERP) or packaged
applications like word-processing or spreadsheet applications.

Decomposition of such applications may not be possible. However, a programmer
could write shell procedures that query the contents of containers, pass data from
an input container to the program when the activity instance is started, and direct
data into an output container when it finishes.

With MQSeries Workflow you will be able to use mappings so you can support
any legacy application with this tool. There may be old applications whose
interfaces you can’t change because other applications or programs have been
configured to work with these long time ago: if you changed one configuration of
an interface, you would have to change them all. This mapper enables you to use
all legacy applications with your Workflow applications via the mapping tool.

© Copyright IBM Corp. 1999, 2000

Programming concepts

Return codes, provided by the assigned program, can then be used to evaluate exit
and transition conditions.

Programming interfaces

MQSeries Workflow provides application program interface (API) and Extensible
Markup Language (XML) message interface support, as well as a set of predefined
data structure members, to assist programmers who develop applications for use
with workflow models. In addition, several programming samples are provided.

In a programming-language-based programming model, the client application
makes an API call in order to execute a request. In a message-based programming
model, the request and information needed to execute the request are contained in
a message that is interchanged through a message queuing system between the
client application and a server.

The MQSeries Workflow predefined data structure members provide information
about the current process, activity, or block, and are associated with the operating
characteristics of a process instance or activity instance.

API interfaces in the following languages are described in this book:
- C

o CH++

» COBOL

* Java

* MQSeries Workflow XML message interface

: Lotus Visual
ActiveX
ctive Java Notes Basic V2 REXX V2
COBOL

X

M C++ c(v2)

L (V3IV2)

C (V3)

[= supported under OS/390

Figure 1. MQSeries Workflow Client API hierarchy

The basic interfaces for requesting Runtime services from MQSeries Workflow are
a C API and an XML message interface. Access can be gained to the C functions
from all languages that support C calls - see L ili inking”

for more information. A C++ language API is provided on top of the C APL The
C++ API is a small layer of inline methods, that is, delivered as source code. The
Java API is implemented on top of the C++ layer, and the COBOL API on top of
the C layer.

MQSeries Workflow uses the XML 1.0 standard (see W3C Recommendation:
Extensible Markup Language (XML) 1.0) as the document description language.

The MQSeries Workflow API provides API calls:

* To execute process models, that is, to work with process instances and container
data and to manipulate worklists and work items

* To monitor the progress of execution

* To issue process administrator functions

2 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

* To receive information sent by an MQSeries Workflow server
 To process container data associated with an activity implementation

Prerequisites for using a programming language API

MQSeries Workflow application development assumes that the appropriate
environment is established. This means that:

* MQSeries Workflow for OS/390 must be installed on the machine where you are
developing your applications.

* A compiler of one of the supported languages must be installed and configured.

* Buildtime must be installed on the machine where you are developing your
applications.

Refer to I‘Chapter2_Language interfaces” on page 123 for more information.

Overview of the Runtime API

There are various tasks which you typically want to address by writing an
MQSeries Workflow application program:

* You can write a client application to:

— Manage process instances

- Handle worklists and/or work items
Administer process instances or work items
— Monitor the progress of execution

* You can write a program that implements an activity in your workflow process.

These programs typically use only a subset of the MQSeries Workflow API. For
example, an activity implementation typically only accesses its containers, that is,
uses only the so-called Container API, which is a subset of the full API especially
configured for container-only processing. The MQSeries Workflow API, that is, its
header files and library structures or its import packages take this fact into
account. IMS programs must use the Container APL

In order to ask for Runtime services, communication must be established between
the client application and an MQSeries Workflow execution server.

- Program
FmcjResult FmcjPEA/ - Exe(?ution
ExecutionAgent Agent
UserSetti :
—
A

A

v

StartUp/ . Execution
ShutDown actions __-¥| Server

- A

: /,,——" Logon/Logoff v
Execution -7 SetPassword Administrati
SOMVICE e e e > ministration

l Create/Query Query l Server

Persistent Objects
Lists (1) ®

Figure 2. Setting up client/server communication. Legend: --» Inheritance (C++); — provides
for access; — — sends messages to

As a first step, an ExecutionService object must be obtained
(constructed/allocated /located). An ExecutionService object represents a session

Chapter 1. MQSeries Workflow programming concepts 3

Programming concepts

between a user and an MQSeries Workflow execution server. It essentially provides
the basic API calls to set up a communication path to the specified MQSeries
Workflow execution server and to establish the user session (Logon() or
Passthrough()), and finish it (Logoff()). To log on, not only the execution server but
also the administration server must be up and running so that authentication can
be done. This is, however, transparent to you.

When the session to an execution server has been established, you can:

* Query objects for which you are authorized: process templates, process
instances, items (work items, activity instance notifications, process instance
notifications), or lists containing such objects.

* Create persistent lists, that is, persistent views on objects contained in the
MQSeries Workflow database.

* Query information about the logged-on user or change that user’s password.

In C, C++, and COBOL, all API calls update a so-called result object. Detailed
information about an erroneous request can be obtained from there. See

brrors” on page 8 for more information.
@ Create/Query E— Query @
Service
Persistent
List
PO N

v R 4
Process Process
TemplateList InstanceList

Query Query Query

Process Process Workitem Activity Process
Template Instance Instance Instance

Notification Notification

L]

Figure 3. Querying objects. Legend: --» Inheritance (C++); — provides for access

When the session to an execution server has been established, you can create or
query persistent lists (process template lists, process instance lists, worklists) or
query other objects for which you are authorized. At runtime, you can retrieve the
currently valid version of a process template only; you cannot see any future or
past versions.

A persistent list represents a set of objects the user is authorized for. It is a view of
those objects. All objects which are accessible through the list have the same
characteristics. These characteristics are specified by a filter. For example,
depending on the filter specified, a worklist can contain a set of work items only.
No activity instance notifications or process instance notifications are accessible
through that list. The worklist content, the work items, can be queried and their
attributes can be accessed. As soon as a work item has been read from the
execution server, further actions can be called, for example, starting a work item.

4 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

InContainer Create Start ProcessInstance
F’rocess Process »> Item
Template Instance
InContainer LV N A

. ’ Activi Process
[%ﬁg}ﬁg‘nﬁf]4—| Container [Workitem]}['}Tncég:gi/]4{ Instantcye] [Instance]
Notification Notification
t ' V InContamer
’ CheckOut
> | Readwri ReadOnIy <
> Container Container

T OutContainer

OutContainer ’

Program
Data

InContainer

»
»

ExternalOptions

, ExeOptions DllOptions

v

Exe Dl External
Options Options Options

’

1

1

1

1

1

1

1
InContainer 1
1
|
OutContainer v
Activity = starts Program

) Execution
Implementation Agent

A

Figure 4. Dealing with process instances and (work) items. Legend: - Inheritance (C++); —
provides for access; — — data is passed to or results in

When a valid version of a process template has been retrieved, a process instance
can be created and started. Starting a process instance can require input data. You
can use the Container API calls for reading and writing values. See m

” for more information.

Starting a process instance triggers the scheduling of activity instances and, as a
result of that, the creation of a set of work items and possibly activity instance
notifications or process instance notifications when they are not worked on in time.
A work item implemented by a program can then be executed either by MQSeries
Workflow-specific means or by user-specific means.

When executed by user-specific means, the work item is to be checked out.
Checking out provides for all information needed to execute the underlying
program, the program data and its description of the implementing options and
the input container data.

When executed by MQSeries Workflow-specific means, that program data is
automatically sent to the program execution server which starts the appropriate
activity implementation. The activity implementation can then access its input and
output containers via an appropriate request to the program execution server. The
same container accessor API calls are applicable whether called from a client
application program or from an activity implementation program.

When a work item and thus the associated activity instance has not been executed

successfully, the FmcjError or FmcError object provides for analyzing the cause of
the state InError.

Chapter 1. MQSeries Workflow programming concepts 5

Programming concepts

Block
Instance
Monitor
Query Query
A Obtain
Monitor
> Process ObtainMonitor » Process
Instance » Instance
T A Monitor
ObtainProcessInstanceMonitor Obtain Query Query
Monitor
v
Item Activity <
Instance
V¥ A v
Control
SymbolLayout Connector
Instance

= BendPoints
Workitem Activity Process Symbol v
Instance Instance |~ Layout K
ificati ificati Point

Notification Notification

SubProcesslInstance

Figure 5. Monitoring a process instance. Legend: --> Inheritance (C++); — provides for
access

When a process instance or item, that is, a work item, an activity instance
notification, or a process instance notification, has been retrieved, you can obtain
the associated process instance monitor. The process instance monitor then allows
for analyzing the states of activity instances and control connector instances. The
path taken through the process instance can thus be determined. In case you want
to present this information graphically, the activity instance symbol layout and the
control connector instance positions and bend points offer support.

Once a process instance monitor has been obtained, you can iterate into the process
model by obtaining block instance monitors for activities of type Block or process
1nstance monitors for activities of type Process, that is, for subprocess instances.

ee [Monitoring a process instance” on page 63 for more information.

6 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

Execution
Data
Execution
Service

Receive

ltem

¥ ¥ A

Workitem Activity Process
Instance Instance

Notification Notification

Update

From Data l l l l
Process ReadOnly ReadWrite
Instance Container Container

Figure 6. Handling data sent by an MQSeries Workflow server. Legend: --> Inheritance
(C++); — provides for access

FromData

When the process setting specifies a push refresh policy, then the MQSeries
Workflow execution server pushes changes on work items or notifications to a
present client. In this case, or when the application issues an asynchronous request,
the client application should set up a means in order to receive data or responses
sent by the server. Once received, the appropriate object can be updated, created,

or deleted depending on the information sent. See EClient/server communication)

” for more information.

Building an MQSeries Workflow application

Overview

There are essentially two different tasks which you can address by using the
MQSeries Workflow API:

* You can write your own client application . For example, you may want to:
— control the MQSeries Workflow functionality provided to your user.
— present the MQSeries Workflow functionality in a way that your user is
accustomed to.
— run selected MQSeries Workflow tasks in batch mode.

* You can write a program that implements an activity in your workflow process
model.

These two kinds of programs usually contain specific parts which are described in
the sections “Coding an MQSeries Workflow client application” and “Coding an
MQSeries Workflow act1v1ty 1mplementat10n in the discussions of the respective
language interfaces in ”

The concepts underlying the MQSeries Workflow API are common to all programs
using the MQSeries Workflow APIL. They are summarized here and discussed in
more detail in the following chapters.

Chapter 1. MQSeries Workflow programming concepts 7

Programming concepts

Concepts of the programming language API
All persistent objects such as work items and process instances are accessed

through transient objects which represent their state at the time they were queried
from a server. In C and COBOL, a so-called handle represents a pointer to such a
transient object.

In order to request an action on an object, a session must have been established
with an appropriate MQSeries Workflow server. The action itself can then be
executed synchronously. Some actions can also be executed asynchronously.

Only objects for which you are authorized are returned from the server to the
client.

Separate API calls (termed functions, methods, or subprograms, depending on the
language) in the C, C++, COBOL, or Java languages are available for each action
on an object or for accessing each property of an object. This approach allows API
call parameters to be checked by the compiler and best represents the object-action
paradigm supported by MQSeries Workflow.

In C, C++, and COBOL, detailed error information is provided by a so-called result
object. This object is available in addition to the return code set by action API calls.

See [‘The result ohject” on page 19 for detailed information on the result object.

Objects are managed by the application programmer but object memory is owned
by the MQSeries Workflow APIL The application programmer determines the
lifetime of transient objects by using allocate, or query, and deallocate mechanisms.
The MQSeries Workflow API hides the internal structure of transient objects.

Concepts of the XML message interface

All persistent objects are accessed by their unique name, that is, the actual name
may need to be padded with the printable version of the object’s identifier in order
to achieve uniqueness.

In order to request an action, a session need not be established as in the
programming language API. You must, however, be authorized for the action itself.

All actions are executed asynchronously. Correlation data is part of the message so
that the application can correlate the request sent to MQSeries Workflow and the
execution server response.

Handling errors

All action, activity implementation, or program execution management API calls
messages show whether or not the call has been successfully executed by passing
back a return code. Java throws an appropriate FmcException when the method has
not been executed successfully. The XML message interface provides the return
code in the response message. The return code is one of a set of predefined codes
(see Li “). The exact return codes or exceptions for each
of those API calls are listed with the description of each call. You should design
your programs to handle all return codes or exceptions that can arise.

In addition to the return code, a so-called result object can be accessed in C, C++
and COBOL, which describes the result of the call in more detail - see m

Basic and accessor API calls either do not return a value or return the value
queried. Since they are querying transient objects and are able to return default

8 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

values, an error does normally not occur. It can, however, happen during

application development that a wrong handle or a buffer too small to hold a
character value is specified. To look for such erroneous situations, the result object
can be queried (besides checking the trace).

List of return codes

The following list shows the numeric values of the return codes that are issued by

the MQSeries Workflow API; it is strongly advised to use the symbolic names
instead of the integer values. For COBOL, the return code identifiers have a
maximum length of 30 characters. Additional words in the return codes are
separated by hyphens and not by underscores (as is common for C). In order to
avoid misunderstandings, the C version of the return codes is used in this book,
especially in descriptions of the API calls (£C hapter 5 _API action and m"’r“”’rvl

Lm.l:ﬂ.emen.tah.an_caﬂs_on_page_ZSﬂ)

Table 1. List of return codes

Numeric |Symbolic value (C/C++) Symbolic value (COBOL)

value

0 FMC_OK FMC-OK

1 FMC_ERROR FMC-ERROR

10 FMC_ERROR_USERID_UNKNOWN FMC-ERROR-USERID-UNKNOWN

11 FMC_ERROR_ALREADY_LOGGED_ON FMC-ERROR-ALR-LOGGED-ON

12 FMC_ERROR_PASSWORD FMC-ERROR-PASSWORD

13 FMC_ERROR_COMMUNICATION FMC-ERROR-COMMUNICATION

14 FMC_ERROR_TIMEOUT FMC-ERROR-TIMEOUT

100 FMC_ERROR_INTERNAL FMC-ERROR-INTERNAL

101 FMC_ERROR_SERVER FMC-ERROR-SERVER

102 FMC_ERROR_UNKNOWN FMC-ERROR-UNKNOWN

103 FMC_ERROR_MESSAGE_FORMAT FMC-ERROR-MESSAGE-FORMAT
104 FMC_ERROR_MESSAGE_DATA FMC-ERROR-MESSAGE-DATA

105 FMC_ERROR_RESOURCE FMC-ERROR-RESOURCE

106 FMC_ERROR_NOT_LOGGED_ON FMC-ERROR-NOT-LOGGED-ON

107 FMC_ERROR_NEW_OWNER_NOT_FOUND FMC-ERROR-NEW-OWNER-NOT-FOUND
108 FMC_ERROR_NO_OLD_OWNER FMC-ERROR-NO-OLD-OWNER

109 FMC_ERROR_OLD_OWNER_ABSENT FMC-ERROR-OLD-OWNER-ABSENT
110 FMC_ERROR_NEW_OWNER_ABSENT FMC-ERROR-NEW-OWNER-ABSENT
111 FMC_ERROR_ALREADY_STARTED FMC-ERROR-ALR-STRTD

112 FMC_ERROR_MEMBER_NOT_FOUND FMC-ERROR-MEMBER-NOT-FOUND
113 FMC_ERROR_MEMBER_NOT_SET FMC-ERROR-MEMBER-NOT-SET

114 FMC_ERROR_WRONG_TYPE FMC-ERROR-WRONG-TYPE

115 FMC_ERROR_MEMBER_CANNOT_BE_SET FMC-ERROR-MEMBER-CANNOT-BE-SET
116 FMC_ERROR_MEMBER_INVALID FMC-ERROR-MEMBER-INVAL

117 FMC_ERROR_FORMAT FMC-ERROR-FORMAT

118 FMC_ERROR_DOES_NOT_EXIST FMC-ERROR-DOES-NOT-EXIST

119 FMC_ERROR_NOT_AUTHORIZED FMC-ERROR-NOT-AUTH

120 FMC_ERROR_WRONG_STATE FMC-ERROR-WRONG-STATE

121 FMC_ERROR_NOT_UNIQUE FMC-ERROR-NOT-UNIQUE

122 FMC_ERROR_EMPTY FMC-ERROR-EMPTY

123 FMC_ERROR_NO_MANUAL_EXIT FMC-ERROR-NO-MANUAL-EXIT

124 FMC_ERROR_PROFILE FMC-ERROR-PROFILE

125 FMC_ERROR_INVALID_FILTER FMC-ERROR-INVAL-FILTER

126 FMC_ERROR_PROGRAM_EXECUTION FMC-ERROR-PROGRAM-EXECUTION
127 FMC_ERROR_PROTOCOL FMC-ERROR-PROTOCOL

128 FMC_ERROR_TOOL_FUNCTION FMC-ERROR-TOOL-FUNCTION

129 FMC_ERROR_INVALID_TOOL FMC-ERROR-INVAL-TOOL

130 FMC_ERROR_INVALID_HANDLE FMC-ERROR-INVAL-HANDLE

Chapter 1. MQSeries Workflow programming concepts

Programming concepts

Table 1. List of return codes (continued)

Numeric |Symbolic value (C/C++) Symbolic value (COBOL)

value

131 FMC_ERROR_NOT_EMPTY FMC-ERROR-NOT-EMPTY

132 FMC_ERROR_INVALID_USER FMC-ERROR-INVAL-USER

133 FMC_ERROR_OWNER_ALREADY_ASSIGNED FMC-ERROR-OWNER-ALR-ASSIGNED
134 FMC_ERROR_INVALID_NAME FMC-ERROR-INVAL-NAME

135 FMC_ERROR_INVALID_PROGRAMID FMC-ERROR-INVAL-PROGRAMID

136 FMC_ERROR_SIZE_EXCEEDED FMC-ERROR-SIZE-EXCEEDED

406 FMC_ERROR_WRONG_ACT_IMPL_KIND FMC-ERROR-WRONG-ACT-IMPL-KIND
500 FMC_ERROR_NON_LOCAL_USER FMC-ERROR-NON-LOCAL-USER

501 FMC_ERROR_WRONG_KIND FMC-ERROR-WRONG-KIND

502 FMC_ERROR_INVALID_ACTIVITY FMC-ERROR-INVAL-ACT

503 FMC_ERROR_CHECKOUT_NOT_POSSIBLE FMC-ERROR-CHKOUT-NOT-POSSIBLE
504 FMC_BACK_LEVEL_VERSION FMC-BACK-LEVEL-VERSION

505 FMC_ERROR_NEWER_VERSION FMC-ERROR-NEWER-VERSION

506 FMC_ERROR_INVALID_CORRELATION_ID FMC-ERROR-INVAL-CORRELATION-ID
507 FMC_ERROR_NOT_ALLOWED FMC-ERROR-NOT-ALLOWED

508 FMC_ERROR_BACK_LEVEL_OBJECT FMC-ERROR-BACK-LEVEL-OBJ

509 FMC_ERROR_INVALID_CONTAINER FMC-ERROR-INVAL-CNTR

510 FMC_ERROR_UNEXPECTED_CONTAINER FMC-ERROR-UNEXPECTED-CNTR

511 FMC_ERROR_NO_PROGRAM_FOR_PLATFORM FMC-ERROR-NO-PROG-FOR-PLATF
800 FMC_ERROR_BUFFER FMC-ERROR-BUFFER

801 FMC_ERROR_INVALID_SESSION FMC-ERROR-INVAL-SESSION

802 FMC_ERROR_INVALID_TIME FMC-ERROR-INVAL-TIME

804 FMC_ERROR_NO_MORE_DATA FMC-ERROR-NO-MORE-DATA

805 FMC_ERROR_INVALID_OID FMC-ERROR-INVAL-OID

807 FMC_ERROR_INVALID_THRESHOLD FMC-ERROR-INVAL-THRESHOLD

808 FMC_ERROR_INVALID_SORT FMC-ERROR-INVAL-SORT

809 FMC_ERROR_OBJECT_IN_USE FMC-ERROR-OB]J-IN-USE

810 FMC_ERROR_INVALID_DESCRIPTION FMC-ERROR-INVAL-DESCRIPTION

811 FMC_ERROR_INVALID_INVOCATION_TYPE FMC-ERROR-INVAL-INV-TYPE

812 FMC_ERROR_OWNER_NOT_FOUND FMC-ERROR-OWNER-NOT-FOUND
813 FMC_ERROR_INVALID_LIST_TYPE FMC-ERROR-INVAL-LIST-TYPE

814 FMC_ERROR_INVALID_RESULT_HANDLE FMC-ERROR-INVAL-RESULT-HANDLE
815 FMC_ERROR_MESSAGE_CATALOG FMC-ERROR-MESSAGE-CATALOG

816 FMC_ERROR_INVALID_SPECIFICATION FMC-ERROR-INVAL-SPECIFICATION
817 FMC_ERROR_QRY_RESULT_TOO_LARGE FMC-ERROR-QRY-RESULT-TOO-LARGE
818 FMC_ERROR_NO_VERSION_2_FILTER FMC-ERROR-NO-VERSION-2-FILTER
819 FMC_ERROR_INVALID_USER_CONTEXT FMC-ERROR-INVAL-USER-CONTEXT
900 FMC_ERROR_NO_SYS_ADMIN FMC-ERROR-NO-SYS-ADMIN

901 FMC_ERROR_INVALID_SESSION_MODE FMC-ERROR-INVAL-SESSION-MODE
902 FMC_ERROR_PROGRAM_UNDEFINED FMC-ERROR-PROGRAM-UNDEFINED
903 FMC_ERROR_PEA_NOT_RUNNING FMC-ERROR-PEA-NOT-RUNNING

904 FMC_ERROR_PEA_NOT_LOCAL FMC-ERROR-PEA-NOT-LOCAL

905 FMC_ERROR_INVALID_ABSENCE_SPEC FMC-ERROR-INVAL-ABSENCE-SPEC
1000 FMC_ERROR_NOT_SUPPORTED FMC-ERROR-NOT-SUPPORTED

1012 FMC_ERROR_PROGRAM_NOT_DEFINED FMC-ERROR-PROGRAM-NOT-DEFINED
1014 FMC_ERROR_PEA_NOT_REACHABLE FMC-ERROR-PEA-NOT-REACHABLE
1015 FMC_ERROR_INVALID_PEA_FROM_CTNR FMC-ERROR-INVALID-PEA-FRM-CTNR
1016 FMC_ERROR_INVALID_PEA_FROM_MODEL FMC-ERROR-INVAL-PEA-FRM-MODEL
1017 FMC_ERROR_INVALID_SYSTEM_FROM_CTNR FMC-ERROR-INVAL-SYSTEM-FRM-CTNR
1018 FMC_ERROR_INVALID_SYSTEM_FROM_MODEL FMC-ERROR-INVAL-SYSTEM-FRM-MODEL
1019 FMC_ERROR_SUB_PROC_TERMINATED_BY_ERROR| FMC-ERROR-SB-PRC-TERM-BY-ERROR
1020 FMC_ERROR_NO_PEA_FOUND_FOR_AUTO_START | FMC-ERROR-NO-PEA-END-FR-AUT-ST

10 MQSeries Workflow for OS/390 Programming Guide

Table 1. List of return codes (continued)

Programming concepts

Numeric |Symbolic value (C/C++) Symbolic value (COBOL)

value

1021 FMC_ERROR_NO_CTNR_ACCESS FMC-ERROR-NO-CTNR-ACCESS

1022 FMC_ERROR_INVALID_CONFIG_ID FMC-ERROR-INVAL-CONFIG_ID

1023 FMC_ERROR_MIG_OF_RUNNING_PROG FMC-ERROR-MIG-OF-RUNNING-PROG
1024 FMC_ERROR_MIG_OF_CHCKDOUT_SUSP FMC-ERROR-MIG-OF-CHCKDOUT-SUSP
1025 FMC_ERROR_MIGRATION_NO_SUBPROC FMC-ERROR-MIGRATION-NO-SUBPROC
1100 FMC_ERROR_XML_DOCUMENT_INVALID FMC-ERROR-XML-DOCUMENT-INVAL
1101 FMC_ERROR_XML_NO_MQSWF_DOCUMENT FMC-ERROR-XML-NO-MQSWF-DOC
1102 FMC_ERROR_XML_MESSAGE_NOT_SUPPORTED FMC-ERROR-XML-MSG-NOT-SUPP

1103 FMC_ERROR_XML_WRONG_DATA_STRUCTURE FMC-ERROR-XML-WRONG-DATA-STR
1104 FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND | FMC-ERROR-XML-D-M-NOT-FOUND
1105 FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE | FMC-ERROR-XML-D-M-WRONG-TYPE
2000 FMC_ERROR_INVALID_QUEUE_SCOPE FMC-ERROR-INVAL-QUEUE-SCOPE

Object and memory management

Workflow process models, their instances, and resulting work items are all objects
persistently stored in an MQSeries Workflow database. This means that they exist
independently from an application program.

When persistent objects are queried by an application program, they are
represented by transient objects which carry the states of the persistent objects at the
time of the query. When multiple queries are issued, there can be multiple
transient objects representing the same persistent object, even representing different

states of that object.

The lifetime of transient objects and their memory is fully managed by you, because
you know best when those objects are no longer needed, that is, when objects are
to be deallocated (C, COBOL) or destructed (C++). Transient objects are, however,
no longer available when your application program ends.

Some transient objects are explicitly allocated by you. These support objects which
do not reflect persistent ones. Examples are FmcjStringVector when you specify a
set of persons to stand in for (C or COBOL) or ExecutionService object, which
allows services to be requested from an execution server.

Transient objects which reflect persistent objects are implicitly allocated by you when
you create or retrieve persistent objects, for example, by querying.

Although the lifetime of transient objects is fully managed by you, their actual
internal object structure is encapsulated by the MQSeries Workflow APIL The
MQSeries Workflow API provides a handle (C, COBOL) to you so that you can
issue requests against the object. In the C++ API, that handle is the only data
member of your class. Therefore, you are independent of internal changes. It
further allows MQSeries Workflow to "lazy read” (read only on demand) a
collection of objects passed from the server and thus increases performance.

The MQSeries Workflow API follows the programming by contract concept. This
means that any handle passed to it which is not 0 (NULL) is assumed to be a valid
handle which can be used to access an object. This is especially important to be
considered for queries. Any nonzero vector handle is assumed to point to an

Chapter 1. MQSeries Workflow programming concepts 11

Programming concepts

already existing vector of objects and is used in order to add newly qualifying
objects. In other words, you should initialize any new handle to 0.

As all resource memory is finally owned by the application process itself, you can
access all objects from different threads within that process. MQSeries Workflow
does not hinder you from using threads; it is coded reentrantly. On the other hand,
MQSeries Workflow does not explicitly support threads. If you want to access the
same transient object from within different threads, you have to synchronize the
access to that object. Objects are not thread-safe.

The result object

In general, a result object states the result of the last MQSeries Workflow API
request (in the affected thread). It especially allows for analyzing an erroneous
situation in more detail and contains the following information:

e The return code.

* The origin of the result, that is, the file that caused the result to be written, and
the line and function where the error or the completion of the request occurred.

* Parameters (up to five) which describe the objects involved.

The result can be retrieved as a formatted message text with all parameters added
to the text. The current locale is considered when building that message text so
that the message is provided in your selected language.

All results of API calls are written into the result object associated with the thread
the request executes in. It is sufficient to access the result object just once per
thread using the FmcjResultObjectOfCurrentThread() function or the
FmcjResult::ObjectOfCurrentThread() method. (As threads are not supported in
MQSeries Workflow for OS/390, "OfCurrentThread” is mentioned here for
compatibility reasons with versions that do support threads.) The result object is
automatically updated with each request.

A result object is automatically allocated by MQSeries Workflow when the first
MQSeries Workflow API call is issued in that thread. It can be accessed at any time

and as often as needed.

C example:

12 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

#include <stdio.h>
#include <fmcjcrun.h>

int main()

{
FmcjResultHandle result = 0;
FmcjStringVectorHandle parms = 0;
char buffer[2000]= "";

result= FmcjResultObjectOfCurrentThread();
printf("Accessed result object of current thread\n");

printf("Return code: %i\n", FmcjResultRc(result));

printf("Text : %s\n", FmcjResultMessageText(result,buffer,2000));
printf("Origin : %s\n", FmcjResultOrigin(result,buffer,2000));

parms= FmcjResultParameters(result);
while (0 != FmcjStringVectorNextResultParmElement(parms, buffer, 2000))
printf("Parameter : %s\n", buffer);

return 0;

Figure 7. Accessing a result object in C

Note: The NextResultParmElement() function is used on the string vector so that
the result object is not changed while reading the parameters.

C++ example:

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{
vector<string> parms;
FmcjResult *pResult = FmcjResult::0bjectOfCurrentThread();

cout << "Accessed result object of current thread" << endl;

cout << "Return code: " << pResult->Rc() << endl;
cout << "Text : " << pResult->MessageText() ;

cout << "Origin : " << pResult->0rigin() << endl;
pResult->Parameters (parms);

cout << "Parameter : ";

for (int i=0; i<parms.size(); i++)
{

cout << parms[i] << " "3
1

cout << endl;

delete pResult; // cleanup object from heap
return 0;

Figure 8. Accessing a result object in C++

Note: The transient C++ representation of your result object is destructed like any
other object. Each retrieval of the result object constructs a separate
representation.

COBOL examples:

Chapter 1. MQSeries Workflow programming concepts 13

Programming concepts

IDENTIFICATION DIVISION.
PROGRAM-ID. "RESOBJ".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.

01 buffer PIC X(2000) VALUE SPACES.
PROCEDURE DIVISION.

PERFORM FmcjResultObjOfCurrentThread.
DISPLAY "Accessed result object of current thread".

SET hd1Result TO FmcjResultHandleReturnValue.
PERFORM FmcjResultRc.

DISPLAY "Return code: " intReturnValue.
MOVE 2000 TO bufferlength.

CALL "SETADDR" USING buffer messageBuffer.
PERFORM FmcjResultMessageText.

DISPLAY "Text : " buffer.

CALL "SETADDR" USING buffer originBuffer.
PERFORM FmcjResultOrigin.

DISPLAY "Origin : " buffer.

PERFORM FmcjResultParms.

SET hd1Vector TO FmcjStrVHandleReturnValue.

CALL "SETADDR" USING buffer elementBuffer.
PERFORM FmcjStrVNextResultParmElement.

PERFORM UNTIL pointerReturnValue = NULL
DISPLAY "Parameter : " buffer
PERFORM FmcjStrVNextResultParmElement

END-PERFORM.

STOP RUN.

COPY fmcperf.

Figure 9. Accessing a result object in COBOL (via PERFORM)

14 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

IDENTIFICATION DIVISION.
PROGRAM-ID. "RESOBJ".

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY fmcvars.
01 buffer PIC X(2000) VALUE SPACES.

PROCEDURE DIVISION.

CALL "FmcjResultObjectOfCurrentThread"
RETURNING FmcjResultHandleReturnValue.
DISPLAY "Accessed result object of current thread".

SET hd1Result TO FmcjResultHandleReturnValue.
CALL "FmcjResultRc"

USING BY VALUE hdlResult

RETURNING intReturnValue.
DISPLAY "Return code: " intReturnValue.
MOVE 2000 TO bufferlength.
CALL "SETADDR" USING buffer messageBuffer.
CALL "FmcjResultMessageText"

USING BY VALUE hdl1Result

messageBuffer

bufferLength
RETURNING pointerReturnValue.
DISPLAY "Text : " buffer.

CALL "SETADDR" USING buffer originBuffer.
CALL "FmcjResultOrigin"
USING BY VALUE hdl1Result
originBuffer

bufferLength
RETURNING pointerReturnValue.
DISPLAY "Origin : " buffer.

CALL "FmcjResultParameters"

USING BY VALUE hdlResult

RETURNING FmcjStrVHandleReturnValue.
SET hd1Vector TO FmcjStrVHandleReturnValue.

CALL "SETADDR" USING buffer elementBuffer.
CALL "FmcjStringVectorNextResultParmElement"
USING BY VALUE hd1Vector
elementBuffer
bufferLength
RETURNING pointerReturnValue.

PERFORM UNTIL pointerReturnValue = NULL
DISPLAY "Parameter : " buffer
CALL "FmcjStringVectorNextResultParmElement"
USING BY VALUE hdlVector
elementBuffer
bufferLength
RETURNING pointerReturnValue
END-PERFORM.

STOP RUN.

Figure 10. Accessing a result object in COBOL (via CALL)

Note: The SETADDR routine is shown in Example of the use of strings” onl

Chapter 1. MQSeries Workflow programming concepts

15

Programming concepts

Client/server communication and data access models

When you request actions from an MQSeries Workflow server or when you want
to observe the result of actions, you can:

* Use a synchronous protocol to ask for an action and to view changes of the
object which you used to call the action.

* Use a synchronous protocol to pull for data created or changed.

* Receive unsolicited information on created or changed objects pushed by the
server.

For example, when you ask a process instance object to be started:

* As an immediate result, the state of the process instance is updated.

* You can query work items in order to view (pull for) new objects created.

* You can automatically receive new work items sent (pushed) to you.

Synchronous client/server communication

Applying a synchronous protocol means that you issue a request to an MQSeries
Workflow server and then wait until you receive a response. All action API calls
operate this way; your application (thread) is blocked until the response arrives or
until your timeout set on the execution service object exceeds.

Note: The synchronous mode of communication is not supported for the XML
message interface.

Asynchronous client/server communication

Applying an asynchronous protocol means that you issue a request to an MQSeries
Workflow server but you do not wait until you receive a response. The
ExecuteProcessInstanceAsync() API call operates this way; your application
(thread) is not blocked and you can receive the response at a later time.

When you issue an action asynchronously, you do, however, receive an
acknowledgement telling whether MQGSeries Workflow accepted the request. You
can also receive a correlation identification which you can use in order to receive a
specific response. You can specify a user context in order to correlate a response
received.

For example, when you ask a process instance to be executed asynchronously:
* As an immediate result, you are informed whether the request is accepted.

* When you specify a buffer to hold a correlation ID, you get an ID which you
can use in the Receive() call to wait for that specific response.

* When you specify a user context, that context is returned to you as part of the
response. You can use it for user-specific correlation.

Note: The asynchronous mode of communication is only supported in C, C++, and
COBOL. All message-based requests are executed asynchronously.

The push data access model

Receiving unsolicited information pushed by an MQSeries Workflow server means
that you set up communication in a way that you are automatically informed
about new or changed objects.

Note: The push data access model is not supported in Java or the XML message
interface.

16 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

In order to obtain information pushed by an MQSeries Workflow server:
1. The server must be asked to send data. This means that:

* The settings of the applicable process instance must specify
REFRESH_POLICY PUSH. This setting is inherited from the domain level,
through the system group to the system and down to the process template.
Each specification can be overwritten on a lower level.

* The users must be logged on with a Present or PresentHere session mode, that
is, they are enabled to receive information.

2. The application must use API calls in order to receive data pushed.

Provided that these prerequisites are fulfilled, the MQSeries Workflow execution
server pushes changes on work items or notifications to the owner of the item:

1. On creation of the item.
2. On deletion of the item.

3. Whenever a primary property of the item changes - see l/Accessar API calls” onl
for a definition of primary properties.

The caller of the action will, however, not receive such information because, as a
result of the action, the transient object has already been updated with relevant
data.

Changes to disabled work items are not pushed. Only the deletion of such work
items is pushed.

Examples:

When a process instance is suspended and when its refresh policy is push, the
MQSeries Workflow execution server notifies all owners of non-disabled items
which are currently logged on as present.

When the description of a process instance is changed and when the refresh policy
is push, the MQSeries Workflow execution server notifies all owners of process
instance notifications which are currently logged on as present.

When a work item is transferred to user N by the owner of the work item and
when the refresh policy of the associated process instance is push, the MQSeries
Workflow execution server notifies user N when he/she is currently logged on as
present. The owner of the work item as the requester of the action gets no
additional notification.

Note: Filtering and sorting is left to the application. No indication about affected
worklists is pushed to the client.

Receiving information

In C, C++, and COBOL, the ExecutionService object provides for a means to
receive information (execution data) pushed by an MQSeries Workflow execution
server at any time desired. The Receive() call blocks the calling application until
information is received or until the specified timeout value has been reached. That
is why an application, if possible, typically starts a separate thread for receiving
data, in order to prevent blocking the entire application.

A timeout value of -1 specifies an indefinite wait time interval. Note that in this
case you must ensure that you stop receiving data before your application ends.

Chapter 1. MQSeries Workflow programming concepts 17

Programming concepts

There is a TerminateReceive() API call which can be used to send a terminate
indication to the receiving part of the application in order to provide notification

that receiving data may end.

Notes:

1. A Receive() call survives a Logoff() call, which ends your session with an
execution server. The execution server, however, stops pushing information
when logoff has been executed. If you did not send a TerminateReceive() to the
receiving application thread, you have to end that thread because of other
knowledge. TerminateReceive() can only be called as long as a session exists.

2. If information is not received and therefore stays in the client input queue, the
MQSeries expiration mechanism applies in order to eliminate such "dead"
messages. The expiration time of client messages can be configured for

MQSeries Workflow.

When receiving data, a correlation identification can be specified to indicate which
information is to be read. If it is not specified or points to FMCJ_NO_CORRELID,
then any data arriving is received; the correlation identification is set as the result

of a successful receive.

Execution
Data

A

Execution
Receive Service

LY XA
FromData
Workitem Activity Process
Instance Instance
T Notification Notification
Update
From Data l l
Process ReadOnly ReadWrite
Instance Container Container

Figure 11. Handling data sent by an MQSeries Workflow server. Legend: --» Inheritance

(C++); — provides for access

Once execution data has been received, its type can be determined and the
appropriate action can be called. For example, when a work item creation is
indicated, a conversion from the execution data to a work item can be requested.
When a work item change is indicated, the persistent object ID of the work item
can be requested so that the appropriate work item can be updated.

When the response to an ExecuteProcessInstanceAsync() request is received, the
process instance created and executed can be analyzed. For example, its state can
be used to determine whether the process instance executed successfully. Its output
container can then be read. If an error occurs, the error description can be

examined.

18 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

An MQSeries Workflow session

In order to communicate with an MQSeries Workflow server, a session must have
been established between the user and that server. The server is either identified
explicitly (system at system group) or taken from the user’s profile. If the
information is not found in the user’s profile, the configuration profile is read.

Note: Authentication is not required in order to use the XML message interface,
that is, a session need not be established.

The session is established by logging on. From then on services can be requested
from the server; the service object which represents the session between the user
logging on and the server, is set up accordingly.

Logon requires that the administration server be up and running on the selected
system, because the administration server manages sessions and checks the
authentication of the user. It additionally ensures that any severe errors are written
to the error log.

Any objects which are retrieved or created belong to the session where they have
been queried or created. They carry the session identification so that further
actions on those objects are executed in the same session with the authorization of
the logged-on user.

A single application program or multiple application programs can allocate
multiple service objects and log on with different users or the same user in
parallel. Sessions are kept separate by the service objects. A single service object
thus represents a single session. A second request to log on via a service object will
be rejected if it comes from a different user. Otherwise, it is accepted but not
repeated; the logon request has already been executed successfully.

A session can run in default mode or in present mode. When you are operating in
the present session mode, activity instances which are started automatically can be
scheduled on your behalf and you can receive information pushed by an MQSeries
Workflow server. There can only be a single present session per user.

The service object provides for a timeout value to be set. This is the time the
application waits for the answer from a server. The application is thus blocked
during this time at a maximum. The timeout is specified in milliseconds. A value
of -1 denotes an indefinite timeout value. The timeout value can be changed at any
time.

Note: MQSeries Workflow uses the communication mechanisms of IBM MQSeries.
If your application sets up its own signal handler, then you should refer to
the MQSeries Application Programming Guide, especially the chapter UNIX
signal handling, for restrictions imposed by MQSeries.

Querying data

There are essentially three means of querying data from an MQSeries Workflow
server:

* A query via a service object, which returns all authorized objects. The number of
objects returned to the client can be restricted by a filter and a threshold.

* A query using a persistent list definition, which returns all objects qualifying
through the list definition.

Chapter 1. MQSeries Workflow programming concepts 19

Programming concepts

* A specific request, like the request for user settings or a refresh request for a
specific object.

Note: Querying data is not supported by the XML message interface.

Persistent lists

A persistent list represents a set of objects of the same type. Moreover, all objects
which are accessible through the list have the same characteristics. A list can be for
public usage, that is, it is visible by all users, or for private usage, that is, it has an
owner and is only visible by that owner.

The characteristics of the objects contained in the list are given by so-called filter
criteria. The filter criteria specified and the authorization of the user issuing the
query determine the contents of the list. This means that the contents itself is not
stored persistently but determined when a query request is issued. This in
particular means that a public list can deliver different results depending on the
user who applies the query.

The number of objects transferred from the server to the client as the result of the
query can be restricted by specifying a threshold. The threshold is used after sort
criteria have been applied.

A list can be a process template list, a process instance list, or a worklist.

Using filters, sort criteria, and thresholds

A filter is a character string specifying criteria which must follow the rules stated
by the filter syntax diagrams. Refer to the appropriate API calls for the exact
syntax. Some sample criteria are shown here:

"NAME = 'MyProcessInstance'"

"NAME LIKE 'MyxIns?ance'"
"LAST_MODIFICATION_TIME > '1998-2-19 11:38:0'"
"STATE IN (READY,RUNNING)"

A sort criterion is a character string that must follow the rules stated by the sort
criteria syntax diagrams. Refer to the appropriate API calls for the exact syntax.
Some sample criteria are shown here:

"NAME ASC"
"NAME ASC, LAST_MODIFICATION_TIME DESC"

Objects are sorted on the server, that is, the code page of the server determines the
sort sequence.

A threshold specifies the maximum number of objects to be returned to the client.
That threshold is applied after the objects have been sorted.

Handling collections

The result of a query for a set of objects is a so-called vector of objects in C, C++,
or COBOL, or an array of objects in Java.

A vector is provided by the caller and filled by the MQSeries Workflow API. The

ownership of the vector elements, the objects, stays with the vector. They are
automatically deleted when the vector is deleted.

20 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

Any objects returned are appended to the supplied vector. If you want to read the
current objects only, you have to clear the vector before you call the query method.
This means that you should erase all elements of the vector in the C++ API This
means that you should set the vector handle to 0 in C and COBOL.! If the vector
handle is not initialized to 0, it must point to a vector of objects of the appropriate
kind so that newly queried objects can be appended. In other words, any nonzero
handle is used by C or COBOL in order to access a vector assumed to already
exist.

In C or COBOL, the result of the query is the vector handle initialized to the set of
objects, if a 0 handle was passed, otherwise the existing vector extended by the
new objects. Special vector accessor functions are provided to access the objects
(see below). When a vector element is read, it becomes an object of its own and
thus has to be deleted when no longer used. Any operations on that object refer to
the object only and do not have any impacts on the vector element from which the
object was copied. For example, a Refresh() changes the object only but not its
original copy within the vector. This means that a further iteration through the
vector finds any elements unchanged.

In C++, the result of the query is an instance of vector<class T>. Access to the
objects is gained via appropriate vector methods; refer to the STL documentation.
When a vector element is read, a (const or non-const) reference to the object is
returned. This means that a change of the object does actually change the vector
element. A further iteration through the vector finds the elements changed.

An array is provided and filled by the MQSeries Workflow API. The ownership of
the array elements, the objects, stays with the array.

C and COBOL vector accessor functions

Vector accessor functions are described below. This is because all these functions
are similar in appearance and have similar requirements, even for different objects.
They are all handled locally by the API, that is, they do not communicate with the
server. Neither a connection to a server nor specific authorizations are required to
execute.

Return codes
The C or COBOL functions or the result object can return the following codes. The
number in parentheses shows their integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)
A parameter references an undefined location. For example, the
address of a handle is expected, but 0 is passed.
FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an
object of the requested type.
FMC_ERROR_NO_MORE_DATA(804)
The vector contains no or no more element.
FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

1. Declare a new vector handle or deallocate an existing vector object before reuse.

Chapter 1. MQSeries Workflow programming concepts 21

Programming concepts

Vector accessor functions allow for the operations listed below. "Xxx” denotes a
particular scope; for example, FmcjXxxVectorFirstElement() can stand for
FmcjProcessInstance VectorFirstElement().

FmcjXxxVectorDeallocate()
Allows the application to deallocate the storage reserved for the specified transient
vector object. All elements contained are also deallocated.

The handle is set to 0 so that it can no longer be used.

C

APIRET FMC_APIENTRY FmcjXxxVectorDeallocate(
FmcjXxxVectorHandle * hd1Vector)

— COBOL
FmcjXxxVectorDeallocate.

CALL "FmcjXxxVectorDeallocate"
USING
BY REFERENCE
hd1Vector
RETURNING
intReturnValue.

Parameters
hdlVector Input/Output. The address of the handle to the vector to be
deallocated.

FmcjXxxVectorFirstElement()

Returns the first element of the vector. That element becomes an object on its own
and has to be deallocated if no longer used. The vector is positioned to the next
element.

If the vector is empty or if an error occurred, 0 (zero) is returned.

— C
FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorFirstElement (
FmcjXxxVectorHandle hdl1Vector)

— COBOL
FmcjXxxVectorFirstETement.

CALL "FmcjXxxVectorFirstElement"
USING
BY VALUE
hd1Vector
RETURNING
FmcjXxxHandleReturnValue.

Parameters
hdlVector Input. The handle of the vector to be queried.

22 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

Return type
FmcjXxxHandle
The handle of the first element of the vector or 0.

FmcjXxxVectorNextElement()

Returns the vector element at the current vector position; the initial vector position

is the first element. That element becomes an object on its own and has to be
deallocated if no longer used. The vector is positioned to the next element.

If the vector is empty, if there are no more elements in the vector, or if an error
occurred, 0 (zero) is returned.

C

FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorNextElement (
FmcjXxxVectorHandle hd1Vector)

— COBOL

FmcjXxxVectorNextETement.

CALL "FmcjXxxVectorNextElement"
USING
BY VALUE
hd1Vector
RETURNING
FmcjXxxHandleReturnValue.

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
FmcjXxxHandle
The handle of the vector element at the current position or 0.

FmcjXxxVectorSize()
Returns the number of elements in the vector.

— C
unsigned long FMC_APIENTRY FmcjXxxVectorSize(
FmcjXxxVectorHandle hdl1Vector)

— COBOL
FmcjXxxVectorSize.

CALL "FmcjXxxVectorSize"
USING
BY VALUE
hd1Vector
RETURNING
uTongReturnValue.

Parameters

Chapter 1. MQSeries Workflow programming concepts

23

Programming concepts

hdlVector Input. The handle of the vector to be queried.

Return type
unsigned long
The number of elements in the vector.

C examples
In the following, some C examples on how to read a vector are shown; note that

you can start with a first element call or a next element call.

24 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

#include <stdio.h>
#include <fmcjcrun.h>

int main()
{
APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
unsigned Tong i =03
unsigned Tong numElements = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";
FmcjGlobalConnect();

}

FmcjExecutionServiceAllocate(&service);

rc = FmcjExecutionServicelLogon(service,
"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset

)
if (rc != FMC_OK)
return rc;
printf("Logged on\n");

rc= FmcjExecutionServiceQueryProcessInstances (
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hd1Vector);

if (rc = FMC_OK)

return rc;
printf("Queried process instances\n");

hd1Instance= FmcjProcessInstanceVectorFirstElement (hd1Vector);
numElements= FmcjProcessInstanceVectorSize(hd1Vector);

printf("Instances in the vector:\n");
for(i=0; i< numElements; i++)
{
printf("- name: %s\n",
FmcjProcessInstanceName(hd1Instance,tInfo,
FMC_PROCESS_INSTANCE_NAME_LENGTH));
FmcjProcessInstanceDeallocate(&hd1Instance);
hd1Instance= FmcjProcessInstanceVectorNextElement (hd1Vector) ;

}

FmcjProcessInstanceVectorDeallocate(&hd1Vecor);

FmcjExecutionServicelLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

Figure 12. Reading a vector in C (using First/NextElement() calls)

Chapter 1. MQSeries Workflow programming concepts

25

Programming concepts

#include <stdio.h>
#include <fmcjcrun.h>

int main()
{
APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hd1Vector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);

rc = FmcjExecutionServicelLogon(service,
"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset

)s
if (rc != FMC_OK)
return rc;
printf("Logged on\n");

rc= FmcjExecutionServiceQueryProcessInstances (
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hd1Vector);

if (rc = FMC_OK)

return rc;
printf("Queried process instances\n");

printf("Instances in the vector:\n");
while (0 != (hdlInstance=FmcjProcessInstanceVectorNextElement(hd1Vector)))

printf("- name: %s\n",
FmcjProcessInstanceName(hd1Instance,tInfo,
FMC_PROCESS_INSTANCE_NAME_LENGTH));
FmcjProcessInstanceDeallocate(&hdlInstance));

}

FmcjProcessInstanceVectorDeallocate(&hd1Vector));

FmcjExecutionServiceLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

Figure 13. Reading a vector in C (using NextElement() call only)

COBOL examples
In the following, some COBOL examples on how to read a vector are shown; note
that you can start with a FirstElement or NextElement call.

26 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.
WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 lTocalUserID PIC X(30) VALUE z"ADMIN".

01 TocalPassword PIC X(30) VALUE z"PASSWORD".
01 numElements PIC 9(9) BINARY.

01 1 PIC 9(9) BINARY.

01 buffer PIC X(64) VALUE SPACES.

LINKAGE SECTION.
01 retCode PIC S9(9) BINARY.
PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
PERFORM FmcjESATllocate.

CALL "SETADDR" USING TocalUserlId userId.

CALL "SETADDR" USING TocalPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.

MOVE Fmc-SA-Reset TO absencelndicator.

PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-0K THEN GOBACK.
DISPLAY "Logged on".

CALL "SETADDR" USING FmcjNoFilter filter.

CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.

PERFORM FmcjESQueryProclnsts.

SET hd1Vector TO instances.

MOVE intReturnValue TO retCode

IF retCode NOT = FMC-0OK THEN GOBACK.
DISPLAY "Queried Process Instances".

PERFORM FmcjPIVFirstElement.

SET hdlInstance TO FmcjPIHandleReturnValue.
PERFORM FmcjPIVSize.

MOVE ulongReturnValue TO numElements.

DISPLAY "Instances in the vector:".
MOVE FMC-PROC-INST-NAME-LENGTH TO bufferLength.
CALL "SETADDR" USING buffer instanceNameBuffer.
PERFORM VARYING i FROM 0 BY 1 UNTIL i >= numElements
PERFORM FmcjPIName
DISPLAY "- name: " buffer
PERFORM FmcjPIDeallocate
PERFORM FmcjPIVNextElement
SET hdlInstance TO FmcjPIHandleReturnValue
END-PERFORM

Figure 14. Reading a vector in COBOL (using First/NextElement calls) (Part 1 of 2)

Chapter 1. MQSeries Workflow programming concepts 27

Programming concepts

PERFORM FmcjPIVDeallocate.
PERFORM FmcjESLogoff.

DISPLAY "Logged off".

PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-0K TO retCode.
GOBACK.

COPY fmcperf.

Figure 14. Reading a vector in COBOL (using First/NextElement calls) (Part 2 of 2)

28 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.
WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 lTocalUserID PIC X(30) VALUE z"ADMIN".
01 TocalPassword PIC X(30) VALUE z"PASSWORD".
01 buffer PIC X(64) VALUE SPACES.

LINKAGE SECTION.
01 retCode PIC S9(9) BINARY.
PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
PERFORM FmcjESAllocate.

CALL "SETADDR" USING TocalUserlId userId.

CALL "SETADDR" USING TocalPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.

MOVE Fmc-SA-Reset TO absencelndicator.

PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-0K THEN GOBACK.
DISPLAY "Logged on".

CALL "SETADDR" USING FmcjNoFilter filter.

CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.

PERFORM FmcjESQueryProclnsts.

SET hd1Vector TO instances.

MOVE intReturnValue TO retCode

IF retCode NOT = FMC-0K THEN GOBACK.
DISPLAY "Queried Process Instances".

DISPLAY "Instances in the vector:".
MOVE FMC-PROC-INST-NAME-LENGTH TO bufferlLength.
CALL "SETADDR" USING buffer instanceNameBuffer.

PERFORM FmcjPIVNextElement.

PERFORM UNTIL FmcjPIHandleReturnValue = NULL
SET hdlInstance TO FmcjPIHandleReturnValue
PERFORM FmcjPIName
DISPLAY "- name: " buffer
PERFORM FmcjPIDeallocate
PERFORM FmcjPIVNextElement

END-PERFORM

Figure 15. Reading a vector in COBOL (using NextElement calls only) (Part 1 of 2)

Chapter 1. MQSeries Workflow programming concepts

29

Programming concepts

PERFORM FmcjPIVDeallocate.
PERFORM FmcjESLogoff.

DISPLAY "Logged off".

PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-0K TO retCode.
GOBACK.

COPY fmcperf.

Figure 15. Reading a vector in COBOL (using NextElement calls only) (Part 2 of 2)

Java arrays

In Java, the result of a query for a set of objects is stored in arrays. The arrays are
declared by you as a variable of the respective type, for example:

ProcessInstance[] processInstances;

With each new query, all existing objects in the array are deleted and the new
objects are added.

The number of objects contained in an array is determined by accessing its length
variable, for example:

processInstances.length

All array indexes start with 0 (zero). That is, valid index numbers are 0 to length-1.
You access an object by providing its index number, for example,
processInstances[0]. You should not save the index number of an object for later
reuse, because the object can have a different index after each query, depending on
the sort criteria and the number of objects returned.

Handling containers

A container represents input or output data of a process template, process instance,
work item, or activity implementation at runtime. Each container is defined by a
data structure which declares the container to be of the type of that data structure.

Data structure/container type

A data structure is uniquely identified by its name and contains an ordered list of
data members. At runtime, it can become a stream of 32 KB passed between the
client and the server.

The data structures and their usage as input containers or output containers are
defined during modeling. A special data structure called
DEFAULT_DATA_STRUCTURE is provided by MQSeries Workflow and contains
no user-defined data members when installed. The DEFAULT_DATA_STRUCTURE
cannot be deleted, but it can be extended during modeling.

Data member/container element

A data member of a data structure has a name and a data type. Data types are
either basic and then STRING, LONG, BINARY, or FLOAT,or another data
structure. Using a data structure as the data type of a data member (nesting)
allows for recursive definitions of data members.

30 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

A data member can represent a one-dimensional array. If a data member represents
an array, the number of elements in that array is shown in parentheses ().

A data structure can have up to 512 user-defined data members. A data member
that represents an array of data members counts with as many data members as it
has elements.

Data members are specified using their fully qualified name within the container.
The fully qualified name of a data member is a name in dot notation where the
hierarchy of nested data members is presented from left to right, and their names
are separated by a dot.

If a data member actually specifies an array of data members, the index number of
a specific data member is specified in brackets ([n]) or parentheses ((n)).

When a data structure denotes the type of a container, then its data members (first
level of any hierarchy) are also called container elements. They define the structural
members of the container. When the data type of a container element (n-th level of
any hierarchy) is a data structure (nesting), then that container element again has
container elements or structural members.

Container elements of a basic data type are also called the leaves of the container.
These are the members which can hold a value, that is, which can be asked for a
value and which can be set to a new value.

For example, assume that the data structure PERSON describes an input container
or output container and that PERSON has been defined as:

Name STRING

Addr ADDRESS
Street STRING
POBOX LONG(2)

PERSON has two structural data members named Name and Addr. Name is of
basic data type STRING and Addr is of data type ADDRESS. That is the data
structure ADDRESS is nested within the data structure PERSON.

The input or output container described by PERSON then has two container
elements or structural members named Name and Addr, where Addr defines a
structure by itself. The container elements or structural members of the container
element Addr are Street and POBOX.

The leaves of the container, that is, the container elements which can carry a value,
and their fully qualified names within the container are:

Name
Addr.Street
Addr.POBOX[0]
Addr.POBOX[1]

Note that since the size of the POBOX array is 2, the valid index numbers are 0
and 1. This is because all array indexes start with 0 (zero).

Also note that the fully qualified names are not prefixed with the name of the data
structure PERSON. That data structure denotes the type of the container. There is

Chapter 1. MQSeries Workflow programming concepts 31

Programming concepts

only one exception to the rule, when the container itself is specified to be an array,
for example, an array of PERSONs. Then, to set the name of a specific person, the
fully qualified name is specified as

PERSON[i].Name

For detailed examples see ‘Chapter 6 Examples” on page 523.

In the XML message interface, arrays are depicted as a sequence of elements. Since
the structure is given explicitly, names are not prefixed. For example:

<Name>
<Addr>
<Street></Street>
<POBOX></POBOX>
<POBOX></P0OBOX>
</Addr>
</Name>

For more information refer to XML message interface” on page 151l

Predefined data members

All containers automatically specify data members predefined by MQSeries
Workflow. They can hold values associated with the operational characteristics of
an activity or process. Predefined data members are data members that need not
be defined by the modeler but are automatically available. They can be accessed by
the container API. Their names start with the reserved character "_".

Predefined data member values can be:

* Used to evaluate activity exit criteria.

* Accessed by activity implementations.

* Dynamically set to change the operational characteristics of subsequent activities.

Predefined data members provide for the flexibility of modelers. The decision on
operational characteristics of a process or activity is taken at Runtime. They also
provide activity implementations and support tools a means to access the
operational characteristics through the use of API calls.

There are the following sets of predefined data members:
* Fixed data members

* Process information data members

* Activity information data members

Fixed data members provide information about the current activity instance. They
cannot be set using an API call. An exception is the _RC data member, which
should be set only if the program cannot otherwise define a return code (see the
following).

Process information and activity information data members are associated with the
operational characteristics of a process or activity. They operate the same way as
any user-defined data members. This means that the values for specific operational
characteristics of a process instance or activity instance can be accessed or changed
just like the values for any other user-defined data member.

The following provides the fully qualified name and a brief description of each of
the predefined data members.

There are no arrays of any predefined data member.

32 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

Fixed data members
Fixed data members _ACTIVITY, _PROCESS, and _PROCESS_MODEL cannot be set

using API calls. Their values can be read using container API calls.

_ACTIVITY
This data member contains the fully-qualified name of the considered
activity instance. The value of this data member is automatically set when
the activity instance or an associated work item is started.

Data type: STRING

PROCESS
This data member contains the name of the associated process instance.
The value of this data member is automatically set when the activity
instance or an associated work item is started.

Data type: STRING

_PROCESS_MODEL
This data member contains the name of the associated process model. The
value of this data member is automatically set when the activity instance
or an associated work item is started.

Data type: STRING

_RC This data member contains the return code of the activity implementation.
Typically it is used to evaluate exit and transition conditions. _RC is the
only way for a CICS- or IMS-based application to set a return code. If the
application does not set _RC explicitly (via the Container API), the field is
automatically set to the exit code when program execution is completed.

Data type: LONG

Process information data members

Process information data members serve to dynamically specify properties of a
process instance. In general, the process modeler can choose where values for
process instance properties are to be obtained.

* Values can be inherited from a top-level process instance.

* Values can be obtained from the process information data members in the input
container. They are then either set as default values or provided in the input
container when the process instance is started.

If specified via the DATA_FROM_INPUT_CONTAINER indicator, the values of the
process information data members are read by MQSeries Workflow when the
process instance is started. If a value for a process information data member is not
set, then a default value is used (see the detailed descriptions below).

_PROCESS_INFO.Role
A role that people assigned to an activity instance of the process instance
must fulfill.

Any role set becomes an additional criterion to roles set for the activity
instance. Only people who are members of all the specified roles are
eligible.

If no role is set and no roles are specified for the activity instance, then no
role criteria are applied.

Data type: STRING

Chapter 1. MQSeries Workflow programming concepts 33

Programming concepts

_PROCESS_INF0.0rganization
The organization to which people must belong to receive work items of the
process instance. This setting is only used if no organization is specified for
the activity instance.

If no organization is set and no organization is specified for the activity
instance, the default is the organization of the person who starts the
process instance.

Data type: STRING

_PROCESS_INFO.ProcessAdministrator
The user ID of the person notified if:
* The process instance is expired.
* No person meets the criteria to perform an activity instance.
* No valid person has been specified for notification.
* The person notified that an activity instance is overdue has exceeded the
time allowed for an action, that is, the second notification is sent.

If not set, the default process administrator is the person who starts the
process instance.

Data type: STRING

_PROCESS_INFO.Duration
Specifies how long the process instance is allowed to take. The value is
expressed in seconds.

If not set, the default is "Endless".
Data type: LONG

Activity information data members

Activity information data members serve to dynamically specify properties of an
activity instance. In general, the process modeler can choose where values for
activity instance properties are to be obtained.

* Values can be obtained from the activity information data members in the input
container. They are then either set as default values or provided in the input
container when an activity instance or associated work item is started.

If specified, the values of the activity information data members are read by
MQSeries Workflow when the activity instance is scheduled. If a value is not set,
then a default value is used (see the detailed descriptions below).

The following indicators specify that activity information data members are to be
read:

+ DONE_BY STAFF DEFINED_IN INPUT_CONTAINER

* NOTIFICATION DEFINED_IN INPUT_CONTAINER

* PRIORITY DEFINED_IN INPUT_CONTAINER

_ACTIVITY_INFO.Priority
The numeric value assigned as the priority of an activity instance.
MQSeries Workflow does not deduce any meaning from this value; it is
just used for client purposes. Any integer value between 0 and 9 can be
specified. If the value specified is invalid or the data member is not set, a
default of O (zero) is used.

Data type: LONG

34 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

_ACTIVITY_INFO.MembersOfRoles
The role or roles a person must fulfill to receive a work item for the
activity instance. Multiple roles may be specified and are then to be
separated by a semicolon (;).

Any role or roles set for this data member become an additional criterion
to the role set for the process instance. Only people who are members of
all the specified roles are eligible.

If not set, the role specified for the process instance is used. If no role is set
for the process instance and no roles are specified for the activity instance,
then no role criteria are applied.

Note: This specification is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.CoordinatorOfRole
The role or roles a person must coordinate to receive a work item for the
activity instance. Multiple roles to coordinate may be specified and are
then to be separated by a semicolon (;).

To receive a work item, the eligible person must be assigned as coordinator
of all the specified roles in addition to being a member of all roles
specified for the process instance and for the activity instance.

If not set, the roles specified by the process instance and the activity
instance are solely used. If no roles to be member of nor roles to coordinate
have been specified, no role criteria are applied.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.Organization
The organization to which people must belong to receive work items of the
activity instance.

If an organization is set using this data member, any organization set for
the process instance is ignored.

If not set, the organization specified by the process instance is used. If no
organization is set and no organization is specified for the process instance
properties, the default is the organization of the person who starts the
process instance.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.
Data type: STRING

_ACTIVITY_INFO.OrganizationType
This data member is used to indicate if a work item for the activity
instance should be assigned to persons in a child organization.

To make all persons in the specified organization and all of its child
organizations eligible, set the value of this data member to 0.

Chapter 1. MQSeries Workflow programming concepts 35

Programming concepts

To limit the persons who are eligible to the members of the specified
organization and the managers of the first level of child organizations, set
this data member to any nonzero value.

If not set, the default is 0. If no organization is set for the
_ACTIVITY_INFO.Organization data member, any value set here is ignored.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: long

_ACTIVITY_INFO.LowerLevel

The minimum level persons must have to receive work items of the
activity instance. A value between 0 and 9 can be set. The default value is
0 (zero).

If the level specified here is greater than the value specified for the upper
level, or if the level is not set, the default value of 0 (zero) is used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.UpperLevel

The maximum level for persons to receive work items of the activity
instance. A value between 0 and 9 can be set. The default value is 9.

If the level specified here is less than the value specified for the lower
level, or the level is not set, the default value of 9 is used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.People

This data member is used to specifically identify the people who should
receive a work item of the activity instance. Multiple entries are possible
and are then to be separated by a semicolon (;).

If any people are identified using this data member, any values set for data
members _ACTIVITY_INFO.MembersOfRoles,
_ACTIVITY_INFO.CoordinatorOfRole, ACTIVITY_INFO.Organization,
_ACTIVITY_INFO.OrganizationType, _ACTIVITY_INFO.LowerLevel, and
_ACTIVITY_INFO.UpperLevel are ignored.

If no value is set, any values set for the above data members are used. If
no values have been set for those, the values set for staff definition for the
process instance are used.

If no values have been set for the process instance, the people in the
organization and all child organizations of the process starter receive a
work item for the activity instance.

Data type: STRING

_ACTIVITY_INFO.PersonToNotify

Used to identify the person to notify if the specified duration to complete
the activity instance expires before the activity instance is complete.

36 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

If the user ID specified by the data member is invalid or the data member
is not set, the process administrator is notified.

Data type: LONG

_ACTIVITY_INFO.Duration
Used to specify the maximum number of seconds allowed to complete the
activity.

If the activity is not completed before the specified duration, the defined
person is notified.

If the value specified by the data member is invalid or the data member is
not set, no notification occurs.

Data type: LONG

_ACTIVITY_INFO.Duration2
Used to specify the maximum number of seconds allowed to act on an
activity instance notification.

If the notification is not acted on before the specified number of seconds
expires, the process administrator is notified.

If the value specified by the data member is invalid or the data member is
not set, no notification occurs.

Data type: LONG

Determining the structure of an unknown container

There are various API calls in order to determine the structure of an unknown
container and/or its leaves. Applied to a container, they return a collection of
container elements. Once the collection of container elements is available, similar
API calls can be recursively applied in order to step down through a nested
structure.

Note: In the XML message interface, a container is always completely described in
the message. An application can thus determine the structure of a container
by analyzing the container in the message.

Determining the leaves
The following API calls allow to determine the number of leaves in a container or

to retrieve the leaves themselves. When all leaves are requested, then not only the
user-defined leaves or their leaf count are provided, but also the MQSeries
Workflow predefined data members.

— C
unsigned long FmcjContainerLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerLeaves(FmcjContainerHandle handle)

unsigned long FmcjContainerAllLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerAllLeaves(FmcjContainerHandle handle)

Chapter 1. MQSeries Workflow programming concepts 37

Programming concepts

— C++
unsigned long LeafCount()
void Leaves(vector<FmcjContainerElement> const & leaves) const
unsigned long AllLeafCount()
void AllLeaves(vector<FmcjContainerElement> const & leaves) const
— Java
public abstract int leafCount() throws FmcException
public abstract ContainerElement[] Teaves() throws FmcException
public abstract int alllLeafCount() throws FmcException
public abstract ContainerElement[] alllLeaves() throws FmcException
— COBOL
FmcjCLeafCount.
CALL "FmcjContainerLeafCount"
USING
BY VALUE
hd1Container
RETURNING
ulongReturnValue.
FmcjCLeaves.
CALL "FmcjContainerLeaves"
USING
BY VALUE
hd1Container
RETURNING
FmcjCEVHandTeReturnValue.
FmcjCAT1LeafCount.
CALL "FmcjContainerAllLeafCount"
USING
BY VALUE
hd1Container
RETURNING
ulongReturnValue.
FmcjCAT1Leaves.
CALL "FmcjContainerAllLeaves"
USING
BY VALUE
hd1Container
RETURNING
FmcjCEVHandTeReturnValue.
Parameters

38 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

handle Input. The handle of the container to be queried.
leaves Input/Output. The vector or array of container elements to be
filled.

Return type

ContainerElement[]/FmcjContainerElementVectorHandle
The container elements which are leaves.

unsigned long/int
The number of user-defined leaves or the number of all leaves,
user-defined and predefined.

Determining the structural members
The following API calls allow to determine the number of structural members in a
container or to retrieve the structural members themselves.

— C
unsigned long FmcjContainerMemberCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerStructMembers(FmcjContainerHandle handle)

— C++

unsigned long MemberCount()

void StructMembers(vector<FmcjContainerElement> const & members) const

— Java
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

— COBOL
FmcjCMemberCount.

CALL "FmcjContainerMemberCount"
USING
BY VALUE
hd1Container
RETURNING
uTongReturnValue.

FmcjCStructMembers.

CALL "FmcjContainerStructMembers"
USING
BY VALUE
hd1Container
RETURNING
FmcjCEVHandleReturnValue.

Chapter 1. MQSeries Workflow programming concepts 39

Programming concepts

Parameters
handle Input. The handle of the container to be queried.
members Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are part of the container.
unsigned long/int

The number of structural members in the container.

Determining the type
The following API calls provide the type of a container, that is, the name of the
associated data structure.

C
char * FmcjContainerType(FmcjContainerHandle handle,
char = containerTypeBuffer,
unsigned long bufferLength)
— C++

string Type()

— Java
public abstract String type() throws FmcException

— COBOL
FmcjCType.

CALL "FmcjContainerType"

USING

BY VALUE
hd1Container
containerTypeBuffer
bufferLength

RETURNING
pointerReturnValue.

Parameters
bufferLength Input. The length of the buffer to contain the container type; must
be at least FMC_CONTAINER_TYPE_LENGTH bytes.

container TypeBuffer
Input/Output. The buffer to contain the container type.
handle Input. The handle of the container to be queried.

Return type
char*/string/String
The type of the container.

40 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

Analyzing a container element

Once a container element has been accessed, it can be asked for its properties, its
name, whether it is a leaf and an array, or a structure itself. Calls to the container
can then be applied recursively in order to step down through a nested structure.

Determining the name or type of a container element
The following API calls allow to determine the name of a container element or its

type.
— C
char* FmcjContainerElementName (FmcjContainerElementHandle handle,
char = buffer,
unsigned long bufferLength)
char* FmcjContainerElementFullName(FmcjContainerElementHandle handle,
char = buffer,
unsigned Tong bufferLength)
char* FmcjContainerElementType (FmcjContainerElementHandle handle,
char * buffer,
unsigned Tong bufferLength)

— C++

string Name() const
string FullName() const

string Type() const

Java
public abstract String name() throws FmcException

public abstract String fullName() throws FmcException

public abstract String type() throws FmcException

Chapter 1. MQSeries Workflow programming concepts 41

Programming concepts

— COBOL
FmcjCEName.

CALL "FmcjContainerElementName"

USING

BY VALUE
hd1Element
elementNameBuffer
bufferLength

RETURNING
pointerReturnValue.

FmcjCEFul1Name.
CALL "FmcjContainerElementFullName"
USING
BY VALUE
hd1ETement
elementNameBuffer
bufferLength
RETURNING
pointerReturnValue.

FmcjCEType.

CALL "FmcjContainerElementType"

USING

BY VALUE
hd1ETement
containerTypeBuffer
bufferLength

RETURNING
pointerReturnValue.

Parameters
bufferLength Input. The length of the buffer to be filled.
buffer Input/Output. The buffer to contain the container element name or

type.
handle Input. The handle of the container element to be queried.

Return type
char*/string/String
The name or type of the container.

Determining the structural properties of a container element
The following API calls allow to determine whether the considered container

element is a leaf or a structure by itself and whether it is denoted to be an array.

C
bool FmcjContainerElementIsArray (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsLeaf (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsStruct(FmcjContainerElementHandle handle)

42 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

— C++

bool IsArray () const
bool IsLeaf () const

bool IsStruct() const

— Java

public abstract boolean isArray () throws FmcException
public abstract boolean isLeaf () throws FmcException

public abstract boolean isStruct() throws FmcException

— COBOL
FmcjCEIsArray.

CALL "FmcjContainerElementIsArray"
USING
BY VALUE
hd1Element
RETURNING
boolReturnValue.

FmcjCEIsLeaf.

CALL "FmcjContainerElementIsLeaf"
USING
BY VALUE
hd1ETement
RETURNING
boolReturnValue.

FmcjCEIsStruct.

CALL "FmcjContainerElementIsStruct"
USING
BY VALUE
hd1ETement
RETURNING
boolReturnValue.

Parameters
handle Input. The handle of the container element to be queried.

Return type
boolean/bool An indicator whether the container element is an array, a leaf, or a
structure.

Determining the leaves of a container element
The following API calls allow to determine the number of leaves of a container
element or to retrieve the leaves themselves.

Chapter 1. MQSeries Workflow programming concepts 43

Programming concepts

— C
unsigned Tong
FmcjContainerElementLeafCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementLeaves(FmcjContainerElementHandle handle)

— C++
unsigned long LeafCount()

void Leaves(vector<FmcjContainerElement> const & leaves) const

— Java
public abstract int TeafCount() throws FmcException

public abstract ContainerElement[] leaves() throws FmcException

— COBOL
FmcjCELeafCount.

CALL "FmcjContainerElementLeafCount"
USING
BY VALUE
hd1Element
RETURNING
ulongReturnValue.

FmcjCELeaves.

CALL "FmcjContainerElementLeaves"
USING
BY VALUE
hd1Element
RETURNING
FmcjCEVHandTeReturnValue.

Parameters

handle Input. The handle of the container to be queried.

leaves Input/Output. The vector or array of container elements to be
filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle
The container elements which are leaves.
unsigned long/int
The number of user-defined leaves.

Determining the structural members of a container element
The following API calls allow to determine the number of structural members of a

container element or to retrieve the structural members themselves.

44 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

— C
unsigned Tong
FmcjContainerElementMemberCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementStructMembers(FmcjContainerElementHandle handle)

— C++
unsigned long MemberCount ()

void StructMembers(vector<FmcjContainerElement> const & members) const

— Java
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

— COBOL

FmcjCEMemberCount.

CALL "FmcjContainerElementMemberCount"
USING
BY VALUE
hd1ETement
RETURNING
uTongReturnValue.

FmcjCEStructMembers.

CALL "FmcjContainerElementStructMembers"
USING
BY VALUE
hd1ETement
RETURNING
FmcjCEVHandTeReturnValue.

Parameters

handle Input. The handle of the container element to be queried.

members Input/Output. The vector or array of container elements to be
filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are structural members.
unsigned long/int

The number of structural members.

Chapter 1. MQSeries Workflow programming concepts

45

Programming concepts

Determining the elements of an array
The following API calls allow to determine the number of elements in an array or

to retrieve the elements themselves.

— C
unsigned Tong
FmcjContainerElementCardinality(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementArrayElements(FmcjContainerElementHandle handle)

— C++
unsigned long Cardinality() const

void ArrayMembers(vector<FmcjContainerElement> const & elements) const

— Java
public abstract int cardinality() throws FmcException

public abstract ContainerElement[] arrayElements() throws FmcException

— COBOL

FmcjCECardinality.

CALL "FmcjContainerElementCardinality"
USING
BY VALUE
hd1ETlement
RETURNING
ulongReturnValue.

FmcjCEArrayElements.

CALL "FmcjContainerElementArrayETlements"
USING
BY VALUE
hd1Element
RETURNING
FmcjCEVHand1eReturnValue.

Parameters

handle Input. The handle of the container element to be queried.

elements Input/Output. The vector or array of container elements to be
filled.

Return type

ContainerElement[]/FmcjContainerElementVectorHandle
The container elements which are part of the queried array
container element.

46 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

unsigned long
The cardinality of the array described by the container element.

Accessing a known container element

When you know the (dotted) name of a container element, that name can be used
in order to directly access the container element without iterating and searching
through the whole container structure.

— C
APIRET FMC_APIENTRY FmcjContainerGetElement (
FmcjContainerHandle handle,
char const * qualifiedName,
FmcjContainerElementHandle +* element)
— C++
APIRET GetElement(string const & qualifiedName,
FmcjContainerElement & element) const
Java

public abstract
ContainerElement getElement(String qualifiedName) throws FmcException

— COBOL
FmcjCGetElement.

CALL "FmcjContainerGetElement"

USING

BY VALUE
hd1Container
qualifiedName

BY REFERENCE
element

RETURNING
intReturnValue.

Parameters

element Output. The container element.

handle Input. The handle of the container to be queried.
qualifiedName Input. The fully qualified name of the container element.

Return type
APIRET The return code from this API call.

Accessing a value of a container

The following API calls return the value of a container leaf.
FMC_ERROR_MEMBER_NOT_SET is returned if no information is available.

Chapter 1. MQSeries Workflow programming concepts 47

Programming concepts

When the leaf is an array of values, an index must be specified. Since an index is
to be specified, the fully qualified name must be given without the index or its
brackets.

— C
unsigned Tong
FMC_APIENTRY FmcjContainerArrayBinarylLength(

FmcjContainerHandle handle,
char const * qualified name,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerArrayBinaryValue(
FmcjContainerHandle handle,

unsigned Tong
FMC_APIENTRY

APIRET FMC_APIENTRY

char const *
unsigned Tong
FmcjBinary =
unsigned Tong

qualifiedName,
index,
value,
bufferLength)

FmcjContainerBinaryLength(

FmcjContainerHandle

char const =

handle,
qualified name)

FmcjContainerBinaryValue(

FmcjContainerHandle

char const *
FmcjBinary =*
unsigned long

handle,
qualifiedName,
value,
bufferLength)

— C
APIRET FMC_APIENTRY

APIRET FMC_APIENTRY

FmcjContainerArrayFloatValue(

FmcjContainerHandle

char const =
unsigned Tong
double =

handle,
qualifiedName,
index,
value)

FmcjContainerFloatValue(

FmcjContainerHandle

char const =
double =
unsigned Tong

handle,
qualifiedName,
value)

bufferLength)

— C
APIRET FMC_APIENTRY

APIRET FMC_APIENTRY

FmcjContainerArraylLongValue(

FmcjContainerHandle

char const =
unsigned Tong
long *

FmcjContainerLongValue(
FmcjContainerHandle

long *

handle,
qualifiedName,
index,
value)

handle,
value)

48 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

— C
unsigned Tong

FMC_APIENTRY FmcjContaine

FmcjContaine

char const =

unsigned lon

APIRET FMC_APIENTRY FmcjContaine

FmcjContaine

char const *

unsigned Tong
char *
unsigned long

unsigned long

char const *

char const *
char *
unsigned Tong

rArrayStringLength(
rHandle handle,
qualified name,
g index)
rArrayStringValue(
rHandle handle,
qualifiedName,
index,
value,

bufferLength)

FMC_APIENTRY FmcjContainerStringlLength(
FmcjContainerHandle

handle,
qualified name)

APIRET FMC_APIENTRY FmcjContainerStringValue(
FmcjContainerHandle

handle,
qualifiedName,
value,
bufferLength)

— C++

unsigned long BinaryLength(unsigned long index)

APIRET Value(string const &

qualifiedName,

unsigned Tong

unsigned Tong
FmcjBinary *
unsigned Tong

BinaryLength()

index,
value,
bufferLength)

const

— C++

APIRET Value(

APIRET Value(

string const &
unsigned Tong
long &

string const a
long &

qualifiedName,
index,
value) const

qualifiedName,
value) const

— C++

APIRET Value(

APIRET Value(

string const &
unsigned Tong
double &

string const a
double &

qualifiedName,
index,
value) const

qualifiedName,
value) const

Chapter 1. MQSeries Workflow programming concepts

49

Programming concepts

— C++
APIRET Value(string const

string &

APIRET Value(string const
string &

unsigned long

& qualifiedName,
index,
value) const

[<3]

qualifiedName,
value) const

— Java

public abstract
byte[] getBuffer2(String
int

public abstract
byte[] getBuffer(String

qualifiedName,
index) throws FmcException

qualifiedName) throws FmcException

— Java

pubTic abstract
double getDouble2(String
int

public abstract
double getDouble(String

qualifiedName,
index) throws FmcException

qualifiedName) throws FmcException

— Java
pubTic abstract
int getLong2(String
int

public abstract
int getLong(String

qualifiedName,
index) throws FmcException

qualifiedName) throws FmcException

— Java

pubTic abstract

String getString2(String
int

public abstract

String getString(String

qualifiedName,
index) throws FmcException

qualifiedName) throws FmcException

50 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

— COBOL
FmcjCArrayBinaryLength.

CALL "FmcjContainerArrayBinarylLength"

USING

BY VALUE
hd1Container
qualifiedName
indexValue

RETURNING
ulongReturnValue.

FmcjCArrayBinaryValue.

CALL "FmcjContainerArrayBinaryValue"

USING

BY VALUE
hd1Container
qualifiedName
indexValue
pointerValue
datalLength

RETURNING
intReturnValue.

FmcjCBinarylLength.

CALL "FmcjContainerBinaryLength"
USING
BY VALUE
hd1Container
qualifiedName
RETURNING
ulongReturnValue.

FmcjCBinaryValue.

CALL "FmcjContainerBinaryValue"

USING

BY VALUE
hd1Container
qualifiedName
pointerValue
datalength

RETURNING
intReturnValue.

Chapter 1. MQSeries Workflow programming concepts 51

Programming concepts

— COBOL

FmcjCArrayFloatValue.
CALL "FmcjContainerArrayFloatValue"
USING
BY VALUE
hd1Container
qualifiedName
indexValue
BY REFERENCE
doubleValue
RETURNING
intReturnValue.
FmcjCFloatValue.
CALL "FmcjContainerFloatValue"
USING
BY VALUE
hd1Container
qualifiedName
BY REFERENCE
doubleValue
RETURNING
intReturnValue.

— COBOL

FmcjCArraylLongValue.

CALL "FmcjContainerArraylLongValue"

USING

BY VALUE
hd1Container
qualifiedName
indexValue

BY REFERENCE
intValue

RETURNING
intReturnValue.

FmcjCLongValue.

CALL "FmcjContainerLongValue"

USING

BY VALUE
hd1Container
qualifiedName

BY REFERENCE
intValue

RETURNING
intReturnValue.

52 MQSeries Workflow for OS/390 Programming Guide

— COBOL

Programming concepts

FmcjCArrayStringlLength.

CALL "FmcjContainerArrayStringlLength"

USING

BY VALUE
hd1Container
qualifiedName
indexValue

RETURNING
ulongReturnValue.

FmcjCArrayStringValue.

CALL "FmcjContainerArrayStringValue"

USING

BY VALUE
hd1Container
qualifiedName
indexValue
valueBuffer
bufferLength

RETURNING
intReturnValue.

FmcjCStringlLength.

CALL "FmcjContainerStringLength"
USING
BY VALUE
hd1Container
qualifiedName
RETURNING
ulongReturnValue.

FmcjCStringValue.

CALL "FmcjContainerStringValue"

USING

BY VALUE
hd1Container
qualifiedName
valueBuffer
bufferLength

RETURNING
intReturnValue.

Parameters
bufferLength

Input. The length of the buffer available for passing the value;
must be greater than or equal to the actual length. Use the
appropriate Length() API calls to determine the actual length.

handle Input. The handle of the container to be queried.

index Input. When the leaf is an array, the index of the array element to
be queried.

isArray Input. If set to True, an array is to be queried and the index is
used.

qualifiedName Input. The fully qualified name of the leaf within the container.

value Output. The value of the leaf.

Chapter 1. MQSeries Workflow programming concepts 53

Programming concepts

Return type
byte[l/double/int/String
The leaf value.
unsigned long
The minimum required buffer length for reading the value.
APIRET The return code from this API call.

Accessing a value of a container element

The following API calls return the value of a container element leaf. When the leaf
is an array of values, an index must be specified.
FMC_ERROR_MEMBER_NOT _SET is returned if no information is available. Note
that, in contrast to querying container leaves, the name of the leaf need not be
specified because the container element itself is the leaf queried.

— C
unsigned Tong
FMC_APIENTRY FmcjContainerElementArrayBinarylLength(
FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayBinaryValue(

unsigned Tong index,
FmcjBinary =* value,
unsigned Tong bufferLength)

unsigned Tong
FMC_APIENTRY FmcjContainerElementBinaryLength(
FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementBinaryValue(
FmcjContainerElementHandle handle,
FmcjBinary =* value,
unsigned Tong bufferLength)

— C

APIRET FMC_APIENTRY FmcjContainerElementArrayFloatValue(
FmcjContainerElementHandle handle,
unsigned Tong index,
double = value)

APIRET FMC_APIENTRY FmcjContainerElementFloatValue(
FmcjContainerElementHandle handle,
double = value)

— C
APIRET FMC_APIENTRY FmcjContainerElementArrayLongValue(
FmcjContainerElementHandle handle,

unsigned Tong index,
Tong * value)

APIRET FMC_APIENTRY FmcjContainerElementLongValue(
FmcjContainerElementHandle handle,
long * value)

54 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

— C
unsigned Tong
FMC_APIENTRY FmcjContainerElementArrayStringLength(

FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayStringValue(
FmcjContainerElementHandle handle,

unsigned Tong index,
char * value,
unsigned Tong bufferLength)

unsigned Tong
FMC_APIENTRY FmcjContainerElementStringlLength(
FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementStringValue(
FmcjContainerElementHandle handle,
char * value,
unsigned Tong bufferLength)

— C++
unsigned long BinarylLength(unsigned long index)
APIRET Value(unsigned long index,

FmcjBinary * value,
unsigned Tong bufferLength) const
unsigned long BinaryLength()

APIRET Value(FmcjBinary = value,
unsigned Tong bufferLength) const

— C++

APIRET Value(unsigned long index,

Tong & value) const
APIRET Value(long & value) const
APIRET Value(unsigned Tong index,

double & value) const
APIRET Value(double & value) const
APIRET Value(unsigned long index,

string & value) const
APIRET Value(string & value) const

Chapter 1. MQSeries Workflow programming concepts

55

Programming concepts

— Java
public abstract
byte[] getBuffer2(int index) throws FmcException

public abstract
byte[] getBuffer() throws FmcException

pubTic abstract
double getDouble2(int index) throws FmcException

public abstract
double getDouble() throws FmcException

public abstract
int getLong2(int index) throws FmcException

public abstract
int getLong() throws FmcException

pubTic abstract
String getString2(int index) throws FmcException

public abstract
String getString() throws FmcException

56 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

— COBOL

FmcjCEArrayBinarylLength.

CALL "FmcjContainerElementArrayBinarylLength"
USING
BY VALUE
hd1Element
indexValue
RETURNING
ulongReturnValue.

FmcjCEArrayBinaryValue.

CALL "FmcjContainerElementArrayBinaryValue"
USING
BY VALUE
hd1ETlement
indexValue
pointerValue
datalength
RETURNING
intReturnValue

FmcjCEBinaryLength.

CALL "FmcjContainerElementBinarylLength"
USING
BY VALUE
hd1Element
RETURNING
uTongReturnValue.

FmcjCEBinaryValue.

CALL "FmcjContainerElementBinaryValue"
USING
BY VALUE
hd1Element
pointerValue
datalength
RETURNING
intReturnValue.

Chapter 1. MQSeries Workflow programming concepts 57

Programming concepts

— COBOL

FmcjCEArrayFloatValue.

CALL "FmcjContainerElementArrayFloatValue"
USING
BY VALUE
hd1ETement
indexValue
BY REFERENCE
doubleValue
RETURNING
intReturnValue.

FmcjCEFloatValue.
CALL "FmcjContainerElementFloatValue"
USING
BY VALUE

hd1ETement
BY REFERENCE
doubleValue
RETURNING
intReturnValue.

— COBOL
FmcjCEArrayLongValue.

CALL "FmcjContainerElementArrayLongValue"
USING
BY VALUE
hd1ETement
indexValue
BY REFERENCE
intValue
RETURNING
intReturnValue.

FmcjCELongValue.

CALL "FmcjContainerElementLongValue"

USING

BY VALUE
hd1ETement

BY REFERENCE
intValue

RETURNING
intReturnValue.

58 MQSeries Workflow for OS/390 Programming Guide

— COBOL

Programming concepts

FmcjCEArrayStringlLength.

CALL "FmcjContainerElementArrayStringlLength"
USING
BY VALUE
hd1Element
indexValue
RETURNING
uTongReturnValue.

FmcjCEArrayStringValue.

CALL "FmcjContainerElementArrayStringValue"
USING
BY VALUE
hd1Element
indexValue
valueBuffer
bufferLength
RETURNING
intReturnValue.

FmcjCEStringlLength.

CALL "FmcjContainerElementStringlLength"
USING
BY VALUE
hd1Element
RETURNING
uTongReturnValue.

FmcjCEStringValue.

CALL "FmcjContainerElementStringValue"
USING
BY VALUE
hdTElement
valueBuffer
bufferLength
RETURNING
intReturnValue.

Parameters
bufferLength

handle
index

value

Input. The length of the buffer available for passing the value;
must be greater than or equal to the actual length. Use the
appropriate Length() API calls to determine the actual length.
Input. The handle of the container element to be queried.

Input. When the leaf is an array, the index of the array element to
be queried.

Output. The value of the leaf.

Return type

byte[l/doub

le/int/String
The leaf value.

unsigned long

APIRET

The minimum required buffer length for reading the value.
The return code from this API call.

Chapter 1. MQSeries Workflow programming concepts 59

Programming concepts

Setting a value of a container

The following API calls allow to set the value of a container leaf.

When the leaf is an array of values, an index must be specified. Since an index is
to be specified, the fully qualified name must be given without the index and its

parentheses.
— C
APIRET FMC_APIENTRY FmcjContainerSetArrayBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
unsigned Tong index,
FmcjBinary const * value,

unsigned Tong datalLength)
APIRET FMC_APIENTRY FmcjContainerSetBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
FmcjBinary const * value,
unsigned Tong datalength)

— C
APIRET FMC_APIENTRY FmcjContainerSetArrayFloatValue(
FmcjContainerHandle handle,
char const * qualifiedName,
unsigned Tong index,
double value)

APIRET FMC_APIENTRY FmcjContainerSetFloatValue(
FmcjContainerHandle handle,
char const = qualifiedName,
double value)

— C
APIRET FMC_APIENTRY FmcjContainerSetArraylLongValue(
FmcjContainerHandle handle,

APIRET FMC_APIENTRY

char const =
unsigned Tong
long

qualifiedName,
index,
value)

FmcjContainerSetLongValue(

FmcjContainerHandle

Tong

handle,
value)

60 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

— C

APIRET FMC_APIENTRY FmcjContainerSetArrayStringValue(

FmcjContainerHandle handle,

char const * qualifiedName,
unsigned Tong index,
char const = value)

APIRET FMC_APIENTRY FmcjContainerSetStringValue(

FmcjContainerHandle handle,
char const * qualifiedName,
char const * value)

string const &

— C++
APIRET Value(string const & qualifiedName,
unsigned Tong index,
FmcjBinary const * value,
unsigned Tong datalLength) const
APIRET Value(string const & qualifiedName,
FmcjBinary const * value,
unsigned Tong datalLength) const
— C++
APIRET Value(string const & qualifiedName,
unsigned Tong index,
Tong value) const
APIRET Value(string const a qualifiedName,
Tong value) const
— C++
APIRET Value(string const & qualifiedName,
unsigned Tong index,
double value) const
APIRET Value(string const a qualifiedName,
double value) const
— C++
APIRET Value(string const & qualifiedName,
unsigned Tong index,
string const & value) const
APIRET Value(string const & qualifiedName,

value) const

Chapter 1. MQSeries Workflow programming concepts

61

Programming concepts

— Java

public abstract

void setBuffer2(String qualifiedName,
int index,
byte value [1) throws FmcException
public abstract
void setBuffer(String qualifiedName,
byte value[]) throws FmcException
— Java
public abstract
void setDouble2(String qualifiedName,
int index,
double value) throws FmcException
public abstract
void setDouble(String qualifiedName,
double value) throws FmcException
— Java
pubTic abstract
void setlLong?2(String qualifiedName,
int index,
long value) throws FmcException
public abstract
void setlong(String qualifiedName,
long value) throws FmcException
— Java
pubTic abstract
void setString2(String qualifiedName,
int index,
String value) throws FmcException
public abstract
void setString(String qualifiedName,
String value) throws FmcException

62 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

— COBOL

FmcjRWCSetArrayBinaryValue.

CALL "FmcjReadWriteContainerSetArrayBinaryValue"
USING
BY VALUE
hd1Container
qualifiedName
indexValue
pointerValue
datalength
RETURNING
intReturnValue.

FmcjRWCSetBinaryValue.

CALL "FmcjReadWriteContainerSetBinaryValue"
USING
BY VALUE
hd1Container
qualifiedName
pointerValue
datalength
RETURNING
intReturnValue.

— COBOL
FmcjRWCSetArrayFloatValue.

CALL "FmcjReadWriteContainerSetArrayFloatValue"
USING
BY VALUE
hd1Container
qualifiedName
indexValue
doubleValue
RETURNING
intReturnValue.

FmcjRWCSetFToatValue.
CALL "FmcjReadWriteContainerSetFloatValue"
USING
BY VALUE
hd1Container

qualifiedName

doubleValue
RETURNING

intReturnValue.

Chapter 1. MQSeries Workflow programming concepts 63

Programming concepts

— COBOL
FmcjRWCSetArraylLongValue.

CALL "FmcjReadWriteContainerSetArraylLongValue"
USING
BY VALUE
hd1Container
qualifiedName
indexValue
intValue
RETURNING
intReturnValue.

FmcjRWCSetLongValue.

CALL "FmcjReadWriteContainerSetLongValue"
USING
BY VALUE
hd1Container
qualifiedName
intValue
RETURNING
intReturnValue.

— COBOL
FmcjRWCSetArrayStringValue.
CALL "FmcjReadWriteContainerSetArrayStringValue"
USING
BY VALUE

hd1Container
qualifiedName
indexValue
pointerValue
RETURNING
intReturnValue.

FmcjRWCSetStringValue.

CALL "FmcjReadWriteContainerSetStringValue"
USING
BY VALUE
hd1Container
qualifiedName
pointerValue
RETURNING
intReturnValue.

Parameters

dataLength Input. The length of the binary value.

handle Input. The handle of the container to be set.

index Input. When the leaf is an array, the index of the array element to
be set.

isArray Input. If set to True, an array element is to be set and the index is
used.

qualifiedName Input. The fully qualified name of the leaf within the container.

value Input. The value of the leaf. Note that values for leaves of type

64 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

BINARY must be specified as a sequence of two-digit hexadecimal
numbers. For example, the string "abc<cr><If>" would be
represented as '6162630d0a’” (where <cr> denotes the ASCII
‘carriage return’ character and <If> denotes the ASCII line-feed
character).

Return type
APIRET The return code from this API call.

Return codes/FmcException

The following return codes can be issued or described by the result object, or the
following exceptions can be thrown. The number in parentheses indicates the
integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR_BUFFER(800)

The provided buffer is too small.
FMC_ERROR(1)

A parameter references an undefined location. For example, the

address of a handle is expected, but 0 is passed.
FMC_ERROR_EMPTY(122)

The object has not yet been read from the server.
FMC_ERROR_FORMAT(117)

The qualified name does not conform to the syntax rules.
FMC_ERROR_INVALID_HANDLE(130)

The handle provided is invalid; it is 0 or it is not pointing to an

object of the requested type.
FMC_ERROR_MEMBER_CANNOT_BE_SET(115)

The specified member is an MQSeries Workflow predefined fixed

data member; it is for information only.
FMC_ERROR_MEMBER_NOT_FOUND(112)

The specified member is not part of the container or container

element.
FMC_ERROR_MEMBER_NOT_SET(113)

The specified member has no value.

Monitoring a process instance

MQSeries Workflow allows for obtaining a monitor for a specified process instance.
A process instance monitor typically allows for:

¢ Observing the progress of a process instance execution.

* Determining the state of execution, that is, to determine which activity instance
is currently in progress, is waiting to be executed by whom, is InError and
waiting for some action. It allows to determine whether notifications occurred
because the maximum work time was exceeded.

* Viewing the history of execution, that is, what path has been taken through the
process instance and why. It allows to determine where the bottlenecks of
execution are or where the most time-consuming parts are.

Note: Monitoring a process instance is not supported in the XML message
interface.

Chapter 1. MQSeries Workflow programming concepts 65

Programming concepts

Obtaining a process instance monitor

Once a process instance? has been accessed, a process instance monitor can be
obtained. The transient process instance monitor object then represents all
information about activity instances directly contained in the described process
instance as well as all information on control connector instances connecting those
activity instances.

Process Instance Monitor
Program Activity 1

\
e

Block Activity 3

Block Instance Monitor

Program Activity 2

3,

Block Activity 4

Program Activity 7 Program Activity 8

Block Instance Monitor

)

7

Process Activity 6

Process Instance Monitor

Program Activity 5

=

Program Activity 9

Figure 16. Process instance monitors and block instance monitors

For example, the illustrated process instance monitor describes three program
activities, Program Activity 1, Program Activity 2, and Program Activity 9, and an
activity of type Block, Block Activity 3. There are three control connectors between
these activities.

The process instance monitor can then be asked for the activity instances and the
control connector instances described and their properties can be determined, for
example, the state of the activity and its graphical layout, or the result of control
connector instance evaluation and activities to connect or bend points to be drawn.

When an activity of type Block is encountered, it is possible to obtain its block
instance monitor. Similar to a process instance monitor, a block instance monitor
object represents all information about activity instances directly contained in the
described block activity instance as well as all information on control connector
instances connecting those activity instances. For example, the block instance
monitor of Block Activity 3 describes Block Activity 4, Program Activity 5, and Process
Activity 6. There is a control connector between Block Activity 4 and Process Activity
6.

2. or activity instance or a (work) item

66 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

When an activity of type Process is encountered, it is again possible to obtain its
process instance monitor, either via the embracing monitor object or by retrieving
the implementing (sub)process instance of the activity and then obtaining the
associated process instance monitor. The process instance monitor obtained is a
monitor which is completely separate from any other process instance monitor.

When obtaining a process instance monitor, it is possible to use the deep option in
order to specify that all monitors for activities of kind Block are to be returned
from the MQSeries Workflow execution server in the same step. The block instance
monitors then all show the state of the process instance at this retrieval time. This
means, when a block instance monitor is obtained via an API call, the API finds
this monitor in its cache and provides it to the caller. When the deep option is not
used, it can happen that a block instance monitor is not available. The API then
automatically fetches the requested monitor from the execution server; it then
represents a newer state than the ones previously retrieved.

Note: The deep option is not yet supported.

Ownership of monitors

As any other transient object, a process instance monitor is owned by the caller of
the API. When a process instance monitor is no longer needed, you should
delete/deallocate the object.

A block instance monitor, however, is considered to be part of a process instance
monitor. It is cached by the API as part of the process instance monitor. It cannot
be deallocated in C or COBOL. Deletion in C++ only deletes the C++
representation but not the block instance monitor itself in the API cache. Block
instance monitors are automatically deleted when the owning process instance
monitor is deleted/deallocated. This means that block instance monitor objects or
handles can only be used as long as the containing process instance monitor exists.
When the process instance monitor no longer exists, using a block instance monitor
object or handle will return unexpected results; your program can even abend
since the usage of a nonexisting object or handle violates the MQSeries Workflow
programming by contract concept.

Authorization considerations

In general, authorization is granted to persons, either explicitly or implicitly.
Implicitly means that the authority has been given as the result of performing
some MQSeries Workflow action; performing that action can itself request some
specific authority. See also MQSeries Workflow for OS/390: Customization and
Administration.

Special authority is granted to a person playing the role of a system administrator.
The system administrator has all privileges except on (work) items. Only the
owner of a (work) item can issue any actions; the system administrator can,
however, transfer the (work) item to himself. The system administrator role must
be assigned to a single person at any time.

When a process instance is started, its process administrator is determined. The

person determined to be the process administrator receives process administration
rights for that process instance.

Chapter 1. MQSeries Workflow programming concepts 67

Programming concepts

The person who is to become the process administrator of a process instance is

specified when the process model is defined. Identification of the process
administrator can be done in the following ways:

* Specification of a user identification for the PROCESS_ADMINISTRATOR

keyword. In this case, the process administrator is already known when the

process model is defined.

* Specification of a member in the process input container via the
PROCESS_ADMINISTRATOR TAKEN_FROM specification.

* Specification of DATA FROM INPUT_CONTAINER. The process administrator is

then taken from the process information member

_PROCESS_INFO.ProcessAdministrator field in the input container (see

- for details).

The following table shows the authorizations and the MQSeries Workflow

functions which can be called when that authority has been granted. The E/I
(Explicit/Implicit) column indicates how the authorization is granted to persons.

Note: For the programming language APIs, once a user has been authenticated to
MQSeries Workflow (logged on), he can retrieve all objects he is authorized
to see without any further special authorization. These are all objects he has
created and all objects which are not specially secured or which are for

public usage.

Table 2. Authorization for persons

Name E/l Authorized Functions
Authorization E Create, update, and delete authorization information.
definition
authorization Retrieve and update passwords.
The appropriate FDL authorization keyword is
AUTHORIZATION.
Operation E Can perform all operation administration functions.
administration The appropriate FDL authorization keyword is
authorization OPERATION.

Staff definition E
authorization

Create, retrieve, update, and delete staff information.
As such, it includes authorization definition
authorization.

Create, retrieve, update, and delete public and
private process instance lists, process template lists,
and worklists.

The appropriate FDL authorization keyword is
STAFE.

Topology E
definition
authorization

Create, retrieve, update, and delete topology
information. The appropriate FDL authorization
keyword is TOPOLOGY.

Process modeling |E
authorization

Create, retrieve, update, and delete process models
and process templates. The appropriate FDL
authorization keyword is PROCESS_MODELING.

68 MQSeries Workflow for OS/390 Programming Guide

Programming concepts

Table 2. Authorization for persons (continued)

Name

E/l

Authorized Functions

Process
authorization

E

Can perform the following process instance
functions if the process instance does not belong to
any category. If the process instance does belong to a
category, you must be authorized for all categories
or for that specific category:

* Create

* Start

* Create and start

* Set process instance name

* Query

* Refresh

Can perform the following process template
functions if the process template does not belong to
any category. If the process template does belong to
a category, you must be authorized for all categories
or for that specific category:

* Query

* Refresh

The appropriate FDL authorization keyword is
PROCESS_CATEGORY.

Process
administration
authorization

Has process authorization and can perform the
following additional process instance functions if the
process instance does not belong to any category. If
the process instance does belong to a category, you
must be authorized with administration rights for all
categories or for that specific category:

e Delete

* Restart

* Resume

* Suspend

¢ Terminate

Can perform the following work item functions on
the assigned work item for all process instances if
the process instance does not belong to any category.
If the process instance does belong to a category, you
must be authorized for all categories or for that
specific category:

* Force-finish

* Force-restart

The appropriate FDL authorization keyword is
PROCESS_CATEGORY AS ADMINISTRATOR.

Process
administrator

Has process administration authority for the
appropriate process instance.

Process creator

Can